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Preface

C was a relatively little-known language when the first edition of C Primer Plus appeared in
1984. Since then, the language has boomed, and many people have learned C with the help of
this book. In fact, C Primer Plus throughout its various editions has sold over 550,000 copies.

As the language has grown from the early informal K&R standard through the 1990 ISO/ANSI
standard through the 1999 ISO/ANSI standard to the 2011 ISO/IEC standard, so has this book
matured through this, the sixth edition. As with all the editions, my aim has been to create an
introduction to C that is instructive, clear, and helpful.

Approach and Goals

My goal is for this book to serve as a friendly, easy-to-use, self-study guide. To accomplish that
objective, C Primer Plus employs the following strategies:

B Programming concepts are explained, along with details of the C language; the book does
not assume that you are a professional programmer.

B Many short, easily typed examples illustrate just one or two concepts at a time, because
learning by doing is one of the most effective ways to master new information.

B Figures and illustrations clarify concepts that are difficult to grasp in words alone.
B Highlight boxes summarize the main features of C for easy reference and review.

B Review questions and programming exercises at the end of each chapter allow you to test
and improve your understanding of C.

To gain the greatest benefit, you should take as active a role as possible in studying the topics
in this book. Don’t just read the examples, enter them into your system, and try them. C is a
very portable language, but you may find differences between how a program works on your
system and how it works on ours. Experiment with changing part of a program to see what
the effect is. Modify a program to do something slightly different. See if you can develop an
alternative approach. Ignore the occasional warnings and see what happens when you do the
wrong thing. Try the questions and exercises. The more you do yourself, the more you will
learn and remember.

I hope that you'll find this newest edition an enjoyable and effective introduction to the C
language.
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1
Getting Ready

You will learn about the following in this chapter:

= C’s history and features
= The steps needed to write programs
= A bit about compilers and linkers

= C standards

Welcome to the world of C—a vigorous, professional programming language popular with
amateur and commercial programmers alike. This chapter prepares you for learning and using
this powerful and popular language, and it introduces you to the kinds of environments in
which you will most likely develop your C-legs.

First, we look at C’s origin and examine some of its features, both strengths and drawbacks.
Then we look at the origins of programming and examine some general principles for program-
ming. Finally, we discuss how to run C programs on some common systems.

Whence C?

Dennis Ritchie of Bell Labs created C in 1972 as he and Ken Thompson worked on designing
the Unix operating system. C didn’t spring full-grown from Ritchie’s head, however. It came
from Thompson’s B language, which came from... but that’s another story. The important
point is that C was created as a tool for working programmers, so its chief goal is to be a useful
language.

Most languages aim to be useful, but they often have other concerns. The main goal for
Pascal, for instance, was to provide a sound basis for teaching good programming principles.
BASIC, on the other hand, was developed to resemble English so that it could be learned easily
by students unfamiliar with computers. These are important goals, but they are not always
compatible with pragmatic, workaday usefulness. C’s development as a language designed for
programmers, however, has made it one of the modern-day languages of choice.




Chapter 1 Getting Ready

Why C?

During the past four decades, C has become one of the most important and popular program-
ming languages. It has grown because people try it and like it. In the past decade or two, many
have moved from C to languages such as C++, Objective C, and Java, but C is still an important
language in its own right, as well a migration path to these others. As you learn C, you will
recognize its many virtues (see Figure 1.1). Let’s preview a few of them now.

(L
v
F S 4

Powerful control structures Fast

Compact code —small programs Portable to other computers

Figure 1.1  The virtues of C.

Design Features

C is a modern language incorporating the control features found desirable by the theory and
practice of computer science. Its design makes it natural for top-down planning, structured
programming, and modular design. The result is a more reliable, understandable program.
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Efficiency

C is an efficient language. Its design takes advantage of the capabilities of current computers.

C programs tend to be compact and to run quickly. In fact, C exhibits some of the fine control
usually associated with an assembly language. (An assembly language is a mnemonic representa-
tion of the set of internal instructions used by a particular central processing unit design; differ-
ent CPU families have different assembly languages.) If you choose, you can fine-tune your
programs for maximum speed or most efficient use of memory.

Portability

C is a portable language, which means that C programs written on one system can be run on
other systems with little or no modification. If modifications are necessary, they can often be
made by simply changing a few entries in a header file accompanying the main program. Most
languages are meant to be portable, but anyone who has converted an IBM PC BASIC program
to Apple BASIC (and they were close cousins) or has tried to run an IBM mainframe FORTRAN
program on a Unix system knows that porting is troublesome at best. C is a leader in portabil-
ity. C compilers (programs that convert your C code into the instructions a computer uses
internally) are available for many computer architectures, running from 8-bit microprocessors
to Cray supercomputers. Note, however, that the portions of a program written specifically to
access particular hardware devices, such as a display monitor, or special features of an operating
system, such as Windows 8 or OS X, typically are not portable.

Because of C’s close ties with Unix, Unix systems typically come with a C compiler as part
of the package. Linux installations also usually include a C compiler. Several C compilers are
available for personal computers, including PCs running various versions of Windows and
Macintoshes. So whether you are using a home computer, a professional workstation, or a
mainframe, the chances are good that you can get a C compiler for your particular system.

Power and Flexibility

C is powerful and flexible (two favorite words in computer literature). For example, most of the
powerful, flexible Unix operating system was written in C. Many compilers and interpreters for
other languages—such as FORTRAN, Perl, Python, Pascal, LISP, Logo, and BASIC—have been
written in C. As a result, when you use FORTRAN on a Unix machine, ultimately a C program
has done the work of producing the final executable program. C programs have been used for
solving physics and engineering problems and even for animating special effects for movies.

Programmer Oriented

C is oriented to fulfill the needs of programmers. It gives you access to hardware, and it enables
you to manipulate individual bits in memory. Its rich selection of operators allows you to
express yourself succinctly. C is less strict than, say, Pascal or even C++ in limiting what you
can do. This flexibility is both an advantage and a danger. The advantage is that many tasks,
such as converting forms of data, are much simpler in C. The danger is that with C, you can
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make mistakes that are impossible in some languages. C gives you more freedom, but it also
puts more responsibility on you.

Also, most C implementations have a large library of useful C functions. These functions deal
with many needs that a programmer commonly faces.

Shortcomings

C does have some faults. Often, as with people, faults and virtues are opposite sides of the
same feature. For example, we've mentioned that C’s freedom of expression also requires added
responsibility. C’s use of pointers (something you can look forward to learning about in this
book), in particular, means that you can make programming errors that are difficult to trace. As
one computer preliterate once commented, the price of liberty is eternal vigilance.

C’s conciseness, combined with its wealth of operators, make it possible to prepare code that is
extremely difficult to follow. You aren’t compelled to write obscure code, but the opportunity
is there. After all, what other language has a yearly Obfuscated Code contest?

There are more virtues and, undoubtedly, a few more faults. Rather than delve further into the
matter, let’s move on to a new topic.

Whither C?

By the early 1980s, C was already a dominant language in the minicomputer world of Unix
systems. Since then, it has spread to personal computers (microcomputers) and to mainframes
(the big guys). See Figure 1.2. Many software houses use C as the preferred language for produc-
ing word processing programs, spreadsheets, compilers, and other products. These companies
know that C produces compact and efficient programs. More important, they know that these
programs will be easy to modify and easy to adapt to new models of computers.

What's good for companies and C veterans is good for other users, too. More and more
computer users have turned to C to secure its advantages for themselves. You don’t have to be
a computer professional to use C.

In the 1990s, many software houses began turning to the C++ language for large program-
ming projects. C++ grafts object-oriented programming tools to the C language. (Object-oriented
programming is a philosophy that attempts to mold the language to fit a problem instead of
molding the problem to fit the language.) C++ is nearly a superset of C, meaning that any C
program is, or nearly is, a valid C++ program, too. By learning C, you also learn much of C++.

Despite the popularity of newer languages, such as C++ and Java, C remains a core skill in the
software business, typically ranking in the top 10 of desired skills. In particular, C has become
popular for programming embedded systems. That is, it’s used to program the increasingly
common microprocessors found in automobiles, cameras, DVD players, and other modern
conveniences. Also, C has been making inroads in FORTRAN’s long dominance of scientific
programming. Finally, as befits a language created to develop an operating system, it plays a
strong role in the development of Linux. Thus, the second decade of the twenty-first century
finds C still going strong.
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Figure 1.2 Where C is used.

In short, C is one of the most important programming languages and will continue to be so. If
you want a job writing software, one of the first questions you should be able to answer yes to

is “Oh say, can you C?”

What Computers Do

Now that you are about to learn how to program in C, you probably should know a little
about how computers work. This knowledge will help you understand the connection between
writing a program in C and what eventually takes place when you run that program.

Modern computers have several components. The central processing unit, or CPU, does most
of the computing work. The random access memory, or RAM, serves as a workspace to hold
programs and files. The permanent memory storage device, typically a hard disk in the past,
but now more and more often a solid-state device, remembers those programs and files, even
while the computer is turned off. And various peripherals—such as the keyboard, mouse,
touchscreen, and monitor—provide for communication between the computer and you. The
CPU processes your programs; so let’s concentrate on its role.

5
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The life of a CPU, at least in this simplistic account, is quite simple. It fetches an instruction
from memory and executes it. It fetches the next instruction from memory and executes it,
and so on. (A gigahertz CPU can do this about a billion times a second, so the CPU can lead its
boring life at a tremendous pace.) The CPU has its own small workspace, consisting of several
registers, each of which can hold a number. One register holds the memory address of the next
instruction, and the CPU uses this information to fetch the next instruction. After it fetches
an instruction, the CPU stores the instruction in another register and updates the first register
to the address of the next instruction. The CPU has a limited repertoire of instructions (known
as the instruction set) that it understands. Also, these instructions are rather specific; many of
them ask the computer to move a number from one location to another—for example, from a
memory location to a register.

A couple interesting points go along with this account. First, everything stored in a computer is
stored as a number. Numbers are stored as numbers. Characters, such as the alphabetical char-
acters you use in a text document, are stored as numbers; each character has a numeric code.
The instructions that a computer loads into its registers are stored as numbers; each instruction
in the instruction set has a numeric code. Second, computer programs ultimately have to be
expressed in this numeric instruction code, or what is called machine language.

One consequence of how computers work is that if you want a computer to do something, you
have to feed a particular list of instructions (a program) telling it exactly what to do and how
to do it. You have to create the program in a language that the computer understands directly
(machine language). This is a detailed, tedious, exacting task. Something as simple as adding
two numbers together would have to be broken down into several steps, perhaps something
like the following:

1. Copy the number in memory location 2000 to register 1.
2. Copy the number in memory location 2004 to register 2.

3. Add the contents of register 2 to the contents of register 1, leaving the answer in
register 1.

4. Copy the contents of register 1 to memory location 2008.

And you would have to represent each of these instructions with a numeric code!

If writing a program in this manner sounds like something you’d like to do, you'll be sad to
learn that the golden age of machine-language programming is long past. But if you prefer
something a little more enjoyable, open your heart to high-level programming languages.

High-level Computer Languages and Compilers

High-level programming languages, such as C, simplify your programming life in several ways.
First, you don’t have to express your instructions in a numeric code. Second, the instructions
you use are much closer to how you might think about a problem than they are to the detailed
approach a computer uses. Rather than worry about the precise steps a particular CPU would
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have to take to accomplish a particular task, you can express your desires on a more abstract
level. To add two numbers, for example, you might write the following:

total = mine + yours;

Seeing code like this, you have a good idea what it does; looking at the machine-language
equivalent of several instructions expressed in numeric code is much less enlightening.

Unfortunately, the opposite is true for a computer; to it, the high-level instruction is incom-
prehensible gibberish. This is where compilers enter the picture. The compiler is a program that
translates the high-level language program into the detailed set of machine language instruc-
tions the computer requires. You do the high-level thinking; the compiler takes care of the
tedious details.

The compiler approach has another benefit. In general, each computer design has its own
unique machine language; so a program written in the machine language for, say, an Intel Core
i7 CPU means nothing to an ARM Cortex-A57 CPU. But you can match a compiler to a particu-
lar machine language. Therefore, with the right compiler or set of compilers, you can convert
the same high-level language program to a variety of different machine-language programs.
You solve a programming problem once, and then you let your compilers translate the solution
to a variety of machine languages.

In short, high-level languages—such as C, Java, and Pascal—describe actions in a more abstract
form and aren’t tied to a particular CPU or instruction set. Also, high-level languages are easier
to learn and much easier to program in than are machine languages.

Advances in Computing

In 1964, Control Data Corporation announced the CDC 6600 computer. This room-filling
machine is considered to be the first supercomputer, and it had a starting price of about $6
million. It was the computer of choice for high-energy nuclear physics research. A modern
smartphone is several hundred times as capable in terms of computing power and memory. It
can show videos and play music, too. And it’s a phone.

In 1964, FORTRAN was the dominant programming language, at least in engineering and sci-
ence. Programming languages haven’t evolved quite as dramatically as the hardware on which
they run. Nonetheless, the world of programming languages has changed. Languages have
provided more support first for structured programming, then for object-oriented programming
as part of the struggle to cope with larger and larger programming projects. Not only have new
languages come along, but existing languages have changed with the times.

Language Standards

Currently, many C implementations are available. Ideally, when you write a C program, it
should work the same on any implementation, providing it doesn’t use machine-specific
programming. For this to be true in practice, different implementations need to conform to a
recognized standard.
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At first, there was no official standard for C. Instead, the first edition of The C Programming
Language by Brian Kernighan and Dennis Ritchie (1978) became the accepted standard, usually
referred to as K&R C or Classic C. In particular, the “C Reference Manual” in that book’s appen-
dix acted as the guide to C implementations. Compilers, for example, would claim to offer a
full K&R implementation. However, although this appendix defined the C language, it did not
define the C library. More than most languages, C depends on its library, so there is need for a
library standard, too. In the absence of any official standard, the library supplied with the Unix
implementation became a de facto standard.

The First ANSI/ISO C Standard

As C evolved and became more widely used on a greater variety of systems, the C community
realized it needed a more comprehensive, up-to-date, and rigorous standard. To meet this need,
the American National Standards Institute (ANSI) established a committee (X3J11) in 1983 to
develop a new standard, which was adopted formally in 1989. This standard (ANSI C) defined
both the language and a standard C library. The International Organization for Standardization
adopted a C standard (ISO C) in 1990. ISO C and ANSI C are essentially the same standard.
The final version of the ANSI/ISO standard is often referred to as C89 (because that’s when
ANSI approval came) or C90 (because that’s when ISO approval came). Also, because the ANSI
version came out first, people often used the term ANSI C.

The committee had several guiding principles. Perhaps the most interesting was this: Keep the
spirit of C. The committee listed the following ideas as expressing part of that spirit:

= Trust the programmer.

= Don’t prevent the programmer from doing what needs to be done.
= Keep the language small and simple.

= Provide only one way to do an operation.

= Make it fast, even if it is not guaranteed to be portable.

By the last point, the committee meant that an implementation should define a particular
operation in terms of what works best for the target computer instead of trying to impose an
abstract, uniform definition. You’ll encounter examples of this philosophy as you learn the
language.

The C99 Standard

In 1994, a joint ANSI/ISO committee, known then as the C9X committee, began revising the
standard, an effort that resulted in the C99 standard. The committee endorsed the original
principles of the C90 standard, including keeping the language small and simple. The commit-
tee’s intent was not to add new features to the language except as needed to meet the new
goals. One of these main goals was to support international programming by, for example,
providing ways to deal with international character sets. A second goal was to “codify existing
practice to address evident deficiencies.” Thus, when meeting the need of moving C to 64-bit
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processors, the committee based the additions to the standard on the experiences of those who
dealt with this problem in real life. A third goal was to improve the suitability of C for doing
critical numeric calculations for scientific and engineering projects, making C a more appealing
alternative to FORTRAN.

These three points—internationalization, correction of deficiencies, and improvement of
computational usefulness—were the main change-oriented goals. The remaining plans for
change were more conservative in nature—for example, minimizing incompatibilities with C90
and with C++ and keeping the language conceptually simple. In the committee’s words, “...the
committee is content to let C++ be the big and ambitious language.”

The upshot is that C99 changes preserve the essential nature of C, and C remains a lean, clean,
efficient language. This book points out many of the C99 changes. However, although the
standard has been out for a while, not all compilers at this time fully implement all the C99
changes. You may find that some of them are not available on your system. Or you may find
that some C99 features are available only if you alter the compiler settings.

The C11 Standard

Maintaining a standard is a perpetual process, and in 2007 the Standards Committee commit-
ted to the next revision, C1X, which became realized as C11. The committee raised some new
guiding principles. One was that the “trust the programmer” goal should be tempered some-
what in the face of contemporary concerns of programming security and safety. The committee
also made some important observations. One was that C99 hasn’t been as well received and
supported by vendors as C90 was. As a consequence, some features of C99 became optional
for C11. One reason is that the committee felt that vendors serving the small machine market
shouldn’t be required to support features not used in their targeted environments. Another
observation was that the standard was being revised not because it was broken but because
there was a need to track new technologies. One example of this is the addition of optional
support for concurrent programming in response to the trend of using multiple processors in
computers. We look briefly at this topic, but exploring it is beyond the scope of this book.

Note
This book will use the terms ANSI C or, in a more international spirit, ANSI/ISO C or just ISO C
to mean features common to C89/90 and later standards, and C99 and C11 to refer to new

features. Occasionally, it will refer to C90 (for example, when discussing when a feature was
first added to C).

Using C: Seven Steps

C, as you've seen, is a compiled language. If you are accustomed to using a compiled language,
such as Pascal or FORTRAN, you will be familiar with the basic steps in putting together a C
program. However, if your background is in an interpreted language, such as BASIC, or in a
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graphical interface-oriented language, such as Visual Basic, or if you have no background at
all, you need to learn how to compile. We'll look at that process soon, and you'll see that it is
straightforward and sensible. First, to give you an overview of programming, let’s break down
the act of writing a C program into seven steps (see Figure 1.3). Note that this is an idealiza-
tion. In practice, particularly for larger projects, you would go back and forth, using what you
learned at a later step to refine an earlier step.

Maintain and
modify the
program

@ Test and debug
O the program
5 Run the program

o

il

4!“: Compile
@ Write the code

=]

2 o Design the program

:[I o Define the program objectives

Figure 1.3 The seven steps of programming.

Step 1: Define the Program Objectives

Naturally enough, you should start with a clear idea of what you want the program to do.
Think in terms of the information your program needs, the feats of calculation and manipula-
tion the program needs to do, and the information the program should report back to you. At
this level of planning, you should be thinking in general terms, not in terms of some specific
computer language.

Step 2: Design the Program

After you have a conceptual picture of what your program ought to do, you should decide how
the program will go about it. What should the user interface be like? How should the program
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be organized? Who will the target user be? How much time do you have to complete the
program?

You also need to decide how to represent the data in the program and, possibly, in auxiliary
files, as well as which methods to use to process the data. When you first learn programming
in C, the choices will be simple, but as you deal with more complex situations, you'll find that
these decisions require more thought. Choosing a good way to represent the information can
often make designing the program and processing the data much easier.

Again, you should be thinking in general terms, not about specific code, but some of your deci-
sions may be based on general characteristics of the language. For example, a C programmer
has more options in data representation than, say, a Pascal programmer.

Step 3: Write the Code

Now that you have a clear design for your program, you can begin to implement it by writing
the code. That is, you translate your program design into the C language. Here is where you
really have to put your knowledge of C to work. You can sketch your ideas on paper, but even-
tually you have to get your code into the computer. The mechanics of this process depend on
your programming environment. We’ll present the details for some common environments
soon. In general, you use a text editor to create what is called a source code file. This file contains
the C rendition of your program design. Listing 1.1 shows an example of C source code.

Listing 1.1 Example of C Source Code

#include <stdio.h>
int main(void)

{
int dogs;
printf("How many dogs do you have?\n");
scanf("%d", &dogs);
printf("So you have %d dog(s)!\n", dogs);
return 0;

}

As part of this step, you should document your work. The simplest way is to use C's comment
facility to incorporate explanations into your source code. Chapter 2, “Introducing C,” will
explain more about using comments in your code.

Step 4: Compile

The next step is to compile the source code. Again, the details depend on your programming
environment, and we’ll look at some common environments shortly. For now, let’s start with a
more conceptual view of what happens.

11
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Recall that the compiler is a program whose job is to convert source code into executable code.
Executable code is code in the native language, or machine language, of your computer. This
language consists of detailed instructions expressed in a numeric code. As you read earlier,
different computers have different machine languages, and a C compiler translates C into a
particular machine language. C compilers also incorporate code from C libraries into the final
program; the libraries contain a fund of standard routines, such as printf () and scanf(),

for your use. (More accurately, a program called a linker brings in the library routines, but the
compiler runs the linker for you on most systems.) The end result is an executable file contain-
ing code that the computer understands and that you can run.

The compiler also checks that your program is valid C. If the compiler finds errors, it reports
them to you and doesn’t produce an executable file. Understanding a particular compiler’s
complaints is another skill you will pick up.

Step 5: Run the Program

Traditionally, the executable file is a program you can run. To run the program in many
common environments, including Windows Command-Prompt mode, Unix terminal mode,
and Linux terminal mode, just type the name of the executable file. Other environments, such
as VMS on a VAX, might require a run command or some other mechanism. Integrated develop-
ment environments (IDEs), such as those provided for Windows and Macintosh environments,
allow you to edit and execute your C program from within the IDE by selecting choices from a
menu or by pressing special keys. The resulting program also can be run directly from the oper-
ating system by clicking or double-clicking the filename or icon.

Step 6: Test and Debug the Program

The fact that your program runs is a good sign, but it’s possible that it could run incorrectly.
Consequently, you should check to see that your program does what it is supposed to do.
You'll find that some of your programs have mistakes—bugs, in computer jargon. Debugging is
the process of finding and fixing program errors. Making mistakes is a natural part of learning.
It seems inherent to programming, so when you combine learning and programming, you had
best prepare yourself to be reminded often of your fallibility. As you become a more powerful
and subtle programmer, your errors, too, will become more powerful and subtle.

You have many opportunities to err. You can make a basic design error. You can implement
good ideas incorrectly. You can overlook unexpected input that messes up your program. You
can use C incorrectly. You can make typing errors. You can put parentheses in the wrong place,
and so on. You'll find your own items to add to this list.

Fortunately, the situation isn’t hopeless, although there might be times when you think it is.
The compiler catches many kinds of errors, and there are things you can do to help yourself
track down the ones that the compiler doesn’t catch. This book will give you debugging advice
as you go along.
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Step 7: Maintain and Modify the Program

When you create a program for yourself or for someone else, that program could see extensive
use. If it does, you'll probably find reasons to make changes in it. Perhaps there is a minor bug
that shows up only when someone enters a name beginning with Zz, or you might think of

a better way to do something in the program. You could add a clever new feature. You might
adapt the program so that it runs on a different computer system. All these tasks are greatly
simplified if you document the program clearly and if you follow sound design practices.

Commentary

Programming is not usually as linear as the process just described. Sometimes you have to go
back and forth between steps. For instance, when you are writing code, you might find that
your plan was impractical. You may see a better way of doing things or, after you see how a
program runs, you might feel motivated to change the design. Documenting your work helps
you move back and forth between levels.

Most learners tend to neglect steps 1 and 2 (defining program objectives and designing the
program) and go directly to step 3 (writing the program). The first programs you write are
simple enough that you can visualize the whole process in your head. If you make a mistake,
it’s easy to find. As your programs grow longer and more complex, mental visualizations begin
to fail, and errors get harder to find. Eventually, those who neglect the planning steps are
condemned to hours of lost time, confusion, and frustration as they produce ugly, dysfunc-
tional, and abstruse programs. The larger and more complex the job is, the more planning it
requires.

The moral here is that you should develop the habit of planning before coding. Use the ancient
but honorable pen-and-pencil technology to jot down the objectives of your program and to
outline the design. If you do so, you eventually will reap substantial dividends in time saved
and satisfaction gained.

Programming Mechanics

The exact steps you must follow to produce a program depend on your computer environment.
Because C is portable, it’s available in many environments, including Unix, Linux, MS-DOS
(yes, some people still use it), Windows, and Macintosh OS. There’s not enough space in this
book to cover all environments, particularly because particular products evolve, die, and are
replaced.

First, however, let’s look at some aspects shared by many C environments, including the five
we just mentioned. You don't really need to know what follows to run a C program, but it is
good background. It can also help you understand why you have to go through some particular
steps to get a C program.

When you write a program in the C language, you store what you write in a text file called a
source code file. Most C systems, including the ones we mentioned, require that the name of

13
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the file end in .c (for example, wordcount.c and budget.c). The part of the name before the
period is called the basename, and the part after the period is called the extension. Therefore,
budget is a basename and c is the extension. The combination budget.c is the filename. The
name should also satisfy the requirements of the particular computer operating system. For
example, MS-DOS is an older operating system for IBM PCs and clones. It requires that the
basename be no more than eight characters long, so the wordcount.c filename mentioned
earlier would not be a valid DOS filename. Some Unix systems place a 14-character limit on the
whole name, including the extension; other Unix systems allow longer names, up to 255 char-
acters. Linux, Windows, and Macintosh OS also allow long names.

So that we’ll have something concrete to refer to, let’s assume we have a source file called
concrete.c containing the C source code in Listing 1.2.

Listing 1.2 The concrete.c Program

#include <stdio.h>
int main(void)
{

printf("Concrete contains gravel and cement.\n");

return 0;

Don’t worry about the details of the source code file shown in Listing 1.2; you’ll learn about
them in Chapter 2.

Object Code Files, Executable Files, and Libraries

The basic strategy in C programming is to use programs that convert your source code file to an
executable file, which is a file containing ready-to-run machine language code. C implementa-
tions typically do this in two steps: compiling and linking. The compiler converts your source
code to an intermediate code, and the linker combines this with other code to produce the
executable file. C uses this two-part approach to facilitate the modularization of programs. You
can compile individual modules separately and then use the linker to combine the compiled
modules later. That way, if you need to change one module, you don’t have to recompile the
other ones. Also, the linker combines your program with precompiled library code.

There are several choices for the form of the intermediate files. The most prevalent choice, and
the one taken by the implementations described here, is to convert the source code to machine
language code, placing the result in an object code file, or object file for short. (This assumes that
your source code consists of a single file.) Although the object file contains machine language
code, it is not ready to run. The object file contains the translation of your source code, but it is
not yet a complete program.

The first element missing from the object code file is something called startup code, which is
code that acts as an interface between your program and the operating system. For example,
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you can run an IBM PC compatible under MS Windows or under Linux. The hardware is
the same in either case, so the same object code would work with both, but you would need
different startup code for Windows than you would for Linux because these systems handle
programs differently from one another.

The second missing element is the code for library routines. Nearly all C programs make use

of routines (called functions) that are part of the standard C library. For example, concrete.c
uses the function print£ (). The object code file does not contain the code for this function; it
merely contains instructions saying to use the printf () function. The actual code is stored in
another file, called a library. A library file contains object code for many functions.

The role of the linker is to bring together these three elements—your object code, the standard
startup code for your system, and the library code—and put them together into a single file, the
executable file. For library code, the linker extracts only the code needed for the functions you
use from the library (see Figure 1.4).

concrete.c

| source code

—

Compiler

v |concrete.obj

—

object code

(] L —

library code

Y

R Linker

Y

start-up code

v concrete.exe

executable code

u

Figure 1.4 Compiler and linker.

In short, an object file and an executable file both consist of machine language instructions.
However, the object file contains the machine language translation only for the code you
used, but the executable file also has machine code for the library routines you use and for the
startup code.
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On some systems, you must run the compile and link programs separately. On other systems,
the compiler starts the linker automatically, so you have to give only the compile command.

Now let’s look at some specific systems.

Unix System

Because C’s popularity and existence began on Unix systems, we will start there. (Note: By
“Unix,” we include systems such as FreeBSD, which descends from Unix but can’t use the name
for legal reasons.)

Editing on a Unix System

Unix C does not have its own editor. Instead, you use one of the general-purpose Unix editors,
such as emacs, jove, vi, or an X Window System text editor.

Your two main responsibilities are typing the program correctly and choosing a name for the
file that will store the program. As discussed, the name should end with .c. Note that Unix
distinguishes between uppercase and lowercase. Therefore, budget.c, BUDGET.c, and Budget.c
are three distinct and valid names for C source files, but BUDGET.C is not a valid name because
it uses an uppercase C instead of a lowercase c.

Using the vi editor, we prepared the following program and stored it in a file called inform.c.

#include <stdio.h>
int main(void)
{

printf("A .c is used to end a C program filename.\n");

return 0;

This text is the source code, and inform.c is the source file. The important point here is that
the source file is the beginning of a process, not the end.

Compiling on a Unix System

Our program, although undeniably brilliant, is still gibberish to a computer. A computer
doesn’t understand things such as #include and print£. (At this point, you probably don’t
either, but you will soon learn, whereas the computer won't.) As we discussed earlier, we need
the help of a compiler to translate our code (source code) to the computer’s code (machine
code). The result of these efforts will be the executable file, which contains all the machine
code that the computer needs to get the job done.

Historically, the Unix C compiler, invoked with the cc command, defined the language. But it
didn’t keep pace with the developing standard, and it has been retired. However, Unix systems
typically provide a C compiler from some other source, and then make the cc command an
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alias for that compiler. So you still can proceed with the same command, even though it may
invoke different compilers on different systems.

To compile the inform.c program, type the following:

cc inform.c

After a moment, the Unix prompt will return, telling you that the deed is done. You might get
warnings and error messages if you failed to write the program properly, but let’s assume you
did everything right. (If the compiler complains about the word void, your system has not yet
updated to an ANSI C compiler. We'll talk more about standards soon. Meanwhile, just delete
the word void from the example.) If you use the 1s command to list your files, you will find
that there is a new file called a.out (see Figure 1.5). This is the executable file containing the
translation (or compilation) of the program. To run it, just type

a.out

and wisdom pours forth:

A .c is used to end a C program filename.

If you want to keep the executable file (a.out), you should rename it. Otherwise, the file is
replaced by a new a.out the next time you compile a program.

enter
source code

A

Text Editor

name.c v

source code

Compiler

a.out y

executable code

00

run program by
typing filename
a.out

Figure 1.5 Preparing a C program using Unix.
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What about the object code? The cc compiler creates an object code file having the same
basename as the source code, but with an .o extension. In our example, the object code file

is called inform.o, but you won't find it, because the linker removes it once the executable
program has been completed. However, if the original program used more than one source
code file, the object code files would be saved. When we discuss multiple-file programs later in
the text, you will see that this is a fine idea.

The GNU Compiler Collection and the LLVM Project

The GNU Project, dating from 1987, is a mass collaboration that has developed a large body of
free Unix-like software. (GNU stands for “GNU’s Not Unix.”) One of its products is the GNU
Compiler Collection, or GCC, which includes the GCC C compiler. GCC is under constant
development, guided by a steering committee, and its C compiler closely tracks changing C
standards. Versions of GCC are available for a wide variety of hardware platforms and operating
systems, including Unix, Linux, and Windows. The GCC C compiler can be invoked with the
gcc command. And many systems using gec will make cc an alias for gce.

The LLVM Project provides a second replacement for cc. The project is an open-source collec-
tion of compiler-related software dating from a 2000 research project at the University of
Illinois. Its Clang compiler processes C code and can be invoked as clang. Available on several
platforms, including Linux, Clang became the default C compiler for FreeBSD in late 2012. Like
GCC, Clang tracks the C standard pretty well.

Both accept a -v option for version information, so on systems using the cc alias for either the
gcc or clang command, the combination

cc -v

shows which compiler and which version you are using.

Both gec and clang commands, depending on the version, may require run-time options to
invoke more recent C standards:

gcc -std=c99 inform.c
gcc -std=clx inform.c
gcc -std=cll inform.c

The first example invokes the C99 standard, the second invokes the draft C11 standard for
GCC versions prior to the acceptance of the standard, and the third invokes the C11 standard
for GCC versions that followed the acceptance. The Clang compiler uses the same flags.

Linux Systems

Linux is a popular open-source, Unix-like operating system that runs on a variety of platforms,
including PCs and Macs. Preparing C programs on Linux is much the same as for Unix systems,
except that you would use the GCC public domain C compiler that’s provided by GNU. The
compile command looks like this:

gcc inform.c
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Note that installing GCC may be optional when installing Linux, so you (or someone) might
have to install GCC if it wasn’t installed earlier. Typically, the installation makes cc an alias for
gce, S0 you can use cc in the command line instead of gcc if you like.

You can obtain further information about GCC, including information about new releases at
http://www.gnu.org/software/gcc/index.html.

Command-Line Compilers for the PC

C compilers are not part of the standard Windows package, so you may need to obtain and
install a C compiler. Cygwin and MinGW are free downloads that make the GCC compiler
available for command-line use on a PC. Cygwin runs in its own window, which has a
Command-Prompt look but which imitates a Linux command-line environment. MinGW, on
the other hand runs in the Windows Command-Prompt mode. These come with the newest (or
near-newest) version of GCC, which supports C99 and at least some of C11. The Borland C++
Compiler 5.5 is another free download; it supports C90.

Source code files should be text files, not word processor files. (Word processor files contain a
lot of additional information about fonts and formatting.) You should use a text editor, such as
Windows Notepad. You can use a word processor if you use the Save As feature to save the file
in text mode. The file should have a .c extension. Some word processors automatically add a
.txt extension to text files. If this happens to you, you need to change the filename, replacing
txt with c.

C compilers for the PC typically, but not always, produce intermediate object code files having
an .obj extension. Unlike Unix compilers, these compilers typically don’t remove these files
when done. Some compilers produce assembly language files with .asm extensions or use some
special format of their own.

Some compilers run the linker automatically after compiling; others might require that you run
the linker manually. Linking results in the executable file, which appends the .EXE extension
to the original source code basename. For example, compiling and linking a source code file
called concrete.c produces a file called concrete.exe. You can run the program by typing
the basename at the command line:

C>concrete

Integrated Development Environments (Windows)

Quite a few vendors, including Microsoft, Embarcadero, and Digital Mars, offer Windows-based
integrated development environments, or IDEs. (These days, most are combined C and C++
compilers.) Free downloads include Microsoft Visual Studio Express and Pelles C. All have fast,
integrated environments for putting together C programs. The key point is that each of these
programs has a built-in editor you can use to write a C program. Each provides menus that
enable you to name and save your source code file, as well as menus that allow you to compile
and run your program without leaving the IDE. Each dumps you back into the editor if the
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compiler finds any errors, and each identifies the offending lines and matches them to the
appropriate error messages.

The Windows IDEs can be a little intimidating at first because they offer a variety of targets—
that is, a variety of environments in which the program will be used. For example, they might
give you a choice of 32-bit Windows programs, 64-bit Windows programs, dynamic link library
files (DLLs), and so on. Many of the targets involve bringing in support for the Windows
graphical interface. To manage these (and other) choices, you typically create a project to which
you then add the names of the source code files you'll be using. The precise steps depend on
the product you use. Typically, you first use the File menu or Project menu to create a project.
What's important is choosing the correct form of project. The examples in this book are generic
examples designed to run in a simple command-line environment. The various Windows IDEs
provide one or more choices to match this undemanding assumption. Microsoft Visual Studio,
for example, offers the Win32 Console Application option. For other systems, look for an
option using terms such as DOS EXE, Console, or Character Mode executable. These modes will
run your executable program in a console-like window. After you have the correct project type,
use the IDE menu to open a new source code file. For most products, you can do this by using
the File menu. You may have to take additional steps to add the source file to the project.

Because the Windows IDEs typically handle both C and C++, you need to indicate that you
want a C program. With some products you use the project type to indicate that you want

to use C. With other products, such as Microsoft Visual C++, you use the .c file extension to
indicate that you want to use C rather than C++. However, most C programs also work as C++
programs. Reference Section IX, “Differences Between C and C++,” compares C and C++.

One problem you might encounter is that the window showing the program execution
vanishes when the program terminates. If that is the case for you, you can make the program
pause until you press the Enter key. To do that, add the following line to the end of the
program, just before the return statement:

getchar();

This line reads a keystroke, so the program will pause until you press the Enter key. Sometimes,
depending on how the program functions, there might already be a keystroke waiting. In that
case, you'll have to use getchar () twice:

getchar();
getchar();

For example, if the last thing the program did was ask you to enter your weight, you would
have typed your weight and then pressed the Enter key to enter the data. The program would
read the weight, the first getchar () would read the Enter key, and the second getchar()
would cause the program to pause until you press Enter again. If this doesn’t make a lot of
sense to you now, it will after you learn more about C input. And we’ll remind you later about
this approach.

Although the various IDEs have many broad principles in common, the details vary from
product to product and, within a product line, from version to version. You’ll have to do some
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experimenting to learn how your compiler works. You might even have to read the manual or
try an online tutorial.

Microsoft Visual Studio and the C Standard

Microsoft Visual Studio and the freeware Microsoft Visual Studio Express have the greatest
presence in Windows software development, so their relationship to the C standards is of
some importance. In brief, Microsoft has encouraged programmers to shift from C to C++ or
C#. Visual Studio supports C89/90, but its support for later standards, to date, consists of
supporting those new features that also are found in C++, such as the long long type. Also,
as of the 2012 edition, Visual Studio doesn’t offer C as one of the choices for project type.
However, you can still use Visual Studio with the vast majority of programs in this book. One
choice is just to choose the C++ option, then Win32 Console, then Empty Project in Application
settings. Nearly all of C is compatible with C++, so most of the C programs in this book also
work as C++ programs. Or, after choosing the C++ option, you can use the .c extension
instead of the default .cpp extension for the source file, and the compiler will use C rules
instead of C++ rules.

The Windows/Linux Option

Many Linux distributions can be installed from Windows to set up a dual-boot system. Some of
your storage will be set aside for a Linux system, and you then can boot to either Windows or
Linux. You can’t run a Linux program from Windows or vice versa, and you can’t access Linux
files from Windows, but you can access Windows documents from Linux.

C on the Macintosh

Currently, Apple offers its Xcode development system as a free download. (In the past, some-
times it has been free, sometimes available for a modest charge.) It lets you choose from several
programming languages, including C.

Xcode, with its capability to handle several programming languages, to target multiple plat-
forms, and to develop large-scale projects, can seem intimidating. But you need learn just
enough to produce simple C programs. With Xcode 4.6, use the File menu to select New,
Project, OS X Application Command Line Tool, and then enter a product name and select C
for the Type. Xcode uses either the Clang or the GCC C compiler for C code. It used to use
GCC by default, and now uses Clang by default. You can use Xcode settings to choose which
compiler it uses and also which C standard to support. (Due to licensing matters, the version of
Clang available with Xcode is more recent than the GCC version.)

Mac OS X is built on Unix, and the Terminal utility opens a window that lets you run programs
in a Unix command-line environment. Apple doesn’t provide a command-line compiler as

part of its standard package, but if you download Xcode, you can also download optional
command-line tools that enable you to use the clang and the gcc commands to compile in
command-line mode.
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How This Book Is Organized

There are many ways to organize information. One of the most direct approaches is to present
everything about topic A, everything about topic B, and so on. This is particularly useful for a
reference so you can find all the information about a given topic in one place. But usually it’s
not the best sequence for learning a subject. For instance, if you began learning English by first
learning all the nouns, your ability to express ideas would be severely limited. Sure, you could
point to objects and shout their names, but you’d be much better equipped to express yourself
if you learned just a few nouns, verbs, adjectives, and so on, along with a few rules about how
those parts relate to one another.

To provide you with a more balanced intake of information, this book uses a spiral approach
of introducing several topics in earlier chapters and returning later to discuss them more fully.
For example, understanding functions is essential to understanding C. Consequently, several of
the early chapters include some discussion of functions so that when you reach the full discus-
sion in Chapter 9, “Functions,” you'll already have achieved some ease about using functions.
Similarly, early chapters preview strings and loops so that you can begin using these useful
tools in your programs before learning about them in detail.

Conventions Used in This Book

We are almost ready to begin studying the C language itself. This section covers some of the
conventions we use in presenting material.

Typeface

For text representing programs and computer input and output, we use a type font that resem-
bles what you might see on a screen or on printed output. We have already used it a few times.
In case it slipped your notice, the font looks like the following:

#include <stdio.h>
int main(void)
{

printf("Concrete contains gravel and cement.\n");

return 0;

The same monospace type is for code-related terms used in the text, such as main(), and for
filenames, such as stdio.h. The book uses italicized monospace for placeholder terms for
which you are expected to substitute specific terms, as in the following model of a declaration:

type name variable name;

Here, for instance, you might replace type name with int and variable name with
zebra_count.
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Program Output

Output from the computer is printed in the same format, with the exception that user input
is shown in boldface type. For instance, the following is program output from an example in
Chapter 14, “Structures and Other Data Forms”:

Please enter the book title.
Press [enter] at the start of a line to stop.

My Life as a Budgie
Now enter the author.

Mack Zackles

The lines printed in normal computer font are program output, and the boldface line is user
input.

There are many ways you and a computer can communicate with each other. However, we will
assume that you type in commands by using a keyboard and that you read the response on a
screen.

Special Keystrokes

Usually, you send a line of instructions by pressing a key labeled Enter, c¢/r, Return, or some
variation of these. We refer to this key in the text as the Enter key. Normally, the book takes it
for granted that you press the Enter key at the end of each line of input. However, to clarify
particular points, a few examples explicitly show the Enter key, using the symbol [enter] to
represent it. The brackets mean that you press a single key rather than type the word enter.

We also refer to control characters, such as Ctrl+D. This notation means to press the D key
while you are pressing the key labeled Ctrl (or perhaps Control).

Systems Used in Preparing This Book

Some aspects of C, such as the amount of space used to store a number, depend on the system.
When we give examples and refer to “our system,” we usually speak of an iMac running under
OS X 10.8.4 and using the Xcode 4.6.2 development system with the Clang 3.2 compiler. Most
of the programs also have been compiled using Microsoft Visual Studio Express 2012 and Pelles
C 7.0 on a Windows 7 system, and GCC 4.7.3 on an Ubuntu 13.04 Linux system.

You can download the code for this book’s examples if you register the book at www.informit.
com/register.

Your System—What You Need

You need to have a C compiler or access to one. C runs on an enormous variety of computer
systems, so you have many choices. Do make sure that you use a C compiler designed for
your particular system. Some of the examples in this book require support for the C99 or C11
standards, but most of the examples will work with a C90 compiler. If the compiler you use is
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pre-ANSI/ISO, you will have to make adjustments, probably often enough to encourage you to
seek something newer.

Most compiler vendors offer special pricing to students and educators, so if you fall into that
category, check the vendor websites.

Special Elements

The book includes several special elements that highlight particular points: Sidebars, Tips,
Cautions, and Notes. The following illustrates their appearances and uses:

Sidebar

A sidebar provides a deeper discussion or additional background to help illuminate a topic.

Tip

Tips present short, helpful guides to particular programming situations.

Caution

A caution alerts you to potential pitfalls.

Note

The notes provide a catchall category for comments that don’t fall into one of the other
categories.

Summary

C is a powerful, concise programming language. It is popular because it offers useful program-
ming tools, good control over hardware, and because C programs are easier than most to trans-
port from one system to another.

C is a compiled language. C compilers and linkers are programs that convert C language source
code into executable code.

Programming in C can be taxing, difficult, and frustrating, but it can also be intriguing, excit-
ing, and satisftying. We hope you find it as enjoyable and fascinating as we do.
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Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”
1. What does portability mean in the context of programming?
2. Explain the difference between a source code file, object code file, and executable file.
3. What are the seven major steps in programming?
4. What does a compiler do?

5. What does a linker do?

Programming Exercise

We don’t expect you to write C code yet, so this exercise concentrates on the earlier stages of
the programming process.

1. You have just been employed by MacroMuscle, Inc. (Software for Hard Bodies). The
company is entering the European market and wants a program that converts inches
to centimeters (1 inch = 2.54 cm). The company wants the program set up so that it
prompts the user to enter an inch value. Your assignment is to define the program
objectives and to design the program (steps 1 and 2 of the programming process).
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Introducing C

You will learn about the following in this chapter:

= Operator:

= Functions:
main(), printf()
= Putting together a simple C program

= Creating integer-valued variables, assigning them values, and displaying those values
onscreen

= The newline character

= How to include comments in your programs, create programs containing more than one
function, and find program errors

= What keywords are

What does a C program look like? If you skim through this book, you’ll see many examples.
Quite likely, you'll find that C looks a little peculiar, sprinkled with symbols such as

{, cp->tort, and *ptr++. As you read through this book, however, you will find that the
appearance of these and other characteristic C symbols grows less strange, more familiar, and
perhaps even welcome! Or, if you already are familiar with one of C’s many descendants, you
might feel as if you are coming home to the source. In this chapter, we begin by presenting a
simple sample program and explaining what it does. At the same time, we highlight some of
C’s basic features.

A Simple Example of C

Let’s take a look at a simple C program. This program, shown in Listing 2.1, serves to point out
some of the basic features of programming in C. Before you read the upcoming line-by-line
explanation of the program, read through Listing 2.1 to see whether you can figure out for
yourself what it will do.
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Listing 2.1 The first.c Program

#include <stdio.h>

int main(void) /* a simple program */
{
int num; /* define a variable called num */
num = 1; /* assign a value to num */
printf("I am a simple "); /* use the printf() function */

printf ("computer.\n");
printf("My favorite number is %d because it is first.\n",num);

return 0;

If you think this program will print something on your screen, you're right! Exactly what will
be printed might not be apparent, so run the program and see the results. First, use your favor-
ite editor (or your compiler’s favorite editor) to create a file containing the text from Listing
2.1. Give the file a name that ends in .c and that satisties your local system’s name require-
ments. You can use first.c, for example. Now compile and run the program. (Check Chapter
1, “Getting Ready,” for some general guidelines to this process.) If all went well, the output
should look like the following:

I am a simple computer.
My favorite number is 1 because it is first.

All in all, this result is not too surprising, but what happened to the \ns and the %4 in the
program? And some of the lines in the program do look strange. It’s time for an explanation.

Program Adjustments

Did the output for this program briefly flash onscreen and then disappear? Some windowing
environments run the program in a separate window and then automatically close the window
when the program finishes. In this case, you can supply extra code to make the window stay
open until you strike a key. One way is to add the following line before the return statement:

getchar();

This code causes the program to wait for a keystroke, so the window remains open until you
press a key. You'll learn more about getchar () in Chapter 8, “Character Input/Output and
Input Validation.”

The Example Explained

We'll take two passes through the program’s source code. The first pass (“Pass 1: Quick
Synopsis”) highlights the meaning of each line to help you get a general feel for what’s going
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on. The second pass (“Pass 2: Program Details”) explores specific implications and details to
help you gain a deeper understanding.

Figure 2.1 summarizes the parts of a C program,; it includes more elements than our first
example uses.

typical C
program
— #include —— preprocessor instructions
main ( ) is always the
-1 int main(void) first function called
functions are
statements —— made up of
statements
——— function a( )
statements
—— function b( )
| statements
functions are the
building blocks of C .
declaration
assignment keywords
v 5 types of . i identifiers
statements in > | function operators
C language control data
null
C
language

Figure 2.1 Anatomy of a C program.
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Pass 1: Quick Synopsis
This section presents each line from the program followed by a short description; the next
section (Pass 2) explores the topics raised here more fully.

#include <stdio.h> include another file

This line tells the compiler to include the information found in the file stdio.h, which is a
standard part of all C compiler packages; this file provides support for keyboard input and for
displaying output.

int main(void) €a function name

C programs consist of one or more functions, the basic modules of a C program. This program
consists of one function called main. The parentheses identify main() as a function name.
The int indicates that the main () function returns an integer, and the void indicates that
main() doesn’t take any arguments. These are matters we’ll go into later. Right now, just
accept both int and void as part of the standard ANSI C way for defining main(). (If you
have a pre-ANSI C compiler, omit void; you may want to get something more recent to avoid
incompatibilities.)

/* a simple program */ <a comment

The symbols /* and */ enclose comments—remarks that help clarify a program. They are
intended for the reader only and are ignored by the compiler.

{ €¢beginning of the body of the function

This opening brace marks the start of the statements that make up the function. A closing brace
(3) marks the end of the function definition.

int num; €a declaration statement

This statement announces that you are using a variable called num and that num will be an int
(integer) type.

num = 1; €an assignment statement

The statement num = 1; assigns the value 1 to the variable called num.

printf("I am a simple "); €a function call statement

The first statement using printf () displays the phrase I am a simple on your screen,
leaving the cursor on the same line. Here print£ () is part of the standard C library. It’s termed
a function, and using a function in the program is termed calling a function.

printf("computer.\n"); <another function call statement

The next call to the printf () function tacks on computer to the end of the last phrase
printed. The \n is code telling the computer to start a new line—that is, to move the cursor to
the beginning of the next line.

printf("My favorite number is %d because it is first.\n", num);



The Example Explained

The last use of printf () prints the value of num (which is 1) embedded in the phrase in
quotes. The %d instructs the computer where and in what form to print the value of num.

return 0; €a return statement

A C function can furnish, or return, a number to the agency that used it. For the present, just
regard this line as the appropriate closing for a main() function.

} <the end

As promised, the program ends with a closing brace.

Pass 2: Program Details

Now that you have an overview of Listing 2.1, we’ll take a closer look. Once again, we’ll
examine the individual lines from the program, this time using each line of code as a starting
point for going deeper into the details behind the code and as a basis for developing a more
general perspective of C programming features.

#include Directives and Header Files
#include <stdio.h>

This is the line that begins the program. The effect of #include <stdio.h> is the same as

if you had typed the entire contents of the stdio.h file into your file at the point where the
#include line appears. In effect, it’s a cut-and-paste operation. include files provide a conve-
nient way to share information that is common to many programs.

The #include statement is an example of a C preprocessor directive. In general, C compilers
perform some preparatory work on source code before compiling; this is termed preprocessing.

The stdio.h file is supplied as part of all C compiler packages. It contains information about
input and output functions, such as printf (), for the compiler to use. The name stands for
standard input/output header. C people call a collection of information that goes at the top of a
file a header, and C implementations typically come with several header files.

For the most part, header files contain information used by the compiler to build the final
executable program. For example, they may define constants or indicate the names of functions
and how they should be used. But the actual code for a function is in a library file of precom-
piled code, not in a header file. The linker component of the compiler takes care of finding the
library code you need. In short, header files help guide the compiler in putting your program
together correctly.

ANSI/ISO C has standardized which header files a C compiler must make available. Some
programs need to include stdio.h, and some don’t. The documentation for a particular C
implementation should include a description of the functions in the C library. These function
descriptions identify which header files are needed. For example, the description for print£ ()
says to use stdio.h. Omitting the proper header file might not affect a particular program, but
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it is best not to rely on that. Each time this book uses library functions, it will use the include
files specified by the ANSI/ISO standard for those functions.

Note Why Input and Output Are Not Built In

Perhaps you are wondering why facilities as basic as input and output aren’t included auto-
matically. One answer is that not all programs use this 1/0 (input/output) package, and part
of the C philosophy is to avoid carrying unnecessary weight. This principle of economic use
of resources makes C popular for embedded programming—for example, writing code for a
chip that controls an automotive fuel system or a Blu-ray player. Incidentally, the #include
line is not even a C language statement! The # symbol in column 1 identifies the line as one
to be handled by the C preprocessor before the compiler takes over. You will encounter more
examples of preprocessor instructions later, and Chapter 16, “The C Preprocessor and the C
Library,” discusses this topic more fully.

The main () Function
int main(void)

This next line from the program proclaims a function by the name of main. True, main is a
rather plain name, but it is the only choice available. A C program (with some exceptions we
won’t worry about) always begins execution with the function called main(). You are free to
choose names for other functions you use, but main () must be there to start things. What
about the parentheses? They identify main() as a function. You will learn more about func-
tions soon. For now, just remember that functions are the basic modules of a C program.

The int is the main() function’s return type. That means that the kind of value main () can
return is an integer. Return where? To the operating system—we’ll come back to this question
in Chapter 6, “C Control Statements: Looping.”

The parentheses following a function name generally enclose information being passed along
to the function. For this simple example, nothing is being passed along, so the parentheses
contain the word void. (Chapter 11, “Character Strings and String Functions,” introduces a
second format that allows information to be passed to main() from the operating system.)

If you browse through ancient C code, you’ll often see programs starting off with the following
format:

main()

The C90 standard grudgingly tolerated this form, but the C99 and C11 standards don’t. So even
if your current compiler lets you do this, don’t.

The following is another form you may see:

void main()

Some compilers allow this, but none of the standards have ever listed it as a recognized option.
Therefore, compilers don’t have to accept this form, and several don’t. Again, stick to the
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standard form, and you won'’t run into problems if you move a program from one compiler to
another.

Comments

/* a simple program */

The parts of the program enclosed in the /* */ symbols are comments. Using comments
makes it easier for someone (including yourself) to understand your program. One nice feature
of C comments is that they can be placed anywhere, even on the same line as the material they
explain. A longer comment can be placed on its own line or even spread over more than one
line. Everything between the opening /* and the closing */ is ignored by the compiler. The
following are some valid and invalid comment forms:

/* This is a C comment. */

/* This comment, being somewhat wordy, is spread over
two lines. */

/*
You can do this, too.

*/

/* But this is invalid because there is no end marker.

C99 added a second style of comments, one popularized by C++ and Java. The new style uses
the symbols // to create comments that are confined to a single line:

// Here is a comment confined to one line.
int rique; // Such comments can go here, too.

Because the end of the line marks the end of the comment, this style needs comment markers
just at the beginning of the comment.

The newer form is a response to a potential problem with the old form. Suppose you have the
following code:

/*

I hope this works.
*/

x = 100;

y = 200;

/* Now for something else. */

Next, suppose you decide to remove the fourth line and accidentally delete the third line (the
*/), too. The code then becomes

/*
I hope this works.
y = 200;

/* Now for something else. */
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Now the compiler pairs the /* in the first line with the */ in the fourth line, making all four
lines into one comment, including the line that was supposed to be part of the code. Because
the // form doesn’t extend over more than one line, it can’t lead to this “disappearing code”
problem.

Some compilers may not support this feature; others may require changing a compiler setting
to enable C99 or C11 features.

This book, operating on the theory that needless consistency can be boring, uses both kinds of
comments.

Braces, Bodies, and Blocks
{

In Listing 2.1, braces delimited the main() function. In general, all C functions use braces to
mark the beginning as well as the end of the body of a function. Their presence is mandatory,
so don’t leave them out. Only braces ({ }) work for this purpose, not parentheses (( )) and
not brackets ([ ]).

Braces can also be used to gather statements within a function into a unit or block. If you are
familiar with Pascal, ADA, Modula-2, or Algol, you will recognize the braces as being similar to
begin and end in those languages.

Declarations

int num;

This line from the program is termed a declaration statement. The declaration statement is one
of C’s most important features. This particular example declares two things. First, somewhere in
the function, you have a variable called num. Second, the int proclaims num as an integer—that
is, a number without a decimal point or fractional part. (int is an example of a data type.) The
compiler uses this information to arrange for suitable storage space in memory for the num vari-
able. The semicolon at the end of the line identifies the line as a C statement or instruction. The
semicolon is part of the statement, not just a separator between statements as it is in Pascal.

The word int is a C keyword identifying one of the basic C data types. Keywords are the words
used to express a language, and you can’t use them for other purposes. For instance, you can’t
use int as the name of a function or a variable. These keyword restrictions don’t apply outside
the language, however, so it is okay to name a cat or favorite child int. (Local custom or law
may void this option in some locales.)

The word num in this example is an identifier—that is, a name you select for a variable, a func-
tion, or some other entity. So the declaration connects a particular identifier with a particular
location in computer memory, and it also establishes the type of information, or data type, to
be stored at that location.
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In C, all variables must be declared before they are used. This means that you have to provide
lists of all the variables you use in a program and that you have to show which data type each
variable is. Declaring variables is considered a good programming technique, and, in C, it is
mandatory.

Traditionally, C has required that variables be declared at the beginning of a block with no
other kind of statement allowed to come before any of the declarations. That is, the body of
main () might look like the following:

int main() // traditional rules
{

int doors;

int dogs;

doors = 5;

dogs = 3;

// other statements

C99 and C11, following the practice of C++, let you place declarations about anywhere in
a block. However, you still must declare a variable before its first use. So if your compiler
supports this feature, your code can look like the following:

int main() // current C rules
{
// some statements
int doors;
doors = 5; // first use of doors
// more statements
int dogs;
dogs = 3; // first use of dogs

// other statements

For greater compatibility with older systems, this book will stick to the original convention.

At this point, you probably have three questions. First, what are data types? Second, what
choices do you have in selecting a name? Third, why do you have to declare variables at all?
Let’s look at some answers.

Data Types

C deals with several kinds (or types) of data: integers, characters, and floating point, for
example. Declaring a variable to be an integer or a character type makes it possible for the
computer to store, fetch, and interpret the data properly. You'll investigate the variety of avail-
able types in the next chapter.
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Name Choice

You should use meaningful names (or identifiers) for variables (such as sheep count instead of
x3 if your program counts sheep). If the name doesn’t suffice, use comments to explain what
the variables represent. Documenting a program in this manner is one of the basic techniques
of good programming.

With C99 and C11 you can make the name of an identifier as long as you want, but the
compiler need only consider the first 63 characters as significant. For external identifiers (see
Chapter 12, “Storage Classes, Linkage, and Memory Management”) only 31 characters need to
be recognized. This is a substantial increase from the C90 requirement of 31 characters and six
characters, respectively, and older C compilers often stopped at eight characters max. Actually,
you can use more than the maximum number of characters, but the compiler isn’t required to
pay attention to the extra characters. What does this mean? If you have two identifiers each
63 characters long and identical except for one character, the compiler is required to recognize
them as distinct from one another. If you have two identifiers 64 characters long and identical
except for the final character, the compiler might recognize them as distinct, or it might not;
the standard doesn’t define what should happen in that case.

The characters at your disposal are lowercase letters, uppercase letters, digits, and the under-
score (_). The first character must be a letter or an underscore. The following are some
examples:

Valid Names Invalid Names
wiggles $Z]**

cat2 2cat
Hot_Tub Hot-Tub
taxRate tax rate
_kcab don't

Operating systems and the C library often use identifiers with one or two initial underscore
characters, such as in _kcab, so it is better to avoid that usage yourself. The standard labels
beginning with one or two underscore characters, such as library identifiers, are reserved. This
means that although it is not a syntax error to use them, it could lead to name conflicts.

C names are case sensitive, meaning an uppercase letter is considered distinct from the corre-
sponding lowercase letter. Therefore, stars is different from Stars and STARS.

To make C more international, C99 and C11 make an extensive set of characters available for
use by the Universal Character Names (or UMC) mechanism. Reference Section VII, “Expanded
Character Support,” in Appendix B discusses this addition. This makes available characters that
are not part of the English alphabet.
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Four Good Reasons to Declare Variables

Some older languages, such as the original forms of FORTRAN and BASIC, allow you to use
variables without declaring them. So why can’t you take this easy-going approach in C? Here
are some reasons:

= Putting all the variables in one place makes it easier for a reader to grasp what the
program is about. This is particularly true if you give your variables meaningful names
(such as taxrate instead of r). If the name doesn’t suffice, use comments to explain
what the variables represent. Documenting a program in this manner is one of the basic
techniques of good programming.

= Thinking about which variables to declare encourages you to do some planning before
plunging into writing a program. What information does the program need to get
started? What exactly do I want the program to produce as output? What is the best way
to represent the data?

= Declaring variables helps prevent one of programming’s more subtle and hard-to-find
bugs—that of the misspelled variable name. For example, suppose that in some language
that lacks declarations, you made the statement

RADIUS1 = 20.4;

and that elsewhere in the program you mistyped
CIRCUM = 6.28 * RADIUSL;

You unwittingly replaced the numeral 1 with the letter / (lowercase el). That other
language would create a new variable called RADIUS1 and use whatever value it had
(perhaps zero, perhaps garbage). CIRCUM would be given the wrong value, and you
might have a heck of a time trying to find out why. This can’t happen in C (unless you
were silly enough to declare two such similar variable names) because the compiler will
complain when the undeclared RADIUS1 shows up.

= Your C program will not compile if you don’t declare your variables. If the preceding
reasons fail to move you, you should give this one serious thought.

Given that you need to declare your variables, where do they go? As mentioned before, C

prior to C99 required that the declarations go at the beginning of a block. A good reason for
following this practice is that grouping the declarations together makes it easier to see what the
program is doing. Of course, there’s also a good reason to spread your declarations around, as
C99 now allows. The idea is to declare variables just before you're ready to give them a value.
That makes it harder to forget to give them a value. As a practical matter, many compilers don’t
yet support the C99 rule.

Assignment
num = 1;

The next program line is an assignment statement, one of the basic operations in C. This particu-
lar example means “assign the value 1 to the variable num.” The earlier int num; line set aside
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space in computer memory for the variable num, and the assignment line stores a value in that
location. You can assign num a different value later, if you want; that is why num is termed a
variable. Note that the assignment statement assigns a value from the right side to the left side.
Also, the statement is completed with a semicolon, as shown in Figure 2.2.

Figure 2.2 The assignment statement is one of the basic C operations.

The printf () Function

printf("I am a simple ");

printf("computer.\n");

printf("My favorite number is %d because it is first.\n", num);

These lines all use a standard C function called printf (). The parentheses signify that printf
is a function name. The material enclosed in the parentheses is information passed from the
main () function to the printf () function. For example, the first line passes the phrase I am
a simple to the printf () function. Such information is called the argument or, more fully,
the actual argument of a function (see Figure 2.3). (C uses the terms actual argument and formal
argument to distinguish between a specific value sent to a function and a variable in the func-
tion used to hold the value; Chapter 5 “Operators, Expressions, and Statements,” goes into this
matter in more detail.) What does the function printf () do with this argument? It looks at
whatever lies between the double quotation marks and prints that text onscreen.

printf( )

€5

printf("That's mere contrariness!\n");

Figure 2.3 The printf () function with an argument.
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This first printf () line is an example of how you call or invoke a function in C. You need type
only the name of the function, placing the desired argument(s) within the parentheses. When
the program reaches this line, control is turned over to the named function (print£ () in this
case). When the function is finished with whatever it does, control is returned to the original
(the calling) function—main (), in this example.

What about this next print£ () line? It has the characters \n included in the quotes, and
they didn’t get printed! What'’s going on? The \n symbol means to start a new line. The \n
combination (typed as two characters) represents a single character called the newline character.
To printf (), it means “start a new line at the far-left margin.” In other words, printing the
newline character performs the same function as pressing the Enter key of a typical keyboard.
Why not just use the Enter key when typing the printf () argument? That would be inter-
preted as an immediate command to your editor, not as an instruction to be stored in your
source code. In other words, when you press the Enter key, the editor quits the current line on
which you are working and starts a new one. The newline character, however, affects how the
output of the program is displayed.

The newline character is an example of an escape sequence. An escape sequence is used to
represent difficult- or impossible-to-type characters. Other examples are \t for Tab and \b
for Backspace. In each case, the escape sequence begins with the backslash character, \. We'll
return to this subject in Chapter 3, “Data and C.”

Well, that explains why the three printf () statements produced only two lines: The first print
instruction didn’t have a newline character in it, but the second and third did.

The final printf () line brings up another oddity: What happened to the $d when the line was
printed? As you will recall, the output for this line was

My favorite number is 1 because it is first.

Ahal The digit 1 was substituted for the symbol group %d when the line was printed, and 1 was
the value of the variable num. The %d is a placeholder to show where the value of num is to be
printed. This line is similar to the following BASIC statement:

PRINT "My favorite number is "; num; " because it is first."

The C version does a little more than this, actually. The % alerts the program that a variable
is to be printed at that location, and the 4 tells it to print the variable as a decimal (base 10)
integer. The printf () function allows several choices for the format of printed variables,
including hexadecimal (base 16) integers and numbers with decimal points. Indeed, the £ in
printf () is a reminder that this is a formatting print function. Each type of data has its own
specifier—as the book introduces new types, it will also introduce the appropriate specifiers.
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Return Statement

return 0;

This return statement is the final statement of the program. The int in int main(void)
means that the main () function is supposed to return an integer. The C standard requires that
main() behave that way. C functions that return values do so with a return statement, which
consists of the keyword return, followed by the returned value, followed by a semicolon. If
you leave out the return statement for main(), the program will return O when it reaches the
closing }. So you can omit the return statement at the end of main (). However, you can’t omit
it from other functions, so it’s more consistent to use it in main(), too. At this point, you can
regard the return statement in main () as something required for logical consistency, but it has
a practical use with some operating systems, including Linux and Unix. Chapter 11 will deal
further with this topic.

The Structure of a Simple Program

Now that you've seen a specific example, you are ready for a few general rules about C
programs. A program consists of a collection of one or more functions, one of which must be
called main (). The description of a function consists of a header and a body. The function header
contains the function name along with information about the type of information passed to
the function and returned by the function. You can recognize a function name by the paren-
theses, which may be empty. The body is enclosed by braces ({}) and consists of a series of
statements, each terminated by a semicolon (see Figure 2.4). The example in this chapter had
a declaration statement, announcing the name and type of variable being used. Then it had an
assignment statement giving the variable a value. Next, there were three print statements, each
calling the printf () function. The print statements are examples of function call statements.
Finally, main() ends with a return statement.

In short, a simple standard C program should use the following format:
#include <stdio.h>
int main(void)
{
statements
return 0;

(Recall that each statement includes a terminating semicolon.)
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Header
function name with arguments —— int main(void)
Body
. {
deglaratlon statement —— int g;
assignment statement —— q=1;
function statement —— printf("%d is neat. \n",q);
return 0;
}

Figure 2.4 A function has a header and a body.

Tips on Making Your Programs Readable

Making your programs readable is good programming practice. A readable program is much
easier to understand, and that makes it easier to correct or modify. The act of making a
program readable also helps clarify your own concept of what the program does.

You've already seen two techniques for improving readability: Choose meaningful variable
names and use comments. Note that these two techniques complement each other. If you give
a variable the name width, you don’t need a comment saying that this variable represents a
width, but a variable called video routine 4 begs for an explanation of what video routine 4
does.

Another technique involves using blank lines to separate one conceptual section of a func-
tion from another. For example, the simple sample program has a blank line separating the
declaration section from the action section. C doesn’t require the blank line, but it enhances
readability.

A fourth technique is to use one line per statement. Again, this is a readability convention,
not a C requirement. C has a free-form format. You can place several statements on one line or
spread one statement over several. The following is legitimate, but ugly, code:

int main( wvoid ) { int four; four

printf(
"%d\n",
four); return 0;}
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The semicolons tell the compiler where one statement ends and the next begins, but the
program logic is much clearer if you follow the conventions used in this chapter’s example (see
Figure 2.5).

int main(void) /* converts 2 fathoms to feet */ — pyse comments

{

int feet, fathoms; pick meaningful names
use space

fathoms=2;

feet=6*fathoms; one statement per line

printf("There are %d feet in %d fathoms!\n", feet, fathoms);

return 0;

Figure 2.5 Making your program readable.

Taking Another Step in Using C

The first sample program was pretty easy, and the next example, shown in Listing 2.2, isn't
much harder.

Listing 2.2 The fathm_ ft.c Program

// fathm ft.c -- converts 2 fathoms to feet

#include <stdio.h>
int main(void)
{

int feet, fathoms;

fathoms = 2;

feet = 6 * fathoms;

printf("There are %d feet in %d fathoms!\n", feet, fathoms);
printf("Yes, I said %d feet!\n", 6 * fathoms);

return 0;




Taking Another Step in Using C

What'’s new? The code provides a program description, declares multiple variables, does some
multiplication, and prints the values of two variables. Let’s examine these points in more detail.

Documentation

First, the program begins with a comment (using the new comment style) identifying the
filename and the purpose of the program. This kind of program documentation takes but a
moment to do and is helpful later when you browse through several files or print them.

Multiple Declarations

Next, the program declares two variables instead of just one in a single declaration statement.
To do this, separate the two variables (feet and fathoms) by a comma in the declaration state-
ment. That is,

int feet, fathoms;

and

int feet;
int fathoms;

are equivalent.

Multiplication

Third, the program makes a calculation. It harnesses the tremendous computational power of a
computer system to multiply 2 by 6. In C, as in many languages, * is the symbol for multiplica-
tion. Therefore, the statement

feet = 6 * fathoms;

means “look up the value of the variable fathoms, multiply it by 6, and assign the result of this
calculation to the variable feet.”

Printing Multiple Values

Finally, the program makes fancier use of printf (). If you compile and run the example, the
output should look like this:

There are 12 feet in 2 fathoms!
Yes, I said 12 feet!

This time, the code made two substitutions in the first use of printf (). The first ¢d in the
quotes was replaced by the value of the first variable (feet) in the list following the quoted
segment, and the second %d was replaced by the value of the second variable (fathoms) in the
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list. Note that the list of variables to be printed comes at the tail end of the statement after the
quoted part. Also note that each item is separated from the others by a comma.

The second use of printf () illustrates that the value printed doesn’t have to be a variable; it
just has to be something, such as 6 * fathoms, that reduces to a value of the right type.

This program is limited in scope, but it could form the nucleus of a program for converting
fathoms to feet. All that is needed is a way to assign additional values to feet interactively; we
will explain how to do that in later chapters.

While You're at It—Multiple Functions

So far, these programs have used the standard printf () function. Listing 2.3 shows you how
to incorporate a function of your own—besides main()—into a program.

Listing 2.3 The two_func.c Program

//* two_func.c -- a program using two functions in one file */
#include <stdio.h>

void butler(void); /* ANSI/ISO C function prototyping */
int main(void)

{

printf("I will summon the butler function.\n");
butler();
printf("Yes. Bring me some tea and writeable DVDs.\n");

return 0;
}
void butler(void) /* start of function definition */
{
printf("You rang, sir?\n");
}

The output looks like the following:

I will summon the butler function.
You rang, sir?
Yes. Bring me some tea and writeable DVDs.

The butler () function appears three times in this program. The first appearance is in the proto-
type, which informs the compiler about the functions to be used. The second appearance is in
main() in the form of a function call. Finally, the program presents the function definition, which
is the source code for the function itself. Let’s look at each of these three appearances in turn.
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The C90 standard added prototypes, and older compilers might not recognize them. (We'll tell
you what to do when using such compilers in a moment.) A prototype declares to the compiler
that you are using a particular function, so it’s called a function declaration. It also specifies
properties of the function. For example, the first void in the prototype for the butler () func-
tion indicates that butler () does not have a return value. (In general, a function can return

a value to the calling function for its use, but butler () doesn’t.) The second void—the one

in butler(void)—means that the butler () function has no arguments. Therefore, when the
compiler reaches the point in main () where butler() is used, it can check to see whether
butler () is used correctly. Note that void is used to mean “empty,” not “invalid.”

Older C supported a more limited form of function declaration in which you just specified the
return type but omitted describing the arguments:

void butler();

Older C code uses function declarations like the preceding one instead of function prototypes.
The C90, C99, and C11 standards recognize this older form but indicate it will be phased out in
time, so don’t use it. If you inherit some legacy C code, you may want to convert the old-style
declarations to prototypes. Later chapters in this book return to prototyping, function declara-
tions, and return values.

Next, you invoke butler() in main() simply by giving its name, including parentheses. When
butler () finishes its work, the program moves to the next statement in main().

Finally, the function butler() is defined in the same manner as main(), with a function
header and the body enclosed in braces. The header repeats the information given in the proto-
type: butler() takes no arguments and has no return value. For older compilers, omit the
second void.

One point to note is that it is the location of the butler() call in main()—not the loca-

tion of the butler () definition in the file—that determines when the butler () function is
executed. You could, for example, put the butler () definition above the main() definition in
this program, and the program would still run the same, with the butler() function executed
between the two calls to printf () in main(). Remember, all C programs begin execution with
main(), no matter where main() is located in the program files. However, the usual C practice
is to list main () first because it normally provides the basic framework for a program.

The C standard recommends that you provide function prototypes for all functions you

use. The standard include files take care of this task for the standard library functions. For
example, under standard C, the stdio.h file has a function prototype for printf (). The final
example in Chapter 6 will show you how to extend prototyping to non-void functions, and
Chapter 9 covers functions fully.
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Introducing Debugging

Now that you can write a simple C program, you are in a position to make simple errors.
Program errors often are called bugs, and finding and fixing the errors is called debugging.
Listing 2.4 presents a program with some bugs. See how many you can spot.

Listing 2.4 The nogood.c Program

/* nogood.c -- a program with errors */
#include <stdio.h>

int main(void)

(

int n, int n2, int n3;

/* this program has several errors
n =>5;
n2 =n * n;
n3 = n2 * n2;
printf("n = %d, n squared = %d, n cubed = %d\n", n, n2, n3)

return 0;

Syntax Errors

Listing 2.4 contains several syntax errors. You commit a syntax error when you don’t follow
C’s rules. It’s analogous to a grammatical error in English. For instance, consider the following
sentence: Bugs frustrate be can. This sentence uses valid English words but doesn’t follow the
rules for word order, and it doesn’t have quite the right words, anyway. C syntax errors use
valid C symbols in the wrong places.

So what syntax errors did nogood.c make? First, it uses parentheses instead of braces to mark
the body of the function—it uses a valid C symbol in the wrong place. Second, the declaration
should have been

int n, n2, n3;

or perhaps
int n;
int n2;
int n3;

Next, the example omits the */ symbol pair necessary to complete a comment. (Alternatively,
you could replace /* with the new // form.) Finally, it omits the mandatory semicolon that
should terminate the printf () statement.
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How do you detect syntax errors? First, before compiling, you can look through the source
code and see whether you spot anything obvious. Second, you can examine errors found by the
compiler because part of its job is to detect syntax errors. When you attempt to compile this
program, the compiler reports back any errors it finds, identifying the nature and location of
each error.

However, the compiler can get confused. A true syntax error in one location might cause the
compiler to mistakenly think it has found other errors. For instance, because the example does
not declare n2 and n3 correctly, the compiler might think it has found further errors whenever
those variables are used. In fact, if you can’t make sense of all the reported errors, rather than
trying to correct all the reported errors at once, you should correct just the first one or two and
then recompile; some of the other errors may go away. Continue in this way until the program
works. Another common compiler trick is reporting the error a line late. For instance, the
compiler may not deduce that a semicolon is missing until it tries to compile the next line. So
if the compiler complains of a missing semicolon on a line that has one, check the line before.

Semantic Errors

Semantic errors are errors in meaning. For example, consider the following sentence: Scornful
derivatives sing greenly. The syntax is fine because adjectives, nouns, verbs, and adverbs are in
the right places, but the sentence doesn’t mean anything. In C, you commit a semantic error
when you follow the rules of C correctly but to an incorrect end. The example has one such

error:

n3 = n2 * n2;

Here, n3 is supposed to represent the cube of n, but the code sets it up to be the fourth power
of n.

The compiler does not detect semantic errors, because they don’t violate C rules. The compiler
has no way of divining your true intentions. That leaves it to you to find these kinds of errors.
One way is to compare what a program does to what you expected it to do. For instance,
suppose you fix the syntax errors in the example so that it now reads as shown in Listing 2.5.

Listing 2.5 The stillbad.c Program

/* stillbad.c -- a program with its syntax errors fixed */
#include <stdio.h>

int main(void)

{

int n, n2, n3;

/* this program has a semantic error */
n=>5;
n2 = n * n;
n3 = n2 * n2;
printf("n = %d, n squared = %d, n cubed = %d\n", n, n2, n3);
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return 0;

Its output is this:
n =5, n squared = 25, n cubed = 625

If you are cube-wise, you'll notice that 625 is the wrong value. The next stage is to track down
how you wound up with this answer. For this example, you probably can spot the error by
inspection. In general, however, you need to take a more systematic approach. One method

is to pretend you are the computer and to follow the program steps one by one. Let’s try that
method now.

The body of the program starts by declaring three variables: n, n2, and n3. You can simulate
this situation by drawing three boxes and labeling them with the variable names (see Figure
2.6). Next, the program assigns 5 to n. Simulate that by writing 5 into the n box. Next, the
program multiplies n by n and assigns the result to n2, so look in the n box, see that the value
is 5, multiply 5 by 5 to get 25, and place 25 in box n2. To duplicate the next C statement (n3
= n2 * n2;), lookin n2 and find 25. You multiply 25 by 25, get 625, and place it in n3. Aha!
You are squaring n2 instead of multiplying it by n.

executing line in state of variables
program stillbad.c
variables initialized > ? ? ?
_______________ n n2 n3
int n, n2, n3;
n=5: variable n set to 5 > 5 ? ?
n n2 n3
n2 = n*n;
variable n2 set to n
= * .
n3 n2*n2; squared 5 25 )
——————————————— n n2 n3

variable n3 set to n2
squared when it >
shouldben * n2

5 25 625

Figure 2.6 Tracing a program.

Well, perhaps this procedure is overkill for this example, but going through a program step-by-
step in this fashion is often the best way to see what’s happening.
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Program State

By tracing the program step-by-step manually, keeping track of each variable, you monitor the
program state. The program state is simply the set of values of all the variables at a given point
in program execution. It is a snapshot of the current state of computation.

We just discussed one method of tracing the state: executing the program step-by-step yourself.
In a program that makes, say, 10,000 iterations, you might not feel up to that task. Still, you
can go through a few iterations to see whether your program does what you intend. However,
there is always the possibility that you will execute the steps as you intended them to be
executed instead of as you actually wrote them, so try to be faithful to the actual code.

Another approach to locating semantic problems is to sprinkle extra printf () statements
throughout to monitor the values of selected variables at key points in the program. Seeing
how the values change can illuminate what’s happening. After you have the program working
to your satisfaction, you can remove the extra statements and recompile.

A third method for examining the program states is to use a debugger. A debugger is a program
that enables you to run another program step-by-step and examine the value of that program’s
variables. Debuggers come in various levels of ease of use and sophistication. The more
advanced debuggers show which line of source code is being executed. This is particularly
handy for programs with alternative paths of execution because it is easy to see which particu-
lar paths are being followed. If your compiler comes with a debugger, take time now to learn
how to use it. Try it with Listing 2.4, for example.

Keywords and Reserved ldentifiers

Keywords are the vocabulary of C. Because they are special to C, you can’t use them as identi-
fiers, for example, or as variable names. Many of these keywords specify various types, such
as int. Others, such as if, are used to control the order in which program statements are
executed. In the following list of C keywords, boldface indicates keywords added by the C90
standard, italics indicates new keywords added by the C99 standard, and boldface italics indi-
cates keywords added by the C11 standard.

ISO C Keywords

auto extern short while
break float signed _Alignas
case for sizeof _Alignof
char goto static _Bool
const if struct _Complex
continue inline switch _Generic

default int typedef _Imaginary
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ISO C Keywords

do long union _Noreturn
double register unsigned _Static assert
else restrict void # Thread local
enum return volatile

If you try to use a keyword, for, say, the name of a variable, the compiler catches that as a
syntax error. There are other identifiers, called reserved identifiers, that you shouldn’t use. They
don’t cause syntax errors because they are valid names. However, the language already uses
them or reserves the right to use them, so it could cause problems if you use these identifiers to
mean something else. Reserved identifiers include those beginning with an underscore charac-
ter and the names of the standard library functions, such as printf().

Key Concepts

Computer programming is a challenging activity. It demands abstract, conceptual thinking
combined with careful attention to detail. You'll find that compilers enforce the attention to
detail. When you talk to a friend, you might use a few words incorrectly, make a grammati-
cal error or two, perhaps leave some sentences unfinished, yet your friend will still understand
what you are trying to say. But a compiler doesn’t make such allowances; to it, almost right is
still wrong.

The compiler won’t help you with conceptual matters, such as these, so this book will try to fill
that gap by outlining the key concepts in each chapter.

For this chapter, your goal should be to understand what a C program is. You can think of a
program as a description you prepare of how you want the computer to behave. The compiler
handles the really detailed job of converting your description to the underlying machine
language. (As a measure of how much work a compiler does, it can create an executable file
of 60KB from your source code file of 1KB; a lot of machine language goes into representing
even a simple C program.) Because the compiler has no real intelligence, you have to express
your description in the compiler’s terms, and these terms are the formal rules set up by the

C language standard. (Although restrictive, this still is far better than having to express your
description directly in machine language!)

