
ptg11524036

ptg11524036

C Primer Plus

 Sixth Edition

ptg11524036

informit.com/devlibrary

Developer’s
Library

Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful
for other programmers.

PHP & MySQL Web Development
Luke Welling & Laura Thomson
ISBN 978-0-672-32916-6

MySQL
Paul DuBois
ISBN-13: 978-0-321-83387-7

Linux Kernel Development
Robert Love
ISBN-13: 978-0-672-32946-3

Python Essential Reference
David Beazley
ISBN-13: 978-0-672-32978-4

PostgreSQL
Korry Douglas
ISBN-13: 978-0-672-32756-8

C++ Primer Plus
Stephen Prata
ISBN-13: 978-0-321-77640-2

Developer’s Library books are available in print and in electronic formats at most retail
and online bookstores, as well as by subscription from Safari Books Online at safari.

informit.com

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library

Key titles include some of the best, most widely acclaimed books within their
topic areas:

ptg11524036

 Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

C Primer Plus

Sixth Edition

Stephen Prata

ptg11524036

 Acquisitions Editor

Mark Taber

 Managing Editor

Sandra Schroeder

 Project Editor

Mandie Frank

 Copy Editor

Geneil Breeze

 Indexer

Johnna VanHoose
Dinse

 Proofreader

Jess DeGabriele

 Technical Editor

Danny Kalev

 Publishing
Coordinator

Vanessa Evans

 Designer

Chuti Prasertsith

 Page Layout

Jake McFarland

 C Primer Plus

 Sixth Edition
 Copyright © 2014 by Pearson Education, Inc.

 All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording, or
otherwise, without written permission from the publisher. No patent liability is assumed
with respect to the use of the information contained herein. Although every precaution
has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting
from the use of the information contained herein.

 ISBN-13: 978-0-321-92842-9
 ISBN-10: 0-321-92842-3

 Library of Congress Control Number: 2013953007

 Printed in the United States of America

 First Printing: December 2013

 Trademarks

 All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

 Warning and Disclaimer

 Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.

 Bulk Sales

 Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact

 U.S. Corporate and Government Sales

 1-800-382-3419

 corpsales@pearsontechgroup.com

 For sales outside of the U.S., please contact

 International Sales

 international@pearsoned.com

ptg11524036

 Contents at a Glance

 Preface xxvii

 1 Getting Ready 1

 2 Introducing C 27

 3 Data and C 55

 4 Character Strings and Formatted Input/Output 99

 5 Operators, Expressions, and Statements 143

 6 C Control Statements: Looping 189

 7 C Control Statements: Branching and Jumps 245

 8 Character Input/Output and Input Validation 299

 9 Functions 335

 10 Arrays and Pointers 383

 11 Character Strings and String Functions 441

 12 Storage Classes, Linkage, and Memory Management 511

 13 File Input/Output 565

 14 Structures and Other Data Forms 601

 15 Bit Fiddling 673

 16 The C Preprocessor and the C Library 711

 17 Advanced Data Representation 773

 Appendixes

 A Answers to the Review Questions 861

 B Reference Section 905

 Index 1005

ptg11524036

 Table of Contents

 Preface xxvii

 1 Getting Ready 1

Whence C? 1

Why C? 2

Design Features 2

Efficiency 3

Portability 3

Power and Flexibility 3

Programmer Oriented 3

Shortcomings 4

Whither C? 4

What Computers Do 5

High-level Computer Languages and Compilers 6

Language Standards 7

The First ANSI/ISO C Standard 8

The C99 Standard 8

The C11 Standard 9

Using C: Seven Steps 9

Step 1: Define the Program Objectives 10

Step 2: Design the Program 10

Step 3: Write the Code 11

Step 4: Compile 11

Step 5: Run the Program 12

Step 6: Test and Debug the Program 12

Step 7: Maintain and Modify the Program 13

Commentary 13

Programming Mechanics 13

Object Code Files, Executable Files, and Libraries 14

Unix System 16

The GNU Compiler Collection and the LLVM Project 18

Linux Systems 18

Command-Line Compilers for the PC 19

Integrated Development Environments (Windows) 19

The Windows/Linux Option 21

C on the Macintosh 21

ptg11524036

How This Book Is Organized 22

Conventions Used in This Book 22

Typeface 22

Program Output 23

Special Elements 24

Summary 24

Review Questions 25

Programming Exercise 25

 2 Introducing C 27

A Simple Example of C 27

The Example Explained 28

Pass 1: Quick Synopsis 30

Pass 2: Program Details 31

The Structure of a Simple Program 40

Tips on Making Your Programs Readable 41

Taking Another Step in Using C 42

Documentation 43

Multiple Declarations 43

Multiplication 43

Printing Multiple Values 43

While You’re at It—Multiple Functions 44

Introducing Debugging 46

Syntax Errors 46

Semantic Errors 47

Program State 49

Keywords and Reserved Identifiers 49

Key Concepts 50

Summary 51

Review Questions 51

Programming Exercises 53

 3 Data and C 55

A Sample Program 55

What’s New in This Program? 57

Data Variables and Constants 59

Data: Data-Type Keywords 59

Integer Versus Floating-Point Types 60

ptg11524036

viii Contents

The Integer 61

The Floating-Point Number 61

Basic C Data Types 62

The int Type 62

Other Integer Types 66

Using Characters: Type char 71

The _Bool Type 77

Portable Types: stdint.h and inttypes.h 77

Types float, double, and long double 79

Complex and Imaginary Types 85

Beyond the Basic Types 85

Type Sizes 87

Using Data Types 88

Arguments and Pitfalls 89

One More Example: Escape Sequences 91

What Happens When the Program Runs 91

Flushing the Output 92

Key Concepts 93

Summary 93

Review Questions 94

Programming Exercises 97

 4 Character Strings and Formatted Input/Output 99

Introductory Program 99

Character Strings: An Introduction 101

Type char Arrays and the Null Character 101

Using Strings 102

The strlen() Function 103

Constants and the C Preprocessor 106

The const Modifier 109

Manifest Constants on the Job 109

Exploring and Exploiting printf() and scanf() 112

The printf() Function 112

Using printf() 113

Conversion Specification Modifiers for printf() 115

What Does a Conversion Specification Convert? 122

Using scanf() 128

ptg11524036

ixContents

The * Modifier with printf() and scanf() 133

Usage Tips for printf() 135

Key Concepts 136

Summary 137

Review Questions 138

Programming Exercises 140

 5 Operators, Expressions, and Statements 143

Introducing Loops 144

Fundamental Operators 146

Assignment Operator: = 146

Addition Operator: + 149

Subtraction Operator: – 149

Sign Operators: – and + 150

Multiplication Operator: * 151

Division Operator: / 153

Operator Precedence 154

Precedence and the Order of Evaluation 156

Some Additional Operators 157

The sizeof Operator and the size_t Type 158

Modulus Operator: % 159

Increment and Decrement Operators: ++ and -- 160

Decrementing: -- 164

Precedence 165

Don’t Be Too Clever 166

Expressions and Statements 167

Expressions 167

Statements 168

Compound Statements (Blocks) 171

Type Conversions 174

The Cast Operator 176

Function with Arguments 177

A Sample Program 180

Key Concepts 182

Summary 182

Review Questions 183

Programming Exercises 187

ptg11524036

x Contents

 6 C Control Statements: Looping 189

Revisiting the while Loop 190

Program Comments 191

C-Style Reading Loop 192

The while Statement 193

Terminating a while Loop 194

When a Loop Terminates 194

while: An Entry-Condition Loop 195

Syntax Points 195

Which Is Bigger: Using Relational Operators and Expressions 197

What Is Truth? 199

What Else Is True? 200

Troubles with Truth 201

The New _Bool Type 203

Precedence of Relational Operators 205

Indefinite Loops and Counting Loops 207

The for Loop 208

Using for for Flexibility 210

More Assignment Operators: +=, -=, *=, /=, %= 215

The Comma Operator 215

Zeno Meets the for Loop 218

An Exit-Condition Loop: do while 220

Which Loop? 223

Nested Loops 224

Program Discussion 225

A Nested Variation 225

Introducing Arrays 226

Using a for Loop with an Array 228

A Loop Example Using a Function Return Value 230

Program Discussion 232

Using Functions with Return Values 233

Key Concepts 234

Summary 235

Review Questions 236

Programming Exercises 241

ptg11524036

xiContents

 7 C Control Statements: Branching and Jumps 245

The if Statement 246

Adding else to the if Statement 248

Another Example: Introducing getchar() and putchar() 250

The ctype.h Family of Character Functions 252

Multiple Choice else if 254

Pairing else with if 257

More Nested ifs 259

Let’s Get Logical 263

Alternate Spellings: The iso646.h Header File 265

Precedence 265

Order of Evaluation 266

Ranges 267

A Word-Count Program 268

The Conditional Operator: ?: 271

Loop Aids: continue and break 274

The continue Statement 274

The break Statement 277

Multiple Choice: switch and break 280

Using the switch Statement 281

Reading Only the First Character of a Line 283

Multiple Labels 284

switch and if else 286

The goto Statement 287

Avoiding goto 287

Key Concepts 291

Summary 291

Review Questions 292

Programming Exercises 296

 8 Character Input/Output and Input Validation 299

Single-Character I/O: getchar() and putchar() 300

Buffers 301

Terminating Keyboard Input 302

Files, Streams, and Keyboard Input 303

The End of File 304

Redirection and Files 307

ptg11524036

xii Contents

Unix, Linux, and Windows Command Prompt Redirection 307

Creating a Friendlier User Interface 312

Working with Buffered Input 312

Mixing Numeric and Character Input 314

Input Validation 317

Analyzing the Program 322

The Input Stream and Numbers 323

Menu Browsing 324

Tasks 324

Toward a Smoother Execution 325

Mixing Character and Numeric Input 327

Key Concepts 330

Summary 331

Review Questions 331

Programming Exercises 332

 9 Functions 335

Reviewing Functions 335

Creating and Using a Simple Function 337

Analyzing the Program 338

Function Arguments 340

Defining a Function with an Argument: Formal Parameters 342

Prototyping a Function with Arguments 343

Calling a Function with an Argument: Actual Arguments 343

The Black-Box Viewpoint 345

Returning a Value from a Function with return 345

Function Types 348

ANSI C Function Prototyping 349

The Problem 350

The ANSI C Solution 351

No Arguments and Unspecified Arguments 352

Hooray for Prototypes 353

Recursion 353

Recursion Revealed 354

Recursion Fundamentals 355

Tail Recursion 356

Recursion and Reversal 358

ptg11524036

xiiiContents

Recursion Pros and Cons 360

Compiling Programs with Two or More Source Code Files 361

Unix 362

Linux 362

DOS Command-Line Compilers 362

Windows and Apple IDE Compilers 362

Using Header Files 363

Finding Addresses: The & Operator 367

Altering Variables in the Calling Function 369

Pointers: A First Look 371

The Indirection Operator: * 371

Declaring Pointers 372

Using Pointers to Communicate Between Functions 373

Key Concepts 378

Summary 378

Review Questions 379

Programming Exercises 380

 10 Arrays and Pointers 383

Arrays 383

Initialization 384

Designated Initializers (C99) 388

Assigning Array Values 390

Array Bounds 390

Specifying an Array Size 392

Multidimensional Arrays 393

Initializing a Two-Dimensional Array 397

More Dimensions 398

Pointers and Arrays 398

Functions, Arrays, and Pointers 401

Using Pointer Parameters 404

Comment: Pointers and Arrays 407

Pointer Operations 407

Protecting Array Contents 412

Using const with Formal Parameters 413

More About const 415

ptg11524036

xiv Contents

Pointers and Multidimensional Arrays 417

Pointers to Multidimensional Arrays 420

Pointer Compatibility 421

Functions and Multidimensional Arrays 423

Variable-Length Arrays (VLAs) 427

Compound Literals 431

Key Concepts 434

Summary 435

Review Questions 436

Programming Exercises 439

 11 Character Strings and String Functions 441

Representing Strings and String I/O 441

Defining Strings Within a Program 442

Pointers and Strings 451

String Input 453

Creating Space 453

The Unfortunate gets() Function 453

The Alternatives to gets() 455

The scanf() Function 462

String Output 464

The puts() Function 464

The fputs() Function 465

The printf() Function 466

The Do-It-Yourself Option 466

String Functions 469

The strlen() Function 469

The strcat() Function 471

The strncat() Function 473

The strcmp() Function 475

The strcpy() and strncpy() Functions 482

The sprintf() Function 487

Other String Functions 489

A String Example: Sorting Strings 491

Sorting Pointers Instead of Strings 493

The Selection Sort Algorithm 494

ptg11524036

xvContents

The ctype.h Character Functions and Strings 495

Command-Line Arguments 497

Command-Line Arguments in Integrated Environments 500

Command-Line Arguments with the Macintosh 500

String-to-Number Conversions 500

Key Concepts 504

Summary 504

Review Questions 505

Programming Exercises 508

 12 Storage Classes, Linkage, and Memory Management 511

Storage Classes 511

Scope 513

Linkage 515

Storage Duration 516

Automatic Variables 518

Register Variables 522

Static Variables with Block Scope 522

Static Variables with External Linkage 524

Static Variables with Internal Linkage 529

Multiple Files 530

Storage-Class Specifier Roundup 530

Storage Classes and Functions 533

Which Storage Class? 534

A Random-Number Function and a Static Variable 534

Roll ’Em 538

Allocated Memory: malloc() and free() 543

The Importance of free() 547

The calloc() Function 548

Dynamic Memory Allocation and Variable-Length Arrays 548

Storage Classes and Dynamic Memory Allocation 549

ANSI C Type Qualifiers 551

The const Type Qualifier 552

The volatile Type Qualifier 554

The restrict Type Qualifier 555

The _Atomic Type Qualifier (C11) 556

New Places for Old Keywords 557

ptg11524036

xvi Contents

Key Concepts 558

Summary 558

Review Questions 559

Programming Exercises 561

 13 File Input/Output 565

Communicating with Files 565

What Is a File? 566

The Text Mode and the Binary Mode 566

Levels of I/O 568

Standard Files 568

Standard I/O 568

Checking for Command-Line Arguments 569

The fopen() Function 570

The getc() and putc() Functions 572

End-of-File 572

The fclose() Function 574

Pointers to the Standard Files 574

A Simple-Minded File-Condensing Program 574

File I/O: fprintf(), fscanf(), fgets(), and fputs() 576

The fprintf() and fscanf() Functions 576

The fgets() and fputs() Functions 578

Adventures in Random Access: fseek() and ftell() 579

How fseek() and ftell() Work 580

Binary Versus Text Mode 582

Portability 582

The fgetpos() and fsetpos() Functions 583

Behind the Scenes with Standard I/O 583

Other Standard I/O Functions 584

The int ungetc(int c, FILE *fp) Function 585

The int fflush() Function 585

The int setvbuf() Function 585

Binary I/O: fread() and fwrite() 586

The size_t fwrite() Function 588

The size_t fread() Function 588

The int feof(FILE *fp) and int ferror(FILE *fp) Functions 589

An fread() and fwrite() Example 589

ptg11524036

xviiContents

Random Access with Binary I/O 593

Key Concepts 594

Summary 595

Review Questions 596

Programming Exercises 598

 14 Structures and Other Data Forms 601

Sample Problem: Creating an Inventory of Books 601

Setting Up the Structure Declaration 604

Defining a Structure Variable 604

Initializing a Structure 606

Gaining Access to Structure Members 607

Initializers for Structures 607

Arrays of Structures 608

Declaring an Array of Structures 611

Identifying Members of an Array of Structures 612

Program Discussion 612

Nested Structures 613

Pointers to Structures 615

Declaring and Initializing a Structure Pointer 617

Member Access by Pointer 617

Telling Functions About Structures 618

Passing Structure Members 618

Using the Structure Address 619

Passing a Structure as an Argument 621

More on Structure Features 622

Structures or Pointer to Structures? 626

Character Arrays or Character Pointers in a Structure 627

Structure, Pointers, and malloc() 628

Compound Literals and Structures (C99) 631

Flexible Array Members (C99) 633

Anonymous Structures (C11) 636

Functions Using an Array of Structures 637

Saving the Structure Contents in a File 639

A Structure-Saving Example 640

Program Points 643

Structures: What Next? 644

ptg11524036

xviii Contents

Unions: A Quick Look 645

Using Unions 646

Anonymous Unions (C11) 647

Enumerated Types 649

enum Constants 649

Default Values 650

Assigned Values 650

enum Usage 650

Shared Namespaces 652

typedef: A Quick Look 653

Fancy Declarations 655

Functions and Pointers 657

Key Concepts 665

Summary 665

Review Questions 666

Programming Exercises 669

 15 Bit Fiddling 673

Binary Numbers, Bits, and Bytes 674

Binary Integers 674

Signed Integers 675

Binary Floating Point 676

Other Number Bases 676

Octal 677

Hexadecimal 677

C’s Bitwise Operators 678

Bitwise Logical Operators 678

Usage: Masks 680

Usage: Turning Bits On (Setting Bits) 681

Usage: Turning Bits Off (Clearing Bits) 682

Usage: Toggling Bits 683

Usage: Checking the Value of a Bit 683

Bitwise Shift Operators 684

Programming Example 685

Another Example 688

Bit Fields 690

Bit-Field Example 692

ptg11524036

xixContents

Bit Fields and Bitwise Operators 696

Alignment Features (C11) 703

Key Concepts 705

Summary 706

Review Questions 706

Programming Exercises 708

 16 The C Preprocessor and the C Library 711

First Steps in Translating a Program 712

Manifest Constants: #define 713

Tokens 717

Redefining Constants 717

Using Arguments with #define 718

Creating Strings from Macro Arguments: The # Operator 721

Preprocessor Glue: The ## Operator 722

Variadic Macros: ... and __VA_ARGS__ 723

Macro or Function? 725

File Inclusion: #include 726

Header Files: An Example 727

Uses for Header Files 729

Other Directives 730

The #undef Directive 731

Being Defined—The C Preprocessor Perspective 731

Conditional Compilation 731

Predefined Macros 737

#line and #error 738

#pragma 739

Generic Selection (C11) 740

Inline Functions (C99) 741

_Noreturn Functions (C11) 744

The C Library 744

Gaining Access to the C Library 745

Using the Library Descriptions 746

The Math Library 747

A Little Trigonometry 748

Type Variants 750

The tgmath.h Library (C99) 752

ptg11524036

xx Contents

The General Utilities Library 753

The exit() and atexit() Functions 753

The qsort() Function 755

The Assert Library 760

Using assert 760

_Static_assert (C11) 762

memcpy() and memmove() from the string.h Library 763

Variable Arguments: stdarg.h 765

Key Concepts 768

Summary 768

Review Questions 768

Programming Exercises 770

 17 Advanced Data Representation 773

Exploring Data Representation 774

Beyond the Array to the Linked List 777

Using a Linked List 781

Afterthoughts 786

Abstract Data Types (ADTs) 786

Getting Abstract 788

Building an Interface 789

Using the Interface 793

Implementing the Interface 796

Getting Queued with an ADT 804

Defining the Queue Abstract Data Type 804

Defining an Interface 805

Implementing the Interface Data Representation 806

Testing the Queue 815

Simulating with a Queue 818

The Linked List Versus the Array 824

Binary Search Trees 828

A Binary Tree ADT 829

The Binary Search Tree Interface 830

The Binary Tree Implementation 833

Trying the Tree 849

Tree Thoughts 854

ptg11524036

xxiContents

Other Directions 856

Key Concepts 856

Summary 857

Review Questions 857

Programming Exercises 858

 A Answers to the Review Questions 861

Answers to Review Questions for Chapter 1 861

Answers to Review Questions for Chapter 2 862

Answers to Review Questions for Chapter 3 863

Answers to Review Questions for Chapter 4 866

Answers to Review Questions for Chapter 5 869

Answers to Review Questions for Chapter 6 872

Answers to Review Questions for Chapter 7 876

Answers to Review Questions for Chapter 8 879

Answers to Review Questions for Chapter 9 881

Answers to Review Questions for Chapter 10 883

Answers to Review Questions for Chapter 11 886

Answers to Review Questions for Chapter 12 890

Answers to Review Questions for Chapter 13 891

Answers to Review Questions for Chapter 14 894

Answers to Review Questions for Chapter 15 898

Answers to Review Questions for Chapter 16 899

Answers to Review Questions for Chapter 17 901

 B Reference Section 905

Section I: Additional Reading 905

Online Resources 905

C Language Books 907

Programming Books 907

Reference Books 908

C++ Books 908

Section II: C Operators 908

Arithmetic Operators 909

Relational Operators 910

Assignment Operators 910

Logical Operators 911

ptg11524036

xxii Contents

The Conditional Operator 911

Pointer-Related Operators 912

Sign Operators 912

Structure and Union Operators 912

Bitwise Operators 913

Miscellaneous Operators 914

Section III: Basic Types and Storage Classes 915

Summary: The Basic Data Types 915

Summary: How to Declare a Simple Variable 917

Summary: Qualifiers 919

Section IV: Expressions, Statements, and Program Flow 920

Summary: Expressions and Statements 920

Summary: The while Statement 921

Summary: The for Statement 921

Summary: The do while Statement 922

Summary: Using if Statements for Making Choices 923

Summary: Multiple Choice with switch 924

Summary: Program Jumps 925

Section V: The Standard ANSI C Library with C99 and C11 Additions 926

Diagnostics: assert.h 926

Complex Numbers: complex.h (C99) 927

Character Handling: ctype.h 929

Error Reporting: errno.h 930

Floating-Point Environment: fenv.h (C99) 930

Floating-point Characteristics: float.h 933

Format Conversion of Integer Types: inttypes.h (C99) 935

Alternative Spellings: iso646.h 936

Localization: locale.h 936

Math Library: math.h 939

Non-Local Jumps: setjmp.h 945

Signal Handling: signal.h 945

Alignment: stdalign.h (C11) 946

Variable Arguments: stdarg.h 947

Atomics Support: stdatomic.h (C11) 948

Boolean Support: stdbool.h (C99) 948

Common Definitions: stddef.h 948

Integer Types: stdint.h 949

ptg11524036

xxiiiContents

Standard I/O Library: stdio.h 953

General Utilities: stdlib.h 956

_Noreturn: stdnoreturn.h 962

String Handling: string.h 962

Type-Generic Math: tgmath.h (C99) 965

Threads: threads.h (C11) 967

Date and Time: time.h 967

Unicode Utilities: uchar.h (C11) 971

Extended Multibyte and Wide-Character Utilities: wchar.h (C99) 972

Wide Character Classification and Mapping Utilities: wctype.h (C99) 978

Section VI: Extended Integer Types 980

Exact-Width Types 981

Minimum-Width Types 982

Fastest Minimum-Width Types 983

Maximum-Width Types 983

Integers That Can Hold Pointer Values 984

Extended Integer Constants 984

Section VII: Expanded Character Support 984

Trigraph Sequences 984

Digraphs 985

Alternative Spellings: iso646.h 986

Multibyte Characters 986

Universal Character Names (UCNs) 987

Wide Characters 988

Wide Characters and Multibyte Characters 989

Section VIII: C99/C11 Numeric Computational Enhancements 990

The IEC Floating-Point Standard 990

The fenv.h Header File 994

The STDC FP_CONTRACT Pragma 995

Additions to the math.h Library 995

Support for Complex Numbers 996

Section IX: Differences Between C and C++ 998

Function Prototypes 999

char Constants 1000

The const Modifier 1000

Structures and Unions 1001

Enumerations 1002

ptg11524036

xxiv Contents

Pointer-to-void 1002

Boolean Types 1003

Alternative Spellings 1003

Wide-Character Support 1003

Complex Types 1003

Inline Functions 1003

C99/11 Features Not Found in C++11 1004

Index 1005

ptg11524036

 Dedication

 To the memory of my father, William Prata.