The compiler expects to receive its instructions in a specific format, which we described in
detail in this chapter. Your job as a programmer is to express your ideas about how a program
should behave within the framework that the compiler—guided by the C standard—can process
successfully.
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Summary

A C program consists of one or more C functions. Every C program must contain a function
called main () because it is the function called when the program starts up. A simple function
consists of a function header followed by an opening brace, followed by the statements consti-
tuting the function body, followed by a terminating, or closing, brace.

Each C statement is an instruction to the computer and is marked by a terminating semicolon.
A declaration statement creates a name for a variable and identifies the type of data to be stored
in the variable. The name of a variable is an example of an identifier. An assignment statement
assigns a value to a variable or, more generally, to a storage area. A function call statement
causes the named function to be executed. When the called function is done, the program
returns to the next statement after the function call.

The printf () function can be used to print phrases and the values of variables.

The syntax of a language is the set of rules that governs the way in which valid statements in
that language are put together. The semantics of a statement is its meaning. The compiler helps
you detect syntax errors, but semantic errors show up in a program’s behavior only after it is
compiled. Detecting semantic errors may involve tracing the program state—that is, the values
of all variables—after each program step.

Finally, keywords are the vocabulary of the C language.

Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”
1. What are the basic modules of a C program called?
2. What is a syntax error? Give an example of one in English and one in C.
3. What is a semantic error? Give an example of one in English and one in C.

4. Indiana Sloth has prepared the following program and brought it to you for approval.
Please help him out.

include studio.h
int main{void} /* this prints the number of weeks in a year /*

(

int s

s := 56;
print(There are s weeks in a year.);
return 0;
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5. Assuming that each of the following examples is part of a complete program, what will
each one print?

a. printf("Baa Baa Black Sheep.");
printf("Have you any wool?\n");

b. printf("Begone!\nO creature of lard!\n");

. printf("What?\nNo/nfish?\n");

d. int num;

Q

num = 2;
printf("%d + %d = %d", num, num, num + num);

6. Which of the following are C keywords? main, int, function, char, =

7. How would you print the values of the variables words and lines so they appear in the
following form:

There were 3020 words and 350 lines.

Here, 3020 and 350 represent the values of the two variables.

8. Consider the following program:

#include <stdio.h>
int main(void)

{
int a, b;

a =>5;
b = 2; /* line 7 */
b = a; /* line 8 */
a = b; /* line 9 */
printf("%d %d\n", b, a);
return 0;

}

What is the program state after line 7? Line 8? Line 9?

9. Consider the following program:
#include <stdio.h>
int main(void)
{

int x, y;

x = 10;
y = 5; /* line 7 */
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y=x+vy; /* line 8 */
X = X*y; /* line 9 */
printf("sd %d\n", x, y);
return 0;

What is the program state after line 7? Line 8? Line 9?

Programming Exercises

Reading about C isn’t enough. You should try writing one or two simple programs to see
whether writing a program goes as smoothly as it looks in this chapter. A few suggestions
follow, but you should also try to think up some problems yourself. You'll find answers to
selected programming exercises on the publisher’s website.

1. Write a program that uses one print£ () call to print your first name and last name on
one line, uses a second printf () call to print your first and last names on two separate
lines, and uses a pair of print£ () calls to print your first and last names on one line.
The output should look like this (but using your name):

Gustav Mahler €First print statement
Gustav &Second print statement
Mahler &Still the second print statement
Gustav Mahler €Third and fourth print statements

2. Write a program to print your name and address.

3. Write a program that converts your age in years to days and displays both values. At this
point, don’t worry about fractional years and leap years.

4. Write a program that produces the following output:

For he's a jolly good fellow!
For he's a jolly good fellow!
For he's a jolly good fellow!
Which nobody can deny!

Have the program use two user-defined functions in addition to main(): one named
jolly () that prints the “jolly good” message once, and one named deny () that prints
the final line once.
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5. Write a program that produces the following output:

Brazil, Russia, India, China
India, China,
Brazil, Russia

Have the program use two user-defined functions in addition to main(): one named
br () that prints “Brazil, Russia” once, and one named ic () that prints “India, China”
once. Let main () take care of any additional printing tasks.

. Write a program that creates an integer variable called toes. Have the program set toes

to 10. Also have the program calculate what twice toes is and what toes squared is. The
program should print all three values, identifying them.

. Many studies suggest that smiling has benefits. Write a program that produces the

following output:

Smile!Smile!Smile!
Smile!Smile!
Smile!

Have the program define a function that displays the string smile! once, and have the
program use the function as often as needed.

. In C, one function can call another. Write a program that calls a function named one_

three (). This function should display the word one on one line, call a second function
named two (), and then display the word three on one line. The function two () should
display the word two on one line. The main () function should display the phrase
starting now: before calling one three() and display done! after calling it. Thus, the
output should look like the following:

starting now:
one

two

three

done!



3
Data and C

You will learn about the following in this chapter:

= Keywords:
int, short, long, unsigned, char, float, double, Bool, Complex, Imaginary
= Operator:
sizeof
= Function:
scanf ()
= The basic data types that C uses
= The distinctions between integer types and floating-point types
= Writing constants and declaring variables of those types
= How to use the printf () and scanf () functions to read and write values of different

types

Programs work with data. You feed numbers, letters, and words to the computer, and you
expect it to do something with the data. For example, you might want the computer to calcu-
late an interest payment or display a sorted list of vintners. In this chapter, you do more than
just read about data; you practice manipulating data, which is much more fun.

This chapter explores the two great families of data types: integer and floating point. C offers
several varieties of these types. This chapter tells you what the types are, how to declare them,
and how and when to use them. Also, you discover the differences between constants and vari-
ables, and as a bonus, your first interactive program is coming up shortly.

A Sample Program

Once again, we begin with a sample program. As before, you'll find some unfamiliar wrinkles
that we’ll soon iron out for you. The program’s general intent should be clear, so try compiling
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and running the source code shown in Listing 3.1. To save time, you can omit typing the
comments.

Listing 3.1 The platinum.c Program

/* platinum.c -- your weight in platinum */
#include <stdio.h>
int main(void)

{
float weight; /* user weight */
float value; /* platinum equivalent */
printf("Are you worth your weight in platinum?\n");
printf("Let's check it out.\n");
printf("Please enter your weight in pounds: ");
/* get input from the user */
scanf("$f", &weight);
/* assume platinum is $1700 per ounce */
/* 14.5833 converts pounds avd. to ounces troy */
value = 1700.0 * weight * 14.5833;
printf("Your weight in platinum is worth $%.2f.\n", value);
printf("You are easily worth that! If platinum prices drop,\n");
printf("eat more to maintain your value.\n");
return 0;
}

Tip Errors and Warnings

If you type this program incorrectly and, say, omit a semicolon, the compiler gives you a syntax
error message. Even if you type it correctly, however, the compiler may give you a warning simi-
lar to “Warning—conversion from ‘double’ to ‘float,” possible loss of data.” An error message
means you did something wrong and prevents the program from being compiled. A warning,
however, means you’ve done something that is valid code but possibly is not what you meant
to do. A warning does not stop compilation. This particular warning pertains to how C handles
values such as 1700.0. It's not a problem for this example, and the chapter explains the warn-
ing later.

When you type this program, you might want to change the 1700.0 to the current price of
the precious metal platinum. Don’t, however, fiddle with the 14.5833, which represents the
number of ounces in a pound. (That’s ounces troy, used for precious metals, and pounds avoir-
dupois, used for people—precious and otherwise.)

Note that “entering” your weight means to type your weight and then press the Enter or Return
key. (Don'’t just type your weight and wait.) Pressing Enter informs the computer that you have
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finished typing your response. The program expects you to enter a number, such as 156, not
words, such as too much. Entering letters rather than digits causes problems that require an if
statement (Chapter 7, “C Control Statements: Branching and Jumps”) to defeat, so please be
polite and enter a number. Here is some sample output:

Are you worth your weight in platinum?

Let's check it out.

Please enter your weight in pounds: 156

Your weight in platinum is worth $3867491.25.

You are easily worth that! If platinum prices drop,
eat more to maintain your value.

Program Adjustments

Did the output for this program briefly flash onscreen and then disappear even though you
added the following line to the program, as described in Chapter 2, “Introducing C”?

getchar();

For this example, you need to use that function call twice:

getchar();
getchar();

The getchar () function reads the next input character, so the program has to wait for input.
In this case, we provided input by typing 156 and then pressing the Enter (or Return) key, which
transmits a newline character. So scanf () reads the number, the first getchar () reads the
newline character, and the second getchar () causes the program to pause, awaiting further
input.

What's New in This Program?

There are several new elements of C in this program:

= Notice that the code uses a new kind of variable declaration. The previous examples
just used an integer variable type (int), but this one adds a floating-point variable
type (float) so that you can handle a wider variety of data. The float type can hold
numbers with decimal points.

= The program demonstrates some new ways of writing constants. You now have numbers
with decimal points.

= To print this new kind of variable, use the % £ specifier in the printf () code to handle a
floating-point value. The .2 modifier to the %£ specifier fine-tunes the appearance of the
output so that it displays two places to the right of the decimal.

= The scanf () function provides keyboard input to the program. The %£ instructs scanf ()
to read a floating-point number from the keyboard, and the sweight tells scanf () to
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assign the input value to the variable named weight. The scanf () function uses the &
notation to indicate where it can find the weight variable. The next chapter discusses &
further; meanwhile, trust us that you need it here.

= Perhaps the most outstanding new feature is that this program is interactive. The
computer asks you for information and then uses the number you enter. An interactive
program is more interesting to use than the noninteractive types. More important, the
interactive approach makes programs more flexible. For example, the sample program
can be used for any reasonable weight, not just for 156 pounds. You don’t have to
rewrite the program every time you want to try it on a new person. The scanf () and
printf () functions make this interactivity possible. The scanf () function reads data
from the keyboard and delivers that data to the program, and printf () reads data from
a program and delivers that data to your screen. Together, these two functions enable
you to establish a two-way communication with your computer (see Figure 3.1), and that
makes using a computer much more fun.

This chapter explains the first two items in this list of new features: variables and constants of
various data types. Chapter 4, “Character Strings and Formatted Input/Output,” covers the last
three items, but this chapter will continue to make limited use of scanf () and printf().

/*platinum.c*/
o
.
int main(void)
{
.
o
o

scanf("----- ) 4 getting keyboard input

printf("Are you--) displaying program output >
printf(----- )

return 0;

Figure 3.1 The scanf() and printf () functions at work.
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Data Variables and Constants

A computer, under the guidance of a program, can do many things. It can add numbers, sort
names, command the obedience of a speaker or video screen, calculate cometary orbits, prepare
a mailing list, dial phone numbers, draw stick figures, draw conclusions, or anything else your
imagination can create. To do these tasks, the program needs to work with data, the numbers
and characters that bear the information you use. Some types of data are preset before a
program is used and keep their values unchanged throughout the life of the program. These are
constants. Other types of data may change or be assigned values as the program runs; these are
variables. In the sample program, weight is a variable and 14.5833 is a constant. What about
1700.0? True, the price of platinum isn’t a constant in real life, but this program treats it as a
constant. The difference between a variable and a constant is that a variable can have its value
assigned or changed while the program is running, and a constant can'’t.

Data: Data-Type Keywords

Beyond the distinction between variable and constant is the distinction between different types
of data. Some types of data are numbers. Some are letters or, more generally, characters. The
computer needs a way to identify and use these different kinds. C does this by recognizing
several fundamental data types. If a datum is a constant, the compiler can usually tell its type
just by the way it looks: 42 is an integer, and 42.100 is floating point. A variable, however,
needs to have its type announced in a declaration statement. You'll learn the details of declar-
ing variables as you move along. First, though, take a look at the fundamental type keywords
recognized by C. K&R C recognized seven keywords relating to types. The C90 standard added
two to the list. The C99 standard adds yet another three (see Table 3.1).

Table 3.1 C Data Keywords

Original K&R Keywords C90 K&R Keywords C99 Keywords
int signed _Bool

long void _Complex
short _Imaginary
unsigned

char

float

double

The int keyword provides the basic class of integers used in C. The next three keywords (long,
short, and unsigned) and the C90 addition signed are used to provide variations of the
basic type, for example, unsigned short int and long long int. Next, the char keyword
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designates the type used for letters of the alphabet and for other characters, such as #, $, %, and
*. The char type also can be used to represent small integers. Next, £loat, double, and the
combination long double are used to represent numbers with decimal points. The Bool type
is for Boolean values (true and false), and Complex and _Imaginary represent complex and
imaginary numbers, respectively.

The types created with these keywords can be divided into two families on the basis of how
they are stored in the computer: integer types and floating-point types.

Bits, Bytes, and Words

The terms bit, byte, and word can be used to describe units of computer data or to describe
units of computer memory. We’ll concentrate on the second usage here.

The smallest unit of memory is called a bit. It can hold one of two values: 0 or 1. (Or you can
say that the bit is set to “off” or “on.”) You can’t store much information in one bit, but a com-
puter has a tremendous stock of them. The bit is the basic building block of computer memory.

The byte is the usual unit of computer memory. For nearly all machines, a byte is 8 bits, and
that is the standard definition, at least when used to measure storage. (The C language, how-
ever, has a different definition, as discussed in the “Using Characters: Type char" section
later in this chapter.) Because each bit can be either O or 1, there are 256 (that’s 2 times
itself 8 times) possible bit patterns of Os and 1s that can fit in an 8-bit byte. These patterns
can be used, for example, to represent the integers from O to 255 or to represent a set of
characters. Representation can be accomplished with binary code, which uses (conveniently
enough) just Os and 1s to represent numbers. (Chapter 15, “Bit Fiddling,” discusses binary
code, but you can read through the introductory material of that chapter now if you like.)

A word is the natural unit of memory for a given computer design. For 8-bit microcomputers,
such as the original Apples, a word is just 8 bits. Since then, personal computers moved up to
16-bit words, 32-bit words, and, at the present, 64-bit words. Larger word sizes enable faster
transfer of data and allow more memory to be accessed.

Integer Versus Floating-Point Types

Integer types? Floating-point types? If you find these terms disturbingly unfamiliar, relax.

We are about to give you a brief rundown of their meanings. If you are unfamiliar with bits,
bytes, and words, you might want to read the nearby sidebar about them first. Do you have to
learn all the details? Not really, not any more than you have to learn the principles of internal
combustion engines to drive a car, but knowing a little about what goes on inside a computer
or engine can help you occasionally.

For a human, the difference between integers and floating-point numbers is reflected in the
way they can be written. For a computer, the difference is reflected in the way they are stored.
Let’s look at each of the two classes in turn.



Data: Data-Type Keywords

The Integer

An integer is a number with no fractional part. In C, an integer is never written with a decimal
point. Examples are 2, —23, and 2456. Numbers such as 3.14, 0.22, and 2.000 are not integers.
Integers are stored as binary numbers. The integer 7, for example, is written 111 in binary.
Therefore, to store this number in an 8-bit byte, just set the first 5 bits to 0 and the last 3 bits
to 1 (see Figure 3.2).

ojloJo]JoJo|1]1]1|——— 8bitword

2 1

2 2

0

2
4+ 2 +1=7

integer 7

Figure 3.2 Storing the integer 7 using a binary code.

The Floating-Point Number

A floating-point number more or less corresponds to what mathematicians call a real number.
Real numbers include the numbers between the integers. Some floating-point numbers are
2.75, 3.16E7, 7.00, and 2e-8. Notice that adding a decimal point makes a value a floating-point
value. So 7 is an integer type but 7.00 is a floating-point type. Obviously, there is more than
one way to write a floating-point number. We will discuss the e-notation more fully later,

but, in brief, the notation 3.16E7 means to multiply 3.16 by 10 to the 7th power; that is, by 1
followed by 7 zeros. The 7 would be termed the exponent of 10.

The key point here is that the scheme used to store a floating-point number is different from
the one used to store an integer. Floating-point representation involves breaking up a number
into a fractional part and an exponent part and storing the parts separately. Therefore, the
7.00 in this list would not be stored in the same manner as the integer 7, even though both
have the same value. The decimal analogy would be to write 7.0 as 0.7E1. Here, 0.7 is the frac-
tional part, and the 1 is the exponent part. Figure 3.3 shows another example of floating-point
storage. A computer, of course, would use binary numbers and powers of two instead of powers
of 10 for internal storage. You'll find more on this topic in Chapter 15. Now, let’s concentrate
on the practical differences:

= An integer has no fractional part; a floating-point number can have a fractional part.

= Floating-point numbers can represent a much larger range of values than integers can.
See Table 3.3 near the end of this chapter.

= For some arithmetic operations, such as subtracting one large number from another,
floating-point numbers are subject to greater loss of precision.
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= Because there is an infinite number of real numbers in any range—for example, in the
range between 1.0 and 2.0—computer floating-point numbers can’t represent all the
values in the range. Instead, floating-point values are often approximations of a true
value. For example, 7.0 might be stored as a 6.99999 float value—more about precision
later.

= Floating-point operations were once much slower than integer operations. However,
today many CPUs incorporate floating-point processors that close the gap.

+ .314159 1
sign fraction exponent
+ .314159 x 100 ———— 3.14159

Figure 3.3 Storing the number pi in floating-point format (decimal version).

Basic C Data Types

Now let’s look at the specifics of the basic data types used by C. For each type, we describe how
to declare a variable, how to represent a constant with a literal value, such as 5 or 2.78, and
what a typical use would be. Some older C compilers do not support all these types, so check
your documentation to see which ones you have available.

The int Type

C offers many integer types, and you might wonder why one type isn’t enough. The answer is
that C gives the programmer the option of matching a type to a particular use. In particular,
the C integer types vary in the range of values offered and in whether negative numbers can be
used. The int type is the basic choice, but should you need other choices to meet the require-
ments of a particular task or machine, they are available.

The int type is a signed integer. That means it must be an integer and it can be positive, nega-
tive, or zero. The range in possible values depends on the computer system. Typically, an int
uses one machine word for storage. Therefore, older IBM PC compatibles, which have a 16-bit
word, use 16 bits to store an int. This allows a range in values from —32768 to 32767. Current
personal computers typically have 32-bit integers and fit an int to that size. Now the personal
computer industry is moving toward 64-bit processors that naturally will use even larger inte-
gers. ISO C specifies that the minimum range for type int should be from —32767 to 32767.
Typically, systems represent signed integers by using the value of a particular bit to indicate the
sign. Chapter 15 discusses common methods.
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Declaring an int Variable

As you saw in Chapter 2, “Introducing C,” the keyword int is used to declare the basic integer
variable. First comes int, and then the chosen name of the variable, and then a semicolon.

To declare more than one variable, you can declare each variable separately, or you can follow
the int with a list of names in which each name is separated from the next by a comma. The

following are valid declarations:

int erns;
int hogs, cows, goats;

You could have used a separate declaration for each variable, or you could have declared all
four variables in the same statement. The effect is the same: Associate names and arrange
storage space for four int-sized variables.

These declarations create variables but don’t supply values for them. How do variables get
values? You've seen two ways that they can pick up values in the program. First, there is
assignment:

cows = 112;

Second, a variable can pick up a value from a function—from scanf (), for example. Now let’s
look at a third way.

Initializing a Variable

To initialize a variable means to assign it a starting, or initial, value. In C, this can be done as
part of the declaration. Just follow the variable name with the assignment operator (=) and the
value you want the variable to have. Here are some examples:

int hogs = 21;
int cows = 32, goats = 14;
int dogs, cats = 94; /* valid, but poor, form */

In the last line, only cats is initialized. A quick reading might lead you to think that dogs is
also initialized to 94, so it is best to avoid putting initialized and noninitialized variables in the
same declaration statement.

In short, these declarations create and label the storage for the variables and assign starting
values to each (see Figure 3.4).
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int sows;
create storage T
2
int boars=2; Boars
create storage and give it value T

Figure 3.4 Defining and initializing a variable.

Type int Constants

The various integers (21, 32, 14, and 94) in the last example are integer constants, also called
integer literals. When you write a number without a decimal point and without an exponent, C
recognizes it as an integer. Therefore, 22 and —44 are integer constants, but 22.0 and 2.2E1 are
not. C treats most integer constants as type int. Very large integers can be treated differently;
see the later discussion of the long int type in the section "long Constants and long long
Constants.”

Printing int Values

You can use the printf () function to print int types. As you saw in Chapter 2, the %d nota-
tion is used to indicate just where in a line the integer is to be printed. The %d is called a format
specifier because it indicates the form that printf () uses to display a value. Each %d in the
format string must be matched by a corresponding int value in the list of items to be printed.
That value can be an int variable, an int constant, or any other expression having an int
value. It’s your job to make sure the number of format specifiers matches the number of values;
the compiler won’t catch mistakes of that kind. Listing 3.2 presents a simple program that
initializes a variable and prints the value of the variable, the value of a constant, and the value
of a simple expression. It also shows what can happen if you are not careful.

Listing 3.2 The printl.c Program

/* printl.c-displays some properties of printf() */
#include <stdio.h>
int main(void)

{

int ten 10;
int two = 2;

printf("Doing it right: ");
printf("%d minus %d is %d\n", ten, 2, ten - two );
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printf("Doing it wrong: ");
printf("%d minus %d is %d\n", ten ); // forgot 2 arguments

return 0;

Compiling and running the program produced this output on one system:

Doing it right: 10 minus 2 is 8
Doing it wrong: 10 minus 16 is 1650287143

For the first line of output, the first $d represents the int variable ten, the second %d repre-
sents the int constant 2, and the third %4 represents the value of the int expression ten -
two. The second time, however, the program used ten to provide a value for the first ¢d and
used whatever values happened to be lying around in memory for the next two! (The numbers
you get could very well be different from those shown here. Not only might the memory
contents be different, but different compilers will manage memory locations differently.)

You might be annoyed that the compiler doesn’t catch such an obvious error. Blame the
unusual design of printf (). Most functions take a specific number of arguments, and the
compiler can check to see whether you've used the correct number. However, printf () can
have one, two, three, or more arguments, and that keeps the compiler from using its usual
methods for error checking. Some compilers, however, will use unusual methods of checking
and warn you that you might be doing something wrong. Still, it’s best to remember to always
check to see that the number of format specifiers you give to printf () matches the number of
values to be displayed.

Octal and Hexadecimal

Normally, C assumes that integer constants are decimal, or base 10, numbers. However, octal
(base 8) and hexadecimal (base 16) numbers are popular with many programmers. Because 8
and 16 are powers of 2, and 10 is not, these number systems occasionally offer a more conve-
nient way for expressing computer-related values. For example, the number 65536, which often
pops up in 16-bit machines, is just 10000 in hexadecimal. Also, each digit in a hexadecimal
number corresponds to exactly 4 bits. For example, the hexadecimal digit 3 is 0011 and the
hexadecimal digit 5 is 0101. So the hexadecimal value 35 is the bit pattern 0011 0101, and the
hexadecimal value 53 is 0101 0011. This correspondence makes it easy to go back and forth
between hexadecimal and binary (base 2) notation. But how can the computer tell whether
10000 is meant to be a decimal, hexadecimal, or octal value? In C, special prefixes indicate
which number base you are using. A prefix of 0x or 0X (zero-ex) means that you are specifying
a hexadecimal value, so 16 is written as 0x10, or 0X10, in hexadecimal. Similarly, a 0 (zero)
prefix means that you are writing in octal. For example, the decimal value 16 is written as 020
in octal. Chapter 15 discusses these alternative number bases more fully.

Be aware that this option of using different number systems is provided as a service for your
convenience. It doesn’t affect how the number is stored. That is, you can write 16 or 020 or
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0x10, and the number is stored exactly the same way in each case—in the binary code used
internally by computers.

Displaying Octal and Hexadecimal

Just as C enables you write a number in any one of three number systems, it also enables you
to display a number in any of these three systems. To display an integer in octal notation
instead of decimal, use %o instead of %d. To display an integer in hexadecimal, use %x. If you
want to display the C prefixes, you can use specifiers $#o, $#x, and %#X to generate the 0, 0x,
and 0X prefixes respectively. Listing 3.3 shows a short example. (Recall that you may have

to insert a getchar () ; statement in the code for some IDEs to keep the program execution
window from closing immediately.)

Listing 3.3 The bases.c Program

/* bases.c--prints 100 in decimal, octal, and hex */
#include <stdio.h>
int main(void)

{
int x = 100;
printf("dec = %d; octal = %0; hex = %x\n", x, X, X);
printf("dec = %d; octal = %#o; hex = %#x\n", x, x, X);
return 0;

}

Compiling and running this program produces this output:

dec = 100; octal = 144; hex = 64
dec = 100; octal = 0144; hex = 0x64

You see the same value displayed in three different number systems. The printf () function
makes the conversions. Note that the 0 and the 0x prefixes are not displayed in the output
unless you include the # as part of the specifier.

Other Integer Types

When you are just learning the language, the int type will probably meet most of your integer
needs. To be complete, however, we'll cover the other forms now. If you like, you can skim
this section and jump to the discussion of the char type in the “Using Characters: Type char"
section, returning here when you have a need.

C offers three adjective keywords to modify the basic integer type: short, long, and unsigned.
Here are some points to keep in mind:
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= The type short int or, more briefly, short may use less storage than int, thus saving
space when only small numbers are needed. Like int, short is a signed type.

= The type long int, or long, may use more storage than int, thus enabling you to
express larger integer values. Like int, long is a signed type.

= The type long long int, or long long (introduced in the C99 standard), may use
more storage than long. At the minimum, it must use at least 64 bits. Like int, long
long is a signed type.

= The type unsigned int, or unsigned, is used for variables that have only nonnegative
values. This type shifts the range of numbers that can be stored. For example, a 16-bit
unsigned int allows a range from 0 to 65535 in value instead of from —32768 to 32767.
The bit used to indicate the sign of signed numbers now becomes another binary digit,
allowing the larger number.

= The types unsigned long int, or unsigned long, and unsigned short int, or
unsigned short, are recognized as valid by the C90 standard. To this list, C99 adds
unsigned long long int, Oor unsigned long long.

= The keyword signed can be used with any of the signed types to make your intent
explicit. For example, short, short int, signed short, and signed short int are all
names for the same type.

Declaring Other Integer Types

Other integer types are declared in the same manner as the int type. The following list shows
several examples. Not all older C compilers recognize the last three, and the final example is
new with the C99 standard.

long int estine;

long johns;

short int erns;

short ribs;

unsigned int s_count;
unsigned players;
unsigned long headcount;
unsigned short yesvotes;
long long ago;

Why Multiple Integer Types?

Why do we say that long and short types “may” use more or less storage than int? Because
C guarantees only that short is no longer than int and that long is no shorter than int. The
idea is to fit the types to the machine. For example, in the days of Windows 3, an int and a
short were both 16 bits, and a Long was 32 bits. Later, Windows and Apple systems moved to
using 16 bits for short and 32 bits for int and long. Using 32 bits allows integers in excess of
2 billion. Now that 64-bit processors are common, there’s a need for 64-bit integers, and that’s
the motivation for the long long type.
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The most common practice today on personal computers is to set up long long as 64 bits,
long as 32 bits, short as 16 bits, and int as either 16 bits or 32 bits, depending on the
machine’s natural word size. In principle, these four types could represent four distinct sizes,
but in practice at least some of the types normally overlap.

The C standard provides guidelines specifying the minimum allowable size for each basic data
type. The minimum range for both short and int is -32,767 to 32,767, corresponding to a
16-bit unit, and the minimum range for long is -2,147,483,647 to 2,147,483,647, correspond-
ing to a 32-bit unit. (Note: For legibility, we've used commas, but C code doesn’t allow that
option.) For unsigned short and unsigned int, the minimum range is O to 65,535, and for
unsigned long, the minimum range is O to 4,294,967,295. The long long type is intended
to support 64-bit needs. Its minimum range is a substantial -9,223,372,036,854,775,807

to 9,223,372,036,854,775,807, and the minimum range for unsigned long longis O to
18,446,744,073,709,551,615. For those of you writing checks, that’s eighteen quintillion, four
hundred and forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion,
seven hundred nine million, five hundred fifty-one thousand, six hundred fifteen using U.S.
nomenclature (the short scale or échelle courte system), but who's counting?

When do you use the various int types? First, consider unsigned types. It is natural to use
them for counting because you don’t need negative numbers, and the unsigned types enable
you to reach higher positive numbers than the signed types.

Use the long type if you need to use numbers that long can handle and that int cannot.
However, on systems for which long is bigger than int, using long can slow down calcula-
tions, so don’t use long if it is not essential. One further point: If you are writing code on

a machine for which int and long are the same size, and you do need 32-bit integers, you
should use long instead of int so that the program will function correctly if transferred to a
16-bit machine. Similarly, use long long if you need 64-bit integer values.

Use short to save storage space if, say, you need a 16-bit value on a system where int is 32-bit.
Usually, saving storage space is important only if your program uses arrays of integers that are
large in relation to a system’s available memory. Another reason to use short is that it may
correspond in size to hardware registers used by particular components in a computer.

Integer Overflow

What happens if an integer tries to get too big for its type? Let’s set an integer to its largest
possible value, add to it, and see what happens. Try both sighed and unsigned types. (The
printf () function uses the %u specifier to display unsigned int values.)

/* toobig.c-exceeds maximum int size on our system */
#include <stdio.h>
int main(void)
{
int 1 = 2147483647;
unsigned int j = 4294967295;

printf("%d %d %d\n", i, i+l, i+2);
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printf("%u %u %u\n", j, j+1, j+2);

return 0;

Here is the result for our system:

2147483647 -2147483648 -2147483647
4294967295 0 1

The unsigned integer j is acting like a car's odometer. When it reaches its maximum value,

it starts over at the beginning. The integer i acts similarly. The main difference is that the
unsigned int variable j, like an odometer, begins at O, but the int variable i begins at
-2147483648. Notice that you are not informed that i has exceeded (overflowed) its maximum
value. You would have to include your own programming to keep tabs on that.

The behavior described here is mandated by the rules of C for unsigned types. The standard
doesn’t define how signed types should behave. The behavior shown here is typical, but you
could encounter something different

long Constants and 1long long Constants

Normally, when you use a number such as 2345 in your program code, it is stored as an int
type. What if you use a number such as 1000000 on a system in which int will not hold such
a large number? Then the compiler treats it as a long int, assuming that type is large enough.
If the number is larger than the long maximum, C treats it as unsigned long. If that is still
insufficient, C treats the value as long long or unsigned long long, if those types are
available.

Octal and hexadecimal constants are treated as type int unless the value is too large. Then the
compiler tries unsigned int. If that doesn’t work, it tries, in order, long, unsigned long,
long long, and unsigned long long.

Sometimes you might want the compiler to store a small number as a long integer.
Programming that involves explicit use of memory addresses on an IBM PC, for instance, can
create such a need. Also, some standard C functions require type long values. To cause a small
constant to be treated as type long, you can append an 1 (lowercase L) or L as a suffix. The
second form is better because it looks less like the digit 1. Therefore, a system with a 16-bit
int and a 32-bit long treats the integer 7 as 16 bits and the integer 7L as 32 bits. The 1 and L
suffixes can also be used with octal and hex integers, as in 020L and 0x10L.

Similarly, on those systems supporting the long long type, you can use an 11 or LL suffix to
indicate a long long value, as in 3LL. Add a u or U to the suffix for unsigned long long, as
in 5ull or 10LLU or 6LLU Or 9U11.

69



70

Chapter 3 Data and C

Printing short, long, long long, and unsigned Types

To print an unsigned int number, use the %u notation. To print a long value, use the $1d
format specifier. If int and long are the same size on your system, just $d will suffice, but your
program will not work properly when transferred to a system on which the two types are differ-
ent, so use the 21d specifier for 1ong. You can use the 1 prefix for x and o, too. So you would
use %1x to print a long integer in hexadecimal format and %1o to print in octal format. Note
that although C allows both uppercase and lowercase letters for constant suffixes, these format
specifiers use just lowercase.

C has several additional print£ () formats. First, you can use an h prefix for short types.
Therefore, $hd displays a short integer in decimal form, and %ho displays a short integer
in octal form. Both the h and 1 prefixes can be used with u for unsigned types. For instance,
you would use the %1u notation for printing unsigned long types. Listing 3.4 provides an
example. Systems supporting the long long types use $11d and %11u for the signed and
unsigned versions. Chapter 4 provides a fuller discussion of format specifiers.

Listing 3.4 The print2.c Program

/* print2.c-more printf() properties */
#include <stdio.h>
int main(void)

{
unsigned int un = 3000000000; /* system with 32-bit int */
short end = 200; /* and 16-bit short */
long big = 65537;
long long verybig = 12345678908642;
printf("un = %u and not %d\n", un, un);
printf("end = %hd and %d\n", end, end);
printf("big = %1d and not %hd\n", big, big);
printf("verybig= %11d and not %1d\n", verybig, verybig);
return 0;

}

Here is the output on one system (results can vary):

un = 3000000000 and not -1294967296

end = 200 and 200

big = 65537 and not 1

verybig= 12345678908642 and not 1942899938

This example points out that using the wrong specification can produce unexpected results.
First, note that using the %4 specifier for the unsigned variable un produces a negative number!
The reason for this is that the unsigned value 3000000000 and the signed value —-129496296
have exactly the same internal representation in memory on our system. (Chapter 15 explains



Basic C Data Types

this property in more detail.) So if you tell printf () that the number is unsigned, it prints one
value, and if you tell it that the same number is signed, it prints the other value. This behavior
shows up with values larger than the maximum signed value. Smaller positive values, such as
96, are stored and displayed the same for both signed and unsigned types.

Next, note that the short variable end is displayed the same whether you tell print£() that
end is a short (the $hd specifier) or an int (the %4 specifier). That's because C automatically
expands a type short value to a type int value when it’s passed as an argument to a function.
This may raise two questions in your mind: Why does this conversion take place, and what’s
the use of the h modifier? The answer to the first question is that the int type is intended to be
the integer size that the computer handles most efficiently. So, on a computer for which short
and int are different sizes, it may be faster to pass the value as an int. The answer to the
second question is that you can use the h modifier to show how a longer integer would look if
truncated to the size of short. The third line of output illustrates this point. The value 65537
expressed in binary format as a 32-bit number is 00000000000000010000000000000001. Using
the 2hd specifier persuaded printf () to look at just the last 16 bits; therefore, it displayed the
value as 1. Similarly, the final output line shows the full value of verybig and then the value
stored in the last 32 bits, as viewed through the %14 specifier.

Earlier you saw that it is your responsibility to make sure the number of specifiers matches
the number of values to be displayed. Here you see that it is also your responsibility to use the
correct specifier for the type of value to be displayed.

Tip Match the Type printr () Specifiers

Remember to check to see that you have one format specifier for each value being displayed in
a printf () statement. And also check that the type of each format specifier matches the type
of the corresponding display value.

Using Characters: Type char

The char type is used for storing characters such as letters and punctuation marks, but techni-
cally it is an integer type. Why? Because the char type actually stores integers, not characters.
To handle characters, the computer uses a numerical code in which certain integers represent
certain characters. The most commonly used code in the U.S. is the ASCII code given in the
table on the inside front cover. It is the code this book assumes. In it, for example, the integer
value 65 represents an uppercase A. So to store the letter A, you actually need to store the
integer 65. (Many IBM mainframes use a different code, called EBCDIC, but the principle is the
same. Computer systems outside the U.S. may use entirely different codes.)

The standard ASCII code runs numerically from O to 127. This range is small enough that 7 bits
can hold it. The char type is typically defined as an 8-bit unit of memory, so it is more than
large enough to encompass the standard ASCII code. Many systems, such as the IBM PC and
the Apple Macs, offer extended ASCII codes (different for the two systems) that still stay within
an 8-bit limit. More generally, C guarantees that the char type is large enough to store the
basic character set for the system on which C is implemented.
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Many character sets have many more than 127 or even 255 values. For example, there is the
Japanese kanji character set. The commercial Unicode initiative has created a system to repre-
sent a variety of characters sets worldwide and currently has over 110,000 characters. The
International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) have developed a standard called ISO/IEC 10646 for character sets.
Fortunately, the Unicode standard has been kept compatible with the more extensive ISO/IEC
10646 standard.

The C language defines a byte to be the number of bits used by type char, so one can have a
system with a 16-bit or 32-bit byte and char type.

Declaring Type char Variables

As you might expect, char variables are declared in the same manner as other variables. Here
are some examples:

char response;
char itable, latan;

This code would create three char variables: response, itable, and latan.

Character Constants and Initialization

Suppose you want to initialize a character constant to the letter A. Computer languages are
supposed to make things easy, so you shouldn’t have to memorize the ASCII code, and you
don’t. You can assign the character A to grade with the following initialization:

char grade = 'A';
A single character contained between single quotes is a C character constant. When the compiler

sees 'A', it converts the 'A' to the proper code value. The single quotes are essential. Here’s
another example:

char broiled; /* declare a char variable */
broiled = 'T'; /* OK */
broiled = T; /* NO! Thinks T is a variable */
broiled = "T"; /* NO! Thinks "T" is a string */

If you omit the quotes, the compiler thinks that T is the name of a variable. If you use double
quotes, it thinks you are using a string. We'll discuss strings in Chapter 4.

Because characters are really stored as numeric values, you can also use the numerical code to
assign values:

char grade = 65; /* ok for ASCII, but poor style */

In this example, 65 is type int, but, because the value is smaller than the maximum char size,

it can be assigned to grade without any problems. Because 65 is the ASCII code for the letter A,
this example assigns the value A to grade. Note, however, that this example assumes that the
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system is using ASCII code. Using 'A' instead of 65 produces code that works on any system.
Therefore, it’s much better to use character constants than numeric code values.

Somewhat oddly, C treats character constants as type int rather than type char. For example,
on an ASCII system with a 32-bit int and an 8-bit char, the code

char grade = 'B';

represents 'B' as the numerical value 66 stored in a 32-bit unit, but grade winds up with 66
stored in an 8-bit unit. This characteristic of character constants makes it possible to define a
character constant such as 'FATE', with four separate 8-bit ASCII codes stored in a 32-bit unit.
However, attempting to assign such a character constant to a char variable results in only the
last 8 bits being used, so the variable gets the value 'E'.

Nonprinting Characters

The single-quote technique is fine for characters, digits, and punctuation marks, but if you look
through the table on the inside front cover of this book, you'll see that some of the ASCII char-
acters are nonprinting. For example, some represent actions such as backspacing or going to the
next line or making the terminal bell ring (or speaker beep). How can these be represented? C
offers three ways.

The first way we have already mentioned—just use the ASCII code. For example, the ASCII
value for the beep character is 7, so you can do this:

char beep = 7;

The second way to represent certain awkward characters in C is to use special symbol
sequences. These are called escape sequences. Table 3.2 shows the escape sequences and their
meanings.

Table 3.2 Escape Sequences

Sequence Meaning

\a Alert (ANSI C).
\b Backspace.

\f Form feed.

\n Newline.

\r Carriage return.
\t Horizontal tab.
\v Vertical tab.

\\ Backslash (\).

A\ Single quote ().
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Sequence Meaning

\" Double quote (").

\? Question mark (?).

\0oo Octal value. (o represents an octal digit.)

\xhh Hexadecimal value. (h represents a hexadecimal digit.)

Escape sequences must be enclosed in single quotes when assigned to a character variable. For
example, you could make the statement

char nerf = '\n';

and then print the variable nerf to advance the printer or screen one line.

Now take a closer look at what each escape sequence does. The alert character (\a), added by
C90, produces an audible or visible alert. The nature of the alert depends on the hardware, with
the beep being the most common. (With some systems, the alert character has no effect.) The
C standard states that the alert character shall not change the active position. By active position,
the standard means the location on the display device (screen, teletype, printer, and so on) at
which the next character would otherwise appear. In short, the active position is a generaliza-
tion of the screen cursor with which you are probably accustomed. Using the alert character in
a program displayed on a screen should produce a beep without moving the screen cursor.

Next, the \b, \£, \n, \r, \t, and \v escape sequences are common output device control char-
acters. They are best described in terms of how they affect the active position. A backspace

(\b) moves the active position back one space on the current line. A form feed character (\f)
advances the active position to the start of the next page. A newline character (\n) sets the
active position to the beginning of the next line. A carriage return (\r) moves the active posi-
tion to the beginning of the current line. A horizontal tab character (\t) moves the active posi-
tion to the next horizontal tab stop (typically, these are found at character positions 1, 9, 17,
25, and so on). A vertical tab (\v) moves the active position to the next vertical tab position.

These escape sequence characters do not necessarily work with all display devices. For example,
the form feed and vertical tab characters produce odd symbols on a PC screen instead of any
cursor movement, but they work as described if sent to a printer instead of to the screen.

The next three escape sequences (\\, \', and \") enable you to use \, ', and " as character
constants. (Because these symbols are used to define character constants as part of a printf ()
command, the situation could get confusing if you use them literally.) Suppose you want to
print the following line:

Gramps sez, "a \ is a backslash."

Then use this code:

printf("Gramps sez, \"a \\ is a backslash.\"\n");
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The final two forms (\0oo and \xhh) are special representations of the ASCII code. To represent
a character by its octal ASCII code, precede it with a backslash (\) and enclose the whole thing
in single quotes. For example, if your compiler doesn’t recognize the alert character (\a), you
could use the ASCII code instead:

beep = '\007';

You can omit the leading zeros, so '\07"' or even '\7' will do. This notation causes numbers
to be interpreted as octal, even if there is no initial 0.

Beginning with C90, C provides a third option—using a hexadecimal form for character
constants. In this case, the backslash is followed by an x or X and one to three hexadecimal
digits. For example, the Ctrl+P character has an ASCII hex code of 10 (16, in decimal), so it can
be expressed as '\x10' or '\X010'. Figure 3.5 shows some representative integer types.

Examples of Integer Constants
type hexadecimal octal decimal
char \0x41 \0101 N.A.
int 0x41 0101 65
unsigned int 0x41u 0101u 65u
long 0x41L 0101L 65L
unsigned long 0x41UL 0101UL 65UL
long long 0x41LL 0101LL 65LL
unsigned long long | 0x41ULL 0101ULL | 65ULL

Figure 3.5 Writing constants with the int family.

When you use ASCII code, note the difference between numbers and number characters. For
example, the character 4 is represented by ASCII code value 52. The notation '4"' represents the
symbol 4, not the numerical value 4.

At this point, you may have three questions:

= Why aren’t the escape sequences enclosed in single quotes in the last example
(printf("Gramps sez, \"a \\ is a backslash\"\"n");)?When a character,
be it an escape sequence or not, is part of a string of characters enclosed in double
quotes, don’t enclose it in single quotes. Notice that none of the other characters in
this example (G, r, a, m, p, s, and so on) are marked off by single quotes. A string of
characters enclosed in double quotes is called a character string. (Chapter 4 explores
strings.) Similarly, printf("Hello!\007\n"); will print Hello! and beep, but
printf("Hello!7\n"); will print Hello!7. Digits that are not part of an escape
sequence are treated as ordinary characters to be printed.
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» When should I use the ASCII code, and when should I use the escape sequences?If you have
a choice between using one of the special escape sequences, say '\f', or an equivalent
ASCII code, say '\014"', use the '\£f"'. First, the representation is more mnemonic.
Second, it is more portable. If you have a system that doesn’t use ASCII code, the '\f'
will still work.

n [f I need to use numeric code, why use, say, '\032" instead of 032?—TFirst, using '\ 032"
instead of 032 makes it clear to someone reading the code that you intend to represent a
character code. Second, an escape sequence such as \032 can be embedded in part of a C
string, the way \007 was in the first point.

Printing Characters

The printf () function uses %c to indicate that a character should be printed. Recall that a
character variable is stored as a 1-byte integer value. Therefore, if you print the value of a char
variable with the usual %d specifier, you get an integer. The %c format specifier tells printf ()
to display the character that has that integer as its code value. Listing 3.5 shows a char variable
both ways.

Listing 3.5 The charcode.c Program

/* charcode.c-displays code number for a character */
#include <stdio.h>
int main(void)

{
char ch;
printf("Please enter a character.\n");
scanf("%c", &ch); /* user inputs character */
printf("The code for %c is %d.\n", ch, ch);
return 0;

}

Here is a sample run:

Please enter a character.
C
The code for C is 67.

When you use the program, remember to press the Enter or Return key after typing the char-
acter. The scanf () function then fetches the character you typed, and the ampersand (&)
causes the character to be assigned to the variable ch. The printf () function then prints the
value of ch twice, first as a character (prompted by the %c code) and then as a decimal integer
(prompted by the %d code). Note that the print£ () specifiers determine how data is displayed,
not how it is stored (see Figure 3.6).
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chJ]of[1lofo]o]o|1]a1 storage (ASCII code)
" %L " " %|d " code
| |
C 67 display

Figure 3.6 Data display versus data storage.

Signed or Unsignhed?

Some C implementations make char a signed type. This means a char can hold values typi-
cally in the range —128 through 127. Other implementations make char an unsigned type,
which provides a range of O through 255. Your compiler manual should tell you which type
your char is, or you can check the 1imits.h header file, discussed in the next chapter.

As of C90, C enabled you to use the keywords signed and unsigned with char. Then, regard-
less of what your default char is, signed char would be signed, and unsigned char would
be unsigned. These versions of char are useful if you're using the type to handle small integers.
For character use, just use the standard char type without modifiers.

The Bool Type

The _Bool type is a C99 addition that’s used to represent Boolean values—that is, the logical
values true and false. Because C uses the value 1 for true and O for false, the _Bool type
really is just an integer type, but one that, in principle, only requires 1 bit of memory, because
that is enough to cover the full range from O to 1.

Programs use Boolean values to choose which code to execute next. Code execution is covered
more fully in Chapter 6, “C Control Statements: Looping,” and Chapter 7, so let’s defer further
discussion until then.

Portable Types: stdint.h and inttypes.h

By now you've probably noticed that C offers a wide variety of integer types, which is a good
thing. And you probably also have noticed that the same type name doesn’t necessarily mean
the same thing on different systems, which is not such a good thing. It would be nice if C had
types that had the same meaning regardless of the system. And, as of C99, it does—sort of.

What C has done is create more names for the existing types. The trick is to define these new
names in a header file called stdint.h. For example, int32_t represents the type for a 32-bit
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signed integer. The header file on a system that uses a 32-bit int could define int32 t as an
alias for int. A different system, one with a 16-bit int and a 32-bit long, could define the
same name, int32_t, as an alias for int. Then, when you write a program using int32_t as
a type and include the stdint.h header file, the compiler will substitute int or long for the
type in a manner appropriate for your particular system.

The alternative names we just discussed are examples of exact-width integer types; int32_t is
exactly 32 bits, no less or no more. It's possible the underlying system might not support these
choices, so the exact-width integer types are optional.

What if a system can’t support exact-width types? C99 and C11 provide a second category of
alternative names that are required. This set of names promises the type is at least big enough
to meet the specification and that no other type that can do the job is smaller. These types are
called minimum width types. For example, int_least8_t will be an alias for the smallest avail-
able type that can hold an 8-bit signed integer value. If the smallest type on a particular system
were 16 bits, the int8_ t type would not be defined. However, the int_least8_ t type would
be available, perhaps implemented as a 16-bit integer.

Of course, some programmers are more concerned with speed than with space. For them, C99
and C11 define a set of types that will allow the fastest computations. These are called the
fastest minimum width types. For example, the int_fast8_t will be defined as an alternative
name for the integer type on your system that allows the fastest calculations for 8-bit signed
values.

Finally, for some programmers, only the biggest possible integer type on a system will do;
intmax_t stands for that type, a type that can hold any valid signed integer value. Similarly,
uintmax_t stands for the largest available unsigned type. Incidentally, these types could be
bigger than long long and unsigned long because C implementations are permitted to
define types beyond the required ones. Some compilers, for example, introduced the long
long type before it became part of the standard.

C99 and C11 not only provide these new, portable type names, they also provide assistance
with input and output. For example, print£ () requires specific specifiers for particular types.
So what do you do to display an int32_t value when it might require a %d specifier for one
definition and an %1d for another? The current standard provides some string macros (a
mechanism introduced in Chapter 4) to be used to display the portable types. For example,

the inttypes.h header file will define PRId32 as a string representing the appropriate speci-
fier (d or 1, for instance) for a 32-bit signed value. Listing 3.6 shows a brief example illustrating
how to use a portable type and its associated specifier. The inttypes.h header file includes
stdint.h, so the program only needs to include inttypes.h.

Listing 3.6 The altnames.c Program

/* altnames.c -- portable names for integer types */
#include <stdio.h>

#include <inttypes.h> // supports portable types

int main(void)
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{
int32_t me32; // me32 a 32-bit signed variable
me32 = 45933945;
printf("First, assume int32_t is int: ");
printf("me32 = %d\n", me32);
printf("Next, let's not make any assumptions.\n");
printf("Instead, use a \"macro\" from inttypes.h: ");
printf("me32 = %" PRId32 "\n", me32);
return 0;

}

In the final printf () argument, the PRId32 is replaced by its inttypes.h definition of "d",
making the line this:

printf("mel6 = %" "d" "\n", mel6);

But C combines consecutive quoted strings into a single quoted string, making the line this:

printf("mel6 = %d\n", mel6);

Here’s the output; note that the example also uses the \" escape sequence to display double
quotation marks:

First, assume int32 t is int: me32 = 45933945
Next, let's not make any assumptions.
Instead, use a "macro" from inttypes.h: me32 = 45933945

It's not the purpose of this section to teach you all about expanded integer types. Rather, its
main intent is to reassure you that this level of control over types is available if you need it.
Reference Section VI, “Extended Integer Types,” in Appendix B provides a complete rundown
of the inttypes.h and stdint.h header files.

Note C99/C11 Support

Even though C has moved to the C11 standard, compiler writers have implemented C99 fea-
tures at different paces and with different priorities. At the time this book was prepared, some
compilers haven’t yet implemented the inttypes.h header file and features.

Types float, double, and long double

The various integer types serve well for most software development projects. However, financial
and mathematically oriented programs often make use of floating-point numbers. In C, such
numbers are called type float, double, or long double. They correspond to the real types
of FORTRAN and Pascal. The floating-point approach, as already mentioned, enables you to
represent a much greater range of numbers, including decimal fractions. Floating-point number
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representation is similar to scientific notation, a system used by scientists to express very large
and very small numbers. Let’s take a look.

In scientific notation, numbers are represented as decimal numbers times powers of 10. Here
are some examples.

Number Scientific Notation Exponential Notation
1,000,000,000 = 1.0x109 = 1.0e9

123,000 = 1.23x10° =1.23e5

322.56 = 3.2256x102 = 3.2256e2
0.000056 = 5.6x107 =5.6e-5

The first column shows the usual notation, the second column scientific notation, and the
third column exponential notation, or e-notation, which is the way scientific notation is usually
written for and by computers, with the ¢ followed by the power of 10. Figure 3.7 shows more
floating-point representations.

The C standard provides that a float has to be able to represent at least six significant figures
and allow a range of at least 10737 to 1037, The first requirement means, for example, that

a float has to represent accurately at least the first six digits in a number such as 33.333333.
The second requirement is handy if you like to use numbers such as the mass of the sun
(2.0e30 kilograms), the charge of a proton (1.6e-19 coulombs), or the national debt. Often,
systems use 32 bits to store a floating-point number. Eight bits are used to give the exponent its
value and sign, and 24 bits are used to represent the nonexponent part, called the mantissa or
significand, and its sign.

1.6E-19

1.376+7

12E20

Figure 3.7 Some floating-point numbers.
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C also has a double (for double precision) floating-point type. The double type has the same
minimum range requirements as £loat, but it extends the minimum number of significant
figures that can be represented to 10. Typical double representations use 64 bits instead of 32.
Some systems use all 32 additional bits for the nonexponent part. This increases the number of
significant figures and reduces round-off errors. Other systems use some of the bits to accom-
modate a larger exponent; this increases the range of numbers that can be accommodated.
Either approach leads to at least 13 significant figures, more than meeting the minimum
standard.

C allows for a third floating-point type: long double. The intent is to provide for even more
precision than double. However, C guarantees only that long double is at least as precise as
double.

Declaring Floating-Point Variables

Floating-point variables are declared and initialized in the same manner as their integer
cousins. Here are some examples:

float noah, jonah;
double trouble;

float planck = 6.63e-34;
long double gnp;

Floating-Point Constants (Literals)

There are many choices open to you when you write a literal floating-point constant. The basic
form of a floating-point literal is a signed series of digits, including a decimal point, followed
by an e or E, followed by a signed exponent indicating the power of 10 used. Here are two valid
floating-point constants:

-1.56E+12
2.87e-3

You can leave out positive signs. You can do without a decimal point (2E5) or an exponential
part (19.28), but not both simultaneously. You can omit a fractional part (3.E16) or an integer
part (.45E-6), but not both (that wouldn’t leave much!). Here are some more valid floating-
point constants:

3.14159
.2

4el6
.8E-5
100.

Don'’t use spaces in a floating-point constant.

Wrong: 1.56 E+12
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By default, the compiler assumes floating-point constants are double precision. Suppose, for
example, that some is a £loat variable and that you have the following statement:

some = 4.0 * 2.0;

Then 4.0 and 2.0 are stored as double, using (typically) 64 bits for each. The product is calcu-
lated using double precision arithmetic, and only then is the answer trimmed to regular £loat
size. This ensures greater precision for your calculations, but it can slow down a program.

C enables you to override this default by using an £ or F suffix to make the compiler treat a
floating-point constant as type £loat; examples are 2.3f and 9.11E9F. An 1 or L suffix makes
a number type long double; examples are 54.31 and 4.32e4L. Note that L is less likely to be
mistaken for 1 (one) than is 1. If the floating-point number has no suffix, it is type double.

Since C99, C has a new format for expressing floating-point constants. It uses a hexadecimal
prefix (0x or 0X) with hexadecimal digits, a p or P instead of e or E, and an exponent that is a
power of 2 instead of a power of 10. Here’s what such a number might look like:

Oxa.lfpl0

The a is 10 in hex, the .1£ is 1/16th plus 15/256th (£ is 15 in hex), and the p10 is 210, or
1024, making the complete value (10 + 1/16 + 15/256) x 1024, or 10364.0 in base 10 notation.

Not all C compilers have added support for this feature.

Printing Floating-Point Values

The printf () function uses the %£ format specifier to print type £loat and double numbers
using decimal notation, and it uses %e to print them in exponential notation. If your system
supports the hexadecimal format for floating-point numbers, you can use a or A instead of e

or E. The long double type requires the 3Lf, $Le, and %La specifiers to print that type. Note
that both float and double use the %£, %e, or %a specifier for output. That’s because C auto-
matically expands type float values to type double when they are passed as arguments to any
function, such as printf (), that doesn’t explicitly prototype the argument type. Listing 3.7
illustrates these behaviors.

Listing 3.7 The showf_pt.c Program

/* showf pt.c -- displays float value in two ways */
#include <stdio.h>
int main(void)
{
float aboat = 32000.0;
double abet = 2.14e9;
long double dip = 5.32e-5;

printf("$f can be written %e\n", aboat, aboat);
// next line requires C99 or later compliance
printf("And it's %a in hexadecimal, powers of 2 notation\n", aboat);
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printf("$f can be written %e\n", abet, abet);
printf("$Lf can be written %Le\n", dip, dip);

return 0;

This is the output, provided your compiler is C99/C11 compliant:

32000.000000 can be written 3.200000e+04

And it's 0x1.f4p+14 in hexadecimal, powers of 2 notation
2140000000.000000 can be written 2.140000e+09

0.000053 can be written 5.320000e-05

This example illustrates the default output. The next chapter discusses how to control the
appearance of this output by setting field widths and the number of places to the right of the
decimal.

Floating-Point Overflow and Underflow
Suppose the biggest possible float value on your system is about 3.4E38 and you do this:

float toobig = 3.4E38 * 100.0f;
printf("%e\n", toobig);

What happens? This is an example of overflow—when a calculation leads to a number too
large to be expressed. The behavior for this case used to be undefined, but now C specifies that
toobig gets assigned a special value that stands for infinity and that printf () displays either
inf or infinity (or some variation on that theme) for the value.

What about dividing very small numbers? Here the situation is more involved. Recall that a
float number is stored as an exponent and as a value part, or mantissa. There will be a number
that has the smallest possible exponent and also the smallest value that still uses all the bits
available to represent the mantissa. This will be the smallest number that still is represented

to the full precision available to a £loat value. Now divide it by 2. Normally, this reduces the
exponent, but the exponent already is as small as it can get. So, instead, the computer moves
the bits in the mantissa over, vacating the first position and losing the last binary digit. An
analogy would be taking a base 10 value with four significant digits, such as 0.1234E-10, divid-
ing by 10, and getting 0.0123E-10. You get an answer, but you've lost a digit in the process.
This situation is called underflow, and C refers to floating-point values that have lost the full
precision of the type as subnormal. So dividing the smallest positive normal floating-point value
by 2 results in a subnormal value. If you divide by a large enough value, you lose all the digits
and are left with 0. The C library now provides functions that let you check whether your
computations are producing subnormal values.

There’s another special floating-point value that can show up: NaN, or not-a-number. For
example, you give the asin() function a value, and it returns the angle that has that value as
its sine. But the value of a sine can’t be greater than 1, so the function is undefined for values
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in excess of 1. In such cases, the function returns the NaN value, which print£ () displays as
nan, NaN, or something similar.

Floating-Point Round-off Errors
Take a number, add 1 to it, and subtract the original number. What do you get? You get 1. A
floating-point calculation, such as the following, may give another answer:

/* floaterr.c--demonstrates round-off error */
#include <stdio.h>
int main(void)

{
float a,b;
b =2.0e20 + 1.0;
a=D>b - 2.0e20;
printf("%f \n", a);
return 0;

}

The output is this:

0.000000 €older gcc on Linux
-13584010575872.000000 €Turbo C 1.5
4008175468544.000000 <XCode 4.5, Visual Studio 2012, current gcc

The reason for these odd results is that the computer doesn’t keep track of enough decimal
places to do the operation correctly. The number 2.0e20 is 2 followed by 20 zeros and, by add-
ing 1, you are trying to change the 21st digit. To do this correctly, the program would need to
be able to store a 21-digit number. A £loat number is typically just six or seven digits scaled
to bigger or smaller numbers with an exponent. The attempt is doomed. On the other hand, if
you used 2.0e4 instead of 2.0e20, you would get the correct answer because you are trying to
change the fifth digit, and £1loat numbers are precise enough for that.

Floating-Point Representation

The preceding sidebar listed different possible outputs for the same program, depending on

the computer system used. The reason is that there are many possible ways to implement
floating-point representation within the broad outlines discussed earlier. To provide greater
uniformity, the Institute of Electrical and Electronics Engineers (IEEE) developed a standard for
floating-point representation and computation, a standard now used by many hardware floating-
point units. In 2011 this standard was adopted as the international ISO/IEC/IEEE 60559:2011
standard. This standard is incorporated as an option in the C99 and C11 standards, with the
intention that it be supported on platforms with conforming hardware. The final example of out-
put for the £loaterr.c program comes from systems supporting this floating-point standard. C
support includes tools for catching the problem. See Appendix B, Section V for more details.
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Complex and Imaginary Types

Many computations in science and engineering use complex and imaginary numbers. C99
supports these numbers, with some reservations. A free-standing implementation, such as that
used for embedded processors, doesn’t need to have these types. (A VCR chip probably doesn’t
need complex numbers to do its job.) Also, more generally, the imaginary types are optional.
With C11, the entire complex number package is optional.

In brief, there are three complex types, called float _Complex, double _Complex, and long
double _Complex. A float _Complex variable, for example, would contain two float values,
one representing the real part of a complex number and one representing the imaginary part.
Similarly, there are three imaginary types, called float _Imaginary, double _Imaginary,
and long double _Imaginary.

Including the complex.h header file lets you substitute the word complex for Complex and
the word imaginary for _Imaginary, and it allows you to use the symbol I to represent the
square root of —1.

You may wonder why the C standard doesn’t simply use complex as the keyword instead

of using _Complex and then adding a header file to define complex as _Complex. The stan-
dards committee is hesitant to introduce a new keyword because that can invalidate existing
code that uses the same word as an identifier. For example, prior to C99, many programmers
had already used, say, struct complex to define a structure to represent complex numbers
or, perhaps, psychological conditions. (The keyword struct, as discussed in Chapter 14,
“Structures and Other Data Forms,” is used to define data structures capable of holding more
than one value.) Making complex a keyword would make these previous uses syntax errors. But
it’s much less likely that someone would have used struct _Complex, especially since using
identifiers having an initial underscore is supposed to be reserved. So the committee settled on
_Complex as the keyword and made complex available as an option for those who don’t have
to worry about conflicts with past usage.

Beyond the Basic Types

That finishes the list of fundamental data types. For some of you, the list must seem long.
Others of you might be thinking that more types are needed. What about a character string
type? C doesn’t have one, but it can still deal quite well with strings. You will take a first look
at strings in Chapter 4.

C does have other types derived from the basic types. These types include arrays, pointers,
structures, and unions. Although they are subject matter for later chapters, we have already
smuggled some pointers into this chapter’s examples. For instance, a pointer points to the loca-
tion of a variable or other data object. The & prefix used with the scanf () function creates a
pointer telling scanf () where to place information.
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Summary: The Basic Data Types
Keywords:

The basic data types are set up using 11 keywords: int, long, short, unsigned, char,
float, double, signed, Bool, Complex, and Imaginary.

Signed Integers:
These can have positive or negative values:
= int—The basic integer type for a given system. C guarantees at least 16 bits for int.

= short or short int—The largest short integer is no larger than the largest int and
may be smaller. C guarantees at least 16 bits for short.

= long or long int—Can hold an integer at least as large as the largest int and possi-
bly larger. C guarantees at least 32 bits for long.

= long long Or long long int—This type can hold an integer at least as large as the
largest 1ong and possibly larger. The long long type is least 64 bits.

Typically, long will be bigger than short, and int will be the same as one of the two. For
example, old DOS-based systems for the PC provided 16-bit short and int and 32-bit long,
and Windows 95-based systems and later provide 16-bit short and 32-bit int and long.

You can, if you want, use the keyword signed with any of the signed types, making the fact
that they are signed explicit.

Unsigned Integers:

These have zero or positive values only. This extends the range of the largest possible posi-
tive number. Use the keyword unsigned before the desired type: unsigned int, unsigned
long, unsigned short. A lone unsigned is the same as unsigned int.

Characters:

These are typographic symbols such as A, &, and +. By definition, the char type uses 1 byte of
memory to represent a character. Historically, this character byte has most often been 8 bits,
but it can be 16 bits or larger, if needed to represent the base character set.

= char—The keyword for this type. Some implementations use a signed char, but others
use an unsigned char. C enables you to use the keywords signed and unsigned to
specify which form you want.

Boolean:
Boolean values represent true and false; C uses 1 for true and 0 for false.

= _Bool—The keyword for this type. It is an unsigned int and need only be large enough
to accommodate the range O through 1.

Real Floating Point:
These can have positive or negative values:

= float—The basic floating-point type for the system; it can represent at least six signifi-
cant figures accurately.

= double—A (possibly) larger unit for holding floating-point numbers. It may allow more sig-
nificant figures (at least 10, typically more) and perhaps larger exponents than float.
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= long double—A (possibly) even larger unit for holding floating-point numbers. It may

allow more significant figures and perhaps larger exponents than double.

Complex and Imaginary Floating Point:

The imaginary types are optional. The real and imaginary components are based on the corre-
sponding real types:

float _Complex
double _Complex

long double _Complex
float _Imaginary
double _Imaginary

long double _Imaginary

Summary: How to Declare a Simple Variable

1. Choose the type you need.

2. Choose a name for the variable using the allowed characters.

3. Use the following format for a declaration statement:
type-specifier variable-name;
The type-specifier is formed from one or more of the type keywords; here are exam-
ples of declarations:
int erest;
unsigned short cash;.

4. You can declare more than one variable of the same type by separating the variable
names with commas. Here’s an example:
char ch, init, ans;.

5. You can initialize a variable in a declaration statement:
float mass = 6.0E24;

Type Sizes

What type sizes does your system use? Try running the program in Listing 3.8 to find out.

Listing 3.8 The typesize.c Program

//* typesize.c -- prints out type sizes */
#include <stdio.h>
int main(void)

/* c99 provides a %zd specifier for sizes */
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printf("Type int has a size of %zd bytes.\n", sizeof(int));
printf("Type char has a size of %zd bytes.\n", sizeof(char));
printf("Type long has a size of %zd bytes.\n", sizeof(long));
printf("Type long long has a size of %zd bytes.\n",
sizeof(long long));
printf("Type double has a size of %zd bytes.\n",
sizeof (double));
printf("Type long double has a size of %zd bytes.\n",
sizeof(long double));
return 0;

C has a built-in operator called sizeof that gives sizes in bytes. C99 and C11 provide a %zd
specifier for this type used by sizeof. Noncompliant compilers may require $u or $1lu instead.
Here is a sample output:

Type int has a size of 4 bytes.

Type char has a size of 1 bytes.

Type long has a size of 8 bytes.

Type long long has a size of 8 bytes.
Type double has a size of 8 bytes.

Type long double has a size of 16 bytes.

This program found the size of only six types, but you can easily modify it to find the size of
any other type that interests you. Note that the size of char is necessarily 1 byte because C
defines the size of 1 byte in terms of char. So, on a system with a 16-bit char and a 64-bit
double, sizeof will report double as having a size of 4 bytes. You can check the limits.h
and float.h header files for more detailed information on type limits. (The next chapter
discusses these two files further.)

Incidentally, notice in the last few lines how a print£ () statement can be spread over two
lines. You can do this as long as the break does not occur in the quoted section or in the
middle of a word.

Using Data Types

When you develop a program, note the variables you need and which type they should be.
Most likely, you can use int or possibly float for the numbers and char for the characters.
Declare them at the beginning of the function that uses them. Choose a name for the variable
that suggests its meaning. When you initialize a variable, match the constant type to the vari-
able type. Here’s an example:

int apples = 3; /* RIGHT */

int oranges = 3.0; /* POOR FORM */
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C is more forgiving about type mismatches than, say, Pascal. C compilers allow the second
initialization, but they might complain, particularly if you have activated a higher warning
level. It is best not to develop sloppy habits.

When you initialize a variable of one numeric type to a value of a different type, C converts
the value to match the variable. This means you may lose some data. For example, consider the
following initializations:

int cost = 12.99; /* initializing an int to a double */
float pi = 3.1415926536; /* initializing a float to a double */

The first declaration assigns 12 to cost; when converting floating-point values to integers, C
simply throws away the decimal part (truncation) instead of rounding. The second declaration
loses some precision, because a £1loat is guaranteed to represent only the first six digits accu-
rately. Compilers may issue a warning (but don’t have to) if you make such initializations. You
might have run into this when compiling Listing 3.1.

Many programmers and organizations have systematic conventions for assigning variable
names in which the name indicates the type of variable. For example, you could use an

i_ prefix to indicate type int and us_ to indicate unsigned short, so i_smart would be
instantly recognizable as a type int variable and us_verysmart would be an unsigned short
variable.

Arguments and Pitfalls

It's worth repeating and amplifying a caution made earlier in this chapter about using
printf (). The items of information passed to a function, as you may recall, are termed argu-
ments. For instance, the function call printf("Hello, pal.") has one argument: "Hello,
pal.". A series of characters in quotes, such as "Hello, pal.",is called a string. We’ll discuss
strings in Chapter 4. For now, the important point is that one string, even one containing
several words and punctuation marks, counts as one argument.

Similarly, the function call scanf("%d", &weight) has two arguments: "2d" and sweight. C
uses commas to separate arguments to a function. The printf () and scanf () functions are
unusual in that they aren’t limited to a particular number of arguments. For example, we've
used calls to printf () with one, two, and even three arguments. For a program to work prop-
erly, it needs to know how many arguments there are. The printf () and scanf () functions
use the first argument to indicate how many additional arguments are coming. The trick is that
each format specification in the initial string indicates an additional argument. For instance,
the following statement has two format specifiers, $d and 2d:

printf("%d cats ate %d cans of tuna\n", cats, cans);

This tells the program to expect two more arguments, and indeed, there are two more—cats
and cans.
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Your responsibility as a programmer is to make sure that the number of format specifications
matches the number of additional arguments and that the specifier type matches the value
type. C now has a function-prototyping mechanism that checks whether a function call has
the correct number and correct kind of arguments, but it doesn’t work with printf () and
scanf () because they take a variable number of arguments. What happens if you don’t live up
to the programmer’s burden? Suppose, for example, you write a program like that in

Listing 3.9.

Listing 3.9 The badcount.c Program

/* badcount.c -- incorrect argument counts */
#include <stdio.h>
int main(void)

{
int n = 4;
int m = 5;
float £ = 7.0f;
float g = 8.0f;
printf("%d\n", n, m); /* too many arguments  */
printf("sd %d %d\n", n); /* too few arguments */
printf("%d %d\n", £, g); /* wrong kind of values */
return 0;

}

Here’s a sample output from XCode 4.6 (OS 10.8):

4
4 1 -706337836
1606414344 1

Next, here’s a sample output from Microsoft Visual Studio Express 2012 (Windows 7):

4
400
0 1075576832

Note that using %d to display a float value doesn’t convert the float value to the nearest int.
Also, the results you get for too few arguments or the wrong kind of argument differ from plat-
form to platform and can from trial to trial.

None of the compilers we tried refused to compile this code; although most did issue warnings
that something might be wrong. Nor were there any complaints when we ran the program. It
is true that some compilers might catch this sort of error, but the C standard doesn’t require
them to. Therefore, the computer may not catch this kind of error, and because the program
may otherwise run correctly, you might not notice the errors either. If a program doesn’t print
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the expected number of values or if it prints unexpected values, check to see whether you’ve
used the correct number of printf () arguments.

One More Example: Escape Sequences

Let’s run one more printing example, one that makes use of some of C’s special escape
sequences for characters. In particular, the program in Listing 3.10 shows how the backspace
(\b), tab (\t), and carriage return (\r) work. These concepts date from when computers used
teletype machines for output, and they don’t always translate successfully to contemporary
graphical interfaces. For example, Listing 3.10 doesn’t work as described on some Macintosh
implementations.

Listing 3.10 The escape.c Program

/* escape.c -- uses escape characters */
#include <stdio.h>
int main(void)

{
float salary;
printf("\aEnter your desired monthly salary:");/* 1 */
printf(" $ \b\b\b\b\b\b\b"); /* 2 %/
scanf("%f", &salary);
printf("\n\t$%.2f a month is $%.2f a year.", salary,

salary * 12.0); /* 3 %/

printf("\rGee!\n"); /* 4 %/
return 0;

}

What Happens When the Program Runs

Let’s walk through this program step by step as it would work under a system in which the
escape characters behave as described. (The actual behavior could be different. For instance,
XCode 4.6 displays the \a, \b, and \r characters as upside down question marks!)

The first print£ () statement (the one numbered 1) sounds the alert signal (prompted by the
\a) and then prints the following:

Enter your desired monthly salary:

Because there is no \n at the end of the string, the cursor is left positioned after the colon.

The second printf () statement picks up where the first one stops, so after it is finished, the
screen looks as follows:

Enter your desired monthly salary: §$
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The space between the colon and the dollar sign is there because the string in the second
printf () statement starts with a space. The effect of the seven backspace characters is to move
the cursor seven positions to the left. This backs the cursor over the seven underscore charac-
ters, placing the cursor directly after the dollar sign. Usually, backspacing does not erase the
characters that are backed over, but some implementations may use destructive backspacing,
negating the point of this little exercise.

At this point, you type your response, say 4000.00. Now the line looks like this:
Enter your desired monthly salary: $4000.00

The characters you type replace the underscore characters, and when you press Enter (or
Return) to enter your response, the cursor moves to the beginning of the next line.

The third printf () statement output begins with \n\t. The newline character moves the
cursor to the beginning of the next line. The tab character moves the cursor to the next tab
stop on that line, typically, but not necessarily, to column 9. Then the rest of the string is
printed. After this statement, the screen looks like this:

Enter your desired monthly salary: $4000.00
$4000.00 a month is $48000.00 a year.

Because the printf () statement doesn’t use the newline character, the cursor remains just
after the final period.

The fourth printf () statement begins with \r. This positions the cursor at the beginning of
the current line. Then Gee! is displayed there, and the \n moves the cursor to the next line.
Here is the final appearance of the screen:

Enter your desired monthly salary: $4000.00
Gee! $4000.00 a month is $48000.00 a year.

Flushing the Output

When does printf () actually send output to the screen? Initially, printf () statements send
output to an intermediate storage area called a buffer. Every now and then, the material in the
buffer is sent to the screen. The standard C rules for when output is sent from the buffer to the
screen are clear: It is sent when the buffer gets full, when a newline character is encountered,

or when there is impending input. (Sending the output from the buffer to the screen or file is
called flushing the buffer.) For instance, the first two print£ () statements don't fill the buffer
and don’t contain a newline, but they are immediately followed by a scanf () statement asking
for input. That forces the print£ () output to be sent to the screen.

You may encounter an older implementation for which scanf () doesn’t force a flush, which
would result in the program looking for your input without having yet displayed the prompt
onscreen. In that case, you can use a newline character to flush the buffer. The code can be
changed to look like this:

printf("Enter your desired monthly salary:\n");
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scanf("%f", &salary);

This code works whether or not impending input flushes the buffer. However, it also puts the
cursor on the next line, preventing you from entering data on the same line as the prompting
string. Another solution is to use the ££1ush() function described in Chapter 13, “File Input/
Output.”

Key Concepts

C has an amazing number of numeric types. This reflects the intent of C to avoid putting
obstacles in the path of the programmer. Instead of mandating, say, that one kind of integer is
enough, C tries to give the programmer the options of choosing a particular variety (signed or
unsigned) and size that best meet the needs of a particular program.

Floating-point numbers are fundamentally different from integers on a computer. They are
stored and processed differently. Two 32-bit memory units could hold identical bit patterns,
but if one were interpreted as a float and the other as a 1long, they would represent totally
different and unrelated values. For example, on a PC, if you take the bit pattern that represents
the float number 256.0 and interpret it as a long value, you get 113246208. C does allow you
to write an expression with mixed data types, but it will make automatic conversions so that
the actual calculation uses just one data type.

In computer memory, characters are represented by a numeric code. The ASCII code is the
most common in the U.S., but C supports the use of other codes. A character constant is the
symbolic representation for the numeric code used on a computer system—it consists of a char-
acter enclosed in single quotes, such as 'A".

Summary

C has a variety of data types. The basic types fall into two categories: integer types and floating-
point types. The two distinguishing features for integer types are the amount of storage allotted
to a type and whether it is signed or unsigned. The smallest integer type is char, which can

be either signed or unsigned, depending on the implementation. You can use signed char
and unsigned char to explicitly specify which you want, but that’s usually done when you
are using the type to hold small integers rather than character codes. The other integer types
include the short, int, long, and long long type. C guarantees that each of these types

is at least as large as the preceding type. Each of them is a signed type, but you can use the
unsigned keyword to create the corresponding unsigned types: unsigned short, unsigned
int, unsigned long, and unsigned long long. Or you can add the signed modifier to
explicitly state that the type is signed. Finally, there is the Bool type, an unsigned type able to
hold the values 0 and 1, representing false and true.

The three floating-point types are £loat, double, and, since C90, long double. Each is at
least as large as the preceding type. Optionally, an implementation can support complex and
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imaginary types by using the keywords Complex and _Imaginary in conjunction with the
floating-type keywords. For example, there would be a double _Complex type and a float
_Imaginary type.

Integers can be expressed in decimal, octal, or hexadecimal form. A leading 0 indicates an octal
number, and a leading 0x or 0X indicates a hexadecimal number. For example, 32, 040, and
0x20 are decimal, octal, and hexadecimal representations of the same value. An 1 or L suffix
indicates a 1ong value, and an 11 or LL indicates a long long value.

Character constants are represented by placing the character in single quotes: 'Q', '8', and
'$ ', for example. C escape sequences, such as '\n', represent certain nonprinting characters.
You can use the form '\007' to represent a character by its ASCII code.

Floating-point numbers can be written with a fixed decimal point, as in 9393.912, or in expo-
nential notation, as in 7.38E10. C99 and C11 provide a third exponential notation using hexa-
decimal digits and powers of 2, as in 0xa.1£pl0.

The printf () function enables you to print various types of values by using conversion speci-
fiers, which, in their simplest form, consist of a percent sign and a letter indicating the type, as
in &d or $f.

Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”

1. Which data type would you use for each of the following kinds of data (sometimes more
than one type could be appropriate)?

a. The population of East Simpleton
b. The cost of a movie on DVD
¢. The most common letter in this chapter

d. The number of times that the letter occurs in this chapter
2. Why would you use a type long variable instead of type int?

3. What portable types might you use to get a 32-bit signed integer, and what would the
rationale be for each choice?

4. Identify the type and meaning, if any, of each of the following constants:
a. '\b'
b. 1066

c. 99.44
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d. 0XAA

e. 2.0e30

5. Dottie Cawm has concocted an error-laden program. Help her find the mistakes.

include <stdio.h>
main
(
float g; h;
float tax, rate;

g = e2l;
tax = rate*g;

)

6. Identify the data type (as used in declaration statements) and the printf () format
specifier for each of the following constants:

Constant Type Specifier

a. 12

b. 0x3

c. 'c’

d. 2.34E07
e. '\040'

f. 7.0

g 6L

h. 6.0f

i. 0x5.b6pl2

7. Identify the data type (as used in declaration statements) and the print£f () format
specifier for each of the following constants (assume a 16-bit int):

Constant Type Specifier

a. 012
b. 2.9e05L
c. 's'

d. 100000

e. '\n'
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8.

10.

11.

f. 20.0f
g. 0x44

h. -40

Suppose a program begins with these declarations:

int imate = 2;

long shot = 53456;
char grade = 'A';
float log = 2.71828;

Fill in the proper type specifiers in the following printf () statements:

printf("The odds against the % were % to 1l.\n", imate, shot);
printf("A score of % is not an %__ grade.\n", log, grade);

Suppose that ch is a type char variable. Show how to assign the carriage-return character
to ch by using an escape sequence, a decimal value, an octal character constant, and a
hex character constant. (Assume ASCII code values.)

Correct this silly program. (The / in C means division.)

void main(int) / this program is perfect /

{

cows, legs integer;

printf("How many cow legs did you count?\n);
scanf("%c", legs);

cows = legs / 4;

printf("That implies there are %f cows.\n", cows)

Identify what each of the following escape sequences represents:
a. \n
b. \\
c. \"
d. \t



Programming Exercises

Programming Exercises

1. Find out what your system does with integer overflow, floating-point overflow, and
floating-point underflow by using the experimental approach; that is, write programs
having these problems. (You can check the discussion in Chapter 4 of 1imits.h and
float.h to get guidance on the largest and smallest values.)

2. Write a program that asks you to enter an ASCII code value, such as 66, and then prints
the character having that ASCII code.

3. Write a program that sounds an alert and then prints the following text:

Startled by the sudden sound, Sally shouted,
"By the Great Pumpkin, what was that!"

4. Write a program that reads in a floating-point number and prints it first in decimal-point
notation, then in exponential notation, and then, if your system supports it, p notation.
Have the output use the following format (the actual number of digits displayed for the
exponent depends on the system):

Enter a floating-point value: 64.25
fixed-point notation: 64.250000
exponential notation: 6.425000e+01
p notation: 0x1.01p+6

5. There are approximately 3.156 x 107 seconds in a year. Write a program that requests
your age in years and then displays the equivalent number of seconds.

6. The mass of a single molecule of water is about 3.0x10-23 grams. A quart of water is
about 950 grams. Write a program that requests an amount of water, in quarts, and
displays the number of water molecules in that amount.

7. There are 2.54 centimeters to the inch. Write a program that asks you to enter your
height in inches and then displays your height in centimeters. Or, if you prefer, ask for
the height in centimeters and convert that to inches.

8. In the U.S. system of volume measurements, a pint is 2 cups, a cup is 8 ounces, an
ounce is 2 tablespoons, and a tablespoon is 3 teaspoons. Write a program that requests a
volume in cups and that displays the equivalent volumes in pints, ounces, tablespoons,
and teaspoons. Why does a floating-point type make more sense for this application than
an integer type?
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Character Strings and
Formatted Input/Output

You will learn about the following in this chapter:

Function:

strlen()

Keywords:

const

Character strings

How character strings are created and stored

How you can use scanf () and printf () to read and display character strings
How to use the strlen() function to measure string lengths

The C preprocessor’s #define directive and ANSI C’s const modifier for creating
symbolic constants

This chapter concentrates on input and output. You'll add personality to your programs by
making them interactive and using character strings. You will also take a more detailed look at
those two handy C input/output functions, printf () and scanf (). With these two functions,
you have the program tools you need to communicate with users and to format output to meet
your needs and tastes. Finally, you'll take a quick look at an important C facility, the C prepro-
cessor, and learn how to define and use symbolic constants.