 About the Author

 Stephen Prata , now retired, taught astronomy, physics, and programming at the College of
Marin in Kentfield, California. He received his B.S. from the California Institute of Technology
and his Ph.D. from the University of California, Berkeley. His association with computers began
with the computer modeling of star clusters. Stephen has authored or coauthored over a dozen
books, including C++ Primer Plus and Unix Primer Plus.

 Acknowledgments

 I wish to thank Mark Taber at Pearson for getting this project underway and for seeing it
through. And I’d like to thank Danny Kalev for his technical help and for suggesting the term
“program scope.”

ptg11524036

 We Want to Hear from You!

 As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

 You can email or write directly to let us know what you did or didn’t like about this book—as
well as what we can do to make our books better.

 Please note that we cannot help you with technical problems related to the topic of this book and that
due to the high volume of mail we receive, we might not be able to reply to every message.

 When you write, please be sure to include this book’s title, edition number, and author as well
as your name and contact information.

 Email: feedback@developers-library.info

 Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

 Reader Services

 Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

ptg11524036

 Preface

 C was a relatively little-known language when the first edition of C Primer Plus appeared in
1984. Since then, the language has boomed, and many people have learned C with the help of
this book. In fact, C Primer Plus throughout its various editions has sold over 550,000 copies.

 As the language has grown from the early informal K&R standard through the 1990 ISO/ANSI
standard through the 1999 ISO/ANSI standard to the 2011 ISO/IEC standard, so has this book
matured through this, the sixth edition. As with all the editions, my aim has been to create an
introduction to C that is instructive, clear, and helpful.

 Approach and Goals

 My goal is for this book to serve as a friendly, easy-to-use, self-study guide. To accomplish that
objective, C Primer Plus employs the following strategies:

 ■ Programming concepts are explained, along with details of the C language; the book does
 not assume that you are a professional programmer.

 ■ Many short, easily typed examples illustrate just one or two concepts at a time, because
learning by doing is one of the most effective ways to master new information.

 ■ Figures and illustrations clarify concepts that are difficult to grasp in words alone.

 ■ Highlight boxes summarize the main features of C for easy reference and review.

 ■ Review questions and programming exercises at the end of each chapter allow you to test
and improve your understanding of C.

 To gain the greatest benefit, you should take as active a role as possible in studying the topics
in this book. Don’t just read the examples, enter them into your system, and try them. C is a
very portable language, but you may find differences between how a program works on your
system and how it works on ours. Experiment with changing part of a program to see what
the effect is. Modify a program to do something slightly different. See if you can develop an
alternative approach. Ignore the occasional warnings and see what happens when you do the
wrong thing. Try the questions and exercises. The more you do yourself, the more you will
learn and remember.

 I hope that you’ll find this newest edition an enjoyable and effective introduction to the C
language.

ptg11524036

This page intentionally left blank

ptg11524036

 1
 Getting Ready

 You will learn about the following in this chapter:

 ■ C’s history and features

 ■ The steps needed to write programs

 ■ A bit about compilers and linkers

 ■ C standards

 Welcome to the world of C—a vigorous, professional programming language popular with
amateur and commercial programmers alike. This chapter prepares you for learning and using
this powerful and popular language, and it introduces you to the kinds of environments in
which you will most likely develop your C-legs.

 First, we look at C’s origin and examine some of its features, both strengths and drawbacks.
Then we look at the origins of programming and examine some general principles for program-
ming. Finally, we discuss how to run C programs on some common systems.

 Whence C?

 Dennis Ritchie of Bell Labs created C in 1972 as he and Ken Thompson worked on designing
the Unix operating system. C didn’t spring full-grown from Ritchie’s head, however. It came
from Thompson’s B language, which came from... but that’s another story. The important
point is that C was created as a tool for working programmers, so its chief goal is to be a useful
language.

 Most languages aim to be useful, but they often have other concerns. The main goal for
Pascal, for instance, was to provide a sound basis for teaching good programming principles.
BASIC, on the other hand, was developed to resemble English so that it could be learned easily
by students unfamiliar with computers. These are important goals, but they are not always
compatible with pragmatic, workaday usefulness. C’s development as a language designed for
programmers, however, has made it one of the modern-day languages of choice.

ptg11524036

2 Chapter 1 Getting Ready

 Why C?

 During the past four decades, C has become one of the most important and popular program-
ming languages. It has grown because people try it and like it. In the past decade or two, many
have moved from C to languages such as C++, Objective C, and Java, but C is still an important
language in its own right, as well a migration path to these others. As you learn C, you will
recognize its many virtues (see Figure 1.1). Let’s preview a few of them now.

Powerful control structures Fast

Compact code—small programs Portable to other computers

 Figure 1.1 The virtues of C.

 Design Features

 C is a modern language incorporating the control features found desirable by the theory and
practice of computer science. Its design makes it natural for top-down planning, structured
programming, and modular design. The result is a more reliable, understandable program.

ptg11524036

3Why C?

 Efficiency

 C is an efficient language. Its design takes advantage of the capabilities of current computers.
C programs tend to be compact and to run quickly. In fact, C exhibits some of the fine control
usually associated with an assembly language. (An assembly language is a mnemonic representa-
tion of the set of internal instructions used by a particular central processing unit design; differ-
ent CPU families have different assembly languages.) If you choose, you can fine-tune your
programs for maximum speed or most efficient use of memory.

 Portability

 C is a portable language, which means that C programs written on one system can be run on
other systems with little or no modification. If modifications are necessary, they can often be
made by simply changing a few entries in a header file accompanying the main program. Most
languages are meant to be portable, but anyone who has converted an IBM PC BASIC program
to Apple BASIC (and they were close cousins) or has tried to run an IBM mainframe FORTRAN
program on a Unix system knows that porting is troublesome at best. C is a leader in portabil-
ity. C compilers (programs that convert your C code into the instructions a computer uses
internally) are available for many computer architectures, running from 8-bit microprocessors
to Cray supercomputers. Note, however, that the portions of a program written specifically to
access particular hardware devices, such as a display monitor, or special features of an operating
system, such as Windows 8 or OS X, typically are not portable.

 Because of C’s close ties with Unix, Unix systems typically come with a C compiler as part
of the package. Linux installations also usually include a C compiler. Several C compilers are
available for personal computers, including PCs running various versions of Windows and
Macintoshes. So whether you are using a home computer, a professional workstation, or a
mainframe, the chances are good that you can get a C compiler for your particular system.

 Power and Flexibility

 C is powerful and flexible (two favorite words in computer literature). For example, most of the
powerful, flexible Unix operating system was written in C. Many compilers and interpreters for
other languages—such as FORTRAN, Perl, Python, Pascal, LISP, Logo, and BASIC—have been
written in C. As a result, when you use FORTRAN on a Unix machine, ultimately a C program
has done the work of producing the final executable program. C programs have been used for
solving physics and engineering problems and even for animating special effects for movies.

 Programmer Oriented

 C is oriented to fulfill the needs of programmers. It gives you access to hardware, and it enables
you to manipulate individual bits in memory. Its rich selection of operators allows you to
express yourself succinctly. C is less strict than, say, Pascal or even C++ in limiting what you
can do. This flexibility is both an advantage and a danger. The advantage is that many tasks,
such as converting forms of data, are much simpler in C. The danger is that with C, you can

ptg11524036

4 Chapter 1 Getting Ready

make mistakes that are impossible in some languages. C gives you more freedom, but it also
puts more responsibility on you.

 Also, most C implementations have a large library of useful C functions. These functions deal
with many needs that a programmer commonly faces.

 Shortcomings

 C does have some faults. Often, as with people, faults and virtues are opposite sides of the
same feature. For example, we’ve mentioned that C’s freedom of expression also requires added
responsibility. C’s use of pointers (something you can look forward to learning about in this
book), in particular, means that you can make programming errors that are difficult to trace. As
one computer preliterate once commented, the price of liberty is eternal vigilance.

 C’s conciseness, combined with its wealth of operators, make it possible to prepare code that is
extremely difficult to follow. You aren’t compelled to write obscure code, but the opportunity
is there. After all, what other language has a yearly Obfuscated Code contest?

 There are more virtues and, undoubtedly, a few more faults. Rather than delve further into the
matter, let’s move on to a new topic.

 Whither C?

 By the early 1980s, C was already a dominant language in the minicomputer world of Unix
systems. Since then, it has spread to personal computers (microcomputers) and to mainframes
(the big guys). See Figure 1.2 . Many software houses use C as the preferred language for produc-
ing word processing programs, spreadsheets, compilers, and other products. These companies
know that C produces compact and efficient programs. More important, they know that these
programs will be easy to modify and easy to adapt to new models of computers.

 What’s good for companies and C veterans is good for other users, too. More and more
computer users have turned to C to secure its advantages for themselves. You don’t have to be
a computer professional to use C.

 In the 1990s, many software houses began turning to the C++ language for large program-
ming projects. C++ grafts object-oriented programming tools to the C language. (Object-oriented
programming is a philosophy that attempts to mold the language to fit a problem instead of
molding the problem to fit the language.) C++ is nearly a superset of C, meaning that any C
program is, or nearly is, a valid C++ program, too. By learning C, you also learn much of C++.

 Despite the popularity of newer languages, such as C++ and Java, C remains a core skill in the
software business, typically ranking in the top 10 of desired skills. In particular, C has become
popular for programming embedded systems. That is, it’s used to program the increasingly
common microprocessors found in automobiles, cameras, DVD players, and other modern
conveniences. Also, C has been making inroads in FORTRAN’s long dominance of scientific
programming. Finally, as befits a language created to develop an operating system, it plays a
strong role in the development of Linux. Thus, the second decade of the twenty-first century
finds C still going strong.

ptg11524036

5What Computers Do

 In short, C is one of the most important programming languages and will continue to be so. If
you want a job writing software, one of the first questions you should be able to answer yes to
is “Oh say, can you C?”

 What Computers Do

 Now that you are about to learn how to program in C, you probably should know a little
about how computers work. This knowledge will help you understand the connection between
writing a program in C and what eventually takes place when you run that program.

 Modern computers have several components. The central processing unit , or CPU , does most
of the computing work. The random access memory , or RAM , serves as a workspace to hold
programs and files. The permanent memory storage device, typically a hard disk in the past,
but now more and more often a solid-state device, remembers those programs and files, even
while the computer is turned off. And various peripherals—such as the keyboard, mouse,
touchscreen, and monitor—provide for communication between the computer and you. The
CPU processes your programs; so let’s concentrate on its role.

C
Language

UNIX
Operating

System
Computer

Games

Embedded
Systems

Computer
Languages

Robot
Factories

LucasFilm

PC
Applications

Star
Wars

 Figure 1.2 Where C is used.

ptg11524036

6 Chapter 1 Getting Ready

 The life of a CPU, at least in this simplistic account, is quite simple. It fetches an instruction
from memory and executes it. It fetches the next instruction from memory and executes it,
and so on. (A gigahertz CPU can do this about a billion times a second, so the CPU can lead its
boring life at a tremendous pace.) The CPU has its own small workspace, consisting of several
 registers , each of which can hold a number. One register holds the memory address of the next
instruction, and the CPU uses this information to fetch the next instruction. After it fetches
an instruction, the CPU stores the instruction in another register and updates the first register
to the address of the next instruction. The CPU has a limited repertoire of instructions (known
as the instruction set) that it understands. Also, these instructions are rather specific; many of
them ask the computer to move a number from one location to another—for example, from a
memory location to a register.

 A couple interesting points go along with this account. First, everything stored in a computer is
stored as a number. Numbers are stored as numbers. Characters, such as the alphabetical char-
acters you use in a text document, are stored as numbers; each character has a numeric code.
The instructions that a computer loads into its registers are stored as numbers; each instruction
in the instruction set has a numeric code. Second, computer programs ultimately have to be
expressed in this numeric instruction code, or what is called machine language .

 One consequence of how computers work is that if you want a computer to do something, you
have to feed a particular list of instructions (a program) telling it exactly what to do and how
to do it. You have to create the program in a language that the computer understands directly
(machine language). This is a detailed, tedious, exacting task. Something as simple as adding
two numbers together would have to be broken down into several steps, perhaps something
like the following:

 1. Copy the number in memory location 2000 to register 1.

 2. Copy the number in memory location 2004 to register 2.

 3. Add the contents of register 2 to the contents of register 1, leaving the answer in
register 1.

 4. Copy the contents of register 1 to memory location 2008.

 And you would have to represent each of these instructions with a numeric code!

 If writing a program in this manner sounds like something you’d like to do, you’ll be sad to
learn that the golden age of machine-language programming is long past. But if you prefer
something a little more enjoyable, open your heart to high-level programming languages.

 High-level Computer Languages and Compilers

 High-level programming languages, such as C, simplify your programming life in several ways.
First, you don’t have to express your instructions in a numeric code. Second, the instructions
you use are much closer to how you might think about a problem than they are to the detailed
approach a computer uses. Rather than worry about the precise steps a particular CPU would

ptg11524036

7Language Standards

have to take to accomplish a particular task, you can express your desires on a more abstract
level. To add two numbers, for example, you might write the following:

 total = mine + yours;

 Seeing code like this, you have a good idea what it does; looking at the machine-language
equivalent of several instructions expressed in numeric code is much less enlightening.

 Unfortunately, the opposite is true for a computer; to it, the high-level instruction is incom-
prehensible gibberish. This is where compilers enter the picture. The compiler is a program that
translates the high-level language program into the detailed set of machine language instruc-
tions the computer requires. You do the high-level thinking; the compiler takes care of the
tedious details.

 The compiler approach has another benefit. In general, each computer design has its own
unique machine language; so a program written in the machine language for, say, an Intel Core
i7 CPU means nothing to an ARM Cortex-A57 CPU. But you can match a compiler to a particu-
lar machine language. Therefore, with the right compiler or set of compilers, you can convert
the same high-level language program to a variety of different machine-language programs.
You solve a programming problem once, and then you let your compilers translate the solution
to a variety of machine languages.

 In short, high-level languages—such as C, Java, and Pascal—describe actions in a more abstract
form and aren’t tied to a particular CPU or instruction set. Also, high-level languages are easier
to learn and much easier to program in than are machine languages.

 Advances in Computing

 In 1964, Control Data Corporation announced the CDC 6600 computer. This room-filling
machine is considered to be the first supercomputer, and it had a starting price of about $6
million. It was the computer of choice for high-energy nuclear physics research. A modern
smartphone is several hundred times as capable in terms of computing power and memory. It
can show videos and play music, too. And it’s a phone.

 In 1964, FORTRAN was the dominant programming language, at least in engineering and sci-
ence. Programming languages haven’t evolved quite as dramatically as the hardware on which
they run. Nonetheless, the world of programming languages has changed. Languages have
provided more support first for structured programming, then for object-oriented programming
as part of the struggle to cope with larger and larger programming projects. Not only have new
languages come along, but existing languages have changed with the times.

 Language Standards

 Currently, many C implementations are available. Ideally, when you write a C program, it
should work the same on any implementation, providing it doesn’t use machine-specific
programming. For this to be true in practice, different implementations need to conform to a
recognized standard.

ptg11524036

8 Chapter 1 Getting Ready

 At first, there was no official standard for C. Instead, the first edition of The C Programming
Language by Brian Kernighan and Dennis Ritchie (1978) became the accepted standard, usually
referred to as K&R C or Classic C . In particular, the “C Reference Manual” in that book’s appen-
dix acted as the guide to C implementations. Compilers, for example, would claim to offer a
full K&R implementation. However, although this appendix defined the C language, it did not
define the C library. More than most languages, C depends on its library, so there is need for a
library standard, too. In the absence of any official standard, the library supplied with the Unix
implementation became a de facto standard.

 The First ANSI/ISO C Standard

 As C evolved and became more widely used on a greater variety of systems, the C community
realized it needed a more comprehensive, up-to-date, and rigorous standard. To meet this need,
the American National Standards Institute (ANSI) established a committee (X3J11) in 1983 to
develop a new standard, which was adopted formally in 1989. This standard (ANSI C) defined
both the language and a standard C library. The International Organization for Standardization
adopted a C standard (ISO C) in 1990. ISO C and ANSI C are essentially the same standard.
The final version of the ANSI/ISO standard is often referred to as C89 (because that’s when
ANSI approval came) or C90 (because that’s when ISO approval came). Also, because the ANSI
version came out first, people often used the term ANSI C .

 The committee had several guiding principles. Perhaps the most interesting was this: Keep the
spirit of C. The committee listed the following ideas as expressing part of that spirit:

 ■ Trust the programmer.

 ■ Don’t prevent the programmer from doing what needs to be done.

 ■ Keep the language small and simple.

 ■ Provide only one way to do an operation.

 ■ Make it fast, even if it is not guaranteed to be portable.

 By the last point, the committee meant that an implementation should define a particular
operation in terms of what works best for the target computer instead of trying to impose an
abstract, uniform definition. You’ll encounter examples of this philosophy as you learn the
language.

 The C99 Standard

 In 1994, a joint ANSI/ISO committee, known then as the C9X committee, began revising the
standard, an effort that resulted in the C99 standard. The committee endorsed the original
principles of the C90 standard, including keeping the language small and simple. The commit-
tee’s intent was not to add new features to the language except as needed to meet the new
goals. One of these main goals was to support international programming by, for example,
providing ways to deal with international character sets. A second goal was to “codify existing
practice to address evident deficiencies.” Thus, when meeting the need of moving C to 64-bit

ptg11524036

9Using C: Seven Steps

processors, the committee based the additions to the standard on the experiences of those who
dealt with this problem in real life. A third goal was to improve the suitability of C for doing
critical numeric calculations for scientific and engineering projects, making C a more appealing
alternative to FORTRAN.

 These three points—internationalization, correction of deficiencies, and improvement of
computational usefulness—were the main change-oriented goals. The remaining plans for
change were more conservative in nature—for example, minimizing incompatibilities with C90
and with C++ and keeping the language conceptually simple. In the committee’s words, “...the
committee is content to let C++ be the big and ambitious language.”

 The upshot is that C99 changes preserve the essential nature of C, and C remains a lean, clean,
efficient language. This book points out many of the C99 changes. However, although the
standard has been out for a while, not all compilers at this time fully implement all the C99
changes. You may find that some of them are not available on your system. Or you may find
that some C99 features are available only if you alter the compiler settings.

 The C11 Standard

 Maintaining a standard is a perpetual process, and in 2007 the Standards Committee commit-
ted to the next revision, C1X, which became realized as C11. The committee raised some new
guiding principles. One was that the “trust the programmer” goal should be tempered some-
what in the face of contemporary concerns of programming security and safety. The committee
also made some important observations. One was that C99 hasn’t been as well received and
supported by vendors as C90 was. As a consequence, some features of C99 became optional
for C11. One reason is that the committee felt that vendors serving the small machine market
shouldn’t be required to support features not used in their targeted environments. Another
observation was that the standard was being revised not because it was broken but because
there was a need to track new technologies. One example of this is the addition of optional
support for concurrent programming in response to the trend of using multiple processors in
computers. We look briefly at this topic, but exploring it is beyond the scope of this book.

 Note

 This book will use the terms ANSI C or, in a more international spirit, ANSI/ ISO C or just ISO C
to mean features common to C89/90 and later standards, and C99 and C11 to refer to new
features. Occasionally, it will refer to C90 (for example, when discussing when a feature was
first added to C).

 Using C: Seven Steps

 C, as you’ve seen, is a compiled language. If you are accustomed to using a compiled language,
such as Pascal or FORTRAN, you will be familiar with the basic steps in putting together a C
program. However, if your background is in an interpreted language, such as BASIC, or in a

ptg11524036

10 Chapter 1 Getting Ready

graphical interface–oriented language, such as Visual Basic, or if you have no background at
all, you need to learn how to compile. We’ll look at that process soon, and you’ll see that it is
straightforward and sensible. First, to give you an overview of programming, let’s break down
the act of writing a C program into seven steps (see Figure 1.3). Note that this is an idealiza-
tion. In practice, particularly for larger projects, you would go back and forth, using what you
learned at a later step to refine an earlier step.

Maintain and
modify the
program

Test and debug
the program

Run the program

Compile

Write the code

Design the program

Define the program objectives

 Figure 1.3 The seven steps of programming.

 Step 1: Define the Program Objectives

 Naturally enough, you should start with a clear idea of what you want the program to do.
Think in terms of the information your program needs, the feats of calculation and manipula-
tion the program needs to do, and the information the program should report back to you. At
this level of planning, you should be thinking in general terms, not in terms of some specific
computer language.

 Step 2: Design the Program

 After you have a conceptual picture of what your program ought to do, you should decide how
the program will go about it. What should the user interface be like? How should the program

ptg11524036

11Using C: Seven Steps

be organized? Who will the target user be? How much time do you have to complete the
program?

 You also need to decide how to represent the data in the program and, possibly, in auxiliary
files, as well as which methods to use to process the data. When you first learn programming
in C, the choices will be simple, but as you deal with more complex situations, you’ll find that
these decisions require more thought. Choosing a good way to represent the information can
often make designing the program and processing the data much easier.

 Again, you should be thinking in general terms, not about specific code, but some of your deci-
sions may be based on general characteristics of the language. For example, a C programmer
has more options in data representation than, say, a Pascal programmer.

 Step 3: Write the Code

 Now that you have a clear design for your program, you can begin to implement it by writing
the code. That is, you translate your program design into the C language. Here is where you
really have to put your knowledge of C to work. You can sketch your ideas on paper, but even-
tually you have to get your code into the computer. The mechanics of this process depend on
your programming environment. We’ll present the details for some common environments
soon. In general, you use a text editor to create what is called a source code file. This file contains
the C rendition of your program design. Listing 1.1 shows an example of C source code.

 Listing 1.1 Example of C Source Code

 #include <stdio.h>

 int main(void)

 {

 int dogs;

 printf("How many dogs do you have?\n");

 scanf("%d", &dogs);

 printf("So you have %d dog(s)!\n", dogs);

 return 0;

 }

 As part of this step, you should document your work. The simplest way is to use C’s comment
facility to incorporate explanations into your source code. Chapter 2 , “Introducing C,” will
explain more about using comments in your code.

 Step 4: Compile

 The next step is to compile the source code. Again, the details depend on your programming
environment, and we’ll look at some common environments shortly. For now, let’s start with a
more conceptual view of what happens.

ptg11524036

12 Chapter 1 Getting Ready

 Recall that the compiler is a program whose job is to convert source code into executable code.
 Executable code is code in the native language, or machine language , of your computer. This
language consists of detailed instructions expressed in a numeric code. As you read earlier,
different computers have different machine languages, and a C compiler translates C into a
particular machine language. C compilers also incorporate code from C libraries into the final
program; the libraries contain a fund of standard routines, such as printf() and scanf() ,
for your use. (More accurately, a program called a linker brings in the library routines, but the
compiler runs the linker for you on most systems.) The end result is an executable file contain-
ing code that the computer understands and that you can run.

 The compiler also checks that your program is valid C. If the compiler finds errors, it reports
them to you and doesn’t produce an executable file. Understanding a particular compiler’s
complaints is another skill you will pick up.

 Step 5: Run the Program

 Traditionally, the executable file is a program you can run. To run the program in many
common environments, including Windows Command-Prompt mode, Unix terminal mode,
and Linux terminal mode, just type the name of the executable file. Other environments, such
as VMS on a VAX, might require a run command or some other mechanism. Integrated develop-
ment environments (IDEs) , such as those provided for Windows and Macintosh environments,
allow you to edit and execute your C program from within the IDE by selecting choices from a
menu or by pressing special keys. The resulting program also can be run directly from the oper-
ating system by clicking or double-clicking the filename or icon.

 Step 6: Test and Debug the Program

 The fact that your program runs is a good sign, but it’s possible that it could run incorrectly.
Consequently, you should check to see that your program does what it is supposed to do.
You’ll find that some of your programs have mistakes— bugs , in computer jargon. Debugging is
the process of finding and fixing program errors. Making mistakes is a natural part of learning.
It seems inherent to programming, so when you combine learning and programming, you had
best prepare yourself to be reminded often of your fallibility. As you become a more powerful
and subtle programmer, your errors, too, will become more powerful and subtle.

 You have many opportunities to err. You can make a basic design error. You can implement
good ideas incorrectly. You can overlook unexpected input that messes up your program. You
can use C incorrectly. You can make typing errors. You can put parentheses in the wrong place,
and so on. You’ll find your own items to add to this list.

 Fortunately, the situation isn’t hopeless, although there might be times when you think it is.
The compiler catches many kinds of errors, and there are things you can do to help yourself
track down the ones that the compiler doesn’t catch. This book will give you debugging advice
as you go along.

ptg11524036

13Programming Mechanics

 Step 7: Maintain and Modify the Program

 When you create a program for yourself or for someone else, that program could see extensive
use. If it does, you’ll probably find reasons to make changes in it. Perhaps there is a minor bug
that shows up only when someone enters a name beginning with Zz , or you might think of
a better way to do something in the program. You could add a clever new feature. You might
adapt the program so that it runs on a different computer system. All these tasks are greatly
simplified if you document the program clearly and if you follow sound design practices.

 Commentary

 Programming is not usually as linear as the process just described. Sometimes you have to go
back and forth between steps. For instance, when you are writing code, you might find that
your plan was impractical. You may see a better way of doing things or, after you see how a
program runs, you might feel motivated to change the design. Documenting your work helps
you move back and forth between levels.

 Most learners tend to neglect steps 1 and 2 (defining program objectives and designing the
program) and go directly to step 3 (writing the program). The first programs you write are
simple enough that you can visualize the whole process in your head. If you make a mistake,
it’s easy to find. As your programs grow longer and more complex, mental visualizations begin
to fail, and errors get harder to find. Eventually, those who neglect the planning steps are
condemned to hours of lost time, confusion, and frustration as they produce ugly, dysfunc-
tional, and abstruse programs. The larger and more complex the job is, the more planning it
requires.

 The moral here is that you should develop the habit of planning before coding. Use the ancient
but honorable pen-and-pencil technology to jot down the objectives of your program and to
outline the design. If you do so, you eventually will reap substantial dividends in time saved
and satisfaction gained.

 Programming Mechanics

 The exact steps you must follow to produce a program depend on your computer environment.
Because C is portable, it’s available in many environments, including Unix, Linux, MS-DOS
(yes, some people still use it), Windows, and Macintosh OS. There’s not enough space in this
book to cover all environments, particularly because particular products evolve, die, and are
replaced.

 First, however, let’s look at some aspects shared by many C environments, including the five
we just mentioned. You don’t really need to know what follows to run a C program, but it is
good background. It can also help you understand why you have to go through some particular
steps to get a C program.

 When you write a program in the C language, you store what you write in a text file called a
 source code file . Most C systems, including the ones we mentioned, require that the name of

ptg11524036

14 Chapter 1 Getting Ready

the file end in .c (for example, wordcount.c and budget.c). The part of the name before the
period is called the basename , and the part after the period is called the extension . Therefore,
 budget is a basename and c is the extension. The combination budget.c is the filename. The
name should also satisfy the requirements of the particular computer operating system. For
example, MS-DOS is an older operating system for IBM PCs and clones. It requires that the
basename be no more than eight characters long, so the wordcount.c filename mentioned
earlier would not be a valid DOS filename. Some Unix systems place a 14-character limit on the
whole name, including the extension; other Unix systems allow longer names, up to 255 char-
acters. Linux, Windows, and Macintosh OS also allow long names.

 So that we’ll have something concrete to refer to, let’s assume we have a source file called
 concrete.c containing the C source code in Listing 1.2 .

 Listing 1.2 The concrete.c Program

 #include <stdio.h>

 int main(void)

 {

 printf("Concrete contains gravel and cement.\n");

 return 0;

 }

 Don’t worry about the details of the source code file shown in Listing 1.2 ; you’ll learn about
them in Chapter 2 .

 Object Code Files, Executable Files, and Libraries

 The basic strategy in C programming is to use programs that convert your source code file to an
executable file, which is a file containing ready-to-run machine language code. C implementa-
tions typically do this in two steps: compiling and linking. The compiler converts your source
code to an intermediate code, and the linker combines this with other code to produce the
executable file. C uses this two-part approach to facilitate the modularization of programs. You
can compile individual modules separately and then use the linker to combine the compiled
modules later. That way, if you need to change one module, you don’t have to recompile the
other ones. Also, the linker combines your program with precompiled library code.

 There are several choices for the form of the intermediate files. The most prevalent choice, and
the one taken by the implementations described here, is to convert the source code to machine
language code, placing the result in an object code file , or object file for short. (This assumes that
your source code consists of a single file.) Although the object file contains machine language
code, it is not ready to run. The object file contains the translation of your source code, but it is
not yet a complete program.

 The first element missing from the object code file is something called startup code , which is
code that acts as an interface between your program and the operating system. For example,

ptg11524036

15Programming Mechanics

you can run an IBM PC compatible under MS Windows or under Linux. The hardware is
the same in either case, so the same object code would work with both, but you would need
different startup code for Windows than you would for Linux because these systems handle
programs differently from one another.

 The second missing element is the code for library routines. Nearly all C programs make use
of routines (called functions) that are part of the standard C library. For example, concrete.c
uses the function printf() . The object code file does not contain the code for this function; it
merely contains instructions saying to use the printf() function. The actual code is stored in
another file, called a library . A library file contains object code for many functions.

 The role of the linker is to bring together these three elements—your object code, the standard
startup code for your system, and the library code—and put them together into a single file, the
executable file. For library code, the linker extracts only the code needed for the functions you
use from the library (see Figure 1.4).

concrete.c

concrete.obj

concrete.exe

source code

Compiler

object code

library code

executable code

Linker

start-up code

 Figure 1.4 Compiler and linker.

 In short, an object file and an executable file both consist of machine language instructions.
However, the object file contains the machine language translation only for the code you
used, but the executable file also has machine code for the library routines you use and for the
startup code.

ptg11524036

16 Chapter 1 Getting Ready

 On some systems, you must run the compile and link programs separately. On other systems,
the compiler starts the linker automatically, so you have to give only the compile command.

 Now let’s look at some specific systems.

 Unix System

 Because C’s popularity and existence began on Unix systems, we will start there. (Note: By
“Unix,” we include systems such as FreeBSD, which descends from Unix but can’t use the name
for legal reasons.)

 Editing on a Unix System

 Unix C does not have its own editor. Instead, you use one of the general-purpose Unix editors,
such as emacs, jove, vi, or an X Window System text editor.

 Your two main responsibilities are typing the program correctly and choosing a name for the
file that will store the program. As discussed, the name should end with .c . Note that Unix
distinguishes between uppercase and lowercase. Therefore, budget.c , BUDGET.c , and Budget.c
are three distinct and valid names for C source files, but BUDGET.C is not a valid name because
it uses an uppercase C instead of a lowercase c .

 Using the vi editor, we prepared the following program and stored it in a file called inform.c .

 #include <stdio.h>

 int main(void)

 {

 printf("A .c is used to end a C program filename.\n");

 return 0;

 }

 This text is the source code, and inform.c is the source file. The important point here is that
the source file is the beginning of a process, not the end.

 Compiling on a Unix System

 Our program, although undeniably brilliant, is still gibberish to a computer. A computer
doesn’t understand things such as #include and printf . (At this point, you probably don’t
either, but you will soon learn, whereas the computer won’t.) As we discussed earlier, we need
the help of a compiler to translate our code (source code) to the computer’s code (machine
code). The result of these efforts will be the executable file, which contains all the machine
code that the computer needs to get the job done.

 Historically, the Unix C compiler, invoked with the cc command, defined the language. But it
didn’t keep pace with the developing standard, and it has been retired. However, Unix systems
typically provide a C compiler from some other source, and then make the cc command an

ptg11524036

17Programming Mechanics

alias for that compiler. So you still can proceed with the same command, even though it may
invoke different compilers on different systems.

 To compile the inform.c program, type the following:

 cc inform.c

 After a moment, the Unix prompt will return, telling you that the deed is done. You might get
warnings and error messages if you failed to write the program properly, but let’s assume you
did everything right. (If the compiler complains about the word void , your system has not yet
updated to an ANSI C compiler. We’ll talk more about standards soon. Meanwhile, just delete
the word void from the example.) If you use the ls command to list your files, you will find
that there is a new file called a.out (see Figure 1.5). This is the executable file containing the
translation (or compilation) of the program. To run it, just type

 a.out

 and wisdom pours forth:

 A .c is used to end a C program filename.

 If you want to keep the executable file (a.out), you should rename it. Otherwise, the file is
replaced by a new a.out the next time you compile a program.

name.c

a.out

source code

enter
source code

Compiler

executable code

run program by
typing filename

a.out

Text Editor

 Figure 1.5 Preparing a C program using Unix.

ptg11524036

18 Chapter 1 Getting Ready

 What about the object code? The cc compiler creates an object code file having the same
basename as the source code, but with an .o extension. In our example, the object code file
is called inform.o , but you won’t find it, because the linker removes it once the executable
program has been completed. However, if the original program used more than one source
code file, the object code files would be saved. When we discuss multiple-file programs later in
the text, you will see that this is a fine idea.

 The GNU Compiler Collection and the LLVM Project

 The GNU Project, dating from 1987, is a mass collaboration that has developed a large body of
free Unix-like software. (GNU stands for “GNU’s Not Unix.”) One of its products is the GNU
Compiler Collection, or GCC, which includes the GCC C compiler. GCC is under constant
development, guided by a steering committee, and its C compiler closely tracks changing C
standards. Versions of GCC are available for a wide variety of hardware platforms and operating
systems, including Unix, Linux, and Windows. The GCC C compiler can be invoked with the
 gcc command. And many systems using gcc will make cc an alias for gcc .

 The LLVM Project provides a second replacement for cc . The project is an open-source collec-
tion of compiler-related software dating from a 2000 research project at the University of
Illinois. Its Clang compiler processes C code and can be invoked as clang . Available on several
platforms, including Linux, Clang became the default C compiler for FreeBSD in late 2012. Like
GCC, Clang tracks the C standard pretty well.

 Both accept a -v option for version information, so on systems using the cc alias for either the
 gcc or clang command, the combination

 cc -v

 shows which compiler and which version you are using.

 Both gcc and clang commands, depending on the version, may require run-time options to
invoke more recent C standards:

 gcc -std=c99 inform.c

 gcc -std=c1x inform.c

 gcc -std=c11 inform.c

 The first example invokes the C99 standard, the second invokes the draft C11 standard for
GCC versions prior to the acceptance of the standard, and the third invokes the C11 standard
for GCC versions that followed the acceptance. The Clang compiler uses the same flags.

 Linux Systems

 Linux is a popular open-source, Unix-like operating system that runs on a variety of platforms,
including PCs and Macs. Preparing C programs on Linux is much the same as for Unix systems,
except that you would use the GCC public domain C compiler that’s provided by GNU. The
compile command looks like this:

 gcc inform.c

ptg11524036

19Programming Mechanics

 Note that installing GCC may be optional when installing Linux, so you (or someone) might
have to install GCC if it wasn’t installed earlier. Typically, the installation makes cc an alias for
 gcc , so you can use cc in the command line instead of gcc if you like.

 You can obtain further information about GCC, including information about new releases at
 http://www.gnu.org/software/gcc/index.html .

 Command-Line Compilers for the PC

 C compilers are not part of the standard Windows package, so you may need to obtain and
install a C compiler. Cygwin and MinGW are free downloads that make the GCC compiler
available for command-line use on a PC. Cygwin runs in its own window, which has a
Command-Prompt look but which imitates a Linux command-line environment. MinGW, on
the other hand runs in the Windows Command-Prompt mode. These come with the newest (or
near-newest) version of GCC, which supports C99 and at least some of C11. The Borland C++
Compiler 5.5 is another free download; it supports C90.

 Source code files should be text files, not word processor files. (Word processor files contain a
lot of additional information about fonts and formatting.) You should use a text editor, such as
Windows Notepad. You can use a word processor if you use the Save As feature to save the file
in text mode. The file should have a .c extension. Some word processors automatically add a
 .txt extension to text files. If this happens to you, you need to change the filename, replacing
 txt with c .

 C compilers for the PC typically, but not always, produce intermediate object code files having
an .obj extension. Unlike Unix compilers, these compilers typically don’t remove these files
when done. Some compilers produce assembly language files with .asm extensions or use some
special format of their own.

 Some compilers run the linker automatically after compiling; others might require that you run
the linker manually. Linking results in the executable file, which appends the .EXE extension
to the original source code basename. For example, compiling and linking a source code file
called concrete.c produces a file called concrete.exe . You can run the program by typing
the basename at the command line:

 C>concrete

 Integrated Development Environments (Windows)

 Quite a few vendors, including Microsoft, Embarcadero, and Digital Mars, offer Windows-based
integrated development environments, or IDEs . (These days, most are combined C and C++
compilers.) Free downloads include Microsoft Visual Studio Express and Pelles C. All have fast,
integrated environments for putting together C programs. The key point is that each of these
programs has a built-in editor you can use to write a C program. Each provides menus that
enable you to name and save your source code file, as well as menus that allow you to compile
and run your program without leaving the IDE. Each dumps you back into the editor if the

http://www.gnu.org/software/gcc/index.html

ptg11524036

20 Chapter 1 Getting Ready

compiler finds any errors, and each identifies the offending lines and matches them to the
appropriate error messages.

 The Windows IDEs can be a little intimidating at first because they offer a variety of targets —
that is, a variety of environments in which the program will be used. For example, they might
give you a choice of 32-bit Windows programs, 64-bit Windows programs, dynamic link library
files (DLLs), and so on. Many of the targets involve bringing in support for the Windows
graphical interface. To manage these (and other) choices, you typically create a project to which
you then add the names of the source code files you’ll be using. The precise steps depend on
the product you use. Typically, you first use the File menu or Project menu to create a project.
What’s important is choosing the correct form of project. The examples in this book are generic
examples designed to run in a simple command-line environment. The various Windows IDEs
provide one or more choices to match this undemanding assumption. Microsoft Visual Studio,
for example, offers the Win32 Console Application option. For other systems, look for an
option using terms such as DOS EXE, Console, or Character Mode executable. These modes will
run your executable program in a console-like window. After you have the correct project type,
use the IDE menu to open a new source code file. For most products, you can do this by using
the File menu. You may have to take additional steps to add the source file to the project.