Introductory Program

By now, you probably expect a sample program at the beginning of each chapter, so Listing 4.1
is a program that engages in a dialog with the user. To add a little variety, the code uses the
newer comment style.
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Listing 4.1 The talkback.c Program

// talkback.c -- nosy, informative program

#include <stdio.h>

#include <string.h> // for strlen() prototype

#define DENSITY 62.4 // human density in lbs per cu ft
int main()

{

float weight, volume;
int size, letters;
char name[40]; // name is an array of 40 chars

printf("Hi! What's your first name?\n");

scanf("%s", name);

printf("%s, what's your weight in pounds?\n", name);

scanf("$f", &weight);

size = sizeof name;

letters = strlen(name);

volume = weight / DENSITY;

printf("well, %s, your volume is %2.2f cubic feet.\n",
name, volume);

printf("Also, your first name has %d letters,\n",
letters);

printf("and we have %d bytes to store it.\n", size);

return 0;

Running talkback.c produces results such as the following:

Hi! What's your first name?

Christine

Christine, what's your weight in pounds?

154

Well, Christine, your volume is 2.47 cubic feet.
Also, your first name has 9 letters,

and we have 40 bytes to store it.

Here are the main new features of this program:

= [t uses an array to hold a character string. Here, someone’s name is read into the array,
which, in this case, is a series of 40 consecutive bytes in memory, each able to hold a
single character value.

= [t uses the %s conversion specification to handle the input and output of the string. Note
that name, unlike weight, does not use the & prefix when used with scanf (). (As you'll
see later, both sweight and name are addresses.)
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= [t uses the C preprocessor to define the symbolic constant DENSITY to represent the value
62.4.

= [t uses the C function strlen() to find the length of a string.
The C approach might seem a little complex compared with the input/output of, say, BASIC.

However, this complexity buys a finer control of I/O and greater program efficiency, and it’s
surprisingly easy once you get used to it.

Let’s investigate these new ideas.

Character Strings: An Introduction

A character string is a series of one or more characters. Here is an example of a string:

"Zing went the strings of my heart!"

The double quotation marks are not part of the string. They inform the compiler that they
enclose a string, just as single quotation marks identify a character.

Type char Arrays and the Null Character

C has no special variable type for strings. Instead, strings are stored in an array of type char.
Characters in a string are stored in adjacent memory cells, one character per cell, and an array
consists of adjacent memory locations, so placing a string in an array is quite natural (see
Figure 4.1).

[z]i]n]g] [wle[n]t] [t[hJe] Js[t[r[i]n]g]s] [o[f] [m[y] [n[e[a[r[t]:\o]

A

each cell is one byte null character

Figure 4.1 A string in an array.

Note that Figure 4.1 shows the character \0 in the last array position. This is the null charac-
ter, and C uses it to mark the end of a string. The null character is not the digit zero; it is the
nonprinting character whose ASCII code value (or equivalent) is 0. Strings in C are always
stored with this terminating null character. The presence of the null character means that the
array must have at least one more cell than the number of characters to be stored. So when the
preceding program said it had 40 bytes to store the string, that meant it could hold up to 39
characters in addition to the null character.

Now just what is an array? You can think of an array as several memory cells in a row. If you
prefer more formal language, an array is an ordered sequence of data elements of one type. This
example creates an array of 40 memory cells, or elements, each of which can store one
char-type value by using this declaration:

char name[40];
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The brackets after name identify it as an array. The 40 within the brackets indicates the number
of elements in the array. The char identifies the type of each element (see Figure 4.2).

type char
allocate 1 byte
char ch;
ch
type char
allocate 5 bytes
char name[5]; //l X‘\
name

Figure 4.2 Declaring a variable versus declaring an array.

Using a character string is beginning to sound complicated! You have to create an array, place
the characters of a string into an array, one by one, and remember to add \0 at the end.
Fortunately, the computer can take care of most of the details itself.

Using Strings

Try the program in Listing 4.2 to see how easy it really is to use strings.

Listing 4.2 The praisel.c Program

/* praisel.c -- uses an assortment of strings */
#include <stdio.h>

#define PRAISE "You are an extraordinary being."
int main(void)

{

char name[40];
printf("What's your name? ");
scanf("$s", name);

printf("Hello, %s. %s\n", name, PRAISE);

return 0;
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The %s tells printf () to print a string. The %s appears twice because the program prints
two strings: the one stored in the name array and the one represented by PRAISE. Running
praisel.c should produce an output similar to this:

What's your name? Angela Plains
Hello, Angela. You are an extraordinary being.

You do not have to put the null character into the name array yourself. That task is done for
you by scanf () when it reads the input. Nor do you include a null character in the character
string constant PRATISE. We'll explain the #define statement soon; for now, simply note that
the double quotation marks that enclose the text following PRAISE identify the text as a string.
The compiler takes care of putting in the null character.

Note (and this is important) that scanf () just reads Angela Plains’s first name. After scanf ()
starts to read input, it stops reading at the first whitespace (blank, tab, or newline) it encounters.
Therefore, it stops scanning for name when it reaches the blank between Angela and Plains.
In general, scanf () is used with %s to read only a single word, not a whole phrase, as a string.
C has other input-reading functions, such as fgets (), for handling general strings. Later chap-
ters will explore string functions more fully.

Strings Versus Characters
The string constant "x" is not the same as the character constant 'x'. One difference is that

'x' is a basic type (char), but "x" is a derived type, an array of char. A second difference is
that "x" really consists of two characters, 'x' and '\0', the null character (see Figure 4.3).

'x' the character > x
"x" the string > x | \0O

null character ends string A

Figure 4.3 The character 'x' and the string "x".

The strlen() Function

The previous chapter unleashed the sizeof operator, which gives the size of things in bytes.
The strlen() function gives the length of a string in characters. Because it takes one byte to
hold one character, you might suppose that both would give the same result when applied to a
string, but they don’t. Add a few lines to the example, as shown in Listing 4.3, and see why.
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Listing 4.3 The praise2.c Program

/* praise2.c */

// try the %u or %lu specifiers if your implementation

// does not recognize the %zd specifier

#include <stdio.h>

#include <string.h> /* provides strlen() prototype */
#define PRAISE "You are an extraordinary being."

int main(void)

{
char name[40];
printf("What's your name? ");
scanf("%s", name);
printf("Hello, %s. %s\n", name, PRAISE);
printf("Your name of %zd letters occupies %zd memory cells.\n",
strlen(name), sizeof name);
printf("The phrase of praise has %zd letters ",
strlen(PRAISE));
printf("and occupies %zd memory cells.\n", sizeof PRAISE);
return 0;
}

If you are using a pre-ANSI C compiler, you might have to remove the following line:

#include <string.h>

The string.h file contains function prototypes for several string-related functions, including
strlen(). Chapter 11, “Character Strings and String Functions,” discusses this header file more
fully. (By the way, some pre-ANSI Unix systems use strings.h instead of string.h to contain
declarations for string functions.)

More generally, C divides the C function library into families of related functions and provides
a header file for each family. For example, printf () and scanf () belong to a family of stan-
dard input and output functions and use the stdio.h header file. The strlen() function joins
several other string-related functions, such as functions to copy strings and to search through
strings, in a family served by the string.h header.

Notice that Listing 4.3 uses two methods to handle long printf () statements. The first
method spreads one printf () statement over two lines. (You can break a line between argu-
ments to printf () but not in the middle of a string—that is, not between the quotation
marks.) The second method uses two printf () statements to print just one line. The newline
character (\n) appears only in the second statement. Running the program could produce the
following interchange:

What's your name? Serendipity Chance
Hello, Serendipity. You are an extraordinary being.
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Your name of 11 letters occupies 40 memory cells.
The phrase of praise has 31 letters and occupies 32 memory cells.

See what happens. The array name has 40 memory cells, and that is what the sizeof opera-
tor reports. Only the first 11 cells are needed to hold Serendipity, however, and that is what
strlen() reports. The twelfth cell in the array name contains the null character, and its pres-
ence tells strlen() when to stop counting. Figure 4.4 illustrates this concept with a shorter
string.

terminating null character

5 characters garbage (in general)
|

T u £ f y \0 %

A

Figure 4.4 The strlen() function knows when to stop.

When you get to PRAISE, you find that strlen() again gives you the exact number of char-
acters (including spaces and punctuation) in the string. The sizeof operator gives you a
number one larger because it also counts the invisible null character used to end the string. The
program didn’t tell the computer how much memory to set aside to store the phrase. It had to
count the number of characters between the double quotes itself.

As mentioned in Chapter 3, “Data and C,” the C99 and C11 standards use a $zd specifier for
the type used by the sizeof operator. This also applies for type returned by strlen(). For
earlier versions of C you need to know the actual type returned by sizeof and strlen(); typi-
cally that would be unsigned or unsigned long.

One other point: The preceding chapter used sizeof with parentheses, but this example
doesn’t. Whether you use parentheses depends on whether you want the size of a type or the
size of a particular quantity. Parentheses are required for types but are optional for particular
quantities. That is, you would use sizeof (char) or sizeof (float) but can use sizeof name
or sizeof 6.28. However, it is all right to use parentheses in these cases, too, as in sizeof
(6.28).

The last example used strlen() and sizeof for the rather trivial purpose of satisfying a user’s
potential curiosity. Actually, however, strlen() and sizeof are important programming
tools. For example, strlen() is useful in all sorts of character-string programs, as you’ll see in
Chapter 11.

Let’s move on to the #define statement.
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Constants and the C Preprocessor

Sometimes you need to use a constant in a program. For example, you could give the circum-
ference of a circle as follows:

circumference = 3.14159 * diameter;

Here, the constant 3.14159 represents the world-famous constant pi (n). To use a constant,

just type in the actual value, as in the example. However, there are good reasons to use a
symbolic constant instead. That is, you could use a statement such as the following and have the
computer substitute in the actual value later:

circumference = pi * diameter;

Why is it better to use a symbolic constant? First, a name tells you more than a number does.
Compare the following two statements:

owed = 0.015 * housevalue;
owed = taxrate * housevalue;

If you read through a long program, the meaning of the second version is plainer.

Also, suppose you have used a constant in several places, and it becomes necessary to change
its value. After all, tax rates do change. Then you only need to alter the definition of the
symbolic constant, rather than find and change every occurrence of the constant in the
program.

Okay, how do you set up a symbolic constant? One way is to declare a variable and set it equal
to the desired constant. You could write this:

float taxrate;
taxrate = 0.015;

This provides a symbolic name, but taxrate is a variable, so your program might change its
value accidentally. Fortunately, C has a couple better ideas.

The original better idea is the C preprocessor. In Chapter 2, “Introducing C,” you saw how the
preprocessor uses #include to incorporate information from another file. The preprocessor
also lets you define constants. Just add a line like the following at the top of the file containing
your program:

#define TAXRATE 0.015

When your program is compiled, the value 0.015 will be substituted everywhere you have used
TAXRATE. This is called a compile-time substitution. By the time you run the program, all the
substitutions have already been made (see Figure 4.5). Such defined constants are often termed
manifest constants.



Constants and the C Preprocessor 107

#define TAXRATE 0.015
int main(void)

{

.

o

bill=TAXRATE * sum; 4 what you type
{

int main(void)

{

.

o

.

bill=0.015 * sum; preprocessor

at work

.

o

.

}

COMPILER

Figure 4.5 What you type versus what is compiled.
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Note the format. First comes #define. Next comes the symbolic name (TAXRATE) for the
constant and then the value (0.015) for the constant. (Note that this construction does not use
the = sign.) So the general form is as follows:

#define NAME value

You would substitute the symbolic name of your choice for NAME and the appropriate value

for value. No semicolon is used because this is a substitution mechanism handled by the
preprocessor, not a C statement. Why is TAXRATE capitalized? It is a sensible C tradition to type
constants in uppercase. Then, when you encounter one in the depths of a program, you know
immediately that it is a constant, not a variable. Capitalizing constants is just another tech-
nique to make programs more readable. Your programs will still work if you don’t capitalize the
constants, but capitalizing them is a reasonable habit to cultivate.

Other, less common, naming conventions include prefixing a name with a ¢_ or k_ to indicate
a constant, producing names such as c_level or k_line.

The names you use for symbolic constants must satisfy the same rules that the names of vari-
ables do. You can use uppercase and lowercase letters, digits, and the underscore character. The
first character cannot be a digit. Listing 4.4 shows a simple example.

Listing 4.4 The pizza.c Program

/* pizza.c -- uses defined constants in a pizza context */
#include <stdio.h>

#define PI 3.14159

int main(void)

{

float area, circum, radius;

printf("What is the radius of your pizza?\n");

scanf("$f", &radius);

area = PI * radius * radius;

circum = 2.0 * PI *radius;

printf("Your basic pizza parameters are as follows:\n");

printf("circumference = %1.2f, area = %1.2f\n", circum,
area);

return 0;

The %1.2f in the printf () statement causes the printout to be rounded to two decimal places.
Of course, this program may not reflect your major pizza concerns, but it does fill a small niche
in the world of pizza programs. Here is a sample run:

What is the radius of your pizza?

6.0

Your basic pizza parameters are as follows:
circumference = 37.70, area = 113.10
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The #define statement can be used for character and string constants, too. Just use single
quotes for the former and double quotes for the latter. The following examples are valid:

#define BEEP '\a'

#define TEE 'T'

#define ESC '\033'

#define OOPS "Now you have done it!"

Remember that everything following the symbolic name is substituted for it. Don’t make this
common error:

/* the following is wrong */
#define TOES = 20

If you do this, TOES is replaced by = 20, not just 20. In that case, a statement such as

digits = fingers + TOES;

is converted to the following misrepresentation:

digits = fingers + = 20;

The const Modifier

C90 added a second way to create symbolic constants—using the const keyword to convert a
declaration for a variable into a declaration for a constant:

const int MONTHS = 12; // MONTHS a symbolic constant for 12

This makes MONTHS into a read-only value. That is, you can display MONTHS and use it in
calculations, but you cannot alter the value of MONTHS. This newer approach is more flex-
ible than using #define; it lets you declare a type, and it allows better control over which
parts of a program can use the constant. Chapter 12, “Storage Classes, Linkage, and Memory
Management,” discusses this and other uses of const.

Actually, C has yet a third way to create symbolic constants, and that is the enum facility
discussed in Chapter 14, “Structures and Other Data Forms.”

Manifest Constants on the Job

The C header files 1imits.h and £loat.h supply detailed information about the size limits of
integer types and floating types, respectively. Each file defines a series of manifest constants
that apply to your implementation. For instance, the 1imits.h file contains lines similar to the
following:

#define INT MAX +32767
#define INT MIN -32768
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These constants represent the largest and smallest possible values for the int type. If your
system uses a 32-bit int, the file would provide different values for these symbolic constants.
The file defines minimum and maximum values for all the integer types. If you include the
limits.h file, you can use code such as the following:

printf("Maximum int value on this system = %d\n", INT MAX);

If your system uses a 4-byte int, the 1imits.h file that comes with that system would provide
definitions for INT MAX and INT MIN that match the limits of a 4-byte int. Table 4.1 lists some
of the constants found in limits.h.

Table 4.1 Some Symbolic Constants from 1limits.h

Symbolic Constant Represents

CHAR_BIT Number of bits in a char
CHAR_MAX Maximum char value

CHAR_MIN Minimum char value

SCHAR_MAX Maximum signed char value
SCHAR_MIN Minimum signed char value
UCHAR_MAX Maximum unsigned char value
SHRT MAX Maximum short value

SHRT_MIN Minimum short value

USHRT_MAX Maximum unsigned short value
INT MAX Maximum int value

INT MIN Minimum int value

UINT_MAX Maximum unsigned int value
LONG_MAX Maximum long value

LONG_MIN Minimum long value

ULONG_MAX Maximum unsigned long value
LLONG MAX Maximum long long value
LLONG_MIN Minimum long long value
ULLONG_MAX Maximum unsigned long long value

Similarly, the float.h file defines constants such as FLT _DIG and DBL_DIG, which represent
the number of significant figures supported by the £loat type and the double type. Table 4.2
lists some of the constants found in float.h. (You can use a text editor to open and inspect
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the float.h header file your system uses.) This example relates to the £loat type. Equivalent
constants are defined for types double and long double, with DBL and LDBL substituted for
FLT in the name. (The table assumes the system represents floating-point numbers in terms of
powers of 2.)

Table 4.2 Some Symbolic Constants from float.h

Symbolic Constant Represents

FLT MANT DIG Number of bits in the mantissa of a float

FLT DIG Minimum number of significant decimal digits for a float

FLT MIN_10_EXP Minimum base-10 negative exponent for a £loat with a full set of

significant figures

FLT_MAX_ 10_EXP Maximum base-10 positive exponent for a float

FLT MIN Minimum value for a positive £loat retaining full precision

FLT MAX Maximum value for a positive float

FLT EPSILON Difference between 1.00 and the least float value greater than
1.00

Listing 4.5 illustrates using data from float.h and limits.h. (Note that a compiler that
doesn’t fully support the C99 standard might not accept the LLONG_MIN identifier.)

Listing 4.5 The defines.c Program

// defines.c -- uses defined constants from limit.h and float.
#include <stdio.h>

#include <limits.h> // integer limits

#include <float.h> // floating-point limits

int main(void)

{
printf("Some number limits for this system:\n");
printf("Biggest int: %d\n", INT MAX);
printf("Smallest long long: %11ld\n", LLONG_MIN);
printf("One byte = %d bits on this system.\n", CHAR BIT);
printf("Largest double: %e\n", DBL MAX);
printf("Smallest normal float: %e\n", FLT MIN);
printf("float precision = %d digits\n", FLT DIG);
printf("float epsilon = %e\n", FLT EPSILON);

return 0;
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Here is the sample output:

Some number limits for this system:
Biggest int: 2147483647

Smallest long long: -9223372036854775808
One byte = 8 bits on this system.
Largest double: 1.797693e+308

Smallest normal float: 1.175494e-38
float precision = 6 digits

float epsilon = 1.192093e-07

The C preprocessor is a useful, helpful tool, so take advantage of it when you can. We’ll show
you more applications as you move along through this book.

Exploring and Exploiting printf () and scanf ()

The functions printf () and scanf () enable you to communicate with a program. They are
called input/output functions, or I/O functions for short. They are not the only I/O functions

you can use with C, but they are the most versatile. Historically, these functions, like all other
functions in the C library, were not part of the definition of C. C originally left the implemen-
tation of I/O up to the compiler writers; this made it possible to better match I/O to specific
machines. In the interests of compatibility, various implementations all came with versions

of scanf () and printf (). However, there were occasional discrepancies between implemen-
tations. The C90 and C99 standards describe standard versions of these functions, and we’ll
follow that standard.

Although printf () is an output function and scanf () is an input function, both work much
the same, each using a control string and a list of arguments. We will show you how these
work, first with printf () and then with scanf().

The printf () Function

The instructions you give printf () when you ask it to print a variable depend on the variable
type. For example, we have used the %d notation when printing an integer and the %c nota-
tion when printing a character. These notations are called conversion specifications because they
specify how the data is to be converted into displayable form. We’ll list the conversion speci-
fications that the ANSI C standard provides for printf () and then show how to use the more
common ones. Table 4.3 presents the conversion specifiers and the type of output they cause to
be printed.

Table 4.3 Conversion Specifiers and the Resulting Printed Output

Conversion Output Specification

%a Floating-point number, hexadecimal digits and p-notation (C99/C11).
%A Floating-point number, hexadecimal digits and P-notation (C99/C11).
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Conversion Output Specification

%c Single character.

2d Signed decimal integer.

%e Floating-point number, e-notation.

SE Floating-point number, e-notation.

$f Floating-point number, decimal notation.

%g Use %f or %e, depending on the value. The %e style is used if the exponent is
less than —4 or greater than or equal to the precision.

3G Use %£ or %E, depending on the value. The %E style is used if the exponent is
less than —4 or greater than or equal to the precision.

%1 Signed decimal integer (same as %d).

%0 Unsigned octal integer.

p A pointer.

%s Character string.

$u Unsigned decimal integer.

£33 Unsigned hexadecimal integer, using hex digits 0f.

X Unsigned hexadecimal integer, using hex digits OF.

%% Prints a percent sign.

Using printf ()

Listing 4.6 contains a program that uses some of the conversion specifications.

Listing 4.6 The printout.c Program

/* printout.c -- uses conversion specifiers */
#include <stdio.h>

#define PI 3.141593

int main(void)

{

int number = 7;
float pies = 12.75;
int cost = 7800;

printf("The %d contestants ate %f berry pies.\n", number,
pies);
printf("The value of pi is %f.\n", PI);
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printf("Farewell! thou art too dear for my possessing,\n");
printf("%c%d\n", '$', 2 * cost);

return 0;

The output, of course, is

The 7 contestants ate 12.750000 berry pies.
The value of pi is 3.141593.

Farewell! thou art too dear for my possessing,
$15600

This is the format for using printf():

printf(Control-string, iteml, item2,...);

Iteml, item2, and so on, are the items to be printed. They can be variables or constants, or
even expressions that are evaluated first before the value is printed. Control-stringis a char-
acter string describing how the items are to be printed. As mentioned in Chapter 3, the control
string should contain a conversion specifier for each item to be printed. For example, consider
the following statement:

printf("The %d contestants ate %f berry pies.\n", number,
pies);

Control-string is the phrase enclosed in double quotes. This particular control string
contains two conversion specifiers corresponding to number and pies—the two items to be
displayed. Figure 4.6 shows another example of a printf ()statement.

control statement variable list
printf( | "You look great in %s\n"| , |color|);

Figure 4.6 Arguments for printf().

Here is another line from the example:

printf("The value of pi is %f.\n", PI);

This time, the list of items has just one member—the symbolic constant PI.

As you can see in Figure 4.7, Control-string contains two distinct forms of information:
= Characters that are actually printed

= Conversion specifications
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Caution

Don’t forget to use one conversion specification for each item in the list following
Control-string. Woe unto you should you forget this basic requirement! Don’t do the
following:

printf("The score was Squids %d, Slugs %d.\n", scorel);

Here, there is no value for the second %d. The result of this faux pas depends on your system,
but at best you will get partial nonsense.

"The value of pi is”%f”. \nl"
[

literal characters literal characters

conversion specifications

Figure 4.7 Anatomy of a control string.

If you want to print only a phrase, you don’t need any conversion specifications. If you just
want to print data, you can dispense with the running commentary. Each of the following
statements from Listing 4.6 is quite acceptable:

printf("Farewell! thou art too dear for my possessing,\n");
printf("%c%d\n", '$', 2 * cost);

In the second statement, note that the first item on the print list was a character constant
rather than a variable and that the second item is a multiplication. This illustrates that
printf () uses values, be they variables, constants, or expressions.

Because the printf () function uses the % symbol to identify the conversion specifications,
there is a slight problem if you want to print the % sign itself. If you simply use a lone % sign,
the compiler thinks you have bungled a conversion specification. The way out is simple—just
use two % symbols, as shown here:

pc = 2%6;

printf("Only %d%% of Sally's gribbles were edible.\n", pc);

The following output would result:

Only 12% of Sally's gribbles were edible.

Conversion Specification Modifiers for printf ()

You can modify a basic conversion specification by inserting modifiers between the % and the
defining conversion character. Tables 4.4 and 4.5 list the characters you can place there legally.
If you use more than one modifier, they should be in the same order as they appear in Table
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4.4. Not all combinations are possible. The table reflects the C99 additions; your implementa-
tion may not support all the options shown here.

Table 4.4 The printf () Modifiers

Modifier
flag

digit(s)

digit(s)

hh

11

Meaning

The five flags (-, +, space, #, and 0) are described in Table 4.5. Zero or more
flags may be present.

Example: "¢-104".

The minimum field width. A wider field will be used if the printed number or string
won't fit in the field.

Example: "g4d".

Precision. For %e, $E, and $£ conversions, the number of digits to be printed to
the right of the decimal. For $g and %G conversions, the maximum number of
significant digits. For $s conversions, the maximum number of characters to be
printed. For integer conversions, the minimum number of digits to appear; leading
zeros are used if necessary to meet this minimum. Using only . implies a follow-
ing zero, so %.f is the same as %.0f.

Example: "$5.2f" prints a £loat in a field five characters wide with two digits
after the decimal point.

Used with an integer conversion specifier to indicate a short int or unsigned
short int value.

Examples: "¢hu", "$hx", and "%6.4hd".

Used with an integer conversion specifier to indicate a signed char or
unsigned char value.

Examples: "$hhu", "$hhx", and "%6.4hhd".

Used with an integer conversion specifier to indicate an intmax_t or uintmax t
value; these are types defined in stdint.h.

Examples: "$jd" and "%8jX".

Used with an integer conversion specifier to indicate a long int or unsigned
long int.

Examples: "$1d4" and "%$81u".

Used with an integer conversion specifier to indicate a long long int or
unsigned long long int. (C99).

Examples: "$11d" and "%811u".
Used with a floating-point conversion specifier to indicate a long double value.

Examples: "$Lf" and "%$10.4Le".
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Modifier Meaning

t

Used with an integer conversion specifier to indicate a ptrdiff t value. This is
the type corresponding to the difference between two pointers. (C99).

Examples: "$td" and "$12ti".

Used with an integer conversion specifier to indicate a size t value. This is the
type returned by sizeof. (C99).

Examples: "%zd" and "%$12zx".

Note Type Portability

The sizeof operator, recall, returns the size, in bytes, of a type or value. This should be some
form of integer, but the standard only provides that it should be an unsigned integer. Thus it
could be unsigned int, unsigned long, Or even unsigned long long. So, if you were

to use printf () to display a sizeof expression, you might use $u on one system, %$1u one
another, and $11u on a third. This means you would need to research the correct usage for
your system and that you might need to alter your program if you move it to a different system.
Well, it would have meant that except that C provides help to make the type more portable.
First, the stddef.h header file (included when you include stdio.h) defines size t to be
whatever the type your system uses for sizeof; this is called the underlying type. Second,
printf () uses the z modifier to indicate the corresponding type for printing. Similarly, C
defines the ptrdiff t type and t modifier to indicate whatever underlying signed integer type
the system used for the difference between two addresses.

Note Conversion of float Arguments

There are conversion specifiers to print the floating types double and long double. However,
there is no specifier for £loat. The reason is that £1loat values were automatically converted
to type double before being used in an expression or as an argument under K&R C. ANSI C (or
later), in general, does not automatically convert £loat to double. To protect the enormous
number of existing programs that assume float arguments are converted to double, however,
all float arguments to printf ()—as well as to any other C function not using an explicit pro-
totype—are still automatically converted to double. Therefore, under either K&R C or ANSI C,
no special conversion specifier is needed for displaying type float.

Table 4.5 The printf() Flags

Flag Meaning

The item is leftjustified; that is, it is printed beginning at the left of the field.

Example: "$-20s".
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Flag Meaning
+ Signed values are displayed with a plus sign, if positive, and with a minus sign, if
negative.

Example: "$+6.2£".

space Signed values are displayed with a leading space (but no sign) if positive and with
a minus sign if negative. A + flag overrides a space.

Example: "$ 6.2f".

# Use an alternative form for the conversion specification. Produces an initial 0
for the $o form and an initial 0x or 0x for the $x or $x form, respectively. For
all floating-point forms, # guarantees that a decimal-point character is printed,
even if no digits follow. For $g and %G forms, it prevents trailing zeros from being
removed.

Examples: "$#0", "$#8.0£", and "%+#10.3E".

0 For numeric forms, pad the field width with leading zeros instead of with spaces.
This flag is ignored if a - flag is present or if, for an integer form, a precision is
specified.

Examples: "$010d" and "%08.3f".

Examples Using Modifiers and Flags

Let’s put these modifiers to work, beginning with a look at the effect of the field width modifier
on printing an integer. Consider the program in Listing 4.7.

Listing 4.7 The width.c Program
/* width.c -- field widths */
#include <stdio.h>

#define PAGES 959

int main(void)

{
printf("*%d*\n", PAGES);
printf("*%2d*\n", PAGES);
printf("*%10d*\n", PAGES);
printf("*%-10d*\n", PAGES);
return 0;

}

Listing 4.7 prints the same quantity four times using four different conversion specifications. It
uses an asterisk (*) to show you where each field begins and ends. The output looks as follows:
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*959%*
*959%
* 959%
*959 *

The first conversion specification is $d with no modifiers. It produces a field with the same
width as the integer being printed. This is the default option; that is, it's what’s printed if you
don’t give further instructions. The second conversion specification is $2d. This should produce
a field width of 2, but because the integer is three digits long, the field is expanded automati-
cally to fit the number. The next conversion specification is $10d. This produces a field 10
spaces wide, and, indeed, there are seven blanks and three digits between the asterisks, with the
number tucked into the right end of the field. The final specification is $-10d. It also produces
a field 10 spaces wide, and the - puts the number at the left end, just as advertised. After you
get used to it, this system is easy to use and gives you nice control over the appearance of your
output. Try altering the value for PAGES to see how different numbers of digits are printed.

Now look at some floating-point formats. Enter, compile, and run the program in Listing 4.8.

Listing 4.8 The floats.c Program

// floats.c -- some floating-point combinations
#include <stdio.h>

int main(void)
{
const double RENT = 3852.99; // const-style constant

printf("*%£*\n", RENT);
printf("*%e*\n", RENT);
printf("*%4.2f*\n", RENT);
printf("*$3.1f*\n", RENT);
printf("*$10.3f*\n", RENT);
printf("*%10.3E*\n", RENT);
printf("*%+4.2f*\n", RENT);
printf("*%010.2f*\n", RENT);

return 0;

This time, the program uses the keyword const to create a symbolic constant. The output is

*3852.990000%
*3.852990e+03*
*3852.99%
*3853.0%*

* 3852.990%

* 3.853E+03*
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*+3852.99%
*0003852.99%

The example begins with the default version, %£. In this case, there are two defaults—the field
width and the number of digits to the right of the decimal. The second default is six digits, and
the field width is whatever it takes to hold the number.

Next is the default for ge. It prints one digit to the left of the decimal point and six places to
the right. We’re getting a lot of digits! The cure is to specify the number of decimal places to
the right of the decimal, and the next four examples in this segment do that. Notice how the
fourth and the sixth examples cause the output to be rounded off. Also, the sixth example uses
E instead of e.

Finally, the + flag causes the result to be printed with its algebraic sign, which is a plus sign in
this case, and the 0 flag produces leading zeros to pad the result to the full field width. Note
that in the specifier $010.2¢£, the first 0 is a flag, and the remaining digits before the period
(10) specify the field width.

You can modify the RENT value to see how variously sized values are printed. Listing 4.9
demonstrates a few more combinations.

Listing 4.9 The flags.c Program

/* flags.c -- illustrates some formatting flags */
#include <stdio.h>
int main(void)

{
printf("%x %X %#x\n", 31, 31, 31);
printf("**3d**% d**% d**\n", 42, 42, -42);
printf("**%5d**%5.3d**%05d**%05.3d**\n", 6, 6, 6, 6);
return 0;

}

The output looks as follows:

1f 1F 0x1f
XKk4Qkk LQRkKk_4Dx%
*x 6** 006**00006** 006**

First, 1£ is the hex equivalent of 31. The x specifier yields 1£, and the X specifier yields 1F.
Using the # flag provides an initial 0x.

The second line of output illustrates how using a space in the specifier produces a leading space
for positive values, but not for negative values. This can produce a pleasing output because
positive and negative values with the same number of significant digits are printed with the
same field widths.
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The third line illustrates how using a precision specifier (¢5.3d) with an integer form produces
enough leading zeros to pad the number to the minimum value of digits (three, in this case).
Using the 0 flag, however, pads the number with enough leading zeros to fill the whole field
width. Finally, if you provide both the 0 flag and the precision specifier, the 0 flag is ignored.

Now let’s examine some of the string options. Consider the example in Listing 4.10.

Listing 4.10 The stringf.c Program

/* stringf.c -- string formatting */
#include <stdio.h>

#define BLURB "Authentic imitation!"
int main(void)

{
printf("[%2s]\n", BLURB);
printf("[%24s]\n", BLURB);
printf("[%24.5s]\n", BLURB);
printf("[%-24.5s]\n", BLURB);
return 0;

}

Here is the output:

[Authentic imitation!]

[ Authentic imitation!]
[ Authe]
[Authe 1

Notice how, for the $2s specification, the field is expanded to contain all the characters in the
string. Also notice how the precision specification limits the number of characters printed. The
.5 in the format specifier tells printf () to print just five characters. Again, the - modifier
left-justifies the text.

Using What You Just Learned

Okay, you've seen some examples. Now, how would you set up a statement to print something
having the following form?

The NAME family just may be $XXX.XX dollars richer!

Here, NAME and XXX .XX represent values that will be supplied by variables in the program—say,
name[40] and cash.

One solution is

printf("The %s family just may be $%.2f richer!\n",name,cash);
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What Does a Conversion Specification Convert?

Let’s take a closer look at what a conversion specification converts. It converts a value stored

in the computer in some binary format to a series of characters (a string) to be displayed. For
example, the number 76 may be stored internally as binary 01001100. The %d conversion speci-
fier converts this to the characters 7 and 6, displaying 76. The $x conversion converts the same
value (01001100) to the hexadecimal representation 4c. The %c converts the same value to the
character representation L.

The term conversion is probably somewhat misleading because it might suggest that the original
value is replaced with a converted value. Conversion specifications are really translation specifi-
cations; $d means “translate the given value to a decimal integer text representation and print
the representation.”

Mismatched Conversions

Naturally, you should match the conversion specification to the type of value being printed.
Often, you have choices. For instance, if you want to print a type int value, you can use %d,
%x, or %o0. All these specifiers assume that you are printing a type int value; they merely
provide different representations of the value. Similarly, you can use %£, %e, or %g to represent
a type double value.

What if you mismatch the conversion specification to the type? You've seen in the preceding
chapter that mismatches can cause problems. This is a very important point to keep in mind,
so Listing 4.11 shows some more examples of mismatches within the integer family.

Listing 4.11 The intconv.c Program

/* intconv.c -- some mismatched integer conversions */
#include <stdio.h>
#define PAGES 336
#define WORDS 65618
int main(void)
{
short num = PAGES;
short mnum = -PAGES;

printf("num as short and unsigned short: %hd %hu\n", num,
num) ;

printf("-num as short and unsigned short: %hd %hu\n", mnum,
mnum) ;

printf("num as int and char: %d %c\n", num, num);

printf ("WORDS as int, short, and char: %d %hd %c\n",
WORDS, WORDS, WORDS);

return 0;
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Our system produces the following results:

num as short and unsigned short: 336 336
-num as short and unsigned short: -336 65200
num as int and char: 336 P

WORDS as int, short, and char: 65618 82 R

Looking at the first line, you can see that both $hd and %hu produce 336 as output for the vari-
able num; no problem there. On the second line, the %u (unsigned) version of mnum came out

as 65200, however, not as the 336 you might have expected; this results from the way that
signed short int values are represented on our reference system. First, they are 2 bytes in size.
Second, the system uses a method called the two’s complement to represent signed integers. In
this method, the numbers O to 32767 represent themselves, and the numbers 32768 to 65535
represent negative numbers, with 65535 being -1, 65534 being -2, and so forth. Therefore,
-336 is represented by 65536 - 336, or 65200. So 65200 represents -336 when interpreted as
a signed int and represents 65200 when interpreted as an unsigned int. Be wary! One number
can be interpreted as two different values. Not all systems use this method to represent negative
integers. Nonetheless, there is a moral: Don’t expect a $u conversion to simply strip the sign
from a number.

The third line shows what happens if you try to convert a value greater than 255 to a char-
acter. On this system, a short int is 2 bytes and a char is 1 byte. When print£ () prints
336 using %c, it looks at only 1 byte out of the 2 used to hold 336. This truncation (see Figure
4.8) amounts to dividing the integer by 256 and keeping just the remainder. In this case,

the remainder is 80, which is the ASCII value for the character P. More technically, you can
say that the number is interpreted modulo 256, which means using the remainder when the
number is divided by 256.

80 in binary ASCII'P ——— [ o [ 1| o] 1| of o] o] o]

336 in binary

|O|0|O|O|O|0|O|10 1|0 1 010 |O 0

Figure 4.8 Reading 336 as a character.

Finally, we tried printing an integer (65618) larger than the maximum short int (32767)
allowed on our system. Again, the computer does its modulo thing. The number 65618,
because of its size, is stored as a 4-byte int value on our system. When we print it using the
$hd specification, printf () uses only the last 2 bytes. This corresponds to using the remain-
der after dividing by 65536. In this case, the remainder is 82. A remainder between 32767 and
65536 would be printed as a negative number because of the way negative numbers are stored.
Systems with different integer sizes would have the same general behavior, but with different
numerical values.
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When you start mixing integer and floating types, the results are more bizarre. Consider, for
example, Listing 4.12.

Listing 4.12 The floatcnv.c Program

/* floatcnv.c -- mismatched floating-point conversions */
#include <stdio.h>
int main(void)

{
float nl = 3.0;
double n2 = 3.0;
long n3 = 2000000000;
long n4 = 1234567890;
printf("%.le %.le %.le %.le\n", nl, n2, n3, n4);
printf("$1ld $1d\n", n3, n4);
printf("%ld %1d %1d %1d\n", nl, n2, n3, n4);
return 0;
}

On one system, Listing 4.12 produces the following output:

3.0e+00 3.0e+00 3.let+46 1.7e+266
2000000000 1234567890
0 1074266112 0 1074266112

The first line of output shows that using a %e specifier does not convert an integer to a floating-
point number. Consider, for example, what happens when you try to print n3 (type long) using
the %e specifier. First, the %e specifier causes printf () to expect a type double value, which

is an 8-byte value on this system. When printf () looks at n3, which is a 4-byte value on this
system, it also looks at the adjacent 4 bytes. Therefore, it looks at an 8-byte unit in which the
actual n3 is embedded. Second, it interprets the bits in this unit as a floating-point number. Some
bits, for example, would be interpreted as an exponent. So even if n3 had the correct number of
bits, they would be interpreted differently under e than under $1d. The net result is nonsense.

The first line also illustrates what we mentioned earlier—that £loat is converted to double
when used as arguments to print£ (). On this system, £loat is 4 bytes, but n1 was expanded
to 8 bytes so that printf () would display it correctly.

The second line of output shows that printf () can print n3 and n4 correctly if the correct
specifier is used.

The third line of output shows that even the correct specifier can produce phony results if the
printf () statement has mismatches elsewhere. As you might expect, trying to print a floating-
point value with an %1d specifier fails, but here, trying to print a type long using %1d fails! The
problem lies in how C passes information to a function. The exact details of this failure are imple-
mentation dependent, but the sidebar “Passing Arguments” discusses a representative system.
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Passing Arguments

The mechanics of argument passing depend on the implementation. This is how argument
passing works on one system. The function call looks as follows:

printf("%1ld %1d %1d %1d\n", nl, n2, n3, n4);

This call tells the computer to hand over the values of the variables n1, n2, n3, and n4 to the
computer. Here’s one common way that's accomplished. The program places the values in

an area of memory called the stack. When the computer puts these values on the stack, it is
guided by the types of the variables, not by the conversion specifiers. Consequently, for n1, it
places 8 bytes on the stack (float is converted to double). Similarly, it places 8 more bytes
for n2, followed by 4 bytes each for n3 and n4. Then control shifts to the print£ () function.
This function reads the values off the stack but, when it does so, it reads them according to
the conversion specifiers. The %1d specifier indicates that printf () should read 4 bytes, so
printf () reads the first 4 bytes in the stack as its first value. This is just the first half of n1,
and it is interpreted as a long integer. The next $1d specifier reads 4 more bytes; this is just
the second half of n1 and is interpreted as a second long integer (see Figure 4.9). Similarly,
the third and fourth instances of $1d cause the first and second halves of n2 to be read and
to be interpreted as two more long integers, so although we have the correct specifiers for n3
and n4, printf () is reading the wrong bytes.

float nl; /* passed as type double */
double n2;
long n3, n4;

printf("%1d %1d %1d %1d\n", nl, n2, n3, n4);

8 bytes
4 bytes{
<“«— n4
<— n3
21d
< n2
%1d
21d
< nl
21d
printf () removes Arguments n1 and n2 placed
values from stack as on stack as type double values,
type long n3 and n4 as type long

Figure 4.9 Passing arguments.
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The Return Value of printf ()

As mentioned in Chapter 2, a C function generally has a return value. This is a value that the
function computes and returns to the calling program. For example, the C library contains a
sqrt () function that takes a number as an argument and returns its square root. The return
value can be assigned to a variable, can be used in a computation, can be passed as an argu-
ment—in short, it can be used like any other value. The printf () function also has a return
value; it returns the number of characters it printed. If there is an output error, printf ()
returns a negative value. (Some ancient versions of printf () have different return values.)

The return value for printf () is incidental to its main purpose of printing output, and it
usually isn’t used. One reason you might use the return value is to check for output errors. This
is more commonly done when writing to a file rather than to a screen. If a full CD or DVD
prevented writing from taking place, you could then have the program take some appropriate
action, such as beeping the terminal for 30 seconds. However, you have to know about the if
statement before doing that sort of thing. The simple example in Listing 4.13 shows how you
can determine the return value.

Listing 4.13 The prntval.c Program

/* prntval.c -- finding printf()'s return value */
#include <stdio.h>
int main(void)

{
int bph2o = 212;
int rv;
rv = printf("%d F is water's boiling point.\n", bph20);
printf("The printf() function printed %d characters.\n",
Iv);
return 0;
}

The output is as follows:

212 F is water's boiling point.
The printf() function printed 32 characters.

First, the program used the form rv = printf(...); to assign the return value to rv. This
statement therefore performs two tasks: printing information and assigning a value to a vari-
able. Second, note that the count includes all the printed characters, including the spaces and
the unseen newline character.

Printing Long Strings

Occasionally, printf () statements are too long to put on one line. Because C ignores
whitespace (spaces, tabs, newlines) except when used to separate elements, you can spread
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a statement over several lines, as long as you put your line breaks between elements. For
example, Listing 4.13 used two lines for a statement.

printf("The printf() function printed %d characters.\n",
rv);

The line is broken between the comma element and rv. To show a reader that the line was
being continued, the example indents the rv. C ignores the extra spaces.

However, you cannot break a quoted string in the middle. Suppose you try something like the
following:

printf("The printf() function printed %d
characters.\n", rv);

C will complain that you have an illegal character in a string constant. You can use \n in a
string to symbolize the newline character, but you can’t have the actual newline character
generated by the Enter (or Return) key in a string.

If you do have to split a string, you have three choices, as shown in Listing 4.14.

Listing 4.14 The longstrg.c Program

/* longstrg.c — printing long strings */
#include <stdio.h>
int main(void)
{
printf("Here's one way to print a ");
printf("long string.\n");
printf("Here's another way to print a \
long string.\n");
printf("Here's the newest way to print a
"long string.\n"); /* BANSI C */
return 0;

Here is the output:

Here's one way to print a long string.
Here's another way to print a long string.
Here's the newest way to print a long string.

Method 1 is to use more than one printf () statement. Because the first string printed doesn’t
end with a \n character, the second string continues where the first ends.

Method 2 is to terminate the end of the first line with a backslash/return combination. This
causes the text onscreen to start a new line without a newline character being included in the
string. The effect is to continue the string over to the next line. However, the next line has to
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start at the far left, as shown. If you indent that line, say, five spaces, those five spaces become
part of the string.

Method 3, which ANSI C introduced, is string concatenation. If you follow one quoted string
constant with another, separated only by whitespace, C treats the combination as a single
string, so the following three forms are equivalent:

printf("Hello, young lovers, wherever you are.");
printf("Hello, young
printf("Hello, young lovers"

"lovers , wherever you are.");

, wherever you are.");

With all these methods, you should include any required spaces in the strings: "young"
"lovers" becomes "younglovers", but the combination "young " "lovers" is "young
lovers".

Using scanf ()

Now let’s go from output to input and examine the scanf () function. The C library contains
several input functions, and scanf () is the most general of them, because it can read a variety
of formats. Of course, input from the keyboard is text because the keys generate text characters:
letters, digits, and punctuation. When you want to enter, say, the integer 2014, you type the
characters 2 0 1 and 4. If you want to store that as a numerical value rather than as a string,
your program has to convert the string character-by-character to a numerical value; that is what
scanf () does! It converts string input into various forms: integers, floating-point numbers,
characters, and C strings. It is the inverse of printf (), which converts integers, floating-point
numbers, characters, and C strings to text that is to be displayed onscreen.

Like printf (), scanf () uses a control string followed by a list of arguments. The control
string indicates the destination data types for the input stream of characters. The chief differ-
ence is in the argument list. The printf () function uses variable names, constants, and expres-
sions. The scanf () function uses pointers to variables. Fortunately, you don’t have to know
anything about pointers to use the function. Just remember these simple rules:

= [f you use scanf () to read a value for one of the basic variable types we’ve discussed,
precede the variable name with an .

= If you use scanf () to read a string into a character array, don’t use an &.

Listing 4.15 presents a short program illustrating these rules.

Listing 4.15 The input.c Program

// input.c -- when to use &
#include <stdio.h>

int main(void)

{

int age; // variable



Exploring and Exploiting printf() and scanf()

float assets; // variable
char pet[30]; // string

printf("Enter your age, assets, and favorite pet.\n");
scanf("%d %f", &age, &assets); // use the & here
scanf("%s", pet); // no & for char array
printf("%d $%.2f %s\n", age, assets, pet);

return 0;

Here is a sample exchange:

Enter your age, assets, and favorite pet.
38

92360.88 llama

38 $92360.88 llama

The scanf () function uses whitespace (newlines, tabs, and spaces) to decide how to divide the
input into separate fields. It matches up consecutive conversion specifications to consecutive
fields, skipping over the whitespace in between. Note how this sample run spread the input
over two lines. You could just as well have used one or five lines, as long as you had at least
one newline, space, or tab between each entry:

Enter your age, assets, and favorite pet.
42

2121.45

guppy
42 $2121.45 guppy

The only exception to this is the $c specification, which reads the very next character, even if
that character is whitespace. We'll return to this topic in a moment.

The scanf () function uses pretty much the same set of conversion-specification characters as
printf () does. The main difference is that printf () uses %£, %e, $E, %g, and %G for both type
float and type double, whereas scanf () uses them just for type float, requiring the 1 modi-
fier for double. Table 4.6 lists the main conversion specifiers as described in the C99 standard.

Table 4.6 ANSI C Conversion Specifiers for scanf ()

Conversion Specifier Meaning
3c Interpret input as a character.

%d Interpret input as a signed decimal integer.
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Conversion Specifier Meaning

%e, $f, %9, %a Interpret input as a floating-point number (%a is C99).

3E, 3F, %G, %A Interpret input as a floating-point number (22 is C99).

%1 Interpret input as a signed decimal integer.

%0 Interpret input as a signed octal integer.

p Interpret input as a pointer (an address).

%s Interpret input as a string. Input begins with the first non-whitespace

character and includes everything up to the next whitespace character.
u Interpret input as an unsigned decimal integer.

X, $X Interpret input as a signed hexadecimal integer.

You also can use modifiers in the conversion specifiers shown in Table 4.6. The modifiers go
between the percent sign and the conversion letter. If you use more than one in a specifier,
they should appear in the same order as shown in Table 4.7.

Table 4.7 Conversion Modifiers for scanf ()

Modifier Meaning
* Suppress assignment (see text).
Example: "g*d".

digit(s) Maximum field width. Input stops when the maximum field width is reached or
when the first whitespace character is encountered, whichever comes first.

Example: "$10s".

hh Read an integer as a signed char or unsigned char.
Examples: "$hhd" "%hhu".

11 Read an integer as a long long or unsigned long long (C99).
Examples: "$11d" "%1lu".

h,1,o0orL "¢hd" and "%hi" indicate that the value will be stored in a short int. "$ho",
"$hx", and "gshu" indicate that the value will be stored in an unsigned short
int. "$1d" and "%1i" indicate that the value will be stored in a long. "%1o0",
"$1x", and "%$1lu" indicate that the value will be stored in unsigned long.
"gle", "$1£f", and "%1lg" indicate that the value will be stored in type double.
Using L instead of 1 with e, £, and g indicates that the value will be stored in
type long double. In the absence of these modifiers, 4, i, o, and x indicate
type int, and e, £, and g indicate type float.
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Modifier Meaning

j When followed by an integer specifier, indicates using the intmax_t or
uintmax_t type (C99).

Examples: "$3jd" "%ju".

z When followed by an integer specifier, indicates using the type returned by
sizeof (C99).

Examples: "%zd" "%zo".

t When followed by an integer specifier, indicates using the type used to represent
the difference between two pointers (C99).

Examples: "$td" "%tx".

As you can see, using conversion specifiers can be involved, and these tables have omitted
some of the features. The omitted features primarily facilitate reading selected data from highly
formatted sources, such as punched cards or other data records. Because this book uses scanf ()
primarily as a convenient means for feeding data to a program interactively, it won't discuss
the more esoteric features.

The scanf () View of Input

Let’s look in more detail at how scanf () reads input. Suppose you use a %d specifier to read
an integer. The scanf () function begins reading input a character at a time. It skips over
whitespace characters (spaces, tabs, and newlines) until it finds a non-whitespace charac-

ter. Because it is attempting to read an integer, scanf () expects to find a digit character or,
perhaps, a sign (+ or -). If it finds a digit or a sign, it saves that character and then reads the
next character. If that is a digit, it saves the digit and reads the next character. scanf () contin-
ues reading and saving characters until it encounters a nondigit. It then concludes that it has
reached the end of the integer. scanf () places the nondigit back into the input. This means
that the next time the program goes to read input, it starts at the previously rejected, nondigit
character. Finally, scanf () computes the numerical value corresponding to the digits (and
possible sign) it read and places that value in the specified variable.

If you use a field width, scanf () halts at the field end or at the first whitespace, whichever
comes first.

What if the first non-whitespace character is, say, an a instead of a digit? Then scanf ()
stops right there and places the A (or whatever) back in the input. No value is assigned to the
specified variable, and the next time the program reads input, it starts at the A again. If your
program has only #d specifiers, scanf () will never get past that A. Also, if you use a scanf ()
statement with several specifiers, C requires the function to stop reading input at the first
failure.
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Reading input using the other numeric specifiers works much the same as the ¢d case. The
main difference is that scanf () may recognize more characters as being part of the number.
For instance, the %$x specifier requires that scanf () recognize the hexadecimal digits a-f and
A-F. Floating-point specifiers require scanf () to recognize decimal points, e-notation, and the
new p-notation.

If you use an %s specifier, any character other than whitespace is acceptable, so scanf () skips
whitespace to the first non-whitespace character and then saves up non-whitespace characters
until hitting whitespace again. This means that %s results in scanf () reading a single word—
that is, a string with no whitespace in it. If you use a field width, scanf () stops at the end of
the field or at the first whitespace, whichever comes first. You can’t use the field width to make
scanf () read more than one word for one %s specifier. A final point: When scanf () places
the string in the designated array, it adds the terminating '\0' to make the array contents a C
string.

If you use a %c specifier, all input characters are fair game. If the next input character is a
space or a newline, a space or a newline is assigned to the indicated variable; whitespace is not
skipped.

Actually, scanf () is not the most commonly used input function in C. It is featured here
because of its versatility (it can read all the different data types), but C has several other input
functions, such as getchar() and fgets (), that are better suited for specific tasks, such as
reading single characters or reading strings containing spaces. We will cover some of these
functions in Chapter 7, “C Control Statements: Branching and Jumps”; Chapter 11, “Character
Strings and String Functions”; and Chapter 13, “File Input/Output.” In the meantime, if you
need an integer, decimal fraction, a character, or a string, you can use scanf ().

Regular Characters in the Format String

The scanf () function does enable you to place ordinary characters in the format string.
Ordinary characters other than the space character must be matched exactly by the input
string. For example, suppose you accidentally place a comma between two specifiers:

scanf("%d,%d", &n, &m);

The scanf () function interprets this to mean that you will type a number, type a comma, and
then type a second number. That is, you would have to enter two integers as follows:

88,121

Because the comma comes immediately after the 24 in the format string, you would have to
type it immediately after the 88. However, because scanf () skips over whitespace preceding an
integer, you could type a space or newline after the comma when entering the input. That is,

88, 121

and

88,
121
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also would be accepted.

A space in the format string means to skip over any whitespace before the next input item. For
instance, the statement

scanf("%d ,%d", &n, &m);

would accept any of the following input lines:

88,121
88,121
88 , 121

Note that the concept of “any whitespace” includes the special cases of no whitespace.

Except for %c, the specifiers automatically skip over whitespace preceding an input value, so
scanf("%d%d", &n, &m) behaves the same as scanf("%d %d", &n, &m). For %c, adding a
space character to the format string does make a difference. For example, if %c is preceded by
a space in the format string, scanf () does skip to the first non-whitespace character. That is,
the command scanf ("%c", &ch) reads the first character encountered in input, and scanf ("
%c", &ch) reads the first non-whitespace character encountered.

The scanf () Return Value

The scanf () function returns the number of items that it successfully reads. If it reads no
items, which happens if you type a nonnumeric string when it expects a number, scanf ()
returns the value 0. It returns EOF when it detects the condition known as “end of file.” (EOF is
a special value defined in the stdio.h file. Typically, a #define directive gives EOF the value
—1.) We'll discuss end of file in Chapter 6, “C Control Statements: Looping,” and make use of
scanf ()’s return value later in the book. After you learn about if statements and while state-
ments, you can use the scanf () return value to detect and handle mismatched input.

The * Modifier with printf () and scanf ()

Both printf () and scanf () can use the * modifier to modify the meaning of a specifier, but
they do so in dissimilar fashions. First, let’s see what the * modifier can do for printf().

Suppose that you don’t want to commit yourself to a field width in advance but rather you
want the program to specify it. You can do this by using * instead of a number for the field
width, but you also have to add an argument to tell what the field width should be. That is,
if you have the conversion specifier $*d, the argument list should include a value for * and a
value for d. The technique also can be used with floating-point values to specify the precision
as well as the field width. Listing 4.16 is a short example showing how this works.

Listing 4.16 The varwid.c Program

/* varwid.c -- uses variable-width output field */
#include <stdio.h>
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int main(void)

{
unsigned width, precision;
int number = 256;
double weight = 242.5;
printf("Enter a field width:\n");
scanf("%d", &width);
printf("The number is :%*d:\n", width, number);
printf("Now enter a width and a precision:\n");
scanf("%d %d", &width, &precision);
printf("Weight = %*.*f\n", width, precision, weight);
printf("Done!\n");
return 0;

}

The variable width provides the field width, and number is the number to be printed.
Because the * precedes the d in the specifier, width comes before number in printf()’s argu-
ment list. Similarly, width and precision provide the formatting information for printing
weight. Here is a sample run:

Enter a field width:

6

The number is : 256:

Now enter a width and a precision:
83

Weight = 242.500

Done!

Here, the reply to the first question was 6, so 6 was the field width used. Similarly, the second
reply produced a width of 8 with 3 digits to the right of the decimal. More generally, a program
could decide on values for these variables after looking at the value of weight.

The * serves quite a different purpose for scanf (). When placed between the ¢ and the speci-
fier letter, it causes that function to skip over corresponding input. Listing 4.17 provides an
example.

Listing 4.17 The skip2.c Program

/* skiptwo.c -- skips over first two integers of input */
#include <stdio.h>

int main(void)

{

int n;

printf("Please enter three integers:\n");
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scanf("%*d %$*d %d", &n);
printf("The last integer was %d\n", n);

return 0;

The scanf () instruction in Listing 4.17 says, “Skip two integers and copy the third into n.”
Here is a sample run:

Please enter three integers:
2013 2014 2015
The last integer was 2015

This skipping facility is useful if, for example, a program needs to read a particular column of a
file that has data arranged in uniform columns.

Usage Tips for printf ()

Specifying fixed field widths is useful when you want to print columns of data. Because the
default field width is just the width of the number, the repeated use of, say,

printf("sd &d %d\n", vall, val2, val3);

produces ragged columns if the numbers in a column have different sizes. For example, the
output could look like the following:

12 234 1222

4 523

22334 2322 10001

(This assumes that the value of the variables has been changed between print statements.)
The output can be cleaned up by using a sufficiently large fixed field width. For example, using

printf("$9d %9d %9d\n", vall, val2, val3);

yields the following:

12 234 1222
4 5 23
22334 2322 10001

Leaving a blank between one conversion specification and the next ensures that one number
never runs into the next, even if it overflows its own field. This is so because the regular charac-
ters in the control string, including spaces, are printed.

On the other hand, if a number is to be embedded in a phrase, it is often convenient to specify
a field as small or smaller than the expected number width. This makes the number fit in
without unnecessary blanks. For example,
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printf("Count Beppo ran %.2f miles in 3 hours.\n", distance);

might produce

Count Beppo ran 10.22 miles in 3 hours.

Changing the conversion specification to $10.2f would give you the following:

Count Beppo ran 10.22 miles in 3 hours.

Locale Choices

The United States and many other parts of the world use a period to separate the integer part
of a decimal value from the fractional part, as in 3.14159. But many other parts of the world
use a comma instead, as in 3,14159. You may have noticed that the printf () and scanf ()
specifiers don’'t seem to offer the comma format. But C hasn’t ignored the rest of the world.
As outlined in Appendix B, Section V, “The Standard ANSI C Library with C99 Additions,” C sup-
ports the concept of a locale. This gives a C program the option of choosing a particular locale.
For example, it might specify a Netherlands locale, and printf () and scanf () would use

the local convention (a comma, in this case) when displaying and reading floating-point values.
Also, once you specified that environment, you would use the comma convention for numbers
appearing in your code:

double pi = 3,14159; // Netherlands locale

The C standard requires but two locales: "c" and "". By default, programs use the "c" locale
which, basically, is U.S. usage. The "" locale stands for a local locale in use on your system.
In principle, it could be the same as the "c" locale. In practice, operating systems such as
Unix, Linux, and Windows offer long lists of locale choices. However, they might not offer the
same lists.

Key Concepts

The C char type represents a single character. To represent a sequence of characters, C uses
the character string. One form of string is the character constant, in which the characters are
enclosed in double quotation marks; "Good luck, my friend" is an example. You can store
a string in a character array, which consists of adjacent bytes in memory. Character strings,
whether expressed as a character constant or stored in a character array, are terminated by a
hidden character called the null character.

It’s a good idea to represent numerical constants in a program symbolically, either by using
#define or the keyword const. Symbolic constants make a program more readable and easier
to maintain and modify.

The standard C input and output functions scanf () and printf () use a system in which
you have to match type specifiers in the first argument to values in the subsequent arguments.
Matching, say, an int specifier such as ¢d to a £loat value produces odd results. You have to
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exert care to match the number and type of specifiers to the rest of the function arguments. For
scanf (), remember to prefix variables’ names with the address operator (&).

Whitespace characters (tabs, spaces, and newlines) play a critical role in how scanf () views
input. Except when in the $c mode (which reads just the next character), scanf () skips over
whitespace characters to the first non-whitespace character when reading input. It then keeps
reading characters either until encountering whitespace or until encountering a character that
doesn’t fit the type being read. Let’s consider what happens if we feed the identical input line
to several different scanf () input modes. Start with the following input line:

-13.45el2# 0

First, suppose we use the $d mode; scanf () would read the three characters (-13) and stop

at the period, leaving the period as the next input character. scanf () then would convert

the character sequence -13 into the corresponding integer value and store that value in the
destination int variable. Next, reading the same line in the $f mode, scanf () would read the
-13.45E12 characters and stop at the # symbol, leaving it as the next input character. It then
would convert the character sequence -13.45E12 into the corresponding floating-point value
and store that value in the destination £loat variable. Reading the same line in the $s mode,
scanf () would read -13.45E12#, stopping at the space, leaving it as the next input character.
It then would store the character codes for these 10 characters into the destination character
array, appending a null character at the end. Finally, reading the same line using the %c speci-
fier, scanf () would read and store the first character, in this case a space.

Summary

A string is a series of characters treated as a unit. In C, strings are represented by a series of
characters terminated by the null character, which is the character whose ASCII code is O.
Strings can be stored in character arrays. An array is a series of items, or elements, all of the
same type. To declare an array called name that has 30 elements of type char, do the following:

char name[30];

Be sure to allot a number of elements sufficient to hold the entire string, including the null
character.

String constants are represented by enclosing the string in double quotes: "This is an
example of a string".

The strlen() function (declared in the string.h header file) can be used to find the length of
a string (not counting the terminating null character). The scanf () function, when used with
the %s specifier, can be used to read in single-word strings.

The C preprocessor searches a source code program for preprocessor directives, which begin
with the # symbol, and acts upon them before the program is compiled. The #include direc-
tive causes the processor to add the contents of another file to your file at the location of

the directive. The #define directive lets you establish manifest constants—that is, symbolic
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representations for constants. The limits.h and float.h header files use #define to define a
set of constants representing various properties of integer and floating-point types. You also can
use the const modifier to create symbolic constants.

The printf () and scanf () functions provide versatile support for input and output. Each uses
a control string containing embedded conversion specifiers to indicate the number and type

of data items to be read or printed. Also, you can use the conversion specifiers to control the
appearance of the output: field widths, decimal places, and placement within a field.

Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”

1. Run Listing 4.1 again, but this time give your first and last name when it asks you for
your first name. What happens? Why?

2. Assuming that each of the following examples is part of a complete program, what will
each one print?
a.
printf("He sold the painting for $%2.2f.\n", 2.345e2);

b.
printf("%c%c%c\n", 'H', 105, '\41');

C.

#define Q "His Hamlet was funny without being vulgar."

printf("%s\nhas %d characters.\n", Q, strlen(Q));

d.
printf("Is %2.2e the same as %2.2f?\n", 1201.0, 1201.0);

3. In Question 2¢, what changes could you make so that string @ is printed out enclosed in
double quotation marks?

4. It’s find the error time!

define B booboo
define X 10
main(int)
{
int age;
char name;
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printf("Please enter your first name.");

scanf("%s", name);

printf("All right, %c, what's your age?\n", name);

scanf ("%f", age);

Xp = age + X;

printf("That's a %s! You must be at least %d.\n", B, xp);
rerun 0;

5. Suppose a program starts as follows:

#define BOOK "War and Peace"
int main(void)
{

float cost =12.99;

float percent = 80.0;

Construct a printf () statement that uses BOOK, cost, and percent to print the
following:

This copy of "War and Peace" sells for $12.99.
That is 80% of list.

6. What conversion specification would you use to print each of the following?
a. A decimal integer with a field width equal to the number of digits
b. A hexadecimal integer in the form 8A in a field width of 4
c. A floating-point number in the form 232.346 with a field width of 10
d. A floating-point number in the form 2.33e+002 with a field width of 12

e. A string left-justified in a field of width 30

7. Which conversion specification would you use to print each of the following?
a. An unsigned long integer in a field width of 15
b. A hexadecimal integer in the form Ox8a in a field width of 4

c. A floating-point number in the form 2.33E+02 that is left-justified in a field width
of 12

d. A floating-point number in the form +232.346 in a field width of 10

e. The first eight characters of a string in a field eight characters wide
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8. What conversion specification would you use to print each of the following?
a. A decimal integer having a minimum of four digits in a field width of 6
b. An octal integer in a field whose width will be given in the argument list
c. A character in a field width of 2

d. A floating-point number in the form +3.13 in a field width equal to the number of
characters in the number

e. The first five characters in a string left-justified in a field of width 7

9. For each of the following input lines, provide a scanf () statement to read it. Also
declare any variables or arrays used in the statement.

a. 101

b. 22.32 8.34E-09
c. linguini

d. catch 22

e. catch 22 (but skip over catch)
10. What is whitespace?

11. What's wrong with the following statement and how can you fix it?

printf("The double type is %z bytes..\n", sizeof (double));

12. Suppose that you would rather use parentheses than braces in your programs. How well
would the following work?

#define ( {
#define ) }

Programming Exercises

1. Write a program that asks for your first name, your last name, and then prints the names
in the format last, first.

2. Write a program that requests your first name and does the following with it:
a. Prints it enclosed in double quotation marks

b. Prints it in a field 20 characters wide, with the whole field in quotes and the name
at the right end of the field
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c. Prints it at the left end of a field 20 characters wide, with the whole field enclosed
in quotes

d. Prints it in a field three characters wider than the name

. Write a program that reads in a floating-point number and prints it first in decimal-point
notation and then in exponential notation. Have the output use the following formats
(the number of digits shown in the exponent may be different for your system):

a. The inputis 21.3 or 2.1e+001.

b. The input is +21.290 or 2.129E+001.

. Write a program that requests your height in inches and your name, and then displays
the information in the following form:

Dabney, you are 6.208 feet tall

Use type float, and use / for division. If you prefer, request the height in centimeters
and display it in meters.

. Write a program that requests the download speed in megabits per second (Mbs) and

the size of a file in megabytes (MB). The program should calculate the download time
for the file. Note that in this context one byte is eight bits. Use type £loat, and use /

for division. The program should report all three values (download speed, file size, and
download time) showing two digits to the right of the decimal point, as in the following:
At 18.12 megabits per second, a file of 2.20 megabytes

downloads in 0.97 seconds.

. Write a program that requests the user’s first name and then the user’s last name. Have
it print the entered names on one line and the number of letters in each name on the
following line. Align each letter count with the end of the corresponding name, as in the
following:
Melissa Honeybee

7 8

Next, have it print the same information, but with the counts aligned with the beginning
of each name.

Melissa Honeybee
7 8

. Write a program that sets a type double variable to 1.0/3.0 and a type float variable
to 1.0/3.0. Display each result three times—once showing four digits to the right of the
decimal, once showing 12 digits to the right of the decimal, and once showing 16 digits
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to the right of the decimal. Also have the program include float.h and display the
values of FLT DIG and DBL_DIG. Are the displayed values of 1.0/3.0 consistent with these
values?

8. Write a program that asks the user to enter the number of miles traveled and the number
of gallons of gasoline consumed. It should then calculate and display the miles-per-gallon
value, showing one place to the right of the decimal. Next, using the fact that one gallon
is about 3.785 liters and one mile is about 1.609 kilometers, it should convert the mile-
per-gallon value to a liters-per-100-km value, the usual European way of expressing fuel
consumption, and display the result, showing one place to the right of the decimal. Note
that the U. S. scheme measures the distance traveled per amount of fuel (higher is better),
whereas the European scheme measures the amount of fuel per distance (lower is better).
Use symbolic constants (using const or #define) for the two conversion factors.
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Operators, Expressions, and

Statements

You will learn about the following in this chapter:

Keyword:

while, typedef

Operators:

= - * /

% ++ -- (type)

C’s multitudinous operators, including those used for common arithmetic operations
Operator precedence and the meanings of the terms statement and expression

The handy while loop

Compound statements, automatic type conversions, and type casts

How to write functions that use arguments

Now that you've looked at ways to represent data, let’s explore ways to process data. C offers a
wealth of operations for that purpose. You can do arithmetic, compare values, modify variables,
combine relationships logically, and more. Let’s start with basic arithmetic—addition, subtrac-
tion, multiplication, and division.

Another aspect of processing data is organizing your programs so that they take the right steps
in the right order. C has several language features to help you with that task. One of these
features is the loop, and in this chapter you get a first look at it. A loop enables you to repeat
actions and makes your programs more interesting and powerful.
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Introducing Loops

Listing 5.1 shows a sample program that does a little arithmetic to calculate the length in
inches of a foot that wears a U. S. size 9 (men’s) shoe. To enhance your appreciation of loops,
this first version illustrates the limitations of programming without using a loop.

Listing 5.1 The shoesl.c Program

/* shoesl.c -- converts a shoe size to inches */

#include <stdio.h>

#define ADJUST 7.31 // one kind of symbolic constant
int main(void)

{

const double SCALE = 0.333; // another kind of symbolic constant
double shoe, foot;

shoe = 9.0;
foot = SCALE * shoe + ADJUST;
printf("Shoe size (men's) foot length\n");

printf("$10.1f %15.2f inches\n", shoe, foot);

return 0;

Here is the output:

Shoe size (men's) foot length
9.0 10.31 inches

The program demonstrates two ways to create symbolic constants, and it uses multiplication
and addition. It takes your shoe size (if you wear a size 9) and tells you how long your foot is in
inches. “But,” you say, “I could solve this problem by hand (or with a calculator) more quickly
than you could type the program.” That’s a good point. A one-shot program that does just one
shoe size is a waste of time and effort. You could make the program more useful by writing it as
an interactive program, but that still barely taps the potential of a computer.

What'’s needed is some way to have a computer do repetitive calculations for a succession of
shoe sizes. After all, that’s one of the main reasons for using a computer to do arithmetic. C
offers several methods for doing repetitive calculations, and we will outline one here. This
method, called a while loop, will enable you to make a more interesting exploration of opera-
tors. Listing 5.2 presents the improved shoe-sizing program.

Listing 5.2 The shoes2.c Program

/* shoes2.c -- calculates foot lengths for several sizes */
#include <stdio.h>
#define ADJUST 7.31 // one kind of symbolic constant
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int main(void)

{
const double SCALE = 0.333; // another kind of symbolic constant
double shoe, foot;
printf("Shoe size (men's) foot length\n");
shoe = 3.0;
while (shoe < 18.5) /* starting the while loop */
{ /* start of block */
foot = SCALE * shoe + ADJUST;
printf("$10.1f %15.2f inches\n", shoe, foot);
shoe = shoe + 1.0;
} /* end of block */
printf("If the shoe fits, wear it.\n");
return 0;
}

Here is a condensed version of shoes2.c’s output:

Shoe size (men's) foot length
3.0 8.31 inches
4.0 8.64 inches
5.0 8.97 inches
6.0 9.31 inches
16.0 12.64 inches
17.0 12.97 inches
18.0 13.30 inches

If the shoe fits, wear it.

(Those of you with a serious interest in shoe sizes should be aware the program makes the unre-
alistic assumption that there is a rational and uniform system of shoe sizes. Real-world sizing
may be different.)

Here is how the while loop works. When the program first reaches the while statement, it
checks to see whether the condition within parentheses is true. In this case, the expression is as
follows:

shoe < 18.5

The < symbol means “is less than.” The variable shoe was initialized to 3.0, which is certainly
less than 18.5. Therefore, the condition is true and the program proceeds to the next state-
ment, which converts the size to inches. Then it prints the results. The next statement increases
shoe by 1.0, making it 4.0:

shoe = shoe + 1.0;
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At this point, the program returns to the while portion to check the condition. Why at this
point? Because the next line is a closing brace (}), and the code uses a set of braces ({}) to mark
the extent of the while loop. The statements between the two braces are the ones that are
repeated. The section of program between and including the braces is called a block. Now back
to the program. The value 4 is less than 18.5, so the whole cycle of embraced commands (the
block) following the while is repeated. (In computerese, the program is said to “loop” through
these statements.) This continues until shoe reaches a value of 19.0. Now the condition

shoe < 18.5

becomes false because 19.0 is not less than 18.5. When this happens, control passes to the
first statement following the while loop. In this case, that is the final printf () statement.

You can easily modify this program to do other conversions. For example, change SCALE to 1.8
and ADJUST to 32.0, and you have a program that converts Centigrade to Fahrenheit. Change
SCALE to 0.6214 and ADJUST to 0, and you convert kilometers to miles. If you make these
changes, you should change the printed messages, too, to prevent confusion.

The while loop provides a convenient, flexible means of controlling a program. Now let’s turn
to the fundamental operators that you can use in your programs.

Fundamental Operators

C uses operators to represent arithmetic operations. For example, the + operator causes the two
values flanking it to be added together. If the term operator seems odd to you, please keep in
mind that those things had to be called something. “Operator” does seem to be a better choice
than, say, “those things” or “arithmetical transactors.” Now take a look at the operators used
for basic arithmetic: =, +, -, *, and /. (C does not have an exponentiating operator. The stan-
dard C math library, however, provides the pow() function for that purpose. For example,
pow (3.5, 2.2) returns 3.5 raised to the power of 2.2.)

Assignment Operator: =

In C, the equal sign does not mean “equals.” Rather, it is a value-assigning operator. The
statement

bmw = 2002;

assigns the value 2002 to the variable named bmw. That is, the item to the left of the = sign is
the name of a variable, and the item on the right is the value assigned to the variable. The =
symbol is called the assignment operator. Again, don’t think of the line as saying, "bmw equals
2002.” Instead, read it as “assign the value 2002 to the variable bmw.” The action goes from
right to left for this operator.

Perhaps this distinction between the name of a variable and the value of a variable seems like
hair-splitting, but consider the following common type of computer statement:

i=1+1;
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As mathematics, this statement makes no sense. If you add 1 to a finite number, the result isn’t
“equal to” the number you started with, but as a computer assignment statement, it is perfectly
reasonable. It means “Find the value of the variable named i, add 1 to that value, and then
assign this new value to the variable i" (see Figure 5.1).

i=i+1;

22 > i=22+1; > 23

i=23;

Figure 5.1 The statementi = i + 1;.

A statement such as

2002 = bmw;

makes no sense in C (and, indeed, is invalid) because 2002 is what C calls an rvalue, in this
case, just a literal constant. You can’t assign a value to a constant; it already is its value. When
you sit down at the keyboard, therefore, remember that the item to the left of the = sign must
be the name of a variable. Actually, the left side must refer to a storage location. The simplest
way is to use the name of a variable, but, as you will see later, a “pointer” can be used to point
to a location. More generally, C uses the term modifiable Ivalue to label those entities to which
you can assign values. “Modifiable lvalue” is not, perhaps, the most intuitive phrase you've
encountered, so let’s look at some definitions.

Some Terminology: Data Objects, Lvalues, Rvalues, and Operands

Consider an assignment statement. Its purpose is to store a value at a memory location. Data
object is a general term for a region of data storage that can be used to hold values. The C
standard uses just the term object for this concept. One way to identify an object is by using
the name of a variable. But, as you will eventually learn, there are other was to identify an
object. For example, you could specify an element of an array, a member of a structure, or use
a pointer expression that involves the address of the object. C uses the term Ivalue to mean any
such name or expression that identifies a particular data object. Object refers to the actual data
storage, but an lvalue is a label used to identify, or locate, that storage.

In the early days of C, saying something was an Ivalue meant two things:

1. It specified an object, hence referred to an address in memory.

2. It could be used on the left side of an assignment operator, hence the “1” in lvalue.
But then C added the const modifier. This allows you to create an object, but one whose value
cannot be changed. So a const identifier satisfies the first of the two properties above, but not

the second. At this point the standard continued to use Ivalue for any expression identifying an
object, even though some lvalues could not be used on the left side of an assignment operator.
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And C added the term modifiable lvalue to identify an object whose value can be changed.
Therefore, the left side of an assignment operator should be a modifiable lvalue.

The current standard suggests that object locator value might be a better term.

The term rvalue refers to quantities that can be assigned to modifiable lvalues but which are not
themselves lvalues For instance, consider the following statement:

bmw = 2002;

Here, bmw is a modifiable lvalue, and 2002 is an rvalue. As you probably guessed, the r in rvalue
comes from right. Rvalues can be constants, variables, or any other expression that yields a
value, such as a function call. Indeed, the current standard uses value of an expression instead of
rvalue.

Let’s look at a short example:

int ex;

int why;

int zee;

const int TWO = 2;

why = 42;

zee = why;

ex = TWO * (why + zee);

Here ex, why, and zee all are modifiable lvalues (or object locator values). They can be used
either on the left side or the right side of an assignment operator. TWoO is a non-modifiable
Ivalue; it can only be used on the right side. (In the context of initializing Two to 2, the =
operator represents initialization, not assignment, so the rule isn’t violated.) Meanwhile, 42 is
an rvalue; it doesn’t refer to some specific memory location. Also, while why and zee are modi-
fiable lvalues, the expression (why + zee) is an rvalue; it doesn’t represent a specific memory
location and you can't assign to it. It’s just a temporary value the program calculates, and then
discards when it’s finished with it.

As long as you are learning the names of things, the proper term for what we have called an
“item” (as in “the item to the left of the =") is operand. Operands are what operators operate
on. For example, you can describe eating a hamburger as applying the “eat” operator to the
“hamburger” operand; similarly, you can say that the left operand of the = operator shall be a
modifiable Ivalue.

The basic C assignment operator is a little flashier than most. Try the short program in Listing
5.3.

Listing 5.3 The golf.c Program

/* golf.c -- golf tournament scorecard */
#include <stdio.h>
int main(void)

{
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int jane, tarzan, cheeta;
cheeta = tarzan = jane = 68;
printf(" cheeta  tarzan jane\n");

printf("First round score %4d %8d %8d\n",cheeta,tarzan,jane);

return 0;

Many languages would balk at the triple assignment made in this program, but C accepts
it routinely. The assignments are made right to left: First, jane gets the value 68, and then
tarzan does, and finally cheeta does. Therefore, the output is as follows:

cheeta  tarzan jane
First round score 68 68 68

Addition Operator: +

The addition operator causes the two values on either side of it to be added together. For
example, the statement

printf("sd", 4 + 20);

causes the number 24 to be printed, not the expression

4 + 20.

The values (operands) to be added can be variables as well as constants. Therefore, the
statement

income = salary + bribes;

causes the computer to look up the values of the two variables on the right, add them, and
then assign this total to the variable income.

As a reminder, note that income, salary, and bribes all are modifiable Ivalues because each
identifies a data object that could be assigned a value, but the expression salary + bribes is
an rvalue, a calculated value not identified with a particular memory location.

Subtraction Operator: —

The subtraction operator causes the number after the — sign to be subtracted from the number
before the sign. The statement

takehome = 224.00 — 24.00;

assigns the value 200.0 to takehome.
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The + and — operators are termed binary, or dyadic, operators, meaning that they require two
operands.

Sign Operators: — and +

The minus sign can also be used to indicate or to change the algebraic sign of a value. For
instance, the sequence

rocky = —-12;
smokey = —rocky;
gives smokey the value 12.

When the minus sign is used in this way, it is called a unary operator, meaning that it takes just
one operand (see Figure 5.2).

The C90 standard adds a unary + operator to C. It doesn’t alter the value or sign of its operand;
it just enables you to use statements such as

dozen = +12;

without getting a compiler complaint. Formerly, this construction was not allowed.

binary

value is 24

36—12

I—l— two operands

unary

value is -16

—16

I— one operand

both

—(12-20) value is 8

I—l— two operands

one operand

Figure 5.2 Unary and binary operators.
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Multiplication Operator: «

Multiplication is indicated by the * symbol. The statement

cm = 2.54 * inch;

multiplies the variable inch by 2.54 and assigns the answer to cm.

By any chance, do you want a table of squares? C doesn’t have a squaring function, but, as
shown in Listing 5.4, you can use multiplication to calculate squares.

Listing 5.4 The squares.c Program

/* squares.c -- produces a table of first 20 squares */
#include <stdio.h>
int main(void)

{
int num = 1;
while (num < 21)
{
printf("%4d $6d\n", num, num * num);
num = num + 1;
}
return 0;
}

This program prints the first 20 integers and their squares, as you can verify for yourself. Let’s
look at a more interesting example.

Exponential Growth

You have probably heard the story of the powerful ruler who seeks to reward a scholar who

has done him a great service. When the scholar is asked what he would like, he points to a
chessboard and says, just one grain of wheat on the first square, two on the second, four on the
third, eight on the next, and so on. The ruler, lacking mathematical erudition, is astounded at
the modesty of this request, for he had been prepared to offer great riches. The joke, of course,
is on the ruler, as the program in Listing 5.5 shows. It calculates how many grains go on each
square and keeps a running total. Because you might not be up to date on wheat crops, the
program also compares the running total to a very rough estimate of the annual world wheat
crop.