 Because the Windows IDEs typically handle both C and C++, you need to indicate that you
want a C program. With some products you use the project type to indicate that you want
to use C. With other products, such as Microsoft Visual C++, you use the .c file extension to
indicate that you want to use C rather than C++. However, most C programs also work as C++
programs. Reference Section IX, “Differences Between C and C++,” compares C and C++.

 One problem you might encounter is that the window showing the program execution
vanishes when the program terminates. If that is the case for you, you can make the program
pause until you press the Enter key. To do that, add the following line to the end of the
program, just before the return statement:

 getchar();

 This line reads a keystroke, so the program will pause until you press the Enter key. Sometimes,
depending on how the program functions, there might already be a keystroke waiting. In that
case, you’ll have to use getchar() twice:

 getchar();

 getchar();

 For example, if the last thing the program did was ask you to enter your weight, you would
have typed your weight and then pressed the Enter key to enter the data. The program would
read the weight, the first getchar() would read the Enter key, and the second getchar()
would cause the program to pause until you press Enter again. If this doesn’t make a lot of
sense to you now, it will after you learn more about C input. And we’ll remind you later about
this approach.

 Although the various IDEs have many broad principles in common, the details vary from
product to product and, within a product line, from version to version. You’ll have to do some

ptg11524036

21Programming Mechanics

experimenting to learn how your compiler works. You might even have to read the manual or
try an online tutorial.

 Microsoft Visual Studio and the C Standard

 Microsoft Visual Studio and the freeware Microsoft Visual Studio Express have the greatest
presence in Windows software development, so their relationship to the C standards is of
some importance. In brief, Microsoft has encouraged programmers to shift from C to C++ or
C#. Visual Studio supports C89/90, but its support for later standards, to date, consists of
supporting those new features that also are found in C++, such as the long long type. Also,
as of the 2012 edition, Visual Studio doesn’t offer C as one of the choices for project type.
However, you can still use Visual Studio with the vast majority of programs in this book. One
choice is just to choose the C++ option, then Win32 Console, then Empty Project in Application
settings. Nearly all of C is compatible with C++, so most of the C programs in this book also
work as C++ programs. Or, after choosing the C++ option, you can use the .c extension
instead of the default .cpp extension for the source file, and the compiler will use C rules
instead of C++ rules.

 The Windows/Linux Option

 Many Linux distributions can be installed from Windows to set up a dual-boot system. Some of
your storage will be set aside for a Linux system, and you then can boot to either Windows or
Linux. You can’t run a Linux program from Windows or vice versa, and you can’t access Linux
files from Windows, but you can access Windows documents from Linux.

 C on the Macintosh

 Currently, Apple offers its Xcode development system as a free download. (In the past, some-
times it has been free, sometimes available for a modest charge.) It lets you choose from several
programming languages, including C.

 Xcode, with its capability to handle several programming languages, to target multiple plat-
forms, and to develop large-scale projects, can seem intimidating. But you need learn just
enough to produce simple C programs. With Xcode 4.6, use the File menu to select New,
Project, OS X Application Command Line Tool, and then enter a product name and select C
for the Type. Xcode uses either the Clang or the GCC C compiler for C code. It used to use
GCC by default, and now uses Clang by default. You can use Xcode settings to choose which
compiler it uses and also which C standard to support. (Due to licensing matters, the version of
Clang available with Xcode is more recent than the GCC version.)

 Mac OS X is built on Unix, and the Terminal utility opens a window that lets you run programs
in a Unix command-line environment. Apple doesn’t provide a command-line compiler as
part of its standard package, but if you download Xcode, you can also download optional
command-line tools that enable you to use the clang and the gcc commands to compile in
command-line mode.

ptg11524036

22 Chapter 1 Getting Ready

 How This Book Is Organized

 There are many ways to organize information. One of the most direct approaches is to present
everything about topic A, everything about topic B, and so on. This is particularly useful for a
reference so you can find all the information about a given topic in one place. But usually it’s
not the best sequence for learning a subject. For instance, if you began learning English by first
learning all the nouns, your ability to express ideas would be severely limited. Sure, you could
point to objects and shout their names, but you’d be much better equipped to express yourself
if you learned just a few nouns, verbs, adjectives, and so on, along with a few rules about how
those parts relate to one another.

 To provide you with a more balanced intake of information, this book uses a spiral approach
of introducing several topics in earlier chapters and returning later to discuss them more fully.
For example, understanding functions is essential to understanding C. Consequently, several of
the early chapters include some discussion of functions so that when you reach the full discus-
sion in Chapter 9 , “Functions,” you’ll already have achieved some ease about using functions.
Similarly, early chapters preview strings and loops so that you can begin using these useful
tools in your programs before learning about them in detail.

 Conventions Used in This Book

 We are almost ready to begin studying the C language itself. This section covers some of the
conventions we use in presenting material.

 Typeface

 For text representing programs and computer input and output, we use a type font that resem-
bles what you might see on a screen or on printed output. We have already used it a few times.
In case it slipped your notice, the font looks like the following:

 #include <stdio.h>

 int main(void)

 {

 printf("Concrete contains gravel and cement.\n");

 return 0;

 }

 The same monospace type is for code-related terms used in the text, such as main() , and for
filenames, such as stdio.h . The book uses italicized monospace for placeholder terms for
which you are expected to substitute specific terms, as in the following model of a declaration:

 type_name variable_name;

 Here, for instance, you might replace type_name with int and variable_name with
 zebra_coun t.

ptg11524036

23Conventions Used in This Book

 Program Output

 Output from the computer is printed in the same format, with the exception that user input
is shown in boldface type. For instance, the following is program output from an example in
 Chapter 14 , “Structures and Other Data Forms”:

 Please enter the book title.

 Press [enter] at the start of a line to stop.

 My Life as a Budgie

 Now enter the author.

 Mack Zackles

 The lines printed in normal computer font are program output, and the boldface line is user
input.

 There are many ways you and a computer can communicate with each other. However, we will
assume that you type in commands by using a keyboard and that you read the response on a
screen.

 Special Keystrokes

 Usually, you send a line of instructions by pressing a key labeled Enter, c/r, Return, or some
variation of these. We refer to this key in the text as the Enter key . Normally, the book takes it
for granted that you press the Enter key at the end of each line of input. However, to clarify
particular points, a few examples explicitly show the Enter key, using the symbol [enter] to
represent it. The brackets mean that you press a single key rather than type the word enter .

 We also refer to control characters, such as Ctrl+D. This notation means to press the D key
while you are pressing the key labeled Ctrl (or perhaps Control).

 Systems Used in Preparing This Book

 Some aspects of C, such as the amount of space used to store a number, depend on the system.
When we give examples and refer to “our system,” we usually speak of an iMac running under
OS X 10.8.4 and using the Xcode 4.6.2 development system with the Clang 3.2 compiler. Most
of the programs also have been compiled using Microsoft Visual Studio Express 2012 and Pelles
C 7.0 on a Windows 7 system, and GCC 4.7.3 on an Ubuntu 13.04 Linux system.

 You can download the code for this book’s examples if you register the book at www.informit.
com/register .

 Your System—What You Need

 You need to have a C compiler or access to one. C runs on an enormous variety of computer
systems, so you have many choices. Do make sure that you use a C compiler designed for
your particular system. Some of the examples in this book require support for the C99 or C11
standards, but most of the examples will work with a C90 compiler. If the compiler you use is

http://www.informit.com/register
http://www.informit.com/register

ptg11524036

24 Chapter 1 Getting Ready

pre-ANSI/ISO, you will have to make adjustments, probably often enough to encourage you to
seek something newer.

 Most compiler vendors offer special pricing to students and educators, so if you fall into that
category, check the vendor websites.

 Special Elements

 The book includes several special elements that highlight particular points: Sidebars, Tips,
Cautions, and Notes. The following illustrates their appearances and uses:

 Sidebar

 A sidebar provides a deeper discussion or additional background to help illuminate a topic.

 Tip

 Tips present short, helpful guides to particular programming situations.

 Caution

 A caution alerts you to potential pitfalls.

 Note

 The notes provide a catchall category for comments that don’t fall into one of the other
categories.

 Summary

 C is a powerful, concise programming language. It is popular because it offers useful program-
ming tools, good control over hardware, and because C programs are easier than most to trans-
port from one system to another.

 C is a compiled language. C compilers and linkers are programs that convert C language source
code into executable code.

 Programming in C can be taxing, difficult, and frustrating, but it can also be intriguing, excit-
ing, and satisfying. We hope you find it as enjoyable and fascinating as we do.

ptg11524036

25Programming Exercise

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. What does portability mean in the context of programming?

 2. Explain the difference between a source code file, object code file, and executable file.

 3. What are the seven major steps in programming?

 4. What does a compiler do?

 5. What does a linker do?

 Programming Exercise

 We don’t expect you to write C code yet, so this exercise concentrates on the earlier stages of
the programming process.

 1. You have just been employed by MacroMuscle, Inc. (Software for Hard Bodies). The
company is entering the European market and wants a program that converts inches
to centimeters (1 inch = 2.54 cm). The company wants the program set up so that it
prompts the user to enter an inch value. Your assignment is to define the program
objectives and to design the program (steps 1 and 2 of the programming process).

ptg11524036

This page intentionally left blank

ptg11524036

 2
 Introducing C

 You will learn about the following in this chapter:

 ■ Operator:

 =
 ■ Functions:

 main() , printf()
 ■ Putting together a simple C program

 ■ Creating integer-valued variables, assigning them values, and displaying those values
onscreen

 ■ The newline character

 ■ How to include comments in your programs, create programs containing more than one
function, and find program errors

 ■ What keywords are

 What does a C program look like? If you skim through this book, you’ll see many examples.
Quite likely, you’ll find that C looks a little peculiar, sprinkled with symbols such as
{, cp->tort , and *ptr++ . As you read through this book, however, you will find that the
appearance of these and other characteristic C symbols grows less strange, more familiar, and
perhaps even welcome! Or, if you already are familiar with one of C’s many descendants, you
might feel as if you are coming home to the source. In this chapter, we begin by presenting a
simple sample program and explaining what it does. At the same time, we highlight some of
C’s basic features.

 A Simple Example of C

 Let’s take a look at a simple C program. This program, shown in Listing 2.1 , serves to point out
some of the basic features of programming in C. Before you read the upcoming line-by-line
explanation of the program, read through Listing 2.1 to see whether you can figure out for
yourself what it will do.

ptg11524036

28 Chapter 2 Introducing C

 Listing 2.1 The first.c Program

 #include <stdio.h>

 int main(void) /* a simple program */

 {

 int num; /* define a variable called num */

 num = 1; /* assign a value to num */

 printf("I am a simple "); /* use the printf() function */

 printf("computer.\n");

 printf("My favorite number is %d because it is first.\n",num);

 return 0;

 }

 If you think this program will print something on your screen, you’re right! Exactly what will
be printed might not be apparent, so run the program and see the results. First, use your favor-
ite editor (or your compiler’s favorite editor) to create a file containing the text from Listing
 2.1 . Give the file a name that ends in .c and that satisfies your local system’s name require-
ments. You can use first.c , for example. Now compile and run the program. (Check Chapter
 1 , “Getting Ready,” for some general guidelines to this process.) If all went well, the output
should look like the following:

 I am a simple computer.

 My favorite number is 1 because it is first.

 All in all, this result is not too surprising, but what happened to the \n s and the %d in the
program? And some of the lines in the program do look strange. It’s time for an explanation.

 Program Adjustments

 Did the output for this program briefly flash onscreen and then disappear? Some windowing
environments run the program in a separate window and then automatically close the window
when the program finishes. In this case, you can supply extra code to make the window stay
open until you strike a key. One way is to add the following line before the return statement:

 getchar();

 This code causes the program to wait for a keystroke, so the window remains open until you
press a key. You’ll learn more about getchar() in Chapter 8 , “Character Input/Output and
Input Validation.”

 The Example Explained

 We’ll take two passes through the program’s source code. The first pass (“Pass 1: Quick
Synopsis”) highlights the meaning of each line to help you get a general feel for what’s going

ptg11524036

29The Example Explained

on. The second pass (“Pass 2: Program Details”) explores specific implications and details to
help you gain a deeper understanding.

 Figure 2.1 summarizes the parts of a C program; it includes more elements than our first
example uses.

typical C
program

C
language

keywords
identifiers
operators

data

functions are the
building blocks of C

5 types of
statements in

C language

preprocessor instructions

main () is always the
first function called

functions are
made up of
statements

#include

int main(void)

statements

statements

statements

declaration

assignment

function

control

null

function a()

function b()

 Figure 2.1 Anatomy of a C program.

ptg11524036

30 Chapter 2 Introducing C

 Pass 1: Quick Synopsis

 This section presents each line from the program followed by a short description; the next
section (Pass 2) explores the topics raised here more fully.

 #include <stdio.h> include another file

 This line tells the compiler to include the information found in the file stdio.h , which is a
standard part of all C compiler packages; this file provides support for keyboard input and for
displaying output.

 int main(void) a function name

 C programs consist of one or more functions , the basic modules of a C program. This program
consists of one function called main . The parentheses identify main() as a function name.
The int indicates that the main() function returns an integer, and the void indicates that
 main() doesn’t take any arguments. These are matters we’ll go into later. Right now, just
accept both int and void as part of the standard ANSI C way for defining main() . (If you
have a pre-ANSI C compiler, omit void ; you may want to get something more recent to avoid
incompatibilities.)

 /* a simple program */ a comment

 The symbols /* and */ enclose comments—remarks that help clarify a program. They are
intended for the reader only and are ignored by the compiler.

 { beginning of the body of the function

 This opening brace marks the start of the statements that make up the function. A closing brace
(}) marks the end of the function definition.

 int num; a declaration statement

 This statement announces that you are using a variable called num and that num will be an int
(integer) type.

 num = 1; an assignment statement

 The statement num = 1; assigns the value 1 to the variable called num .

 printf("I am a simple "); a function call statement

 The first statement using printf() displays the phrase I am a simple on your screen,
leaving the cursor on the same line. Here printf() is part of the standard C library. It’s termed
a function , and using a function in the program is termed calling a function .

 printf("computer.\n"); another function call statement

 The next call to the printf() function tacks on computer to the end of the last phrase
printed. The \n is code telling the computer to start a new line—that is, to move the cursor to
the beginning of the next line.

 printf("My favorite number is %d because it is first.\n", num);

ptg11524036

31The Example Explained

 The last use of printf() prints the value of num (which is 1) embedded in the phrase in
quotes. The %d instructs the computer where and in what form to print the value of num .

 return 0; a return statement

 A C function can furnish, or return , a number to the agency that used it. For the present, just
regard this line as the appropriate closing for a main() function.

 } the end

 As promised, the program ends with a closing brace.

 Pass 2: Program Details

 Now that you have an overview of Listing 2.1 , we’ll take a closer look. Once again, we’ll
examine the individual lines from the program, this time using each line of code as a starting
point for going deeper into the details behind the code and as a basis for developing a more
general perspective of C programming features.

 #include Directives and Header Files

 #include <stdio.h>

 This is the line that begins the program. The effect of #include <stdio.h> is the same as
if you had typed the entire contents of the stdio.h file into your file at the point where the
 #include line appears. In effect, it’s a cut-and-paste operation. include files provide a conve-
nient way to share information that is common to many programs.

 The #include statement is an example of a C preprocessor directive . In general, C compilers
perform some preparatory work on source code before compiling; this is termed preprocessing .

 The stdio.h file is supplied as part of all C compiler packages. It contains information about
input and output functions, such as printf() , for the compiler to use. The name stands for
 standard input/output header . C people call a collection of information that goes at the top of a
file a header , and C implementations typically come with several header files.

 For the most part, header files contain information used by the compiler to build the final
executable program. For example, they may define constants or indicate the names of functions
and how they should be used. But the actual code for a function is in a library file of precom-
piled code, not in a header file. The linker component of the compiler takes care of finding the
library code you need. In short, header files help guide the compiler in putting your program
together correctly.

 ANSI/ISO C has standardized which header files a C compiler must make available. Some
programs need to include stdio.h , and some don’t. The documentation for a particular C
implementation should include a description of the functions in the C library. These function
descriptions identify which header files are needed. For example, the description for printf()
says to use stdio.h . Omitting the proper header file might not affect a particular program, but

ptg11524036

32 Chapter 2 Introducing C

it is best not to rely on that. Each time this book uses library functions, it will use the include
files specified by the ANSI/ISO standard for those functions.

 Note Why Input and Output Are Not Built In

 Perhaps you are wondering why facilities as basic as input and output aren’t included auto-
matically. One answer is that not all programs use this I/O (input/output) package, and part
of the C philosophy is to avoid carrying unnecessary weight. This principle of economic use
of resources makes C popular for embedded programming—for example, writing code for a
chip that controls an automotive fuel system or a Blu-ray player. Incidentally, the #include
line is not even a C language statement! The # symbol in column 1 identifies the line as one
to be handled by the C preprocessor before the compiler takes over. You will encounter more
examples of preprocessor instructions later, and Chapter 16 , “The C Preprocessor and the C
Library,” discusses this topic more fully.

 The main() Function

 int main(void)

 This next line from the program proclaims a function by the name of main . True, main is a
rather plain name, but it is the only choice available. A C program (with some exceptions we
won’t worry about) always begins execution with the function called main() . You are free to
choose names for other functions you use, but main() must be there to start things. What
about the parentheses? They identify main() as a function. You will learn more about func-
tions soon. For now, just remember that functions are the basic modules of a C program.

 The int is the main() function’s return type. That means that the kind of value main() can
return is an integer. Return where? To the operating system—we’ll come back to this question
in Chapter 6 , “C Control Statements: Looping.”

 The parentheses following a function name generally enclose information being passed along
to the function. For this simple example, nothing is being passed along, so the parentheses
contain the word void . (Chapter 11 , “Character Strings and String Functions,” introduces a
second format that allows information to be passed to main() from the operating system.)

 If you browse through ancient C code, you’ll often see programs starting off with the following
format:

 main()

 The C90 standard grudgingly tolerated this form, but the C99 and C11 standards don’t. So even
if your current compiler lets you do this, don’t.

 The following is another form you may see:

 void main()

 Some compilers allow this, but none of the standards have ever listed it as a recognized option.
Therefore, compilers don’t have to accept this form, and several don’t. Again, stick to the

ptg11524036

33The Example Explained

standard form, and you won’t run into problems if you move a program from one compiler to
another.

 Comments

 /* a simple program */

 The parts of the program enclosed in the /* */ symbols are comments. Using comments
makes it easier for someone (including yourself) to understand your program. One nice feature
of C comments is that they can be placed anywhere, even on the same line as the material they
explain. A longer comment can be placed on its own line or even spread over more than one
line. Everything between the opening /* and the closing */ is ignored by the compiler. The
following are some valid and invalid comment forms:

 /* This is a C comment. */

 /* This comment, being somewhat wordy, is spread over

 two lines. */

 /*

 You can do this, too.

 */

 /* But this is invalid because there is no end marker.

 C99 added a second style of comments, one popularized by C++ and Java. The new style uses
the symbols // to create comments that are confined to a single line:

 // Here is a comment confined to one line.

 int rigue; // Such comments can go here, too.

 Because the end of the line marks the end of the comment, this style needs comment markers
just at the beginning of the comment.

 The newer form is a response to a potential problem with the old form. Suppose you have the
following code:

 /*

 I hope this works.

 */

 x = 100;

 y = 200;

 /* Now for something else. */

 Next, suppose you decide to remove the fourth line and accidentally delete the third line (the
 */), too. The code then becomes

 /*

 I hope this works.

 y = 200;

 /* Now for something else. */

ptg11524036

34 Chapter 2 Introducing C

 Now the compiler pairs the /* in the first line with the */ in the fourth line, making all four
lines into one comment, including the line that was supposed to be part of the code. Because
the // form doesn’t extend over more than one line, it can’t lead to this “disappearing code”
problem.

 Some compilers may not support this feature; others may require changing a compiler setting
to enable C99 or C11 features.

 This book, operating on the theory that needless consistency can be boring, uses both kinds of
comments.

 Braces, Bodies, and Blocks

 {

 ...

 }

 In Listing 2.1 , braces delimited the main() function. In general, all C functions use braces to
mark the beginning as well as the end of the body of a function. Their presence is mandatory,
so don’t leave them out. Only braces ({ }) work for this purpose, not parentheses (()) and
not brackets ([]).

 Braces can also be used to gather statements within a function into a unit or block. If you are
familiar with Pascal, ADA, Modula-2, or Algol, you will recognize the braces as being similar to
 begin and end in those languages.

 Declarations

 int num;

 This line from the program is termed a declaration statement . The declaration statement is one
of C’s most important features. This particular example declares two things. First, somewhere in
the function, you have a variable called num . Second, the int proclaims num as an integer—that
is, a number without a decimal point or fractional part. (int is an example of a data type .) The
compiler uses this information to arrange for suitable storage space in memory for the num vari-
able. The semicolon at the end of the line identifies the line as a C statement or instruction. The
semicolon is part of the statement, not just a separator between statements as it is in Pascal.