Listing 5.5 The wheat.c Program

/* wheat.c -- exponential growth */
#include <stdio.h>
#define SQUARES 64 // squares on a checkerboard
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int main(void)

{
const double CROP = 2E16; // world wheat production in wheat grains
double current, total;
int count = 1;
printf ("square grains total ")
printf("fraction of \n");
printf (" added grains ")
printf("world total\n");
total = current = 1.0; /* start with one grain */
printf("%4d %13.2e %12.2e %12.2e\n", count, current,
total, total/CROP);
while (count < SQUARES)
{
count = count + 1;
current = 2.0 * current;
/* double grains on next square */
total = total + current; /* update total */
printf("%4d %13.2e %12.2e %12.2e\n", count, current,
total, total/CROP);
}
printf("That's all.\n");
return 0;
}

The output begins innocuously enough:

square grains total fraction of
added grains world total
1 1.00e+00 1.00e+00 5.00e-17
2 2.00e+00 3.00e+00 1.50e-16
3 4.00e+00 7.00e+00 3.50e-16
4 8.00e+00 1.50e+01 7.50e-16
5 1.60e+01 3.10e+01 1.55e-15
6 3.20e+01 6.30e+01 3.15e-15
7 6.40e+01 1.27e+02 6.35e-15
8 1.28e+02 2.55e+02 1.27e-14
9 2.56e+02 5.11e+02 2.55e-14
10 5.12e+02 1.02e+03 5.12e-14

After 10 squares, the scholar has acquired just a little over a thousand grains of wheat, but look
what has happened by square 55!

55 1.80e+16 3.60e+16 1.80e+00
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The haul has exceeded the total world annual output! If you want to see what happens by the
64th square, you will have to run the program yourself.

This example illustrates the phenomenon of exponential growth. The world population growth
and our use of energy resources have followed the same pattern.

Division Operator: /

C uses the / symbol to represent division. The value to the left of the / is divided by the value
to the right. For example, the following gives four the value of 4. 0:

four = 12.0/3.0;

Division works differently for integer types than it does for floating types. Floating-type divi-
sion gives a floating-point answer, but integer division yields an integer answer. An integer
can’t have a fractional part, which makes dividing 5 by 3 awkward, because the answer does
have a fractional part. In C, any fraction resulting from integer division is discarded. This
process is called truncation.

Try the program in Listing 5.6 to see how truncation works and how integer division differs
from floating-point division.

Listing 5.6 The divide.c Program

/* divide.c -- divisions we have known */
#include <stdio.h>
int main(void)

{
printf("integer division: 5/4 is %d \n", 5/4);
printf("integer division: 6/3 is %d \n", 6/3);
printf("integer division: 7/4 is %d \n", 7/4);
printf("floating division: 7./4. is %1.2f \n", 7./4.);
printf("mixed division: 7./4 1is $1.2f \n", 7./4);
return 0;

}

Listing 5.6 includes a case of “mixed types” by having a floating-point value divided by an
integer. C is a more forgiving language than some and will let you get away with this, but
normally you should avoid mixing types. Now for the results:

integer division: 5/4 is 1
integer division: 6/3 is 2
integer division: 7/4 is 1
floating division: 7./4. is 1.75
mixed division: 7./4 1is 1.75
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Notice how integer division does not round to the nearest integer, but always truncates (that

is, discards the entire fractional part). When you mixed integers with floating point, the answer
came out the same as floating point. Actually, the computer is not really capable of dividing a
floating-point type by an integer type, so the compiler converts both operands to a single type.
In this case, the integer is converted to floating point before division.

Until the C99 standard, C gave language implementers some leeway in deciding how integer
division with negative numbers worked. One could take the view that the rounding proce-
dure consists of finding the largest integer smaller than or equal to the floating-point number.
Certainly, 3 fits that description when compared to 3.8. But what about —3.8? The largest
integer method would suggest rounding to —4 because —4 is less than -3.8. But another way of
looking at the rounding process is that it just dumps the fractional part; that interpretation,
called truncating toward zero, suggests converting -3.8 to —3. Before C99, some implementations
used one approach, some the other. But C99 says to truncate toward zero, so —-3.8 is converted
to -3.

The properties of integer division turn out to be handy for some problems, and you’ll see
an example fairly soon. First, there is another important matter: What happens when you
combine more than one operation into one statement? That is the next topic.

Operator Precedence
Consider the following line of code:

butter = 25.0 + 60.0 * n / SCALE;

This statement has an addition, a multiplication, and a division operation. Which operation
takes place first? Is 25.0 added to 60.0, the result of 85.0 then multiplied by n, and that result
then divided by SCALE? Is 60.0 multiplied by n, the result added to 25.0, and that answer
then divided by SCALE? Is it some other order? Let’s take n to be 6.0 and SCALE to be 2.0. If
you work through the statement using these values, you will find that the first approach yields
a value of 255. The second approach yields 192.5. A C program must have some other order in
mind, because it would give a value of 205.0 for butter.

Clearly, the order of executing the various operations can make a difference, so C needs unam-
biguous rules for choosing what to do first. C does this by setting up an operator pecking order.
Each operator is assigned a precedence level. As in ordinary arithmetic, multiplication and divi-
sion have a higher precedence than addition and subtraction, so they are performed first. What
if two operators have the same precedence? If they share an operand, they are executed accord-
ing to the order in which they occur in the statement. For most operators, the order is from left
to right. (The = operator was an exception to this.) Therefore, in the statement

butter = 25.0 + 60.0 * n / SCALE;
the order of operations is as follows:

60.0 * n The first * or / in the expression (assuming n is 6 so that 60.0 * nis
360.0)
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360.0 / SCALE Then the second * or / in the expression
25.0 + 180 Finally (because SCALE is 2.0), the first + or - in the expression, to yield
205.0

Many people like to represent the order of evaluation with a type of diagram called an expres-
sion tree. Figure 5.3 is an example of such a diagram. The diagram shows how the original
expression is reduced by steps to a single value.

SCALE=2;
n=6;
butter=25.0+60.0*n/ SCALE;

>2os.o

360.0

Figure 5.3 Expression trees showing operators, operands, and order of evaluation.

What if you want an addition operation to take place before division? Then you can do as we
have done in the following line:

flour = (25.0 + 60.0 * n) / SCALE;
Whatever is enclosed in parentheses is executed first. Within the parentheses, the usual

rules hold. For this example, first the multiplication takes place and then the addition. That
completes the expression in the parentheses. Now the result can be divided by SCALE.

Table 5.1 summarizes the rules for the operators used so far. (The inside back cover of this book
presents a table covering all operators.)

Table 5.1 Operators in Order of Decreasing Precedence

Operators Associativity
() Left to right
+ - (unary) Right to left

* / Left to right
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Operators Associativity
+ - (binary) Left to right
= Right to left

Notice that the two uses of the minus sign have different precedences, as do the two uses of the
plus sign. The associativity column tells you how an operator associates with its operands. For
example, the unary minus sign associates with the quantity to its right, and in division the left
operand is divided by the right.

Precedence and the Order of Evaluation

Operator precedence provides vital rules for determining the order of evaluation in an expres-
sion, but it doesn’t necessarily determine the complete order. C leaves some choices up to the
implementation. Consider the following statement:

y =6 %12 + 5 % 20;

Precedence dictates the order of evaluation when two operators share an operand. For example,
the 12 is an operand for both the * and the + operators, and precedence says that multiplica-
tion comes first. Similarly, precedence says that the 5 is to be multiplied, not added. In short,
the multiplications 6 * 12 and 5 * 20 take place before any addition. What precedence does
not establish is which of these two multiplications occurs first. C leaves that choice to the
implementation because one choice might be more efficient for one kind of hardware, but the
other choice might work better on another kind of hardware. In either case, the expression
reduces to 72 + 100, so the choice doesn’t affect the final value for this particular example.
“But,” you say, “multiplication associates from left to right. Doesn’t that mean the leftmost
multiplication is performed first?” (Well, maybe you don’t say that, but somewhere someone
does.) The association rule applies for operators that share an operand. For instance, in the
expression 12 / 3 * 2, the / and * operators, which have the same precedence, share the
operand 3. Therefore, the left-to-right rule applies in this case, and the expression reduces to 4
* 2, or 8. (Going from right to left would give 12 / 6, or 2. Here the choice does matter.) In
the previous example, the two * operators did not share a common operand, so the left-to-right
rule did not apply.

Trying the Rules

Let’s try these rules on a more complex example—Listing 5.7.

Listing 5.7 The rules.c Program

/* rules.c -- precedence test */
#include <stdio.h>
int main(void)
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{
int top, score;
top = score = -(2 +5) * 6 + (4 + 3 * (2 + 3));
printf("top = %d, score = %d\n", top, score);
return 0;

}

What value will this program print? Figure it out, and then run the program or read the follow-
ing description to check your answer.

First, parentheses have the highest precedence. Whether the parentheses in -(2 + 5) * 6 or
in (4 + 3 * (2 + 3)) are evaluated first depends on the implementation, as just discussed.
Either choice will lead to the same result for this example, so let’s take the left one first. The
high precedence of parentheses means that in the subexpression -(2 + 5) * 6, you evalu-
ate (2 + 5) first, getting 7. Next, you apply the unary minus operator to 7 to get -7. Now the
expression is

top = score = -7 * 6 + (4 + 3 * (2 + 3))

The next step is to evaluate 2 + 3. The expression becomes

top = score = -7 * 6 + (4 + 3 * 5)

Next, because the * in the parentheses has priority over +, the expression becomes

top = score = -7 * 6 + (4 + 15)
and then
top = score = -7 * 6 + 19

Multiply -7 by 6 and get the following expression:

top = score = -42 + 19

Then addition makes it

top = score = -23

Now score is assigned the value -23, and, finally, top gets the value -23. Remember that the =
operator associates from right to left.

Some Additional Operators

C has about 40 operators, but some are used much more than others. The ones just covered are
among the most common, but let’s add four more useful operators to the list.
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The sizeof Operator and the size t Type

You saw the sizeof operator in Chapter 3, “Data and C.” To review, the sizeof operator
returns the size, in bytes, of its operand. (Recall that a C byte is defined as the size used by the
char type. In the past, this has most often been 8 bits, but some character sets may use larger
bytes.) The operand can be a specific data object, such as the name of a variable, or it can be a
type. If it is a type, such as float, the operand must be enclosed in parentheses. The example
in Listing 5.8 shows both forms.

Listing 5.8 The sizeof.c Program

// sizeof.c -- uses sizeof operator

// uses C99 %z modifier -- try %u or %lu if you lack %zd
#include <stdio.h>

int main(void)

{
int n = 0;
size t intsize;
intsize = sizeof (int);
printf("n = %d, n has %zd bytes; all ints have %zd bytes.\n",
n, sizeof n, intsize );
return 0;
}

C says that sizeof returns a value of type size_t. This is an unsigned integer type, but not a
brand-new type. Instead, as you may recall from the preceding chapter, it is defined in terms of
the standard types. C has a typedef mechanism (discussed further in Chapter 14, “Structures
and Other Data Forms”) that lets you create an alias for an existing type. For example,

typedef double real;

makes real another name for double. Now you can declare a variable of type real:

real deal; // using a typedef

The compiler will see the word real, recall that the typedef statement made real an alias for
double, and create deal as a type double variable. Similarly, the C header files system can use
typedef to make size_t a synonym for unsigned int on one system or for unsigned long
on another. Thus, when you use the size_t type, the compiler will substitute the standard
type that works for your system.

C99 goes a step further and supplies ¢zd as a printf () specifier for displaying a size_t value.
If your system doesn’t implement %zd, you can try using %u or %1u instead.
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Modulus Operator:

The modulus operator is used in integer arithmetic. It gives the remainder that results when the
integer to its left is divided by the integer to its right. For example, 13 % 5 (read as “13 modulo
5”) has the value 3, because 5 goes into 13 twice, with a remainder of 3. Don’t bother trying to
use this operator with floating-point numbers. It just won’t work.

At first glance, this operator might strike you as an esoteric tool for mathematicians, but it

is actually rather practical and helpful. One common use is to help you control the flow of a
program. Suppose, for example, you are working on a bill-preparing program designed to add in
an extra charge every third month. Just have the program evaluate the month number modulo
3 (that is, month % 3) and check to see whether the result is 0. If it is, the program adds in

the extra charge. After you learn about if statements in Chapter 7, “C Control Statements:
Branching and Jumps,” you’ll understand this better.

Listing 5.9 shows another use for the % operator. It also shows another way to use a while
loop.

Listing 5.9 The min_sec.c Program

// min_sec.c -- converts seconds to minutes and seconds
#include <stdio.h>

#define SEC_PER MIN 60 // seconds in a minute
int main(void)

{

int sec, min, left;

printf("Convert seconds to minutes and seconds!\n");
printf("Enter the number of seconds (<=0 to quit):\n");

scanf("%d", &sec); // read number of seconds
while (sec > 0)
{

min = sec / SEC_PER_MIN; // truncated number of minutes

left = sec % SEC_PER _MIN; // number of seconds left over

printf("%d seconds is %d minutes, %d seconds.\n", sec,
min, left);

printf("Enter next value (<=0 to quit):\n");

scanf("%d", &sec);

}

printf("Done!\n");

return 0;

Here is some sample output:

Convert seconds to minutes and seconds!
Enter the number of seconds (<=0 to quit):
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154

154 seconds is 2 minutes, 34 seconds.
Enter next value (<=0 to quit):

567

567 seconds is 9 minutes, 27 seconds.
Enter next value (<=0 to quit):

0

Done!

Listing 5.2 used a counter to control a while loop. When the counter exceeded a given size,
the loop quit. Listing 5.9, however, uses scanf () to fetch new values for the variable sec. As
long as the value is positive, the loop continues. When the user enters a zero or negative value,
the loop quits. The important design point in both cases is that each loop cycle revises the
value of the variable being tested.

What about negative numbers? Before C99 settled on the “truncate toward zero” rule for
integer division, there were a couple of possibilities. But with the rule in place, you get a nega-
tive modulus value if the first operand is negative, and you get a positive modulus otherwise:

11 / 5is2,and 11 & 5is1

11 / -5is-2,and 11 & -2is1
-11 / -5is2,and -11 % -5is -1
-11 / 5is-2,and -11 % 5is -1

If your system shows different behavior, it hasn’t caught up to the C99 standard. In any case,
the standard says, in effect, that if a and b are integer values, you can calculate a%b by subtract-
ing (a/b)*b from a. For example, you can evaluate -11%5 this way:

-11 - (-11/5) * 5 = -11 =(-2)*5 = -11 -(-10) = -1

Increment and Decrement Operators: ++ and —-

The increment operator performs a simple task; it increments (increases) the value of its operand
by 1. This operator comes in two varieties. The first variety has the ++ come before the affected
variable; this is the prefix mode. The second variety has the ++ after the affected variable; this
is the postfix mode. The two modes differ with regard to the precise time that the increment-
ing takes place. We'll explain the similarities first and then return to that difference. The short
example in Listing 5.10 shows how the increment operators work.

Listing 5.10 The add_one.c Program

/* add_one.c -- incrementing: prefix and postfix */
#include <stdio.h>
int main(void)

{
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int ultra = 0, super = 0;

while (super < 5)

{

super++;

++ultra;

printf("super = %d, ultra = %d \n", super, ultra);
}
return 0;

Running add_one.c produces this output:

super = 1, ultra =1
super = 2, ultra = 2
super = 3, ultra = 3
super = 4, ultra = 4
super = 5, ultra =5

The program counted to five twice and simultaneously. You could get the same results by
replacing the two increment statements with this:

super = super + 1;
ultra = ultra + 1;

These are simple enough statements. Why bother creating one, let alone two, abbreviations?
One reason is that the compact form makes your programs neater and easier to follow. These
operators give your programs an elegant gloss that cannot fail to please the eye. For example,
you can rewrite part of shoes2.c (Listing 5.2) this way:

shoe = 3.0;
while (shoe < 18.5)
{

foot = SCALE * size + ADJUST;
printf("$10.1f %20.2f inches\n", shoe, foot);
++shoe;

However, you still haven’t taken full advantage of the increment operator. You can shorten the
fragment this way:

shoe = 2.0;
while (++shoe < 18.5)
{

foot = SCALE*shoe + ADJUST;
printf("$10.1f %20.2f inches\n", shoe, foot);
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Here you have combined the incrementing process and the while comparison into one expres-
sion. This type of construction is so common in C that it merits a closer look.

First, how does this construction work? Simply. The value of shoe is increased by 1 and then
compared to 18.5. If it is less than 18.5, the statements between the braces are executed
once. Then shoe is increased by 1 again, and the cycle is repeated until shoe gets too big. We
changed the initial value of shoe from 3.0 to 2.0 to compensate for shoe being incremented
before the first evaluation of foot (see Figure 5.4).

while loop
shoe = 2.0; o increment shoe to 3
while (++shoe < 18.5)
{ @ evaluate test (true)
foot=SCALE*shoe + ADJUST; —M ——
]—9 do these statements
printf (" ", shoe, foot); ——
} e return to beginning of loop

Figure 5.4  Through the loop once.

Second, what’s so good about this approach? It is more compact. More important, it gathers
in one place the two processes that control the loop. The primary process is the test: Do you
continue or not? In this case, the test is checking to see whether the shoe size is less than 18.5.
The secondary process changes an element of the test; in this case, the shoe size is increased.

Suppose you forgot to change the shoe size. Then shoe would always be less than 18.5, and
the loop would never end. The computer would churn out line after identical line, caught in
a dreaded infinite loop. Eventually, you would lose interest in the output and have to kill the
program somehow. Having the loop test and the loop change at one place, instead of at sepa-
rate locations, helps you to remember to update the loop.

A disadvantage is that combining two operations in a single expression can make the code
harder to follow and can make it easier to make counting errors.

Another advantage of the increment operator is that it usually produces slightly more efficient
machine language code because it is similar to actual machine language instructions. However,
as vendors produce better C compilers, this advantage may disappear. A smart compiler can
recognize that x = x + 1 can be treated the same as ++x.

Finally, these operators have an additional feature that can be useful in certain delicate situa-
tions. To find out what this feature is, try running the program in Listing 5.11.



Some Additional Operators

Listing 5.11 The post_pre.c Program

/* post _pre.c -- postfix vs prefix */
#include <stdio.h>
int main(void)

{
int a =1, b = 1;
int a_post, pre b;
a_post = a++; // value of a++ during assignment phase
pre_b = ++b; // value of ++b during assignment phase
printf("a a post b pre b \n");
printf("%1d %5d $5d %5d\n", a, a_post, b, pre b);
return 0;

}

If you and your compiler do everything correctly, you should get this result:

a apost b preb
2 1 2 2

Both a and b were increased by 1, as promised. However, a_post has the value of a before a
changed, but b_pre has the value of b after b changed. This is the difference between the prefix
form and the postfix form (see Figure 5.5).

a_post = a++; // postfix: a is changed after its value is used
b pre= ++b; // prefix: b is changed before its value is used

When one of these increment operators is used by itself, as in a solitary ego++; statement, it
doesn’t matter which form you use. The choice does matter, however, when the operator and
its operand are part of a larger expression, as in the assignment statements you just saw. In this
kind of situation, you must give some thought to the result you want. For instance, recall that
we suggested using the following:

while (++shoe < 18.5)

This test condition provides a table up to size 18. If you use shoe++ instead of ++shoe, the
table will go to size 19 because shoe will be increased after the comparison instead of before.

Of course, you could fall back on the less subtle form,

shoe = shoe + 1;

but then no one will believe you are a true C programmer.

You should pay special attention to the examples of increment operators as you read through
this book. Ask yourself if you could have used the prefix and the suffix forms interchangeably
or if circumstances dictated a particular choice.
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prefix
] ; _=_ 2_*1;;; _______ first, increment a by 1;
then, multiply a by 2 and assign to g
postfix
) ; _ 2_*_3;;, _______ first, multiply a by 2, assign to g

then, increment a by 1

Figure 5.5 Prefix and postfix.

Perhaps an even wiser policy is to avoid code in which it makes a difference whether you use
the prefix or postfix form. For example, instead of

b = ++i; // different result for b if i++ is used

use

++i; // line 1
b = i; // same result for b as if i++ used in line 1

However, sometimes it’s more fun to be a little reckless, so this book will not always follow this
sensible advice.

Decrementing: —-

For each form of increment operator, there is a corresponding form of decrement operator.
Instead of ++, use —-:

-- count; // prefix form of decrement operator
count --; // postfix form of decrement operator

Listing 5.12 illustrates that computers can be accomplished lyricists.

Listing 5.12 The bottles.c Program

#include <stdio.h>
#define MAX 100
int main(void)
{
int count = MAX + 1;

while (--count > 0) {
printf("%d bottles of spring water on the wall,

"
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"%d bottles of spring water!\n", count, count);
printf("Take one down and pass it around,\n");
printf("%d bottles of spring water!\n\n", count - 1);

return 0;

The output starts like this:

100 bottles of spring water on the wall, 100 bottles of spring water!
Take one down and pass it around,
99 bottles of spring water!

99 bottles of spring water on the wall, 99 bottles of spring water!
Take one down and pass it around,
98 bottles of spring water!

It goes on a bit and ends this way:

1 bottles of spring water on the wall, 1 bottles of spring water!
Take one down and pass it around,
0 bottles of spring water!

Apparently the accomplished lyricist has a problem with plurals, but that could be fixed by
using the conditional operator of Chapter 7.

Incidentally, the > operator stands for “is greater than.” Like < (“is less than”), it is a relational
operator. You will get a longer look at relational operators in Chapter 6, “C Control Statements:
Looping.”

Precedence

The increment and decrement operators have a very high precedence of association; only
parentheses are higher. Therefore, x*y++ means (x)*(y++), not (x*y)++, which is fortunate
because the latter is invalid. The increment and decrement operators affect a variable (or, more
generally, a modifiable Ivalue), and the combination x*y is not itself a modifiable lvalue,
although its parts are.

Don’t confuse precedence of these two operators with the order of evaluation. Suppose you
have the following:

y=2;

n = 3;

nextnum = (y + n++)*6;
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What value does nextnum get? Substituting in values yields

nextnum = (2 + 3)*6 = 5*6 = 30

Only after n is used is it increased to 4. Precedence tells us that the ++ is attached only to the n,
not toy + n. It also tells us when the value of n is used for evaluating the expression, but the
nature of the increment operator determines when the value of n is changed.

When n++ is part of an expression, you can think of it as meaning “use n; then increment it.”
On the other hand, ++n means “increment n; then use it.”

Don’t Be Too Clever

You can get fooled if you try to do too much at once with the increment operators. For
example, you might think that you could improve on the squares.c program (Listing 5.4) to
print integers and their squares by replacing the while loop with this one:

while (num < 21)

{

printf("$10d %10d\n", num, num*numt++);
}

This looks reasonable. You print the number num, multiply it by itself to get the square, and
then increase num by 1. In fact, this program may even work on some systems, but not all. The
problem is that when printf () goes to get the values for printing, it might evaluate the last
argument first and increment num before getting to the other argument. Therefore, instead of
printing

5 25

it may print

6 25

It even might work from right to left, using 5 for the rightmost num and 6 for the next two,
resulting in this output:

6 30

In C, the compiler can choose which arguments in a function to evaluate first. This freedom
increases compiler efficiency, but can cause trouble if you use an increment operator on a func-
tion argument.

Another possible source of trouble is a statement like this one:

ans = num/2 + 5*%(1 + numt++);

Again, the problem is that the compiler may not do things in the same order you have in
mind. You would think that it would find num/2 first and then move on, but it might do the
last term first, increase num, and use the new value in num/2. There is no guarantee.
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Yet another troublesome case is this:

n = 3;
y = n++ + n++;

Certainly, n winds up larger by 2 after the statement is executed, but the value for y is ambigu-
ous. A compiler can use the old value of n twice in evaluating y and then increment n twice.
This gives y the value 6 and n the value 5, or it can use the old value once, increment n once,
use that value for the second n in the expression, and then increment n a second time. This
gives y the value 7 and n the value 5. Either choice is allowable. More exactly, the result is
undefined, which means the C standard fails to define what the result should be.

You can easily avoid these problems:

= Don’t use increment or decrement operators on a variable that is part of more than one
argument of a function.

= Don’t use increment or decrement operators on a variable that appears more than once
in an expression.

On the other hand, C does have some guarantees about when incrementing takes place. We'll
return to this subject when we discuss sequence points later this chapter in the section, “Side
Effects and Sequence Points.”

Expressions and Statements

We have been using the terms expression and statement throughout these first few chapters,
and now the time has come to study their meanings more closely. Statements form the basic
program steps of C, and most statements are constructed from expressions. This suggests that
you look at expressions first.

Expressions

An expression consists of a combination of operators and operands. (An operand, recall, is what
an operator operates on.) The simplest expression is a lone operand, and you can build in
complexity from there. Here are some expressions:

4

-6

4+21

a*(b + c/d)/20
q = 5*%2

x = ++q % 3
q>3
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As you can see, the operands can be constants, variables, or combinations of the two. Some
expressions are combinations of smaller expressions, called subexpressions. For example, c/d is a
subexpression of the fourth example.

Every Expression Has a Value

An important property of C is that every C expression has a value. To find the value, you
perform the operations in the order dictated by operator precedence. The value of the first few
expressions we just listed is clear, but what about the ones with = signs? Those expressions
simply have the same value that the variable to the left of the = sign receives. Therefore, the
expression g=5+*2 as a whole has the value 10. What about the expression g > 3? Such rela-
tional expressions have the value 1 if true and 0 if false. Here are some expressions and their

values:

Expression Value
-4 + 6 2

c =3+ 8 11
5> 3 1

6 + (c = 3 + 8) 17

The last expression looks strange! However, it is perfectly legal (but ill-advised) in C because it
is the sum of two subexpressions, each of which has a value.

Statements

Statements are the primary building blocks of a program. A program is a series of statements with
some necessary punctuation. A statement is a complete instruction to the computer. In C, state-
ments are indicated by a semicolon at the end. Therefore,

legs = 4

is just an expression (which could be part of a larger expression), but
legs = 4;

is a statement.

The simplest possible statement is the null statement:

s // null statement

It does nothing, a special case of an instruction.

More generally, what makes a complete instruction? First, C considers any expression to be
a statement if you append a semicolon. (These are called expression statements.) Therefore, C
won’t object to lines such as the following:
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8;
3+ 4;

However, these statements do nothing for your program and can’t really be considered sensible
statements. More typically, statements change values and call functions:

x = 25;
++x;
y = sqrt(x);

Although a statement (or, at least, a sensible statement) is a complete instruction, not all
complete instructions are statements. Consider the following statement:

X =6+ (y=25);
In it, the subexpression y = 5 is a complete instruction, but it is only part of the statement.

Because a complete instruction is not necessarily a statement, a semicolon is needed to identify
instructions that truly are statements.

So far you have encountered five kinds of statements (not counting the null statement). Listing
5.13 gives a short example that uses all five.

Listing 5.13 The addemup.c Program

/* addemup.c -- five kinds of statements */

#include <stdio.h>

int main(void) /* finds sum of first 20 integers */

{
int count, sum; /* declaration statement */
count = 0; /* assignment statement */
sum = 0; /* ditto */
while (count++ < 20) /* while */

sum = sum + count; /* statement */

printf("sum = %d\n", sum);/* function statement */
return 0; /* return statement */

Let’s discuss Listing 5.13. By now, you must be pretty familiar with the declaration statement.
Nonetheless, we will remind you that it establishes the names and type of variables and causes
memory locations to be set aside for them. Note that a declaration statement is not an expres-
sion statement. That is, if you remove the semicolon from a declaration, you get something
that is not an expression and that does not have a value:

int port /* not an expression, has no value */

The assignment statement is the workhorse of many programs; it assigns a value to a variable. It
consists of a variable name followed by the assignment operator (=) followed by an expression
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followed by a semicolon. Note that this particular while statement includes an assignment
statement within it. An assignment statement is an example of an expression statement.

A function statement causes the function to do whatever it does. In this example, the print£()
function is invoked to print some results. A while statement has three distinct parts (see Figure
5.6). First is the keyword while. Then, in parentheses, is a test condition. Finally, you have the
statement that is performed if the test is met. Only one statement is included in the loop. It
can be a simple statement, as in this example, in which case no braces are needed to mark it
off, or the statement can be a compound statement, like some of the earlier examples, in which
case braces are required. You can read about compound statements just ahead.

l while

false
(test condition) e
g0 to next
statement
loop
l back
true

printf("Be my Valentine!\n");

Figure 5.6  Structure of a simple while loop.

The while statement belongs to a class of statements sometimes called structured statements
because they possess a structure more complex than that of a simple assignment statement. In
later chapters, you will encounter many other kinds of structured statements.

The return statement terminates the execution of a function.

Side Effects and Sequence Points

Now for a little more C terminology: A side effect is the modification of a data object or file. For
instance, the side effect of the statement

states = 50;

is to set the states variable to 50. Side effect? This looks more like the main intent! From the
standpoint of C, however, the main intent is evaluating expressions. Show C the expression

4 + 6, and C evaluates it to 10. Show it the expression states = 50, and C evaluates it to
50. Evaluating that expression has the side effect of changing the states variable to 50. The
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increment and decrement operators, like the assignment operator, have side effects and are
used primarily because of their side effects.

Similarly, when you call the printf() function, the fact that it displays information is a side
effect. (The value of printf (), recall, is the number of items displayed.)

A sequence point is a point in program execution at which all side effects are evaluated before
going on to the next step. In C, the semicolon in a statement marks a sequence point. That
means all changes made by assignment operators, increment operators, and decrement opera-
tors in a statement must take place before a program proceeds to the next statement. Some
operators that we’ll discuss in later chapters have sequence points. Also, the end of any full
expression is a sequence point.

What's a full expression? A full expression is one that’s not a subexpression of a larger expres-
sion. Examples of full expressions include the expression in an expression statement and the
expression serving as a test condition for a while loop.

Sequence points help clarify when postfix incrementation takes place. Consider, for instance,
the following code:

while (guests++ < 10)
printf("%d \n", gquests);

Sometimes C newcomers assume that “use the value and then increment it” means, in

this context, to increment guests after it’s used in the printf () statement. However, the
guests++ < 10 expression is a full expression because it is a while loop test condition, so the
end of this expression is a sequence point. Therefore, C guarantees that the side effect (incre-
menting guests) takes place before the program moves on to printf (). Using the postfix

form, however, guarantees that guests will be incremented after the comparison to 10 is made.

Now consider this statement:

y = (4 + x++) + (6 + x++);

The expression 4 + x++ is not a full expression, so C does not guarantee that x will be incre-
mented immediately after the subexpression 4 + x++ is evaluated. Here, the full expression

is the entire assignment statement, and the semicolon marks the sequence point, so all that C
guarantees is that x will have been incremented twice by the time the program moves to the
following statement. C does not specify whether x is incremented after each subexpression is
evaluated or only after all the expressions have been evaluated, which is why you should avoid
statements of this kind.

Compound Statements (Blocks)

A compound statement is two or more statements grouped together by enclosing them in braces;
it is also called a block. The shoes2.c program used a block to let the while statement encom-
pass several statements. Compare the following program fragments:

/* fragment 1 */

171



172

Chapter 5 Operators, Expressions, and Statements

index = 0;
while (index++ < 10)

sam = 10 * index + 2;
printf("sam = %d\n", sam);

/* fragment 2 */

index = 0;
while (index++ < 10)
{

sam = 10 * index + 2;
printf("sam = %d\n", sam);

In fragment 1, only the assignment statement is included in the while loop. In the absence of
braces, a while statement runs from the while to the next semicolon. The printf () function
will be called just once, after the loop has been completed.

In fragment 2, the braces ensure that both statements are part of the while loop, and
printf () is called each time the loop is executed. The entire compound statement is consid-
ered to be the single statement in terms of the structure of a while statement (see Figure 5.7).

lwhile
false
< (++fish<school) €
fr_lol:e preflx notatloné1 loop
ish gets incremente Tk
before each test
calculation true
{
food = quota * fish;
printf("%d----%d---", food, fish);
}

Figure 5.7 A while loop with a compound statement.
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Tip Style Tips
Look again at the two while fragments and notice how an indentation marks off the body of
each loop. The indentation makes no difference to the compiler; it uses the braces and its

knowledge of the structure of while loops to decide how to interpret your instructions. The
indentation is there so you can see at a glance how the program is organized.
The example shows one popular style for positioning the braces for a block, or compound,
statement. Another very common style is this:
while (index++ < 10) {

sam = 10*index + 2;

printf("sam = %d \n", sam);

This style highlights the attachment of the block to the while loop. The other style emphasizes
that the statements form a block. Again, as far as the compiler is concerned, both forms are
identical.

To sum up, use indentation as a tool to point out the structure of a program to the reader.

Summary: Expressions and Statements

Expressions:

An expression is a combination of operators and operands. The simplest expression is just a
constant or a variable with no operator, such as 22 or beebop. More complex examples are 55
+ 22andvap = 2 * (vip + (vup = 4)).

Statements:

A statement is a command to the computer. There are simple statements and compound state-
ments. Simple statements terminate in a semicolon, as in these examples:

Declaration statement: int toes;

Assignment statement: toes = 12;

Function call statement: printf("%d\n", toes);

Structured statement: while (toes < 20) toes = toes + 2;
Return statement: return O;

null statement: ; /* does nothing */

Compound statements, or blocks, consist of one or more statements (which themselves can
be compound statements) enclosed in braces. The following while statement contains an
example:

while (years < 100)

{
wisdom = wisdom * 1.05;
printf("sd %d\n", years, wisdom);
years = years + 1;
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Type Conversions

Statements and expressions should normally use variables and constants of just one type. If,
however, you mix types, C doesn’t stop dead in its tracks the way, say, Pascal does. Instead, it
uses a set of rules to make type conversions automatically. This can be a convenience, but it
can also be a danger, especially if you are mixing types inadvertently. (The lint program, found
on many Unix systems, checks for type “clashes.” Many non-Unix C compilers report possible
type problems if you select a higher error level.) It is a good idea to have at least some knowl-
edge of the type conversion rules.

The basic rules are

1. When appearing in an expression, char and short, both signed and unsigned, are
automatically converted to int or, if necessary, to unsigned int. (If short is the
same size as int, unsigned short is larger than int; in that case, unsigned short
is converted to unsigned int.) Under K&R C, but not under current C, float is
automatically converted to double. Because they are conversions to larger types, they are
called promotions.

2. In any operation involving two types, both values are converted to the higher ranking of
the two types.

3. The ranking of types, from highest to lowest, is long double, double, float, unsigned
long long, long long, unsigned long, long, unsigned int, and int. One possible
exception is when long and int are the same size, in which case unsigned int
outranks long. The short and char types don’t appear in this list because they would
have been already promoted to int or perhaps unsigned int.

4. In an assignment statement, the final result of the calculations is converted to the type of
the variable being assigned a value. This process can result in promotion, as described in
rule 1, or demotion, in which a value is converted to a lower-ranking type.

5. When passed as function arguments, char and short are converted to int, and float is
converted to double. This automatic promotion is overridden by function prototyping,
as discussed in Chapter 9, “Functions.”

Promotion is usually a smooth, uneventful process, but demotion can lead to real trouble. The
reason is simple: The lower-ranking type may not be big enough to hold the complete number.
For instance, an 8-bit char variable can hold the integer 101 but not the integer 22334.

What happens when the converted value won't fit into the destination? The answer depends
on the types involved. Here are the rules for when the assigned value doesn’t fit into the desti-
nation type:

1. When the destination is some form of unsigned integer and the assigned value is an
integer, the extra bits that make the value too big are ignored. For instance, if the
destination is 8-bit unsigned char, the assigned value is the original value modulus
256.
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2. If the destination type is a signed integer and the assigned value is an integer, the result
is implementation-dependent.

3. If the destination type is an integer and the assigned value is floating point, the behavior

is undefined.

What if a floating-point value will fit into an integer type? When floating types are demoted to
integer types, they are truncated, or rounded toward zero. That means 23.12 and 23.99 both
are truncated to 23 and that -23.5 is truncated to -23.

Listing 5.14 illustrates the working of some of these rules.

Listing 5.14 The convert.c Program

/* convert.c -- automatic type conversions */
#include <stdio.h>
int main(void)

{
char ch;
int 1i;
float £f1;
fl=1i=ch="C"; /* line 9 */
printf("ch = %c, i = %d, f1 = %2.2f\n", ch, i, f1l); /* line 10 */
ch =ch + 1; /* line 11 */
i=fl+ 2 * ch; /* line 12 */
fl1 = 2.0 * ch + 1i; /* line 13 */
printf("ch = %c, i = %d, fl1 = %2.2f\n", ch, i, fl); /* line 14 */
ch = 1107; /* line 15 */
printf("Now ch = %c\n", ch); /* line 16 */
ch = 80.89; /* line 17 */
printf("Now ch = %c\n", ch); /* line 18 */
return 0;

}

Running convert.c produces the following output:

ch=¢C, i =67, f1 = 67.00
ch =D, i =203, f1 = 339.00
S

P

Now ch

Now ch

On this system, which has an 8-bit char and a 32-bit int, here is what happened:

= Lines 9 and 10—The character 'C' is stored as a 1-byte ASCII value in ch. The integer
variable i receives the integer conversion of 'c', which is 67 stored as 4 bytes. Finally,
£1 receives the floating conversion of 67, which is 67.00.
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= Lines 11 and 14—The character variable 'c' is converted to the integer 67, which is
then added to the 1. The resulting 4-byte integer 68 is truncated to 1 byte and stored in
ch. When printed using the %c specifier, 68 is interpreted as the ASCII code for 'D".

= Lines 12 and 14—The value of ch is converted to a 4-byte integer (68) for the
multiplication by 2. The resulting integer (136) is converted to floating point in order to
be added to £1. The result (203.00f) is converted to int and stored in i.

= Lines 13 and 14—The value of ch ('D', or 68) is converted to floating point for
multiplication by 2.0. The value of i (203) is converted to floating point for the
addition, and the result (339.00) is stored in £1.

= Lines 15 and 16—Here the example tries a case of demotion, setting ch equal to an
out-of-range number. After the extra bits are ignored, ch winds up with the ASCII code
for the s character. Or, more specifically, 1107 % 256 is 83, the code for S.

= Lines 17 and 18—Here the example tries another case of demotion, setting ch equal to
a floating point number. After truncation takes place, ch winds up with the ASCII code
for the P character.

The Cast Operator

You should usually steer clear of automatic type conversions, especially of demotions, but
sometimes it is convenient to make conversions, provided you exercise care. The type conver-
sions we’ve discussed so far are done automatically. However, it is possible for you to demand
the precise type conversion that you want or else document that you know you’re making a
type conversion. The method for doing this is called a cast and consists of preceding the quan-
tity with the name of the desired type in parentheses. The parentheses and type name together
constitute a cast operator. This is the general form of a cast operator:

(type)
The actual type desired, such as long, is substituted for the word type.

Consider the next two code lines, in which mice is an int variable. The second line contains
two casts to type int.

mice = 1.6 + 1.7;
mice = (int) 1.6 + (int) 1.7;

The first example uses automatic conversion. First, 1.6 and 1.7 are added to yield 3. 3. This
number is then converted through truncation to the integer 3 to match the int variable. In the
second example, 1.6 is converted to an integer (1) before addition, as is 1.7, so that mice is
assigned the value 1+1, or 2. Neither form is intrinsically more correct than the other; you have
to consider the context of the programming problem to see which makes more sense.

Normally, you shouldn’t mix types (that is why some languages don't allow it), but there are
occasions when it is useful. The C philosophy is to avoid putting barriers in your way and to
give you the responsibility of not abusing that freedom.
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Summary: Operating in C

Here are the operators we have discussed so far:

Assignment Operator:

Assigns the value at its right to the variable at its left.

Arithmetic Operators:

+

++

Adds the value at its right to the value at its left.

Subtracts the value at its right from the value at its left.

As a unary operator, changes the sign of the value at its right.
Multiplies the value at its left by the value at its right.

Divides the value at its left by the value at its right. The answer is truncated if
both operands are integers.

Yields the remainder when the value at its left is divided by the value to its right
(integers only).

Adds 1 to the value of the variable to its right (prefix mode) or to the value of the
variable to its left (postfix mode).

Like ++, but subtracts 1.

Miscellaneous Operators:

sizeof

(type)

Yields the size, in bytes, of the operand to its right. The operand can be a type
specifier in parentheses, as in sizeof (float), or it can be the name of a par-
ticular variable, array, and so forth, as in sizeof foo.

As the cast operator, converts the following value to the type specified by the
enclosed keyword(s). For example, (float) 9 converts the integer 9 to the float-
ing-point number 9.0£.

Function with Arguments

By now, you're familiar with using function arguments. The next step along the road to func-
tion mastery is learning how to write your own functions that use arguments. Let’s preview
that skill now. (At this point, you might want to review the butler () function example near
the end of Chapter 2, “Introducing C”; it shows how to write a function without an argument.)
Listing 5.15 includes a pound () function that prints a specified number of pound signs (#).
(This symbol also is called the number sign and the hash symbol.) The example also illustrates
some points about type conversion.
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Listing 5.15 The pound.c Program

/* pound.c -- defines a function with an argument  */
#include <stdio.h>
void pound(int n); // ANSI function prototype declaration
int main(void)
{
int times = 5;
char ch = '"!'; // ASCII code is 33
float £ = 6.0f;
pound (times); // int argument
pound(ch); // same as pound((int)ch);
pound(f); // same as pound((int)f);
return 0;
}
void pound(int n) // ANSI-style function header
{ // says takes one int argument
while (n-- > 0)
printf("#");
printf("\n");
}

Running the program produces this output:

#HAAH
HHARHHAHHAA AR
#HAAHH

First, let’s examine the function heading:

void pound(int n)

If the function took no arguments, the parentheses in the function heading would contain the
keyword void. Because the function takes one type int argument, the parentheses contain

a declaration of an int variable called n. You can use any name consistent with C’s naming
rules.

Declaring an argument creates a variable called the formal argument or the formal parameter.

In this case, the formal parameter is the int variable called n. Making a function call such as
pound(10) acts to assign the value 10 to n. In this program, the call pound (times) assigns the
value of times (5) to n. We say that the function call passes a value, and this value is called the
actual argument or the actual parameter, so the function call pound(10) passes the actual argu-
ment 10 to the function, where 10 is assigned to the formal parameter (the variable n). That is,
the value of the times variable in main() is copied to the new variable n in pound().
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Note Arguments Versus Parameters

Although the terms argument and parameter often have been used interchangeably, the C99
documentation has decided to use the term argument for actual argument or actual parameter
and the term parameter for formal parameter or formal argument. With this convention, we can
say that parameters are variables and that arguments are values provided by a function call
and assigned to the corresponding parameters. Thus, in Listing 5.15, times is an argument to
pound( ), and n is a parameter for pound (). Similarly, in the function call pound(times+4),
the value of the expression times+4 would be the argument.

Variable names are private to the function. This means that a name defined in one function
doesn’t conflict with the same name defined elsewhere. If you used times instead of n in
pound (), that would create a variable distinct from the times in main(). That is, you would
have two variables with the same name, but the program keeps track of which is which.

Now let’s look at the function calls. The first one is pound (times), and, as we said, it causes
the times value of 5 to be assigned to n. This causes the function to print five pound signs and
a newline.

The second call is pound(ch). Here, ch is type char. It is initialized to the ! character, which,
on ASCII systems, means that ch has the numerical value 33. But char is the wrong type for
the pound () function. This is where the function prototype near the top of the program comes
into play. A prototype is a function declaration that describes a function’s return value and its
arguments. This particular prototype says two things about the pound () function:

= The function has no return value (that’s the void part).

= The function takes one argument, which is a type int value.

In this case, the prototype informs the compiler that pound () expects an int argument. In
response, when the compiler reaches the pound(ch) expression, it automatically applies a type-
cast to the ch argument, converting it to an int argument. On this system, the argument is
changed from 33 stored in 1 byte to 33 stored in 4 bytes, so the value 33 is now in the correct
form to be used as an argument to this function. Similarly, the last call, pound(£), generates a
type cast to convert the type float variable £ to the proper type for this argument.

Before ANSI C, C used function declarations that weren’t prototypes; they just indicated the
name and return type but not the argument types. For backwards compatibility, C still allows
this form:

void pound(); /* pre-ANSI function declaration */

What would happen in the pound.c program if you used this form of declaration instead of
a prototype? The first function call, pound (times), would work because times is type int.
The second call, pound (ch) would also work because, in the absence of a prototype, C auto-
matically promotes char and short arguments to int. The third call, pound(£), would fail,
however, because, in the absence of a prototype, £loat is automatically promoted to double,
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which doesn’t really help much. The program will still run, but it won’t behave correctly. You
could fix it by using an explicit type cast in the function call:

pound ((int) f); // force correct type

Note that this still might not help if the value of £ is too large to fit into type int.

A Sample Program

Listing 5.16 is a useful program (for a narrowly defined subgrouping of humanity) that illus-
trates several of the ideas in this chapter. It looks long, but all the calculations are done in six
lines near the end. The bulk of the program relays information between the computer and the
user. We've tried using enough comments to make it nearly self-explanatory. Read through it,
and when you are done, we'll clear up a few points.

Listing 5.16 The running.c Program

// running.c -- A useful program for runners

#include <stdio.h>

const int S_PER M = 60; // seconds in a minute
const int S PER H = 3600; // seconds in an hour

const double M PER K = 0.62137; // miles in a kilometer
int main(void)

{
double distk, distm; // distance run in km and in miles
double rate; // average speed in mph
int min, sec; // minutes and seconds of running time
int time; // running time in seconds only
double mtime; // time in seconds for one mile
int mmin, msec; // minutes and seconds for one mile

printf("This program converts your time for a metric race\n");
printf("to a time for running a mile and to your average\n");
printf("speed in miles per hour.\n");
printf("Please enter, in kilometers, the distance run.\n");
scanf("%1f", &distk); // %1f for type double
printf("Next enter the time in minutes and seconds.\n");
printf("Begin by entering the minutes.\n");
scanf("%d", &min);
printf("Now enter the seconds.\n");
scanf("%d", &sec);

// converts time to pure seconds
time = S_PER M * min + sec;

// converts kilometers to miles
distm = M_PER K * distk;

// miles per sec x sec per hour = mph
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rate = distm / time * S_PER H;
// time/distance = time per mile

mtime = (double) time / distm;
mmin = (int) mtime / S PER M; // find whole minutes
msec = (int) mtime % S_PER M; // find remaining seconds

printf("You ran %1.2f km (%1.2f miles) in %d min, %d sec.\n",
distk, distm, min, sec);

printf("That pace corresponds to running a mile in %d min, ",
mmin) ;

printf("%d sec.\nYour average speed was %$1.2f mph.\n", msec,
rate);

return 0;

Listing 5.16 uses the same approach used earlier in min_sec to convert the final time to
minutes and seconds, but it also makes type conversions. Why? Because you need integer
arguments for the seconds-to-minutes part of the program, but the metric-to-mile conversion
involves floating-point numbers. We have used the cast operator to make these conversions
explicit.

To tell the truth, it should be possible to write the program using just automatic conversions.
In fact, we did so, using mtime of type int to force the time calculation to be converted to
integer form. However, that version failed to run on one of the 11 systems we tried. That
compiler (an ancient and obsolete version) failed to follow the C rules. Using type casts makes
your intent clearer not only to the reader, but perhaps to the compiler as well.

Here’s some sample output:

This program converts your time for a metric race
to a time for running a mile and to your average
speed in miles per hour.

Please enter, in kilometers, the distance run.
10.0

Next enter the time in minutes and seconds.

Begin by entering the minutes.

36

Now enter the seconds.

23

You ran 10.00 km (6.21 miles) in 36 min, 23 sec.
That pace corresponds to running a mile in 5 min, 51 sec.
Your average speed was 10.25 mph.
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Key Concepts

C uses operators to provide a variety of services. Each operator can be characterized by the
number of operands it requires, its precedence, and its associativity. The last two qualities deter-
mine which operator is applied first when the two share an operand. Operators are combined
with values to produce expressions, and every C expression has a value. If you are not aware

of operator precedence and associativity, you may construct expressions that are illegal or that
have values different from what you intend; that would not enhance your reputation as a
programmer.

C allows you to write expressions combining different numerical types. But arithmetic opera-
tions require operands to be of the same type, so C makes automatic conversions. However, it’s
good programming practice not to rely upon automatic conversions. Instead, make your choice
of types explicit either by choosing variables of the correct type or by using typecasts. That
way, you won't fall prey to automatic conversions that you did not expect.

Summary

C has many operators, such as the assignment and arithmetic operators discussed in this
chapter. In general, an operator operates on one or more operands to produce a value. Operators
that take one operand, such as the minus sign and sizeof, are termed unary operators.
Operators requiring two operands, such as the addition and the multiplication operators, are
called binary operators.

Expressions are combinations of operators and operands. In C, every expression has a value,
including assignment expressions and comparison expressions. Rules of operator precedence help
determine how terms are grouped when expressions are evaluated. When two operators share
an operand, the one of higher precedence is applied first. If the operators have equal prece-
dence, the associativity (left-right or right-left) determines which operator is applied first.

Statements are complete instructions to the computer and are indicated in C by a terminating
semicolon. So far, you have worked with declaration statements, assignment statements, func-
tion call statements, and control statements. Statements included within a pair of braces consti-
tute a compound statement, or block. One particular control statement is the while loop, which
repeats statements as long as a test condition remains true.

In C, many type conversions take place automatically. The char and short types are promoted
to type int whenever they appear in expressions or as function arguments to a function
without a prototype. The float type is promoted to type double when used as a function
argument. Under K&R C (but not ANSI C), float is also promoted to double when used in
an expression. When a value of one type is assigned to a variable of a second type, the value
is converted to the same type as the variable. When larger types are converted to smaller types
(long to short or double to float, for example), there might be a loss of data. In cases of
mixed arithmetic, smaller types are converted to larger types following the rules outlined in
this chapter.
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When you define a function that takes an argument, you declare a variable, or formal argument,
in the function definition. Then the value passed in a function call is assigned to this variable,
which can now be used in the function.

Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”

1. Assume all variables are of type int. Find the value of each of the following variables:

a. x
b. x
c.y

d y

(2 +3) * 6;

(12 + 6)/2%3;

X = (2 + 3)/4;

3 4+ 2%(x = 7/2);

2. Assume all variables are of type int. Find the value of each of the following variables:

a. X
b. x
C. X

d x

3. Evaluate
a. 30
b. 30
c. 30
d. 30
e. 30

f. 30

(int) 3.8 + 3.3;

(2 + 3) * 10.5;

3/ 5 % 22.0;

22.0 * 3 / 5;

each of the following expressions:
.0 / 4.0 * 5.0;
.0 / (4.0 * 5.0);

/ 4 * 5;

* 5 / 4;

/ 4.0 * 5;

/ 4 * 5.0;

4. You suspect that there are some errors in the next program. Can you find them?

int main(void)

{
int i
float

=1,

n;

printf("Watch out! Here come a bunch of fractions!\n");

while
n:

(1 < 30)
1/1;

printf(" %£f", n);

183



184  Chapter 5 Operators, Expressions, and Statements

printf("That's all, folks!\n");
return;

5. Here's an alternative design for Listing 5.9. It appears to simplify the code by replacing
the two scanf () statements in Listing 5.9 with a single scanf () statement. What makes
this design inferior to the original?

#include <stdio.h>
#define S _TO M 60
int main(void)

{

int sec, min, left;

printf("This program converts seconds to minutes and ");
printf("seconds.\n");
printf("Just enter the number of seconds.\n");
printf("Enter 0 to end the program.\n");
while (sec > 0) {
scanf("%d", &sec);
min = sec/S_TO_M;
left = sec % S_TO_M;
printf("%d sec is %d min, %d sec. \n", sec, min, left);
printf("Next input?\n");
}
printf("Bye!\n");
return 0;

6. What will this program print?

#include <stdio.h>

#define FORMAT "%s! C is cool!\n"
int main(void)

{

int num = 10;

printf (FORMAT, FORMAT) ;
printf("$d\n", ++num);
printf("%d\n", numt+);
printf("%d\n", num--);
printf("%d\n", num);
return 0;
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7. What will the following program print?

#include <stdio.h>
int main(void)

{
char cl, c2;
int diff;
float num;
cl ='S";
c2 ="'0";
diff = ¢l - c2;
num = diff;
printf("%c%c%c:%d %3.2f\n", cl, c2, cl, diff, num);
return 0;

}

8. What will this program print?

#include <stdio.h>
#define TEN 10
int main(void)

{
int n = 0;
while (n++ < TEN)
printf("%5d", n);
printf("\n");
return 0;
}

9. Modify the last program so that it prints the letters a through g instead.

10. If the following fragments were part of a complete program, what would they print?
a.
int x = 0;
while (++x < 3)

printf("%4d", x);

b
int x = 100;

while (x++ < 103)
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printf("%4d\n",x);
printf("%4d\n",x);

char ch = 's';

while (ch < 'w')

{
printf("sc", ch);
ch++;

}

printf("%c\n",ch);

11. What will the following program print?

#define MESG "COMPUTER BYTES DOG"
#include <stdio.h>
int main(void)

{
int n = 0;
while (n <5 )
printf("%s\n", MESG);
n++;
printf("That's all.\n");
return 0;
}

12. Construct statements that do the following (or, in other terms, have the following side
effects):

a. Increase the variable x by 10.
b. Increase the variable x by 1.
c. Assign twice the sum of a and b to c.

d. Assign a plus twice b to c.

13. Construct statements that do the following:
a. Decrease the variable x by 1.
b. Assigns to m the remainder of n divided by k.
c. Divide g by b minus a and assign the result to p.

d. Assign to x the result of dividing the sum of a and b by the product of ¢ and d.
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Programming Exercises

1. Write a program that converts time in minutes to time in hours and minutes. Use
#define or const to create a symbolic constant for 60. Use a while loop to allow the
user to enter values repeatedly and terminate the loop if a value for the time of O or less
is entered.

2. Write a program that asks for an integer and then prints all the integers from (and
including) that value up to (and including) a value larger by 10. (That is, if the input is 5,
the output runs from 5 to 15.) Be sure to separate each output value by a space or tab or
newline.

3. Write a program that asks the user to enter the number of days and then converts that
value to weeks and days. For example, it would convert 18 days to 2 weeks, 4 days.
Display results in the following format:

18 days are 2 weeks, 4 days.

Use a while loop to allow the user to repeatedly enter day values; terminate the loop
when the user enters a nonpositive value, such as 0 or -20.

4. Write a program that asks the user to enter a height in centimeters and then displays the
height in centimeters and in feet and inches. Fractional centimeters and inches should
be allowed, and the program should allow the user to continue entering heights until a
nonpositive value is entered. A sample run should look like this:

Enter a height in centimeters: 182
182.0 cm = 5 feet, 11.7 inches
Enter a height in centimeters (<=0 to quit): 168.7
168.0 cm = 5 feet, 6.4
inches
Enter a height in centimeters (<=0 to quit): 0
bye

5. Change the program addemup.c (Listing 5.13), which found the sum of the first 20
integers. (If you prefer, you can think of addemup.c as a program that calculates how
much money you get in 20 days if you receive $1 the first day, $2 the second day, $3 the
third day, and so on.) Modify the program so that you can tell it interactively how far
the calculation should proceed. That is, replace the 20 with a variable that is read in.

6. Now modity the program of Programming Exercise 5 so that it computes the sum of the
squares of the integers. (If you prefer, how much money you receive if you get $1 the
first day, $4 the second day, $9 the third day, and so on. This looks like a much better
deal!) C doesn’t have a squaring function, but you can use the fact that the square of n is
n * n.
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7. Write a program that requests a type double number and prints the value of the number
cubed. Use a function of your own design to cube the value and print it. The main()
program should pass the entered value to this function.

8. Write a program that displays the results of applying the modulus operation. The user
should first enter an integer to be used as the second operand, which will then remain
unchanged. Then the user enters the numbers for which the modulus will be computed,
terminating the process by entering O or less. A sample run should look like this:

This program computes moduli.

Enter an integer to serve as the second operand: 256

Now enter the first operand: 438

438 % 256 is 182

Enter next number for first operand (<= 0 to quit): 1234567
1234567 % 256 is 135

Enter next number for first operand (<= 0 to quit): 0

Done

9. Write a program that requests the user to enter a Fahrenheit temperature. The program
should read the temperature as a type double number and pass it as an argument to
a user-supplied function called Temperatures (). This function should calculate the
Celsius equivalent and the Kelvin equivalent and display all three temperatures with a
precision of two places to the right of the decimal. It should identify each value with the
temperature scale it represents. Here is the formula for converting Fahrenheit to Celsius:

Celsius = 5.0 / 9.0 * (Fahrenheit - 32.0)

The Kelvin scale, commonly used in science, is a scale in which 0 represents absolute
zero, the lower limit to possible temperatures. Here is the formula for converting Celsius
to Kelvin:

Kelvin = Celsius + 273.16

The Temperatures () function should use const to create symbolic representations of
the three constants that appear in the conversions. The main () function should use

a loop to allow the user to enter temperatures repeatedly, stopping when a q or other
nonnumeric value is entered. Use the fact that scanf () returns the number of items
read, so it will return 1 if it reads a number, but it won’t return 1 if the user enters q. The
== operator tests for equality, so you can use it to compare the return value of scanf ()
with 1.



0

C Control Statements:
Looping

You will learn about the following in this chapter:

Keywords:
for
while

do while
Operators:

< > >=

Functions:

fabs ()

C’s three loop structures—while, for, and do while

Using relational operators to construct expressions to control these loops
Several other operators

Arrays, which are often used with loops

Writing functions that have return values

Powerful, intelligent, versatile, and useful! Most of us wouldn’t mind being described that
way. With C, there’s at least the chance of having our programs described that way. The trick
is controlling the flow of a program. According to computer science (which is the science of
computers and not science by computers...yet), a good language should provide these three
forms of program flow:
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= Executing a sequence of statements
= Repeating a sequence of statements until some condition is met (looping)

= Using a test to decide between alternative sequences (branching)

The first form you know well; all the previous programs have consisted of a sequence of state-
ments. The while loop is one example of the second form. This chapter takes a closer look

at the while loop along with two other loop structures—for and do while. The final form,
choosing between different possible courses of action, makes a program much more “intel-
ligent” and increases the usefulness of a computer enormously. Sadly, you’ll have to wait a
chapter before being entrusted with such power. This chapter also introduces arrays because
they give you something to do with your new knowledge of loops. In addition, this chapter
continues your education about functions. Let’s begin by reviewing the while loop.

Revisiting the while Loop

You are already somewhat familiar with the while loop, but let’s review it with a program that
sums integers entered from the keyboard (see Listing 6.1). This example makes use of the return
value of scanf () to terminate input.

Listing 6.1 The summing.c Program

/* summing.c -- sums integers entered interactively */
#include <stdio.h>
int main(void)
{
long num;
long sum = 0L; /* initialize sum to zero  */
int status;

printf("Please enter an integer to be summed ");
printf("(q to quit): ");
status = scanf("%$1d", &num);
while (status == 1) /* == means "is equal to" */
{
sum = sum + num;
printf("Please enter next integer (g to quit): ");
status = scanf("%$1d", &num);

}

printf("Those integers sum to %1d.\n", sum);

return 0;
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Listing 6.1 uses type long to allow for larger numbers. For consistency, the program initializes
sum to OL (type long zero) rather than to 0 (type int zero), even though C’s automatic conver-
sions enable you to use a plain 0.

Here is a sample run:

Please enter an integer to be summed (g to quit): 44
Please enter next integer (g to quit): 33

Please enter next integer (g to quit): 88

Please enter next integer (g to quit): 121

Please enter next integer (g to quit): gq

Those integers sum to 286.

Program Comments
Let’s look at the while loop first. The test condition for this loop is the following expression:

status ==

The == operator is C’s equality operator; that is, this expression tests whether status is equal to
1. Don't confuse it with status = 1, which assigns 1 to status. With the status == 1 test
condition, the loop repeats as long as status is 1. For each cycle, the loop adds the current
value of num to sum, so that sum maintains a running total. When status gets a value other
than 1, the loop terminates, and the program reports the final value of sum.

For the program to work properly, it should get a new value for num on each loop cycle, and

it should reset status on each cycle. The program accomplishes this by using two distinct
features of scanf (). First, it uses scanf () to attempt to read a new value for num. Second, it
uses the scanf () return value to report on the success of that attempt. Recall from Chapter 4,
“Character Strings and Formatted Input/Output,” that scanf () returns the number of items
successfully read. If scanf () succeeds in reading an integer, it places the integer into num and
returns the value 1, which is assigned to status. (Note that the input value goes to num, not
to status.) This updates both num and the value of status, and the while loop goes through
another cycle. If you respond with nonnumeric input, such as q, scanf () fails to find an
integer to read, so its return value and status will be 0. That terminates the loop. The input
character g, because it isn’t a number, is placed back into the input queue; it does not get read.
(Actually, any nonnumeric input, not just g, terminates the loop, but asking the user to enter g
is a simpler instruction than asking the user to enter nonnumeric input.)

If scanf () runs into a problem before attempting to convert the value (for example, by detect-
ing the end of the file or by encountering a hardware problem), it returns the special value EOF,
which typically is defined as -1. This value, too, will cause the loop to terminate.

This dual use of scanf () gets around a troublesome aspect of interactive input to a loop: How
do you tell the loop when to stop? Suppose, for instance, that scanf () did not have a return
value. Then, the only thing that would change on each loop is the value of num. You could use
the value of num to terminate the loop, using, say, num > 0 (num greater than 0) or num != 0
(num not equal to 0) as a test condition, but this prevents you from entering certain values,
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such as —3 or 0, as input. Instead, you could add new code to the loop, such as asking “Do you
wish to continue? <y/n>" at each cycle, and then test to see whether the user entered y. This is
a bit clunky and slows down input. Using the return value of scanf () avoids these problems.

Now let’s take a closer look at the program structure. We can summarize it as follows:

initialize sum to 0

prompt user

read input

while the input is an integer,
add the input to sum,
prompt user,
then read next input

after input completes, print sum

This, incidentally, is an example of pseudocode, which is the art of expressing a program in
simple English that parallels the forms of a computer language. Pseudocode is useful for
working out the logic of a program. After the logic seems right, you can translate the pseudo-
code to the actual programming code. One advantage of pseudocode is that it enables you to
concentrate on the logic and organization of a program and spares you from simultaneously
worrying about how to express the ideas in a computer language. Here, for example, you can
use indentation to indicate a block of code and not worry about C syntax requiring braces.
Another advantage is that pseudocode is not tied to a particular language, so the same pseudo-
code can be translated into different computer languages.

Anyway, because the while loop is an entry-condition loop, the program must get the input
and check the value of status before it goes to the body of the loop. That is why the program
has a scanf () before the while. For the loop to continue, you need a read statement inside
the loop so that it can find out the status of the next input. That is why the program also has a
scanf () statement at the end of the while loop; it readies the loop for its next iteration. You
can think of the following as a standard format for a loop:

get first value to be tested
while the test is successful
process value
get next value

C-Style Reading Loop

Listing 6.1 could be written in Pascal, BASIC, or FORTRAN along the same design displayed in
the pseudocode. C, however, offers a shortcut. The construction

status = scanf("%1ld", &num);
while (status == 1)
{
/* loop actions */
status = scanf("%1d", &num);
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can be replaced by the following:

while (scanf("%1d", &num) == 1)

{

/* loop actions */

The second form uses scanf () in two different ways simultaneously. First, the function call,

if successful, places a value in num. Second, the function’s return value (which is 1 or 0 and
not the value of num) controls the loop. Because the loop condition is tested at each iteration,
scanf () is called at each iteration, providing a new num and a new test. In other words, C’s
syntax features let you replace the standard loop format with the following condensed version:

while getting and testing the value succeeds
process the value

Now let’s take a more formal look at the while statement.

The while Statement

This is the general form of the while loop:

while (expression)
statement

The statement part can be a simple statement with a terminating semicolon, or it can be a
compound statement enclosed in braces.

So far, the examples have used relational expressions for the expression part; that is,
expression has been a comparison of values. More generally, you can use any expression.
If expression is true (or, more generally, nonzero), the statement is executed once and then
the expression is tested again. This cycle of test and execution is repeated until expression
becomes false (zero). Each cycle is called an iteration (see Figure 6.1).

lwhile

next false

statement

true

printf("Tra la la la!\n");

Figure 6.1  Structure of the while loop.
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Terminating a while Loop

Here is a crucial point about while loops: When you construct a while loop, it must include
something that changes the value of the test expression so that the expression eventually
becomes false. Otherwise, the loop never terminates. (Actually, you can use break and an if
statement to terminate a loop, but you haven’t learned about them yet.) Consider this example:
index = 1;
while (index < 5)

printf("Good morning!\n");

The preceding fragment prints its cheerful message indefinitely. Why? Because nothing within
the loop changes the value of index from its initial value of 1. Now consider this:
index = 1;
while (--index < 5)
printf("Good morning!\n");

This last fragment isn’t much better. It changes the value of index, but in the wrong direc-
tion! At least this version will terminate eventually when index drops below the most nega-
tive number that the system can handle and becomes the largest possible positive value. (The
toobig.c program in Chapter 3, “Data and C,” illustrates how adding 1 to the largest positive
number typically produces a negative number; similarly, subtracting 1 from the most negative
number typically yields a positive value.)

When a Loop Terminates

It is important to realize that the decision to terminate the loop or to continue takes place only
when the test condition is evaluated. For example, consider the program shown in Listing 6.2.

Listing 6.2 The when.c Program

// when.c -- when a loop quits
#include <stdio.h>

int main(void)

{

int n = 5;

while (n < 7) // line 7
{
printf("n = %d\n", n);
n++; // line 10
printf("Now n = %d\n", n); // line 11

}
printf("The loop has finished.\n");

return 0;
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Running Listing 6.2 produces the following output:

n=2>5
Now n = 6
n==a6
Now n = 7

The loop has finished.

The variable n first acquires the value 7 on line 10 during the second cycle of the loop.
However, the program doesn’t quit then. Instead, it completes the loop (line 11) and quits the
loop only when the test condition on line 7 is evaluated for the third time. (The variable n was
5 for the first test and 6 for the second test.)

while: An Entry-Condition Loop

The while loop is a conditional loop using an entry condition. It is called “conditional” because
the execution of the statement portion depends on the condition described by the test expres-
sion, such as (index < 5). The expression is an entry condition because the condition must be
met before the body of the loop is entered. In a situation such as the following, the body of the
loop is never entered because the condition is false to begin with:

index = 10;
while (index++ < 5)
printf("Have a fair day or better.\n");

Change the first line to

index = 3;

and the loop will execute.

Syntax Points

When using while, keep in mind that only the single statement, simple or compound, follow-
ing the test condition is part of the loop. Indentation is an aid to the reader, not the computer.
Listing 6.3 shows what can happen if you forget this.

Listing 6.3 The whilel.c Program

/* whilel.c -- watch your braces */
/* bad coding creates an infinite loop */
#include <stdio.h>

int main(void)

{

int n = 0;

while (n < 3)
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printf("n is %d\n", n);
n++;
printf("That's all this program does\n");

return 0;

Listing 6.3 produces the following output:
is 0

is
is
is

B B B B B
o o o o

is

...and so on, until you Kkill the program.

Although this example indents the n++; statement, it doesn’t enclose it and the preceding
statement within braces. Therefore, only the single print statement immediately following the
test condition is part of the loop. The variable n is never updated, the condition n < 3 remains
eternally true, and you get a loop that goes on printing n is 0 until you Kkill the program. This
is an example of an infinite loop, one that does not quit without outside intervention.

Always remember that the while statement itself, even if it uses compound statements, counts
syntactically as a single statement. The statement runs from the while to the first semicolon
or, in the case of using a compound statement, to the terminating brace.

Be careful where you place your semicolons. For instance, consider the program in Listing 6.4.

Listing 6.4 The while2.c Program

/* while2.c -- watch your semicolons */
#include <stdio.h>
int main(void)

{
int n = 0;
while (n++ < 3); /* line 7 */
printf("n is %d\n", n); /* line 8 */
printf("That's all this program does.\n");
return 0;
}

Listing 6.4 produces the following output:

n is 4
That's all this program does.
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As we said earlier, the loop ends with the first statement, simple or compound, following the
test condition. Because there is a semicolon immediately after the test condition on line 7, the
loop ends there, because a lone semicolon counts as a statement. The print statement on line 8
is not part of the loop, so n is incremented on each loop, but it is printed only after the loop is
exited.

In this example, the test condition is followed with the null statement, one that does nothing.
In C, the lone semicolon represents the null statement. Occasionally, programmers intention-
ally use the while statement with a null statement because all the work gets done in the test.
For example, suppose you want to skip over input to the first character that isn’t whitespace or
a digit. You can use a loop like this:
while (scanf("%d", &num) == 1)

; /* skip integer input */

As long as scanf () reads an integer, it returns 1, and the loop continues. Note that, for clarity,
you should put the semicolon (the null statement) on the line below instead of on the same
line. This makes it easier to see the null statement when you read a program and also reminds
you that the null statement is there deliberately. Even better, use the continue statement
discussed in the next chapter.

Which Is Bigger: Using Relational Operators and
Expressions

While loops often rely on test expressions that make comparisons, comparison expressions
merit a closer look. Such expressions are termed relational expressions, and the operators that
appear in them are called relational operators. You have used several already, and Table 6.1 gives
a complete list of C relational operators. This table pretty much covers all the possibilities for
numerical relationships. (Numbers, even complex ones, are less complex than humans.)

Table 6.1 Relational Operators

Operator Meaning

< Is less than

<= Is less than or equal to
== Is equal to

>= Is greater than or equal to
> Is greater than

1= Is not equal to
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The relational operators are used to form the relational expressions used in while statements
and in other C statements that we’ll discuss later. These statements check to see whether the
expression is true or false. Here are three unrelated statements containing examples of rela-
tional expressions. The meaning, we hope, is clear.

while (number < 6)

{

printf("Your number is too small.\n");

scanf("%d", &number);
}
while (ch != '$")
{

count++;

scanf("%c", &ch);
}
while (scanf("%f", &num) == 1)

sum = sum + num;

Note in the second example that the relational expressions can be used with characters, too.
The machine character code (which we have been assuming is ASCII) is used for the compari-
son. However, you can’t use the relational operators to compare strings. Chapter 11, “Character
Strings and String Functions,” will show you what to use for strings.

The relational operators can be used with floating-point numbers, too. Beware, though: You
should limit yourself to using only < and > in floating-point comparisons. The reason is that
round-off errors can prevent two numbers from being equal, even though logically they
should be. For example, certainly the product of 3 and 1/3 is 1.0. If you express 1/3 as a six-
place decimal fraction, however, the product is .999999, which is not quite equal to 1. The
fabs () function, declared in the math.h header file, can be handy for floating-point tests. This
function returns the absolute value of a floating-point value—that is, the value without the
algebraic sign. For example, you could test whether a number is close to a desired result with
something like Listing 6.5.

Listing 6.5 The cmpflt.c Program

// cmpflt.c -- floating-point comparisons
#include <math.h>
#include <stdio.h>
int main(void)
{
const double ANSWER = 3.14159;
double response;

printf("What is the value of pi?\n");
scanf("$1f", &response);
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while (fabs(response - ANSWER) > 0.0001)
{

printf("Try again!\n");
scanf("%1f", &response);

}

printf("Close enough!\n");

return 0;

This loop continues to elicit a response until the user gets within 0.0001 of the correct value:

What is the value of pi?
3.14

Try again!

3.1416

Close enough!

Each relational expression is judged to be true or false (but never maybe). This raises an inter-
esting question.

What Is Truth?

You can answer this age-old question, at least as far as C is concerned. Recall that an expression
in C always has a value. This is true even for relational expressions, as the example in Listing
6.6 shows. That example prints the values of two relational expressions—one true and one
false.

Listing 6.6 The t_and f.c Program

/* t_and f.c -- true and false values in C */
#include <stdio.h>
int main(void)

{
int true_val, false val;
true val = (10 > 2); // value of a true relationship
false val = (10 == 2); // value of a false relationship

printf("true = %d; false = %d \n", true val, false val);

return 0;
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Listing 6.6 assigns the values of two relational expressions to two variables. Being straightfor-
ward, it assigns true_val the value of a true expression, and false val the value of a false
expression. Running the program produces the following simple output:

true = 1; false = 0
Ahal! For C, a true expression has the value 1, and a false expression has the value 0. Indeed,

some C programs use the following construction for loops that are meant to run forever
because 1 always is true:

while (1)
{

What Else Is True?

If you can use a 1 or a 0 as a while statement test expression, can you use other numbers? If
so, what happens? Let’s experiment by trying the program in Listing 6.7.

Listing 6.7 The truth.c Program

// truth.c -- what values are true?
#include <stdio.h>
int main(void)

{
int n = 3;
while (n)
printf("$2d is true\n", n--);
printf("$2d is false\n", n);
n = -3;
while (n)
printf("%2d is true\n", n++);
printf("$2d is false\n", n);
return 0;
}

Here are the results:

is true

3

2 is true
1 is true
0

is false
-3 is true
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-2 is true
-1 is true
0 is false

The first loop executes when n is 3, 2, and 1, but terminates when n is 0. Similarly, the second
loop executes when n is -3, -2, and -1, but terminates when n is 0. More generally, all nonzero
values are regarded as true, and only 0 is recognized as false. C has a very tolerant notion of
truth!

Alternatively, you can say that a while loop executes as long as its test condition evaluates to
nonzero. This puts test conditions on a numeric basis instead of a true/false basis. Keep in mind
that relational expressions evaluate to 1 if true and to 0 if false, so such expressions really are
numeric.

Many C programmers make use of this property of test conditions. For example, the phrase
while (goats != 0) can be replaced by while (goats) because the expression (goats

!= 0) and the expression (goats) both become 0, or false, only when goats has the value 0.
The first form probably is clearer to those just learning the language, but the second form is the
idiom most often used by C programmers. You should try to become sufficiently familiar with
the while (goats) form so that it seems natural to you.

Troubles with Truth

C’s tolerant notion of truth can lead to trouble. For example, let’s make one subtle change to
the program from Listing 6.1, producing the program shown in Listing 6.8.

Listing 6.8 The trouble.c Program

// trouble.c -- misuse of =
// will cause infinite loop
#include <stdio.h>
int main(void)
{

long num;

long sum = 0L;

int status;

printf("Please enter an integer to be summed ");
printf("(q to quit): ");
status = scanf("%1d", &num);
while (status = 1)
{
sum = sum + num;
printf("Please enter next integer (g to quit): ");
status = scanf("%1d", &num);
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printf("Those integers sum to %1d.\n", sum);

return 0;

Listing 6.8 produces output like the following:

Please enter an integer to be summed (g to quit): 20
Please enter next integer (g to quit): 5

Please enter next integer (g to quit): 30

Please enter next integer (g to quit): gq

Please enter next integer (g to quit):

Please enter next integer (g to quit):

Please enter next integer (g to quit):

Please enter next integer (g to quit):

...and so on until you Kkill the program—so perhaps you shouldn’t actually try running this
example.

This troublesome example made a change in the while test condition, replacing status ==

1 with status = 1. The second statement is an assignment statement, so it gives status the
value 1. Furthermore, the value of an assignment statement is the value of the left side, so
status = 1 has the same numerical value of 1. So for all practical purposes, the while loop is
the same as using while (1); that is, it is a loop that never quits. You enter g, and status is
set to 0, but the loop test resets status to 1 and starts another cycle.

You might wonder why, because the program keeps looping, the user doesn’t get a chance

to type in any more input after entering g. When scanf () fails to read the specified form of
input, it leaves the nonconforming input in place to be read the next time. When scanf ()
tries to read the g as an integer and fails, it leaves the g there. During the next loop cycle,
scanf () attempts to read where it left off the last time—at the g. Once again, scanf () fails to
read the g as an integer, so not only does this example set up an infinite loop, it also creates a
loop of infinite failure, a daunting concept. It is fortunate that computers, as yet, lack feelings.
Following stupid instructions eternally is no better or worse to a computer than successfully
predicting the stock market for the next 10 years.

Don'’t use = for ==. Some computer languages (BASIC, for example) do use the same symbol for
both the assignment operator and the relational equality operator, but the two operations are
quite different (see Figure 6.2). The assignment operator assigns a value to the left variable. The
relational equality operator, however, checks to see whether the left and right sides are already
equal. It doesn’t change the value of the left-hand variable, if one is present. Here’s an example:

canoes = 5 <Assigns the value 5 to canoes

canoes == <Checks to see whether canoes has the value 5
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Be careful about using the correct operator. A compiler will let you use the wrong form, yield-
ing results other than what you expect. (However, so many people have misused = so often
that most compilers today will issue a warning to the effect that perhaps you didn’t mean to
use this.) If one of the values being compared is a constant, you can put it on the left side of
the comparison to help catch errors:

5 = canoes &syntax error

5 == canoes <Checks to see whether canoes has the value 5

The point is that it is illegal to assign to a constant, so the compiler will tag the use of
the assignment operator as a syntax error. Many practitioners put the constant first when
constructing expressions that test for equality.

comparison
canoes == == checks to see if the
value of canoes is 5
assignment
canoes = 5 = gives canoes
the value of 5

Figure 6.2 The relational operator == and the assignment operator =.

To sum up, the relational operators are used to form relational expressions. Relational expres-
sions have the value 1 if true and O if false. Statements (such as while and if) that normally
use relational expressions as tests can use any expression as a test, with nonzero values recog-
nized as “true” and zero values as “false.”

The New _Bool Type

Variables intended to represent true/false values traditionally have been represented by type
int in C. C99 adds the _Bool type specifically for variables of this sort. The type is named after
George Boole, the English mathematician who developed a system of algebra to represent and
solve problems in logic. In programming, variables representing true or false have come to be
known as Boolean variables, so _Bool is the C type name for a Boolean variable. A _Bool vari-
able can only have a value of 1 (true) or O (false). If you try to assign a nonzero numeric value
to a _Bool variable, the variable is set to 1, reflecting that C considers any nonzero value to be
true.
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Listing 6.9 fixes the test condition in Listing 6.8 and replaces the int variable status with the
_Bool variable input_is_good. It's a common practice to give Boolean variables names that
suggest true or false values.

Listing 6.9 The boolean.c Program

// boolean.c -- using a _Bool variable
#include <stdio.h>
int main(void)

{
long num;
long sum = OL;
_Bool input_is_good;
printf("Please enter an integer to be summed ");
printf("(q to quit): ");
input_is good = (scanf("%1ld", &num) == 1);
while (input_is good)
{
sum = sum + num;
printf("Please enter next integer (g to quit): ");
input_is good = (scanf("%1ld", &num) == 1);
}
printf("Those integers sum to %1ld.\n", sum);
return 0;
}

Note how the code assigns the result of a comparison to the variable:

input_is good = (scanf("%1ld", &num) == 1);

This makes sense, because the == operator returns either a value of 1 or 0. Incidentally, the
parentheses enclosing the == expression are not needed because the == operator has higher
precedence than =; however, they may make the code easier to read. Also note how the choice
of name for the variable makes the while loop test easy to understand:

while (input_is good)

C99 also provides for a stdbool.h header file. This header file makes bool an alias for _Bool
and defines true and false as symbolic constants for the values 1 and 0. Including this header
file allows you to write code that is compatible with C++, which defines bool, true, and false
as keywords.

If your system does not yet support the _Bool type, you can replace _Bool with int, and the
example will work the same.



Which Is Bigger: Using Relational Operators and Expressions

Precedence of Relational Operators

The precedence of the relational operators is less than that of the arithmetic operators, includ-
ing + and -, and greater than that of assignment operators. This means, for example, that

x>y + 2

means the same as

x> (y +2)

It also means that

X =y >2
means
x = (y>2)

In other words, x is assigned 1 if y is greater than 2 and is 0 otherwise; x is not assigned the
value of y.

The relational operators have a greater precedence than the assignment operator. Therefore,

x bigger = x > y;

means

x_bigger = (x > y);
The relational operators are themselves organized into two different precedences.

Higher precedence group: < <= > >=

Lower precedence group: = |I=

Like most other operators, the relational operators associate from left to right. Therefore,

ex != wye == zee

is the same as
(ex != wye) == zee
First, C checks to see whether ex and wye are unequal. Then, the resulting value of 1 or 0 (true

or false) is compared to the value of zee. We don’t anticipate using this sort of construction,
but we feel it is our duty to point out such sidelights.

Table 6.2 shows the priorities of the operators introduced so far, and Reference Section II, “C
Operators,” in Appendix B has a complete precedence ranking of all operators.
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Table 6.2 Operator Precedence

Operators (From High to Low Precedence)
()

- + ++ — sizeof

Associativity

L-R

R-L (type) (all unary)
L-R

L-R

L-R

L-R

R-L

Summary: The while Statement
Keyword:

while

General Comments:

The while statement creates a loop that repeats until the test expression becomes false, or
zero. The while statement is an entry-condition loop—that is, the decision to go through one
more pass of the loop is made before the loop is traversed. Therefore, it is possible that the
loop is never traversed. The statement part of the form can be a simple statement or a com-
pound statement.