 The word int is a C keyword identifying one of the basic C data types. Keywords are the words
used to express a language, and you can’t use them for other purposes. For instance, you can’t
use int as the name of a function or a variable. These keyword restrictions don’t apply outside
the language, however, so it is okay to name a cat or favorite child int . (Local custom or law
may void this option in some locales.)

 The word num in this example is an identifier —that is, a name you select for a variable, a func-
tion, or some other entity. So the declaration connects a particular identifier with a particular
location in computer memory, and it also establishes the type of information, or data type, to
be stored at that location.

ptg11524036

35The Example Explained

 In C, all variables must be declared before they are used. This means that you have to provide
lists of all the variables you use in a program and that you have to show which data type each
variable is. Declaring variables is considered a good programming technique, and, in C, it is
mandatory.

 Traditionally, C has required that variables be declared at the beginning of a block with no
other kind of statement allowed to come before any of the declarations. That is, the body of
 main() might look like the following:

 int main() // traditional rules

 {

 int doors;

 int dogs;

 doors = 5;

 dogs = 3;

 // other statements

 }

 C99 and C11, following the practice of C++, let you place declarations about anywhere in
a block. However, you still must declare a variable before its first use. So if your compiler
supports this feature, your code can look like the following:

 int main() // current C rules

 {

 // some statements

 int doors;

 doors = 5; // first use of doors

 // more statements

 int dogs;

 dogs = 3; // first use of dogs

 // other statements

 }

 For greater compatibility with older systems, this book will stick to the original convention.

 At this point, you probably have three questions. First, what are data types? Second, what
choices do you have in selecting a name? Third, why do you have to declare variables at all?
Let’s look at some answers.

 Data Types
 C deals with several kinds (or types) of data: integers, characters, and floating point, for
example. Declaring a variable to be an integer or a character type makes it possible for the
computer to store, fetch, and interpret the data properly. You’ll investigate the variety of avail-
able types in the next chapter.

ptg11524036

36 Chapter 2 Introducing C

 Name Choice
 You should use meaningful names (or identifiers) for variables (such as sheep_count instead of
 x3 if your program counts sheep). If the name doesn’t suffice, use comments to explain what
the variables represent. Documenting a program in this manner is one of the basic techniques
of good programming.

 With C99 and C11 you can make the name of an identifier as long as you want, but the
compiler need only consider the first 63 characters as significant. For external identifiers (see
 Chapter 12 , “Storage Classes, Linkage, and Memory Management”) only 31 characters need to
be recognized. This is a substantial increase from the C90 requirement of 31 characters and six
characters, respectively, and older C compilers often stopped at eight characters max. Actually,
you can use more than the maximum number of characters, but the compiler isn’t required to
pay attention to the extra characters. What does this mean? If you have two identifiers each
63 characters long and identical except for one character, the compiler is required to recognize
them as distinct from one another. If you have two identifiers 64 characters long and identical
except for the final character, the compiler might recognize them as distinct, or it might not;
the standard doesn’t define what should happen in that case.

 The characters at your disposal are lowercase letters, uppercase letters, digits, and the under-
score (_). The first character must be a letter or an underscore. The following are some
examples:

 Valid Names Invalid Names

 wiggles $Z]**

 cat2 2cat

 Hot_Tub Hot-Tub

 taxRate tax rate

 _kcab don't

 Operating systems and the C library often use identifiers with one or two initial underscore
characters, such as in _kcab , so it is better to avoid that usage yourself. The standard labels
beginning with one or two underscore characters, such as library identifiers, are reserved . This
means that although it is not a syntax error to use them, it could lead to name conflicts.

 C names are case sensitive , meaning an uppercase letter is considered distinct from the corre-
sponding lowercase letter. Therefore, stars is different from Stars and STARS .

 To make C more international, C99 and C11 make an extensive set of characters available for
use by the Universal Character Names (or UMC) mechanism. Reference Section VII, “Expanded
Character Support,” in Appendix B discusses this addition. This makes available characters that
are not part of the English alphabet.

ptg11524036

37The Example Explained

 Four Good Reasons to Declare Variables
 Some older languages, such as the original forms of FORTRAN and BASIC, allow you to use
variables without declaring them. So why can’t you take this easy-going approach in C? Here
are some reasons:

 ■ Putting all the variables in one place makes it easier for a reader to grasp what the
program is about. This is particularly true if you give your variables meaningful names
(such as taxrate instead of r). If the name doesn’t suffice, use comments to explain
what the variables represent. Documenting a program in this manner is one of the basic
techniques of good programming.

 ■ Thinking about which variables to declare encourages you to do some planning before
plunging into writing a program. What information does the program need to get
started? What exactly do I want the program to produce as output? What is the best way
to represent the data?

 ■ Declaring variables helps prevent one of programming’s more subtle and hard-to-find
bugs—that of the misspelled variable name. For example, suppose that in some language
that lacks declarations, you made the statement

 RADIUS1 = 20.4;

 and that elsewhere in the program you mistyped

 CIRCUM = 6.28 * RADIUSl;

 You unwittingly replaced the numeral 1 with the letter l (lowercase el). That other
language would create a new variable called RADIUSl and use whatever value it had
(perhaps zero, perhaps garbage). CIRCUM would be given the wrong value, and you
might have a heck of a time trying to find out why. This can’t happen in C (unless you
were silly enough to declare two such similar variable names) because the compiler will
complain when the undeclared RADIUSl shows up.

 ■ Your C program will not compile if you don’t declare your variables. If the preceding
reasons fail to move you, you should give this one serious thought.

 Given that you need to declare your variables, where do they go? As mentioned before, C
prior to C99 required that the declarations go at the beginning of a block. A good reason for
following this practice is that grouping the declarations together makes it easier to see what the
program is doing. Of course, there’s also a good reason to spread your declarations around, as
C99 now allows. The idea is to declare variables just before you’re ready to give them a value.
That makes it harder to forget to give them a value. As a practical matter, many compilers don’t
yet support the C99 rule.

 Assignment

 num = 1;

 The next program line is an assignment statement , one of the basic operations in C. This particu-
lar example means “assign the value 1 to the variable num .” The earlier int num; line set aside

ptg11524036

38 Chapter 2 Introducing C

space in computer memory for the variable num , and the assignment line stores a value in that
location. You can assign num a different value later, if you want; that is why num is termed a
 variable . Note that the assignment statement assigns a value from the right side to the left side.
Also, the statement is completed with a semicolon, as shown in Figure 2.2 .

num = 1;

assignment
operator

 Figure 2.2 The assignment statement is one of the basic C operations.

 The printf() Function

 printf("I am a simple ");

 printf("computer.\n");

 printf("My favorite number is %d because it is first.\n", num);

 These lines all use a standard C function called printf() . The parentheses signify that printf
is a function name. The material enclosed in the parentheses is information passed from the
 main() function to the printf() function. For example, the first line passes the phrase I am
a simple to the printf() function. Such information is called the argument or, more fully,
the actual argument of a function (see Figure 2.3). (C uses the terms actual argument and formal
argument to distinguish between a specific value sent to a function and a variable in the func-
tion used to hold the value; Chapter 5 “Operators, Expressions, and Statements,” goes into this
matter in more detail.) What does the function printf() do with this argument? It looks at
whatever lies between the double quotation marks and prints that text onscreen.

printf()

printf("That's mere contrariness!\n");

arg
umen

t

 Figure 2.3 The printf() function with an argument.

ptg11524036

39The Example Explained

 This first printf() line is an example of how you call or invoke a function in C. You need type
only the name of the function, placing the desired argument(s) within the parentheses. When
the program reaches this line, control is turned over to the named function (printf() in this
case). When the function is finished with whatever it does, control is returned to the original
(the calling) function— main() , in this example.

 What about this next printf() line? It has the characters \n included in the quotes, and
they didn’t get printed! What’s going on? The \n symbol means to start a new line. The \n
combination (typed as two characters) represents a single character called the newline character .
To printf() , it means “start a new line at the far-left margin.” In other words, printing the
newline character performs the same function as pressing the Enter key of a typical keyboard.
Why not just use the Enter key when typing the printf() argument? That would be inter-
preted as an immediate command to your editor, not as an instruction to be stored in your
source code. In other words, when you press the Enter key, the editor quits the current line on
which you are working and starts a new one. The newline character, however, affects how the
output of the program is displayed.

 The newline character is an example of an escape sequence . An escape sequence is used to
represent difficult- or impossible-to-type characters. Other examples are \t for Tab and \b
for Backspace. In each case, the escape sequence begins with the backslash character, \ . We’ll
return to this subject in Chapter 3 , “Data and C.”

 Well, that explains why the three printf() statements produced only two lines: The first print
instruction didn’t have a newline character in it, but the second and third did.

 The final printf() line brings up another oddity: What happened to the %d when the line was
printed? As you will recall, the output for this line was

 My favorite number is 1 because it is first.

 Aha! The digit 1 was substituted for the symbol group %d when the line was printed, and 1 was
the value of the variable num . The %d is a placeholder to show where the value of num is to be
printed. This line is similar to the following BASIC statement:

 PRINT "My favorite number is "; num; " because it is first."

 The C version does a little more than this, actually. The % alerts the program that a variable
is to be printed at that location, and the d tells it to print the variable as a decimal (base 10)
integer. The printf() function allows several choices for the format of printed variables,
including hexadecimal (base 16) integers and numbers with decimal points. Indeed, the f in
 printf() is a reminder that this is a formatting print function. Each type of data has its own
specifier—as the book introduces new types, it will also introduce the appropriate specifiers.

ptg11524036

40 Chapter 2 Introducing C

 Return Statement

 return 0;

 This return statement is the final statement of the program. The int in int main(void)
means that the main() function is supposed to return an integer. The C standard requires that
 main() behave that way. C functions that return values do so with a return statement, which
consists of the keyword return , followed by the returned value, followed by a semicolon. If
you leave out the return statement for main() , the program will return 0 when it reaches the
closing } . So you can omit the return statement at the end of main() . However, you can’t omit
it from other functions, so it’s more consistent to use it in main() , too. At this point, you can
regard the return statement in main() as something required for logical consistency, but it has
a practical use with some operating systems, including Linux and Unix. Chapter 11 will deal
further with this topic.

 The Structure of a Simple Program

 Now that you’ve seen a specific example, you are ready for a few general rules about C
programs. A program consists of a collection of one or more functions, one of which must be
called main() . The description of a function consists of a header and a body. The function header
contains the function name along with information about the type of information passed to
the function and returned by the function. You can recognize a function name by the paren-
theses, which may be empty. The body is enclosed by braces ({}) and consists of a series of
statements, each terminated by a semicolon (see Figure 2.4). The example in this chapter had
a declaration statement , announcing the name and type of variable being used. Then it had an
 assignment statement giving the variable a value. Next, there were three print statements , each
calling the printf() function. The print statements are examples of function call statements .
Finally, main() ends with a return statement .

 In short, a simple standard C program should use the following format:

 #include <stdio.h>

 int main(void)

 {

 statements

 return 0;

 }

 (Recall that each statement includes a terminating semicolon.)

ptg11524036

41Tips on Making Your Programs Readable

int main(void)

{
int q;
q = 1;
printf("%d is neat. \n",q);
return 0;
}

Header

Body

function name with arguments

declaration statement
assignment statement

function statement

 Figure 2.4 A function has a header and a body.

 Tips on Making Your Programs Readable

 Making your programs readable is good programming practice. A readable program is much
easier to understand, and that makes it easier to correct or modify. The act of making a
program readable also helps clarify your own concept of what the program does.

 You’ve already seen two techniques for improving readability: Choose meaningful variable
names and use comments. Note that these two techniques complement each other. If you give
a variable the name width , you don’t need a comment saying that this variable represents a
width, but a variable called video_routine_4 begs for an explanation of what video routine 4
does.

 Another technique involves using blank lines to separate one conceptual section of a func-
tion from another. For example, the simple sample program has a blank line separating the
declaration section from the action section. C doesn’t require the blank line, but it enhances
readability.

 A fourth technique is to use one line per statement. Again, this is a readability convention,
not a C requirement. C has a free-form format. You can place several statements on one line or
spread one statement over several. The following is legitimate, but ugly, code:

 int main(void) { int four; four

 =

 4

 ;

 printf(

 "%d\n",

 four); return 0;}

ptg11524036

42 Chapter 2 Introducing C

 The semicolons tell the compiler where one statement ends and the next begins, but the
program logic is much clearer if you follow the conventions used in this chapter’s example (see
 Figure 2.5).

int main(void) /* converts 2 fathoms to feet */

{
int feet, fathoms;

fathoms=2;
feet=6*fathoms;
printf("There are %d feet in %d fathoms!\n", feet, fathoms);
return 0;
}

use comments

pick meaningful names
use space

one statement per line

 Figure 2.5 Making your program readable.

 Taking Another Step in Using C

 The first sample program was pretty easy, and the next example, shown in Listing 2.2 , isn’t
much harder.

 Listing 2.2 The fathm_ft.c Program

 // fathm_ft.c -- converts 2 fathoms to feet

 #include <stdio.h>

 int main(void)

 {

 int feet, fathoms;

 fathoms = 2;

 feet = 6 * fathoms;

 printf("There are %d feet in %d fathoms!\n", feet, fathoms);

 printf("Yes, I said %d feet!\n", 6 * fathoms);

 return 0;

 }

ptg11524036

43Taking Another Step in Using C

 What’s new? The code provides a program description, declares multiple variables, does some
multiplication, and prints the values of two variables. Let’s examine these points in more detail.

 Documentation

 First, the program begins with a comment (using the new comment style) identifying the
filename and the purpose of the program. This kind of program documentation takes but a
moment to do and is helpful later when you browse through several files or print them.

 Multiple Declarations

 Next, the program declares two variables instead of just one in a single declaration statement.
To do this, separate the two variables (feet and fathoms) by a comma in the declaration state-
ment. That is,

 int feet, fathoms;

 and

 int feet;

 int fathoms;

 are equivalent.

 Multiplication

 Third, the program makes a calculation. It harnesses the tremendous computational power of a
computer system to multiply 2 by 6. In C, as in many languages, * is the symbol for multiplica-
tion. Therefore, the statement

 feet = 6 * fathoms;

 means “look up the value of the variable fathoms , multiply it by 6, and assign the result of this
calculation to the variable feet .”

 Printing Multiple Values

 Finally, the program makes fancier use of printf() . If you compile and run the example, the
output should look like this:

 There are 12 feet in 2 fathoms!

 Yes, I said 12 feet!

 This time, the code made two substitutions in the first use of printf() . The first %d in the
quotes was replaced by the value of the first variable (feet) in the list following the quoted
segment, and the second %d was replaced by the value of the second variable (fathoms) in the

ptg11524036

44 Chapter 2 Introducing C

list. Note that the list of variables to be printed comes at the tail end of the statement after the
quoted part. Also note that each item is separated from the others by a comma.

 The second use of printf() illustrates that the value printed doesn’t have to be a variable; it
just has to be something, such as 6 * fathoms , that reduces to a value of the right type.

 This program is limited in scope, but it could form the nucleus of a program for converting
fathoms to feet. All that is needed is a way to assign additional values to feet interactively; we
will explain how to do that in later chapters.

 While You’re at It—Multiple Functions

 So far, these programs have used the standard printf() function. Listing 2.3 shows you how
to incorporate a function of your own—besides main() —into a program.

 Listing 2.3 The two_func.c Program

 //* two_func.c -- a program using two functions in one file */

 #include <stdio.h>

 void butler(void); /* ANSI/ISO C function prototyping */

 int main(void)

 {

 printf("I will summon the butler function.\n");

 butler();

 printf("Yes. Bring me some tea and writeable DVDs.\n");

 return 0;

 }

 void butler(void) /* start of function definition */

 {

 printf("You rang, sir?\n");

 }

 The output looks like the following:

 I will summon the butler function.

 You rang, sir?

 Yes. Bring me some tea and writeable DVDs.

 The butler() function appears three times in this program. The first appearance is in the proto-
type , which informs the compiler about the functions to be used. The second appearance is in
 main() in the form of a function call . Finally, the program presents the function definition , which
is the source code for the function itself. Let’s look at each of these three appearances in turn.

ptg11524036

45While You’re at It—Multiple Functions

 The C90 standard added prototypes, and older compilers might not recognize them. (We’ll tell
you what to do when using such compilers in a moment.) A prototype declares to the compiler
that you are using a particular function, so it’s called a function declaration . It also specifies
properties of the function. For example, the first void in the prototype for the butler() func-
tion indicates that butler() does not have a return value. (In general, a function can return
a value to the calling function for its use, but butler() doesn’t.) The second void —the one
in butler(void) —means that the butler() function has no arguments. Therefore, when the
compiler reaches the point in main() where butler() is used, it can check to see whether
 butler() is used correctly. Note that void is used to mean “empty,” not “invalid.”

 Older C supported a more limited form of function declaration in which you just specified the
return type but omitted describing the arguments:

 void butler();

 Older C code uses function declarations like the preceding one instead of function prototypes.
The C90, C99, and C11 standards recognize this older form but indicate it will be phased out in
time, so don’t use it. If you inherit some legacy C code, you may want to convert the old-style
declarations to prototypes. Later chapters in this book return to prototyping, function declara-
tions, and return values.

 Next, you invoke butler() in main() simply by giving its name, including parentheses. When
 butler() finishes its work, the program moves to the next statement in main() .

 Finally, the function butler() is defined in the same manner as main() , with a function
header and the body enclosed in braces. The header repeats the information given in the proto-
type: butler() takes no arguments and has no return value. For older compilers, omit the
second void .

 One point to note is that it is the location of the butler() call in main() —not the loca-
tion of the butler() definition in the file—that determines when the butler() function is
executed. You could, for example, put the butler() definition above the main() definition in
this program, and the program would still run the same, with the butler() function executed
between the two calls to printf() in main() . Remember, all C programs begin execution with
 main() , no matter where main() is located in the program files. However, the usual C practice
is to list main() first because it normally provides the basic framework for a program.

 The C standard recommends that you provide function prototypes for all functions you
use. The standard include files take care of this task for the standard library functions. For
example, under standard C, the stdio.h file has a function prototype for printf() . The final
example in Chapter 6 will show you how to extend prototyping to non- void functions, and
 Chapter 9 covers functions fully.

ptg11524036

46 Chapter 2 Introducing C

 Introducing Debugging

 Now that you can write a simple C program, you are in a position to make simple errors.
Program errors often are called bugs , and finding and fixing the errors is called debugging .
 Listing 2.4 presents a program with some bugs. See how many you can spot.

 Listing 2.4 The nogood.c Program

 /* nogood.c -- a program with errors */

 #include <stdio.h>

 int main(void)

 (

 int n, int n2, int n3;

 /* this program has several errors

 n = 5;

 n2 = n * n;

 n3 = n2 * n2;

 printf("n = %d, n squared = %d, n cubed = %d\n", n, n2, n3)

 return 0;

)

 Syntax Errors

 Listing 2.4 contains several syntax errors. You commit a syntax error when you don’t follow
C’s rules. It’s analogous to a grammatical error in English. For instance, consider the following
sentence: Bugs frustrate be can . This sentence uses valid English words but doesn’t follow the
rules for word order, and it doesn’t have quite the right words, anyway. C syntax errors use
valid C symbols in the wrong places.

 So what syntax errors did nogood.c make? First, it uses parentheses instead of braces to mark
the body of the function—it uses a valid C symbol in the wrong place. Second, the declaration
should have been

 int n, n2, n3;

 or perhaps

 int n;

 int n2;

 int n3;

 Next, the example omits the */ symbol pair necessary to complete a comment. (Alternatively,
you could replace /* with the new // form.) Finally, it omits the mandatory semicolon that
should terminate the printf() statement.

ptg11524036

47Introducing Debugging

 How do you detect syntax errors? First, before compiling, you can look through the source
code and see whether you spot anything obvious. Second, you can examine errors found by the
compiler because part of its job is to detect syntax errors. When you attempt to compile this
program, the compiler reports back any errors it finds, identifying the nature and location of
each error.

 However, the compiler can get confused. A true syntax error in one location might cause the
compiler to mistakenly think it has found other errors. For instance, because the example does
not declare n2 and n3 correctly, the compiler might think it has found further errors whenever
those variables are used. In fact, if you can’t make sense of all the reported errors, rather than
trying to correct all the reported errors at once, you should correct just the first one or two and
then recompile; some of the other errors may go away. Continue in this way until the program
works. Another common compiler trick is reporting the error a line late. For instance, the
compiler may not deduce that a semicolon is missing until it tries to compile the next line. So
if the compiler complains of a missing semicolon on a line that has one, check the line before.