Form:

while (expression)
statement

The statement portion is repeated until the expression becomes false or O.
Examples:

while (nt++ < 100)
printf(" %d %d\n",n, 2 * n + 1); // single statement

while (fargo < 1000)

{ // compound statement
fargo = fargo + step;
step = 2 * step;



Indefinite Loops and Counting Loops

Summary: Relational Operators and Expressions
Relational Operators:
Each relational operator compares the value at its left to the value at its right.

< Is less than

<= Is less than or equal to
== Is equal to

>= Is greater than or equal to
> Is greater than

1= Is unequal to

Relational Expressions:

A simple relational expression consists of a relational operator with an operand on each side.
If the relation is true, the relational expression has the value 1. If the relation is false, the rela-
tional expression has the value 0.

Examples:

5 > 2 is true and has the value 1.

(2 + a) == ais false and has the value 0.

Indefinite Loops and Counting Loops

Some of the while loop examples have been indefinite loops. That means we don’t know in
advance how many times the loop will be executed before the expression becomes false. For
example, when Listing 6.1 used an interactive loop to sum integers, we didn’t know beforehand
how many integers would be entered. Other examples, however, have been counting loops.
They execute a predetermined number of repetitions. Listing 6.10 is a short example of a while
counting loop.

Listing 6.10 The sweetiel.c Program

// sweetiel.c -- a counting loop
#include <stdio.h>
int main(void)

{
const int NUMBER = 22;
int count = 1; // initialization
while (count <= NUMBER) // test
{
printf("Be my Valentine!\n"); // action
count++; // update count
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return 0;

Although the form used in Listing 6.10 works fine, it is not the best choice for this situation
because the actions defining the loop are not all gathered together. Let’s elaborate on that
point.

Three actions are involved in setting up a loop that is to be repeated a fixed number of times:
1. A counter must be initialized.
2. The counter is compared with some limiting value.

3. The counter is incremented each time the loop is traversed.

The while loop condition takes care of the comparison. The increment operator takes care of
the incrementing. In Listing 6.10, the incrementing is done at the end of the loop. This choice
makes it possible to omit the incrementing accidentally. So it would be better to combine the
test and update actions into one expression by using count++ <= NUMBER, but the initializa-
tion of the counter is still done outside the loop, making it possible to forget to initialize a
counter. Experience teaches us that what might happen will happen eventually, so let’s look at
a control statement that avoids these problems.

The for Loop

The for loop gathers all three actions (initializing, testing, and updating) into one place. By
using a for loop, you can replace the preceding program with the one shown in Listing 6.11.

Listing 6.11 The sweetie2.c Program

// sweetie2.c -- a counting loop using for
#include <stdio.h>
int main(void)

{
const int NUMBER = 22;
int count;
for (count = 1; count <= NUMBER; count++)
printf("Be my Valentine!\n");
return 0;
}

The parentheses following the keyword for contain three expressions separated by two semi-
colons. The first expression is the initialization. It is done just once, when the for loop first
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starts. The second expression is the test condition; it is evaluated before each potential execu-
tion of a loop. When the expression is false (when count is greater than NUMBER), the loop is
terminated. The third expression, the change or update, is evaluated at the end of each loop.
Listing 6.10 uses it to increment the value of count, but it needn’t be restricted to that use. The
for statement is completed by following it with a single simple or compound statement. Each
of the three control expressions is a full expression, so any side effects in a control expression,
such as incrementing a variable, take place before the program evaluates another expression.
Figure 6.3 summarizes the structure of a for loop.

To show another example, Listing 6.12 uses the for loop in a program that prints a table of
cubes.

initialize expression once
before loop begins

l this expression is done
at end of each loop

false

count<=number;

<«——{ count++;

A

ltrue

printf("Be my Valentine!\n");

Figure 6.3 Structure of a for loop.

Listing 6.12 The for cube.c Program

/* for cube.c -- using a for loop to make a table of cubes */
#include <stdio.h>

int main(void)

{

int num;
printf(" n n cubed\n");
for (num = 1; num <= 6; numt+)

printf("%5d $5d\n", num, num*num*num);

return 0;

209



210

Chapter 6 C Control Statements: Looping

Listing 6.12 prints the integers 1 through 6 and their cubes.

n n cubed
1 1
2 8
3 27
4
5
6

The first line of the for loop tells us immediately all the information about the loop param-
eters: the starting value of num, the final value of num, and the amount that num increases on
each looping.

Using for for Flexibility

Although the for loop looks similar to the FORTRAN Do loop, the Pascal FOR loop, and the
BASIC FOR. . .NEXT loop, it is much more flexible than any of them. This flexibility stems from
how the three expressions in a for specification can be used. The examples so far have used
the first expression to initialize a counter, the second expression to express the limit for the
counter, and the third expression to increase the value of the counter by 1. When used this
way, the C for statement is very much like the others we have mentioned. However, there are
many more possibilities; here are nine variations:

= You can use the decrement operator to count down instead of up:

/* for down.c */
#include <stdio.h>
int main(void)

{
int secs;
for (secs = 5; secs > 0; secs--)
printf("%d seconds!\n", secs);
printf("We have ignition!\n");
return 0;
}

Here is the output:

seconds!
seconds!
seconds!
seconds!

=N W s U,

seconds!
We have ignition!
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= You can count by twos, tens, and so on, if you want:
/* for_13s.c */
#include <stdio.h>
int main(void)

{
int n; // count by 13s from 2
for (n =2; n<60; n=n+ 13)
printf("%d \n", n);
return 0;
}

This would increase n by 13 during each cycle, printing the following:

2
15
28
41
54

= You can count by characters instead of by numbers:

/* for_char.c */
#include <stdio.h>
int main(void)

{
char ch;
for (ch = 'a'; ch <= '2'; ch++)
printf("The ASCII value for %c is %d.\n", ch, ch);
return 0;
}

The program assumes the system uses ASCII code for characters. Here’s the abridged
output:

The ASCII value for a is 97.
The ASCII value for b is 98.

The ASCII value for x is 120.
The ASCII value for y is 121.
The ASCII value for z is 122.

The program works because characters are stored as integers, so this loop really counts by
integers anyway.

= You can test some condition other than the number of iterations. In the for cube
program, you can replace

for (num = 1; num <= 6; numt+)
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with

for (num = 1; num*num*num <= 216; num+t+)

You would use this test condition if you were more concerned with limiting the size of
the cube than with limiting the number of iterations.

You can let a quantity increase geometrically instead of arithmetically; that is, instead of
adding a fixed amount each time, you can multiply by a fixed amount:

/* for geo.c */

#include <stdio.h>

int main(void)

{
double debt;
for (debt = 100.0; debt < 150.0; debt = debt * 1.1)
printf("Your debt is now $%.2f.\n", debt);
return 0;
}

This program fragment multiplies debt by 1.1 for each cycle, increasing it by 10% each
time. The output looks like this:

Your debt is now $100.00.
Your debt is now $110.00.
Your debt is now $121.00.
Your debt is now $133.10.
Your debt is now $146.41.

You can use any legal expression you want for the third expression. Whatever you put in
will be updated for each iteration.

/* for wild.c */

#include <stdio.h>

int main(void)

{
int x;
int y = 55;
for (x = 1; y <= 75; y = (++x * 5) + 50)
printf("%10d %10d\n", x, y);
return 0;
}

This loop prints the values of x and of the algebraic expression ++x * 5 + 50. The
output looks like this:

1 55

2 60
3 65
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4 70
5 75

Notice that the test involves y, not x. Each of the three expressions in the for loop
control can use different variables. (Note that although this example is valid, it does not
show good style. The program would have been clearer if we hadn’t mixed the updating
process with an algebraic calculation.)

You can even leave one or more expressions blank (but don’t omit the semicolons). Just
be sure to include within the loop itself some statement that eventually causes the loop
to terminate.

/* for none.c */

#include <stdio.h>

int main(void)

{
int ans, n;
ans = 2;
for (n = 3; ans <= 25; )
ans = ans * nj;
printf("n = %d; ans = %d.\n", n, ans);
return 0;
}

Here is the output:

n = 3; ans = 54.

The loop keeps the value of n at 3. The variable ans starts with the value 2, and then
increases to 6 and 18 and obtains a final value of 54. (The value 18 is less than 25, so the
for loop goes through one more iteration, multiplying 18 by 3 to get 54.) Incidentally,
an empty middle control expression is considered to be true, so the following loop goes
on forever:
for (i i)

printf("I want some action\n");

The first expression need not initialize a variable. It could, instead, be a printf()
statement of some sort. Just remember that the first expression is evaluated or executed
only once, before any other parts of the loop are executed.

/* for_show.c */

#include <stdio.h>

int main(void)

{

int num = 0;

for (printf("Keep entering numbers!\n"); num != 6; )
scanf("%d", &num);
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printf("That's the one I want!\n");
return 0;

This fragment prints the first message once and then keeps accepting numbers until you
enter 6:

Keep entering numbers!
3
5
8
6
That's the one I want!

= The parameters of the loop expressions can be altered by actions within the loop. For
example, suppose you have the loop set up like this:

for (n = 1; n < 10000; n = n + delta)

If after a few iterations your program decides that delta is too small or too large, an
if statement (see Chapter 7, “C Control Statements: Branching and Jumps”) inside the
loop can change the size of delta. In an interactive program, delta can be changed
by the user as the loop runs. This sort of adjustment is a bit on the dangerous side; for
example, setting delta to 0 gets you (and the loop) nowhere.

In short, the freedom you have in selecting the expressions that control a for loop makes this
loop able to do much more than just perform a fixed number of iterations. The usefulness of
the for loop is enhanced further by the operators we will discuss shortly.

Summary: The rfor Statement
Keyword:for
General Comments:

The for statement uses three control expressions, separated by semicolons, to control a
looping process. The initialize expression is executed once, before any of the loop state-
ments are executed. Then the test expression is evaluated and, if it is true (or nonzero), the
loop is cycled through once. Then the update expression is evaluated, and it is time to check
the test expression again. The for statement is an entry-condition loop—the decision to go
through one more pass of the loop is made before the loop is traversed. Therefore, it is pos-
sible that the loop is never traversed. The statement part of the form can be a simple state-
ment or a compound statement.

Form:

for (initialize ; test ; update)
statement

The loop is repeated until test becomes false or zero.
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Example:

for (n = 0; n < 10 ; nt+)
printf(" %d %d\n", n, 2 * n + 1);

More Assignment Operators: -, -, «, /=, =

C has several assignment operators. The most basic one, of course, is =, which simply assigns
the value of the expression at its right to the variable at its left. The other assignment operators
update variables. Each is used with a variable name to its left and an expression to its right. The
variable is assigned a new value equal to its old value adjusted by the value of the expression at
the right. The exact adjustment depends on the operator. For example,

scores += 20 is the same as scores = scores + 20.
dimes -= 2 is the same as dimes = dimes - 2.
bunnies #*= 2 is the same as bunnies = bunnies * 2.
time /= 2.73isthe same as time = time / 2.73.

reduce %= 3 is the same as reduce = reduce % 3.

The preceding list uses simple numbers on the right, but these operators also work with more
elaborate expressions, such as the following:

x *= 3 * y + 12isthesameasx = x * (3 * y + 12).

The assignment operators we’ve just discussed have the same low priority that = does—that is,
less than that of + or *. This low priority is reflected in the last example in which 12 is added
to 3 * y before the result is multiplied by x.

You are not required to use these forms. They are, however, more compact, and they may
produce more efficient machine code than the longer form. The combination assignment oper-
ators are particularly useful when you are trying to squeeze something complex into a

for loop specification.

The Comma Operator

The comma operator extends the flexibility of the for loop by enabling you to include more
than one initialization or update expression in a single for loop specification. For example,
Listing 6.13 shows a program that prints first-class postage rates. (At the time of this writing,
the rate is 46 cents for the first ounce and 20 cents for each additional ounce. You can check
the Internet for the current rates.)
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Listing 6.13 The postage.c Program

// postage.c -- first-class postage rates
#include <stdio.h>
int main(void)

{
const int FIRST 0z = 46; // 2013 rate
const int NEXT 0Z = 20; // 2013 rate
int ounces, cost;
printf(" ounces cost\n");
for (ounces=1, cost=FIRST 0Z; ounces <= 16; ounces++,
cost += NEXT 0Z)
printf("%5d  $%4.2f\n", ounces, cost/100.0);
return 0;
}

The first five lines of the output look like this:

ounces cost

1 $0.46
2 $0.66
3 $0.86
4 $1.06

The program uses the comma operator in the initialize and the update expressions. Its presence
in the first expression causes ounces and cost to be initialized. Its second occurrence causes
ounces to be increased by 1 and cost to be increased by 20 (the value of NEXT 0z) for each
iteration. All the calculations are done in the for loop specifications (see Figure 6.4).

Lfor

A

ounces=1,
cost=FIRST 02;

|

ﬁﬂse ounces++,
cost+=NEXT_02

o

ounces<=16;

l true

do this;

Figure 6.4 The comma operator and the for loop.
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The comma operator is not restricted to for loops, but that’s where it is most often used. The
operator has two further properties. First, it guarantees that the expressions it separates are eval-
uated in a left-to-right order. (In other words, the comma is a sequence point, so all side effects
to the left of the comma take place before the program moves to the right of the comma.)
Therefore, ounces is initialized before cost. The order is not important for this example, but

it would be important if the expression for cost contained ounces. Suppose, for instance, that
you had this expression:

ounces++, cost = ounces * FIRST 0%

This would increment ounces and then use the new value for ounces in the second subexpres-
sion. The comma being a sequence point guarantees that the side effects of the left subexpres-
sion occur before the right subexpression is evaluated.

Second, the value of the whole comma expression is the value of the right-hand member. The
effect of the statement

X =(y =3, (z=++ty + 2) + 5);
is to first assign 3 to y, increment y to 4, and then add 2 to 4 and assign the resulting value of
6 to z, next add 5 to z, and finally assign the resulting value of 11 to x. Why anyone would

do this is beyond the scope of this book. On the other hand, suppose you get careless and use
comma notation in writing a number:

houseprice = 249,500;

This is not a syntax error. Instead, C interprets this as a comma expression, with houseprice
= 249 being the left subexpression and 500 the right subexpression. Therefore, the value of
the whole comma expression is the value of the right-hand expression, and the left substate-

ment assigns the value 249 to the houseprice variable. Therefore, the effect is the same as the
following code:

houseprice = 249;
500;

Remember that any expression becomes a statement with the addition of a semicolon, so 500;
is a statement that does nothing.

On the other hand, the statement

houseprice = (249,500);

assigns 500, the value of the right subexpression, to houseprice.

The comma also is used as a separator, so the commas in

char ch, date;

and

printf("sd %d\n", chimps, chumps);
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are separators, not comma operators.

Summary: The New Operators
Assignment Operators:

Each of these operators updates the variable at its left by the value at its right, using the indi-
cated operation:

+= Adds the right-hand quantity to the left-hand variable
-= Subtracts the right-hand quantity from the left-hand variable
*= Multiplies the left-hand variable by the right-hand quantity
/= Divides the left-hand variable by the right-hand quantity
%= Gives the remainder obtained from dividing the left-hand variable by the right-hand
quantity
Example:

rabbits *= 1.6;

is the same as

rabbits = rabbits * 1.6;

These combination assignment operators have the same low precedence as the regular assign-
ment operator, lower than arithmetic operators. Therefore, a statement such as

contents *= old_rate + 1.2;

has the same final effect as this:

contents = contents * (old rate + 1.2);

The Comma Operator:

The comma operator links two expressions into one and guarantees that the leftmost expres-
sion is evaluated first. It is typically used to include more information in a for loop control
expression. The value of the whole expression is the value of the right-hand expression.
Example:

for (step = 2, fargo = 0; fargo < 1000; step *= 2)
fargo += step;

Zeno Meets the for Loop

Let’s see how the for loop and the comma operator can help solve an old paradox. The Greek

philosopher Zeno once argued that an arrow will never reach its target. First, he said, the arrow
covers half the distance to the target. Then it has to cover half of the remaining distance. Then
it still has half of what’s left to cover, ad infinitum. Because the journey has an infinite number
of parts, Zeno argued, it would take the arrow an infinite amount of time to reach its journey’s
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end. We doubt, however, that Zeno would have volunteered to be a target on the strength of
this argument.

Let’s take a quantitative approach and suppose that it takes the arrow 1 second to travel the
first half. Then it would take 1/2 second to travel half of what was left, 1/4 second to travel
half of what was left next, and so on. You can represent the total time by the following infinite
series:

1+ 1/2 + 1/4 + 1/8 + 1/16 +....

The short program in Listing 6.14 finds the sum of the first few terms. The variable
power of two takes on the values 1.0, 2.0, 4.0, 8.0, and so on.

Listing 6.14 The zeno.c Program

/* zeno.c -- series sum */
#include <stdio.h>

int main(void)

{
int t_ct; // term count
double time, power of_ 2;
int limit;
printf("Enter the number of terms you want: ");
scanf("%d", &limit);
for (time=0, power_of 2=1, t_ct=1l; t_ct <= limit;
t_ct++, power of 2 *= 2.0)
{
time += 1.0/power_of_ 2;
printf("time = %f when terms = %d.\n", time, t ct);
}
return 0;
}

Here is the output for 15 terms:

Enter the number of terms you want: 15

time = 1.000000 when terms = 1.
time = 1.500000 when terms = 2.
time = 1.750000 when terms = 3.
time = 1.875000 when terms = 4.
time = 1.937500 when terms = 5.
time = 1.968750 when terms = 6.
time = 1.984375 when terms = 7.
time = 1.992188 when terms = 8.
time = 1.996094 when terms = 9.
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time = 1.998047 when terms = 10.
time = 1.999023 when terms = 11.
time = 1.999512 when terms = 12.
time = 1.999756 when terms = 13.
time = 1.999878 when terms = 14.
time = 1.999939 when terms = 15.

You can see that although you keep adding more terms, the total seems to level out. Indeed,
mathematicians have proven that the total approaches 2.0 as the number of terms approaches
infinity, just as this program suggests. Here’s one demonstration. Suppose you let S represent
the sum:

S=1+1/2+1/4 +1/8 + ...

Here the ellipsis mean “and so on.” Then dividing by 2 gives

S/2 =1/2 + 1/4 + 1/8 + 1/16 + ...

Subtracting the second expression from the first gives

S -8/2=1+1/2 -1/2 + 1/4 -1/4 +...

Except for the initial value of 1, each other value occurs in pairs, one positive and one negative,
so those terms cancel each other, leaving

s/2 = 1.

Then, multiplying both sides by 2 gives
S = 2.

One possible moral to draw from this is that before doing an involved calculation, check to see
whether mathematicians have an easier way to do it.

What about the program itself? It shows that you can use more than one comma operator in
an expression. You initialized time, power_of 2, and count. After you set up the conditions
for the loop, the program itself is extremely brief.

An Exit-Condition Loop: do while

The while loop and the for loop are both entry-condition loops. The test condition is checked
before each iteration of the loop, so it is possible for the statements in the loop to never
execute. C also has an exit-condition loop, in which the condition is checked after each iteration
of the loop, guaranteeing that statements are executed at least once. This variety is called a

do while loop. Listing 6.15 shows an example.
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Listing 6.15 The do_while.c Program

: do while

/* do_while.c -- exit condition loop */
#include <stdio.h>
int main(void)

{

const int secret code = 13;
int code_entered;

do

{
printf("To enter the triskaidekaphobia therapy club,\n");
printf("please enter the secret code number: ");
scanf("%d", &code_entered);

} while (code_entered != secret code);

printf("Congratulations! You are cured!\n");

return 0;

The program in Listing 6.15 reads input values until the user enters 13. The following is a
sample run:

To enter the triskaidekaphobia therapy club,
please enter the secret code number: 12

To enter the triskaidekaphobia therapy club,
please enter the secret code number: 14

To enter the triskaidekaphobia therapy club,
please enter the secret code number: 13
Congratulations! You are cured!

An equivalent program using a while loop would be a little longer, as shown in Listing 6.16.

Listing 6.16 The entry.c Program

/* entry.c -- entry condition loop */
#include <stdio.h>
int main(void)

{

const int secret code = 13;
int code_entered;

printf("To enter the triskaidekaphobia therapy club,\n");
printf("please enter the secret code number: ");
scanf("%d", &code_entered);

while (code_entered != secret_code)

{
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printf("To enter the triskaidekaphobia therapy club,\n");
printf("please enter the secret code number: ");
scanf("%d", &code_entered);

}

printf("Congratulations! You are cured!\n");

return 0;

Here is the general form of the do while loop:

do
statement
while ( expression );

The statement can be simple or compound. Note that the do while loop itself counts as a
statement and, therefore, requires a terminating semicolon. Also, see Figure 6.5.

ldo

printf("Fa la la la!\n");

lwhi]e

A

next false

statement

| true

Figure 6.5 Structure of a do while loop.

A do while loop is always executed at least once because the test is made after the body of the
loop has been executed. A for loop or a while loop, on the other hand, can be executed zero
times because the test is made before execution. You should restrict the use of do while loops
to cases that require at least one iteration. For example, a password program could include a
loop along these pseudocode lines:

do
{
prompt for password
read user input
} while (input not equal to password);
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Avoid a do while structure of the type shown in the following pseudocode:

do
{

ask user if he or she wants to continue
some clever stuff
} while (answer is yes);

Here, after the user answers “no,” some clever stuff gets done anyway because the test comes
too late.

Summary: The do while Statement
Keywords:

do while

General Comments:

The do while statement creates a loop that repeats until the test expression becomes false
or zero. The do while statement is an exit-condition loop—the decision to go through one
more pass of the loop is made after the loop has been traversed. Therefore, the loop must be
executed at least once. The statement part of the form can be a simple statement or a com-
pound statement.

Form:

do
statement
while (expression);

The statement portion is repeated until the expression becomes false or zero.
Example:

do
scanf("%d", &number);
while (number != 20);

Which Loop?

When you decide you need a loop, which one should you use? First, decide whether you need
an entry-condition loop or an exit-condition loop. Your answer should usually be an entry-
condition loop. There are several reasons computer scientists consider an entry-condition loop
to be superior. One is the general principle that it is better to look before you leap (or loop)
than after. A second is that a program is easier to read if the loop test is found at the beginning
of the loop. Finally, in many uses, it is important that the loop be skipped entirely if the test is
not initially met.
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Assume that you need an entry-condition loop. Should it be a for or a while? This is partly a
matter of taste, because what you can do with one, you can do with the other. To make a for
loop like a while, you can omit the first and third expressions. For example,

for ( ;test; )

is the same as

while (test)

To make a while like a for, preface it with an initialization and include update statements. For
example,

initialize;
while (test)

{
body;
update;

is the same as

for (initialize; test; update)
body;

In terms of prevailing style, a for loop is appropriate when the loop involves initializing and
updating a variable, and a while loop is better when the conditions are otherwise. A while
loop is natural for the following condition:

while (scanf("%1d", &num) == 1)

The for loop is a more natural choice for loops involving counting with an index:

for (count = 1; count <= 100; count++)

Nested Loops

A nested loop is one loop inside another loop. A common use for nested loops is to display data
in rows and columns. One loop can handle, say, all the columns in a row, and the second loop
handles the rows. Listing 6.17 shows a simple example.

Listing 6.17 The rowsl.c Program

/* rowsl.c -- uses nested loops */
#include <stdio.h>

#define ROWS 6

#define CHARS 10

int main(void)

{
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int row;
char ch;

for (row = 0; row < ROWS; row++) /* line 10 */
{
for (ch = 'A'; ch < ('A' + CHARS); ch++) /* line 12 */
printf("%c", ch);
printf("\n");

return 0;

Running the program produces this output:

ABCDEFGHIJ
ABCDEFGHIJ
ABCDEFGHIJ
ABCDEFGHIJ
ABCDEFGHIJ
ABCDEFGHIJ

Program Discussion

The for loop beginning on line 10 is called an outer loop, and the loop beginning on line 12
is called an inner loop because it is inside the other loop. The outer loop starts with row having
a value of 0 and terminates when row reaches 6. Therefore, the outer loop goes through six
cycles, with row having the values 0 through 5. The first statement in each cycle is the inner
for loop. This loop goes through 10 cycles, printing the characters A through J on the same
line. The second statement of the outer loop is printf("\n");. This statement starts a new
line so that the next time the inner loop is run, the output is on a new line.

Note that, with a nested loop, the inner loop runs through its full range of iterations for each
single iteration of the outer loop. In the last example, the inner loop prints 10 characters to a
row, and the outer loop creates six rows.

A Nested Variation

In the preceding example, the inner loop did the same thing for each cycle of the outer loop.
You can make the inner loop behave differently each cycle by making part of the inner loop
depend on the outer loop. Listing 6.18, for example, alters the last program slightly by making
the starting character of the inner loop depend on the cycle number of the outer loop. It also
uses the newer comment style and const instead of #define to help you get comfortable with
both approaches.
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Listing 6.18 The rows2.c Program

// rows2.c -- using dependent nested loops
#include <stdio.h>
int main(void)
{
const int ROWS = 6;
const int CHARS = 6;
int row;
char ch;

for (row = 0; row < ROWS; rowt+)
{
for (ch = ('A' + row); ch < ('A' + CHARS); ch++)
printf("%c", ch);
printf("\n");

return 0;

Here’s the output this time:

ABCDEF
BCDEF
CDEF
DEF

EF

F

Because row is added to 'A' during each cycle of the outer loop, ch is initialized in each row to
one character later in the alphabet. The test condition, however, is unaltered, so each row still
ends on F. This results in one fewer character being printed in each row.

Introducing Arrays

Arrays are important features in many programs. They enable you to store several items of
related information in a convenient fashion. We will devote all of Chapter 10, “Arrays and
Pointers,” to arrays, but because arrays are often used with loops, we want to introduce them
now.

An array is a series of values of the same type, such as 10 chars or 15 ints, stored sequentially.
The whole array bears a single name, and the individual items, or elements, are accessed by
using an integer index. For example, the declaration

float debts[20];
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announces that debts is an array with 20 elements, each of which can hold a type float
value. The first element of the array is called debts[0], the second element is called debts[1],
and so on, up to debts[19]. Note that the numbering of array elements starts with 0, not 1.
Each element can be assigned a £loat value. For example, you can have the following:

debts[5] 32.54;
debts[6] = 1.2e+21;

In fact, you can use an array element the same way you would use a variable of the same type.
For example, you can read a value into a particular element:

scanf ("%f", &debts[4]); // read a value into the 5th element

One potential pitfall is that, in the interest of speed of execution, C doesn’t check to see
whether you use a correct subscript. Each of the following, for example, is bad code:

debts[20] = 88.32; // no such array element
debts[33] = 828.12; // no such array element

However, the compiler doesn’t look for such errors. When the program runs, these statements
would place data in locations possibly used for other data, potentially corrupting the output of
the program or even causing it to abort.

An array can be of any data type.

int nannies[22]; /* an array to hold 22 integers */
char actors[26]; /* an array to hold 26 characters */
long big[5001]; /* an array to hold 500 long integers */

Earlier, for example, we talked about strings, which are a special case of what can be stored in
a char array. (A char array, in general, is one whose elements are assigned char values.) The
contents of a char array form a string if the array contains the null character, \0, which marks
the end of the string (see Figure 6.6).

character array but not a string

c s e e i
character array and a string
| y | o | u | @ a | n | s e e i t | o | \0|

A

null character

Figure 6.6 Character arrays and strings.
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The numbers used to identify the array elements are called subscripts, indices, or offsets. The
subscripts must be integers, and, as mentioned, the subscripting begins with 0. The array
elements are stored next to each other in memory, as shown in Figure 6.7.

int boo[4] (note: 2 bytes per int)
1980 46 4816 3
boo[0] boo[1] boo[2] boo[3]
char foo[4] (note: 1-byte char)
h e 1 P

foo[0] foo[1l] foo[2] foo[3]

Figure 6.7 The char and int arrays in memory.

Using a for Loop with an Array

There are many, many uses for arrays. Listing 6.19 is a relatively simple one. It’s a program that
reads in 10 golf scores that will be processed later. By using an array, you avoid the need to
invent 10 different variable names, one for each score. Also, you can use a for loop to do the
reading. The program goes on to report the sum of the scores and their average and a handicap,
which is the difference between the average and a standard score, or par.

Listing 6.19 The scores_in.c Program

// scores_in.c -- uses loops for array processing
#include <stdio.h>
#define SIZE 10
#define PAR 72
int main(void)
{
int index, score[SIZE];
int sum = 0;
float average;

printf ("Enter %d golf scores:\n", SIZE);
for (index = 0; index < SIZE; index++)

scanf("%d", &score[index]); // read in the ten scores
printf("The scores read in are as follows:\n");
for (index = 0; index < SIZE; index++)

printf("$5d", score[index]); // verify input
printf("\n");
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for (index = 0; index < SIZE; index++)

sum += score[index]; // add them up
average = (float) sum / SIZE; // time-honored method
printf("Sum of scores = %d, average = %.2f\n", sum, average);
printf("That's a handicap of %.0f.\n", average - PAR);

return 0;

Let’s see if Listing 6.19 works; then we can make a few comments. Here is the output:

Enter 10 golf scores:
99 95 109 105 100
96 98 93 99 97 98
The scores read in are as follows:
99 95 109 105 100 96 98 93 99 97
Sum of scores = 991, average = 99.10
That's a handicap of 27.

It works, so let’s check out some of the details. First, note that although the example shows

11 numbers typed, only 10 were read because the reading loop reads just 10 values. Because
scanf () skips over whitespace, you can type all 10 numbers on one line, place each number
on its own line, or, as in this case, use a mixture of newlines and spaces to separate the input.
(Because input is buffered, the numbers are sent to the program only when you press the Enter

key.)

Next, using arrays and loops is much more convenient than using 10 separate scanf ()
statements and 10 separate printf () statements to read in and verify the 10 scores. The
for loop offers a simple and direct way to use the array subscripts. Notice that an element
of an int array is handled like an int variable. To read the int variable fue, you would
use scanf("%d", &fue). Listing 6.19 is reading the int element score[index], so it uses
scanf("%d", &score[index]).

This example illustrates several style points. First, it's a good idea to use a #define directive to
create a manifest constant (SIZE) to specify the size of the array. You use this constant in defin-
ing the array and in setting the loop limits. If you later need to expand the program to handle
20 scores, simply redefine SIZE to be 20. You don’t have to change every part of the program
that uses the array size. Second, the idiom

for (index = 0; index < SIZE; index++)

is a handy one for processing an array of size SIZE. It's important to get the right array limits.
The first element has index 0, and the loop starts by setting index to 0. Because the numbering
starts with 0, the element index for the last element is SIZE - 1. That is, the tenth element is
score[9]. Using the test condition index < SIZE accomplishes this, making the last value of
index used in the loop SIZE - 1.
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Third, a good practice is to have a program repeat or “echo” the values it has just read in. This
helps ensure that the program is processing the data you think it is.

Finally, note that Listing 6.19 uses three separate for loops. You might wonder if this is really
necessary. Could you have combined some of the operations in one loop? The answer is yes,
you could have done so. That would have made the program more compact. However, you
should be swayed by the principle of modularity. The idea behind this term is that a program
should be broken into separate units, with each unit having one task to perform. This makes
a program easier to read. Perhaps even more important, modularity makes it much easier to
update or modify a program if different parts of the program are not intermingled. When

you know enough about functions, you could make each unit into a function, enhancing the
modularity of the program.

A Loop Example Using a Function Return Value

The last example in this chapter uses a function that calculates the result of raising a number to
an integer power. (For the serious number-cruncher, the math.h library provides a more power-
ful power function called pow () that allows floating-point exponents.) The three main tasks in
this exercise are devising the algorithm for calculating the answer, expressing the algorithm in
a function that returns the answer, and providing a convenient way of testing the function.

First, let’s look at an algorithm. We'll keep the function simple by restricting it to positive
integer powers. Then, to raise n to the p power, just multiply n times itself p times. This is a
natural task for a loop. You can set the variable pow to 1 and then repeatedly multiply it by n:
for(i = 1; i <= p; it++)

pow *= n;

Recall that the *= operator multiplies the left side by the right side. After the first loop cycle,
pow is 1 times n, or n. After the second cycle, pow is its previous value (n) times n, or n squared,
and so on. The for loop is natural in this context because the loop is executed a predetermined
(after p is known) number of times.

Now that we have an algorithm, we can decide which data types to use. The exponent p, being
an integer, should be type int. To allow ample range in values for n and its power, make n and
pow type double.

Next, let’s consider how to put the function together. We need to give the function two values,
and the function should give back one. To get information to the function, we can use two
arguments, one double and one int, specifying which number to raise to what power. How do
we arrange for the function to return a value to the calling program? To write a function with a
return value, do the following:

1. When you define a function, state the type of value it returns.

2. Use the keyword return to indicate the value to be returned.
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For example, we can do this:

double power(double n, int p) // returns a double

{
double pow = 1;
int 1i;
for (i = 1; i <= p; i++)
pow *= n;
return pow; // return the value of pow
}

To declare the function type, preface the function name with the type, just as you do when
declaring a variable. The keyword return causes the function to return the following value
to the calling function. Here the function returns the value of a variable, but it can return the
value of expressions, too. For instance, the following is a valid statement:

return 2 * x + b;

The function would compute the value of the expression and return it. In the calling function,
the return value can be assigned to another variable, can be used as a value in an expression,
can be used as an argument to another function—as in printf("%£f", power(6.28, 3))—Or
can be ignored.

Now let’s use the function in a program. To test the function, it would be convenient to be
able to feed several values to the function to see how it reacts. This suggests setting up an input
loop. The natural choice is the while loop. You can use scanf () to read in two values at a
time. If successful in reading two values, scanf () returns the value 2, so you can control the
loop by comparing the scanf () return value to 2. One more point: To use the power () func-
tion in your program, you need to declare it, just as you declare variables that the program
uses. Listing 6.20 shows the program.

Listing 6.20 The power.c Program

// power.c -- raises numbers to integer powers
#include <stdio.h>
double power (double n, int p); // ANSI prototype
int main(void)
{

double x, xpow;

int exp;

printf("Enter a number and the positive integer power");
to which\nthe number will be raised. Enter q");
printf(" to quit.\n");

while (scanf("%1f%d", &x, &exp) == 2)

{

printf(
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xpow = power(x,exp); // function call
printf("%.3g to the power %d is %.5g\n", x, exp, xpow);
printf("Enter next pair of numbers or g to quit.\n");

}
printf("Hope you enjoyed this power trip -- bye!\n");
return 0;
}
double power(double n, int p) // function definition
{
double pow = 1;
int 1i;
for (i = 1; i <= p; i++)
pow *= n;
return pow; // return the value of pow
}

Here is a sample run:

Enter a number and the positive integer power to which
the number will be raised. Enter g to quit.
1.2 12

1.2 to the power 12 is 8.9161

Enter next pair of numbers or g to quit.

2

16

2 to the power 16 is 65536

Enter next pair of numbers or g to quit.

q

Hope you enjoyed this power trip -- bye!

Program Discussion

The main () program is an example of a driver, a short program designed to test a function.

The while loop is a generalization of a form we’ve used before. Entering 1.2 12 causes

scanf () to read two values successfully and to return 2, and the loop continues. Because
scanf () skips over whitespace, input can be spread over more than one line, as the sample
output shows, but entering g produces a return value of 0 because g can’t be read using the $1£
specifier. This causes scanf () to return 0, thus terminating the loop. Similarly, entering 2.8 g
would produce a scanf () return value of 1; that, too, would terminate the loop.
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Now let’s look at the function-related matters. The power () function appears three times in
this program. The first appearance is this:

double power (double n, int p); // ANSI prototype

This statement announces, or declares, that the program will be using a function called

power (). The initial keyword double indicates that the power () function returns a type
double value. The compiler needs to know what kind of value power () returns so that it will
know how many bytes of data to expect and how to interpret them; this is why you have to
declare the function. The double n, int p within the parentheses means that power () takes
two arguments. The first should be a type double value, and the second should be type int.

The second appearance is this:
XpOw = power (X,exp); // function call
Here the program calls the function, passing it two values. The function calculates x to the exp

power and returns the result to the calling program, where the return value is assigned to the
variable xpow.

The third appearance is in the head of the function definition:

double power(double n, int p) // function definition

Here power () takes two parameters, a double and an int, represented by the variables n and p.

Note that power () is not followed by a semicolon when it appears in a function definition, but
is followed by a semicolon when in a function declaration. After the function heading comes
the code that specifies what power () does.

Recall that the function uses a for loop to calculate the value of n to the p power and assign it
to pow. The following line makes the value of pow the function return value:

return pow; // return the value of pow

Using Functions with Return Values

Declaring the function, calling the function, defining the function, using the return
keyword—these are the basic elements in defining and using a function with a return value.

At this point, you might have some questions. For example, if you are supposed to declare
functions before you use their return values, how come you used the return value of scanf ()
without declaring scanf ()? Why do you have to declare power () separately when your defini-
tion of it says it is type double?

Let’s take the second question first. The compiler needs to know what type power () is when

it first encounters power () in the program. At this point, the compiler has not yet encoun-
tered the definition of power (), so it doesn’t know that the definition says the return type is
double. To help out the compiler, you preview what is to come by using a forward declaration.
This declaration informs the compiler that power () is defined elsewhere and that it will return
type double. If you place the power () function definition ahead of main () in the file, you can
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omit the forward declaration because the compiler will know all about power () before reach-
ing main (). However, that is not standard C style. Because main () usually provides the overall
framework for a program, it’s best to show main() first. Also, functions often are kept in sepa-
rate files, so a forward declaration is essential.

Next, why didn’t you declare scanf ()? Well, you did. The stdio.h header file has function
declarations for scanf (), printf (), and several other I/O functions. The scanf () declaration
states that it returns type int.

Key Concepts

The loop is a powerful programming tool. You should pay particular attention to three aspects
when setting up a loop:

= Clearly defining the condition that causes the loop to terminate
= Making sure the values used in the loop test are initialized before the first use

= Making sure the loop does something to update the test each cycle

C handles test conditions by evaluating them numerically. A result of 0 is false, and any other
value is true. Expressions using the relational operators often are used as tests, and they are a
bit more specific. Relational expressions evaluate to 1 if true and to 0 if false, which is consis-
tent with the values allowed for the new _Bool type.

Arrays consist of adjacent memory locations all of the same type. You need to keep in mind
that array element numbering starts with O so that the subscript of the last element is always
one less than the number of elements. C doesn’t check to see if you use valid subscript values,
so the responsibility is yours.

Employing a function involves three separate steps:
1. Declare the function with a function prototype.
2. Use the function from within a program with a function call.

3. Define the function.

The prototype allows the compiler to see whether you've used the function correctly, and the
definition sets down how the function works. The prototype and definition are examples of the
contemporary programming practice of separating a program element into an interface and an
implementation. The interface describes how a feature is used, which is what a prototype does,
and the implementation sets forth the particular actions taken, which is what the definition
does.
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Summary

The main topic of this chapter has been program control. C offers you many aids for structur-
ing your programs. The while and the for statements provide entry-condition loops. The for
statements are particularly suited for loops that involve initialization and updating. The comma
operator enables you to initialize and update more than one variable in a for loop. For the less
common occasion when an exit-condition loop is needed, C has the do while statement.

A typical while loop design looks like this:

get first value
while (value meets test)

{
process the value
get next value

A for loop doing the same thing would look like this:

for (get first value; value meets test; get next value)
process the value

All these loops use a test condition to determine whether another loop cycle is to be executed.
In general, the loop continues if the test expression evaluates to a nonzero value; otherwise, it
terminates. Often, the test condition is a relational expression, which is an expression formed
by using a relational operator. Such an expression has a value of 1 if the relation is true and a
value of 0 otherwise. Variables of the _Bool type, introduced by C99, can only hold the value 1
or 0, signifying true or false.

In addition to relational operators, this chapter looked at several of C’s arithmetic assignment
operators, such as += and *=. These operators modify the value of the left-hand operand by
performing an arithmetic operation on it.

Arrays were the next subject. Arrays are declared using brackets to indicate the number of
elements. The first element of an array is numbered 0; the second is numbered 1, and so forth.
For example, the declaration

double hippos[20];

creates an array of 20 elements, and the individual elements range from hippos[0] through
hippos[19]. The subscripts used to number arrays can be manipulated conveniently by using
loops.

Finally, the chapter showed how to write and use a function with a return value.
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Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”

1. Find the value of quack after each line; each of the final five statements uses the value of
quack produced by the preceding statement.

int quack = 2;

quack += 5;
quack *= 10;
quack -= 6;
quack /= 8;
quack %= 3;

2. Given that value is an int, what output would the following loop produce?

for ( value = 36; value > 0; value /= 2)
printf("%3d", value);

What problems would there be if value were double instead of int?

3. Represent each of the following test conditions:
a. x is greater than 5.
b. scanf() attempts to read a single double (called x) and fails.

c. x has the value 5.

4. Represent each of the following test conditions:
a. scanf () succeeds in reading a single integer.
b. xis not 5.

c. x1is 20 or greater.

5. You suspect that the following program is not perfect. What errors can you find?

#include <stdio.h>
int main(void)

{ /* line 3 */
int i, j, list(10); /* line 4 */
for (i =1, 1 <= 10, i++) /* line 6 */
{ /* line 7 */

list[i] = 2*i + 3; /* line 8 */
for (3 =1, jJ>=1, j++) /* line 9 */

printf(" ¢d", list[j]); /* line 10 */
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printf("\n"); /* line 11 */
} /* line 12 */

6. Use nested loops to write a program that produces this pattern:

EEEEEEEE
EEEEEEE
$$$5558$
$$558888

7. What will each of the following programs print?

a.

#include <stdio.h>

int main(void)

{
int 1 = 0;
while (++i < 4)
printf("Hi! ");
do
printf("Bye! ");
while (i++ < 8);
return 0;
}
b

#include <stdio.h>

int main(void)

{
int i;
char ch;
for (1 =0, ch = 'A'; i < 4; i++, ch += 2 * i)
printf("%c", ch);
return 0;
}

8. Given the input Go west, young man!, what would each of the following programs
produce for output? (The ! follows the space character in the ASCII sequence.)

a.

#include <stdio.h>
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int main(void)

{
char ch;
scanf("%c", &ch);
while ( ch != 'g' )
{
printf("%c", ch);
scanf("%c", &ch);
}
return 0;
}
b

#include <stdio.h>

int main(void)

{
char ch;
scanf("%c", &ch);
while ( ch != 'g' )
{
printf("%c", ++ch);
scanf("%c", &ch);
}
return 0;
}
c

#include <stdio.h>

int main(void)

{
char ch;
do {
scanf("%c", &ch);
printf("%c", ch);
} while ( ch != 'g' );
return 0;
}
d

#include <stdio.h>

int main(void)
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{
char ch;
scanf("%c", &ch);
for (ch = '"§$"'; ch != 'g'; scanf("%c", &ch) )
printf("%c", ch);
return 0;
}

9. What will the following program print?

#include <stdio.h>
int main(void)
{

int n, m;
n = 30;
while (++n <= 33)
printf("%d|",n);
n = 30;
do
printf("sd|",n);
while (++n <= 33);

printf("\n***\n");

for (n = 1; n*n < 200; n += 4)
printf("%d\n", n);

printf("\n***\n");

for (n =2, m=6; n<m; n *= 2, mt= 2)
printf("%d %d\n", n, m);

printf("\n***\n");

for (n = 5; n> 0; n--)

{
for (m = 0; m <= n; mt+)
printf("=");
printf("\n");
}
return 0;
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10. Consider the following declaration:

double mint[10];

a. What is the array name?

b. How many elements does the array have?

c. What kind of value can be stored in each element?

d. Which of the following is a correct usage of scanf () with this array?
i. scanf("%1f", mint[2])
ii. scanf("$1f", &mint[2])

jii. scanf("%1f", &mint)

11. Mr. Noah likes counting by twos, so he’s written the following program to create an array
and to fill it with the integers 2, 4, 6, 8, and so on. What, if anything, is wrong with this
program?

#include <stdio.h>
#define SIZE 8
int main(void)
{
int by twos[SIZE];
int index;

for (index = 1; index <= SIZE; index++)
by twos[index] = 2 * index;

for (index = 1; index <= SIZE; index++)
printf("sd ", by twos);

printf("\n");

return 0;

12. You want to write a function that returns a long value. What should your definition of
the function include?

13. Define a function that takes an int argument and that returns, as a long, the square of
that value.

14. What will the following program print?
#include <stdio.h>
int main(void)
{
int k;
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for(k = 1, printf("%d: Hi!\n", k); printf("k = %d\n", k),
k*k < 26; k+=2, printf("Now k is %d\n", k) )
printf("k is %d in the loop\n", k);
return 0;

Programming Exercises

1. Write a program that creates an array with 26 elements and stores the 26 lowercase
letters in it. Also have it show the array contents.

2. Use nested loops to produce the following pattern:

$

$$
$$$
$98$
EERI

3. Use nested loops to produce the following pattern:

F

FE

FED
FEDC
FEDCB
FEDCBA

Note: If your system doesn’t use ASCII or some other code that encodes letters in
numeric order, you can use the following to initialize a character array to the letters of
the alphabet:

char lets[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Then you can use the array index to select individual letters; for example, lets[0] is
'A', and so on.

4. Use nested loops to produce the following pattern:

A

BC

DEF
GHIJ
KLMNO
PQRSTU
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10.

If your system doesn’t encode letters in numeric order, see the suggestion in
programming exercise 3.

Have a program request the user to enter an uppercase letter. Use nested loops to produce
a pyramid pattern like this:

A
ABA
ABCBA
ABCDCBA
ABCDEDCBA

The pattern should extend to the character entered. For example, the preceding pattern
would result from an input value of E. Hint: Use an outer loop to handle the rows. Use
three inner loops in a row, one to handle the spaces, one for printing letters in ascending
order, and one for printing letters in descending order. If your system doesn’t use ASCII
or a similar system that represents letters in strict number order, see the suggestion in
programming exercise 3.

Write a program that prints a table with each line giving an integer, its square, and its
cube. Ask the user to input the lower and upper limits for the table. Use a for loop.

. Write a program that reads a single word into a character array and then prints the word

backward. Hint: Use strlen() (Chapter 4) to compute the index of the last character in
the array.

Write a program that requests two floating-point numbers and prints the value of their
difference divided by their product. Have the program loop through pairs of input values
until the user enters nonnumeric input.

Modify exercise 8 so that it uses a function to return the value of the calculation.

Write a program that requests lower and upper integer limits, calculates the sum of all
the integer squares from the square of the lower limit to the square of the upper limit,
and displays the answer. The program should then continue to prompt for limits and
display answers until the user enters an upper limit that is equal to or less than the lower
limit. A sample run should look something like this:

Enter lower and upper integer limits: 5 9

The sums of the squares from 25 to 81 is 255
Enter next set of limits: 3 25

The sums of the squares from 9 to 625 is 5520
Enter next set of limits: 5 5

Done
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Programming Exercises

Write a program that reads eight integers into an array and then prints them in reverse
order.

Consider these two infinite series:

1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 + ...
1.0 - 1.0/2.0 + 1.0/3.0 - 1.0/4.0 + ...

Write a program that evaluates running totals of these two series up to some limit of
number of terms. Hint: -1 times itself an odd number of times is -1, and -1 times itself
an even number of times is 1. Have the user enter the limit interactively; let a zero or
negative value terminate input. Look at the running totals after 100 terms, 1000 terms,
10,000 terms. Does either series appear to be converging to some value?

Write a program that creates an eight-element array of ints and sets the elements to the
first eight powers of 2 and then prints the values. Use a for loop to set the values, and,
for variety, use a do while loop to display the values.

Write a program that creates two eight-element arrays of doubles and uses a loop to let
the user enter values for the eight elements of the first array. Have the program set the
elements of the second array to the cumulative totals of the elements of the first array.
For example, the fourth element of the second array should equal the sum of the first
four elements of the first array, and the fifth element of the second array should equal
the sum of the first five elements of the first array. (It’s possible to do this with nested
loops, but by using the fact that the fifth element of the second array equals the fourth
element of the second array plus the fifth element of the first array, you can avoid
nesting and just use a single loop for this task.) Finally, use loops to display the contents
of the two arrays, with the first array displayed on one line and with each element of the
second array displayed below the corresponding element of the first array.

Write a program that reads in a line of input and then prints the line in reverse order.
You can store the input in an array of char; assume that the line is no longer than 255
characters. Recall that you can use scanf () with the %c specifier to read a character at
a time from input and that the newline character (\n) is generated when you press the
Enter key.

Daphne invests $100 at 10% simple interest. (That is, every year, the investment earns
an interest equal to 10% of the original investment.) Deirdre invests $100 at 5% interest
compounded annually. (That is, interest is 5% of the current balance, including previous
addition of interest.) Write a program that finds how many years it takes for the value
of Deirdre’s investment to exceed the value of Daphne’s investment. Also show the two
values at that time.
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17.

18.

Chuckie Lucky won a million dollars (after taxes), which he places in an account that
earns 8% a year. On the last day of each year, Chuckie withdraws $100,000. Write a
program that finds out how many years it takes for Chuckie to empty his account.

Professor Rabnud joined a social media group. Initially he had five friends. He noticed
that his friend count grew in the following fashion. The first week one friend dropped
out and the remaining number of friends doubled. The second week two friends dropped
out and the remaining number of friends doubled. In general, in the Nth week, N friends
dropped out and the remaining number doubled. Write a program that computes and
displays the number of friends each week. The program should continue until the count
exceeds Dunbar’s number. Dunbar’s number is a rough estimate of the maximum size of
a cohesive social group in which each member knows every other member and how they
relate to one another. Its approximate value is 150.
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C Control Statements:
Branching and Jumps

You will learn about the following in this chapter:
= Keywords
if, else, switch, continue
break, case, default, goto
= Operators
&& || ?:
= Functions
getchar(), putchar(), the ctype.h family
= How to use the if and if else statements and how to nest them

= Using logical operators to combine relational expressions into more involved test
expressions

= C’s conditional operator

= The switch statement

= The break, continue, and goto jumps

= Using C'’s character I/O functions—getchar () and putchar()

= The family of character-analysis functions provided by the ctype.h header file

As you grow more comfortable with C, you will probably want to tackle more complex tasks.
When you do, you'll need ways to control and organize these projects. C has the tools to meet
these needs. You've already learned to use loops to program repetitive tasks. In this chapter,
you’ll learn about branching structures such as if and switch, which allow a program to base
its actions on conditions it checks. Also, you are introduced to C’s logical operators, which
enable you to test for more than one relationship in a while or if condition, and you look at
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C’s jump statements, which shift the program flow to another part of a program. By the end of
this chapter, you’ll have all the basic information you need to design a program that behaves
the way you want.

The if Statement

Let’s start with a simple example of an if statement, shown in Listing 7.1. This program reads
in a list of daily low temperatures (in Celsius) and reports the total number of entries and the
percentage that were below freezing (that is, below zero degrees Celsius). It uses scanf() in a
loop to read in the values. Once during each loop cycle, it increments a counter to keep track
of the number of entries. An if statement identifies temperatures below freezing and keeps
track of the number of below-freezing days separately.

Listing 7.1 The colddays.c Program

// colddays.c -- finds percentage of days below freezing
#include <stdio.h>
int main(void)

{
const int FREEZING = 0;
float temperature;
int cold days = 0;
int all days = 0;
printf("Enter the list of daily low temperatures.\n");
printf("Use Celsius, and enter g to quit.\n");
while (scanf("%f", &temperature) == 1)
{
all days++;
if (temperature < FREEZING)
cold_days++;
}
if (all_days != 0)
printf("%d days total: %.1f%% were below freezing.\n",
all days, 100.0 * (float) cold days / all days);
if (all_days == 0)
printf("No data entered!\n");
return 0;
}

Here is a sample run:

Enter the list of daily low temperatures.
Use Celsius, and enter g to quit.
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125 -2.50 6 8 -3 -10 5 10 g
10 days total: 30.0% were below freezing.

The while loop test condition uses the return value of scanf () to terminate the loop when
scanf () encounters nonnumeric input. By using float instead of int for temperature, the
program is able to accept input such as -2.5 as well as 8.

Here is the new statement in the while block:

if (temperature < FREEZING)
cold_days++;

This if statement instructs the computer to increase cold_days by 1 if the value just read
(temperature) is less than zero. What happens if temperature is not less than zero? Then the
cold_days++; statement is skipped, and the while loop moves on to read the next tempera-
ture value.

The program uses the if statement two more times to control the output. If there is data, the
program prints the results. If there is no data, the program reports that fact. (Soon you'll see a
more elegant way to handle this part of the program.)

To avoid integer division, the example uses the cast to float when the percentage is being
calculated. You don't really need the type cast because in the expression 100.0 * cold_days
/ all_days, the subexpression 100.0 * cold_days is evaluated first and is forced into float-
ing point by the automatic type conversion rules. Using the type cast documents your intent,
however, and helps protect the program against misguided revisions. The if statement is called
a branching statement or selection statement because it provides a junction where the program has
to select which of two paths to follow. The general form is this:
if (expression)

statement

If expression evaluates to true (nonzero), statement is executed. Otherwise, it is skipped. As
with a while loop, statement can be either a single statement or a single block (also termed
a compound statement). The structure is very similar to that of a while statement. The chief
difference is that in an if statement, the test and (possibly) the execution are done just once,
but in the while loop, the test and execution can be repeated several times.

Normally, expression is a relational expression; that is, it compares the magnitude of two
quantities, as in the expressions x > y and ¢ == 6. If expression is true (x is greater than y,
or ¢ does equal 6), the statement is executed. Otherwise, the statement is ignored. More gener-
ally, any expression can be used, and an expression with a 0 value is taken to be false.

The statement portion can be a simple statement, as in the example, or it can be a compound
statement or block, marked off by braces:

if (score > big)
printf("Jackpot!\n"); // simple statement

if (joe > ron)
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{ // compound statement
joecash++;
printf("You lose, Ron.\n");

Note that the entire if structure counts as a single statement, even when it uses a compound
statement.

Adding else to the if Statement

The simple form of an if statement gives you the choice of executing a statement (possibly
compound) or skipping it. C also enables you to choose between two statements by using the
if else form. Let’s use the if else form to fix an awkward segment from Listing 7.1.
if (all_days != 0)

printf("%d days total: %.1f%% were below freezing.\n",

all days, 100.0 * (float) cold days / all days);

if (all_days == 0)

printf("No data entered!\n");

If the program finds that all days is not equal to 0, it should know that days must be 0
without retesting, and it does. With if else, you can take advantage of that knowledge by
rewriting the fragment this way:
if (all_days!= 0)

printf("%d days total: %.1f%% were below freezing.\n",

all days, 100.0 * (float) cold days / all days);

else

printf("No data entered!\n");

Only one test is made. If the if test expression is true, the temperature data is printed. If it’s
false, the warning message is printed.

Note the general form of the if else statement:
if (expression)
statementl

else
statement2

If expression is true (nonzero), statement1 is executed. If expression is false or zero, the
single statement following the else is executed. The statements can be simple or compound. C
doesn’t require indentation, but it is the standard style. Indentation shows at a glance the state-
ments that depend on a test for execution.

If you want more than one statement between the if and the else, you must use braces
to create a single block. The following construction violates C syntax, because the compiler
expects just one statement (single or compound) between the if and the else:
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if (x > 0)
printf("Incrementing x:\n");
X++;
else // will generate an error

printf("x <= 0 \n");

The compiler sees the printf () statement as part of the if statement, and it sees the x++;
statement as a separate statement, not as part of the if statement. It then sees the else as
being unattached to an if, which is an error. Instead, use this:

if (x > 0)

{
printf("Incrementing x:\n");
X++;

}

else
printf("x <= 0 \n");

The if statement enables you to choose whether to do one action. The if else statement
enables you to choose between two actions. Figure 7.1 compares the two statements.

lif

false true

num=2*num;

N

| printf("%d\n",num); |

|
lif

else

true

| printf("%d\n",num); | num=2*num;

next statement

Figure 7.1 if versus if else.
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Another Example: Introducing getchar () and putchar()

Most of the examples so far have used numeric input. To give you practice with other types,
let’s look at a character-oriented example. You already know how to use scanf () and
printf () with the %c specifier to read and write characters; but now you’ll meet a pair of C
functions specifically designed for character-oriented I/O—getchar () and putchar().

The getchar () function takes no arguments, and it returns the next character from input. For
example, the following statement reads the next input character and assigns its value to the
variable ch:

ch = getchar();

This statement has the same effect as the following statement:

scanf("%c", &ch);

The putchar () function prints its argument. For example, the next statement prints as a char-
acter the value previously assigned to ch:

putchar(ch);

This statement has the same effect as the following:

printf("%c", ch);

Because these functions deal only with characters, they are faster and more compact than the
more general scanf () and printf () functions. Also, note that they don’t need format speci-
fiers; that’s because they work with characters only. Both functions are typically defined in the
stdio.h file. (Also, typically, they are preprocessor macros rather than true functions; we’ll talk
about function-like macros in Chapter 16, “The C Preprocessor and the C Library.”)

Let’s see how these functions work by writing a program that repeats an input line but replaces
each non-space character with the character that follows it in the ASCII code sequence. Spaces
will be reproduced as spaces. You can state the desired response as, “If the character is a space,
print it; otherwise, print the next character in the ASCII sequence.”

The C code looks much like this statement, as you can see in Listing 7.2.

Listing 7.2 The cypherl.c Program

// cypherl.c -- alters input, preserving spaces
#include <stdio.h>
#define SPACE ' ' // that's quote-space-quote
int main(void)
{
char ch;
ch = getchar(); // read a character
while (ch != '\n') // while not end of line

{
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if (ch == SPACE) // leave the space
putchar(ch); // character unchanged
else
putchar(ch + 1); // change other characters
ch = getchar(); // get next character
}
putchar(ch); // print the newline
return 0;

(If your compiler complains about possible data loss due to conversion, don’t worry. Chapter 8,
“Character Input/Output and Input Validation,” will explain all when it introduces EOF.)

Here is a sample run:

CALL ME HAL.
DBMM NF IBM/

Compare this loop to the one from Listing 7.1. Listing 7.1 uses the status returned by scanf ()
instead of the value of the input item to determine when to terminate the loop. Listing 7.2,
however, uses the value of the input item itself to decide when to terminate the loop. This
difference results in a slightly different loop structure, with one read statement before the loop
and one read statement at the end of each loop. C’s flexible syntax, however, enables you to
emulate Listing 7.1 by combining reading and testing into a single expression. That is, you can
replace a loop of the form

ch = getchar(); /* read a character */
while (ch != '\n') /* while not end of line */
{
/* process character */
ch = getchar(); /* get next character */
}

with one that looks like this:

while ((ch = getchar()) != '\n')
{

/* process character */
}

The critical line is

while ((ch = getchar()) != '\n')

It demonstrates a characteristic C programming style—combining two actions in one expres-
sion. C’s free-formatting facility can help to make the separate components of the line clearer:
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while (
(ch = getchar()) // assign a value to ch
= "\n'") // compare ch to \n

The actions are assigning a value to ch and comparing this value to the newline character. The
parentheses around ch = getchar() make it the left operand of the != operator. To evaluate
this expression, the computer must first call the getchar () function and then assign its return
value to ch. Because the value of an assignment expression is the value of the left member, the
value of ch = getchar() is just the new value of ch. Therefore, after ch is read, the test condi-
tion boils down to ch != '\n' (that is, to ch not being the newline character).

This particular idiom is very common in C programming, so you should be familiar with it.
You also should make sure you remember to use parentheses to group the subexpressions

properly.
All the parentheses are necessary. Suppose that you mistakenly used this:

while (ch = getchar() != '\n')

The 1= operator has higher precedence than =, so the first expression to be evaluated is
getchar() != '\n'.Because this is a relational expression, its value is 1 or 0 (true or false).
Then this value is assigned to ch. Omitting the parentheses means that ch is assigned 0 or 1
rather than the return value of getchar (); this is not desirable.

The statement

putchar(ch + 1); /* change other characters */

illustrates once again that characters really are stored as integers. In the expression ch + 1,
ch is expanded to type int for the calculation, and the resulting int is passed to putchar(),
which takes an int argument but only uses the final byte to determine which character to
display.

The ctype.h Family of Character Functions

Notice that the output for Listing 7.2 shows a period being converted to a slash; that’s because
the ASCII code for the slash character is one greater than the code for the period character.
But if the point of the program is to convert only letters, it would be nice to leave all non-
letters, not just spaces, unaltered. The logical operators, discussed later in this chapter, provide
a way to test whether a character is not a space, not a comma, and so on, but it would be
rather cumbersome to list all the possibilities. Fortunately, C has a standard set of functions
for analyzing characters; the ctype.h header file contains the prototypes. These functions take
a character as an argument and return nonzero (true) if the character belongs to a particular
category and zero (false) otherwise. For example, the isalpha() function returns a nonzero
value if its argument is a letter. Listing 7.3 generalizes Listing 7.2 by using this function; it also
incorporates the shortened loop structure we just discussed.
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Listing 7.3 The cypher2.c Program

// cypher2.c -- alters input, preserving non-letters
#include <stdio.h>
#include <ctype.h> // for isalpha()
int main(void)
{
char ch;
while ((ch = getchar()) != '\n')
{
if (isalpha(ch)) // if a letter,
putchar(ch + 1); // display next letter
else // otherwise,
putchar(ch); // display as is
}
putchar(ch); // display the newline
return 0;
}

Here is a sample run; note how both lowercase and uppercase letters are enciphered, but spaces
and punctuation are not:

Look! It's a programmer!
Mppl! Ju't b gsphsbnnfs!

Tables 7.1 and 7.2 list several functions provided when you include the ctype.h header file.
Some mention a locale; this refers to C’s facility for specifying a locale that modifies or extends
basic C usage. (For example, many nations use a comma instead of a decimal point when
writing decimal fractions, and a particular locale could specify that C use the comma in the
same way for floating-point output, thus displaying 123.45 as 123, 45.) Note that the mapping
functions don’t modify the original argument; instead, they return the modified value. That is,

tolower(ch); // no effect on ch

doesn’t change ch. To change ch, do this:

ch = tolower(ch); // convert ch to lowercase

Table 7.1 The ctype.h Character-Testing Functions

Name True If the Argument Is
isalnum() Alphanumeric (alphabetic or numeric)

isalpha() Alphabetic
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Name

isblank()

iscntrl()
isdigit()
isgraph()
islower()
isprint()

ispunct()

isspace()

isupper()

isxdigit()

True If the Argument Is

A standard blank character (space, horizontal tab, or newline) or any additional
locale-specific character so specified

A control character, such as Ctrl+B

A digit

Any printing character other than a space
A lowercase character

A printing character

A punctuation character (any printing character other than a space or an alpha-
numeric character)

A whitespace character (a space, newline, formfeed, carriage return, vertical
tab, horizontal tab, or, possibly, other locale-defined character)

An uppercase character

A hexadecimal-digit character

Table 7.2 The ctype.h Character-Mapping Functions

Name

tolower ()

toupper()

Action

If the argument is an uppercase character, this function returns the low-
ercase version; otherwise, it just returns the original argument.

If the argument is a lowercase character, this function returns the upper-
case version; otherwise, it just returns the original argument.

Multiple Choice eise it

Life often offers us more than two choices. You can extend the if else structure with else
if to accommodate this fact. Let’s look at a particular example. Utility companies often
have charges that depend on the amount of energy the customer uses. Here are the rates one
company charges for electricity, based on kilowatt-hours (kWh):

First 360 kWh:
Next 108 kWh:
Next 252 kWh:
Over 720 kWh:

$0.13230 per kWh
$0.15040 per kWh
$0.30025 per kWh
$0.34025 per kWh
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If you worry about your energy management, you might want to prepare a program to calcu-
late your energy costs. The program in Listing 7.4 is a first step in that direction.

Listing 7.4 The electric.c Program

// electric.c -- calculates electric bill

#include <stdio.h>

#define RATEL 0.13230 //
#define RATE2  0.15040 //
#define RATE3 0.30025 //
#define RATE4  0.34025 //
#define BREAK1 360.0 //
#define BREAK2 468.0 //

#define BREAK3 720.0 //
#define BASE1  (RATEl * BREAKI)
// cost for 360 kwh

#define BASE2 (BASEl + (RATE2 *
// cost for 468 kwh

#define BASE3 (BASE1 + BASE2 +
//cost for 720 kwh

int main(void)

rate for first 360 kwh
rate for next 108 kwh
rate for next 252 kwh
rate for over 720 kwh
first breakpoint for rates
second breakpoint for rates
third breakpoint for rates

(BREAK2 - BREAK1)))

(RATE3 *(BREAK3 - BREAK2)))

kilowatt-hours used
charges

used.\n");

$1f for type double

kwh between 360 and 468

kwh betweent 468 and 720

kwh above 680

printf("The charge for %.1f kwh is $%1.2f.\n", kwh, bill);

{
double kwh; //
double bill; //
printf("Please enter the kwh
scanf("%1lf", &kwh); //
if (kwh <= BREAKI)
bill = RATEL * kwh;
else if (kwh <= BREAK2) //
bill = BASEl + (RATE2 * (kwh - BREAK1));
else if (kwh <= BREAK3) //
bill = BASE2 + (RATE3 * (kwh - BREAK2));
else //
bill = BASE3 + (RATE4 * (kwh - BREAK3));
return 0;
}

Here’s some sample output:

Please enter the kwh used.
580

The charge for 580.0 kwh is $97.50.
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Listing 7.4 uses symbolic constants for the rates so that the constants are conveniently gath-
ered in one place. If the power company changes its rates (it’s possible), having the rates in
one place makes them easy to update. The listing also expresses the rate breakpoints symboli-
cally. They, too, are subject to change. BASE1 and BASE2 are expressed in terms of the rates
and breakpoints. Then, if the rates or breakpoints change, the bases are updated automatically.
You may recall that the preprocessor does not do calculations. Where BASE1 appears in the
program, it will be replaced by 0.13230 * 360.0. Don’t worry; the compiler does evaluate this
expression to its numerical value (47.628) so that the final program code uses 47.628 rather
than a calculation.

The flow of the program is straightforward. The program selects one of three formulas, depend-
ing on the value of kwh. You should pay particular attention to the fact that the only way

the program can reach the first else is if kwh is equal to or greater than 360. Therefore, the
else if (kwh <= BREAK2) line really is equivalent to demanding that kwh be between 360
and 482, as the program comment notes. Similarly, the final else can be reached only if kwh
exceeds 720. Finally, note that BASE1, BASE2, and BASE3 represent the total charges for the first
360, 468, and 720 kilowatt-hours, respectively. Therefore, you need to add on only the addi-
tional charges for electricity in excess of those amounts.

Actually, the else if is a variation on what you already knew. For example, the core of the
program is just another way of writing

if (kwh <= BREAKI)
bill = RATE1l * kwh;
else
if (kwh <= BREAK2) // kwh between 360 and 468
bill = BASEl + (RATE2 * (kwh - BREAK1));
else
if (kwh <= BREAK3) // kwh betweent 468 and 720
bill = BASE2 + (RATE3 * (kwh - BREAK2));
else // kwh above 680
bill = BASE3 + (RATE4 * (kwh - BREAK3));

That is, the program consists of an if else statement for which the statement part of the
else is another if else statement. The second if else statement is said to be nested inside
the first and the third inside the second. Recall that the entire if else structure counts as a
single statement, which is why we didn’t have to enclose the nested if else statements in
braces. However, using braces would clarify the intent of this particular format.

These two forms are perfectly equivalent. The only differences are in where you put spaces and
newlines, and these differences are ignored by the compiler. Nonetheless, the first form is better
because it shows more clearly that you are making a four-way choice. This form makes it easier
to skim the program and see what the choices are. Save the nested forms of indentation for
when they are needed—for example, when you must test two separate quantities. An example
of such a situation is having a 10% surcharge for kilowatt-hours in excess of 720 during the
summer only.
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You can string together as many else if statements as you need (within compiler limits, of
course), as illustrated by this fragment:

if (score < 1000)
bonus = 0;

else if (score < 1500)
bonus = 1;

else if (score < 2000)
bonus = 2;

else if (score < 2500)
bonus = 4;

else
bonus = 6;

(This might be part of a game program, in which bonus represents how many additional
photon bombs or food pellets you get for the next round.)

Speaking of compiler limits, the C99 standard requires that a compiler support a minimum of
127 levels of nesting.

Pairing else with if

When you have a lot of ifs and elses, how does the computer decide which if goes with
which else? For example, consider the following program fragment:

if (number > 6)
if (number < 12)
printf("You're close!\n");
else
printf("Sorry, you lose a turn!\n");

When is Sorry, you lose a turn! printed? When number is less than or equal to 6,

or when number is greater than 12?7 In other words, does the else go with the first if or
the second? The answer is, the else goes with the second if. That is, you would get these
responses:

Number Response

5 None

10 You're close!

15 Sorry, you lose a turn!

The rule is that an else goes with the most recent if unless braces indicate otherwise (see
Figure 7.2).
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if (condition)
do this;

if (condition)
do this;

else
do this;

—> if (condition)
{
do this;
if (condition)
do this;
}

— else
do this;

Figure 7.2 The rule for if else pairings.

else goes with the most
recent if

else goes with the first if
since braces enclose inner
if statements

Note: Indent the next-to-last “do this;” two spaces and terminate the last “do this” with a semi-

colon. Move the } and { two spaces to the left.

The indentation of the first example makes it look as though the else goes with the first if,
but remember that the compiler ignores indentation. If you really want the else to go with the

first 1£, you could write the fragment this way:

if (number > 6)

{
if (number < 12)
printf("You're close!\n");
}
else

printf("Sorry, you lose a turn!\n");

Now you would get these responses:
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Number Response

5 Sorry, you lose a turn!
10 You're close!

15 None

More Nested ifs

You've already seen that the if...else if...else sequence is a form of nested if, one that
selects from a series of alternatives. Another kind of nested if is used when choosing a particu-
lar selection leads to an additional choice. For example, a program could use an if else to
select between males and females. Each branch within the if else could then contain another
if else to distinguish between different income groups.

Let’s apply this form of nested if to the following problem. Given an integer, print all the inte-
gers that divide into it evenly; if there are no divisors, report that the number is prime.

This problem requires some forethought before you whip out the code. First, you need an
overall design for the program. For convenience, the program should use a loop to enable you
to input numbers to be tested. That way, you don’t have to run the program again each time
you want to examine a new number. We've already developed a model for this kind of loop:

prompt user

while the scanf() return value is 1
analyze the number and report results
prompt user

Recall that by using scanf () in the loop test condition, the program attempts both to read a
number and to check to see whether the loop should be terminated.

Next, you need a plan for finding divisors. Perhaps the most obvious approach is something
like this:

for (div = 2; div < num; div++)
if (num & div == 0)
printf("$d is divisible by %d\n", num, div);

The loop checks all the numbers between 2 and num to see whether they divide evenly into
num. Unfortunately, this approach is wasteful of computer time. You can do much better.
Consider, for example, finding the divisors of 144. You find that 144 % 2 is O, meaning 2 goes
into 144 evenly. If you then actually divide 2 into 144, you get 72, which also is a divisor, so
you can get two divisors instead of one divisor out of a successful num % div test. The real
payoff, however, comes in changing the limits of the loop test. To see how this works, look

at the pairs of divisors you get as the loop continues: 2,72, 3,48, 4,36, 6,24, 8,18, 9,16, 12,12,
16,9, 18,8, and so on. Ah! After you get past the 12,12 pair, you start getting the same divisors
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(in reverse order) that you already found. Instead of running the loop to 143, you can stop after
reaching 12. That saves a lot of cycles!

Generalizing this discovery, you see that you have to test only up to the square root of num
instead of to num. For numbers such as 9, this is not a big savings, but the difference is enor-
mous for a number such as 10,000. Instead of messing with square roots, however, you can
express the test condition as follows:
for (div = 2; (div * div) <= num; div++)
if (num % div == 0)
printf("%d is divisible by %d and %d.\n",
num, div, num / div);

If num is 144, the loop runs through div = 12.If numis 145, the loop runs through div = 13.

There are two reasons for using this test rather than a square root test. First, integer multipli-
cation is faster than extracting a square root. Second, the square root function hasn’t been
formally introduced yet.

We need to address just two more problems, and then you'll be ready to program. First, what

if the test number is a perfect square? Reporting that 144 is divisible by 12 and 12 is a little
clumsy, but you can use a nested if statement to test whether div equals num / div. If so, the
program will print just one divisor instead of two.

for (div = 2; (div * div) <= num; div++)

{
if (num % div == 0)
{
if (div * div != num)
printf("%d is divisible by %d and %d.\n",
num, div, num / div);
else
printf("%d is divisible by %d.\n", num, div);
}
}
Note

Technically, the if else statement counts as a single statement, so the braces around it are
not needed. The outer if is a single statement also, so the braces around it are not needed.

However, when statements get long, the braces make it easier to see what is happening, and

they offer protection if later you add another statement to an if or to the loop.

Second, how do you know if a number is prime? If num is prime, program flow never gets inside
the if statement. To solve this problem, you can set a variable to some value, say 1, outside the
loop and reset the variable to 0 inside the if statement. Then, after the loop is completed, you
can check to see whether the variable is still 1. If it is, the if statement was never entered, and
the number is prime. Such a variable is often called a flag.
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Traditionally, C has used the int type for flags, but the new Bool type matches the require-
ments perfectly. Furthermore, by including the stdbool.h header file, you can use bool
instead of the keyword _Bool for the type and use the identifiers true and false instead of 1
and 0.

Listing 7.5 incorporates all these ideas. To extend the range, the program uses type long
instead of type int. (If your system doesn’t support the _Bool type, you can use the int type
for isPrime and use 1 and 0 instead of true and false.)

Listing 7.5 The divisors.c Program

// divisors.c -- nested ifs display divisors of a number
#include <stdio.h>

#include <stdbool.h>

int main(void)

{
unsigned long num; // number to be checked
unsigned long div; // potential divisors
bool isPrime; // prime flag

printf("Please enter an integer for analysis; ");
printf("Enter g to quit.\n");

while (scanf("%lu", &num) == 1)
{
for (div = 2, isPrime = true; (div * div) <= num; div++)
{
if (num % div == 0)
{
if ((div * div) != num)
printf("%lu is divisible by %lu and %lu.\n",
num, div, num / div);
else
printf("%lu is divisible by %lu.\n",
num, div);
isPrime= false; // number is not prime
}
}

if (isPrime)
printf("$lu is prime.\n", num);
printf("Please enter another integer for analysis; ");
printf("Enter g to quit.\n");
}
printf("Bye.\n");

return 0;
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Note that the program uses the comma operator in the for loop control expression to enable
you to initialize isPrime to true for each new input number.

Here’s a sample run:

Please enter an integer for analysis; Enter g to

123456789
123456789
123456789
123456789
123456789
123456789

is
is
is
is
is

Please enter

149

149 is prime.

Please enter

2013

divisible by 3 and 41152263.
divisible by 9 and 13717421.
divisible by 3607 and 34227.
divisible by 3803 and 32463.
divisible by 10821 and 11409.

another

another

integer for analysis; Enter

integer for analysis; Enter

2013 is divisible by 3 and 671.
2013 is divisible by 11 and 183.
2013 is divisible by 33 and 61.

Please enter another

q
Bye.

integer for analysis; Enter

quit.

g to quit.

g to quit.

g to quit.

The program will identify 1 as prime, which, technically, it isn't. The logical operators, coming
up in the next section, would let you exclude 1 from the prime list.

Summary: Using if Statements for Making Choices

Keywords:

if, else

General Comments:

In each of the following forms, the statement can be either a simple statement or a compound
statement. A true expression means one with a nonzero value.

Form 1:

if (expression)

statement

The statement is executed if the expression is true.

Form 2:

if (expression)

statementl

else

statement2
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If the expression is true, statement1 is executed. Otherwise, statement2 is executed.
Form 3:

if (expressionl)
statementl

else if (expression2)
statement2

else
statement3

If expressionl is true, statement1 is executed. If expressionl is false but expression2
is true, statement2 is executed. Otherwise, if both expressions are false, statement3 is
executed.
Example:
if (legs == 4)

printf ("It might be a horse.\n");
else if (legs > 4)

printf("It is not a horse.\n");

else /* case of legs < 4 */

{
legs++;
printf("Now it has one more leg.\n");

Let’'s Get Logical

You've seen how if and while statements often use relational expressions as tests. Sometimes
you will find it useful to combine two or more relational expressions. For example, suppose you
want a program that counts how many times the characters other than single or double quotes
appear in an input sentence. You can use logical operators to meet this need, and you can use
the period character (.) to identify the end of a sentence. Listing 7.6 presents a short program
illustrating this method.

Listing 7.6 The chcount.c Program

// chcount.c -- use the logical AND operator
#include <stdio.h>
#define PERIOD '.'
int main(void)
{
char ch;
int charcount = 0;

while ((ch = getchar()) != PERIOD)
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if (ch != """ §& ch 1= "\"'")
charcount++;

}

printf("There are %d non-quote characters.\n", charcount);

return 0;

The following is a sample run:

I didn't read the "I'm a Programming Fool" best seller.
There are 50 non-quote characters.

The action begins as the program reads a character and checks to see whether it is a period,
because the period marks the end of a sentence. Next comes something new, a statement using
the logical AND operator, &&. You can translate the if statement as, “If the character is not a
double quote AND if it is not a single quote, increase charcount by 1.”

Both conditions must be true if the whole expression is to be true. The logical operators have
a lower precedence than the relational operators, so it is not necessary to use additional paren-
theses to group the subexpressions.

C has three logical operators:

Operator Meaning
&& and

Il or

! not

Suppose expl and exp2 are two simple relational expressions, such as cat > rat and debt ==
1000. Then you can state the following:

= expl && exp2 is true only if both expl and exp2 are true.
= expl || exp2 is true if either expl or exp2 is true or if both are true.

= lexpl is true if expl is false, and it’s false if exp1 is true.

Here are some concrete examples:
5 > 2 && 4 > 7 is false because only one subexpression is true.
5 > 2 || 4 > 7istrue because at least one of the subexpressions is true.

1 (4 > 7) is true because 4 is not greater than 7.
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The last expression, incidentally, is equivalent to the following:

4 <=7

If you are unfamiliar or uncomfortable with logical operators, remember that

(practice && time) == perfection

Alternate Spellings: The iso646.h Header File

C was developed in the United States on systems using the standard U.S. keyboards. But in the
wider world, not all keyboards have the same symbols as U.S. keyboards do. Therefore, the C99
standard added alternative spellings for the logical operators. They are defined in the iso646.h
header file. If you use this header file, you can use and instead of &&, or instead of | |, and not
instead of !. For example, you can rewrite

if (ch != """ g& ch = '"\'")
charcount++;

this way:

if (ch != '"'" and ch != '"\'")
charcount++;

Table 7.3 lists your choices; they are pretty easy to remember. In fact, you might wonder why
C didn't simply use the new terms. The answer probably is that C historically has tried to keep
the number of keywords small. Reference Section V, “The Standard ANSI C Library with C99
and C11 Additions,” lists additional alternative spellings for some operators you haven’t met
yet.

Table 7.3 Alternative Representations of Logical Operators

Traditional is0646.h
&& and

| or

! not
Precedence

The ! operator has a very high precedence—higher than multiplication, the same as the incre-
ment operators, and just below that of parentheses. The && operator has higher precedence
than | |, and both rank below the relational operators and above assignment in precedence.
Therefore, the expression

a>bs b>c || b>d
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would be interpreted as

((a>Db) && (b>c)) || (b>d)

That is, b is between a and ¢, or b is greater than d.

Many programmers would use parentheses, as in the second version, even though they are not
needed. That way, the meaning is clear even if the reader doesn’t quite remember the prece-
dence of the logical operators.

Order of Evaluation

Aside from those cases in which two operators share an operand, C ordinarily does not guar-
antee which parts of a complex expression are evaluated first. For example, in the following

statement, the expression 5 + 3 might be evaluated before 9 + 6, or it might be evaluated

afterward:

apples = (5 + 3) * (9 + 6);

This ambiguity was left in the language so that compiler designers could make the most effi-
cient choice for a particular system. One exception to this rule (or lack of rule) is the treatment
of logical operators. C guarantees that logical expressions are evaluated from left to right. The
&& and | | operators are sequence points, so all side effects take place before a program moves
from one operand to the next. Furthermore, it guarantees that as soon as an element is found
that invalidates the expression as a whole, the evaluation stops. These guarantees make it possi-
ble to use constructions such as the following:

while ((c = getchar()) != ' ' && c != '"\n')

This construction sets up a loop that reads characters up to the first space or newline charac-
ter. The first subexpression gives a value to ¢, which then is used in the second subexpression.
Without the order guarantee, the computer might try to test the second expression before
finding out what value c has.

Here is another example:

if (number != 0 && 12/number == 2)
printf("The number is 5 or 6.\n");

If number has the value 0, the first subexpression is false, and the relational expression is not
evaluated any further. This spares the computer the trauma of trying to divide by zero. Many
languages do not have this feature. After seeing that number is O, they still plunge ahead to
check the next condition.

Finally, consider this example:

while ( x++ < 10 && x + y < 20)

The fact that the && operator is a sequence point guarantees that x is incremented before the
expression on the right is evaluated.
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Summary: Logical Operators and Expressions
Logical Operators:

Logical operators normally take relational expressions as operands. The ! operator takes one
operand. The rest take two—one to the left, one to the right.

Operator Meaning
&& and

|| or

! not

Logical Expressions:

expressionl && expression2 is true if and only if both expressions are true. expressionl
|| expression2 is true if either one or both expressions are true. !expression is true if the
expression is false, and vice versa.

Order of Evaluation:

Logical expressions are evaluated from left to right. Evaluation stops as soon as something is
discovered that renders the expression false.

Examples:

6 > 2 && 3 == 3 True.

! (6 > 2 && 3 == 3) False.

x 1= 0 && (20 / x) < 5 The second expression is evaluated only if x is nonzero.
Ranges

You can use the && operator to test for ranges. For example, to test for score being in the range
90 to 100, you can do this:

if (range >= 90 && range <= 100)
printf("Good show!\n");

It’s important to avoid imitating common mathematical notation, as in the following:

if (90 <= range <= 100) // NO! Don't do it!
printf("Good show!\n");

The problem is that the code is a semantic error, not a syntax error, so the compiler will not
catch it (although it might issue a warning). Because the order of evaluation for the <= operator
is left-to-right, the test expression is interpreted as follows:

(90 <= range) <= 100
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The subexpression 90 <= range either has the value 1 (for true) or 0 (for false). Either value is
less than 100, so the whole expression is always true, regardless of the value of range. So use
&& for testing for ranges.

A lot of code uses range tests to see whether a character is, say, a lowercase letter. For instance,
suppose ch is a char variable:

if (ch >= 'a' && ch <= 'z'")
printf("That's a lowercase character.\n");

This works for character codes such as ASCII, in which the codes for consecutive letters are
consecutive numbers. However, this is not true for some codes, including EBCDIC. The more
portable way of doing this test is to use the islower () function from the ctype.h family (refer
to Table 7.1):

if (islower(ch))
printf("That's a lowercase character.\n");

The islower () function works regardless of the particular character code used. (However, some
ancient implementations lack the ctype.h family.)

A Word-Count Program

Now you have the tools to make a word-counting program (that is, a program that reads input
and reports the number of words it finds). You may as well count characters and lines while
you are at it. Let’s see what such a program involves.

First, the program should read input character-by-character, and it should have some way of
knowing when to stop. Second, it should be able to recognize and count the following units:
characters, lines, and words. Here’s a pseudocode representation:

read a character

while there is more input
increment character count
if a line has been read, increment line count
if a word has been read, increment word count
read next character

You already have a model for the input loop:

while ((ch = getchar()) != STOP)
{

Here, STOP represents some value for ch that signals the end of the input. The examples so far
have used the newline character and a period for this purpose, but neither is satisfactory for
a general word-counting program. For the present, choose a character (such as |) that is not
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common in text. In Chapter 8, “Character Input/Output and Input Validation,” we’ll present a
better solution that also allows the program to be used with text files as well as keyboard input.

Now let’s consider the body of the loop. Because the program uses getchar () for input, it

can count characters by incrementing a counter during each loop cycle. To count lines, the
program can check for newline characters. If a character is a newline, the program should incre-
ment the line count. One question to decide is what to do if the STOP character comes in the
middle of a line. Should that count as a line or not? One answer is to count it as a partial line—
that is, a line with characters but no newline. You can identify this case by keeping track of the
previous character read. If the last character read before the sTOP character isn’t a newline, you
have a partial line.

The trickiest part is identifying words. First, you have to define what you mean by a word. Let’s
take a relatively simple approach and define a word as a sequence of characters that contains
no whitespace (that is, no spaces, tabs, or newlines). Therefore, “glymxck” and “r2d2” are
words. A word starts when the program first encounters non-whitespace, and then it ends
when the next whitespace character shows up. Here is the most straightforward test expression
for detecting non-whitespace:

c!=""& c != '"\n'" && c != "\t' /* true if c is not whitespace */

And the most straightforward test for detecting whitespace is

c==""1]] c=="\n"|| c=="\t'" /% true if ¢ is whitespace */

However, it is simpler to use the ctype.h function isspace(), which returns true if its argu-
ment is a whitespace character. So isspace(c) is true if ¢ is whitespace, and !isspace(c) is
true if ¢ isn’t whitespace.

To keep track of whether a character is in a word, you can set a flag (call it inword) to 1 when
the first character in a word is read. You can also increment the word count at that point.
Then, as long as inword remains 1 (or true), subsequent non-whitespace characters don’t mark
the beginning of a word. At the next whitespace character, you must reset the flag to 0 (or
false) and then the program will be ready to find the next word. Let’s put that into pseudocode:

if ¢ is not whitespace and inword is false
set inword to true and count the word
if ¢ is whitespace and inword is true
set inword to false

This approach sets inword to 1 (true) at the beginning of each word and to 0 (false) at the end
of each word. Words are counted only at the time the flag setting is changed from 0 to 1. If
you have the Bool type available, you can include the stdbool.h header file and use bool for
the inword type and true and false for the values. Otherwise, use the int type and 1 and 0
as the values.

If you do use a Boolean variable, the usual idiom is to use the value of the variable itself as a
test condition. That is, use

if (inword)
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instead of

if (inword == true)

and use

if (!inword)

instead of

if (inword == false)

The reasoning is that the expression inword == true evaluates to true if inword is true and
to false if inword is false, so you may as well just use inword as the test. Similarly, ! inword
has the same value as the expression inword == false (not true is false, and not false is
true).

Listing 7.7 translates these ideas (identifying lines, identifying partial lines, and identifying
words) into C.

Listing 7.7 The wordent.c Program

// wordcnt.c -- counts characters, words, lines
#include <stdio.h>

#include <ctype.h> // for isspace()
#include <stdbool.h> // for bool, true, false

#define STOP '|'
int main(void)

{

char c; // read in character
char prev; // previous character read
long n_chars = 0L; // number of characters
int n_lines = 0; // number of lines
int n_words = 0; // number of words
int p _lines = 0; // number of partial lines
bool inword = false; // == true if c is in a word
printf("Enter text to be analyzed (| to terminate):\n");
prev = '\n'; // used to identify complete lines
while ((c = getchar()) != STOP)
{

n_chars++; // count characters

if (¢ == "\n'")

n_lines++; // count lines
if (!isspace(c) && !inword)

{
inword = true; // starting a new word
n_words++; // count word
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if (isspace(c) && inword)
inword = false; // reached end of word
prev = c; // save character value

if (prev != '\n')
p_lines = 1;
printf("characters = %1d, words = %d, lines = %d, ",
n_chars, n words, n lines);
printf("partial lines = %d\n", p_lines);

return 0;

Here is a sample run:

Enter text to be analyzed (| to terminate):
Reason is a

powerful servant but

an inadequate master.

characters = 55, words = 9, lines = 3, partial lines = 0

The program uses logical operators to translate the pseudocode to C. For example,

if ¢ is not whitespace and inword is false

gets translated into the following:

if (!isspace(c) && !inword)

Note again that ! inword is equivalent to inword == false. The entire test condition
certainly is more readable than testing for each whitespace character individually:

if (¢ !=" && c != '\n' && c != '"\t' && !inword)

Either form says, “If c is not whitespace and if you are not in a word.” If both conditions are
met, you must be starting a new word, and n_words is incremented. If you are in the middle
of a word, the first condition holds, but inword will be true, and n_words is not incremented.
When you reach the next whitespace character, inword is set equal to false again. Check the
coding to see whether the program gets confused when there are several spaces between one
word and the next. Chapter 8 shows how to modify this program to count words in a file.

The Conditional Operator: ?:

C offers a shorthand way to express one form of the if else statement. It is called a condi-
tional expression and uses the ?: conditional operator. This is a two-part operator that has three
operands. Recall that operators with one operand are called unary operators and that operators
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with two operands are called binary operators. In that tradition, operators with three operands
are called fernary operators, and the conditional operator is C’s only example in that category.
Here is an example that yields the absolute value of a number:

x=(y<0)?-y:y;

Everything between the = and the semicolon is the conditional expression. The meaning of the
statement is “If y is less than zero, x = -y; otherwise, x = y.” In if else terms, the meaning
can be expressed as follows:

if (y < 0)

X = -yi
else

X =Y

The following is the general form of the conditional expression:

expressionl ? expression2 : expression3

If expressioni is true (nonzero), the whole conditional expression has the same value as
expression2. If expressionl is false (zero), the whole conditional expression has the same
value as expression3.

You can use the conditional expression when you have a variable to which you want to assign
one of two possible values. A typical example is setting a variable equal to the maximum of two
values:

max = (a > b) ? a : b;

This sets max to a if it is greater than b, and to b otherwise.

Usually, an if else statement can accomplish the same thing as the conditional operator. The
conditional operator version, however, is more compact and, depending on the compiler, may
result in more compact program code.

Let’s look at a paint program example, shown in Listing 7.8. The program calculates how many
cans of paint are needed to paint a given number of square feet. The basic algorithm is simple:
Divide the square footage by the number of square feet covered per can. However, suppose the
answer is 1.7 cans. Stores sell whole cans, not fractional cans, so you would have to buy two
cans. Therefore, the program should round up to the next integer when a fractional paint can
is involved. The conditional operator is used to handle that situation, and it’s also used to
print cans or can, as appropriate.

Listing 7.8 The paint.c Program

/* paint.c -- uses conditional operator */
#include <stdio.h>
#define COVERAGE 350 // square feet per paint can

int main(void)

{
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int sq_feet;
int cans;

printf("Enter number of square feet to be painted:\n");
while (scanf("%d", &sq feet) == 1)
{

cans = sq_feet / COVERAGE;

cans += ((sq_feet % COVERAGE == 0)) ? 0 : 1;

printf("You need %d %s of paint.\n", cans,

cans == 1 ? "can" : "cans");
printf("Enter next value (g to quit):\n");

return 0;

Here’s a sample run:

Enter number of square feet to be painted:
349

You need 1 can of paint.

Enter next value (g to quit):

351

You need 2 cans of paint.

Enter next value (gq to quit):

q

Because the program is using type int, the division is truncated; that is, 351/350 becomes 1.
Therefore, cans is rounded down to the integer part. If sq_feet % COVERAGE is O, COVERAGE
divides evenly into sq_feet and cans is left unchanged. Otherwise, there is a remainder, so 1
is added. This is accomplished with the following statement:

cans += ((sq_feet % COVERAGE == 0)) ? 0 : 1;
It adds the value of the expression to the right of += to cans. The expression to the right is

a conditional expression having the value 0 or 1, depending on whether COVERAGE divides
evenly into sq_feet.

The final argument to the printf () function is also a conditional expression:

cans == ? "can" : "cans");

If the value of cans is 1, the string "can" is used. Otherwise, "cans" is used. This demonstrates

that the conditional operator can use strings for its second and third operands.
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Summary: The Conditional Operator
The Conditional Operator:

?:

General Comments:

This operator takes three operands, each of which is an expression. They are arranged as fol-
lows:

expressionl ? expression2 : expression3

The value of the whole expression equals the value of expression2 if expressioni is true.
Otherwise, it equals the value of expression3.

Examples:
(5 > 3) ?2 1 : 2hasthevalue 1.
(3 >5) 2 1 : 2 hasthe value 2.

(a > b) ? a : b has the value of the larger of a or b.

Loop Aids: continue and break

Normally, after the body of a loop has been entered, a program executes all the statements in
the body before doing the next loop test. The continue and break statements enable you to
skip part of a loop or even terminate it, depending on tests made in the body of the loop.

The continue Statement

This statement can be used in the three loop forms. When encountered, it causes the rest of an
iteration to be skipped and the next iteration to be started. If the continue statement is inside
nested structures, it affects only the innermost structure containing it. Let’s try continue in
the short program in Listing 7.9.

Listing 7.9 The skippart.c Program

/* skippart.c -- uses continue to skip part of loop */
#include <stdio.h>
int main(void)
{
const float MIN 0.0f;
const float MAX = 100.0f;

float score;

float total = 0.0f;
int n = 0;

float min = MAX;
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float max = MIN;

printf("Enter the first score (q to quit): ");

while (scanf("%f", &score) == 1)

{
if (score < MIN || score > MAX)
{

printf("%0.1f is an invalid value. Try again: ",
score);
continue; // jumps to while loop test condition

}

printf("Accepting %0.1f:\n", score);
min = (score < min)? score: min;
max = (score > max)? score: max;

total += score;
n++;
printf("Enter next score (g to quit): ");

}

if (n > 0)

{
printf("Average of %d scores is %0.1f.\n", n, total / n);
printf("Low = %0.1f, high = %0.1f\n", min, max);

}

else
printf("No valid scores were entered.\n");

return 0;

In Listing 7.9, the while loop reads input until you enter nonnumeric data. The if statement
within the loop screens out invalid score values. If, say, you enter 188, the program tells you
188 is an invalid value. Then the continue statement causes the program to skip over
the rest of the loop, which is devoted to processing valid input. Instead, the program starts the
next loop cycle by attempting to read the next input value.

Note that there are two ways you could have avoided using continue. One way is omitting the
continue and making the remaining part of the loop an else block:

if (score < 0 || score > 100)

/* printf() statement */
else

{

/* statements */

Alternatively, you could have used this format instead:

if (score >= 0 && score <= 100)

{
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/* statements */

An advantage of using continue in this case is that you can eliminate one level of indentation
in the main group of statements. Being concise can enhance readability when the statements
are long or are deeply nested already.

Another use for continue is as a placeholder. For example, the following loop reads and
discards input up to, and including, the end of a line:

while (getchar() != '\n'")

’

Such a technique is handy when a program has already read some input from a line and needs
to skip to the beginning of the next line. The problem is that the lone semicolon is hard to
spot. The code is much more readable if you use continue:

while (getchar() != '\n'")
continue;

Don’t use continue if it complicates rather than simplifies the code. Consider the following
fragment, for example:

while ((ch = getchar() ) != '\n')
{
if (ch == "\t')
continue;
putchar(ch);
}

This loop skips over the tabs and quits only when a newline character is encountered. The loop
could have been expressed more economically as this:

while ((ch = getchar()) != '\n')
if (ch 1= '\t')
putchar(ch);

Often, as in this case, reversing an if test eliminates the need for a continue.

You've seen that the continue statement causes the remaining body of a loop to be skipped.
Where exactly does the loop resume? For the while and do while loops, the next action taken
after the continue statement is to evaluate the loop test expression. Consider the following
loop, for example:

count = 0;
while (count < 10)
{

ch = getchar();
if (ch == '"\n'")
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continue;
putchar(ch);
count++;

It reads 10 characters (excluding newlines, because the count++; statement gets skipped when
ch is a newline) and echoes them, except for newlines. When the continue statement is
executed, the next expression evaluated is the loop test condition.

For a for loop, the next actions are to evaluate the update expression and then the loop test
expression. Consider the following loop, for example:

for (count = 0; count < 10; count++)

{
ch = getchar();
if (ch == '"\n")
continue;
putchar(ch);
}

In this case, when the continue statement is executed, first count is incremented and then it’s
compared to 10. Therefore, this loop behaves slightly differently from the while example. As
before, only non-newline characters are displayed. However, this time, newline characters are
included in the count, so it reads 10 characters, including newlines.

The break Statement

A break statement in a loop causes the program to break free of the loop that encloses it and
to proceed to the next stage of the program. In Listing 7.9, replacing continue with break
would cause the loop to quit when, say, 188 is entered, instead of just skipping to the next
loop cycle. Figure 7.3 compares break and continue. If the break statement is inside nested
loops, it affects only the innermost loop containing it.

Sometimes break is used to leave a loop when there are two separate reasons to leave. Listing
7.10 uses a loop that calculates the area of a rectangle. The loop terminates if you respond with
nonnumeric input for the rectangle’s length or width.

Listing 7.10 The break.c Program

/* break.c -- uses break to exit a loop */
#include <stdio.h>
int main(void)
{
float length, width;

printf("Enter the length of the rectangle:\n");
while (scanf("%f", &length) == 1)
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{

printf("Length = %0.2f:\n", length);

printf("Enter its width:\n");

if (scanf("%f", &width) != 1)

break;

printf("Width = %0.2f:\n", width);

printf("Area = %0.2f:\n", length * width);

printf("Enter the length of the rectangle:\n");
}

printf("Done.\n");

return 0;

while ( (ch = getchar() ) !=EOF)

{
blahblah(ch);
if (ch == '\n')
break;
yakyak(ch);
}

blunder(n,m); <

while ( (ch = getchar() ) !=EOF)

{
blahblah(ch);
if (ch == '"\n")
continue;
yakyak(ch);
}

blunder(n,m);

Figure 7.3 Comparing break and continue.
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You could have controlled the loop this way:
while (scanf("%f %f", &length, &width) == 2)
However, using break makes it simple to echo each input value individually.

As with continue, don’t use break when it complicates code. For example, consider the
following loop:

while ((ch = getchar()) != '\n')
{
if (ch == "\t')
break;
putchar(ch);
}

The logic is clearer if both tests are in the same place:

while ((ch = getchar() ) != '\n' && ch != '\t')
putchar(ch);

The break statement is an essential adjunct to the switch statement, which is coming up next.

A break statement takes execution directly to the first statement following the loop; unlike the
case for continue in a for loop, the update part of the control section is skipped. A break in a
nested loop just takes the program out of the inner loop; to get out of the outer loop requires a
second break:

int p, q;

scanf("%d", &p);

while ( p > 0)

{
printf("sd\n", p);
scanf("%d", &q);
while( g > 0)

{
printf("%d\n",p*q);
if (g > 100)
break; // break from inner loop
scanf("%d", &q);
}
if (g > 100)

break; // break from outer loop
scanf("%d", &p);
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Multiple Choice: switch and break

The conditional operator and the if else construction make it easy to write programs that
choose between two alternatives. Sometimes, however, a program needs to choose one of
several alternatives. You can do this by using if else if...else. However, in many cases, it
is more convenient to use the C switch statement. Listing 7.11 shows how the switch state-
ment works. This program reads in a letter and then responds by printing an animal name that
begins with that letter.

Listing 7.11 The animals.c Program

/* animals.c -- uses a switch statement */
#include <stdio.h>

#include <ctype.h>

int main(void)

{

char ch;

printf("Give me a letter of the alphabet, and I will give ");
printf("an animal name\nbeginning with that letter.\n");
printf("Please type in a letter; type # to end my act.\n");

while ((ch = getchar()) != "#'")
{
if('\n' == ch)
continue;
if (islower(ch)) /* lowercase only */

switch (ch)
{

case 'a
printf("argali, a wild sheep of Asia\n");
break;

case 'b'
printf("babirusa, a wild pig of Malay\n");
break;

case 'c'
printf("coati, racoonlike mammal\n");
break;

case 'd’
printf("desman, aquatic, molelike critter\n");
break;

case 'e'
printf("echidna, the spiny anteater\n");
break;

case 'f'
printf("fisher, brownish marten\n");
break;
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default :
printf("That's a stumper!\n");
} /* end of switch */
else
printf("I recognize only lowercase letters.\n");
while (getchar() != '\n')
continue; /* skip rest of input line */
printf("Please type another letter or a #.\n");
} /* while loop end */
printf("Bye!\n");

return 0;

We got a little lazy and stopped at f, but we could have continued in the same manner. Let’s
look at a sample run before explaining the program further:

Give me a letter of the alphabet, and I will give an animal name
beginning with that letter.

Please type in a letter; type # to end my act.
a [enter]

argali, a wild sheep of Asia

Please type another letter or a #.

dab [enter]

desman, aquatic, molelike critter

Please type another letter or a #.

r [enter]

That's a stumper!

Please type another letter or a #.

Q [enter]

I recognize only lowercase letters.

Please type another letter or a #.

# [enter]

Bye!

The program’s two main features are its use of the switch statement and its handling of input.
We'll look first at how switch works.

Using the switch Statement

The expression in the parentheses following the word switch is evaluated. In this case, it has
whatever value you last entered for ch. Then the program scans the list of labels (here, case

'a' :,case 'b' :, and so on) until it finds one matching that value. The program then
jumps to that line. What if there is no match? If there is a line labeled default :, the program
jumps there. Otherwise, the program proceeds to the statement following the switch.
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What about the break statement? It causes the program to break out of the switch and skip to
the next statement after the switch (see Figure 7.4). Without the break statement, every state-
ment from the matched label to the end of the switch would be processed. For example, if you
removed all the break statements from the program and then ran the program using the letter

d, you would get this exchange:

Give me a letter of the alphabet, and I will give an animal name

beginning with that letter.

Please type in a letter; type # to end my act.

d [enter]

desman, aquatic, molelike critter
echidna, the spiny anteater
fisher, a brownish marten

That's a stumper!

Please type another letter or a #.
# [enter]

Bye!

{

case 1:

—>» case 2:

case 3:

default:
}

{

case 1:
Ly case 2:

case 3:

—— default:
}

Figure 7.4 Program flow in switches,

—— sSwitch(number)

statement 1;
break;
statement 2;
break;
statement 3;
break
statement 4;

—>» statement 5;

—— switch(number)

statement 1;
statement 2;
statement 3;

statement 4;

—>» statement 5;

with and without breaks.
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All the statements from case 'd' : to the end of the switch were executed.

Incidentally, a break statement works with loops and with switch, but continue works just
with loops. However, continue can be used as part of a switch statement if the statement is in
a loop. In that situation, as with other loops, continue causes the program to skip over the rest
of the loop, including other parts of the switch.

If you are familiar with Pascal, you will recognize the switch statement as being similar to the
Pascal case statement. The most important difference is that the switch statement requires
the use of a break if you want only the labeled statement to be processed. Also, you can’t use a
range as a C case.

The switch test expression in the parentheses should be one with an integer value (including
type char). The case labels must be integer-type (including char) constants or integer constant
expressions (expressions containing only integer constants). You can’t use a variable for a case
label. Here, then, is the structure of a switch:

switch (integer expression)

{
case constantl:
statements <--optional
case constant2:
statements <--optional
default : <--optional
statements <--optional
}

Reading Only the First Character of a Line

The other new feature incorporated into animals.c is how it reads input. As you might have
noticed in the sample run, when dab was entered, only the first character was processed. This
behavior of disposing of the rest of the line is often desirable in interactive programs looking
for single-character responses. The following code produced this behavior:

while (getchar() != '\n')
continue; /* skip rest of input line */

This loop reads characters from input up to and including the newline character generated by
the Enter key. Note that the function return value is not assigned to ch, so the characters are
merely read and discarded. Because the last character discarded is the newline character, the
next character to be read is the first character of the next line. It gets read by getchar () and
assigned to ch in the outer while loop.

Suppose a user starts out by pressing Enter so that the first character encountered is a newline.
The following code takes care of that possibility:

if (ch == '"\n'")
continue;
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Multiple Labels

You can use multiple case labels for a given statement, as shown in Listing 7.12.

Listing 7.12 The vowels.c Program

// vowels.c -- uses multiple labels
#include <stdio.h>
int main(void)
{
char ch;
int a ct, e ct, i ct, o ct, u_ct;

printf("Enter some text; enter # to quit.\n");

while ((ch = getchar()) != "#'")
{
switch (ch)
{
case 'a'
case 'A' : a_ct++;
break;
case 'e'
case 'E' : e _ct++;
break;
case 'i'
case 'I' : i ct++;
break;
case 'o'
case '0O' : o_ct++;
break;
case 'u'
case 'U' : u_ct++;
break;
default : break;
} // end of switch
} // while loop end
printf ("number of vowels: A E I 0 U\n");
printf(" %$4d %4d %4d %4d %4d\n",

act, ect, i ct, o ct, uct);

return 0;
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If ch is, say, the letter i, the switch statement goes to the location labeled case 'i' :.
Because there is no break associated with that label, program flow goes to the next statement,
which is i_ct++;. If ch is I, program flow goes directly to that statement. In essence, both
labels refer to the same statement.

Strictly speaking, the break statement for case 'U' isn’t needed, because in its absence,
program flow goes to the next statement in the switch, which is the break for the default
case. So the case 'U' break could be dropped, thus shortening the code. On the other hand, if
other cases might be added later (you might want to count the letter y as a sometimes vowel),
having the break already in place protects you from forgetting to add one.

Here’s a sample run:

Enter some text; enter # to quit.

I see under the overseer.#

number of vowels: A E I (] 1)
0 7 1 1 1

In this particular case, you can avoid multiple labels by using the toupper () function from the
ctype.h family (refer to Table 7.2) to convert all letters to uppercase before testing:

while ((ch = getchar()) != "#")

{
ch = toupper(ch);
switch (ch)

{
case 'A' : a_ct++;
break;
case 'E' : e _ct++;
break;
case 'I' : 1 _ct++;
break;
case '0' : o _ct++;
break;
case 'U' : u_ct++;
break;
default : break;
} // end of switch
} // while loop end

Or, if you want to, you could leave ch unchanged and use toupper (ch) as the test condition:

switch(toupper(ch))
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Summary: Multiple Choice with switch
Keyword:

switch

General Comments:

Program control jumps to the case label bearing the value of expression. Program flow then
proceeds through all the remaining statements unless redirected again with a break state-
ment. Both expression and case labels must have integer values (type char is included),
and the labels must be constants or expressions formed solely from constants. If no case
label matches the expression value, control goes to the statement labeled default, if present.
Otherwise, control passes to the next statement following the switch statement.

Form:

switch (expression)

{
case labell : statementl // use break to skip to end
case label2 : statement2
default : statement3

}

There can be more than two labeled statements, and the default case is optional.
Example:

switch (choice)

{

case 1

case 2 : printf("Darn tootin'!\n"); break;
case 3 : printf("Quite right!\n");

case 4 : printf("Good show!\n"); break;
default : printf("Have a nice day.\n");

}

If choice has the integer value 1 or 2, the first message is printed. If it is 3, the second and
third messages are printed. (Flow continues to the following statement because there is no
break statement after case 3.) If it is 4, the third message is printed. Other values print only
the last message.

switch and if else

When should you use a switch and when should you use the if else construction? Often
you don'’t have a choice. You can’t use a switch if your choice is based on evaluating a float-
ing-point variable or expression. Nor can you conveniently use a switch if a variable must fall
into a certain range. It is simple to write the following:

if (integer < 1000 && integer > 2)
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Unhappily, covering this range with a switch would involve setting up case labels for each
integer from 3 to 999. However, if you can use a switch, your program often runs a little faster
and takes less code.

The goto Statement

The goto statement, bulwark of the older versions of BASIC and FORTRAN, is available in C.
However, C, unlike those two languages, can get along quite well without it. Kernighan and
Ritchie refer to the goto statement as “infinitely abusable” and suggest that it “be used spar-
ingly, if at all.” First, we will show you how to use goto. Then, we will show why you usually
don’t need to.

The goto statement has two parts—the goto and a label name. The label is named following
the same convention used in naming a variable, as in this example:

goto part2;

For the preceding statement to work, the function must contain another statement bearing the
part2 label. This is done by beginning a statement with the label name followed by a colon:

part2: printf("Refined analysis:\n");

Avoiding goto

In principle, you never need to use the goto statement in a C program, but if you have a
background in older versions of FORTRAN or BASIC, both of which require its use, you might
have developed programming habits that depend on using goto. To help you get over that
dependence, we will outline some familiar goto situations and then show you a more C-like
approach:

= Handling an if situation that requires more than one statement:

if (size > 12)
goto a;
goto b;
a: cost = cost * 1.05;
flag = 2;
b: bill = cost * flag;

In old-style BASIC and FORTRAN, only the single statement immediately following
the if condition is attached to the if. No provision is made for blocks or compound
statements. We have translated that pattern into the equivalent C. The standard C
approach of using a compound statement or block is much easier to follow:

if (size > 12)

{

cost = cost * 1.05;
2;

flag
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}
bill = cost * flag;

= Choosing from two alternatives:

if (ibex > 14)
goto a;
sheds = 2;
goto b;
a: sheds= 3;
b: help = 2 * sheds;

Having the if else structure available allows C to express this choice more cleanly:
if (ibex > 14)
sheds = 3;
else
sheds = 2;
help = 2 * sheds;

Indeed, newer versions of BASIC and FORTRAN have incorporated else into their
syntax.
= Setting up an indefinite loop:
readin: scanf("%d", &score);
if (score < 0)
goto stage2;
lots of statements

goto readin;
stage2: more stuff;

Use a while loop instead:
scanf("%d", &score);

while (score <= 0)

{

lots of statements
scanf("%d", &score);

}

more stuff;

= Skipping to the end of a loop and starting the next cycle. Use continue instead.

= Leaving a loop. Use break instead. Actually, break and continue are specialized forms
of goto. The advantages of using them are that their names tell you what they are
supposed to do and that, because they don’t use labels, there is no danger of putting a
label in the wrong place.

= Leaping madly about to different parts of a program. In a word, don’t!
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There is a use of goto tolerated by many C practitioners—getting out of a nested set of loops if
trouble shows up (a single break gets you out of the innermost loop only):

while (funct > 0)

{
for (1 =1, i <= 100; i++)
{
for (j = 1; j <= 50; j++)
{
statements galore;
if (bit trouble)
goto help;
statements;
}
more statements;
}
yet more statements;
}

and more statements;
help : bail out;

As you can see from the other examples, the alternative forms are clearer than the goto forms.
This difference grows even greater when you mix several of these situations. Which gotos are
helping ifs, which are simulating if elses, which are controlling loops, which are just there
because you have programmed yourself into a corner? By using gotos excessively, you create a
labyrinth of program flow. If you aren’t familiar with gotos, keep it that way. If you are used to
using them, try to train yourself not to. Ironically, C, which doesn’t need a goto, has a better
goto than most languages because it enables you to use descriptive words for labels instead of
numbers.

Summary: Program Jumps

Keywords:

break, continue, goto

General Comments:

These three instructions cause program flow to jump from one location of a program to another
location.

The break Command:

The break command can be used with any of the three loop forms and with the switch state-

ment. It causes program control to skip the rest of the loop or the switch containing it and to
resume with the next command following the loop or switch.

Example:

switch (number)

{

case 4: printf("That's a good choice.\n");
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break;

case 5: printf("That's a fair choice.\n");
break;

default: printf("That's a poor choice.\n");

The continue Command:

The continue command can be used with any of the three loop forms but not with a switch.
It causes program control to skip the remaining statements in a loop. For a while or for loop,
the next loop cycle is started. For a do while loop, the exit condition is tested and then, if
necessary, the next loop cycle is started.

Example:

while ((ch = getchar()) != '\n')
{
if (ch=="")
continue;
putchar(ch);
chcount++;

This fragment echoes and counts non-space characters.
The goto Command:

A goto statement causes program control to jump to a statement bearing the indicated label. A
colon is used to separate a labeled statement from its label. Label names follow the rules for
variable names. The labeled statement can come either before or after the goto.

Form:

goto label;

label : statement

Example:

top : ch = getchar();

if (ch !="y")
goto top;



Summary

Key Concepts

One aspect of intelligence is the ability to adjust one’s responses to the circumstances.
Therefore, selection statements are the foundation for developing programs that behave intel-
ligently. In C, the if, if else, and switch statements, along with the conditional operator
(?:), implement selection.

The if and if else statements use a test condition to determine which statements are
executed. Any nonzero value is treated as true, whereas zero is treated as false. Typically,
tests involve relational expressions, which compare two values, and logical expressions, which
use logical operators to combine or modify other expressions.

One general principle to keep in mind is that if you want to test for two conditions, you should
use a logical operator together with two complete test expressions. For instance, the following
two attempts are faulty:

if (a < x < z) // wrong --no logical operator

if (ch != 'q' && != 'Q') // wrong -- missing a complete test

Remember, the correct way is to join two relational expressions with a logical operator:

if (a < X && x < 2) // use && to combine two expressions

if (ch != 'q' && ch != 'Q') // use && to combine two expressions

The control statements presented in these last two chapters will enable you to tackle programs
that are much more powerful and ambitious than those you worked with before. For evidence,
just compare some of the examples in these chapters to those of the earlier chapters.

Summary

This chapter has presented quite a few topics to review, so let’s get to it. The if statement uses
a test condition to control whether a program executes the single simple statement or block
following the test condition. Execution occurs if the test expression has a nonzero value and
doesn’t occur if the value is zero. The if else statement enables you to select from two alter-
natives. If the test condition is nonzero, the statement before the else is executed. If the test
expression evaluates to zero, the statement following the else is executed. By using another if
statement to immediately follow the else, you can set up a structure that chooses between a
series of alternatives.

The test condition is often a relational expression—that is, an expression formed by using one of
the relational operators, such as < or ==. By using C’s logical operators, you can combine rela-
tional expressions to create more complex tests.
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The conditional operator (? :) creates an expression that, in many cases, provides a more
compact alternative to an if else statement.

The ctype.h family of character functions, such as isspace() and isalpha(), offers conve-
nient tools for creating test expressions based on classifying characters.

The switch statement enables you to select from a series of statements labeled with integer
values. If the integer value of the test condition following the switch keyword matches a label,
execution goes to the statement bearing that label. Execution then proceeds through the state-
ments following the labeled statement unless you use a break statement.

Finally, break, continue, and goto are jump statements that cause program tlow to jump to
another location in the program. A break statement causes the program to jump to the next
statement following the end of the loop or switch containing the break. The continue state-
ment causes the program to skip the rest of the containing loop and to start the next cycle.

Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”

1. Determine which expressions are true and which are false.
a. 100 > 3 && 'a'>'c’
b. 100 > 3 || 'a'>'c’

c. 1(100>3)

2. Construct an expression to express the following conditions:
a. number is equal to or greater than 90 but smaller than 100.
b. chis nota q or a k character.
c. number is between 1 and 9 (including the end values) but is not a 5.

d. number is not between 1 and 9.

3. The following program has unnecessarily complex relational expressions as well as some
outright errors. Simplify and correct it.

#include <stdio.h>

int main(void) /* 1 */
{ /* 2 */
int weight, height; /* weight in 1lbs, height in inches */
/* 4 x/

scanf("%d , weight, height); /* 5 *x/
if (weight < 100 && height > 64) /* 6 *x/
if (height >= 72) VALY

printf("You are very tall for your weight.\n");



else if (height < 72 && > 64) /%9 */
printf("You are tall for your weight.\n"); /* 10 */
else if (weight > 300 && ! (weight <= 300) /* 11 %/
&& height < 48) /* 12 */
if (!(height >= 48) ) /% 13 %/

printf(" You are quite short for your weight.\n");
else /* 15 %/
printf("Your weight is ideal.\n"); /* 16 */
/% 17 */

return 0;

. What is the numerical value of each of the following expressions?

a. 5 > 2

b. 3 +4>2 && 3 < 2
c. x>y || y>x

d d=5+ (6 >2)
e. 'X'" > 'T" 2?2 10 : 5

f.x>y?2y>x: x>y

. What will the following program print?
#include <stdio.h>
int main(void)
{
int num;
for (num = 1; num <= 11; numt+)

{
if (num % 3 == 0)
putchar('s');
else
putchar('*");
putchar('#');
putchar('s');
}
putchar('\n'");
return 0;

. What will the following program print?

#include <stdio.h>
int main(void)

Review Questions
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{
int 1 = 0;
while ( i < 3) {
switch(i++) {
case 0 : printf("fat ");
case 1 : printf("hat ");
case 2 : printf("cat ");
default: printf("Oh no!");
}
putchar('\n");
}
return 0;
}

7. What’s wrong with this program?

#include <stdio.h>
int main(void)

{
char ch;
int 1lc = 0; /* lowercase char count
int uc = 0; /* uppercase char count
int oc = 0; /* other char count
while ((ch = getchar()) != "#'")
{
if ('a' <= ch >= 'z2")
lot++;
else if (!(ch < 'A') || !(ch > 'Z2")
uc++;
oc++;
}
printf(%d lowercase, %d uppercase, %d other, lc, uc, oc);
return 0;
}

8. What will the following program print?
/* retire.c  */
#include <stdio.h>
int main(void)
{
int age = 20;
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while (age++ <= 65)

{
if (( age % 20) == 0) /* is age divisible by 20? */
printf("You are %d. Here is a raise.\n", age);
if (age = 65)
printf("You are %d. Here is your gold watch.\n", age);
}
return 0;

9. What will the following program print when given this input?

q
c

h

b

#include <stdio.h>
int main(void)

{

char ch;

while ((ch = getchar()) != '#")
{
if (ch == '\n')
continue;
printf("Step 1\n");
if (ch == '¢")
continue;
else if (ch == 'b'")
break;
else if (ch == 'h'")
goto laststep;
printf("Step 2\n");
laststep: printf("Step 3\n");
}
printf("Done\n");
return 0;

10. Rewrite the program in Review Question 9 so that it exhibits the same behavior but does
not use a continue Or a goto.
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Programming Exercises

1. Write a program that reads input until encountering the # character and then reports
the number of spaces read, the number of newline characters read, and the number of all
other characters read.

2. Write a program that reads input until encountering #. Have the program print each
input character and its ASCII decimal code. Print eight character-code pairs per line.
Suggestion: Use a character count and the modulus operator (%) to print a newline
character for every eight cycles of the loop.

3. Write a program that reads integers until O is entered. After input terminates, the
program should report the total number of even integers (excluding the 0) entered, the
average value of the even integers, the total number of odd integers entered, and the
average value of the odd integers.

4. Using if else statements, write a program that reads input up to #, replaces each period
with an exclamation mark, replaces each exclamation mark initially present with two
exclamation marks, and reports at the end the number of substitutions it has made.

5. Redo exercise 4 using a switch.

6. Write a program that reads input up to # and reports the number of times that the
sequence ei occurs.

Note

The program will have to “remember” the preceding character as well as the current character.
Test it with input such as “Receive your eieio award.”

7. Write a program that requests the hours worked in a week and then prints the gross pay,
the taxes, and the net pay. Assume the following:

a. Basic pay rate = $10.00/hr

b. Overtime (in excess of 40 hours) = time and a half
c. Tax rate: #15% of the first $300

20% of the next $150

25% of the rest

Use #define constants, and don’t worry if the example does not conform to current
tax law.



8.

10.

11.

Programming Exercises

Modify assumption a. in exercise 7 so that the program presents a menu of pay rates
from which to choose. Use a switch to select the pay rate. The beginning of a run
should look something like this:

IR EEEEEEEEEEEEEEEEE R R R R R R R R R R R R R R R R R R R R EEEEEEEEREEEEEEEEEEEEES]

Enter the number corresponding to the desired pay rate or action:

1) $8.75/hr 2) $9.33/hr
3) $10.00/hr 4) $11.20/hr
5) quit

IR EEEEEEEEEEE SRR R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R EEEEEEEES]

If choices 1 through 4 are selected, the program should request the hours worked. The
program should recycle until 5 is entered. If something other than choices 1 through 5
is entered, the program should remind the user what the proper choices are and then
recycle. Use #defined constants for the various earning rates and tax rates.

Write a program that accepts a positive integer as input and then displays all the prime
numbers smaller than or equal to that number.

The 1988 United States Federal Tax Schedule was the simplest in recent times. It had
four categories, and each category had two rates. Here is a summary (dollar amounts are
taxable income):

Category Tax

Single 15% of first $17,850 plus 28% of excess
Head of Household 15% of first $23,900 plus 28% of excess
Married, Joint 15% of first $29,750 plus 28% of excess
Married, Separate 15% of first $14,875 plus 28% of excess

For example, a single wage earner with a taxable income of $20,000 owes 0.15 x $17,850
+ 0.28 x ($20,000-$17,850). Write a program that lets the user specify the tax category
and the taxable income and that then calculates the tax. Use a loop so that the user can
enter several tax cases.

The ABC Mail Order Grocery sells artichokes for $2.05 per pound, beets for $1.15 per
pound, and carrots for $1.09 per pound. It gives a 5% discount for orders of $100 or
more prior to adding shipping costs. It charges $6.50 shipping and handling for any
order of 5 pounds or under, $14.00 shipping and handling for orders over 5 pounds
and under 20 pounds, and $14.00 plus $0.50 per pound for shipments of 20 pounds or
more. Write a program that uses a switch statement in a loop such that a response of a
lets the user enter the pounds of artichokes desired, b the pounds of beets, ¢ the pounds
of carrots, and g allows the user to exit the ordering process. The program should keep
track of cumulative totals. That is, if the user enters 4 pounds of beets and later enters

5 pounds of beets, the program should use report 9 pounds of beets. The program then
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should compute the total charges, the discount, if any, the shipping charges, and the
grand total. The program then should display all the purchase information: the cost per
pound, the pounds ordered, and the cost for that order for each vegetable, the total cost
of the order, the discount (if there is one), the shipping charge, and the grand total of all
the charges.
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Character Input/Output and
Input Validation

You will learn about the following in this chapter:

= More about input, output, and the differences between buffered and unbuffered input
= How to simulate the end-of-file condition from the keyboard
= How to use redirection to connect your programs to files

= Making the user interface friendlier

In the computing world, we use the words input and output in several ways. We speak of input
and output devices, such as keyboards, USB drives, scanners, and laser printers. We talk about
the data used for input and output. We discuss the functions that perform input and output.
This chapter concentrates on the functions used for input and output (or I/O, for short).

I/O functions transport information to and from your program; printf(), scanf(),
getchar (), and putchar () are examples. You've seen these functions in previous chapters,
and now you'll be able to look at their conceptual basis. Along the way, you'll see how to
improve the program-user interface.

Originally, input/output functions were not part of the definition of C. Their development was
left to C implementations. In practice, the Unix implementation of C has served as a model for
these functions. The ANSI C library, recognizing past practice, contains a large number of these
Unix I/O functions, including the ones we’ve used. Because such standard functions must work
in a wide variety of computer environments, they seldom take advantage of features peculiar to
a particular system. Therefore, many C vendors supply additional I/O functions that do make
use of special features of the hardware. Other functions or families of functions tap into partic-
ular operating systems that support, for example, specific graphical interfaces, such as those
provided by Windows or Macintosh OS. These specialized, nonstandard functions enable you
to write programs that use a particular computer more effectively. Unfortunately, they often
can’t be used on other computer systems. Consequently, we’ll concentrate on the standard I/O
functions available on all systems, because they enable you to write portable programs that can
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be moved easily from one system to another. They also generalize to programs using files for
input and output.

One important task many programs face is that of validating input; that is, determining
whether the user has entered input that matches the expectations of a program. This chapter
illustrates some of the problems and solutions associated with input validation.

Single-Character 1/0: getchar () and putchar()

As you saw in Chapter 7, “C Control Statements: Branching and Jumps,” getchar () and
putchar () perform input and output one character at a time. That method might strike you as
a rather silly way of doing things. After all, you can easily read groupings larger than a single
character, but this method does suit the capability of a computer. Furthermore, this approach

is the heart of most programs that deal with text—that is, with ordinary words. To remind
yourself of how these functions work, examine Listing 8.1, a very simple example. All it does is
fetch characters from keyboard input and send them to the screen. This process is called echoing
the input. It uses a while loop that terminates when the # character is encountered.

Listing 8.1 The echo.c Program

/* echo.c -- repeats input */
#include <stdio.h>
int main(void)

{
char ch;
while ((ch = getchar()) != "#'")
putchar(ch);
return 0;
}

Since the ANSI standard, C associates the stdio.h header file with using getchar() and
putchar (), which is why we have included that file in the program. (Typically, getchar()
and putchar () are not true functions, but are defined using preprocessor macros, a topic we'll
cover in Chapter 16, “The C Preprocessor and the C Library.”) Using this program produces
exchanges like this:

Hello, there. I would[enter]
Hello, there. I would

like a #3 bag of potatoes.[enter]
like a



Buffers

After watching this program run, you might wonder why you must type a whole line before
the input is echoed. You might also wonder if there is a better way to terminate input. Using
a particular character, such as #, to terminate input prevents you from using that character in
the text. To answer these questions, let’s look at how C programs handle keyboard input. In
particular, let’s examine buffering and the concept of a standard input file.

Buffers

If you ran the previous program on some older systems, the text you input would be echoed
immediately. That is, a sample run would look like this:

HHeelllloo,, tthheerree.. II wwoouulldd[enter]
lliikkee aa #

The preceding behavior is the exception. On most systems, nothing happens until you press
Enter, as in the first example. The immediate echoing of input characters is an instance of
unbuffered (or direct) input, meaning that the characters you type are immediately made avail-
able to the waiting program. The delayed echoing, on the other hand, illustrates buffered input,
in which the characters you type are collected and stored in an area of temporary storage called
a buffer. Pressing Enter causes the block of characters you typed to be made available to your
program. Figure 8.1 compares these two kinds of input.

Why have buffers? First, it is less time-consuming to transmit several characters as a block
than to send them one by one. Second, if you mistype, you can use your keyboard correction
features to fix your mistake. When you finally press Enter, you can transmit the corrected
version.

Unbuffered input, on the other hand, is desirable for some interactive programs. In a game, for
instance, you would like each command to take place as soon as you press a key. Therefore,
both buffered and unbuffered input have their uses.

Buffering comes in two varieties: fully buffered 1/O and line-buffered 1/O. For fully buffered input,
the buffer is flushed (the contents are sent to their destination) when it is full. This kind of
buffering usually occurs with file input. The buffer size depends on the system, but 512 bytes
and 4096 bytes are common values. With line-buffered 1/O, the buffer is flushed whenever a
newline character shows up. Keyboard input is normally line buffered, so that pressing Enter
flushes the buffer.

Which kind of input do you have: buffered or unbuffered? ANSI C and subsequent C standards
specify that input should be buffered, but K&R originally left the choice open to the compiler
writer. You can find out by running the echo.c program and seeing which behavior results.
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unbuffered input

'TH
type HI! >
P contents made immediately HI!
available to program |27 777773
buffered input
buffer | |TT 7777 77T
t HI!
e BEOEEE mr
characters sent T ‘ buffer contents made I
one by one to buffer as typed available to program

Figure 8.1 Buffered versus unbuffered input.

The reason ANSI C settled on buffered input as the standard is that some computer designs
don’t permit unbuffered input. If your particular computer does allow unbuffered input,

most likely your C compiler offers unbuffered input as an option. Many compilers for IBM

PC compatibles, for example, supply a special family of functions, supported by the conio.h
header file, for unbuffered input. These functions include getche () for echoed unbuffered
input and getch () for unechoed unbuffered input. (Echoed input means the character you
type shows onscreen, and unechoed input means the keystrokes don’t show.) Unix systems use
a different approach, for Unix itself controls buffering. With Unix, you use the ioctl() func-
tion (part of the Unix library but not part of standard C) to specify the type of input you want,
and getchar () behaves accordingly. In ANSI C, the setbuf () and setvbuf () functions (see
Chapter 13, “File Input/Output”) supply some control over buffering, but the inherent limita-
tions of some systems can restrict the effectiveness of these functions. In short, there is no stan-
dard ANSI way of invoking unbuffered input; the means depend on the computer system. In
this book, with apologies to our unbuffered friends, we assume you are using buffered input.

Terminating Keyboard Input

The echo.c program halts when # is entered, which is convenient as long as you exclude that
character from normal input. As you've seen, however, # can show up in normal input. Ideally,
you’d like a terminating character that normally does not show up in text. Such a character
won't pop up accidentally in the middle of some input, stopping the program before you

want it to stop. C has an answer to this need, but, to understand it, you need to know how C
handles files.
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Files, Streams, and Keyboard Input

A file is an area of memory in which information is stored. Normally, a file is kept in some sort
of permanent memory, such as a hard disk, USB flash drive, or optical disc, such as a DVD.

You are doubtless aware of the importance of files to computer systems. For example, your C
programs are kept in files, and the programs used to compile your programs are kept in files.
This last example points out that some programs need to be able to access particular files.
When you compile a program stored in a file called echo.c, the compiler opens the echo.c file
and reads its contents. When the compiler finishes, it closes the file. Other programs, such as
word processors, not only open, read, and close files, they also write to them.

C, being powerful, flexible, and so on, has many library functions for opening, reading, writing,
and closing files. On one level, it can deal with files by using the basic file tools of the host
operating system. This is called low-level I/O. Because of the many differences among computer
systems, it is impossible to create a standard library of universal low-level I/O functions, and
ANSI C does not attempt to do so; however, C also deals with files on a second level called the
standard 1/O package. This involves creating a standard model and a standard set of I/O func-
tions for dealing with files. At this higher level, differences between systems are handled by
specific C implementations so that you deal with a uniform interface.

What sort of differences are we talking about? Different systems, for example, store files differ-
ently. Some store the file contents in one place and information about the file elsewhere. Some
build a description of the file into the file itself. In dealing with text, some systems use a single
newline character to mark the end of a line. Others might use the combination of the carriage
return and linefeed characters to represent the end of a line. Some systems measure file sizes to
the nearest byte; some measure in blocks of bytes.

When you use the standard I/O package, you are shielded from these differences. Therefore, to
check for a newline, you can use if (ch == '\n'). If the system actually uses the carriage-
return/linefeed combination, the I/O functions automatically translate back and forth between
the two representations.

Conceptually, the C program deals with a stream instead of directly with a file. A stream is an
idealized flow of data to which the actual input or output is mapped. That means various kinds
of input with differing properties are represented by streams with more uniform properties. The
process of opening a file then becomes one of associating a stream with the file, and reading
and writing take place via the stream.

Chapter 13 discusses files in greater detail. For this chapter, simply note that C treats input
and output devices the same as it treats regular files on storage devices. In particular, the
keyboard and the display device are treated as files opened automatically by every C program.
Keyboard input is represented by a stream called stdin, and output to the screen (or teletype
or other output device) is represented by a stream called stdout. The getchar (), putchar(),
printf (), and scanf () functions are all members of the standard I/O package, and they deal
with these two streams.

One implication of all this is that you can use the same techniques with keyboard input as you
do with files. For example, a program reading a file needs a way to detect the end of the file so
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that it knows where to stop reading. Therefore, C input functions come equipped with a built-
in, end-of-file detector. Because keyboard input is treated like a file, you should be able to use
that end-of-file detector to terminate keyboard input, too. Let’s see how this is done, beginning
with files.

The End of File

A computer operating system needs some way to tell where each file begins and ends. One
method to detect the end of a file is to place a special character in the file to mark the end. This
is the method once used, for example, in CP/M, IBM-DOS, and MS-DOS text files. Today, these
operating systems may use an embedded Ctrl+Z character to mark the ends of files. At one
time, this was the sole means these operating systems used, but there are other options now,
such as keeping track of the file size. So a modern text file may or may not have an embedded
Ctrl+Z, but if it does, the operating system will treat it as an end-of-file marker. Figure 8.2 illus-
trates this approach.

prose:

Ishphat the robot
slid open the hatch
and shouted his challenge.

prose in a file:

Ishphat the robot\n slid open the hatch\n and shouted his challenge.\n"2

Figure 8.2 A file with an end-of-file marker.

A second approach is for the operating system to store information on the size of the file. If

a file has 3000 bytes and a program has read 3000 bytes, the program has reached the end.
MS-DOS and its relatives use this approach for binary files because this method allows the files
to hold all characters, including Ctrl+Z. Newer versions of DOS also use this approach for text
files. Unix uses this approach for all files.

C handles this variety of methods by having the getchar () function return a special value
when the end of a file is reached, regardless of how the operating system actually detects the
end of file. The name given to this value is EOF (end of file). Therefore, the return value for
getchar () when it detects an end of file is EOF. The scanf () function also returns EOF on
detecting the end of a file. Typically, EOF is defined in the stdio.h file as follows:

#define EOF (-1)

Why -1? Normally, getchar () returns a value in the range 0 through 127, because those are
values corresponding to the standard character set, but it might return values from 0 through
255 if the system recognizes an extended character set. In either case, the value -1 does not
correspond to any character, so it can be used to signal the end of a file.
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Some systems may define EOF to be a value other than -1, but the definition is always different
from a return value produced by a legitimate input character. If you include the stdio.h file
and use the EOF symbol, you don’t have to worry about the numeric definition. The important
point is that EOF represents a value that signals the end of a file was detected; it is not a symbol
actually found in the file.

Okay, how can you use EOF in a program? Compare the return value of getchar () with EOF.
If they are different, you have not yet reached the end of a file. In other words, you can use an
expression like this:

while ((ch = getchar()) != EOF)
What if you are reading keyboard input and not a file? Most systems (but not all) have a way to

simulate an end-of-file condition from the keyboard. Knowing that, you can rewrite the basic
read and echo program, as shown in Listing 8.2.

Listing 8.2 The echo_eof.c Program

/* echo_eof.c -- repeats input to end of file */
#include <stdio.h>
int main(void)

{
int ch;
while ((ch = getchar()) != EOF)
putchar(ch);
return 0;
}

Note these points:

= You don’t have to define EOF because stdio.h takes care of that.

= You don’t have to worry about the actual value of EOF, because the #define statement
in stdio.h enables you to use the symbolic representation EOF. You shouldn’t write code
that assumes EOF has a particular value.

= The variable ch is changed from type char to type int because char variables may be
represented by unsigned integers in the range 0 to 255, but EOF may have the numeric
value -1. That is an impossible value for an unsigned char variable, but not for an
int. Fortunately, getchar () is actually type int itself, so it can read the EOF character.
Implementations that use a signed char type may get by with declaring ch as type char,
but it is better to use the more general form.

= The fact that getchar() is type int is why some compilers warn of possible data loss if
you assign the getchar () return value to a type char variable.
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= The fact that ch is an integer doesn’t faze putchar (). It still prints the character
equivalent.

= To use this program on keyboard input, you need a way to type the EOF character.
No, you can’t just type the letters E O F, and you can’t just type —1. (Typing -1 would
transmit two characters: a hyphen and the digit 1.) Instead, you have to find out what
your system requires. On most Unix and Linux systems, for example, pressing Ctrl+D
at the beginning of a line causes the end-of-file signal to be transmitted. Many micro-
computing systems recognize Ctrl+Z at the beginning of a line as an end-of-file signal;
some interpret a Ctrl+Z anywhere as an end-of-file signal.

Here is a buffered example of running echo_eof.c on a Unix system:

She walks in beauty, like the night
She walks in beauty, like the night
0f cloudless climes and starry skies...
0f cloudless climes and starry skies...
Lord Byron
Lord Byron
[Ctrl+D]

Each time you press Enter, the characters stored in the buffer are processed, and a copy of the
line is printed. This continues until you simulate the end of file, Unix-style. On a PC, you
would press Ctrl+Z instead.

Let’s stop for a moment and think about the possibilities for echo_eof.c. It copies onto the
screen whatever input you feed it. Suppose you could somehow feed a file to it. Then it would
print the contents of the file onscreen, stopping when it reached the end of the file, on finding
an EOF signal. Suppose, instead, that you could find a way to direct the program’s output to a
file. Then you could enter data from the keyboard and use echo_eof.c to store what you type
in a file. Suppose you could do both simultaneously: Direct input from one file into echo_
eof.c and send the output to another file. Then you could use echo_eof.c to copy files. This
little program has the potential to look at the contents of files, to create new files, and to make
copies of files—pretty good for such a short program! The key is to control the flow of input
and output, and that is the next topic.

Note Simulated eor and Graphical Interfaces

The concept of simulated EOF arose in a command-line environment using a text interface. In
such an environment, the user interacts with a program through keystrokes, and the operating
system generates the EOF signal. Some practices don’t translate particularly well to graphical
interfaces, such as Windows and the Macintosh, with more complex user interfaces that incor-
porate mouse movement and button clicks. The program behavior on encountering a simulated
EOF depends on the compiler and project type. For example, a Ctrl+Z may terminate input or it
may terminate the entire program, depending on the particular settings.
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Redirection and Files

Input and output involve functions, data, and devices. Consider, for instance, the echo_eof.c
program. It uses the input function getchar (). The input device (we have assumed) is a
keyboard, and the input data stream consists of individual characters. Suppose you want

to keep the same input function and the same kind of data, but want to change where the
program looks for data. A good question to ask is, “How does a program know where to look
for its input?”

By default, a C program using the standard I/O package looks to the standard input as its
source for input. This is the stream identified earlier as stdin. It is whatever has been set up as
the usual way for reading data into the computer. It could be an old-fashioned device, such as
magnetic tape, punched cards, or a teletype, or (as we will continue to assume) your keyboard,
or some upcoming technology, such as voice input. A modern computer is a suggestible tool,
however, and you can influence it to look elsewhere for input. In particular, you can tell a
program to seek its input from a file instead of from a keyboard.

There are two ways to get a program to work with files. One way is to explicitly use special
functions that open files, close files, read files, write in files, and so forth. That method we’ll
save for Chapter 13. The second way is to use a program designed to work with a keyboard
and screen, but to redirect input and output along different channels—to and from files, for
example. In other words, you reassign the stdin stream to a file. The getchar () program
continues to get its data from the stream, not really caring from where the stream gets its
data. This approach (redirection) is more limited in some respects than the first, but it is much
simpler to use, and it allows you to gain familiarity with common file-processing techniques.

One major problem with redirection is that it is associated with the operating system, not C.
However, the many C environments, including Unix, Linux, and the Windows Command-
Prompt mode, feature redirection, and some C implementations simulate it on systems lacking
the feature. Apple OS X runs on top of Unix, and you can use the Unix command-line mode
by starting the Terminal application. We’ll look at the Unix, Linux, and Windows versions or
redirection.

Unix, Linux, and Windows Command Prompt Redirection

Unix (when run in command-line mode), Linux (ditto), and the Windows Command Prompt
(which mimics the old DOS command-line environment) enable you to redirect both input and
output. Redirecting input enables your program to use a file instead of the keyboard for input,
and redirecting output enables it to use a file instead of the screen for output.

Redirecting Input

Suppose you have compiled the echo_eof.c program and placed the executable version in a
file called echo_eof (or echo_eof.exe on a Windows system). To run the program, type the
executable file’s name:

echo_eof
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The program runs as described earlier, taking its input from the keyboard. Now suppose you
want to use the program on a text file called words. A text file is one containing text—that is,
data stored as human-readable characters. It could be an essay or a program in C, for example.
A file containing machine language instructions, such as the file holding the executable version
of a program, is not a text file. Because the program works with characters, it should be used
with text files. All you need to do is enter this command instead of the previous one:

echo_eof < words

The < symbol is a Unix and Linux and DOS/Windows redirection operator. It causes the words
file to be associated with the stdin stream, channeling the file contents into the echo_eof
program. The echo_eof program itself doesn’t know (or care) that the input is coming from a
file instead of the keyboard. All it knows is that a stream of characters is being fed to it, so it
reads them and prints them one character at a time until the end of file shows up. Because C
puts files and I/O devices on the same footing, the file is now the I/O device. Try it!

Note Redirection Sidelights

With Unix, Linux, and Windows Command Prompt, the spaces on either side of the < are
optional. Some systems, such as AmigaDOS (for those who still play in the good old days), sup-
port redirection but don’t allow a space between the redirection symbol and the filename.

Here is a sample run for one particular words file; the $ is one of the standard Unix and Linux
prompts. On a Windows/DOS system, you would see the DOS prompt, perhaps an A> or c>.

$ echo_eof < words

The world is too much with us: late and soon,
Getting and spending, we lay waste our powers:
Little we see in Nature that is ours;

We have given our hearts away, a sordid boon!

$

Well, that time we got our words’ worth.

Redirecting Output

Now suppose you want to have echo_eof send your keyboard input to a file called mywords.
Then you can enter the following and begin typing:

echo_eof > mywords

The > is a second redirection operator. It causes a new file called mywords to be created for your
use, and then it redirects the output of echo_eof (that is, a copy of the characters you type) to
that file. The redirection reassigns stdout from the display device (your screen) to the mywords
file instead. If you already have a file with the name mywords, normally it would be erased

and then replaced by the new one. (Many operating systems, however, give you the option of
protecting existing files by making them read-only.) All that appears on your screen are the
letters as you type them, and the copies go to the file instead. To end the program, press Ctrl+D
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(Unix) or Ctrl+Z (DOS) at the beginning of a line. Try it. If you can’t think of anything to type,
just imitate the next example. In it, we use the $ Unix prompt. Remember to end each line by
pressing Enter to send the buffer contents to the program.

$ echo_eof > mywords

You should have no problem recalling which redirection
operator does what. Just remember that each operator points
in the direction the information flows. Think of it as

a funnel.

[Ctrl+D]

$

After the Ctrl+D or Ctrl+Z is processed, the program terminates and your system prompt
returns. Did the program work? The Unix 1s command or Windows Command Prompt dir
command, which lists filenames, should show you that the file mywords now exists. You can
use the Unix and Linux cat or DOS type command to check the contents, or you can use
echo_eof again, this time redirecting the file to the program:

$ echo_eof < mywords

You should have no problem recalling which redirection
operator does what. Just remember that each operator points
in the direction the information flows. Think of it as a
funnel.

$

Combined Redirection

Now suppose you want to make a copy of the file mywords and call it savewords. Just issue
this next command,

echo_eof < mywords > savewords
and the deed is done. The following command would have worked as well, because the order of
redirection operations doesn’t matter:

echo_eof > savewords < mywords

Beware: Don’t use the same file for both input and output to the same command.

echo_eof < mywords > mywords....<--WRONG

The reason is that > mywords causes the original mywords to be truncated to zero length before
it is ever used as input.

In brief, here are the rules governing the use of the two redirection operators (< and >) with
Unix, Linux, or Windows/DOS:

= A redirection operator connects an executable program (including standard operating
system commands) with a data file. It cannot be used to connect one data file to another,
nor can it be used to connect one program to another program.

309



310  Chapter 8 Character Input/Output and Input Validation

= Input cannot be taken from more than one file, nor can output be directed to more than
one file by using these operators.

= Normally, spaces between the names and operators are optional, except occasionally
when some characters with special meaning to the Unix shell or Linux shell or the
Windows Command Prompt mode are used. We could, for example, have used echo_
eof<words.

You have already seen several proper examples. Here are some wrong examples, with addup
and count as executable programs and fish and beets as text files:

fish > beets < Violates the first rule
addup < count < Violates the first rule
addup < fish < beets < Violates the second rule
count > beets fish < Violates the second rule

Unix, Linux, and Windows/DOS also feature the >> operator, which enables you to add data to
the end of an existing file, and the pipe operator (|), which enables you to connect the output
of one program to the input of a second program. See a Unix book, such as UNIX Primer Plus,
Third Edition (Wilson, Pierce, and Wessler; Sams Publishing), for more information on all these
operators.

Comments

Redirection enables you to use keyboard-input programs with files. For this to work, the
program has to test for the end of file. For example, Chapter 7 presents a word-counting
program that counts words up to the first | character. Change ch from type char to type int,
and replace ' | ' with EOF in the loop test, and you can use the program to count words in text
files.

Redirection is a command-line concept, because you indicate it by typing special symbols on
the command line. If you are not using a command-line environment, you might still be able
to try the technique. First, some integrated environments have menu options that let you indi-
cate redirection. Second, for Windows systems, you can open the Command Prompt window
and run the executable file from the command line. Microsoft Visual Studio, by default, puts
the executable file in a subfolder, called Debug, of the project folder. The filename will have
the same base name as the project name and use the .exe extension. By default Xcode also
names the executable file after the project name and places it in a Debug folder. You can run
the executable from the Terminal utility, which runs a version of Unix. However, if you use
Terminal, it’s probably simpler to use one of the command-line compilers (GCC or Clang) that
can be downloaded from Apple.

If redirection doesn’t work for you, you can try having the program open a file directly. Listing
8.3 shows an example with minimal explanation. You'll have to wait until Chapter 13 for the
details. The file to be read should be in the same directory as the executable file.
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Listing 8.3 The file eof.c Program

// file eof.c --open a file and display it
#include <stdio.h>
#include <stdlib.h> // for exit()

int main()
{
int ch;
FILE * fp;
char fname[50]; // to hold the file name

printf("Enter the name of the file: ");
scanf("%$s", fname);

fp = fopen(fname, "r"); // open file for reading

if (fp == NULL) // attempt failed
{
printf("Failed to open file. Bye\n");
exit(1l); // quit program
}
// getc(fp) gets a character from the open file
while ((ch = getc(fp)) != EOF)
putchar(ch);
fclose(fp); // close the file
return 0;

Summary: How to Redirect Input and Output

With most C systems, you can use redirection, either for all programs through the operating
system or else just for C programs, courtesy of the C compiler. In the following, let prog be the
name of the executable program and let £ilel and £ile2 be names of files.

Redirecting Output to a File: >

prog >filel

Redirecting Input from a File: <

prog <file2

Combined Redirection:

prog <file2 >filel
prog >filel <file2

Both forms use file2 for input and £ilel for output.
Spacing:

Some systems require a space to the left of the redirection operator and no space to the right.
Other systems (Unix, for example) accept either spaces or no spaces on either side.
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Creating a Friendlier User Interface

Most of us have on occasion written programs that are awkward to use. Fortunately, C gives
you the tools to make input a smoother, more pleasant process. Unfortunately, learning these
tools could, at first, lead to new problems. The goal in this section is to guide you through
some of these problems to a friendlier user interface, one that eases interactive data entry and
smoothes over the effects of faulty input.

Working with Buffered Input

Buffered input is often a convenience to the user, providing an opportunity to edit input before
sending it on to a program, but it can be bothersome to the programmer when character input
is used. The problem, as you've seen in some earlier examples, is that buffered input requires
you to press the Enter key to transmit your input. This act also transmits a newline character
that the program must handle. Let’s examine this and other problems with a guessing program.
You pick a number, and the program tries to guess it. The program uses a plodding method,
but we are concentrating on I/O, not algorithms. See Listing 8.4 for the starting version of the
program, one that will need further work.

Listing 8.4 The guess.c Program

/* guess.c -- an inefficient and faulty number-guesser */
#include <stdio.h>
int main(void)

{
int guess = 1;
printf("Pick an integer from 1 to 100. I will try to guess ");
printf("it.\nRespond with a y if my guess is right and with");
printf("\nan n if it is wrong.\n");
printf("Uh...is your number %d?\n", guess);
while (getchar() != 'y') /* get response, compare to y */
printf("well, then, is it %d?\n", ++guess);
printf("I knew I could do it!\n");
return 0;
}

Here’s a sample run:

Pick an integer from 1 to 100. I will try to gquess it.
Respond with a y if my guess is right and with

an n if it is wrong.

Uh...is your number 1?

n

Well, then, is it 2?
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Well, then, is it 3?
n
Well, then, is it 4?
Well, then, is it 5?
y
I knew I could do it!

Out of consideration for the program’s pathetic guessing algorithm, we chose a small number.
Note that the program makes two guesses every time you enter n. What’s happening is that the
program reads the n response as a denial that the number is 1 and then reads the newline char-
acter as a denial that the number is 2.

One solution is to use a while loop to discard the rest of the input line, including the newline
character. This has the additional merit of treating responses such as no and no way the same
as a simple n. The version in Listing 8.4 treats no as two responses. Here is a revised loop that
fixes the problem:

while (getchar() != 'y'") /* get response, compare to y */
{
printf("well, then, is it %d?\n", ++guess);
while (getchar() != '\n')
continue; /* skip rest of input line */

Using this loop produces responses such as the following:

Pick an integer from 1 to 100. I will try to guess it.
Respond with a y if my quess is right and with

an n if it is wrong.

Uh...is your number 1?

n
Well, then, is it 2?
no

Well, then, is it 3?
no sir

Well, then, is it 4?
forget it

Well, then, is it 5?
y

I knew I could do it!

That takes care of the problems with the newline character. However, as a purist, you might
not like £ being treated as meaning the same as n. To eliminate that defect, you can use an if
statement to screen out other responses. First, add a char variable to store the response:

char response;
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Then change the loop to this:

while ((response = getchar()) !='y") /* get response */
{
if (response == 'n')
printf("well, then, is it %d?\n", ++guess);
else
printf("Sorry, I understand only y or n.\n");
while (getchar() != '"\n')
continue; /* skip rest of input line */

Now the program’s response looks like this:

Pick an integer from 1 to 100. I will try to guess it.
Respond with a y if my guess is right and with

an n if it is wrong.

Uh...is your number 1?

n
Well, then, is it 2?

no

Well, then, is it 3?

no sir

Well, then, is it 4?

forget it

Sorry, I understand only y or n.
n

Well, then, is it 5?

Y

I knew I could do it!

When you write interactive programs, you should try to anticipate ways in which users might
fail to follow instructions. Then you should design your program to handle user failures grace-
fully. Tell them when they are wrong, and give them another chance.

You should, of course, provide clear instructions to the user, but no matter how clear you make
them, someone will always misinterpret them and then blame you for poor instructions.

Mixing Numeric and Character Input

Suppose your program requires both character input using getchar () and numeric input
using scanf (). Each of these functions does its job well, but the two don’t mix together well.
That'’s because getchar () reads every character, including spaces, tabs, and newlines, whereas
scanf (), when reading numbers, skips over spaces, tabs, and newlines.

To illustrate the sort of problem this causes, Listing 8.5 presents a program that reads in a
character and two numbers as input. It then prints the character using the number of rows and
columns specified in the input.
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Listing 8.5 The showcharl.c Program

/* showcharl.c -- program with a BIG I/O problem */
#include <stdio.h>
void display(char cr, int lines, int width);
int main(void)
{
int ch; /* character to be printed */
int rows, cols; /* number of rows and columns */
printf("Enter a character and two integers:\n");
while ((ch = getchar()) != '\n')
{
scanf("%d %d", &rows, &cols);
display(ch, rows, cols);
printf("Enter another character and two integers;\n");
printf("Enter a newline to quit.\n");
}
printf("Bye.\n");

return 0;

void display(char cr, int lines, int width)

{

int row, col;

for (row = 1; row <= lines; row++)
{
for (col = 1; col <= width; col++)
putchar(cr);
putchar('\n'); /* end line and start a new one */

Note that the program reads a character as type int to enable the EOF test. However, it passes
the character as type char to the display() function. Because char is smaller than int, some
compilers will warn about the conversion. In this case, you can ignore the warning. Or you can
eliminate the warning by using a typecast:

display(char(ch), rows, cols);

The program is set up so that main() gets the data and the display() function does the print-
ing. Let’s look at a sample run to see what the problem is:

Enter a character and two integers:
c23

cce

cce
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Enter another character and two integers;
Enter a newline to quit.
Bye.

The program starts off fine. Enter ¢ 2 3, and it prints two rows of three c characters, as
expected. Then the program prompts you to enter a second set of data and quits before you
have a chance to respond! What's wrong? It’s that newline character again, this time the one
immediately following the 3 on the first input line. The scanf () function leaves it in the input
queue. Unlike scanf (), getchar() doesn’t skip over newline characters, so this newline char-
acter is read by getchar () during the next cycle of the loop before you have a chance to enter
anything else. Then it’s assigned to ch, and ch being the newline character is the condition
that terminates the loop.

To clear up this problem, the program has to skip over any newlines or spaces between the last
number typed for one cycle of input and the character typed at the beginning of the next line.
Also, it would be nice if the program could be terminated at the scanf () stage in addition to
the getchar () test. The next version, shown in Listing 8.6, accomplishes this.

Listing 8.6 The showchar2.c Program

/* showchar2.c -- prints characters in rows and columns */
#include <stdio.h>

void display(char cr, int lines, int width);

int main(void)

{
int ch; /* character to be printed */
int rows, cols; /* number of rows and columns */
printf("Enter a character and two integers:\n");
while ((ch = getchar()) != '\n')
{
if (scanf("%d %d",&rows, &cols) != 2)
break;
display(ch, rows, cols);
while (getchar() != '\n')
continue;
printf ("Enter another character and two integers;\n");
printf("Enter a newline to quit.\n");
}
printf("Bye.\n");
return 0;
}

void display(char cr, int lines, int width)

{
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int row, col;

for (row = 1; row <= lines; row+tt)

{
for (col = 1; col <= width; col++)
putchar(cr);
putchar('\n'); /* end line and start a new one */
}

The while statement causes the program to dispose of all characters following the scanf ()
input, including the newline. This prepares the loop to read the first character at the beginning
of the next line. This means you can enter data fairly freely:

Enter a character and two integers:

cl2

cc

Enter another character and two integers;
Enter a newline to quit.

136

[RRERE

Enter another character and two integers;
Enter a newline to quit.

Bye.

By using an if statement with a break, we terminate the program if the return value of
scanf () is not 2. This occurs if one or both input values are not integers or if end-of-file is
encountered.

Input Validation

In practice, program users don’t always follow instructions, and you can get a mismatch
between what a program expects as input and what it actually gets. Such conditions can cause
a program to fail. However, often you can anticipate likely input errors, and, with some extra
programming effort, have a program detect and work around them.

Suppose, for instance, that you had a loop that processes nonnegative numbers. One kind of
error the user can make is to enter a negative number. You can use a relational expression to
test for that:

long n;
scanf("%1d", &n); // get first value
while (n >= 0) // detect out-of-range value
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// process n
scanf("%1d", &n); // get next value

Another potential pitfall is that the user might enter the wrong type of value, such as the
character g. One way to detect this kind of misuse is to check the return value of scanf ().
This function, as you'll recall, returns the number of items it successfully reads; therefore, the
expression

scanf("%1ld", &n) == 1

is true only if the user inputs an integer. This suggests the following revision of the code:
long n;

while (scanf("%$1ld", &n) == 1 && n >= 0)

{

// process n

In words, the while loop condition is “while input is an integer and the integer is positive.”

The last example terminates input if the user enters the wrong type of value. You can, however,
choose to make the program a little more user friendly and give the user the opportunity

to try to enter the correct type of value. In that case, you need to dispose of the input that
caused scanf () to fail in the first place, for scanf () leaves the bad input in the input queue.
Here, the fact that input really is a stream of characters comes in handy, because you can use
getchar () to read the input character-by-character. You could even incorporate all these ideas
into a function such as the following:

long get long(void)

{
long input;
char ch;
while (scanf("%1d", &input) != 1)
{
while ((ch = getchar()) != '\n')
putchar(ch); // dispose of bad input
printf(" is not an integer.\nPlease enter an ");
printf("integer value, such as 25, -178, or 3: ");
}
return input;
}

This function attempts to read an int value into the variable input. If it fails to do so, the
function enters the body of the outer while loop. The inner while loop then reads the
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offending input character-by-character. Note that this function chooses to discard all the
remaining input on the line. Other possible choices are to discard just the next character or
word. Then the function prompts the user to try again. The outer loop keeps going until the
user successfully enters an integer, causing scanf () to return the value 1.

After the user clears the hurdle of entering integers, the program can check to see whether the
values are valid. Consider an example that requires the user to enter a lower limit and an upper
limit defining a range of values. In this case, you probably would want the program to check
that the first value isn’t greater than the second (usually ranges assume that the first value is
the smaller one). It may also need to check that the values are within acceptable limits. For
example, the archive search may not work with year values less than 1958 or greater than 2014.
This checking, too, can be accomplished with a function.

Here’s one possibility; the following function assumes that the stdbool.h header file has been
included. If you don’t have Bool on your system, you can substitute int for bool, 1 for true,
and 0 for false. Note that the function returns true if the input is invalid; hence the name
bad_limits():
bool bad_limits(long begin, long end,

long low, long high)

{
bool not_good = false;
if (begin > end)
{
printf("%1ld isn't smaller than %1d.\n", begin, end);
not_good = true;
}
if (begin < low || end < low)
{
printf("values must be %1d or greater.\n", low);
not_good = true;
}
if (begin > high || end > high)
{
printf("values must be %1d or less.\n", high);
not_good = true;
}
return not_good;
}

Listing 8.7 uses these two functions to feed integers to an arithmetic function that calculates
the sum of the squares of all the integers in a specified range. The program limits the upper and
lower bounds of the range to 1000 and -1000, respectively.
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Listing 8.7 The checking.c Program

// checking.c -- validating input
#include <stdio.h>

#include <stdbool.h>

// validate that input is an integer

long get long(void);
// validate that range limits are valid
bool bad limits(long begin, long end,

long low, long high);

// calculate the sum of the squares of the integers
// a through b

double sum_squares(long a, long b);

int main(void)

{

const long MIN = -10000000L; // lower limit to range
const long MAX = +10000000L; // upper limit to range
long start; // start of range

long stop; // end of range

double answer;

printf("This program computes the sum of the squares of "
"integers in a range.\nThe lower bound should not
"be less than -10000000 and\nthe upper bound "
"should not be more than +10000000.\nEnter the "
"limits (enter 0 for both limits to quit):\n"
"lower limit: ");

start = get_long();

printf("upper limit: ");

stop = get_long();
while (start !=0 || stop != 0)
{
if (bad_limits(start, stop, MIN, MAX))
printf("Please try again.\n");
else
{
answer = sum_squares(start, stop);
printf("The sum of the squares of the integers ");
printf("from %1d to %1ld is %g\n",
start, stop, answer);
}
printf("Enter the limits (enter 0 for both "
"limits to quit):\n");
printf("lower limit: ");
start = get long();
printf("upper limit: ");
stop = get_long();



}
printf("Done.\n");
return 0;
}
long get_long(void)
{
long input;
char ch;
while (scanf("%1ld", &input) != 1)
{
while ((ch = getchar()) != '\n')
putchar(ch); // dispose of bad input
printf(" is not an integer.\nPlease enter an ");
printf("integer value, such as 25, -178, or 3: ");
}
return input;
}
double sum_squares(long a, long b)
{
double total = 0;
long i;
for (i = a; i <= b; i++)
total += (double)i * (double)i;
return total;
}

bool bad limits(long begin, long end,
long low, long high)

bool not_good = false;

if (begin > end)

{
printf("%1ld isn't smaller than %1d.\n", begin, end);
not_good = true;

}

if (begin < low || end < low)

{

printf("values must be %1d or greater.\n", low);
not_good = true;

Input Validation
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}

if (begin > high || end > high)

{
printf("vValues must be %1d or less.\n", high);
not_good = true;

}

return not_good;

Here’s a sample run:

This program computes the sum of the squares of integers in a range.
The lower bound should not be less than -10000000 and

the upper bound should not be more than +10000000.

Enter the limits (enter 0 for both limits to quit):

lower limit: low

low is not an integer.

Please enter an integer value, such as 25, -178, or 3: 3
upper limit: a big number

a big number is not an integer.

Please enter an integer value, such as 25, -178, or 3: 12
The sum of the squares of the integers from 3 to 12 is 645
Enter the limits (enter 0 for both limits to quit):

lower limit: 80

upper limit: 10

80 isn't smaller than 10.

Please try again.

Enter the limits (enter 0 for both limits to quit):

lower limit: O

upper limit: O

Done.

Analyzing the Program

The computational core (the function sum_squares()) of the checking.c program is short,
but the input validation support makes it more involved than the examples we have given
before. Let’s look at some of its elements, first focusing on overall program structure.

We've followed a modular approach, using separate functions (modules) to verify input and to
manage the display. The larger a program is, the more vital it is to use modular programming.

The main () function manages the flow, delegating tasks to the other functions. It uses get_
long() to obtain values, a while loop to process them, the badlimits () function to check for
valid values, and the sum_squares () function to do the actual calculation:

start = get_long();
printf("upper limit: ");
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stop = get_long();
while (start !=0 || stop != 0)
{
if (bad_limits(start, stop, MIN, MAX))
printf("Please try again.\n");
else
{
answer = sum_squares(start, stop);
printf("The sum of the squares of the integers ");
printf("from %1d to %1d is %g\n", start, stop, answer);
}
printf("Enter the limits (enter 0 for both "
"limits to quit):\n");
printf("lower limit: ");
start = get_long();
printf("upper limit: ");
stop = get_long();

The Input Stream and Numbers

When writing code to handle bad input, such as that used in Listing 8.7, you should have a
clear picture of how C input works. Consider a line of input like the following:

is 28 12.4

To our eyes, it looks like a string of characters followed by an integer followed by a floating-
point value. To a C program it looks like a stream of bytes. The first byte is the character code
for the letter i, the second is the character code for the letter s, the third is the character
code for the space character, the fourth is the character code for the digit 2, and so on. So if
get_long() encounters this line, which begins with a nondigit, the following code reads and
discards the entire line, including the numbers, which just are other characters on the line:

while ((ch = getchar()) != '\n')
putchar(ch); // dispose of bad input

Although the input stream consists of characters, the scanf () function can convert them to a
numeric value if you tell it to. For example, consider the following input:

42

If you use scanf () with a $c specifier, it will just read the 4 character and store it in a char
variable. If you use the s specifier, it will read two characters, the 4 character and the 2 char-
acter, and store them in a character string. If you use the %d specifier, scanf () reads the same
two characters, but then proceeds to calculate that the integer value corresponding to them is 4
x 10 + 2, or 42. It then stores the integer binary representation of that value in an int variable.
If you use an %£ specifier, scanf () reads the two characters, calculates that they correspond to
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the numeric value 42.0, expresses that value in the internal floating-point representation, and
stores the result in a float variable.