 Semantic Errors

 Semantic errors are errors in meaning. For example, consider the following sentence: Scornful
derivatives sing greenly . The syntax is fine because adjectives, nouns, verbs, and adverbs are in
the right places, but the sentence doesn’t mean anything. In C, you commit a semantic error
when you follow the rules of C correctly but to an incorrect end. The example has one such
error:

 n3 = n2 * n2;

 Here, n3 is supposed to represent the cube of n , but the code sets it up to be the fourth power
of n .

 The compiler does not detect semantic errors, because they don’t violate C rules. The compiler
has no way of divining your true intentions. That leaves it to you to find these kinds of errors.
One way is to compare what a program does to what you expected it to do. For instance,
suppose you fix the syntax errors in the example so that it now reads as shown in Listing 2.5 .

 Listing 2.5 The stillbad.c Program

 /* stillbad.c -- a program with its syntax errors fixed */

 #include <stdio.h>

 int main(void)

 {

 int n, n2, n3;

 /* this program has a semantic error */

 n = 5;

 n2 = n * n;

 n3 = n2 * n2;

 printf("n = %d, n squared = %d, n cubed = %d\n", n, n2, n3);

ptg11524036

48 Chapter 2 Introducing C

 return 0;

 }

 Its output is this:

 n = 5, n squared = 25, n cubed = 625

 If you are cube-wise, you’ll notice that 625 is the wrong value. The next stage is to track down
how you wound up with this answer. For this example, you probably can spot the error by
inspection. In general, however, you need to take a more systematic approach. One method
is to pretend you are the computer and to follow the program steps one by one. Let’s try that
method now.

 The body of the program starts by declaring three variables: n , n2 , and n3 . You can simulate
this situation by drawing three boxes and labeling them with the variable names (see Figure
 2.6). Next, the program assigns 5 to n . Simulate that by writing 5 into the n box. Next, the
program multiplies n by n and assigns the result to n2 , so look in the n box, see that the value
is 5 , multiply 5 by 5 to get 25 , and place 25 in box n2 . To duplicate the next C statement (n3
= n2 * n2;), look in n2 and find 25 . You multiply 25 by 25 , get 625 , and place it in n3 . Aha!
You are squaring n2 instead of multiplying it by n .

int n, n2, n3;

n = 5;

n2 = n*n;

n3 = n2*n2;

variables initialized

variable n set to 5

variable n2 set to n
squared

variable n3 set to n2
squared when it

should be n * n2

n n2 n3

n n2 n3

n n2 n3

n n2 n3

executing line in
program stillbad.c

state of variables

5

5

5

25

25 625

? ? ?

??

?

 Figure 2.6 Tracing a program.

 Well, perhaps this procedure is overkill for this example, but going through a program step-by-
step in this fashion is often the best way to see what’s happening.

ptg11524036

49Keywords and Reserved Identifiers

 Program State

 By tracing the program step-by-step manually, keeping track of each variable, you monitor the
program state. The program state is simply the set of values of all the variables at a given point
in program execution. It is a snapshot of the current state of computation.

 We just discussed one method of tracing the state: executing the program step-by-step yourself.
In a program that makes, say, 10,000 iterations, you might not feel up to that task. Still, you
can go through a few iterations to see whether your program does what you intend. However,
there is always the possibility that you will execute the steps as you intended them to be
executed instead of as you actually wrote them, so try to be faithful to the actual code.

 Another approach to locating semantic problems is to sprinkle extra printf() statements
throughout to monitor the values of selected variables at key points in the program. Seeing
how the values change can illuminate what’s happening. After you have the program working
to your satisfaction, you can remove the extra statements and recompile.

 A third method for examining the program states is to use a debugger. A debugger is a program
that enables you to run another program step-by-step and examine the value of that program’s
variables. Debuggers come in various levels of ease of use and sophistication. The more
advanced debuggers show which line of source code is being executed. This is particularly
handy for programs with alternative paths of execution because it is easy to see which particu-
lar paths are being followed. If your compiler comes with a debugger, take time now to learn
how to use it. Try it with Listing 2.4 , for example.

 Keywords and Reserved Identifiers

 Keywords are the vocabulary of C. Because they are special to C, you can’t use them as identi-
fiers, for example, or as variable names. Many of these keywords specify various types, such
as int . Others, such as if , are used to control the order in which program statements are
executed. In the following list of C keywords, boldface indicates keywords added by the C90
standard, italics indicates new keywords added by the C99 standard, and boldface italics indi-
cates keywords added by the C11 standard.

 ISO C Keywords

 auto extern short while

 break float signed _Alignas

 case for sizeof _Alignof

 char goto static _Bool

 const if struct _Complex

 continue inline switch _Generic

 default int typedef _Imaginary

ptg11524036

50 Chapter 2 Introducing C

 ISO C Keywords

 do long union _Noreturn

 double register unsigned _ Static_assert

 else restrict void #_Thread_local

 enum return volatile

 If you try to use a keyword, for, say, the name of a variable, the compiler catches that as a
syntax error. There are other identifiers, called reserved identifiers , that you shouldn’t use. They
don’t cause syntax errors because they are valid names. However, the language already uses
them or reserves the right to use them, so it could cause problems if you use these identifiers to
mean something else. Reserved identifiers include those beginning with an underscore charac-
ter and the names of the standard library functions, such as printf() .

 Key Concepts

 Computer programming is a challenging activity. It demands abstract, conceptual thinking
combined with careful attention to detail. You’ll find that compilers enforce the attention to
detail. When you talk to a friend, you might use a few words incorrectly, make a grammati-
cal error or two, perhaps leave some sentences unfinished, yet your friend will still understand
what you are trying to say. But a compiler doesn’t make such allowances; to it, almost right is
still wrong.

 The compiler won’t help you with conceptual matters, such as these, so this book will try to fill
that gap by outlining the key concepts in each chapter.

 For this chapter, your goal should be to understand what a C program is. You can think of a
program as a description you prepare of how you want the computer to behave. The compiler
handles the really detailed job of converting your description to the underlying machine
language. (As a measure of how much work a compiler does, it can create an executable file
of 60KB from your source code file of 1KB; a lot of machine language goes into representing
even a simple C program.) Because the compiler has no real intelligence, you have to express
your description in the compiler’s terms, and these terms are the formal rules set up by the
C language standard. (Although restrictive, this still is far better than having to express your
description directly in machine language!)

 The compiler expects to receive its instructions in a specific format, which we described in
detail in this chapter. Your job as a programmer is to express your ideas about how a program
should behave within the framework that the compiler—guided by the C standard—can process
successfully.

ptg11524036

51Review Questions

 Summary

 A C program consists of one or more C functions. Every C program must contain a function
called main() because it is the function called when the program starts up. A simple function
consists of a function header followed by an opening brace, followed by the statements consti-
tuting the function body, followed by a terminating, or closing , brace.

 Each C statement is an instruction to the computer and is marked by a terminating semicolon.
A declaration statement creates a name for a variable and identifies the type of data to be stored
in the variable. The name of a variable is an example of an identifier. An assignment statement
assigns a value to a variable or, more generally, to a storage area. A function call statement
causes the named function to be executed. When the called function is done, the program
returns to the next statement after the function call.

 The printf() function can be used to print phrases and the values of variables.

 The syntax of a language is the set of rules that governs the way in which valid statements in
that language are put together. The semantics of a statement is its meaning. The compiler helps
you detect syntax errors, but semantic errors show up in a program’s behavior only after it is
compiled. Detecting semantic errors may involve tracing the program state—that is, the values
of all variables—after each program step.

 Finally, keywords are the vocabulary of the C language.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. What are the basic modules of a C program called?

 2. What is a syntax error? Give an example of one in English and one in C.

 3. What is a semantic error? Give an example of one in English and one in C.

 4. Indiana Sloth has prepared the following program and brought it to you for approval.
Please help him out.

 include studio.h

 int main{void} /* this prints the number of weeks in a year /*

 (

 int s

 s := 56;

 print(There are s weeks in a year.);

 return 0;

ptg11524036

52 Chapter 2 Introducing C

 5. Assuming that each of the following examples is part of a complete program, what will
each one print?

 a. printf("Baa Baa Black Sheep.");

 printf("Have you any wool?\n");

 b. printf("Begone!\nO creature of lard!\n");

 c. printf("What?\nNo/nfish?\n");

 d. int num;

 num = 2;

 printf("%d + %d = %d", num, num, num + num);

 6. Which of the following are C keywords? main , int , function , char , =

 7. How would you print the values of the variables words and lines so they appear in the
following form:

 There were 3020 words and 350 lines.

 Here, 3020 and 350 represent the values of the two variables.

 8. Consider the following program:

 #include <stdio.h>

 int main(void)

 {

 int a, b;

 a = 5;

 b = 2; /* line 7 */

 b = a; /* line 8 */

 a = b; /* line 9 */

 printf("%d %d\n", b, a);

 return 0;

 }

 What is the program state after line 7? Line 8? Line 9?

 9. Consider the following program:

 #include <stdio.h>

 int main(void)

 {

 int x, y;

 x = 10;

 y = 5; /* line 7 */

ptg11524036

53Programming Exercises

 y = x + y; /* line 8 */

 x = x*y; /* line 9 */

 printf("%d %d\n", x, y);

 return 0;

 }

 What is the program state after line 7? Line 8? Line 9?

 Programming Exercises

 Reading about C isn’t enough. You should try writing one or two simple programs to see
whether writing a program goes as smoothly as it looks in this chapter. A few suggestions
follow, but you should also try to think up some problems yourself. You’ll find answers to
selected programming exercises on the publisher’s website.

 1. Write a program that uses one printf() call to print your first name and last name on
one line, uses a second printf() call to print your first and last names on two separate
lines, and uses a pair of printf() calls to print your first and last names on one line.
The output should look like this (but using your name):

 Gustav Mahler First print statement

 Gustav Second print statement

 Mahler Still the second print statement

 Gustav Mahler Third and fourth print statements

 2. Write a program to print your name and address.

 3. Write a program that converts your age in years to days and displays both values. At this
point, don’t worry about fractional years and leap years.

 4. Write a program that produces the following output:

 For he's a jolly good fellow!

 For he's a jolly good fellow!

 For he's a jolly good fellow!

 Which nobody can deny!

 Have the program use two user-defined functions in addition to main() : one named
 jolly() that prints the “jolly good” message once, and one named deny() that prints
the final line once.

ptg11524036

54 Chapter 2 Introducing C

 5. Write a program that produces the following output:

 Brazil, Russia, India, China

 India, China,

 Brazil, Russia

 Have the program use two user-defined functions in addition to main() : one named
 br() that prints “Brazil, Russia” once, and one named ic() that prints “India, China”
once. Let main() take care of any additional printing tasks.

 6. Write a program that creates an integer variable called toes . Have the program set toes
to 10 . Also have the program calculate what twice toes is and what toes squared is. The
program should print all three values, identifying them.

 7. Many studies suggest that smiling has benefits. Write a program that produces the
following output:

 Smile!Smile!Smile!

 Smile!Smile!

 Smile!

 Have the program define a function that displays the string Smile! once, and have the
program use the function as often as needed.

 8. In C, one function can call another. Write a program that calls a function named one_
three() . This function should display the word one on one line, call a second function
named two() , and then display the word three on one line. The function two() should
display the word two on one line. The main() function should display the phrase
 starting now: before calling one_three() and display done! after calling it. Thus, the
output should look like the following:

 starting now:

 one

 two

 three

 done!

ptg11524036

 3
 Data and C

 You will learn about the following in this chapter:

 ■ Keywords:

 int , short , long , unsigned , char , float , double , _Bool , _Complex , _Imaginary

 ■ Operator:

 sizeof

 ■ Function:

 scanf()

 ■ The basic data types that C uses

 ■ The distinctions between integer types and floating-point types

 ■ Writing constants and declaring variables of those types

 ■ How to use the printf() and scanf() functions to read and write values of different
types

 Programs work with data. You feed numbers, letters, and words to the computer, and you
expect it to do something with the data. For example, you might want the computer to calcu-
late an interest payment or display a sorted list of vintners. In this chapter, you do more than
just read about data; you practice manipulating data, which is much more fun.

 This chapter explores the two great families of data types: integer and floating point. C offers
several varieties of these types. This chapter tells you what the types are, how to declare them,
and how and when to use them. Also, you discover the differences between constants and vari-
ables, and as a bonus, your first interactive program is coming up shortly.

 A Sample Program

 Once again, we begin with a sample program. As before, you’ll find some unfamiliar wrinkles
that we’ll soon iron out for you. The program’s general intent should be clear, so try compiling

ptg11524036

56 Chapter 3 Data and C

and running the source code shown in Listing 3.1 . To save time, you can omit typing the
comments.

 Listing 3.1 The platinum.c Program

 /* platinum.c -- your weight in platinum */

 #include <stdio.h>

 int main(void)

 {

 float weight; /* user weight */

 float value; /* platinum equivalent */

 printf("Are you worth your weight in platinum?\n");

 printf("Let's check it out.\n");

 printf("Please enter your weight in pounds: ");

 /* get input from the user */

 scanf("%f", &weight);

 /* assume platinum is $1700 per ounce */

 /* 14.5833 converts pounds avd. to ounces troy */

 value = 1700.0 * weight * 14.5833;

 printf("Your weight in platinum is worth $%.2f.\n", value);

 printf("You are easily worth that! If platinum prices drop,\n");

 printf("eat more to maintain your value.\n");

 return 0;

 }

 Tip Errors and Warnings

 If you type this program incorrectly and, say, omit a semicolon, the compiler gives you a syntax
error message. Even if you type it correctly, however, the compiler may give you a warning simi-
lar to “Warning—conversion from ‘double’ to ‘float,’ possible loss of data.” An error message
means you did something wrong and prevents the program from being compiled. A warning ,
however, means you’ve done something that is valid code but possibly is not what you meant
to do. A warning does not stop compilation. This particular warning pertains to how C handles
values such as 1700.0. It’s not a problem for this example, and the chapter explains the warn-
ing later.

 When you type this program, you might want to change the 1700.0 to the current price of
the precious metal platinum. Don’t, however, fiddle with the 14.5833 , which represents the
number of ounces in a pound. (That’s ounces troy, used for precious metals, and pounds avoir-
dupois, used for people—precious and otherwise.)

 Note that “entering” your weight means to type your weight and then press the Enter or Return
key. (Don’t just type your weight and wait.) Pressing Enter informs the computer that you have

ptg11524036

57A Sample Program

finished typing your response. The program expects you to enter a number, such as 156 , not
words, such as too much . Entering letters rather than digits causes problems that require an if
statement (Chapter 7 , “C Control Statements: Branching and Jumps”) to defeat, so please be
polite and enter a number. Here is some sample output:

 Are you worth your weight in platinum?

 Let's check it out.

 Please enter your weight in pounds: 156
 Your weight in platinum is worth $3867491.25.

 You are easily worth that! If platinum prices drop,

 eat more to maintain your value.

 Program Adjustments

 Did the output for this program briefly flash onscreen and then disappear even though you
added the following line to the program, as described in Chapter 2 , “Introducing C”?

 getchar();

 For this example, you need to use that function call twice:

 getchar();

 getchar();

 The getchar() function reads the next input character, so the program has to wait for input.
In this case, we provided input by typing 156 and then pressing the Enter (or Return) key, which
transmits a newline character. So scanf() reads the number, the first getchar() reads the
newline character, and the second getchar() causes the program to pause, awaiting further
input.

 What’s New in This Program?

 There are several new elements of C in this program:

 ■ Notice that the code uses a new kind of variable declaration. The previous examples
just used an integer variable type (int), but this one adds a floating-point variable
type (float) so that you can handle a wider variety of data. The float type can hold
numbers with decimal points.

 ■ The program demonstrates some new ways of writing constants. You now have numbers
with decimal points.

 ■ To print this new kind of variable, use the %f specifier in the printf() code to handle a
floating-point value. The .2 modifier to the %f specifier fine-tunes the appearance of the
output so that it displays two places to the right of the decimal.

 ■ The scanf() function provides keyboard input to the program. The %f instructs scanf()
to read a floating-point number from the keyboard, and the &weight tells scanf() to

ptg11524036

58 Chapter 3 Data and C

assign the input value to the variable named weight . The scanf() function uses the &
notation to indicate where it can find the weight variable. The next chapter discusses &
further; meanwhile, trust us that you need it here.

 ■ Perhaps the most outstanding new feature is that this program is interactive. The
computer asks you for information and then uses the number you enter. An interactive
program is more interesting to use than the noninteractive types. More important, the
interactive approach makes programs more flexible. For example, the sample program
can be used for any reasonable weight, not just for 156 pounds. You don’t have to
rewrite the program every time you want to try it on a new person. The scanf() and
 printf() functions make this interactivity possible. The scanf() function reads data
from the keyboard and delivers that data to the program, and printf() reads data from
a program and delivers that data to your screen. Together, these two functions enable
you to establish a two-way communication with your computer (see Figure 3.1), and that
makes using a computer much more fun.

 This chapter explains the first two items in this list of new features: variables and constants of
various data types. Chapter 4 , “Character Strings and Formatted Input/Output,” covers the last
three items, but this chapter will continue to make limited use of scanf() and printf() .

/*platinum.c*/

•

•

int main(void)

{

•

•

•

scanf("-----)

•

•

•

printf("Are you--)

printf(-----)

•

•

return 0;

}

Body

getting keyboard input

displaying program output Are you

 Figure 3.1 The scanf() and printf() functions at work.

ptg11524036

59Data: Data-Type Keywords

 Data Variables and Constants

 A computer, under the guidance of a program, can do many things. It can add numbers, sort
names, command the obedience of a speaker or video screen, calculate cometary orbits, prepare
a mailing list, dial phone numbers, draw stick figures, draw conclusions, or anything else your
imagination can create. To do these tasks, the program needs to work with data , the numbers
and characters that bear the information you use. Some types of data are preset before a
program is used and keep their values unchanged throughout the life of the program. These are
 constants . Other types of data may change or be assigned values as the program runs; these are
 variables . In the sample program, weight is a variable and 14.5833 is a constant. What about
 1700.0 ? True, the price of platinum isn’t a constant in real life, but this program treats it as a
constant. The difference between a variable and a constant is that a variable can have its value
assigned or changed while the program is running, and a constant can’t.

 Data: Data-Type Keywords

 Beyond the distinction between variable and constant is the distinction between different types
of data. Some types of data are numbers. Some are letters or, more generally, characters. The
computer needs a way to identify and use these different kinds. C does this by recognizing
several fundamental data types . If a datum is a constant, the compiler can usually tell its type
just by the way it looks: 42 is an integer, and 42.100 is floating point. A variable, however,
needs to have its type announced in a declaration statement. You’ll learn the details of declar-
ing variables as you move along. First, though, take a look at the fundamental type keywords
recognized by C. K&R C recognized seven keywords relating to types. The C90 standard added
two to the list. The C99 standard adds yet another three (see Table 3.1).

 Table 3.1 C Data Keywords

 Original K&R Keywords C90 K&R Keywords C99 Keywords

 int signed _Bool

 long void _Complex

 short _Imaginary

 unsigned

 char

 float

 double

 The int keyword provides the basic class of integers used in C. The next three keywords (long ,
 short , and unsigned) and the C90 addition signed are used to provide variations of the
basic type, for example, unsigned short int and long long int . Next, the char keyword

ptg11524036

60 Chapter 3 Data and C

designates the type used for letters of the alphabet and for other characters, such as # , $, % , and
 * . The char type also can be used to represent small integers. Next, float , double , and the
combination long double are used to represent numbers with decimal points. The _Bool type
is for Boolean values (true and false), and _Complex and _Imaginary represent complex and
imaginary numbers, respectively.

 The types created with these keywords can be divided into two families on the basis of how
they are stored in the computer: integer types and floating-point types.

 Bits, Bytes, and Words

 The terms bit , byte , and word can be used to describe units of computer data or to describe
units of computer memory. We’ll concentrate on the second usage here.

 The smallest unit of memory is called a bit . It can hold one of two values: 0 or 1 . (Or you can
say that the bit is set to “off” or “on.”) You can’t store much information in one bit, but a com-
puter has a tremendous stock of them. The bit is the basic building block of computer memory.

 The byte is the usual unit of computer memory. For nearly all machines, a byte is 8 bits, and
that is the standard definition, at least when used to measure storage. (The C language, how-
ever, has a different definition, as discussed in the “Using Characters: Type char" section
later in this chapter.) Because each bit can be either 0 or 1, there are 256 (that’s 2 times
itself 8 times) possible bit patterns of 0s and 1s that can fit in an 8-bit byte. These patterns
can be used, for example, to represent the integers from 0 to 255 or to represent a set of
characters. Representation can be accomplished with binary code, which uses (conveniently
enough) just 0s and 1s to represent numbers. (Chapter 15 , “Bit Fiddling,” discusses binary
code, but you can read through the introductory material of that chapter now if you like.)