In short, input consists of characters, but scanf () can convert that input to an integer or
floating-point value. Using a specifier such as %d or 3£ restricts the types of characters that are
acceptable input, but getchar () and scanf () using %c accept any character.

Menu Browsing

Many computer programs use menus as part of the user interface. Menus make programs easier
for the user, but they do pose some problems for the programmer. Let’s see what’s involved.

A menu offers the user a choice of responses. Here’s a hypothetical example:

Enter the letter of your choice:
a. advice b. bell
c. count g. quit

Ideally, the user then enters one of these choices, and the program acts on that choice. As a
programmer, you want to make this process go smoothly. The first goal is for the program to
work smoothly when the user follows instructions. The second goal is for the program to work
smoothly when the user fails to follow instructions. As you might expect, the second goal is
the more difficult because it’s hard to anticipate all the possible mistreatment that might come
your program’s way.

Modern applications typically use graphical interfaces—buttons to click, boxes to check, icons
to touch—instead of the command-line approach of our examples, but the general process
remains much the same: Offer the user choices, detect and act upon the user’s response, and
protect against possible misuse. The underlying program structure would be much the same
for these different interfaces. However, using a graphical interface can make it easier to control
input by limiting choices.

Tasks

Let’s get more specific and look at the tasks a menu program needs to perform. It needs to get
the user’s response, and it needs to select a course of action based on the response. Also, the
program should provide a way to return to the menu for further choices. C’s switch statement
is a natural vehicle for choosing actions because each user choice can be made to correspond to
a particular case label. You can use a while statement to provide repeated access to the menu.
In pseudocode, you can describe the process this way:

get choice

while choice is not 'q'
switch to desired choice and execute it
get next choice
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Toward a Smoother Execution

The goals of program smoothness (smoothness when processing correct input and smooth-
ness when handling incorrect input) come into play when you decide how to implement this
plan. One thing you can do, for example, is have the “get choice” part of the code screen

out inappropriate responses so that only correct responses are passed on to the switch. That
suggests representing the input process with a function that can return only correct responses.
Combining that with a while loop and a switch leads to the following program structure:

#include <stdio.h>
char get choice(void);
void count(void);

int main(void)

{
int choice;
while ( (choice = get choice()) != 'q")
{
switch (choice)
{
case 'a' : printf("Buy low, sell high.\n");
break;
case 'b' : putchar('\a'); /* ANSI */
break;
case 'c' : count();
break;
default : printf("Program error!\n");
break;
}
}
return 0;
}

The get_choice() function is defined so that it can return only the values 'a', 'b', 'c',
and 'q'. You use it much as you use getchar ()—getting a value and comparing it to a termi-
nation value ('q', in this case). We've kept the actual menu choices simple so that you can
concentrate on the program structure; we'll get to the count () function soon. The default
case is handy for debugging. If the get_choice () function fails to limit its return value to the
intended values, the default case lets you know something fishy is going on.

The get_choice() Function
Here, in pseudocode, is one possible design for this function:

show choices

get response

while response is not acceptable
prompt for more response
get response
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And here is a simple, but awkward, implementation:

char get choice(void)

{
int ch;
printf("Enter the letter of your choice:\n");
printf("a. advice b. bell\n");
printf("c. count g. quit\n");
ch = getchar();
while ( (ch < 'a' || ch > 'c') && ch != 'q")
{
printf("Please respond with a, b, ¢, or g.\n");
ch = getchar();
}
return ch;
}

The problem is that with buffered input, every newline generated by the Return key is treated
as an erroneous response. To make the program interface smoother, the function should skip
over newlines.

There are several ways to do that. One is to replace getchar () with a new function called

get first() that reads the first character on a line and discards the rest. This method also has
the advantage of treating an input line consisting of, say, act, as being the same as a simple a,

instead of treating it as one good response followed by ¢ for count. With this goal in mind, we
can rewrite the input function as follows:

char get_choice(void)

{

int ch;

printf("Enter the letter of your choice:\n");

printf("a. advice b. bell\n");
printf("c. count g. quit\n");

ch = get_first();

while ( (ch < 'a' || ch > 'c') && ch != 'q")
{

printf("Please respond with a, b, ¢, or g.\n");
ch = getfirst();
}

return ch;

char get_ first(void)
{

int ch;
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ch = getchar(); /* read next character */
while (getchar() != '\n')

continue; /* skip rest of line */
return ch;

Mixing Character and Numeric Input

Creating menus provides another illustration of how mixing character input with numeric
input can cause problems. Suppose, for example, the count () function (choice c) were to look
like this:

void count(void)

{
int n,i;
printf("Count how far? Enter an integer:\n");
scanf("%d", &n);
for (i = 1; i <= n; i++)
printf("%d\n", 1i);
}

If you then responded by entering 3, scanf () would read the 3 and leave a newline character
as the next character in the input queue. The next call to get_choice() would result in get_
first () returning this newline character, leading to undesirable behavior.

One way to fix that problem is to rewrite get_first() so that it returns the next non-
whitespace character rather than just the next character encountered. We leave that as an
exercise for the reader. A second approach is having the count () function tidy up and clear the
newline itself. This is the approach this example takes:

void count(void)

{

int n,i;

printf("Count how far? Enter an integer:\n");
n = get_int();
for (i = 1; i <= n; i++)
printf("%d\n", 1i);
while ( getchar() != '\n')
continue;

This function also uses the get_long() function from Listing 8.7, but changes it to get_int()
to fetch type int instead of type long; recall that the original checks for valid input and gives
the user a chance to try again. Listing 8.8 shows the final menu program.
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Listing 8.8 The menuette.c Program

/* menuette.c -- menu techniques */
#include <stdio.h>

char get _choice(void);

char get first(void);

int get_int(void);

void count(void);

int main(void)

{
int choice;
void count(void);
while ( (choice = get choice()) != 'q')
{
switch (choice)
{
case 'a' : printf("Buy low, sell high.\n");
break;
case 'b' : putchar('\a'); /* ANSI */
break;
case 'c' : count();
break;
default : printf("Program error!\n");
break;
}
}
printf("Bye.\n");
return 0;
}

void count(void)

{

int n,i;

printf("Count how far? Enter an integer:\n");
n = get_int();
for (i = 1; i <= n; i++)
printf("sd\n", 1i);
while ( getchar() != '\n')
continue;

char get_choice(void)
{

int ch;



printf("Enter the letter of your choice:\n");
b. bell\n");
g. quit\n");

printf("a. advice
printf("c. count
ch = get_first();

while ( (ch < 'a' || ch > 'c') && ch != 'q")

{

printf("Please respond with a, b, ¢, or g.\n");

ch = get first();

return ch;

char get first(void)
{

int ch;
ch = getchar();
while (getchar() != '\n')

continue;

return ch;

int get_int(void)

int input;
char ch;

while (scanf("%d", &input)

{
while ((ch = getchar())

putchar(ch); // dispose of bad input
printf(" is not an integer.\nPlease enter an ");
printf("integer value, such as 25, -178, or 3: ");

return input;

Menu Browsing

Here is a sample run:

Enter the letter of your choice:

a. advice b. bell
c. count g. quit
a
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Buy low, sell high.
Enter the letter of your choice:

a. advice b. bell
c. count g. quit
count

Count how far? Enter an integer:

two

two is not an integer.

Please enter an integer value, such as 25, -178, or 3: 5

1

2

3

4

5

Enter the letter of your choice:
a. advice b. bell

c. count g. quit

d

Please respond with a, b, ¢, or q.
q

It can be hard work getting a menu interface to work as smoothly as you might want, but after
you develop a viable approach, you can reuse it in a variety of situations.

Another point to notice is how each function, when faced with doing something a bit compli-
cated, delegated the task to another function, thus making the program much more modular.

Key Concepts

C programs see input as a stream of incoming bytes. The getchar () function interprets each
byte as being a character code. The scanf () function sees input the same way, but, guided
by its conversion specifiers, it can convert character input to numeric values. Many operating
systems provide redirection, which allows you to substitute a file for a keyboard for input and
to substitute a file for a monitor for output.

Programs often expect a particular form of input. You can make a program much more robust
and user friendly by anticipating entry errors a user might make and enabling the program to
cope with them.

With a small program, input validation might be the most involved part of the code. It also
opens up many choices. For example, if the user enters the wrong kind of information, you can
terminate the program, you can give the user a fixed number of chances to get the input right,
or you give the user an unlimited number of chances.
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Summary

Many programs use getchar () to read input character-by-character. Typically, systems use line-
buffered input, meaning that input is transmitted to the program when you press Enter. Pressing
Enter also transmits a newline character that may require programming attention. ANSI C
requires buffered input as the standard.

C features a family of functions, called the standard I/O package, that treats different file forms
on different systems in a uniform manner. The getchar() and scanf () functions belong to
this family. Both functions return the value EOF (defined in the stdio.h header) when they
detect the end of a file. Unix systems enable you to simulate the end-of-file condition from the
keyboard by pressing Ctrl+D at the beginning of a line; DOS systems use Ctrl+Z for the same
purpose.

Many operating systems, including Unix and DOS, feature redirection, which enables you to use
files instead of the keyboard and screen for input and output. Programs that read input up to
EOF can then be used either with keyboard input and simulated end-of-file signals or with redi-
rected files.

Interspersing calls to getchar () with calls to scanf () can cause problems when scanf ()
leaves a newline character in the input just before a call to getchar (). By being aware of this
problem, however, you can program around it.

When you are writing a program, plan the user interface thoughtfully. Try to anticipate the sort
of errors users are likely to make and then design your program to handle them.

Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”

1. putchar(getchar()) is a valid expression; what does it do? Is getchar (putchar())
also valid?

2. What would each of the following statements accomplish?
a. putchar('H'");
b. putchar('\007"');
c. putchar('\n');
d. putchar('\b');
3. Suppose you have an executable program named count that counts the characters in its

input. Devise a command-line command using the count program to count the number
of characters in the file essay and to store the result in a file named essayct.
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4. Given the program and files in question 3, which of the following are valid commands?
a. essayct <essay
b. count essay

Cc. essay >count
5. What is EOF?

6. What is the output of each of the following fragments for the indicated input (assume
that ch is type int and that the input is buffered)?

a. The input is as follows:

If you quit, I will.[enter]
The fragment is as follows:
while ((ch = getchar()) != 'i")

putchar(ch);

b. The input is as follows:

Harhar[enter]
The fragment is as follows:

while ((ch = getchar()) != '\n')

{

putchar (ch++);
putchar(++ch);

7. How does C deal with different computers systems having different file and newline
conventions?

8. What potential problem do you face when intermixing numeric input with character
input on a buffered system?

Programming Exercises

Several of the following programs ask for input to be terminated by EOF. If your operating
system makes redirection awkward or impossible, use some other test for terminating input,
such as reading the & character.

1. Devise a program that counts the number of characters in its input up to the end of file.
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. Write a program that reads input as a stream of characters until encountering EOF. Have
the program print each input character and its ASCII decimal value. Note that characters
preceding the space character in the ASCII sequence are nonprinting characters.

Treat them specially. If the nonprinting character is a newline or tab, print \n or \t,
respectively. Otherwise, use control-character notation. For instance, ASCII 1 is Ctrl+A,
which can be displayed as “A. Note that the ASCII value for a is the value for Ctrl+A
plus 64. A similar relation holds for the other nonprinting characters. Print 10 pairs per
line, except start a fresh line each time a newline character is encountered. (Note: The
operating system may have special interpretations for some control characters and keep
them from reaching the program.)

. Write a program that reads input as a stream of characters until encountering EOF.

Have it report the number of uppercase letters, the number of lowercase letters, and the
number of other characters in the input. You may assume that the numeric values for the
lowercase letters are sequential and assume the same for uppercase. Or, more portably,
you can use appropriate classification functions from the ctype.h library.

. Write a program that reads input as a stream of characters until encountering EOF. Have
it report the average number of letters per word. Don’t count whitespace as being letters
in a word. Actually, punctuation shouldn’t be counted either, but don’t worry about that
now. (If you do want to worry about it, consider using the ispunct () function from the
ctype.h family.)

. Modify the guessing program of Listing 8.4 so that it uses a more intelligent guessing
strategy. For example, have the program initially guess 50, and have it ask the user
whether the guess is high, low, or correct. If, say, the guess is low, have the next guess
be halfway between 50 and 100, that is, 75. If that guess is high, let the next guess be
halfway between 75 and 50, and so on. Using this binary search strategy, the program
quickly zeros in on the correct answer, at least if the user does not cheat.

. Modify the get_first() function of Listing 8.8 so that it returns the first non-
whitespace character encountered. Test it in a simple program.

. Modify Programming Exercise 8 from Chapter 7 so that the menu choices are labeled by
characters instead of by numbers; use g instead of 5 as the cue to terminate input.

. Write a program that shows you a menu offering you the choice of addition, subtraction,
multiplication, or division. After getting your choice, the program asks for two numbers,
then performs the requested operation. The program should accept only the offered
menu choices. It should use type float for the numbers and allow the user to try again
if he or she fails to enter a number. In the case of division, the program should prompt
the user to enter a new value if 0 is entered as the value for the second number. A typical
program run should look like this:
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Enter the operation of your choice:

a. add s. subtract
m. multiply d. divide
g. quit

a

Enter first number: 22.4

Enter second number: one

one is not an number.

Please enter a number, such as 2.5, -1.78E8, or 3: 1
22.4 + 1 =23.4

Enter the operation of your choice:

a. add s. subtract
m. multiply d. divide
g. quit

d

Enter first number: 18.4

Enter second number: 0

Enter a number other than 0: 0.2
18.4 / 0.2 = 92

Enter the operation of your choice:

a. add s. subtract
m. multiply d. divide
g. quit

q

Bye.
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Functions

You will learn about the following in this chapter:

= Keyword:
return
= QOperators:
* (unary) & (unary)
= Functions and how to define them
= How to use arguments and return values
= How to use pointer variables as function arguments
= Function types
= ANSI C prototypes

= Recursion

How do you organize a program? C’s design philosophy is to use functions as building blocks.
We've already relied on the standard C library for functions such as printf(), scanf(),
getchar (), putchar(), and strlen(). Now we're ready for a more active role—creating our
own functions. You've previewed several aspects of that process in earlier chapters, and this
chapter consolidates your earlier information and expands on it.

Reviewing Functions

First, what is a function? A function is a self-contained unit of program code designed to accom-
plish a particular task. Syntax rules define the structure of a function and how it can be used.

A function in C plays the same role that functions, subroutines, and procedures play in other
languages, although the details might differ. Some functions cause an action to take place. For
example, printf () causes data to be printed on your screen. Some functions find a value for a
program to use. For instance, strlen() tells a program how long a certain string is. In general,
a function can both produce actions and provide values.
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Why should you use functions? For one, they save you from repetitious programming. If you
have to do a certain task several times in a program, you only need to write an appropriate
function once. The program can then use that function wherever needed, or you can use the
same function in different programs, just as you have used putchar () in many programs. Also,
even if you do a task just once in just one program, using a function is worthwhile because it
makes a program more modular, hence easier to read and easier to change or fix. Suppose, for
example, that you want to write a program that does the following:

= Read in a list of numbers
= Sort the numbers
= Find their average

= Print a bar graph

You could use this program:

#include <stdio.h>
#define SIZE 50
int main(void)
{

float list[SIZE];

readlist(list, SIZE);
sort(list, SIZE);
average(list, SIZE);
bargraph(list, SIZE);
return 0;

Of course, you would also have to write the four functions readlist(), sort(), average(),
and bargraph ()—mere details. Descriptive function names make it clear what the program
does and how it is organized. You can then work with each function separately until it does
its job right, and, if you make the functions general enough, you can reuse them in other
programs.

Many programmers like to think of a function as a “black box” defined in terms of the infor-
mation that goes in (its input) and the value or action it produces (its output). What goes on
inside the black box is not your concern, unless you are the one who has to write the function.
For example, when you use printf (), you know that you have to give it a control string and,
perhaps, some arguments. You also know what output printf () should produce. You don’t
have to think about the programming that went into creating print£ (). Thinking of functions
in this manner helps you concentrate on the program’s overall design rather than the details.
Think carefully about what the function should do and how it relates to the program as a
whole before worrying about writing the code.

What do you need to know about functions? You need to know how to define them properly,
how to call them up for use, and how to set up communication between functions. To refresh
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your memory on these points, we will begin with a very simple example and then bring in
more features until you have the full story.

Creating and Using a Simple Function

Our modest first goal is to create a function that types 40 asterisks in a row. To give the func-
tion a context, let’s use it in a program that prints a simple letterhead. Listing 9.1 presents the
complete program. It consists of the functions main() and starbar().

Listing 9.1 The letheadl.c Program

/* letheadl.c */

#include <stdio.h>

#define NAME "GIGATHINK, INC."
#define ADDRESS "101 Megabuck Plaza"
#define PLACE "Megapolis, CA 94904"
#define WIDTH 40

void starbar(void); /* prototype the function */

int main(void)

{
starbar();
printf("%s\n", NAME);
printf("$s\n", ADDRESS);
printf("%$s\n", PLACE);
starbar(); /* use the function */
return 0;
}
void starbar(void) /* define the function */
{
int count;
for (count = 1; count <= WIDTH; count++)
putchar('*");
putchar('\n'");
}

The output is as follows:
R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESSE]

GIGATHINK, INC.
101 Megabuck Plaza

Megapolis, CA 94904
IR E SRS RS SR SRR SRR RS E R R R R EEEE S
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Analyzing the Program

Here are several major points to note about this program:

= [t uses the starbar identifier in three separate contexts: a function prototype that tells the
compiler what sort of function starbar() is, a function call that causes the function to
be executed, and a function definition that specifies exactly what the function does.

= Like variables, functions have types. Any program that uses a function should declare the
type for that function before it is used. Consequently, this ANSI C prototype precedes the
main() function definition:

void starbar(void);

The parentheses indicate that starbar is a function name. The first void is a function
type; the void type indicates that the function does not return a value. The second
void (the one in the parentheses) indicates that the function takes no arguments. The
semicolon indicates that you are declaring the function, not defining it. That is, this
line announces that the program uses a function called starbar (), that the function
has no return value and has no arguments, and that the compiler should expect to find
the definition for this function elsewhere. For compilers that don’t recognize ANSI C
prototyping, just declare the type, as follows:

void starbar();

Note that some very old compilers don’t recognize the void type. In that case, use type
int for functions that don’t have return values. And look into getting a compiler from
the current century.

= In general, a prototype specifies both the type of value a function returns and the types
of arguments it expects. Collectively, this information is called the signature of the
function. In this particular case, the signature is that the function has no return value
and has no arguments.

= The program places the starbar () prototype before main(); instead, it can go inside
main(), at the same location you would place any variable declarations. Either way is
fine.

= The program calls (invokes, summons) the function starbar () from main() by using its
name followed by parentheses and a semicolon, thus creating the statement

starbar();

This is the form for calling up a type void function. Whenever the computer reaches a
starbar () ; statement, it looks for the starbar () function and follows the instructions
there. When finished with the code within starbar (), the computer returns to the
next line of the calling function—main (), in this case (see Figure 9.1). (More exactly,

the compiler translates the C program to machine-language code that behaves in this
fashion.)
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main()
{
— starbar()
|— putchar ()
— printf()
each function may "call"
other functions
e () —— each function is "run" in turn
— printf()
— starbar ()

Y
putchar()

Figure 9.1 Control flow for letheadl.c (Listing 9.1).

= The program follows the same form in defining starbar () as it does in defining main().
It starts with the type, name, and parentheses. Then it supplies the opening brace, a
declaration of variables used, the defining statements of the function, and then the
closing brace (see Figure 9.2). Note that this instance of starbar () is not followed by a
semicolon. The lack of a semicolon tells the compiler that you are defining starbar()
instead of calling or prototyping it.

= The program includes starbar () and main() in the same file. You can use two separate
files. The single-file form is slightly easier to compile. Two separate files make it simpler
to use the same function in different programs. If you do place the function in a separate
file, you would also place the necessary #define and #include directives in that file. We
will discuss using two or more files later. For now, we will keep all the functions together
in one file. The closing brace of main () tells the compiler where that function ends, and
the following starbar () header tells the compiler that starbar () is a function.



340

Chapter 9 Functions

= The variable count in starbar() is a local variable. This means it is known only to
starbar (). You can use the name count in other functions, including main(), and
there will be no conflict. You simply end up with separate, independent variables having
the same name.

header

#include <stdio.h>
#define LIMIT 65
void starbar (void)

preprocessor instructions

function name

body
{
int count; declaration statement
for (count=1;---) ——————— control loop statement
putchar ('*'); —— ——— function statement
putchar('\n'); ———————————— function statement
}

Figure 9.2  Structure of a simple function.

If you think of starbar () as a black box, its action is printing a line of stars. It doesn’t have
any input because it doesn’t need to use any information from the calling function. It doesn’t
provide (or return) any information to main(), so starbar () doesn’t have a return value. In
short, starbar () doesn’t require any communication with the calling function.

Let’s create a case where communication is needed.

Function Arguments

The letterhead shown earlier would look nicer if the text were centered. You can center text
by printing the correct number of leading spaces before printing the text. This is similar to the
starbar () function, which printed a certain number of asterisks, but now you want to print
a certain number of spaces. Instead of writing separate functions for each task, we’ll write a
single, more general function that does both. We'll call the new function show_n_char () (to
suggest displaying a character n times). The only change is that instead of using built-in values
for the display character and number of repetitions, show_n_char () will use function argu-
ments to convey those values.

Let’s get more specific. Think of the available space being exactly 40 characters wide. The bar
of stars is 40 characters wide, fitting exactly, and the function call show_n_char('*', 40)
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should print that, just as starbar () did earlier. What about spaces for centering GIGATHINK,
INC? GIGATHINK, INC. is 15 spaces wide, so in the first version, there were 25 spaces following
the heading. To center it, you should lead off with 12 spaces, which will result in 12 spaces on
one side of the phrase and 13 spaces on the other. Therefore, you could use the call show n_
char(' ', 12).

Aside from using arguments, the show_n_char () function will be quite similar to starbar ().
One difference is that it won’t add a newline the way starbar () does because you might want
to print other text on the same line. Listing 9.2 shows the revised program. To emphasize how
arguments work, the program uses a variety of argument forms.

Listing 9.2 The lethead2.c Program

/* lethead2.c */

#include <stdio.h>

#include <string.h> /* for strlen() */
#define NAME "GIGATHINK, INC."

#define ADDRESS "101 Megabuck Plaza"

#define PLACE "Megapolis, CA 94904"

#define WIDTH 40

#define SPACE ' '

void show_n_char(char ch, int num);

int main(void)

{
int spaces;
show n_char('*', WIDTH); /* using constants as arguments */
putchar('\n");
show_n_char(SPACE, 12); /* using constants as arguments */
printf("$s\n", NAME);
spaces = (WIDTH - strlen(ADDRESS)) / 2;
/* Let the program calculate */
/* how many spaces to skip */
show_n_char (SPACE, spaces);/* use a variable as argument */
printf("$s\n", ADDRESS);
show_n_char(SPACE, (WIDTH - strlen(PLACE)) / 2);
/* an expression as argument */
printf("%$s\n", PLACE);
show n_char('*', WIDTH);
putchar('\n");
return 0;
}

/* show_n_char() definition */
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void show_n_char(char ch, int num)

{
int count;
for (count = 1; count <= num; count++)
putchar(ch);
}

Here is the result of running the program:
kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

GIGATHINK, INC.
101 Megabuck Plaza
Megapolis, CA 94904

khkkkhkkhkkhkhkhhhhkhhkhhhhkhkhkhhhhhhkhhkhkhkkkhkkkkkkkxkx

Now let’s review how to set up a function that takes arguments. After that, you'll look at how
the function is used.

Defining a Function with an Argument: Formal Parameters
The function definition begins with the following ANSI C function header:

void show n char(char ch, int num)

This line informs the compiler that show_n_char () uses two arguments called ch and num,
that ch is type char, and that num is type int. Both the ch and num variables are called formal
arguments or (the phrase currently in favor) formal parameters. Like variables defined inside the
function, formal parameters are local variables, private to the function. That means you don’t
have to worry if the names duplicate variable names used in other functions. These variables
will be assigned values each time the function is called.

Note that the ANSI C form requires that each variable be preceded by its type. That is, unlike
the case with regular declarations, you can’t use a list of variables of the same type:

void dibs(int x, y, 2) /* invalid function header */
void dubs(int x, int y, int z) /* valid function header */

ANSI C also recognizes the pre-ANSI C form but characterizes it as obsolescent:

void show_n_char(ch, num)
char ch;
int num;

Here, the parentheses contain the list of argument names, but the types are declared afterward.
Note that the arguments are declared before the brace that marks the start of the function’s
body, but ordinary local variables are declared after the brace. This form does enable you to use
comma-separated lists of variable names if the variables are of the same type, as shown here:
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void dibs(x, y, z)
int x, y, 2z; /* valid */

The intent of the standard is to phase out the pre-ANSI C form. You should be aware of it so
that you can understand older code, but you should use the modern form for new programs.
(C99 and C11 continue to warn of impending obsolescence.)

Although the show_n_char () function accepts values from main (), it doesn’t return a value.
Therefore, show_n_char () is type void.

Now let’s see how this function is used.

Prototyping a Function with Arguments
We used an ANSI C prototype to declare the function before it is used:

void show n char(char ch, int num);

When a function takes arguments, the prototype indicates their number and type by using a
comma-separated list of the types. If you like, you can omit variable names in the prototype:

void show_n_char(char, int);

Using variable names in a prototype doesn’t actually create variables. It merely clarifies the fact
that char means a char variable, and so on.

Again, ANSI C also recognizes the older form of declaring a function, which is without an argu-
ment list:

void show_n_char();

This form eventually will be dropped from the standard. Even if it weren’t, the prototype
format is a much better design, as you'll see later. The main reason you need to know this form
is so that you’ll recognize and understand it if you encounter it in older code.

Calling a Function with an Argument: Actual Arguments

You give ch and num values by using actual arguments in the function call. Consider the first use
of show_n_char():

show_n_char(SPACE, 12);

The actual arguments are the space character and 12. These values are assigned to the corre-
sponding formal parameters in show n_char ()—the variables ch and num. In short, the formal
parameter is a variable in the called function, and the actual argument is the particular value
assigned to the function variable by the calling function. As the example shows, the actual
argument can be a constant, a variable, or an even more elaborate expression. Regardless of
which it is, the actual argument is evaluated, and its value is copied to the corresponding
formal parameter for the function. For instance, consider the final use of show_n_char():

show_n_char(SPACE, (WIDTH - strlen(PLACE)) / 2);
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The long expression forming the second actual argument is evaluated to 10. Then the value

10 is assigned to the variable num. The function neither knows nor cares whether that number
came from a constant, a variable, or a more general expression. Once again, the actual argu-
ment is a specific value that is assigned to the variable known as the formal parameter (see
Figure 9.3). Because the called function works with data copied from the calling function, the
original data in the calling function is protected from whatever manipulations the called func-
tion applies to the copies.

Note Actual Arguments and Formal Parameters

The actual argument is an expression that appears in the parentheses of a function call. The
formal parameter is a variable declared in the header of a function definition. When a func-
tion is called, the variables declared as formal parameters are created and initialized to the
values obtained by evaluating the actual arguments. In Listing 9.2, '+' and WIDTH are actual
arguments for the first time show_n_char() is called, and SPACE and 11 are actual argu-
ments the second time that function is called. In the function definition, ch and num are formal
parameters.

space(25); 4 actual argument =25 passed by
-— main( ) to space( ) and assigned
} to number
formal parameter = name > void space (int number)
created by function definition {
}

Figure 9.3 Formal parameters and actual arguments.
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The Black-Box Viewpoint

Taking a black-box viewpoint of show_n_char (), the input is the character to be displayed and
the number of spaces to be skipped. The resulting action is printing the character the specified
number of times. The input is communicated to the function via arguments. This information
is enough to tell you how to use the function in main(). Also, it serves as a design specification
for writing the function.

The fact that ch, num, and count are local variables private to the show_n_char () function is
an essential aspect of the black box approach. If you were to use variables with the same names
in main (), they would be separate, independent variables. That is, if main() had a count vari-
able, changing its value wouldn’t change the value of count in show_n_char(), and vice versa.
What goes on inside the black box is hidden from the calling function.

Returning a Value from a Function with return

You have seen how to communicate information from the calling function to the called func-
tion. To send information in the other direction, you use the function return value. To refresh
your memory on how that works, we’ll construct a function that returns the smaller of its two
arguments. We'll call the function imin() because it’s designed to handle int values. Also,

we will create a simple main () whose sole purpose is to check to see whether imin () works.

A program designed to test functions this way is sometimes called a driver. The driver takes a
function for a spin. If the function pans out, it can be installed in a more noteworthy program.
Listing 9.3 shows the driver and the minimum value function.

Listing 9.3 The lesser.c Program

/* lesser.c -- finds the lesser of two evils */
#include <stdio.h>
int imin(int, int);

int main(void)
{

int evill, evil2;

printf("Enter a pair of integers (g to quit):\n");
while (scanf("%d %d", &evill, &evil2) == 2)
{

printf("The lesser of %d and %d is %d.\n",

evill, evil2, imin(evill,evil2));

printf("Enter a pair of integers (g to quit):\n");
}
printf("Bye.\n");

return 0;
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int imin(int n,int m)

{
int min;
if (n < m)
min = n;
else
min = m;
return min;
}

Recall that scanf () returns the number of items successfully read, so input other than two
integers will cause the while loop to terminate. Here is a sample run:
Enter a pair of integers (g to quit):

509 333

The lesser of 509 and 333 is 333.

Enter a pair of integers (g to quit):

-9393 6

The lesser of -9393 and 6 is -9393.

Enter a pair of integers (g to quit):

q

Bye.

The keyword return causes the value of the following expression to be the return value of the
function. In this case, the function returns the value that was assigned to min. Because min is
type int, so is the imin() function.

The variable min is private to imin( ), but the value of min is communicated back to the calling
function with return. The effect of a statement such as the next one is to assign the value of
min to lesser:

lesser = imin(n,m);

Could you say the following instead?

imin(n,m);
lesser = min;

No, because the calling function doesn’t even know that min exists. Remember that imin()’s
variables are local to imin( ). The function call imin(evill,evil2) copies the values of one
set of variables to another set.

Not only can the returned value be assigned to a variable, it can also be used as part of an
expression. You can do this, for example:

answer = 2 * imin(z, zstar) + 25;

printf("%d\n", imin(-32 + answer, LIMIT));
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The return value can be supplied by any expression, not just a variable. For example, you can
shorten the program to the following:

/* minimum value function, second version */
imin(int n,int m)
{

return (n <m) ? n : m;

The conditional expression is evaluated to either n or m, whichever is smaller, and that value is
returned to the calling function. If you prefer, for clarity or style, to enclose the return value in
parentheses, you may, although parentheses are not required.

What if the function returns a type different from the declared type?

int what_if(int n)

{
double z = 100.0 / (double) n;
return z; // what happens?

Then the actual return value is what you would get if you assigned the indicated return value
to a variable of the declared return type. So, in this example, the net effect would be the same
as if you assigned the value of z to an int variable and then returned that value. For example,
suppose we have the following function call:

result = what if(64);

Then z is assigned 1.5625. The return statement, however, returns the int value 1.

Using return has one other effect. It terminates the function and returns control to the next
statement in the calling function. This occurs even if the return statement is not the last in
the function. Therefore, you can write imin() this way:

/* minimum value function, third version */
imin(int n,int m)

{
if (n < m)
return n;
else
return m;
}

Many, but not all, C practitioners deem it better to use return just once and at the end of

a function to make it easier for someone to follow the control flow through the function.
However, it’s no great sin to use multiple returns in a function as short as this one. Anyway,
to the user, all three versions are the same, because all take the same input and produce the
same output. Just the innards are different. Even this version works the same:

/* minimum value function, fourth version */
imin(int n, int m)
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{
if (n < m)
return n;
else
return m;
printf("Professor Fleppard is like totally a fopdoodle.\n");
}

The return statements prevent the printf () statement from ever being reached. Professor
Fleppard can use the compiled version of this function in his own programs and never learn
the true feelings of his student programmer.

You can also use a statement like this:

return;

It causes the function to terminate and return control to the calling function. Because no
expression follows return, no value is returned, and this form should be used only in a type
void function.

Function Types

Functions should be declared by type. A function with a return value should be declared the
same type as the return value. Functions with no return value should be declared as type void.
If no type is given for a function, older versions of C assume that the function is type int.
This convention stems from the early days of C when most functions were type int anyway.
However, the C99 standard drops support for this implicit assumption of type int.

The type declaration is part of the function definition. Keep in mind that it refers to the return
value, not to the function arguments. For example, the following function heading indicates
that you are defining a function that takes two type int arguments but that returns a type
double value:

double klink(int a, int b)

To use a function correctly, a program needs to know the function type before the function is
used for the first time. One way to accomplish this is to place the complete function definition
ahead of its first use. However, this method could make the program harder to read. Also, the
functions might be part of the C library or in some other file. Therefore, you generally inform
the compiler about functions by declaring them in advance. For example, the main() function
in Listing 9.3 contains these lines:

#include <stdio.h>
int imin(int, int);
int main(void)

{

int evill, evil2, lesser;



ANSI C Function Prototyping

The second line establishes that imin is the name of a function that has two int parameters
and returns a type int value. Now the compiler will know how to treat imin () when it appears
later in the program.

We’ve placed the advance function declarations outside the function using them. They can
also be placed inside the function. For example, you can rewrite the beginning of lesser.c as
follows:

#include <stdio.h>

int main(void)

{
int imin(int, int); /* imin() declaration */
int evill, evil2, lesser;

In either case, your chief concern should be that the function declaration appears before the
function is used.

In the ANSI C standard library, functions are grouped into families, each having its own header
file. These header files contain, among other things, the declarations for the functions in the
family. For example, the stdio.h header contains function declarations for the standard I/O
library functions, such as printf () and scanf (). The math.h header contains function decla-
rations for a variety of mathematical functions. For example, it contains

double sqgrt(double);

to tell the compiler that the sqrt () function has a double parameter and returns a type
double value. Don’t confuse these declarations with definitions. A function declaration
informs the compiler which type the function is, but the function definition supplies the actual
code. Including the math.h header file tells the compiler that sqrt () returns type double, but
the code for sqrt () resides in a separate file of library functions.

ANSI C Function Prototyping

The traditional, pre-ANSI C scheme for declaring functions was deficient in that it declared
a function’s return type but not its arguments. Let’s look at the kinds of problems that arise
when the old form of function declaration is used.

The following pre-ANSI C declaration informs the compiler that imin () returns a type int
value:

int imin();

However, it says nothing about the number or type of imin()’s arguments. Therefore, if you
use imin() with the wrong number or type of arguments, the compiler doesn’t catch the error.
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The Problem

Let’s look at some examples involving imax (), a close relation to imin(). Listing 9.4 shows a
program that declares imax () the old-fashioned way and then uses imax () incorrectly.

Listing 9.4 The misuse.c Program

/* misuse.c -- uses a function incorrectly */
#include <stdio.h>
int imax(); /* old-style declaration */

int main(void)

{
printf("The maximum of %d and %d is %d.\n",
3, 5, imax(3));
printf("The maximum of %d and %d is %d.\n",
3, 5, imax(3.0, 5.0));
return 0;
}
int imax(n, m)
int n, m;
{

return (n >m ? n : m);

The first call to printf () omits an argument to imax (), and the second call uses floating-
point arguments instead of integers. Despite these errors, the program compiles and runs.

Here’s a sample output using Xcode 4.6:

The maximum of 3 and 5 is 1606416656.
The maximum of 3 and 5 is 3886.

A sample run using gcc produced values of 1359379472 and 1359377160. The two compilers
work fine; they are merely victims of the program’s failure to use function prototypes.

What's happening? The mechanics may differ among systems, but here’s what goes on with

a PC or VAX. The calling function places its arguments in a temporary storage area called the
stack, and the called function reads those arguments off the stack. These two processes are not
coordinated with one another. The calling function decides which type to pass based on the
actual arguments in the call, and the called function reads values based on the types of its
formal arguments. Therefore, the call imax (3) places one integer on the stack. When the imax()
function starts up, it reads two integers off the stack. Only one was actually placed on the stack,
so the second value read is whatever value happened to be sitting in the stack at the time.

The second time the example uses imax (), it passes £loat values to imax (). This places two
double values on the stack. (Recall that a float is promoted to double when passed as an
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argument.) On our system, that’s two 64-bit values, so 128 bits of data are placed on the stack.
When imax () reads two ints from the stack, it reads the first 64 bits on the stack because, on
our system, each int is 32 bits. These bits happened to correspond to two integer values, the
larger of which was 3886.

The ANSI C Solution

The ANSI C standard’s solution to the problems of mismatched arguments is to permit the
function declaration to declare the variable types, too. The result is a function prototype—a decla-
ration that states the return type, the number of arguments, and the types of those arguments.
To indicate that imax () requires two int arguments, you can declare it with either of the
following prototypes:

int imax(int, int);

int imax(int a, int b);

The first form uses a comma-separated list of types. The second adds variable names to the
types. Remember that the variable names are dummy names and don’t have to match the
names used in the function definition.

With this information at hand, the compiler can check to see whether the function call
matches the prototype. Are there the right number of arguments? Are they the correct type?

If there is a type mismatch and if both types are numbers, the compiler converts the values of
the actual arguments to the same type as the formal arguments. For example, imax (3.0, 5.0)
becomes imax (3, 5). We've modified Listing 9.4 to use a function prototype. The result is
shown in Listing 9.5.

Listing 9.5 The proto.c Program

/* proto.c -- uses a function prototype */
#include <stdio.h>
int imax(int, int); /* prototype */
int main(void)
{
printf("The maximum of %d and %d is %d.\n",
3, 5, imax(3));
printf("The maximum of %d and %d is %d.\n",
3, 5, imax(3.0, 5.0));
return 0;
}

int imax(int n, int m)
{

return (n >m ? n : m);
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When we tried to compile Listing 9.5, our compiler gave an error message stating that the call
to imax () had too few parameters.

What about the type errors? To investigate those, we replaced imax(3) with imax(3, 5) and
tried compilation again. This time there were no error messages, and we ran the program. Here
is the resulting output:

The maximum of 3 and 5 is 5.
The maximum of 3 and 5 is 5.

As promised, the 3.0 and 5.0 of the second call were converted to 3 and 5 so that the function
could handle the input properly.

Although it gave no error message, our compiler did give a warning to the effect that a double
was converted to int and that there was a possible loss of data. For example, the call

imax(3.9, 5.4)

becomes equivalent to the following:

imax (3, 5)

The difference between an error and a warning is that an error prevents compilation and a
warning permits compilation. Some compilers make this type cast without telling you. That’s

because the standard doesn’t require warnings. However, many compilers enable you to select a
warning level that controls how verbose the compiler will be in issuing warnings.

No Arguments and Unspecified Arguments

Suppose you give a prototype like this:

void print name();

An ANSI C compiler will assume that you have decided to forego function prototyping, and it

will not check arguments. To indicate that a function really has no arguments, use the void
keyword within the parentheses:

void print name(void);

ANSI C interprets the preceding expression to mean that print_name () takes no arguments. It
then checks to see that you, in fact, do not use arguments when calling this function.

A few functions, such as printf () and scanf (), take a variable number of arguments. In
printf (), for example, the first argument is a string, but the remaining arguments are fixed
in neither type nor number. ANSI C allows partial prototyping for such cases. You could, for
example, use this prototype for printf():

int printf(const char *, ...);
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This prototype says that the first argument is a string (Chapter 11, “Character Strings and String
Functions,” elucidates that point) and that there may be further arguments of an unspecified
nature.

The C library, through the stdarg.h header file, provides a standard way for defining a func-
tion with a variable number of parameters; Chapter 16, “The C Preprocessor and the C Library,”
covers the details.

Hooray for Prototypes

Prototypes are a strong addition to the language. They enable the compiler to catch many
errors or oversights you might make using a function. These are problems that, if not caught,
might be hard to trace. Do you have to use them? No, you can use the old type of function
declaration (the one showing no parameters) instead, but there is no advantage and many
disadvantages to that.

There is one way to omit a prototype yet retain the advantages of prototyping. The reason for
the prototype is to show the compiler how the function should be used before the compiler
reaches the first actual use. You can accomplish the same end by placing the entire func-

tion definition before the first use. Then the definition acts as its own prototype. This is most
commonly done with short functions:

// the following is a definition and a prototype
int imax(int a, int b) { return a > b ? a : b; }

int main()

{

int x, z;

z = imax(x, 50);

Recursion

C permits a function to call itself. This process is termed recursion. Recursion is a sometimes
tricky, sometimes convenient tool. It’s tricky to get recursion to end because a function that
calls itself tends to do so indefinitely unless the programming includes a conditional test to
terminate recursion.

Recursion often can be used where loops can be used. Sometimes the loop solution is more
obvious; sometimes the recursive solution is more obvious. Recursive solutions tend to be more
elegant and less efficient than loop solutions.
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Recursion Revealed

To see what's involved, let’s look at an example. The function main() in Listing 9.6 calls the
up_and_down () function. We'll term this the “first level of recursion.” Then up_and down()
calls itself; we'll call that the “second level of recursion.” The second level calls the third

level, and so on. This example is set up to go four levels. To provide an inside look at what is
happening, the program not only displays the value of the variable n, it also displays &n, which
is the memory address at which the variable n is stored. (This chapter discusses the & opera-

tor more fully later. The printf () function uses the $p specifier for addresses. If your system
doesn’t support that format, try %u or $1u.)

Listing 9.6 The recur.c Program

/* recur.c -- recursion illustration */
#include <stdio.h>
void up_and _down(int);

int main(void)

{
up_and_down(1);
return 0;
}
void up_and down(int n)
{
printf("Level %d: n location %p\n", n, &n); // 1
if (n < 4)
up_and_down(n+1);
printf("LEVEL %d: n location %p\n", n, &n); // 2
}

The output on one system looks like this:

Level 1: n location 0x0012ff48
Level 2: n location 0x0012ff3c
Level 3: n location 0x0012££f30
Level 4: n location 0x0012ff24
LEVEL 4: n location 0x0012ff24
LEVEL 3: n location 0x0012f£30
LEVEL 2: n location 0x0012ff3c
LEVEL 1: n location 0x0012ff48

Let’s trace through the program to see how recursion works. First, main() calls up_and_down()
with an argument of 1. As a result, the formal parameter n in up_and_down () has the value 1,
so print statement #1 prints Level 1. Then, because n is less than 4, up_and_down() (Level

1) calls up_and down() (Level 2) with an actual argument of n + 1, or 2. This causes n in the
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Level 2 call to be assigned the value 2, so print statement #1 prints Level 2. Similarly, the
next two calls lead to printing Level 3 and Level 4.

When Level 4 is reached, n is 4, so the if test fails. The up_and_down() function is not called
again. Instead, the Level 4 call proceeds to print statement #2, which prints LEVEL 4, because
n is 4. Then it reaches the return statement. At this point, the Level 4 call ends, and control
passes back to the function that called it (the Level 3 call). The last statement executed in the
Level 3 call was the call to Level 4 in the if statement. Therefore, Level 3 resumes with the
following statement, which is print statement #2. This causes LEVEL 3 to be printed. Then
Level 3 ends, passing control to Level 2, which prints LEVEL 2, and so on.

Note that each level of recursion uses its own private n variable. You can tell this is so by
looking at the address values. (Of course, different systems, in general, will report different
addresses, possibly in a different format. The critical point is that the address on the Level 1
line is the same as the address on the LEVEL 1 line, and so on.)

If you find this a bit confusing, think about when you have a chain of function calls, with
funl() calling fun2(), fun2() calling fun3(), and fun3() calling fun4 (). When fun4 ()
finishes, it passes control back to fun3 (). When fun3 () finishes, it passes control back to
fun2 (). And when fun2 () finishes, it passes control back to fun1 (). The recursive case works
the same, except that funl(), fun2(), fun3(), and fun4 () are all the same function.

Recursion Fundamentals

Recursion can be confusing at first, so let’s look at a few basic points that will help you under-
stand the process.

First, each level of function call has its own variables. That is, the n of Level 1 is a different

variable from the n of Level 2, so the program created four separate variables, each called n,
but each having a distinct value. When the program finally returned to the first-level call of
up_and_down (), the original n still had the value 1 it started with (see Figure 9.4).

variables:

=
=
=

n
after level 1 call 1
after level 2 call 1
after level 3 call 1
after level 4 call 1
after return from level 4 1
after return from level 3 1
after return from level 2 1
after return from level 1

[\SIN\SIN (O 2N (S 3 )
(%)
AN

(all gone)

Figure 9.4 Recursion variables.
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Second, each function call is balanced with a return. When program flow reaches the return at
the end of the last recursion level, control passes to the previous recursion level. The program
does not jump all the way back to the original call in main(). Instead, the program must move
back through each recursion level, returning from one level of up_and_down () to the level of
up_and_down () that called it.

Third, statements in a recursive function that come before the recursive call are executed in the
same order that the functions are called. For example, in Listing 9.6, print statement #1 comes
before the recursive call. It was executed four times in the order of the recursive calls: Level 1,
Level 2, Level 3, and Level 4.

Fourth, statements in a recursive function that come after the recursive call are executed in the
opposite order from which the functions are called. For example, print statement #2 comes
after the recursive call, and it was executed in the order: Level 4, Level 3, Level 2, Level 1. This
feature of recursion is useful for programming problems involving reversals of order. You'll see
an example soon.

Fifth, although each level of recursion has its own set of variables, the code itself is not dupli-
cated. The code is a sequence of instructions, and a function call is a command to go to the
beginning of that set of instructions. A recursive call, then, returns the program to the begin-
ning of that instruction set. Aside from recursive calls creating new variables on each call, they
are much like a loop. Indeed, sometimes recursion can be used instead of loops, and vice versa.

Finally, it’s vital that a recursive function contain something to halt the sequence of recursive
calls. Typically, a recursive function uses an if test, or equivalent, to terminate recursion when
a function parameter reaches a particular value. For this to work, each call needs to use a differ-
ent value for the parameter. For example, in the last example, up_and_down(n) calls up_and_
down (n+1). Eventually, the actual argument reaches the value 4, causing the if (n < 4) test
to fail.

Tail Recursion

In the simplest form of recursion, the recursive call is at the end of the function, just before the
return statement. This is called tail recursion, or end recursion, because the recursive call comes
at the end. Tail recursion is the simplest form because it acts like a loop.

Let’s look at both a loop version and a tail recursion version of a function to calculate facto-
rials. The factorial of an integer is the product of the integers from 1 through that number.
For example, 3 factorial (written 31!) is 1*2+*3. Also, 0! is taken to be 1, and factorials are not
defined for negative numbers. Listing 9.7 presents one function that uses a for loop to calcu-
late factorials and a second that uses recursion.

Listing 9.7 The factor.c Program

// factor.c -- uses loops and recursion to calculate factorials
#include <stdio.h>
long fact(int n);
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long rfact(int n);
int main(void)

{
int num;
printf("This program calculates factorials.\n");
printf("Enter a value in the range 0-12 (g to quit):\n");
while (scanf("%d", &num) == 1)
{
if (num < 0)
printf("No negative numbers, please.\n");
else if (num > 12)
printf("Keep input under 13.\n");
else
{
printf("loop: %d factorial = %1d\n",
num, fact(num));
printf("recursion: %d factorial = %1d\n",
num, rfact(num));
}
printf("Enter a value in the range 0-12 (g to quit):\n");
}
printf("Bye.\n");
return 0;
}
long fact(int n) // loop-based function
{
long ans;
for (ans = 1; n > 1; n--)
ans *= n;
return ans;
}
long rfact(int n) // recursive version
{
long ans;
if (n > 0)

ans= n * rfact(n-1);
else
ans = 1;

return ans;
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The test driver program limits input to the integers 0-12. It turns out that 12! is slightly under
half a billion, which makes 13! much larger than long on our system. To go beyond 12!, you
would have to use a type with greater range, such as double or long long.

Here’s a sample run:

This program calculates factorials.

Enter a value in the range 0-12 (g to quit):
5

loop: 5 factorial = 120

recursion: 5 factorial = 120

Enter a value in the range 0-12 (g to quit):
10

loop: 10 factorial = 3628800

recursion: 10 factorial = 3628800

Enter a value in the range 0-12 (g to quit):
q

Bye.

The loop version initializes ans to 1 and then multiplies it by the integers from n down to 2.
Technically, you should multiply by 1, but that doesn’t change the value.

Now consider the recursive version. The key is that n! = n x (n-1)!. This follows because
(n-1)! is the product of all the positive integers through n-1. Therefore, multiplying by

n gives the product through n. This suggests a recursive approach. If you call the function
rfact(), rfact(n) isn * rfact(n-1). You can thus evaluate rfact(n) by having it call
rfact(n-1), as in Listing 9.7. Of course, you have to end the recursion at some point, and you
can do this by setting the return value to 1 when n is 0.

The recursive version of Listing 9.7 produces the same output as the loop version. Note that
although the recursive call to rfact () is not the last line in the function, it is the last state-
ment executed when n > 0, so it is tail recursion.

Given that you can use either a loop or recursion to code a function, which should you use?
Normally, the loop is the better choice. First, because each recursive call gets its own set of
variables, recursion uses more memory; each recursive call places a new set of variables on the
stack. And space restrictions in the stack can limit the number of recursive calls. Second, recur-
sion is slower because each function call takes time. So why show this example? Because tail
recursion is the simplest form of recursion to understand, and recursion is worth understanding
because in some cases, there is no simple loop alternative.

Recursion and Reversal

Now let’s look at a problem in which recursion’s ability to reverse order is handy. (This is a
case for which recursion is simpler than using a loop.) The problem is this: Write a function
that prints the binary equivalent of an integer. Binary notation represents numbers in terms of
powers of 2. Just as 234 in decimal means 2 x 102+ 3 x 101 + 4 x 100, so 101 in binary means
1x22+0x21+1x20. Binary numbers use only the digits O and 1.
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You need a method, or algorithm. How can you, say, find the binary equivalent of 5? Well, odd
numbers must have a binary representation ending in 1. Even numbers end in 0, so you can
determine whether the last digit is a 1 or a O by evaluating 5 % 2. If the resultis 1, 5 is odd,
and the last digit is 1. In general, if n is a number, the final digitisn % 2, so the first digit you
find is the last digit you want to print. This suggests using a recursive function in which n %

2 is calculated before the recursive call but in which it is printed after the recursive call. That
way, the first value calculated is the last value printed.

To get the next digit, divide the original number by 2. This is the binary equivalent of moving
the decimal point one place to the left so that you can examine the next binary digit. If this
value is even, the next binary digit is 0. If it is odd, the binary digit is 1. For example, 5/2 is

2 (integer division), so the next digit is 0. This gives 01 so far. Now repeat the process. Divide
2 by 2 to get 1. Evaluate 1 & 2 to get 1, so the next digit is 1. This gives 101. When do you
stop? You stop when the result of dividing by 2 is less than 2 because as long as it is 2 or
greater, there is one more binary digit. Each division by 2 lops off one more binary digit until
you reach the end. (If this seems confusing to you, try working through the decimal analogy.
The remainder of 628 divided by 10 is 8, so 8 is the last digit. Integer division by 10 yields 62,
and the remainder from dividing 62 by 10 is 2, so that’s the next digit, and so on.) Listing 9.8
implements this approach.

Listing 9.8 The binary.c Program

/* binary.c -- prints integer in binary form */
#include <stdio.h>
void to_binary(unsigned long n);

int main(void)
{
unsigned long number;
printf("Enter an integer (g to quit):\n");
while (scanf("%lu", &number) == 1)
{
printf("Binary equivalent: ");
to_binary(number);
putchar('\n');
printf("Enter an integer (g to quit):\n");
}
printf("Done.\n");

return 0;

void to_binary(unsigned long n) /* recursive function */

{

int r;
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r=n% 2;
if (n >= 2)

to_binary(n / 2);
putchar(r == 0 2 '0' : '1");
return;

The to_binary () should display the character '0"' if r has the numeric value 0 and '1' if
r has the numeric value 1. The conditional expressionr == 0 2 '0' : '1' provides this
conversion of a numeric to character values.

Here’s a sample run:

Enter an integer (g to quit):
9

Binary equivalent: 1001
Enter an integer (g to quit):
255

Binary equivalent: 11111111
Enter an integer (g to quit):
1024

Binary equivalent: 10000000000
Enter an integer (g to quit):
q

done.

Could you use this algorithm for calculating a binary representation without using recursion?
Yes, you could. But because the algorithm calculates the final digit first, you’'d have to store all
the digits somewhere (in an array, for example) before displaying the result. Chapter 15, “Bit
Fiddling,” shows an example of a nonrecursive approach.

Recursion Pros and Cons

Recursion has its good points and bad points. One good point is that recursion offers the
simplest solution to some programming problems. One bad point is that some recursive algo-
rithms can rapidly exhaust a computer’s memory resources. Also, recursion can be difficult
to document and maintain. Let’s look at an example that illustrates both the good and bad
aspects.

Fibonacci numbers can be defined as follows: The first Fibonacci number is 1, the second
Fibonacci number is 1, and each subsequent Fibonacci number is the sum of the preceding two.
Therefore, the first few numbers in the sequence are 1, 1, 2, 3, 5, 8, 13. Fibonacci numbers are
among the most beloved in mathematics; there even is a journal devoted to them. But let’s not
get into that. Instead, let’s create a function that, given a positive integer n, returns the corre-
sponding Fibonacci number.
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First, the recursive strength: Recursion supplies a simple definition. If we name the function
Fibonacci(), Fibonacci (n) should return 1 if nis 1 or 2, and it should return the sum
Fibonacci(n-1) + Fibonacci(n-2) otherwise:

unsigned long Fibonacci(unsigned n)

{
if (n > 2)
return Fibonacci(n-1) + Fibonacci(n-2);
else
return 1;
}

The recursive C function merely restates the recursive mathematical definition. This function
uses double recursion; that is, the function calls itself twice. And that leads to a weakness.

To see the nature of that weakness, suppose you use the function call Fibonacci(40).

That would be the first level of recursion, and it allocates a variable called n. It then evokes
Fibonacci () twice, creating two more variables called n at the second level of recursion.

Each of those two calls generates two more calls, requiring four more variables called n at the
third level of recursion, for a total of seven variables. Each level requires twice the number of
variables as the preceding level, and the number of variables grows exponentially! As you saw
in the grains-of-wheat example in Chapter 5, “Operators, Expressions, and Statements,” expo-
nential growth rapidly leads to large values. In this case, exponential growth soon leads to the
computer requiring an enormous amount of memory, most likely causing the program to crash.

Well, this is an extreme example, but it does illustrate the need for caution when using recur-
sion, particularly when efficiency is important.

All C Functions Are Created Equal

Each C function in a program is on equal footing with the others. Each can call any other func-
tion or be called by any other function. This makes the C function somewhat different from
Pascal and Modula-2 procedures because those procedures can be nested within other proce-
dures. Procedures in one nest are ignorant of procedures in another nest.

Isn’t the function main() special? Yes, it is a little special in that when a program of several
functions is put together, execution starts with the first statement in main (), but that is the
limit of its preference. Even main() can be called by itself recursively or by other functions,
although this is rarely done.

Compiling Programs with Two or More Source Code Files

The simplest approach to using several functions is to place them in the same file. Then just
compile that file as you would a single-function file. Other approaches are more system depen-
dent, as the next few sections illustrate.
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Unix

This assumes the Unix system has the Unix C compiler cc installed. (The original cc has
been retired, but many Unix systems make the cc command an alias for some other compiler
command, typically gec or clang.) Suppose that filel.c and file2.c are two files contain-
ing C functions. Then the following command will compile both files and produce an execut-
able file called a.out:

cc filel.c file2.c

In addition, two object files called filel.o and file2.o are produced. If you later change
filel.c but not file2.c, you can compile the first and combine it with the object code
version of the second file by using this command:

cc filel.c file2.o

Unix has a make command that automates management of multifile programs, but that’s
beyond the scope of this book.

Note that the OS X Terminal utility opens a command-line Unix environment, but you have to
download the command-line compilers (GCC and Clang) from Apple.

Linux

This assumes the Linux system has the GNU C compiler GCC installed. Suppose that filel.c
and file2.c are two files containing C functions. Then the following command will compile
both files and produce an executable file called a.out:

gcc filel.c file2.c
In addition, two object files called filel.o and file2.o are produced. If you later change

filel.c but not file2.c, you can compile the first and combine it with the object code
version of the second file by using this command:

gcc filel.c file2.o

DOS Command-Line Compilers

Most DOS command-line compilers work similarly to the Unix cc command, but using a differ-
ent name. One difference is that object files wind up with an .obj extension instead of an .o
extension. Some compilers produce intermediate files in assembly language or in some other
special code, instead of object code files.

Windows and Apple IDE Compilers

Integrated development environment compilers for Windows and Macintosh are project oriented.
A project describes the resources a particular program uses. The resources include your source
code files. If you've been using one of these compilers, you’ve probably had to create projects
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to run one-file programs. For multiple-file programs, find the menu command that lets you add
a source code file to a project. You should make sure all your source code files (the ones with
the .c extension) are listed as part of the project. With many IDEs, you don’t list your header
files (the ones with the .h extension) in a project list. The idea is that the project manages
which source code files are used, and #include directives in the source code files manage
which header files get used. However, with Xcode, you do add header files to the project.

Using Header Files

If you put main() in one file and your function definitions in a second file, the first file still
needs the function prototypes. Rather than type them in each time you use the function file,
you can store the function prototypes in a header file. That is what the standard C library
does, placing I/O function prototypes in stdio.h and math function prototypes in math.h, for
example. You can do the same for your function files.

Also, you will often use the C preprocessor to define constants used in a program. Such defini-
tions hold only for the file containing the #define directives. If you place the functions of a
program into separate files, you also have to make the #define directives available to each file.
The most direct way is to retype the directives for each file, but this is time-consuming and
increases the possibility for error. Also, it poses a maintenance problem: If you revise a #define
value, you have to remember to do so for each file. A better solution is to place the #define
directives in a header file and then use the #include directive in each source code file.

So it’s good programming practice to place function prototypes and defined constants in a
header file. Let’s examine an example. Suppose you manage a chain of four hotels. Each hotel
charges a different room rate, but all the rooms in a given hotel go for the same rate. For
people who book multiple nights, the second night goes for 95% of the first night, the third
night goes for 95% of the second night, and so on. (Don’t worry about the economics of such
a policy.) You want a program that enables you to specify the hotel and the number of nights
and gives you the total charge. You’d like the program to have a menu that enables you to
continue entering data until you choose to quit.

Listings 9.9, 9.10, and 9.11 show what you might come up with. The first listing contains the
main() function, which provides the overall organization for the program. The second listing
contains the supporting functions, which we assume are kept in a separate file. Finally, Listing
9.11 shows a header file that contains the defined constants and function prototypes for all the
program’s source files. Recall that in the Unix and DOS environments, the double quotes in the
directive #include "hotels.h" indicate that the include file is in the current working direc-
tory (typically the directory containing the source code). If you use an IDE, you'll need to know
how it incorporates header files into a project.

Listing 9.9 The usehotel.c Control Module

/* usehotel.c -- room rate program */
/* compile with Listing 9.10 */
#include <stdio.h>
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#include "hotel.h" /* defines constants, declares functions */

int main(void)

{
int nights;
double hotel rate;
int code;
while ((code = menu()) != QUIT)
{
switch(code)
{
case 1 : hotel_rate = HOTELIL;
break;
case 2 : hotel rate = HOTEL2;
break;
case 3 : hotel_rate = HOTEL3;
break;
case 4 : hotel_rate = HOTEL4;
break;
default: hotel rate = 0.0;
printf("Oops!\n");
break;
}
nights = getnights();
showprice(hotel rate, nights);
}
printf("Thank you and goodbye.\n");
return 0;
}

Listing 9.10 The hotel.c Function Support Module

/* hotel.c -- hotel management functions */
#include <stdio.h>

#include "hotel.h"

int menu(void)

{

int code, status;

printf("\n%s%s\n", STARS, STARS);

printf("Enter the number of the desired hotel:\n");
printf("l) Fairfield Arms 2) Hotel Olympic\n");
printf("3) Chertworthy Plaza 4) The Stockton\n");
printf("5) quit\n");
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printf("%$s%s\n", STARS, STARS);
while ((status = scanf("%d", &code)) !=1 ||
(code < 1 || code > 5))

if (status != 1)
scanf("%*s"); // dispose of non-integer input
printf("Enter an integer from 1 to 5, please.\n");

}
return code;
}
int getnights(void)
{
int nights;
printf("How many nights are needed? ");
while (scanf("%d", &nights) != 1)
{
scanf("%*s"); // dispose of non-integer input
printf("Please enter an integer, such as 2.\n");
}
return nights;
}
void showprice(double rate, int nights)
{
int n;
double total = 0.0;
double factor = 1.0;
for (n = 1; n <= nights; nt++, factor *= DISCOUNT)
total += rate * factor;
printf("The total cost will be $%0.2f.\n", total);
}

Listing 9.11 The hotel.h Header File

/* hotel.h -- constants and declarations for hotel.c */
#define QUIT 5

#define HOTELL 180.00

#define HOTEL2 225.00

#define HOTEL3 255.00

#define HOTEL4 355.00

#define DISCOUNT 0.95
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#define STARS "**xkxkx kX kXXX XXX KKK KKKKKKKKRRRRRRR A X"

// shows list of choices
int menu(void);

// returns number of nights desired
int getnights(void);

// calculates price from rate, nights
// and displays result
void showprice(double rate, int nights);

’ .
Here’s a sample run:
kkkkkkhkkkhkkhkhhkhhkhhhkhhkhhkhhkhhkhhhkhhkhhkhhhhhhkdhkhhkhhkhhkkdhkrkdkxrdxx*k

Enter the number of the desired hotel:

1) Fairfield Arms 2) Hotel Olympic

3) Chertworthy Plaza 4) The Stockton

5) quit
kkkhkkkhkhkkkhhkkhkhhkhhkhhhhhkhhhkhhhkhhhhhhhhhhkhhhhhhhkhhhkhhxhhrxdhkhdxrdxkt*k
3

How many nights are needed? 1
The total cost will be $255.00.

khkkkkhkkkhkhkkhkhkhhkkhhkhkhkhkhkhhkhkhkhkhkhkhkhkhhkkhkhkhkhkhkhkhkhhkkhkkkhkhkkkkkkkx

Enter the number of the desired hotel:

1) Fairfield Arms 2) Hotel Olympic

3) Chertworthy Plaza 4) The Stockton

5) quit
kkkkkkkkkkkkkhkkkkkkkkkhkkhkkkkkkkhkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk*x
4

How many nights are needed? 3
The total cost will be $1012.64.

kkhkkkkkkkkkkkkhkkhkkhkkhkkkkhkkkhkkhkkhkkhkkhkkhkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

Enter the number of the desired hotel:

1) Fairfield Arms 2) Hotel Olympic

3) Chertworthy Plaza 4) The Stockton

5) quit
khkkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkkkhkhkkhkkkkkkkkkkkkkkkkkkkx
5

Thank you and goodbye.

Incidentally, the program itself has some interesting features. In particular, the menu() and
getnights () functions skip over nonnumeric data by testing the return value of scanf () and
by using the scanf ("%*s") call to skip to the next whitespace. Note how the following excerpt
from menu () checks for both nonnumeric input and out-of-limits numerical input:
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while ((status = scanf("%d", &code)) != 1 ||
(code < 1 || code > 5))

This code fragment uses C’s guarantee that logical expressions are evaluated from left to right
and that evaluation ceases the moment the statement is clearly false. In this instance, the
values of code are checked only after it is determined that scanf () succeeded in reading an
integer value.

Assigning separate tasks to separate functions encourages this sort of refinement. A first pass at
menu () Or getnights () might use a simple scanf () without the data-verification features that
have been added. Then, after the basic version works, you can begin improving each module.

Finding Addresses: The & Operator

One of the most important C concepts (and sometimes one of the most perplexing) is the
pointer, which is a variable used to store an address. You've already seen that scanf () uses
addresses for arguments. More generally, any C function that modifies a value in the calling
function without using a return value uses addresses. We'll cover functions using addresses
next, beginning with the unary & operator. (The next chapter continues the exploration and
exploitation of pointers.)

The unary & operator gives you the address where a variable is stored. If pooh is the name of
a variable, &pooh is the address of the variable. You can think of the address as a location in
memory. Suppose you have the following statement:

pooh = 24;

Suppose that the address where pooh is stored is 0B76. (PC addresses often are given as hexa-
decimal values.) Then the statement

printf("$d $p\n", pooh, &pooh);

would produce this (%p is the specifier for addresses):

24 0B76

Listing 9.12 uses this operator to see where variables of the same name—but in different func-
tions—are kept.

Listing 9.12 The loccheck.c Program

/* loccheck.c -- checks to see where variables are stored */
#include <stdio.h>
void mikado(int); /* declare function */

int main(void)
{
int pooh = 2, bah = 5; /* local to main() */
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printf("In main(), pooh = %d and &pooh = %p\n",
pooh, &pooh);

printf("In main(), bah = %d and &bah = %p\n",
bah, &bah);

mikado (pooh);

return 0;
}
void mikado(int bah) /* define function  */
{
int pooh = 10; /* local to mikado() */
printf("In mikado(), pooh = %d and &pooh = %p\n",
pooh, &pooh);
printf("In mikado(), bah = %d and &bah = %p\n",
bah, &bah);
}

Listing 9.12 uses the ANSI C %p format for printing the addresses. Our system produced the
following output for this little exercise:

In main(), pooh = 2 and &pooh = 0x7fff5fbff8e8

In main(), bah = 5 and &bah = 0x7fff5fbff8ed

In mikado(), pooh = 10 and &pooh = 0x7fff5fbff8b8
In mikado(), bah = 2 and &bah = 0x7fff5fbff8bc

The way that $p represents addresses varies among implementations. However, many imple-
mentations, such as one used for this example, display the address in hexadecimal form.
Incidentally, given that each hexadecimal digit corresponds to four bits, these 12-digit address
correspond to 48-bit addresses.

What does this output show? First, the two poohs have different addresses. The same is true
for the two bahs. So, as promised, the computer considers them to be four separate vari-
ables. Second, the call mikado (pooh) did convey the value (2) of the actual argument (pooh
of main()) to the formal argument (bah of mikado()). Note that just the value was trans-
ferred. The two variables involved (pooh of main () and bah of mikado()) retain their distinct
identities.

We raise the second point because it is not true for all languages. In FORTRAN, for example,
the subroutine affects the original variable in the calling routine. The subroutine’s variable
might have a different name, but the address is the same. C doesn’t do this. Each function uses
its own variables. This is preferable because it prevents the original variable from being altered
mysteriously by some side effect of the called function. However, it can make for some difficul-
ties, too, as the next section shows.
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Altering Variables in the Calling Function

Sometimes you want one function to make changes in the variables of a different function.
For example, a common task in sorting problems is interchanging the values of two variables.
Suppose you have two variables called x and y and you want to swap their values. The simple
sequence

X =y;

Y = %

does not work because by the time the second line is reached, the original value of x has
already been replaced by the original y value. An additional line is needed to temporarily store
the original value of x.

temp = x;
X =y
y = temp;

Now that the method works, you can put it into a function and construct a driver to test it. To
make clear which variables belong to main() and which belong to the interchange() func-
tion, Listing 9.13 uses x and y for the first, and u and v for the second.

Listing 9.13 The swapl.c Program

/* swapl.c -- first attempt at a swapping function */
#include <stdio.h>
void interchange(int u, int v); /* declare function */

int main(void)
{
int x = 5, y = 10;

printf("Originally x = %d and y = %d.\n", x , y);
interchange(x, y);
printf("Now x = %d and y = %d.\n", x, y);

return 0;

void interchange(int u, int v) /* define function */

{

int temp;

temp = u;
u=vj;
v = temp;
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Running the program gives these results:

Originally x = 5 and y = 10.
Now x = 5 and y = 10.

Oops! The values didn’t get switched! Let’s put some print statements into interchange() to
see what has gone wrong (see Listing 9.14).

Listing 9.14 The swap2.c Program

/* swap2.c -- researching swapl.c */
#include <stdio.h>

void interchange(int u, int v);

int main(void)

{
int x = 5, y = 10;
printf("Originally x = %d and y = %d.\n", x , y);
interchange(x, v);
printf("Now x = 8d and y = %d.\n", x, y);
return 0;
}
void interchange(int u, int v)
{
int temp;
printf("Originally u = %d and v = %d.\n", u , v);
temp = u;
u=v;
v = temp;
printf("Now u = %d and v = %d.\n", u, v);
}

Here is the new output:

10.
10.

Originally x = 5 and y
Originally u = 5 and v
Now u = 10 and v = 5.
Now x = 5 and y = 10.

Nothing is wrong with interchange(); it does swap the values of u and v. The problem is in
communicating the results to main(). As we pointed out, interchange () uses different vari-
ables from main (), so interchanging the values of u and v has no effect on x and y! Can you
somehow use return? Well, you could finish interchange () with the line
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return(u);

and then change the call in main() to this:
x = interchange(x,y);
This change gives x its new value, but it leaves y in the cold. With return, you can send just

one value back to the calling function, but you need to communicate two values. It can be
done! All you have to do is use pointers.

Pointers: A First Look

Pointers? What are they? Basically, a pointer is a variable (or, more generally, a data object)

whose value is a memory address. Just as a char variable has a character as a value and an int
variable has an integer as a value, the pointer variable has an address as a value. Pointers have
many uses in C; in this chapter, you'll see how and why they are used as function parameters.

If you give a particular pointer variable the name ptr, you can have statements such as the
following:

ptr = &pooh; // assigns pooh's address to ptr

We say that ptr “points to” pooh. The difference between ptr and &pooh is that ptr is a vari-
able, and &pooh is a constant. Or, ptr is a modifiable lvalue and &pooh is an rvalue. If you
want, you can make ptr point elsewhere:

ptr = &bah; // make ptr point to bah instead of to pooh

Now the value of ptr is the address of bah.

To create a pointer variable, you need to be able to declare its type. Suppose you want to
declare ptr so that it can hold the address of an int. To make this declaration, you need to use
a new operator. Let’s examine that operator now.

The Indirection Operator: *

Suppose you know that ptr points to bah, as shown here:

ptr = &bah;

Then you can use the indirection operator * (also called the dereferencing operator) to find the

value stored in bah (don’t confuse this unary indirection operator with the binary * operator of
multiplication—same symbol, different syntax):

val = *ptr; // finding the value ptr points to

The statements ptr = &bah; and val = *ptr; taken together amount to the following
statement:

val = bah;
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Using the address and indirection operators is a rather indirect way of accomplishing this
result, hence the name “indirection operator.”

Summary: Pointer-Related Operators

The Address Operator:

&

General Comments:

When followed by a variable name, & gives the address of that variable.
Example:

&nurse is the address of the variable nurse.

The Indirection Operator:*

General Comments:

When followed by a pointer name or an address, * gives the value stored at the pointed-to
address.

Example:

nurse = 22;
ptr = &nurse; // pointer to nurse
val = *ptr; // assigns value at location ptr to val

The net effect is to assign the value 22 to val.

Declaring Pointers

You already know how to declare int variables and other fundamental types. How do you
declare a pointer variable? You might guess that the form is like this:

pointer ptr; // not the way to declare a pointer/

Why not? Because it is not enough to say that a variable is a pointer. You also have to specify
the kind of variable to which the pointer points. The reason is that different variable types take
up different amounts of storage, and some pointer operations require knowledge of that storage
size. Also, the program has to know what kind of data is stored at the address. A long and a
float might use the same amount of storage, but they store numbers quite differently. Here’s
how pointers are declared:

int * pi; // pi is a pointer to an integer variable
char * pc; // pc is a pointer to a character variable
float * pf, * pg; // pf, pg are pointers to float variables

The type specification identifies the type of variable pointed to, and the asterisk (*) identifies
the variable itself as a pointer. The declaration int * pi; says that pi is a pointer and that
*pi is type int (see Figure 9.5).
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address operators

sfeet &sunmass
52000 5200152002 52003 52004 52005 ... 52009 52010 machine address

|byte| byte |byte|byte |byte | byte| byte| byte |byte | byte |by

} G 7776 1942 2.015x103%° q é—value in memory
| |

ch feet date sunmass quit — variable name
int *pfeet; float *psun; —— declaring pointers
pfeet = &feet; psun = &sunmass; giving pointer

values (addresses)

*pfeet *psun —\—

Lindirection operatorsJ getting value

stored at address

Figure 9.5 Declaring and using pointers.

The space between the * and the pointer name is optional. Often, programmers use the space
in a declaration and omit it when dereferencing a variable.

The value (*pc) of what pc points to is of type char. What of pc itself? We describe it as being
of type “pointer to char.” The value of pc is an address, and it is represented internally as an
unsigned integer on most systems. However, you shouldn’t think of a pointer as an integer
type. There are things you can do with integers that you can’t do with pointers, and vice versa.
For example, you can multiply one integer by another, but you can’t multiply one pointer by
another. So a pointer really is a new type, not an integer type. Therefore, as mentioned before,
ANSI C provides the $p form specifically for pointers.

Using Pointers to Communicate Between Functions

We have touched only the surface of the rich and fascinating world of pointers, but our
concern here is using pointers to solve our communication problem. Listing 9.15 shows a
program that uses pointers to make the interchange () function work. Let’s look at it, run it,
and then try to understand how it works.

Listing 9.15 The swap3.c Program

/* swap3.c -- using pointers to make swapping work */
#include <stdio.h>
void interchange(int * u, int * v);

int main(void)
{
int x = 5, y = 10;
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printf("Originally x = %d and y = %d.\n", %, y);
interchange(&x, &y); // send addresses to function
printf("Now x = %d and y = %d.\n", x, y);

return 0;
}
void interchange(int * u, int * v)
{
int temp;
temp = *u; // temp gets value that u points to
*u o= *y;
*vV = temp;
}

After all this build-up, does Listing 9.15 really work?

Originally x = 5 and y = 10.
Now x = 10 and y = 5.

Yes, it works.

Now, let’s see how Listing 9.15 works. First, the function call looks like this:

interchange(&x, &y);

Instead of transmitting the values of x and y, the function transmits their addresses. That means
the formal arguments u and v, appearing in the prototype and in the definition of
interchange (), will have addresses as their values. Therefore, they should be declared as

pointers. Because x and y are integers, u and v are pointers to integers, so declare them as
follows:

void interchange (int * u, int * v)

Next, the body of the function declares

int temp;

to provide the needed temporary storage. To store the value of x in temp, use

temp = *u;

Remember, u has the value &x, so u points to x. This means that *u gives you the value of x,
which is what we want. Don't write

temp = u; /* NO */

because that would assign temp the address of x rather than its value, and we are trying to
interchange values, not addresses.
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Similarly, to assign the value of y to x, use

*n = *V;

which ultimately has this effect:

X = y;

Let’s summarize what this example does. We want a function that alters the values x and y. By

passing the function the addresses of x and y, we give interchange () access to those variables.

Using pointers and the * operator, the function can examine the values stored at those loca-
tions and change them.

You can omit the variable names in the ANSI C prototype. Then the prototype declaration
looks like this:

void interchange(int *, int *);

In general, you can communicate two kinds of information about a variable to a function. If
you use a call of the form

functionl(x);

you transmit the value of x. If you use a call of the form

function2 (&x);

you transmit the address of x. The first form requires that the function definition includes a
formal argument of the same type as x:

int functionl(int num)

The second form requires the function definition to include a formal parameter that is a
pointer to the right type:

int function2(int * ptr)

Use the first form if the function needs a value for some calculation or action. Use the second
form if the function needs to alter variables in the calling function. You have been doing this
all along with the scanf () function. When you want to read in a value for a variable (num, for
example), you use scanf("%d", &num). That function reads a value and then uses the address
you give it to store the value.

Pointers enable you to get around the fact that the variables of interchange () are local. They
let that function reach out into main() and alter what is stored there.

Pascal and Modula-2 users might recognize the first form as being the same as Pascal’s value
parameter and the second form as being similar (but not identical) to Pascal’s variable param-
eter. C++ users will recognize pointer variables and wonder if C, like C++, also has reference
variables. The answer to that question is no. BASIC users might find the whole setup a bit
unsettling. If this section seems strange to you, be assured that a little practice will make at
least some uses of pointers seem simple, normal, and convenient (see Figure 9.6).
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Variables: Names, Addresses, and Values

The preceding discussion of pointers has hinged on the relationships between the names,
addresses, and values of variables. Let’s discuss these matters further.

When you write a program, you can think of a variable as having two attributes: a name and a
value. (There are other attributes, including type, but that’s another matter.) After the program
has been compiled and loaded, the computer also thinks of the same variable as having two
attributes: an address and a value. An address is the computer’s version of a name.

In many languages, the address is the computer’s business, concealed from the programmer.
In C, however, you can access the address through the & operator.

For example, sbarn is the address of the variable barn.

You can get the value from the name just by using the name.

For example, printf("%d\n", barn) prints the value of barn.

You can get the value from the address by using the * operator.

Given pbarn = &barn;, *pbarn is the value stored at address &barn.

In short, a regular variable makes the value the primary quantity and the address a derived
quantity, via the & operator. A pointer variable makes the address the primary quantity and the
value a derived quantity via the * operator.

Although you can print an address to satisfy your curiosity, that is not the main use for the &
operator. More important, using &, *, and pointers enables you to manipulate addresses and
their contents symbolically, as in swap3.c (Listing 9.15).

52000 5200152002 52003 52004 52005 ... 52009 52010 machine address

e|byte|byte|byte|byte|byte|byte|byte|byte|byte|byte|by

} G 7776 1942 2.015x10%° q é—value in memory
|

ch feet date tunmass quit ——— variable name

&ch = 52000 float type variable
sfeet = 52001 takes 4 bytes

sdate = 52003

&sunmass = 52005

&quit = 52009

L address operator

Figure 9.6 Names, addresses, and values in a byte-addressable system, such as a PC.
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Summary: Functions
Form:
A typical ANSI C function definition has this form:

return-type name(parameter declaration list)
function body

The argument declaration list is a comma-separated list of variable declarations. Variables
other than the function parameters are declared within the body, which is bounded by braces.

Example:

int diff(int x, int y) // ANSI C

{ // begin function body
int z; // declare local variable
z=x-y;
return z; // return a value

} // end function body

Communicating Values:

Arguments are used to convey values from the calling function to the function. If variables a
and b have the values 5 and 2, the call

c = diff(a,b);

transmits 5 and 2 to the variables x and y. The values 5 and 2 are called actual arguments,
and the diff () variables x and y are called formal parameters. The keyword return communi-
cates one value from the function to the calling function. In this example, ¢ receives the value
of z, which is 3. A function ordinarily has no effect on the variables in a calling function. To
directly affect variables in the calling function, use pointers as arguments. This might be neces-
sary if you want to communicate more than one value back to the calling function.

Function Return Type:

The function return type indicates the type of value the function returns. If the returned value is
of a type different from the declared return type, the value is type cast to the declared type.
Function Signature:

The function return type together with the function parameter list constitute the function sig-
nature. Thus, it specifies the types for values that go into the function and for the value that
comes out of the function.

Example:
double duff(double, int); // function prototype
int main(void)
{
double q, x;
int n;
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q = duff(x,n); // function call

double duff(double u, int k) // function definition
{

double tor;

return tor; // returns a double value
}

Key Concepts

If you want to program successfully and efficiently in C, you need to understand functions.

It's useful, even essential, to organize larger programs into several functions. If you follow the
practice of giving one function one task, your programs will be easier to understand and debug.
Make sure that you understand how functions communicate information to one another—that
is, that you understand how function arguments and return values work. Also, be aware how
function parameters and other local variables are private to a function; thus, declaring two vari-
ables of the same name in different functions creates two distinct variables. Also, one function
does not have direct access to variables declared in another function. This limited access helps
preserve data integrity. However, if you do need one function to access another function'’s data,
you can use pointer function arguments.

Summary

Use functions as building blocks for larger programs. Each function should have a single, well-
defined purpose. Use arguments to communicate values to a function, and use the keyword
return to communicate back a value. If the function returns a value not of type int, you must
specify the function type in the function definition and in the declaration section of the calling
function. If you want the function to affect variables in the calling function, use addresses and
pointers.

ANSI C ofters function prototyping, a powerful C enhancement that allows compilers to verify
that the proper number and types of arguments are used in a function call.

A C function can call itself; this is called recursion. Some programming problems lend them-
selves to recursive solutions, but recursion can be inefficient in its use of memory and time.
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Review Questions

You'll find answers to the review questions in Appendix A, “Answers to the Review Questions.”
1. What is the difference between an actual argument and a formal parameter?

2. Write ANSI C function headings for the following functions described. Note we are
asking just for the headings, not the body.

a. donut () takes an int argument and prints that number of 0s.
b. gear() takes two int arguments and returns type int.
c. guess () takes no arguments and returns an int value.

d. stuff it() takes a double and the address of a double variable and stores the
first value in the given location.

3. Write ANSI C function headings for the following functions described. Note that you
need write only the headings, not the body.

a. n_to_char() takes an int argument and returns a char.
b. digits() takes a double argument and an int argument and returns an int.

c. which() takes two addresses of double as arguments and returns the address of a
double.

d. random() takes no argument and returns an int.
4. Devise a function that returns the sum of two integers.

5. What changes, if any, would you need to make to have the function of question 4 add
two double numbers instead?

6. Devise a function called alter () that takes two int variables, x and y, and changes their
values to their sum and their difference, respectively.

7. Is anything wrong with this function definition?

void salami(num)

{

int num, count;

for (count = 1; count <= num; numt+)
printf(

0 salami mio!\n");
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8. Write a function that returns the largest of three integer arguments.

9. Given the following output:

Please choose one of the following:

1) copy files 2) move files
3) remove files 4) quit
Enter the number of your choice:

a. Write a function that displays a menu of four numbered choices and asks you to
choose one. (The output should look like the preceding.)

b. Write a function that has two int arguments: a lower limit and an upper limit.
The function should read an integer from input. If the integer is outside the limits,
the function should print a menu again (using the function from part “a” of this
question) to reprompt the user and then get a new value. When an integer in
the proper limits is entered, the function should return that value to the calling
function. Entering a noninteger should cause the function to return the quit value
of 4.

c. Write a minimal program using the functions from parts “a” and “b” of this
question. By minimal, we mean it need not actually perform the actions promised
by the menu; it should just show the choices and get a valid response.

Programming Exercises

. Devise a function called min (x,y) that returns the smaller of two double values. Test

the function with a simple driver.

. Devise a function chline(ch,i,j) that prints the requested character in columns i

through j. Test it in a simple driver.

. Write a function that takes three arguments: a character and two integers. The character

is to be printed. The first integer specifies the number of times that the character is to
be printed on a line, and the second integer specifies the number of lines that are to be
printed. Write a program that makes use of this function.

. The harmonic mean of two numbers is obtained by taking the inverses of the two

numbers, averaging them, and taking the inverse of the result. Write a function that
takes two double arguments and returns the harmonic mean of the two numbers.

. Write and test a function called larger of() that replaces the contents of two double

variables with the maximum of the two values. For example, larger of(x,y) would
reset both x and y to the larger of the two.



10.

11.

Summary

Write and test a function that takes the addresses of three double variables as arguments
and that moves the value of the smallest variable into the first variable, the middle value
to the second variable, and the largest value into the third variable.

Write a program that reads characters from the standard input to end-of-file. For each
character, have the program report whether it is a letter. If it is a letter, also report

its numerical location in the alphabet. For example, ¢ and C would both be letter 3.
Incorporate a function that takes a character as an argument and returns the numerical
location if the character is a letter and that returns —1 otherwise.

Chapter 6, “C Control Statements: Looping,” (Listing 6.20) shows a power () function
that returned the result of raising a type double number to a positive integer value.
Improve the function so that it correctly handles negative powers. Also, build into the
function that O to any power other than 0 is O and that any number to the O power is 1.
(It should report that O to the O is undefined, then say it’s using a value of 1.) Use a loop.
Test the function in a program.

Redo Programming Exercise 8, but this time use a recursive function.

Generalize the to_binary() function of Listing 9.8 to a to_base_n() function that
takes a second argument in the range 2-10. It then should print the number that is its
first argument to the number base given by the second argument. For example, to_
base_n(129,8) would display 201, the base-8 equivalent of 129. Test the function in a
complete program.

Write and test a Fibonacci() function that uses a loop instead of recursion to calculate
Fibonacci numbers.
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Arrays and Pointers

You will learn about the following in this chapter:

= Keyword:
static
= QOperators:
& * (unary)
= How to create and initialize arrays
= Pointers (building on the basics you already know) and see how they relate to arrays
= Writing functions that process arrays

= Two-dimensional arrays

People turn to computers for tasks such as tracking monthly expenses, daily rainfall, quarterly
sales, and weekly weights. Enterprises turn to computers to manage payrolls, inventory, and
customer transactions. As a programmer, you inevitably have to deal with large quantities of
related data. Often, arrays offer the best way to handle such data in an efficient, convenient
manner. Chapter 6, “C Control Statements: Looping,” introduced arrays, and this chapter takes
a more thorough look. In particular, it examines how to write array-processing functions. Such
functions enable you to extend the advantages of modular programming to arrays. In doing so,
you can see the intimate relationship between arrays and pointers.

Arrays

Recall that an array is composed of a series of elements of one data type. You use declarations
to tell the compiler when you want an array. An array declaration tells the compiler how many
elements the array contains and what the type is for these elements. Armed with this informa-
tion, the compiler can set up the array properly. Array elements can have the same types as
ordinary variables. Consider the following example of array declarations:

/* some array declarations */
int main(void)
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{
float candy[365]; /* array of 365 floats */
char code[12]; /* array of 12 chars */
int states[50]; /* array of 50 ints */
}

The brackets ([ ]) identify candy and the rest as arrays, and the number enclosed in the brack-
ets indicates the number of elements in the array.

To access elements in an array, you identify an individual element by using its subscript
number, also called its index. The numbering starts with 0. Hence, candy[0] is the first element
of the candy array, and candy[364] is the 365th and last element.

This is rather old hat; let’s learn something new.

Initialization

Arrays are often used to store data needed for a program. For example, a 12-element array can
store the number of days in each month. In cases such as these, it's convenient to initialize the
array at the beginning of a program. Let’s see how it is done.

You know you can initialize single-valued variables (sometimes called scalar variables) in a
declaration with expressions such as

int fix = 1;

float flax = PI * 2;

where, one hopes, PI was defined earlier as a macro. C extends initialization to arrays with a
new syntax, as shown next:

int main(void)
{
int powers[8] = {1,2,4,6,8,16,32,64}; /* ANSI C and later */

As you can see, you initialize an array by using a comma-separated list of values enclosed in
braces. You can use spaces between the values and the commas, if you want. The first element
(powers[0]) is assigned the value 1, and so on. (If your compiler rejects this form of initial-
ization as a syntax error, you may be suffering from a pre-ANSI compiler. Prefixing the array
declaration with the keyword static should solve the problem. Chapter 12, “Storage Classes,
Linkage, and Memory Management,” discusses the meaning of this keyword.)

Listing 10.1 presents a short program that prints the number of days per month.
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Listing 10.1 The day monl.c Program

/* day monl.c -- prints the days for each month */
#include <stdio.h>
#define MONTHS 12

int main(void)

{
int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};
int index;
for (index = 0; index < MONTHS; index++)
printf("Month %d has %2d days.\n", index +1,
days[index]);
return 0;
}

The output looks like this:
Month 1 has 31 days.

Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.
Month 7 has 31 days.
Month 8 has 31 days.

Month 9 has 30 days.
Month 10 has 31 days.
Month 11 has 30 days.
Month 12 has 31 days.

Not quite a superb program, but it’s wrong only one month in every four years. The program
initializes days[ ] with a list of comma-separated values enclosed in braces.

Note that this example used the symbolic constant MONTHS to represent the array size. This is a
common and recommended practice. For example, if the world switched to a 13-month calen-
dar, you just have to modify the #define statement and don’t have to track down every place
in the program that uses the array size.

Note Using const with Arrays

Sometimes you might use an array that’s intended to be a read-only array. That is, the program
will retrieve values from the array, but it won’t try to write new values into the array. In such
cases, you can, and should, use the const keyword when you declare and initialize the array.
Therefore, a better choice for Listing 10.1 would be

const int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};



386

Chapter 10 Arrays and Pointers

This makes the program treat each element in the array as a constant. Just as with regular
variables, you should use the declaration to initialize const data because once it's declared
const, you can’t assign values later. Now that you know about this, we can use const in sub-
sequent examples.

What if you fail to initialize an array? Listing 10.2 shows what happens.

Listing 10.2 The no_data.c Program

/* no_data.c -- uninitialized array */
#include <stdio.h>

#define SIZE 4

int main(void)

{
int no_data[SIZE]; /* uninitialized array */
int i;
printf("$2s%l4s\n",
"i", "no_data[i]");
for (i = 0; i < SIZE; i++)
printf("$2d%14d\n", i, no data[i]);
return 0;
}

Here is some sample output (your results may vary):

i no_dataf[i]
0 0
1 4204937
2 4219854
3 2147348480

The array members are like ordinary variables—if you don’t initialize them, they might have
any value. The compiler is allowed to just use whatever values were already present at those
memory locations, which is why your results may vary from these.

Note Storage Class Caveat

Arrays, like other variables, can be created using different storage classes. Chapter 12 inves-
tigates this topic, but for now, you should be aware that the current chapter describes arrays
that belong to the automatic storage class. That means they are declared inside of a function
and without using the keyword static. All the variables and arrays used in this book, so far,
are of the automatic kind.

The reason for mentioning storage classes at this point is that occasionally the different stor-
age classes have different properties, so you can’t generalize everything in this chapter to other
storage classes. In particular, variables and arrays of some of the other storage classes have
their contents set to 0 if they are not initialized.
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The number of items in the list should match the size of the array. But what if you count
wrong? Let’s try the last example again, as shown in Listing 10.3, with a list that is two too
short.

Listing 10.3 The somedata.c Program

/* some_data.c -- partially initialized array */
#include <stdio.h>
#define SIZE 4
int main(void)
{
int some_data[SIZE] = {1492, 1066};
int i;

printf("%$2s%1l4s\n",
"i", "some data[i]");
for (i = 0; i < SIZE; i++)

printf("%2d%14d\n", i, some data[i]);

return 0;

This time the output looks like this:

i some data[i]
0 1492
1 1066
2 0
3 0

As you can see, the compiler had no problem. When it ran out of values from the list, it initial-
ized the remaining elements to 0. That is, if you don’t initialize an array at all, its elements, like
uninitialized ordinary variables, get garbage values, but if you partially initialize an array, the
remaining elements are set to 0.

The compiler is not so forgiving if you have too many list values. This overgenerosity is consid-
ered an error. However, there is no need to subject yourself to the ridicule of your compiler.
Instead, you can let the compiler match the array size to the list by omitting the size from the
braces (see Listing 10.4).

Listing 10.4 The day mon2.c Program

/* day mon2.c -- letting the compiler count elements */
#include <stdio.h>
int main(void)
{
const int days[] = {31,28,31,30,31,30,31,31,30,31};
int index;
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for (index = 0; index < sizeof days / sizeof days[0]; index++)
printf("Month %2d has %d days.\n", index +1,
days|[index]);

return 0;

There are two main points to note in Listing 10.4:

= When you use empty brackets to initialize an array, the compiler counts the number of
items in the list and makes the array that large.

= Notice what we did in the for loop control statement. Lacking faith (justifiably) in our
ability to count correctly, we let the computer give us the size of the array. The sizeof
operator gives the size, in bytes, of the object, or type, following it. So sizeof days is
the size, in bytes, of the whole array, and sizeof days[0] is the size, in bytes, of one
element. Dividing the size of the entire array by the size of one element tells us how
many elements are in the array.

Here is the result of running this program:

Month 1 has 31 days.
Month 2 has 28 days.
Month 3 has 31 days.
Month 4 has 30 days.
Month 5 has 31 days.
Month 6 has 30 days.
Month 7 has 31 days.
Month 8 has 31 days.
Month 9 has 30 days.

Month 10 has 31 days.

Oops! We put in just 10 values, but our method of letting the program find the array size kept
us from trying to print past the end of the array. This points out a potential disadvantage of
automatic counting: Errors in the number of elements could pass unnoticed.

There is one more short method of initializing arrays. Because it works only for character
strings, however, we will save it for the next chapter.

Designated Initializers (C99)

C99 added a new capability: designated initializers. This feature allows you to pick and choose
which elements are initialized. Suppose, for example, that you just want to initialize the last
element in an array. With traditional C initialization syntax, you also have to initialize every
element preceding the last one:

int arr[6] = {0,0,0,0,0,212}; // traditional syntax
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With C99, you can use an index in brackets in the initialization list to specify a particular
element:

int arr[6] = {[5] = 212}; // initialize arr[5] to 212

As with regular initialization, after you initialize at least one element, the uninitialized
elements are set to 0. Listing 10.5 shows a more involved example.

Listing 10.5 The designate.c Program

// designate.c -- use designated initializers
#include <stdio.h>

#define MONTHS 12

int main(void)

{
int days[MONTHS] = {31,28, [4] = 31,30,31, [1] = 29};
int 1i;
for (i = 0; i < MONTHS; i++)
printf("$2d %d\n", i + 1, days[i]);
return 0;
}

Here’s the output if the compiler supports this C99 feature:

1 31
2 29
3.0
4 0
5 31
6 30
7 31
8 0
9 0
10 0
11 0
12 0

The output reveals a couple important features of designated initializers. First, if the code
follows a designated initializer with further values, as in the sequence [4] = 31,30,31, these
further values are used to initialize the subsequent elements. That is, after initializing days[4]
to 31, the code initializes days[5] and days[6] to 30 and 31, respectively. Second, if the code
initializes a particular element to a value more than once, the last initialization is the one that
takes effect. For example, in Listing 10.5, the start of the initialization list initializes days[1] to
28, but that is overridden by the [1] = 29 designated initialization later.
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Suppose you don’t specify the array size?

int stuff[]
int staff[]

{1, 161 = 23}; // what happens?
{1, [6] = 4, 9, 10}; // what happens?

The compiler will make the array big enough to accommodate the initialization values. So
stuff will have seven elements, numbered 0-6, and staff will have two more elements, or 9.

Assigning Array Values

After an array has been declared, you can assign values to array members by using an array
index, or subscript. For example, the following fragment assigns even numbers to an array:

/* array assignment */
#include <stdio.h>
#define SIZE 50

int main(void)

{
int counter, evens[SIZE];
for (counter = 0; counter < SIZE; counter++)
evens[counter] = 2 * counter;
}

Note that the code uses a loop to assign values element by element. C doesn’t let you assign
one array to another as a unit. Nor can you use the list-in-braces form except when initializing.
The following code fragment shows some forms of assignment that are not allowed:

/* nonvalid array assignment */

#define SIZE 5

int main(void)

{
int oxen[SIZE] = {5,3,2,8}; /* ok here */
int yaks[SIZE];

yaks = oxen; /* not allowed */
yaks[SIZE] = oxen[SIZE]; /* out of range */
yaks[SIZE] = {5,3,2,8}; /* doesn't work */

Recall that the last element of oxen is oxen[SIZE-1], so oxen[SIZE] and yaks[SIZE] refer to
data past the ends of the two arrays.

Array Bounds

You have to make sure you use array indices that are within bounds; that is, you have to
make sure they have values valid for the array. For instance, suppose you make the following
declaration:

int doofi[20];
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Then it’s your responsibility to make sure the program uses indices only in the range 0 through
19, because the compiler isn’t required to check for you. (However, some compilers will warn
you of the problem, but continue on to compile the program anyway.)

Consider the program in Listing 10.6. It creates an array with four elements and then carelessly
uses index values ranging from -1 to 6.

Listing 10.6 The bounds.c Program

// bounds.c -- exceed the bounds of an array
#include <stdio.h>

#define SIZE 4

int main(void)

{
int valuel = 44;
int arr[SIZE];
int value2 = 88;
int i;
printf("valuel = %d, value2 = %d\n", valuel, value2);
for (i = -1; i <= SIZE; i++)
arr[i] = 2 * 1 + 1;
for (i = -1; i < 7; i++)
printf("%2d %d\n", i , arr[i]);
printf("valuel = %d, value2 = %d\n", valuel, value2);
printf("address of arr[-1]: %p\n", &arr[-1]);
printf("address of arr[4]: %p\n", &arr[4]);
printf("address of valuel: %p\n", &valuel);
printf("address of value2: %p\n", &value2);
return 0;
}

The compiler doesn’t check to see whether the indices are valid. The result of using a bad index
is, in the language of the C standard, undefined. That means when you run the program, it
might seem to work, it might work oddly, or it might abort. Here is sample output using GCC:

valuel = 44, value2 = 88
-1 -1

s W N = o
O 9 U W

1624678494
6 32767
valuel = 9, value2 = -1
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address of arr[-1]: 0x7fff5fbff8cc
address of arr[4]: O0x7fff5fbff8el
address of valuel: O0x7fff5fbff8el
address of value2: O0x7fff5fbff8cc

Note that this compiler appears to have stored valuel just after the array and value2 just
ahead of it. (Other compilers might store the data in a different order in memory.) In this case,
as shown in the output, arr[-1] corresponded to the same memory location as value2, and
arr[4] corresponded to the same memory location as valuel. Therefore, using out-of-bounds
array indices resulted in the program altering the value of other variables. Another compiler
might produce different results, including a program that aborts.

You might wonder why C allows nasty things like that to happen. It goes back to the C
philosophy of trusting the programmer. Not checking bounds allows a C program to run faster.
The compiler can’t necessarily catch all index errors because the value of an index might not
be determined until after the resulting program begins execution. Therefore, to be safe, the
compiler would have to add extra code to check the value of each index during runtime, and
that would slow things down. So C trusts the programmer to do the coding correctly and
rewards the programmer with a faster program. Of course, not all programmers deserve that
trust, and then problems can arise.

One simple thing to remember is that array numbering begins with 0. One simple habit to
develop is to use a symbolic constant in the array declaration and in other places the array size
is used:

#define SIZE 4

int main(void)

{
int arr[SIZE];

for (i = 0; i < SIZE; i++)

This helps ensure that you use the same array size consistently throughout the program.

Specifying an Array Size

So far, the examples have used integer constants when declaring arrays:
#define SIZE 4

int main(void)

{

int arr[SIZE]; // symbolic integer constant
double lots[144]; // literal integer constant

What else is allowed? Until the C99 standard, the answer has been that you have to use a
constant integer expression between the brackets when declaring an array. A constant integer
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expression is one formed from integer constants. For this purpose, a sizeof expression is
considered an integer constant, but (unlike the case in C++) a const value isn’t. Also, the value
of the expression must be greater than 0:

int n = 5;

int m = 8;

float al[5]; // yes

float a2[5*2 + 1]; // yes

float a3[sizeof(int) + 1]; // yes

float a4[-4]; // no, size must be > 0

float a5[0]; // no, size must be > 0

float a6[2.5]; // no, size must be an integer
float a7[(int)2.5]; // yes, typecast float to int constant
float a8[n]; // not allowed before C99
float a9[m]; // not allowed before C99

As the comments indicate, C compilers following the C90 standard would not allow the last
two declarations. As of C99, however, C does allow them, but they create a new breed of array,
something called a variable-length array, or VLA for short. (C11 retreats from this bold initiative,
making VLAs an optional rather than mandatory language feature.)

C99 introduced variable-length arrays primarily to allow C to become a better language

for numerical computing. For instance, VLAs make it easier to convert existing libraries of
FORTRAN numerical calculation routines to C. VLAs have some restrictions; for example, you
can’t initialize a VLA in its declaration. This chapter will return to VLAs later, after you've
learned enough to understand more about the limitations of the classic C array.

Multidimensional Arrays

Tempest Cloud, a weather person who takes her subject “cirrusly,” wants to analyze five years
of monthly rainfall data. One of her first decisions is how to represent the data. One choice is
to use 60 variables, one for each data item. (We mentioned this choice once before, and it is as
senseless now as it was then.) Using an array with 60 elements would be an improvement, but
it would be even nicer still if she could keep each year’s data separate. She could use five arrays,
each with 12 elements, but that is clumsy and could get really awkward if Tempest decides to
study 50 years’ worth of rainfall instead of five. She needs something better.

The better approach is to use an array of arrays. The master array would have five elements,
one for each year. Each of those elements, in turn, would be a 12-element array, one for each
month. Here is how to declare such an array:

float rain[5][12]; // array of 5 arrays of 12 floats

One way to view this declaration is to first look at the inner portion (the part in bold):

float rain[5][12]; // rain is an array of 5 somethings
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It tells us that rain is an array with five elements. But what is each of those elements? Now
look at the remaining part of the declaration (now in bold):

float rain[5] [12]; // an array of 12 floats

This tells us that each element is of type £loat[12]; that is, each of the five elements of rain
is, in itself, an array of 12 £loat values.

Pursuing this logic, rain[ 0], being the first element of rain, is an array of 12 float values.
So are rain[1], rain[2], and so on. If rain[0] is an array, its first element is rain[0][0], its
second element is rain[0][1], and so on. In short, rain is a five-element array of 12-element
arrays of float, rain[0] is an array of 12 floats, and rain[0][0] is a £loat. To access, say,
the value in row 2, column 3, use rain[2][3]. (Remember, array counting starts at O, so row 2
is the third row.)

You can also visualize this rain array as a two-dimensional array consisting of five rows, each
of 12 columns, as shown in Figure 10.1. By changing the second subscript, you move along a
row, month by month. By changing the first subscript, you move vertically along a column,
year by year.

12

Y

e
[ETENTIOS) S EYETESTES) S ESISIEY) = EeRVTEN) = I
[ETETEITOS) = EYETEITEY) = [ESYESTEY) = Eveee =
E-_ const float rain[5][12]

Figure 10.1 Two-dimensional array.

Y

The two-dimensional view is merely a convenient way of visualizing an array with two indices.
Internally, such an array is stored sequentially, beginning with the first 12-element array,
followed by the second 12-element array, and so on.

Let’s use this two-dimensional array in a weather program. The program goal is to find the
total rainfall for each year, the average yearly rainfall, and the average rainfall for each month.
To find the total rainfall for a year, you have to add all the data in a given row. To find the
average rainfall for a given month, you have to add all the data in a given column. The two-
dimensional array makes it easy to visualize and execute these activities. Listing 10.7 shows the
program.
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Listing 10.7 The rain.c Program

/* rain.c -- finds yearly totals, yearly average, and monthly

average for several years of rainfall data */

#include <stdio.h>

#define MONTHS 12 // number of months in a year
#define YEARS 5 // number of years of data
int main(void)

{

// initializing rainfall data for 2010 - 2014

const float rain[YEARS][MONTHS] =

{
{4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6},
{8.5,8.2,1.2,1.6,2.4,0.0,5.2,0.9,0.3,0.9,1.4,7.3},
{9.1,8.5,6.7,4.3,2.1,0.8,0.2,0.2,1.1,2.3,6.1,8.4},
{7.2,9.9,8.4,3.3,1.2,0.8,0.4,0.0,0.6,1.7,4.3,6.2},
{7.6,5.6,3.8,2.8,3.8,0.2,0.0,0.0,0.0,1.3,2.6,5.2}
}i

int year, month;
float subtot, total;

printf(" YEAR RAINFALL (inches)\n");
for (year = 0, total = 0; year < YEARS; year++)
{ // for each year, sum rainfall for each month
for (month = 0, subtot = 0; month < MONTHS; month++)
subtot += rain[year][month];
printf("$5d %15.1f\n", 2010 + year, subtot);
total += subtot; // total for all years
}
printf("\nThe yearly average is %.1f inches.\n\n",
total/YEARS);
printf ("MONTHLY AVERAGES:\n\n");
printf(" Jan Feb Mar Apr May Jun Jul Aug Sep Oct ");
printf(" Nov Dec\n");

for (month = 0; month < MONTHS; month++)
{ // for each month, sum rainfall over years
for (year = 0, subtot =0; year < YEARS; year++)
subtot += rain[year][month];
printf("%4.1f ", subtot/YEARS);

}
printf("\n");
return 0;
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Here is the output:

YEAR RAINFALL (inches)

2010 32.4
2011 37.9
2012 49.8
2013 44.0
2014 32.9

The yearly average is 39.4 inches.
MONTHLY AVERAGES:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
7.3 7.3 4.9 3.0 2.3 0.6 1.2 0.3 0.5 1.7 3.6 6.7

As you study this program, concentrate on the initialization and on the computation scheme.
The initialization is the more involved of the two, so let’s look at the simpler part (the compu-
tation) first.

To find the total for a given year, keep year constant and let month go over its full range. This
is the inner for loop of the first part of the program. Then repeat the process for the next value
of year. This is the outer loop of the first part of the program. A nested loop structure like this
one is natural for handling a two-dimensional array. One loop handles the first subscript, and
the other loop handles the second subscript:

for (year = 0, total = 0; year < YEARS; year++)
{ // process each year
for (month = 0, subtot = 0; month < MONTHS; month++)
// process each month
// process each year

The second part of the program has the same structure, but now it changes year with the inner
loop and month with the outer. Remember, each time the outer loop cycles once, the inner
loop cycles its full allotment. Therefore, this arrangement cycles through all the years before
changing months. You get a five-year average for the first month, and so on:

for (month = 0; month < MONTHS; month++)
{ // process each month
for (year = 0, subtot =0; year < YEARS; year++)
// process each year
// process each month
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Initializing a Two-Dimensional Array

Initializing a two-dimensional array builds on the technique for initializing a one-dimensional
array. First, recall that initializing a one-dimensional array looks like this:

sometype arl[5] = {vall, val2, val3, val4, valS5};

Here vall, val2, and so on are each a value appropriate for sometype. For example, if
sometype were int, vall might be 7, or if sometype were double, vall might be 11.34. But
rain is a five-element array for which each element is of type array-of-12-float. So, for rain,
vall would be a value appropriate for initializing a one-dimensional array of float, such as
the following:

{4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6}

That is, if sometype is array-of-12-double, vall is a list of 12 double values. Therefore, we
need a comma-separated list of five of these things to initialize a two-dimensional array, such
as rain:

const float rain[YEARS][MONTHS] =

{
{4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6},
{8.5,8.2,1.2,1.6,2.4,0.0,5.2,0.9,0.3,0.9,1.4,7.3},
{9.1,8.5,6.7,4.3,2.1,0.8,0.2,0.2,1.1,2.3,6.1,8.4},
{7.2,9.9,8.4,3.3,1.2,0.8,0.4,0.0,0.6,1.7,4.3,6.2},
{7.6,5.6,3.8,2.8,3.8,0.2,0.0,0.0,0.0,1.3,2.6,5.2}
}i

This initialization uses five embraced lists of numbers, all enclosed by one outer set of braces.
The data in the first interior set of braces is assigned to the first row of the array, the data in the
second interior set goes to the second row, and so on. The rules we discussed about mismatches
between data and array sizes apply to each row. That is, if the first inner set of braces encloses
10 numbers, only the first 10 elements of the first row are affected. The last two elements in
that row are then initialized by default to zero. If there are too many numbers, it is an error;
the numbers do not get shoved into the next row.

You could omit the interior braces and just retain the two outermost braces. As long as you
have the right number of entries, the effect is the same. If you are short of entries, however, the
array is filled sequentially, row by row, until the data runs out. Then the remaining elements
are initialized to 0. Figure 10.2 shows both ways of initializing an array.

int sq[2][3] = {{5,6},{7,8}}; int sq[2][3] = {5,6,7, 8};

Figure 10.2 Two methods of initializing an array.
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Because the rain array holds data that should not be modified, the program uses the const
modifier when declaring the array.

More Dimensions

Everything we have said about two-dimensional arrays can be generalized to three-dimensional
arrays and further. You can declare a three-dimensional array this way:

int box[10][20]1[30];

You can visualize a one-dimensional array as a row of data, a two-dimensional array as a table
of data, and a three-dimensional array as a stack of data tables. For example, you can visualize
the box array as 10 two-dimensional arrays (each 20x30) stacked atop each other.

The other way to think of box is as an array of arrays of arrays. That is, it is a 10-element array,
each element of which is a 20-element array. Each 20-element array then has elements that
are 30-element arrays. Or, you can simply think of arrays in terms of the number of indices
needed.

Typically, you would use three nested loops to process a three-dimensional array, four nested
loops to process a four-dimensional array, and so on. We'll stick to two dimensions in our
examples.

Pointers and Arrays

Pointers, as you might recall from Chapter 9, “Functions,” provide a symbolic way to use
addresses. Because the hardware instructions of computing machines rely heavily on addresses,
pointers enable you to express yourself in a way that is close to how the machine expresses
itself. This correspondence makes programs with pointers efficient. In particular, pointers offer
an efficient way to deal with arrays. Indeed, as you will see, array notation is simply a disguised
use of pointers.

An example of this disguised use is that an array name is also the address of the first element of
the array. That is, if £1izny is an array, the following is true:

flizny == &flizny[0]; // name of array is the address of the first element

Both flizny and &flizny[0] represent the memory address of that first element. (Recall that
& is the address operator.) Both are constants because they remain fixed for the duration of the
program. However, they can be assigned as values to a pointer variable, and you can change the
value of a variable, as Listing 10.8 shows. Notice what happens to the value of a pointer when
you add a number to it. (Recall that the %p specifier for pointers typically displays hexadecimal
values.)
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Listing 10.8 The pnt_add.c Program

// pnt_add.c -- pointer addition
#include <stdio.h>

#define SIZE 4

int main(void)

{
short dates [SIZE];
short * pti;
short index;
double bills[SIZE];
double * ptf;
pti = dates; // assign address of array to pointer
ptf = bills;
printf("$23s %15s\n", "short", "double");
for (index = 0; index < SIZE; index ++)
printf("pointers + %d: %10p %10p\n",
index, pti + index, ptf + index);
return 0;
}

Here is sample output:

short double
pointers + 0: Ox7fff5fbff8dc 0x7fff5fbff8al
pointers + 1: 0x7fff5fbff8de 0x7fff5fbff8a8
pointers + 2: 0x7fff5fbff8e0 0x7fff5fbff8b0
pointers + 3: 0x7fff5fbff8e2 0x7fff5fbff8b8

The second line prints the beginning addresses of the two arrays, and the next line gives the
result of adding 1 to the address, and so on. Keep in mind that the addresses are in hexadeci-
mal, so dd is 1 more than dc and al is 1 more than a0. But what do we have here?

0x7ff£5fbff8dc + 1 is O0x7fff5fbff8de?
0x7ff£f5fbff8a0 + 1 is O0x7fff5fbff8a8?

Pretty dumb? Like a fox! Our system is addressed by individual bytes, but type short uses 2
bytes and type double uses 8 bytes. What is happening here is that when you say “add 1 to a
pointer,” C adds one storage unit. For arrays, that means the address is increased to the address
of the next element, not just the next byte (see Figure 10.3). This is one reason why you have
to declare the sort of object to which a pointer points. The address is not enough because the
computer needs to know how many bytes are used to store the object. (This is true even for
pointers to scalar variables; otherwise, the *pt operation to fetch the value wouldn’t work
correctly.)
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pointer addition increase by 2
since pti is type int

pti pti + 1 pti + 2 pti + 3
56014 56015 56016 56017 56018 56019 56020 56021 —— machine address
dates[0] dates[1] dates[2] dates[3] — array elements

int dates[y], *pti;
pti = dates; (or pti = & dates[0];)

A

pointer variable pti is assigned the
address of the first element of the array dates

Figure 10.3 An array and pointer addition.

Now we can define more clearly what is meant by pointer-to-int, pointer-to-float, or pointer-
to—any other data object:

= The value of a pointer is the address of the object to which it points. How the address
is represented internally is hardware dependent. Many computers, including PCs and
Macintoshes, are byte addressable, meaning that each byte in memory is numbered
sequentially. Here, the address of a large object, such as type double variable, typically is
the address of the first byte of the object.

= Applying the * operator to a pointer yields the value stored in the pointed-to object.

= Adding 1 to the pointer increases its value by the size, in bytes, of the pointed-to type.

As a result of C’s cleverness, we have the following equalities:

dates + 2 == &date[2] // same address
*(dates + 2) == dates[2] // same value

These relationships sum up the close connection between arrays and pointers. They mean that
you can use a pointer to identify an individual element of an array and to obtain its value. In
essence, we have two different notations for the same thing. Indeed, the C language standard
describes array notation in terms of pointers. That is, it defines ar[n] to mean * (ar + n). You
can think of the second expression as meaning, “Go to memory location ar, move over n units,
and retrieve the value there.”
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Incidentally, don’t confuse * (dates+2) with *dates+2. The indirection operator (*) binds
more tightly (that is, has higher precedence) than +, so the latter means (*dates)+2:

*(dates + 2) // value of the 3rd element of dates
*dates + 2 // 2 added to the value of the 1lst element

The relationship between arrays and pointers means that you can often use either approach

when writing a program. Listing 10.9, for instance, produces the same output as Listing 10.1
when compiled and run.

Listing 10.9 The day mon3.c Program

/* day mon3.c -- uses pointer notation */
#include <stdio.h>
#define MONTHS 12

int main(void)

{
int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};
int index;
for (index = 0; index < MONTHS; index++)
printf("Month %2d has %d days.\n", index +1,
*(days + index)); // same as days[index]
return 0;
}

Here, days is the address of the first element of the array, days + index is the address

of element days[index], and *(days + index) is the value of that element, just as
days[index] is. The loop references each element of the array, in turn, and prints the contents
of what it finds.

Is there an advantage to writing the program this way? Not really—the compiler produces the
same code for either. The point to Listing 10.9 is that pointer notation and array notation are
two equivalent methods. This example shows that you can use pointer notation with arrays.
The reverse is also true; you can use array notation with pointers. This turns out to be impor-
tant when you have a function with an array as an argument.

Functions, Arrays, and Pointers

Suppose you want to write a function that operates on an array. For example, suppose you
want a function that returns the sum of the elements of an array. Suppose marbles is the name
of an array of int. What would the function call look like? A reasonable guess would be this:

total = sum(marbles); // possible function call

401



402

Chapter 10 Arrays and Pointers

What would the prototype be? Remember, the name of an array is the address of its first
element, so the actual argument marbles, being the address of an int, should be assigned to a
formal parameter that is a pointer-to-int:

int sum(int * ar); // corresponding prototype

What information does sum() get from this argument? It gets the address of the first element
of the array, and it learns that it will find an int at that location. Note that this information
says nothing about the number of elements in the array. We're left with a couple choices of
how to get that information to the function. The first choice is to code a fixed array size into
the function:

int sum(int * ar) // corresponding definition
{

int i;

int total = 0;

for( 1 = 0; 1 < 10; i++) // assume 10 elements
total += ar[i]; // ar[i] the same as *(ar + i)
return total;

Here, we make use of the fact that just as you can use pointer notation with array names, you
can use array notation with a pointer. Also, recall that the += operator adds the value of the
operand on its right to the operand on its left. Therefore, total is a running sum of the array
elements.

This function definition is limited; it will work only with int arrays of 10 elements. A more
flexible approach is to pass the array size as a second argument:

int sum(int * ar, int n) // more general approach

{
int i;
int total = 0;
for( i =0; i < n; it++) // use n elements
total += ar[i]; // ar[i] the same as *(ar + i)
return total;
}

Here, the first parameter tells the function where to find the array and the type of data in the
array, and the second parameter tells the function how many elements are present.

There’s one more thing to tell about function parameters. In the context of a function proto-
type or function definition header, and only in that context, you can substitute int ar[ ] for
int * ar:

int sum (int ar[], int n);
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The form int * ar always means that ar is type pointer-to-int. The form int ar[] also
means that ar is type pointer-to-int, but only when used to declare formal parameters. The
idea is that the second form reminds the reader that not only does ar point to an int, it points
to an int that’s an element of an array.

Note Declaring Array Parameters

Because the name of an array is the address of the first element, an actual argument of an
array name requires that the matching formal argument be a pointer. In this context, and only
in this context, C interprets int ar[] to mean the same as int * ar; thatis, ar is type
pointer-to-int. Because prototypes allow you to omit a name, all four of the following proto-
types are equivalent:

int sum(int *ar, int n);

int sum(int *, int);

int sum(int ar[], int n);

int sum(int [], int);

You can’t omit names in function definitions, so, for definitions, the following two forms are
equivalent:
int sum(int *ar, int n)

{
// code goes here
}
int sum(int ar[], int n);
{
// code goes here
}

You should be able to use any of the four prototypes with either of the two definitions shown
here.

Listing 10.10 shows a program using the sum() function. To point out an interesting fact about
array arguments, the program also prints the size of the original array and the size of the func-
tion parameter representing the array. (Use $u or perhaps %1u if your compiler doesn’t support
the %zd specifier for printing sizeof quantities.)

Listing 10.10 The sum_arrl.c Program

// sum_arrl.c -- sums the elements of an array
// use %u or %$lu if %zd doesn't work

#include <stdio.h>

#define SIZE 10

int sum(int ar[], int n);

int main(void)

{
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int marbles[SIZE] = {20,10,5,39,4,16,19,26,31,20};
long answer;

answer = sum(marbles, SIZE);
printf("The total number of marbles is %1d.\n", answer);
printf("The size of marbles is %zd bytes.\n",

sizeof marbles);

return 0;
}
int sum(int ar[], int n) // how big an array?
{
int 1i;
int total = 0;
for( i = 0; i < n; i++)
total += ar[i];
printf("The size of ar is %zd bytes.\n", sizeof ar);
return total;
}

The output on our system looks like this:

The size of ar is 8 bytes.
The total number of marbles is 190.
The size of marbles is 40 bytes.

Note that the size of marbles is 40 bytes. This makes sense because marbles contains 10

ints, each 4 bytes, for a total of 40 bytes. But the size of ar is just 8 bytes. That's because ar is
not an array itself; it is a pointer to the first element of marbles. Our system uses 8 bytes for
storing addresses, so the size of a pointer variable is 8 bytes. (Other systems might use a differ-
ent number of bytes.) In short, in Listing 10.10, marbles is an array, ar is a pointer to the first
element of marbles, and the C connection between arrays and pointers lets you use array nota-
tion with the pointer ar.

Using Pointer Parameters

A function working on an array needs to know where to start and stop. The sum() function
uses a pointer parameter to identify the beginning of the array and an integer parameter to
indicate how many elements to process. (The pointer parameter also identifies the type of data
in the array.) But this is not the only way to tell a function what it needs to know. Another
way to describe the array is by passing two pointers, with the first indicating where the array
starts (as before) and the second where the array ends. Listing 10.11 illustrates this approach. It
also uses the fact that a pointer parameter is a variable, which means that instead of using an
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index to indicate which element in the array to access, the function can alter the value of the
pointer itself, making it point to each array element in turn.

Listing 10.11 The sum_arr2.c Program

/* sum_arr2.c -- sums the elements of an array */
#include <stdio.h>

#define SIZE 10

int sump(int * start, int * end);

int main(void)

{
int marbles[SIZE] = {20,10,5,39,4,16,19,26,31,20};
long answer;
answer = sump(marbles, marbles + SIZE);
printf("The total number of marbles is %1ld.\n", answer);
return 0;
}

/* use pointer arithmetic  */
int sump(int * start, int * end)

{
int total = 0;
while (start < end)
{
total += *start; // add value to total
start++; // advance pointer to next element
}
return total;
}

The pointer start begins by pointing to the first element of marbles, so the assignment
expression total +=+*start adds the value of the first element (20) to total. Then the expres-
sion start++ increments the pointer variable start so that it points to the next element in
the array. Because start points to type int, C increments the value of start by the size of
int.

Note that the sump () function uses a different method from sum() to end the summation
loop. The sum() function uses the number of elements as a second argument, and the loop
uses that value as part of the loop test:

for( i = 0; 1 < n; i++)
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The sump () function, however, uses a second pointer to end the loop:

while (start < end)

Because the test is for inequality, the last element processed is the one just before the element
pointed to by end. This means that end actually points to the location after the final element
in the array. C guarantees that when it allocates space for an array, a pointer to the first loca-
tion after the end of the array is a valid pointer. That makes constructions such as this one
valid, because the final value that start gets in the loop is end. Note that using this “past-the-
end” pointer makes the function call neat:

answer = sump(marbles, marbles + SIZE);

Because indexing starts at 0, marbles + SIZE points to the next element after the end. If end
pointed to the last element instead of to one past the end, you would have to use the following
code instead:

answer = sump(marbles, marbles + SIZE - 1);

Not only is this code less elegant in appearance, it’s harder to remember, so it is more likely to
lead to programming errors. By the way, although C guarantees that the pointer marbles +
SIZE is a valid pointer, it makes no guarantees about marbles[SIZE], the value stored at that
location, so a program should not attempt to access that location.

You can also condense the body of the loop to one line:

total += *start++;

The unary operators * and ++ have the same precedence but associate from right to left. This
means the ++ applies to start, not to *start. That is, the pointer is incremented, not the
value pointed to. The use of the postfix form (start++ rather than ++start) means that the
pointer is not incremented until after the pointed-to value is added to total. If the program
used *++start, the order would be increment the pointer, then use the value pointed to. If
the program used (*start)++, however, it would use the value of start and then increment
the value, not the pointer. That would leave the pointer pointing to the same element, but the
element would contain a new number. Although the *start++ notation is commonly used,
the * (start++) notation is clearer. Listing 10.12 illustrates these niceties of precedence.

Listing 10.12 The order.c Program

/* order.c -- precedence in pointer operations */
#include <stdio.h>
int data[2] = {100, 200};
int moredata[2] = {300, 400};
int main(void)
{
int * pl, * p2, * p3;

pl = p2 = data;
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p3 = moredata;

printf(" *pl = %d, *p2 = %d, *p3 = %d\n",
*pl r *p2 r *p3);
printf("*pl++ = %d, *++p2 = %d, (*p3)++ = %d\n",
*plet , *++p2 , (*P3)+);
printf(" *pl = %d, *p2 = 3%d, *p3 = 3%d\n",
*pl ;o *p2 ’ *p3);
return 0;

Here is its output:

*pl = 100, *p2 = 100, *p3 = 300
*pl++ = 100, *++p2 = 200, (*p3)++ = 300
*pl = 200, *p2 = 200, *p3 = 301

The only operation that altered an array value is (*p3)++. The other two operations caused pl
and p2 to advance to point to the next array element.

Comment: Pointers and Arrays

As you have seen, functions that process arrays actually use pointers as arguments, but you do
have a choice between array notation and pointer notation for writing array-processing func-
tions. Using array notation, as in Listing 10.10, makes it more obvious that the function is
working with arrays. Also, array notation has a more familiar look to programmers versed in
other languages, such as FORTRAN, Pascal, Modula-2, or BASIC. Other programmers might be
more accustomed to working with pointers and might find the pointer notation, such as that
in Listing 10.11, more natural.

As far as C goes, the two expressions ar[i] and * (ar+i) are equivalent in meaning. Both
work if ar is the name of an array, and both work if ar is a pointer variable. However, using an
expression such as ar++ only works if ar is a pointer variable.

Pointer notation, particularly when used with the increment operator, is closer to machine
language and, with some compilers, leads to more efficient code. However, many programmers
believe that the programmer’s main concerns should be correctness and clarity and that code
optimization should be left to the compiler.

Pointer Operations

Just what can you do with pointers? C offers several basic operations you can perform on
pointers, and the next program demonstrates eight of these possibilities. To show the results of
each operation, the program prints the value of the pointer (which is the address to which it
points), the value stored in the pointed-to address, and the address of the pointer itself. (If your
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compiler doesn’t support the $p specifier, try $u or perhaps %1u for printing the addresses. If it
doesn’t support the $td specifier, used for address differences, try $d or perhaps %$1d.)

Listing 10.13 shows eight basic operations that can be performed with pointer variables. In
addition to these operations, you can use the relational operators to compare pointers.

Listing 10.13 The ptr_ops.c Program

// ptr ops.c -- pointer operations
#include <stdio.h>
int main(void)
{
int urn[5] = {100,200,300,400,500};
int * ptrl, * ptr2, *ptr3;

urn; // assign an address to a pointer
&urn[2]; // ditto
// dereference a pointer and take

ptrl
ptr2

// the address of a pointer
printf("pointer value, dereferenced pointer, pointer address:\n");
printf("ptrl = %p, *ptrl =%d, &ptrl = %p\n",
ptrl, *ptrl, &ptrl);

// pointer addition

ptr3 = ptrl + 4;

printf("\nadding an int to a pointer:\n");

printf("ptrl + 4 = %p, *(ptrd + 3) = %d\n",
ptrl + 4, *(ptrl + 3));

ptrl++; // increment a pointer

printf("\nvalues after ptrl++:\n");

printf("ptrl = %p, *ptrl =%d, &ptrl = %p\n",
ptrl, *ptrl, &ptrl);

ptr2--; // decrement a pointer

printf("\nvalues after --ptr2:\n");

printf("ptr2 = %p, *ptr2 = %d, &ptr2 = %p\n",
ptr2, *ptr2, &ptr2);

--ptrl; // restore to original value

++ptr2; // restore to original value

printf("\nPointers reset to original values:\n");

printf("ptrl = %p, ptr2 = %p\n", ptrl, ptr2);

// subtract one pointer from another
printf("\nsubtracting one pointer from another:\n");
printf("ptr2 = %p, ptrl = %p, ptr2 - ptrl = %td\n",

ptr2, ptrl, ptr2 - ptrl);
// subtract an integer from a pointer
printf("\nsubtracting an int from a pointer:\n");
printf("ptr3 = %p, ptr3 - 2 = %p\n",
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ptr3, ptr3 - 2);

return 0;

Here is the output on one system:

pointer value, dereferenced pointer, pointer address:
ptrl = 0x7fff5fbff8d0, *ptrl =100, &ptrl = 0x7fff5fbff8c8

adding an int to a pointer:
ptrl + 4 = 0x7fff5fbff8el, *(ptrd + 3) = 400

values after ptrl++:
ptrl = 0x7£££f5fbff8d4, *ptrl =200, &ptrl = Ox7f£ff5fbff8c8

values after --ptr2:
ptr2 = 0x7fff5fbff8d4, *ptr2 = 200, &ptr2 = 0x7ff£f5fbff8c0

Pointers reset to original values:
ptrl = 0x7fff5fbff8d0, ptr2 = 0x7fff5fbff8d8

subtracting one pointer from another:
ptr2 = 0x7fff5fbff8d8, ptrl = 0x7fff5fbff8d0, ptr2 - ptrl = 2

subtracting an int from a pointer:
ptr3 = 0x7fff5fbff8e0, ptr3 - 2 = 0x7fff5fbff8d8

The following list describes the basic operations that can be performed with or on pointer
variables:

= Assignment—You can assign an address to a pointer. The assigned value can be, for

example, an array name, a variable preceded by address operator (&), or another second
pointer. In the example, ptrl is assigned the address of the beginning of the array urn.
This address happens to be memory cell number 0x7£££5fbf£8d0. The variable ptr2
gets the address of the third and last element, urn[2]. Note that the address should be
compatible with the pointer type. That is, you can’t assign the address of a double to a
pointer-to-int, at least not without making an ill-advised type cast. C99/C11 enforces
this rule.

= Value finding (dereferencing)—The * operator gives the value stored in the pointed-to
location. Therefore, *ptr1l is initially 100, the value stored at location 0x7£££5£b£f£8d0.

= Taking a pointer address—Like all variables, a pointer variable has an address and a
value. The & operator tells you where the pointer itself is stored. In this example, ptrl
is stored in memory location 0x7£f£5fbff8c8. The content of that memory cell is
0x7f££5fbf£8d0, the address of urn. So &ptl is a pointer to pt1, which, in turn, is a
pointer to urn[0].
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= Adding an integer to a pointer—You can use the + operator to add an integer to a

pointer or a pointer to an integer. In either case, the integer is multiplied by the number
of bytes in the pointed-to type, and the result is added to the original address. This
makes ptrl + 4 the same as surn[4]. The result of addition is undefined if it lies
outside of the array into which the original pointer points, except that the address one
past the end element of the array is guaranteed to be valid.

Incrementing a pointer—Incrementing a pointer to an array element makes it move to
the next element of the array. Therefore, ptr1++ increases the numerical value of ptril
by 4 (4 bytes per int on our system) and makes ptrl point to urn[1] (see Figure 10.4,
which uses simplified addresses). Now ptrl has the value 0x7£££5£bf£8d4 (the next
array address), and *ptrl has the value 200 (the value of urn[1]). Note that the address
of ptrl itself remains 0x7£££5£fbf£8c8. After all, a variable doesn’t move around just
because it changes value!

0 1 2 trl array
urnl[ 1 urnl[ 1 urnl[ 1 ptr element
memory
00DC  00DD O0ODE O0ODF 00F0 O00F1 0C00 0CO01
L o
100 200 300 00DC array
values
ptrl address stored
here
*ptrl is the value of the address ptril=urn;
00DC, which is currently 100 ptrl set to 00DC
then
ptrl++ sets ptrl to O0ODE
etc.

Figure 10.4 Incrementing a type int pointer.

= Subtracting an integer from a pointer—You can use the - operator to subtract an

integer from a pointer; the pointer has to be the first operand and the integer value the
second operand. The integer is multiplied by the number of bytes in the pointed-to type,
and the result is subtracted from the original address. This makes ptr3 - 2 the same as
&urn[2] because ptr3 points to &urn[4]. The result of subtraction is undefined if it lies
outside of the array into which the original pointer points, except that the address one
past the end element of the array is guaranteed to be valid.

Decrementing a pointer—Of course, you can also decrement a pointer. In this example,
decrementing ptr2 makes it point to the second array element instead of the third. Note
that you can use both the prefix and postfix forms of the increment and decrement
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operators. Also note that both ptrl and ptr2 wind up pointing to the same element,
urn[ 1], before they get reset.

= Differencing—You can find the difference between two pointers. Normally, you do this
for two pointers to elements that are in the same array to find out how far apart the
elements are. The result is in the same units as the type size. For example, in the output
from Listing 10.13, ptr2 - ptrl has the value 2, meaning that these pointers point
to objects separated by two ints, not by 2 bytes. Subtraction is guaranteed to be a valid
operation as long as both pointers point into the same array (or possibly to a position
one past the end). Applying the operation to pointers to two different arrays might
produce a value or could lead to a runtime error.

= Comparisons—You can use the relational operators to compare the values of two
pointers, provided the pointers are of the same type.

Note that there are two forms of subtraction. You can subtract one pointer from another to get
an integer, and you can subtract an integer from a pointer and get a pointer.

There are some cautions to remember when incrementing or decrementing a pointer. The
computer does not keep track of whether a pointer still points to an array element. C guar-
antees that, given an array, a pointer to any array element, or to the position after the last
element, is a valid pointer. But the effect of incrementing or decrementing a pointer beyond
these limits is undefined. Also, you can dereference a pointer to any array element. However,
even though a pointer to one past the end element is valid, it’s not guaranteed that such a one-
past-the-end pointer can be dereferenced.

Dereferencing an Uninitialized Pointer

Speaking of cautions, there is one rule you should burn into your memory: Do not dereference
an uninitialized pointer. For example, consider the following:

int * pt; // an uninitialized pointer
*pt = 5; // a terrible error

Why is this so bad? The second line means store the value 5 in the location to which pt
points. But pt, being uninitialized, has a random value, so there is no knowing where the 5 will
be placed. It might go somewhere harmless, it might overwrite data or code, or it might cause
the program to crash. Remember, creating a pointer only allocates memory to store the pointer
itself; it doesn’t allocate memory to store data. Therefore, before you use a pointer, it should
be assigned a memory location that has already been allocated. For example, you can assign
the address of an existing variable to the pointer. (This is what happens when you use a func-
tion with a pointer parameter.) Or you can use the malloc () function, as discussed in Chapter
12, to allocate memory first. Anyway, to drive the point home, do not dereference an uninitial-
ized pointer!

double * pd; // uninitialized pointer
*pd = 2.4; // DON'T DO IT

411



412

Chapter 10 Arrays and Pointers

Given

int urn[3];
int * ptrl, * ptr2;

the following are some valid and invalid statements:

Valid Invalid

ptrl++; urn++;

ptr2 = ptrl + 2; ptr2 = ptr2 + ptrl;
ptr2 = urn + 1; ptr2 = urn * ptrl;

The valid operations open many possibilities. C programmers create arrays of pointers, pointers
to functions, arrays of pointers to pointers, arrays of pointers to functions, and so on. Relax,
though—we’ll stick to the basic uses we have already unveiled. The first basic use for pointers
is to communicate information to and from functions. You already know that you must use
pointers if you want a function to affect variables in the calling function. The second use is in
functions designed to manipulate arrays. Let’s look at another programming example using
functions and arrays.

Protecting Array Contents

When you write a function that processes a fundamental type, such as int, you have a choice
of passing the int by value or of passing a pointer-to-int. The usual rule is to pass quantities
by value unless the program needs to alter the value, in which case you pass a pointer. Arrays
don’t give you that choice; you must pass a pointer. The reason is efficiency. If a function
passed an array by value, it would have to allocate enough space to hold a copy of the original
array and then copy all the data from the original array to the new array. It is much quicker to
pass the address of the array and have the function work with the original data.

This technique can cause problems. The reason C ordinarily passes data by value is to preserve
the integrity of the data. If a function works with a copy of the original data, it won’t acciden-
tally modify the original data. But, because array-processing functions do work with the origi-
nal data, they can modify the array. Sometimes that’s desirable. For example, here’s a function
that adds the same value to each member of an array:

void add to(double ar[], int n, double val)
{
int 1i;
for( i = 0; i < n; i++)
ar[i] += val;
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Therefore, the function call

add_to(prices, 100, 2.50);

causes each element in the prices array to be replaced by a value larger by 2.5; this function
modifies the contents of the array. It can do so because, by working with pointers, the function
uses the original data.

Other functions, however, do not have the intent of modifying data. The following function,
for example, is intended to find the sum of the array’s contents; it shouldn’t change the array.
However, because ar is really a pointer, a programming error could lead to the original data
being corrupted. Here, for example, the expression ar[i]++ results in each element having 1
added to its value:

int sum(int ar[], int n) // faulty code

{
int i;
int total = 0;
for( i = 0; 1 < n; i++)
total += ar[i]++; // error increments each element
return total;
}

Using const with Formal Parameters

With K&R C, the only way to avoid this sort of error is to be vigilant. Since ANSI C, there is

an alternative. If a function’s intent is that it not change the contents of the array, use the
keyword const when declaring the formal parameter in the prototype and in the function defi-
nition. For example, the prototype and definition for sum() should look like this:

int sum(const int ar[], int n); /* prototype */
int sum(const int ar[], int n) /* definition */
{

int i;

int total = 0;

for( i = 0; i < n; i++)
total += ar[i];
return total;

This tells the compiler that the function should treat the array pointed to by ar as though the
array contains constant data. Then, if you accidentally use an expression such as ar[i]++, the
compiler can catch it and generate an error message, telling you that the function is attempting
to alter constant data.
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It’s important to understand that using const this way does not require that the original array
be constant; it just says that the function has to treat the array as though it were constant. Using
const this way provides the protection for arrays that passing by value provides for fundamen-
tal types; it prevents a function from modifying data in the calling function. In general, if you
write a function intended to modify an array, don’t use const when declaring the array param-
eter. If you write a function not intended to modify an array, do use const when declaring the
array parameter.

In the program shown in Listing 10.14, one function displays an array and one function multi-
plies each element of an array by a given value. Because the first function should not alter

the array, it uses const. Because the second function has the intent of modifying the array, it
doesn’t use const.

Listing 10.14 The arf.c Program

/* arf.c -- array functions */
#include <stdio.h>
#define SIZE 5

void show_array(const double ar[], int n);

void mult array(double ar[], int n, double mult);
int main(void)

{

double dip[SIZE] = {20.0, 17.66, 8.2, 15.3, 22.22};

printf("The original dip array:\n");

show_array(dip, SIZE);

mult_array(dip, SIZE, 2.5);

printf("The dip array after calling mult array():\n");
show_array(dip, SIZE);

return 0;

/* displays array contents */
void show_array(const double ar[], int n)

{

int 1i;

for (i = 0; i < n; i++)
printf("%$8.3f ", ar[i]);

putchar('\n");
}
/* multiplies each array member by the same multiplier */
void mult_array(double ar[], int n, double mult)
{

int i;
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for (i = 0; i < n; it++)
ar[i] *= mult;

Here is the output:

The original dip array:
20.000 17.660 8.200 15.300 22.220
The dip array after calling mult_array():
50.000 44.150 20.500 38.250 55.550

Note that both functions are type void. The mult_array() function does provide new values

to the dip array, but not by using the return mechanism.

More About const
Earlier, you saw that you can use const to create symbolic constants:

const double PI = 3.14159;

That was something you could do with the #define directive, too, but const additionally lets

you create constant arrays, constant pointers, and pointers to constants.

Listing 10.4 showed how to use the const keyword to protect an array:

#define MONTHS 12
const int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};

If the program code subsequently tries to alter the array, you’ll get a compile-time error
message:

days[9] = 44; /* compile error */

Pointers to constants can’t be used to change values. Consider the following code:

double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};
const double * pd = rates; // pd points to beginning of the array

The second line of code declares that the type double value to which pd points is a const.

That means you can’t use pd to change pointed-to values:

*pd = 29.89; // not allowed
pd[2] = 222.22; // not allowed
rates[0] = 99.99; // allowed because rates is not const

Whether you use pointer notation or array notation, you are not allowed to use pd to change
the value of pointed-to data. Note, however, that because rates was not declared as a constant,
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you can still use rates to change values. Also, note that you can make pd point somewhere
else:

pd++; /* make pd point to rates[l] -- allowed */

A pointer-to-constant is normally used as a function parameter to indicate that the function
won’t use the pointer to change data. For example, the show_array() function from Listing
10.14 could have been prototyped as

void show_array(const double *ar, int n);

There are some rules you should know about pointer assignments and const. First, it’s valid to
assign the address of either constant data or non-constant data to a pointer-to-constant:

double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};
const double locked[4] = {0.08, 0.075, 0.0725, 0.07};

const double * pc = rates; // valid
pc = locked; // valid
pc = &rates[3]; // valid

However, only the addresses of non-constant data can be assigned to regular pointers:

double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};
const double locked[4] = {0.08, 0.075, 0.0725, 0.07};

double * pnc = rates; // valid
pnc = locked; // not valid
pnc = &rates[3]; // valid

This is a reasonable rule. Otherwise, you could use the pointer to change data that was
supposed to be constant.

A practical consequence of these rules is that a function such as show_array() can accept
the names of regular arrays and of constant arrays as actual arguments, because either can be
assigned to a pointer-to-constant:

show_array(rates, 5); // valid
show_array(locked, 4); // valid

Therefore, using const in a function parameter definition not only protects data, it also allows
the function to work with arrays that have been declared const.

A function such as mult_array(), however, shouldn’t be passed the name of a constant array
as an argument:

mult array(rates, 5, 1.2); // valid
mult array(locked, 4, 1.2); // bad idea

What the C standard says is that an attempt to modify const data, such as locked, using a
non-const identifier, such as the mult_array() formal argument ar, results in undefined
behavior.
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There are more possible uses of const. For example, you can declare and initialize a pointer so
that it can’t be made to point elsewhere. The trick is the placement of the keyword const:

double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

double * const pc = rates; // pc points to beginning of the array
pc = &rates[2]; // not allowed to point elsewhere
*pc = 92.99; // ok -- changes rates[0]

Such a pointer can still be used to change values, but it can point only to the location origi-
nally assigned to it.

Finally, you can use const twice to create a pointer that can neither change where it’s pointing
nor change the value to which it points:

double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};
const double * const pc = rates;

pc = &rates[2]; // not allowed

*pc = 92.99; // not allowed

Pointers and Multidimensional Arrays

How do pointers relate to multidimensional arrays? And why would you want to know?
Functions that work with multidimensional arrays do so with pointers, so you need some
further pointer background before working with such functions. As to the first question, let’s
look at some examples now to find the answer. To simplify the discussion, let’s use a small
array. Suppose you have this declaration:

int zippo[4][2]; /* an array of arrays of ints */

Then zippo, being the name of an array, is the address of the first element of the array. In this
case, the first element of zippo is itself an array of two ints, so zippo is the address of an array
of two ints. Let’s analyze that further in terms of pointer properties:

= Because zippo is the address of the array’s first element, zippo has the same value as
&zippo[0]. Next, zippo[0] is itself an array of two integers, so zippo[0] has the same
value as szippo[0][0], the address of its first element, an int. In short, zippo[0] is
the address of an int-sized object, and zippo is the address of a two-int-sized object.
Because both the integer and the array of two integers begin at the same location, both
zippo and zippo[ 0] have the same numeric value.

= Adding 1 to a pointer or address yields a value larger by the size of the referred-to object.
In this respect, zippo and zippo[ 0] differ, because zippo refers to an object two ints
in size, and zippo[ 0] refers to an object one int in size. Therefore, zippo + 1 hasa
different value from zippo[0] + 1.

= Dereferencing a pointer or an address (applying the * operator or else the [ ] operator
with an index) yields the value represented by the referred-to object. Because zippo[0] is
the address of its first element, (zippo[0][0]), * (zippo[0]) represents the value stored
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in zippo[0][0], an int value. Similarly, *zippo represents the value of its first element,
zippo[0], but zippo[0] itself is the address of an int. It’s the address &zippo[0][0],
SO *zippo is &zippo[0][0]. Applying the dereferencing operator to both expressions
implies that **zippo equals *&zippo[0][0], which reduces to zippo[0][0], an int.

In short, zippo is the address of an address and must be dereferenced twice to get an
ordinary value. An address of an address or a pointer of a pointer is an example of double
indirection.

Clearly, increasing the number of array dimensions increases the complexity of the pointer
view. At this point, most students of C begin realizing why pointers are considered one of the
more difficult aspects of the language. You might want to study the preceding points carefully
and see how they are illustrated in Listing 10.15, which displays some address values and array
contents.

Listing 10.15 The zippol.c Program

/* zippol.c -- zippo info */
#include <stdio.h>
int main(void)

{
int zippo[4](2] = { {2,4}, {6,8}, {1,3}, {5, 7} };
printf (" zippo = %p, zippo + 1 = %p\n",
zippo, zippo + 1);
printf("zippo[0] = %p, zippo[0] + 1 = %p\n",
zippo[0], zippo[0] + 1);
printf(" *zippo = %p, *zippo + 1 = %p\n",
*zippo, *zippo + 1);
printf("zippo[0][0] = %d\n", zippo[0][0]);
printf(" *zippo[0] = %d\n", *zippo[0]);
printf(" **zippo = %d\n", **zippo);
printf(" zippo[2][1] = %d\n", zippo[2][1]);
printf("*(*(zippo+2) + 1) = %d\n", *(*(zippo+2) + 1));
return 0;
}

Here is the output for one system:

zippo = 0x0064£d38, zippo + 1 = 0x0064£d40
zippo[0] 0x0064£d38, zippo[0] + 1 = 0x0064fd3c

*zippo = 0x0064£d38, *zippo + 1 = 0x0064fd3c
zippo[0][0] = 2

*zippo[0] = 2
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**zippo = 2
zippo[1l][2] =
*(*(zippotl) + 2)

non
w w

Other systems might display different address values and address formats, but the relationships
will be the same as described here. The output shows that the address of the two-dimensional
array, zippo, and the address of the one-dimensional array, zippo[ 0], are the same. Each

is the address of the corresponding array’s first element, and this is the same numerically as
&zippo[0]1[0].

Nonetheless, there is a difference. On our system, int is 4 bytes. As discussed earlier, zippo[0]
points to a 4-byte data object. Adding 1 to zippo[ 0] should produce a value larger by 4, which
it does. (In hex, 38 + 4 is 3c.) The name zippo is the address of an array of two ints, so it
identifies an 8-byte data object. Therefore, adding 1 to zippo should produce an address 8
bytes larger, which it does. (In hex, 40 is 8 larger than 38.)

The program shows that zippo[0] and *zippo are identical, and they should be. Next, it
shows that the name of a two-dimensional array has to be dereferenced twice to get a value
stored in the array. This can be done by using the indirection operator (*) twice or by using the
bracket operator ([ 1) twice. (It also can be done by using one * and one set of [ 1, but let’s
not get carried away by all the possibilities.)

In particular, note that the pointer notation equivalent of zippo[2][1] is *(*(zippo+2) +
1). You probably should make the effort at least once in your life to break this down. Let’s
build up the expression in steps:

zippo <the address of the first two-int element
zippo+2 <the address of the third two-int element
*(zippo+2) <the third element, a two-int array, hence the address of its first ele-

ment, an int
*(zippo+2) + 1 <the address of the second element of the two-int array, also an int

*(*(zippo+2) + 1) <the value of the second int in the third row (zippo[2]1[1])

The point of the baroque display of pointer notation is not that you can use it instead of the
simpler zippo[2][1] but that, if you happen to have a pointer to a two-dimensional array and
want to extract a value, you can use the simpler array notation rather than pointer notation.

Figure 10.5 provides another view of the relationships among array addresses, array contents,
and pointers.
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zippo zippo+1 zippo+2 zippo+3

| zippo [0] | zippo [1] zippo [2] zippo [3]

zippo | zippo | zippo | zippo | zippo zippo zippo zippo
[01[0] | [OJCL]|C2I00] | L2I01]|C2]00]|[2102] | [31[0]|([3][1]

addresses | 0BF2 0BF4 0BF6 0BF8 0BFA 0BFC 0BFE 0C00

*zippo
*zippo+l

*zippo+2

Figure 10.5 An array of arrays.

Pointers to Multidimensional Arrays

How would you declare a pointer variable pz that can point to a two-dimensional array such as
zippo? Such a pointer could be used, for example, in writing a function to deal with zippo-like
arrays. Will the type pointer-to-int suffice? No. That type is compatible with zippo[01], which
points to a single int. But zippo is the address of its first element, which is an array of two
ints. Hence, pz must point to an array of two ints, not to a single int. Here is what you can
do:

int (* pz)[2]; // pz points to an array of 2 ints

This statement says that pz is a pointer to an array of two ints. Why the parentheses? Well, [ ]
has a higher precedence than *. Therefore, with a declaration such as

int * pax[2]; // pax is an array of two pointers-to-int

you apply the brackets first, making pax an array of two somethings. Next, you apply the *,
making pax an array of two pointers. Finally, use the int, making pax an array of two pointers
to int. This declaration creates two pointers to single ints, but the original version uses paren-

theses to apply the * first, creating one pointer to an array of two ints. Listing 10.16 shows
how you can use such a pointer just like the original array.

Listing 10.16 The zippo2.c Program

/* zippo2.c -- zippo info via a pointer variable */
#include <stdio.h>
int main(void)

{
int zippo[4][2] = { {2,4}, {6,8}, {1,3}, {5, 7} };
int (*pz)[2];
pz = zippo;

printf(" pz = %p, pz + 1 = %p\n",
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pz, pz + 1);
printf("pz[0] = %p, pz[0] + 1 = %p\n",
pz[0], pz[0] + 1);
printf(" *pz = %p, *pz + 1 = %p\n",

*pz, *pz + 1);

printf("pz[0][0] $d\n", pz[0][0]);

printf(" *pz[0] %d\n", *pz[0]);

printf(" **pz = %d\n", **pz);

printf(" pz[2]1[1] $d\n", pz[2][1]);
printf("*(*(pz+2) + 1) $d\n", *(*(pz+2) + 1));

return 0;

Here is the new output:

pz = 0x0064£d38, pz + 1 = 0x0064£d40
pz[0] = 0x0064£d38, pz[0] + 1 = 0x0064£fd3c
*pz = 0x0064£d38, *pz + 1 = 0x0064£fd3c

pz[0][0] = 2

*pz[0] = 2

**pz = 2
pz[2][1] =3
*(*(pzt2) + 1) = 3

Again, you might get different addresses, but the relationships will be the same. As promised,
you can use notation such as pz[2][1], even though pz is a pointer, not an array name. More
generally, you can represent individual elements by using array notation or pointer notation
with either an array name or a pointer:

zippo[m][n] == *(*(zippo + m) + n)
pz[m][n] == *(*(pz + m) + n)

Pointer Compatibility

The rules for assigning one pointer to another are tighter than the rules for numeric types. For
example, you can assign an int value to a double variable without using a type conversion,
but you can’t do the same for pointers to these two types:

int n = 5;

double x;

int * pl = &n;

double * pd = &X;

X = n; // implicit type conversion

pd = pl; // compile-time error
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These restrictions extend to more complex types. Suppose we have the following declarations:
int * pt;

int (*pa)[3];

int arl[2][3];

int ar2[3][2];

int **p2; // a pointer to a pointer

Then we have the following:

pt = &arl[0][0]; // both pointer-to-int

pt = arl[0]; // both pointer-to-int
pt = arl; // not valid

pa = arl; // both pointer-to-int[3]
pa = ar2; // not valid

p2 = &pt; // both pointer-to-int *
*p2 = ar2[0]; // both pointer-to-int
p2 = ar2; // not valid

Notice that the nonvalid assignments all involve two pointers that don’t point to the same
type. For example, pt points to a single int, but arl points to an array of three ints. Similarly,
pa points to an array of two ints, so it is compatible with ar1, but not with ar2, which points
to an array of two ints.

The last two examples are somewhat tricky. The variable p2 is a pointer-to-pointer-to-int,
whereas ar2 is a pointer-to-array-of-two-ints (or, more concisely, pointer-to-int[2]). So p2
and ar2 are of different types, and you can’t assign ar2 to p2. But *p2 is type pointer-to-int,
making it compatible with ar2[0]. Recall that ar2[0] is a pointer to its first element, ar2[0]
[0], making ar2[ 0] type pointer-to-int also.

In general, multiple indirection is tricky. For instance, consider the next snippet of code:

int x = 20;

const int y = 23;

int * pl = &x;

const int * p2 = &y;

const int ** pp2;

pl = p2; // not safe -- assigning const to non-const
p2 = pl; // valid -- assigning non-const to const
pp2 = &pl; // not safe -- assigning nested pointer types

As we saw eatrlier, assigning a const pointer to a non-const pointer is not safe, because you
could use the new pointer to alter const data. While the code would compile, perhaps with a
warning, the effect of executing the code is undefined. But assigning a non-const pointer to a
const pointer is okay, provided that you're dealing with just one level of indirection:

p2 = pl; // valid -- assigning non-const to const
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But such assignments no longer are safe when you go to two levels of indirection. For instance,
you could do something like this:

const int **pp2;

int *pl;

const int n = 13;

pp2 = &pl; // allowed, but const qualifier disregarded
*pp2 = &n; // valid, both const, but sets pl to point at n
*pl = 10; // valid, but tries to change const n

What happens? As mentioned before, the standard says the effect of altering const data using

a non-const pointer is undefined. For instance, compiling a short program with this code
using gcc in Terminal (OS X’s access to the underlying Unix system) led to n ending up with
the value 13, but using clang in the same environment led to a value of 10. Both compilers did
warn about incompatible pointer types. You can, of course, ignore the warnings, but you’d best
not rely upon the results of running the program.

C const and C++ const

C and C++ use const similarly, but not identically. One difference is that C++ allows using a
const integer value to declare an array size and C is more restrictive. Another is that C++ has
stricter rules about pointer assignments:

const int y;

const int * p2 = &y;

int * pl;

pl = p2; // error in C++, possible warning in C

In C++ you are not allowed to assign a const pointer to a non-const pointer. In C, you can
make this assignment, but the behavior is undefined if you try to use p1 to alter y.

Functions and Multidimensional Arrays

If you want to write functions that process two-dimensional arrays, you need to understand
pointers well enough to make the proper declarations for function arguments. In the function
body itself, you can usually get by with array notation.

Let’s write a function to deal with two-dimensional arrays. One possibility is to use a for loop
to apply a one-dimensional array function to each row of the two-dimensional array. That is,
you could do something like the following:

int junk[3][4] = { {2,4,5,8}, {3,5,6,9}, {12,10,8,6} };
int i, i;
int total = 0;
for (i = 0; 1 < 3 ; i++)
total += sum(junk[i], 4); // junk[i] -- one-dimensional array
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Remember, if junk is a two-dimensional array, junk[i] is a one-dimensional array, which you
can visualize as being one row of the two-dimensional array. Here, the sum() function calcu-
lates the subtotal of each row of the two-dimensional array, and the for loop adds up these
subtotals.

However, this approach loses track of the column-and-row information. In this application
(summing all), that information is unimportant, but suppose each row represented a year and
each column a month. Then you might want a function to, say, total up individual columns.
In that case, the function should have the row and column information available. This can be
accomplished by declaring the right kind of formal variable so that the function can pass the
array properly. In this case, the array junk is an array of three arrays of four ints. As the earlier
discussion pointed out, that means junk is a pointer to an array of four ints. You can declare a
function parameter of this type like this:

void somefunction( int (* pt)[4] );

Alternatively, if (and only if) pt is a formal parameter to a function, you can declare it as
follows:

void somefunction( int pt[][4] );

Note that the first set of brackets is empty. The empty brackets identify pt as being a pointer.
Such a variable can then be used in the same way as junk. That is what we have done in the

next example, shown in Listing 10.17. Notice that the listing exhibits three equivalent alterna-
tives for the prototype syntax.

Listing 10.17 The array2d.c Program

// array2d.c -- functions for 2d arrays
#include <stdio.h>
#define ROWS 3
#define COLS 4
void sum rows(int ar[][COLS], int rows);
void sum_cols(int [][COLS], int ); // ok to omit names
int sum2d(int (*ar)[COLS], int rows); // another syntax
int main(void)
{
int junk[ROWS][COLS] = {
{2,4,6,8},
{3,5,7,9},
{12,10,8,6}
bi
sum_rows (junk, ROWS);
sum_cols(junk, ROWS);

printf("Sum of all elements = %d\n", sum2d(junk, ROWS));

return 0;
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}
void sum rows(int ar[][COLS], int rows)
{
int r;
int c;
int tot;
for (r = 0; r < rows; r++)
{
tot = 0;
for (¢ = 0; ¢ < COLS; c++)
tot += ar[r][c];
printf("row %d: sum = %d\n", r, tot);
}
}
void sum cols(int ar[][COLS], int rows)
{
int r;
int c;
int tot;
for (¢ = 0; ¢ < COLS; c++)
{
tot = 0;
for (r = 0; r < rows; r++)
tot += ar[r][c];
printf("col %d: sum = %d\n", c, tot);
}
}
int sum2d(int ar[][COLS], int rows)
{
int r;
int c;
int tot = 0;

for (r = 0; r < rows; r++)
for (c = 0; c < COLS; c++)
tot += ar[r][c];

return tot;




426

Chapter 10 Arrays and Pointers

Here is the output:

row 0: sum = 20
row l: sum = 24

row 2: sum = 36
col 0: sum = 17
col 1: sum = 19
col 2: sum = 21
col 3: sum = 23

Sum of all elements = 80

The program in Listing 10.17 passes as arguments the name junk, which is a pointer to the
first element, a subarray, and the symbolic constant ROWS, representing 3, the number of rows.
Each function then treats ar as an array of arrays of four ints. The number of columns is built
in to the function, but the number of rows is left open. The same function will work with,

say, a 12x4 array if 12 is passed as the number of rows. That’s because rows is the number of
elements; however, because each element is an array, or row, rows becomes the number of
Tows.

Note that ar is used in the same fashion as junk is used in main (). This is possible because ar
and junk are the same type: pointer-to-array-of-four-ints.

Be aware that the following declaration will not work properly:
int sum2(int ar[][], int rows); // faulty declaration
Recall that the compiler converts array notation to pointer notation. This means, for example,

that ar[1] will become ar+1. For the compiler to evaluate this, it needs to know the size object
to which ar points. The declaration

int sum2(int ar[][4], int rows); // valid declaration
says that ar points to an array of four ints (hence, to an object 16 bytes long on our system),

so ar+1 means “add 16 bytes to the address.” With the empty-bracket version, the compiler
would not know what to do.

You can also include a size in the other bracket pair, as shown here, but the compiler ignores it:
int sum2(int ar[3][4], int rows); // valid declaration, 3 ignored
This is convenient for those who use typedefs (mentioned in Chapter 5, “Operators,

Expressions, and Statements,” and discussed in Chapter 14, “Structures and Other Data
Forms”):

typedef int arrd[4]; // arr4 array of 4 int
typedef arr4 arr3x4[3]; // arr3x4 array of 3 arr4
int sum2(arr3x4 ar, int rows); // same as next declaration

int sum2(int ar[3][4], int rows); // same as next declaration
int sum2(int ar[][4], int rows); // standard form
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In general, to declare a pointer corresponding to an N-dimensional array, you must supply
values for all but the leftmost set of brackets:

int sumé4d(int ar[][12][20][30], int rows);

That’s because the first set of brackets indicates a pointer, whereas the rest of the brack-
ets describe the type of data object being pointed to, as the following equivalent prototype
illustrates:

int sum4d(int (*ar)[12][20][30], int rows); // ar a pointer

Here, ar points to a 12x20x30 array of ints.

Variable-Length Arrays (VLAS)

You might have noticed an oddity about functions dealing with two-dimensional arrays: You
can describe the number of rows with a function parameter, but the number of columns is built
in to the function. For example, look at this definition:

#define COLS 4
int sum2d(int ar[][COLS], int rows)

{
int r;
int c;
int tot = 0;
for (r = 0; r < rows; r++)
for (¢ = 0; c < COLS; c++)
tot += ar[r][c];
return tot;
}

Next, suppose the following arrays have been declared:

int arrayl[5][4];
int array2[100][4];
int array3[2][4];

You can use the sum2d () function with any of these arrays:

tot = sum2d(arrayl, 5); // sum a 5 x 4 array
tot = sum2d(array2, 100); // sum a 100 x 4 array
tot = sum2d(array3, 2); // sum a 2 x 4 array

That’s because the number of rows is passed to the rows parameter, a variable. But if you
wanted to sum a 6x5 array, you would need to use a new function, one for which coLs is
defined to be 5. This behavior is a result of the fact that you have to use constants for array
dimensions; therefore, you can’t replace CoLs with a variable.
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If you really want to create a single function that will work with any size two-dimensional
array, you can, but it’s awkward to do. (You have to pass the array as a one-dimensional array
and have the function calculate where each row starts.) Furthermore, this technique doesn’t
mesh smoothly with FORTRAN subroutines, which do allow one to specify both dimensions in
a function call. FORTRAN might be a hoary old programming language, but over the decades
experts in the field of numerical calculations have developed many useful computational librar-
ies in FORTRAN. C is being positioned to take over from FORTRAN, so the ability to convert
FORTRAN libraries with a minimum of fuss is useful.

This need was the primary impulse for C99 introducing variable-length arrays, which allow you
to use variables when dimensioning an array. For example, you can do this:

int quarters = 4;
int regions = 5;
double sales[regions][quarters]; // a VLA

As mentioned earlier, VLAs have some restrictions. They need to have the automatic storage
class, which means they are declared either in a function without using the static or extern
storage class modifiers (Chapter 12) or as function parameters. Also, you can't initialize them in
a declaration. Finally, under C11, VLAs are an optional feature rather than a mandatory feature,
as they were under C99.

Note VLAs Do Not Change Size

The term variable in variable-length array does not mean that you can modify the length of the
array after you create it. Once created, a VLA keeps the same size. What the term variable
does mean is that you can use a variable when specifying the array dimensions when first cre-
ating the array.

Because VLAs are a new addition to the language, support for them is incomplete at the
present. Let’s look at a simple example that shows how to write a function that will sum the
contents of any two-dimensional array of ints.

First, here’s how to declare a function with a two-dimensional VLA argument:
int sum2d(int rows, int cols, int ar[rows][cols]); // ar a VLA
Note that the first two parameters (rows and cols) are used as dimensions for declaring the

array parameter ar. Because the ar declaration uses rows and cols, they have to be declared
before ar in the parameter list. Therefore, the following prototype is in error:

int sum2d(int ar[rows][cols], int rows, int col