 A word is the natural unit of memory for a given computer design. For 8-bit microcomputers,
such as the original Apples, a word is just 8 bits. Since then, personal computers moved up to
16-bit words, 32-bit words, and, at the present, 64-bit words. Larger word sizes enable faster
transfer of data and allow more memory to be accessed.

 Integer Versus Floating-Point Types

 Integer types? Floating-point types? If you find these terms disturbingly unfamiliar, relax.
We are about to give you a brief rundown of their meanings. If you are unfamiliar with bits,
bytes, and words, you might want to read the nearby sidebar about them first. Do you have to
learn all the details? Not really, not any more than you have to learn the principles of internal
combustion engines to drive a car, but knowing a little about what goes on inside a computer
or engine can help you occasionally.

 For a human, the difference between integers and floating-point numbers is reflected in the
way they can be written. For a computer, the difference is reflected in the way they are stored.
Let’s look at each of the two classes in turn.

ptg11524036

61Data: Data-Type Keywords

 The Integer

 An integer is a number with no fractional part. In C, an integer is never written with a decimal
point. Examples are 2, –23, and 2456. Numbers such as 3.14, 0.22, and 2.000 are not integers.
Integers are stored as binary numbers. The integer 7, for example, is written 111 in binary.
Therefore, to store this number in an 8-bit byte, just set the first 5 bits to 0 and the last 3 bits
to 1 (see Figure 3.2).

8-bit word

2
2

2
1

2
0

4 + + = 72 1

0 0 0 0 0 1 1 1

integer 7

 Figure 3.2 Storing the integer 7 using a binary code.

 The Floating-Point Number

 A floating-point number more or less corresponds to what mathematicians call a real number .
Real numbers include the numbers between the integers. Some floating-point numbers are
2.75, 3.16E7, 7.00, and 2e–8. Notice that adding a decimal point makes a value a floating-point
value. So 7 is an integer type but 7.00 is a floating-point type. Obviously, there is more than
one way to write a floating-point number. We will discuss the e-notation more fully later,
but, in brief, the notation 3.16E7 means to multiply 3.16 by 10 to the 7th power; that is, by 1
followed by 7 zeros. The 7 would be termed the exponent of 10.

 The key point here is that the scheme used to store a floating-point number is different from
the one used to store an integer. Floating-point representation involves breaking up a number
into a fractional part and an exponent part and storing the parts separately. Therefore, the
7.00 in this list would not be stored in the same manner as the integer 7, even though both
have the same value. The decimal analogy would be to write 7.0 as 0.7E1. Here, 0.7 is the frac-
tional part, and the 1 is the exponent part. Figure 3.3 shows another example of floating-point
storage. A computer, of course, would use binary numbers and powers of two instead of powers
of 10 for internal storage. You’ll find more on this topic in Chapter 15 . Now, let’s concentrate
on the practical differences:

 ■ An integer has no fractional part; a floating-point number can have a fractional part.

 ■ Floating-point numbers can represent a much larger range of values than integers can.
See Table 3.3 near the end of this chapter.

 ■ For some arithmetic operations, such as subtracting one large number from another,
floating-point numbers are subject to greater loss of precision.

ptg11524036

62 Chapter 3 Data and C

 ■ Because there is an infinite number of real numbers in any range—for example, in the
range between 1.0 and 2.0—computer floating-point numbers can’t represent all the
values in the range. Instead, floating-point values are often approximations of a true
value. For example, 7.0 might be stored as a 6.99999 float value—more about precision
later.

 ■ Floating-point operations were once much slower than integer operations. However,
today many CPUs incorporate floating-point processors that close the gap.

sign

+

+ .314159 1

exponent

x 101

fraction

.314159 3.14159

 Figure 3.3 Storing the number pi in floating-point format (decimal version).

 Basic C Data Types

 Now let’s look at the specifics of the basic data types used by C. For each type, we describe how
to declare a variable, how to represent a constant with a literal value, such as 5 or 2.78 , and
what a typical use would be. Some older C compilers do not support all these types, so check
your documentation to see which ones you have available.

 The int Type

 C offers many integer types, and you might wonder why one type isn’t enough. The answer is
that C gives the programmer the option of matching a type to a particular use. In particular,
the C integer types vary in the range of values offered and in whether negative numbers can be
used. The int type is the basic choice, but should you need other choices to meet the require-
ments of a particular task or machine, they are available.

 The int type is a signed integer. That means it must be an integer and it can be positive, nega-
tive, or zero. The range in possible values depends on the computer system. Typically, an int
uses one machine word for storage. Therefore, older IBM PC compatibles, which have a 16-bit
word, use 16 bits to store an int . This allows a range in values from –32768 to 32767 . Current
personal computers typically have 32-bit integers and fit an int to that size. Now the personal
computer industry is moving toward 64-bit processors that naturally will use even larger inte-
gers. ISO C specifies that the minimum range for type int should be from –32767 to 32767 .
Typically, systems represent signed integers by using the value of a particular bit to indicate the
sign. Chapter 15 discusses common methods.

ptg11524036

63Basic C Data Types

 Declaring an int Variable

 As you saw in Chapter 2 , “Introducing C,” the keyword int is used to declare the basic integer
variable. First comes int , and then the chosen name of the variable, and then a semicolon.
To declare more than one variable, you can declare each variable separately, or you can follow
the int with a list of names in which each name is separated from the next by a comma. The
following are valid declarations:

 int erns;

 int hogs, cows, goats;

 You could have used a separate declaration for each variable, or you could have declared all
four variables in the same statement. The effect is the same: Associate names and arrange
storage space for four int -sized variables.

 These declarations create variables but don’t supply values for them. How do variables get
values? You’ve seen two ways that they can pick up values in the program. First, there is
assignment:

 cows = 112;

 Second, a variable can pick up a value from a function—from scanf() , for example. Now let’s
look at a third way.

 Initializing a Variable

 To initialize a variable means to assign it a starting, or initial , value. In C, this can be done as
part of the declaration. Just follow the variable name with the assignment operator (=) and the
value you want the variable to have. Here are some examples:

 int hogs = 21;

 int cows = 32, goats = 14;

 int dogs, cats = 94; /* valid, but poor, form */

 In the last line, only cats is initialized. A quick reading might lead you to think that dogs is
also initialized to 94 , so it is best to avoid putting initialized and noninitialized variables in the
same declaration statement.

 In short, these declarations create and label the storage for the variables and assign starting
values to each (see Figure 3.4).

ptg11524036

64 Chapter 3 Data and C

2

Boars

create storage and give it value

int sows;

int boars=2;

create storage

 Figure 3.4 Defining and initializing a variable.

 Type int Constants

 The various integers (21 , 32 , 14 , and 94) in the last example are integer constants , also called
 integer literals . When you write a number without a decimal point and without an exponent, C
recognizes it as an integer. Therefore, 22 and –44 are integer constants, but 22.0 and 2.2E1 are
not. C treats most integer constants as type int . Very large integers can be treated differently;
see the later discussion of the long int type in the section "long Constants and long long
Constants.”

 Printing int Values

 You can use the printf() function to print int types. As you saw in Chapter 2 , the %d nota-
tion is used to indicate just where in a line the integer is to be printed. The %d is called a format
specifier because it indicates the form that printf() uses to display a value. Each %d in the
format string must be matched by a corresponding int value in the list of items to be printed.
That value can be an int variable, an int constant, or any other expression having an int
value. It’s your job to make sure the number of format specifiers matches the number of values;
the compiler won’t catch mistakes of that kind. Listing 3.2 presents a simple program that
initializes a variable and prints the value of the variable, the value of a constant, and the value
of a simple expression. It also shows what can happen if you are not careful.

 Listing 3.2 The print1.c Program

 /* print1.c-displays some properties of printf() */

 #include <stdio.h>

 int main(void)

 {

 int ten = 10;

 int two = 2;

 printf("Doing it right: ");

 printf("%d minus %d is %d\n", ten, 2, ten - two);

ptg11524036

65Basic C Data Types

 printf("Doing it wrong: ");

 printf("%d minus %d is %d\n", ten); // forgot 2 arguments

 return 0;

 }

 Compiling and running the program produced this output on one system:

 Doing it right: 10 minus 2 is 8

 Doing it wrong: 10 minus 16 is 1650287143

 For the first line of output, the first %d represents the int variable ten , the second %d repre-
sents the int constant 2 , and the third %d represents the value of the int expression ten -
two . The second time, however, the program used ten to provide a value for the first %d and
used whatever values happened to be lying around in memory for the next two! (The numbers
you get could very well be different from those shown here. Not only might the memory
contents be different, but different compilers will manage memory locations differently.)

 You might be annoyed that the compiler doesn’t catch such an obvious error. Blame the
unusual design of printf() . Most functions take a specific number of arguments, and the
compiler can check to see whether you’ve used the correct number. However, printf() can
have one, two, three, or more arguments, and that keeps the compiler from using its usual
methods for error checking. Some compilers, however, will use unusual methods of checking
and warn you that you might be doing something wrong. Still, it’s best to remember to always
check to see that the number of format specifiers you give to printf() matches the number of
values to be displayed.

 Octal and Hexadecimal

 Normally, C assumes that integer constants are decimal, or base 10, numbers. However, octal
(base 8) and hexadecimal (base 16) numbers are popular with many programmers. Because 8
and 16 are powers of 2, and 10 is not, these number systems occasionally offer a more conve-
nient way for expressing computer-related values. For example, the number 65536, which often
pops up in 16-bit machines, is just 10000 in hexadecimal. Also, each digit in a hexadecimal
number corresponds to exactly 4 bits. For example, the hexadecimal digit 3 is 0011 and the
hexadecimal digit 5 is 0101. So the hexadecimal value 35 is the bit pattern 0011 0101, and the
hexadecimal value 53 is 0101 0011. This correspondence makes it easy to go back and forth
between hexadecimal and binary (base 2) notation. But how can the computer tell whether
10000 is meant to be a decimal, hexadecimal, or octal value? In C, special prefixes indicate
which number base you are using. A prefix of 0x or 0X (zero-ex) means that you are specifying
a hexadecimal value, so 16 is written as 0x10 , or 0X10 , in hexadecimal. Similarly, a 0 (zero)
prefix means that you are writing in octal. For example, the decimal value 16 is written as 020
in octal. Chapter 15 discusses these alternative number bases more fully.

 Be aware that this option of using different number systems is provided as a service for your
convenience. It doesn’t affect how the number is stored. That is, you can write 16 or 020 or

ptg11524036

66 Chapter 3 Data and C

 0x10 , and the number is stored exactly the same way in each case—in the binary code used
internally by computers.

 Displaying Octal and Hexadecimal

 Just as C enables you write a number in any one of three number systems, it also enables you
to display a number in any of these three systems. To display an integer in octal notation
instead of decimal, use %o instead of %d . To display an integer in hexadecimal, use %x . If you
want to display the C prefixes, you can use specifiers %#o , %#x , and %#X to generate the 0 , 0x ,
and 0X prefixes respectively. Listing 3.3 shows a short example. (Recall that you may have
to insert a getchar(); statement in the code for some IDEs to keep the program execution
window from closing immediately.)

 Listing 3.3 The bases.c Program

 /* bases.c--prints 100 in decimal, octal, and hex */

 #include <stdio.h>

 int main(void)

 {

 int x = 100;

 printf("dec = %d; octal = %o; hex = %x\n", x, x, x);

 printf("dec = %d; octal = %#o; hex = %#x\n", x, x, x);

 return 0;

 }

 Compiling and running this program produces this output:

 dec = 100; octal = 144; hex = 64

 dec = 100; octal = 0144; hex = 0x64

 You see the same value displayed in three different number systems. The printf() function
makes the conversions. Note that the 0 and the 0x prefixes are not displayed in the output
unless you include the # as part of the specifier.

 Other Integer Types

 When you are just learning the language, the int type will probably meet most of your integer
needs. To be complete, however, we’ll cover the other forms now. If you like, you can skim
this section and jump to the discussion of the char type in the “Using Characters: Type char"
section, returning here when you have a need.

 C offers three adjective keywords to modify the basic integer type: short , long , and unsigned .
Here are some points to keep in mind:

ptg11524036

67Basic C Data Types

 ■ The type short int or, more briefly, short may use less storage than int , thus saving
space when only small numbers are needed. Like int , short is a signed type.

 ■ The type long int , or long , may use more storage than int , thus enabling you to
express larger integer values. Like int , long is a signed type.

 ■ The type long long int , or long long (introduced in the C99 standard), may use
more storage than long . At the minimum, it must use at least 64 bits. Like int , long
long is a signed type.

 ■ The type unsigned int , or unsigned , is used for variables that have only nonnegative
values. This type shifts the range of numbers that can be stored. For example, a 16-bit
 unsigned int allows a range from 0 to 65535 in value instead of from –32768 to 32767 .
The bit used to indicate the sign of signed numbers now becomes another binary digit,
allowing the larger number.

 ■ The types unsigned long int , or unsigned long , and unsigned short int , or
 unsigned short , are recognized as valid by the C90 standard. To this list, C99 adds
 unsigned long long int , or unsigned long long .

 ■ The keyword signed can be used with any of the signed types to make your intent
explicit. For example, short , short int , signed short , and signed short int are all
names for the same type.

 Declaring Other Integer Types

 Other integer types are declared in the same manner as the int type. The following list shows
several examples. Not all older C compilers recognize the last three, and the final example is
new with the C99 standard.

 long int estine;

 long johns;

 short int erns;

 short ribs;

 unsigned int s_count;

 unsigned players;

 unsigned long headcount;

 unsigned short yesvotes;

 long long ago;

 Why Multiple Integer Types?

 Why do we say that long and short types “may” use more or less storage than int ? Because
C guarantees only that short is no longer than int and that long is no shorter than int . The
idea is to fit the types to the machine. For example, in the days of Windows 3, an int and a
 short were both 16 bits, and a long was 32 bits. Later, Windows and Apple systems moved to
using 16 bits for short and 32 bits for int and long . Using 32 bits allows integers in excess of
2 billion. Now that 64-bit processors are common, there’s a need for 64-bit integers, and that’s
the motivation for the long long type.

ptg11524036

68 Chapter 3 Data and C

 The most common practice today on personal computers is to set up long long as 64 bits,
 long as 32 bits, short as 16 bits, and int as either 16 bits or 32 bits, depending on the
machine’s natural word size. In principle, these four types could represent four distinct sizes,
but in practice at least some of the types normally overlap.

 The C standard provides guidelines specifying the minimum allowable size for each basic data
type. The minimum range for both short and int is –32,767 to 32,767, corresponding to a
16-bit unit, and the minimum range for long is –2,147,483,647 to 2,147,483,647, correspond-
ing to a 32-bit unit. (Note: For legibility, we’ve used commas, but C code doesn’t allow that
option.) For unsigned short and unsigned int , the minimum range is 0 to 65,535, and for
 unsigned long , the minimum range is 0 to 4,294,967,295. The long long type is intended
to support 64-bit needs. Its minimum range is a substantial –9,223,372,036,854,775,807
to 9,223,372,036,854,775,807, and the minimum range for unsigned long long is 0 to
18,446,744,073,709,551,615. For those of you writing checks, that’s eighteen quintillion, four
hundred and forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion,
seven hundred nine million, five hundred fifty-one thousand, six hundred fifteen using U.S.
nomenclature (the short scale or échelle courte system), but who’s counting?

 When do you use the various int types? First, consider unsigned types. It is natural to use
them for counting because you don’t need negative numbers, and the unsigned types enable
you to reach higher positive numbers than the signed types.

 Use the long type if you need to use numbers that long can handle and that int cannot.
However, on systems for which long is bigger than int , using long can slow down calcula-
tions, so don’t use long if it is not essential. One further point: If you are writing code on
a machine for which int and long are the same size, and you do need 32-bit integers, you
should use long instead of int so that the program will function correctly if transferred to a
16-bit machine. Similarly, use long long if you need 64-bit integer values.

 Use short to save storage space if, say, you need a 16-bit value on a system where int is 32-bit.
Usually, saving storage space is important only if your program uses arrays of integers that are
large in relation to a system’s available memory. Another reason to use short is that it may
correspond in size to hardware registers used by particular components in a computer.

 Integer Overflow

 What happens if an integer tries to get too big for its type? Let’s set an integer to its largest
possible value, add to it, and see what happens. Try both signed and unsigned types. (The
 printf() function uses the %u specifier to display unsigned int values .)

 /* toobig.c-exceeds maximum int size on our system */

 #include <stdio.h>

 int main(void)

 {

 int i = 2147483647;

 unsigned int j = 4294967295;

 printf("%d %d %d\n", i, i+1, i+2);

ptg11524036

69Basic C Data Types

 printf("%u %u %u\n", j, j+1, j+2);

 return 0;

 }

 Here is the result for our system:

 2147483647 -2147483648 -2147483647

 4294967295 0 1

 The unsigned integer j is acting like a car’s odometer. When it reaches its maximum value,
it starts over at the beginning. The integer i acts similarly. The main difference is that the
 unsigned int variable j , like an odometer, begins at 0, but the int variable i begins at
–2147483648. Notice that you are not informed that i has exceeded (overflowed) its maximum
value. You would have to include your own programming to keep tabs on that.

 The behavior described here is mandated by the rules of C for unsigned types. The standard
doesn’t define how signed types should behave. The behavior shown here is typical, but you
could encounter something different

 long Constants and long long Constants

 Normally, when you use a number such as 2345 in your program code, it is stored as an int
type. What if you use a number such as 1000000 on a system in which int will not hold such
a large number? Then the compiler treats it as a long int , assuming that type is large enough.
If the number is larger than the long maximum, C treats it as unsigned long . If that is still
insufficient, C treats the value as long long or unsigned long long , if those types are
available.

 Octal and hexadecimal constants are treated as type int unless the value is too large. Then the
compiler tries unsigned int . If that doesn’t work, it tries, in order, long , unsigned long ,
 long long , and unsigned long long .

 Sometimes you might want the compiler to store a small number as a long integer.
Programming that involves explicit use of memory addresses on an IBM PC, for instance, can
create such a need. Also, some standard C functions require type long values. To cause a small
constant to be treated as type long , you can append an l (lowercase L) or L as a suffix. The
second form is better because it looks less like the digit 1. Therefore, a system with a 16-bit
 int and a 32-bit long treats the integer 7 as 16 bits and the integer 7L as 32 bits. The l and L
suffixes can also be used with octal and hex integers, as in 020L and 0x10L .

 Similarly, on those systems supporting the long long type, you can use an ll or LL suffix to
indicate a long long value, as in 3LL . Add a u or U to the suffix for unsigned long long , as
in 5ull or 10LLU or 6LLU or 9Ull .

ptg11524036

70 Chapter 3 Data and C

 Printing short , long , long long , and unsigned Types

 To print an unsigned int number, use the %u notation. To print a long value, use the %ld
format specifier. If int and long are the same size on your system, just %d will suffice, but your
program will not work properly when transferred to a system on which the two types are differ-
ent, so use the %ld specifier for long . You can use the l prefix for x and o , too. So you would
use %lx to print a long integer in hexadecimal format and %lo to print in octal format. Note
that although C allows both uppercase and lowercase letters for constant suffixes, these format
specifiers use just lowercase.

 C has several additional printf() formats. First, you can use an h prefix for short types.
Therefore, %hd displays a short integer in decimal form, and %ho displays a short integer
in octal form. Both the h and l prefixes can be used with u for unsigned types. For instance,
you would use the %lu notation for printing unsigned long types. Listing 3.4 provides an
example. Systems supporting the long long types use %lld and %llu for the signed and
unsigned versions. Chapter 4 provides a fuller discussion of format specifiers.

 Listing 3.4 The print2.c Program

 /* print2.c-more printf() properties */

 #include <stdio.h>

 int main(void)

 {

 unsigned int un = 3000000000; /* system with 32-bit int */

 short end = 200; /* and 16-bit short */

 long big = 65537;

 long long verybig = 12345678908642;

 printf("un = %u and not %d\n", un, un);

 printf("end = %hd and %d\n", end, end);

 printf("big = %ld and not %hd\n", big, big);

 printf("verybig= %lld and not %ld\n", verybig, verybig);

 return 0;

 }

 Here is the output on one system (results can vary):

 un = 3000000000 and not -1294967296

 end = 200 and 200

 big = 65537 and not 1

 verybig= 12345678908642 and not 1942899938

 This example points out that using the wrong specification can produce unexpected results.
First, note that using the %d specifier for the unsigned variable un produces a negative number!
The reason for this is that the unsigned value 3000000000 and the signed value –129496296
have exactly the same internal representation in memory on our system. (Chapter 15 explains

ptg11524036

71Basic C Data Types

this property in more detail.) So if you tell printf() that the number is unsigned, it prints one
value, and if you tell it that the same number is signed, it prints the other value. This behavior
shows up with values larger than the maximum signed value. Smaller positive values, such as
96, are stored and displayed the same for both signed and unsigned types.

 Next, note that the short variable end is displayed the same whether you tell printf() that
 end is a short (the %hd specifier) or an int (the %d specifier). That’s because C automatically
expands a type short value to a type int value when it’s passed as an argument to a function.
This may raise two questions in your mind: Why does this conversion take place, and what’s
the use of the h modifier? The answer to the first question is that the int type is intended to be
the integer size that the computer handles most efficiently. So, on a computer for which short
and int are different sizes, it may be faster to pass the value as an int . The answer to the
second question is that you can use the h modifier to show how a longer integer would look if
truncated to the size of short . The third line of output illustrates this point. The value 65537
expressed in binary format as a 32-bit number is 00000000000000010000000000000001. Using
the %hd specifier persuaded printf() to look at just the last 16 bits; therefore, it displayed the
value as 1. Similarly, the final output line shows the full value of verybig and then the value
stored in the last 32 bits, as viewed through the %ld specifier.

 Earlier you saw that it is your responsibility to make sure the number of specifiers matches
the number of values to be displayed. Here you see that it is also your responsibility to use the
correct specifier for the type of value to be displayed.

 Tip Match the Type printf() Specifiers

 Remember to check to see that you have one format specifier for each value being displayed in
a printf() statement. And also check that the type of each format specifier matches the type
of the corresponding display value.

 Using Characters: Type char

 The char type is used for storing characters such as letters and punctuation marks, but techni-
cally it is an integer type. Why? Because the char type actually stores integers, not characters.
To handle characters, the computer uses a numerical code in which certain integers represent
certain characters. The most commonly used code in the U.S. is the ASCII code given in the
table on the inside front cover. It is the code this book assumes. In it, for example, the integer
value 65 represents an uppercase A . So to store the letter A , you actually need to store the
integer 65 . (Many IBM mainframes use a different code, called EBCDIC, but the principle is the
same. Computer systems outside the U.S. may use entirely different codes.)

 The standard ASCII code runs numerically from 0 to 127. This range is small enough that 7 bits
can hold it. The char type is typically defined as an 8-bit unit of memory, so it is more than
large enough to encompass the standard ASCII code. Many systems, such as the IBM PC and
the Apple Macs, offer extended ASCII codes (different for the two systems) that still stay within
an 8-bit limit. More generally, C guarantees that the char type is large enough to store the
basic character set for the system on which C is implemented.

ptg11524036

72 Chapter 3 Data and C

 Many character sets have many more than 127 or even 255 values. For example, there is the
Japanese kanji character set. The commercial Unicode initiative has created a system to repre-
sent a variety of characters sets worldwide and currently has over 110,000 characters. The
International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) have developed a standard called ISO/IEC 10646 for character sets.
Fortunately, the Unicode standard has been kept compatible with the more extensive ISO/IEC
10646 standard.

 The C language defines a byte to be the number of bits used by type char , so one can have a
system with a 16-bit or 32-bit byte and char type.

 Declaring Type char Variables

 As you might expect, char variables are declared in the same manner as other variables. Here
are some examples:

 char response;

 char itable, latan;

 This code would create three char variables: response , itable , and latan .

 Character Constants and Initialization

 Suppose you want to initialize a character constant to the letter A . Computer languages are
supposed to make things easy, so you shouldn’t have to memorize the ASCII code, and you
don’t. You can assign the character A to grade with the following initialization:

 char grade = 'A';

 A single character contained between single quotes is a C character constant . When the compiler
sees 'A' , it converts the 'A' to the proper code value. The single quotes are essential. Here’s
another example:

 char broiled; /* declare a char variable */

 broiled = 'T'; /* OK */

 broiled = T; /* NO! Thinks T is a variable */

 broiled = "T"; /* NO! Thinks "T" is a string */

 If you omit the quotes, the compiler thinks that T is the name of a variable. If you use double
quotes, it thinks you are using a string. We’ll discuss strings in Chapter 4 .

 Because characters are really stored as numeric values, you can also use the numerical code to
assign values:

 char grade = 65; /* ok for ASCII, but poor style */

 In this example, 65 is type int , but, because the value is smaller than the maximum char size,
it can be assigned to grade without any problems. Because 65 is the ASCII code for the letter A ,
this example assigns the value A to grade . Note, however, that this example assumes that the

ptg11524036

73Basic C Data Types

system is using ASCII code. Using 'A' instead of 65 produces code that works on any system.
Therefore, it’s much better to use character constants than numeric code values.

 Somewhat oddly, C treats character constants as type int rather than type char . For example,
on an ASCII system with a 32-bit int and an 8-bit char , the code

 char grade = 'B';

 represents 'B' as the numerical value 66 stored in a 32-bit unit, but grade winds up with 66
stored in an 8-bit unit. This characteristic of character constants makes it possible to define a
character constant such as 'FATE' , with four separate 8-bit ASCII codes stored in a 32-bit unit.
However, attempting to assign such a character constant to a char variable results in only the
last 8 bits being used, so the variable gets the value 'E' .

 Nonprinting Characters

 The single-quote technique is fine for characters, digits, and punctuation marks, but if you look
through the table on the inside front cover of this book, you’ll see that some of the ASCII char-
acters are nonprinting. For example, some represent actions such as backspacing or going to the
next line or making the terminal bell ring (or speaker beep). How can these be represented? C
offers three ways.

 The first way we have already mentioned—just use the ASCII code. For example, the ASCII
value for the beep character is 7, so you can do this:

 char beep = 7;

 The second way to represent certain awkward characters in C is to use special symbol
sequences. These are called escape sequences . Table 3.2 shows the escape sequences and their
meanings.

 Table 3.2 Escape Sequences

 Sequence Meaning

 \a Alert (ANSI C).

 \b Backspace.

 \f Form feed.

 \n Newline.

 \r Carriage return.

 \t Horizontal tab.

 \v Vertical tab.

 \\ Backslash (\).

 \' Single quote (').

ptg11524036

74 Chapter 3 Data and C

 Sequence Meaning

 \" Double quote (").

 \? Question mark (?).

 \0oo Octal value. (o represents an octal digit.)

 \xhh Hexadecimal value. (h represents a hexadecimal digit.)

 Escape sequences must be enclosed in single quotes when assigned to a character variable. For
example, you could make the statement

 char nerf = '\n';

 and then print the variable nerf to advance the printer or screen one line.

 Now take a closer look at what each escape sequence does. The alert character (\a), added by
C90, produces an audible or visible alert. The nature of the alert depends on the hardware, with
the beep being the most common. (With some systems, the alert character has no effect.) The
C standard states that the alert character shall not change the active position. By active position ,
the standard means the location on the display device (screen, teletype, printer, and so on) at
which the next character would otherwise appear. In short, the active position is a generaliza-
tion of the screen cursor with which you are probably accustomed. Using the alert character in
a program displayed on a screen should produce a beep without moving the screen cursor.

 Next, the \b , \f , \n , \r , \t , and \v escape sequences are common output device control char-
acters. They are best described in terms of how they affect the active position. A backspace
(\b) moves the active position back one space on the current line. A form feed character (\f)
advances the active position to the start of the next page. A newline character (\n) sets the
active position to the beginning of the next line. A carriage return (\r) moves the active posi-
tion to the beginning of the current line. A horizontal tab character (\t) moves the active posi-
tion to the next horizontal tab stop (typically, these are found at character positions 1, 9, 17,
25, and so on). A vertical tab (\v) moves the active position to the next vertical tab position.

 These escape sequence characters do not necessarily work with all display devices. For example,
the form feed and vertical tab characters produce odd symbols on a PC screen instead of any
cursor movement, but they work as described if sent to a printer instead of to the screen.

 The next three escape sequences (\\ , \' , and \") enable you to use \ , ' , and " as character
constants. (Because these symbols are used to define character constants as part of a printf()
command, the situation could get confusing if you use them literally.) Suppose you want to
print the following line:

 Gramps sez, "a \ is a backslash."

 Then use this code:

 printf("Gramps sez, \"a \\ is a backslash.\"\n");

ptg11524036

75Basic C Data Types

 The final two forms (\0oo and \xhh) are special representations of the ASCII code. To represent
a character by its octal ASCII code, precede it with a backslash (\) and enclose the whole thing
in single quotes. For example, if your compiler doesn’t recognize the alert character (\a), you
could use the ASCII code instead:

 beep = '\007';

 You can omit the leading zeros, so '\07' or even '\7' will do. This notation causes numbers
to be interpreted as octal, even if there is no initial 0 .

 Beginning with C90, C provides a third option—using a hexadecimal form for character
constants. In this case, the backslash is followed by an x or X and one to three hexadecimal
digits. For example, the Ctrl+P character has an ASCII hex code of 10 (16, in decimal), so it can
be expressed as '\x10' or '\X010' . Figure 3.5 shows some representative integer types.

type hexadecimal

Examples of Integer Constants

octal decimal

char \0x41 \0101 N.A.

int 0x41 0101 65

unsigned int 0x41u 0101u 65u

long 0x41L 0101L 65L

unsigned long 0x41UL 0101UL 65UL

long long 0x41LL 0101LL 65LL

unsigned long long 0x41ULL 0101ULL 65ULL

 Figure 3.5 Writing constants with the int family.

 When you use ASCII code, note the difference between numbers and number characters. For
example, the character 4 is represented by ASCII code value 52. The notation '4' represents the
symbol 4, not the numerical value 4.

 At this point, you may have three questions:

 ■ Why aren’t the escape sequences enclosed in single quotes in the last example
(printf("Gramps sez, \"a \\ is a backslash\"\"n");)? When a character,
be it an escape sequence or not, is part of a string of characters enclosed in double
quotes, don’t enclose it in single quotes. Notice that none of the other characters in
this example (G , r , a , m , p , s , and so on) are marked off by single quotes. A string of
characters enclosed in double quotes is called a character string . (Chapter 4 explores
strings.) Similarly, printf("Hello!\007\n"); will print Hello! and beep, but
 printf("Hello!7\n"); will print Hello!7 . Digits that are not part of an escape
sequence are treated as ordinary characters to be printed.

ptg11524036

76 Chapter 3 Data and C

 ■ When should I use the ASCII code, and when should I use the escape sequences? If you have
a choice between using one of the special escape sequences, say ' \f' , or an equivalent
ASCII code, say '\014' , use the '\f' . First, the representation is more mnemonic.
Second, it is more portable. If you have a system that doesn’t use ASCII code, the '\f'
will still work.

 ■ If I need to use numeric code, why use, say, '\032' instead of 032 ?— First, using '\032'
instead of 032 makes it clear to someone reading the code that you intend to represent a
character code. Second, an escape sequence such as \032 can be embedded in part of a C
string, the way \007 was in the first point.

 Printing Characters

 The printf() function uses %c to indicate that a character should be printed. Recall that a
character variable is stored as a 1-byte integer value. Therefore, if you print the value of a char
variable with the usual %d specifier, you get an integer. The %c format specifier tells printf()
to display the character that has that integer as its code value. Listing 3.5 shows a char variable
both ways.

 Listing 3.5 The charcode.c Program

 /* charcode.c-displays code number for a character */

 #include <stdio.h>

 int main(void)

 {

 char ch;

 printf("Please enter a character.\n");

 scanf("%c", &ch); /* user inputs character */

 printf("The code for %c is %d.\n", ch, ch);

 return 0;

 }

 Here is a sample run:

 Please enter a character.

 C
 The code for C is 67.

 When you use the program, remember to press the Enter or Return key after typing the char-
acter. The scanf() function then fetches the character you typed, and the ampersand (&)
causes the character to be assigned to the variable ch . The printf() function then prints the
value of ch twice, first as a character (prompted by the %c code) and then as a decimal integer
(prompted by the %d code). Note that the printf() specifiers determine how data is displayed,
not how it is stored (see Figure 3.6).

ptg11524036

77Basic C Data Types

storage (ASCII code)

code

display

0ch

"%c" "%d"

1 0 0 0 0 1 1

C 67

 Figure 3.6 Data display versus data storage.

 Signed or Unsigned?

 Some C implementations make char a signed type. This means a char can hold values typi-
cally in the range –128 through 127. Other implementations make char an unsigned type,
which provides a range of 0 through 255. Your compiler manual should tell you which type
your char is, or you can check the limits.h header file, discussed in the next chapter.

 As of C90, C enabled you to use the keywords signed and unsigned with char . Then, regard-
less of what your default char is, signed char would be signed, and unsigned char would
be unsigned. These versions of char are useful if you’re using the type to handle small integers.
For character use, just use the standard char type without modifiers.

 The _Bool Type

 The _Bool type is a C99 addition that’s used to represent Boolean values—that is, the logical
values true and false . Because C uses the value 1 for true and 0 for false , the _Bool type
really is just an integer type, but one that, in principle, only requires 1 bit of memory, because
that is enough to cover the full range from 0 to 1.

 Programs use Boolean values to choose which code to execute next. Code execution is covered
more fully in Chapter 6 , “C Control Statements: Looping,” and Chapter 7 , so let’s defer further
discussion until then.

 Portable Types: stdint.h and inttypes.h

 By now you’ve probably noticed that C offers a wide variety of integer types, which is a good
thing. And you probably also have noticed that the same type name doesn’t necessarily mean
the same thing on different systems, which is not such a good thing. It would be nice if C had
types that had the same meaning regardless of the system. And, as of C99, it does—sort of.

 What C has done is create more names for the existing types. The trick is to define these new
names in a header file called stdint.h . For example, int32_t represents the type for a 32-bit

ptg11524036

78 Chapter 3 Data and C

signed integer. The header file on a system that uses a 32-bit int could define int32_t as an
alias for int . A different system, one with a 16-bit int and a 32-bit long , could define the
same name, int32_t , as an alias for int . Then, when you write a program using int32_t as
a type and include the stdint.h header file, the compiler will substitute int or long for the
type in a manner appropriate for your particular system.

 The alternative names we just discussed are examples of exact-width integer types ; int32_t is
exactly 32 bits, no less or no more. It’s possible the underlying system might not support these
choices, so the exact-width integer types are optional.

 What if a system can’t support exact-width types? C99 and C11 provide a second category of
alternative names that are required. This set of names promises the type is at least big enough
to meet the specification and that no other type that can do the job is smaller. These types are
called minimum width types . For example, int_least8_t will be an alias for the smallest avail-
able type that can hold an 8-bit signed integer value. If the smallest type on a particular system
were 16 bits, the int8_t type would not be defined. However, the int_least8_t type would
be available, perhaps implemented as a 16-bit integer.

 Of course, some programmers are more concerned with speed than with space. For them, C99
and C11 define a set of types that will allow the fastest computations. These are called the
 fastest minimum width types. For example, the int_fast8_t will be defined as an alternative
name for the integer type on your system that allows the fastest calculations for 8-bit signed
values.

 Finally, for some programmers, only the biggest possible integer type on a system will do;
 intmax_t stands for that type, a type that can hold any valid signed integer value. Similarly,
 uintmax_t stands for the largest available unsigned type. Incidentally, these types could be
bigger than long long and unsigned long because C implementations are permitted to
define types beyond the required ones. Some compilers, for example, introduced the long
long type before it became part of the standard.

 C99 and C11 not only provide these new, portable type names, they also provide assistance
with input and output. For example, printf() requires specific specifiers for particular types.
So what do you do to display an int32_t value when it might require a %d specifier for one
definition and an %ld for another? The current standard provides some string macros (a
mechanism introduced in Chapter 4) to be used to display the portable types. For example,
the inttypes.h header file will define PRId32 as a string representing the appropriate speci-
fier (d or l , for instance) for a 32-bit signed value. Listing 3.6 shows a brief example illustrating
how to use a portable type and its associated specifier. The inttypes.h header file includes
 stdint.h , so the program only needs to include inttypes.h .

 Listing 3.6 The altnames.c Program

 /* altnames.c -- portable names for integer types */

 #include <stdio.h>

 #include <inttypes.h> // supports portable types

 int main(void)

ptg11524036

79Basic C Data Types

 {

 int32_t me32; // me32 a 32-bit signed variable

 me32 = 45933945;

 printf("First, assume int32_t is int: ");

 printf("me32 = %d\n", me32);

 printf("Next, let's not make any assumptions.\n");

 printf("Instead, use a \"macro\" from inttypes.h: ");

 printf("me32 = %" PRId32 "\n", me32);

 return 0;

 }

 In the final printf() argument, the PRId32 is replaced by its inttypes.h definition of "d" ,
making the line this:

 printf("me16 = %" "d" "\n", me16);

 But C combines consecutive quoted strings into a single quoted string, making the line this:

 printf("me16 = %d\n", me16);

 Here’s the output; note that the example also uses the \" escape sequence to display double
quotation marks:

 First, assume int32_t is int: me32 = 45933945

 Next, let's not make any assumptions.

 Instead, use a "macro" from inttypes.h: me32 = 45933945

 It’s not the purpose of this section to teach you all about expanded integer types. Rather, its
main intent is to reassure you that this level of control over types is available if you need it.
Reference Section VI, “Extended Integer Types,” in Appendix B provides a complete rundown
of the inttypes.h and stdint.h header files.

 Note C99/C11 Support

 Even though C has moved to the C11 standard, compiler writers have implemented C99 fea-
tures at different paces and with different priorities. At the time this book was prepared, some
compilers haven’t yet implemented the inttypes.h header file and features.

 Types float , double , and long double

 The various integer types serve well for most software development projects. However, financial
and mathematically oriented programs often make use of floating-point numbers. In C, such
numbers are called type float , double , or long double . They correspond to the real types
of FORTRAN and Pascal. The floating-point approach, as already mentioned, enables you to
represent a much greater range of numbers, including decimal fractions. Floating-point number

ptg11524036

80 Chapter 3 Data and C

representation is similar to scientific notation , a system used by scientists to express very large
and very small numbers. Let’s take a look.

 In scientific notation, numbers are represented as decimal numbers times powers of 10. Here
are some examples.

 Number Scientific Notation Exponential Notation

 1,000,000,000 = 1.0×10 9 = 1.0e9

 123,000 = 1.23×10 5 = 1.23e5

 322.56 = 3.2256×10 2 = 3.2256e2

 0.000056 = 5.6×10 –5 = 5.6e–5

 The first column shows the usual notation, the second column scientific notation, and the
third column exponential notation, or e-notation , which is the way scientific notation is usually
written for and by computers, with the e followed by the power of 10. Figure 3.7 shows more
floating-point representations.

 The C standard provides that a float has to be able to represent at least six significant figures
and allow a range of at least 10 –37 to 10 +37 . The first requirement means, for example, that
a float has to represent accurately at least the first six digits in a number such as 33.333333.
The second requirement is handy if you like to use numbers such as the mass of the sun
(2.0e30 kilograms), the charge of a proton (1.6e–19 coulombs), or the national debt. Often,
systems use 32 bits to store a floating-point number. Eight bits are used to give the exponent its
value and sign, and 24 bits are used to represent the nonexponent part, called the mantissa or
 significand , and its sign.

2.58

1.376+7

1.6E-19

12E20

 Figure 3.7 Some floating-point numbers.

ptg11524036

81Basic C Data Types

 C also has a double (for double precision) floating-point type. The double type has the same
minimum range requirements as float , but it extends the minimum number of significant
figures that can be represented to 10. Typical double representations use 64 bits instead of 32.
Some systems use all 32 additional bits for the nonexponent part. This increases the number of
significant figures and reduces round-off errors. Other systems use some of the bits to accom-
modate a larger exponent; this increases the range of numbers that can be accommodated.
Either approach leads to at least 13 significant figures, more than meeting the minimum
standard.

 C allows for a third floating-point type: long double . The intent is to provide for even more
precision than double . However, C guarantees only that long double is at least as precise as
 double .

 Declaring Floating-Point Variables

 Floating-point variables are declared and initialized in the same manner as their integer
cousins. Here are some examples:

 float noah, jonah;

 double trouble;

 float planck = 6.63e-34;

 long double gnp;

 Floating-Point Constants (Literals)

 There are many choices open to you when you write a literal floating-point constant. The basic
form of a floating-point literal is a signed series of digits, including a decimal point, followed
by an e or E , followed by a signed exponent indicating the power of 10 used. Here are two valid
floating-point constants:

 -1.56E+12

 2.87e-3

 You can leave out positive signs. You can do without a decimal point (2E5) or an exponential
part (19.28), but not both simultaneously. You can omit a fractional part (3.E16) or an integer
part (.45E–6), but not both (that wouldn’t leave much!). Here are some more valid floating-
point constants:

 3.14159

 .2

 4e16

 .8E-5

 100.

 Don’t use spaces in a floating-point constant.

 Wrong: 1.56 E+12

ptg11524036

82 Chapter 3 Data and C

 By default, the compiler assumes floating-point constants are double precision. Suppose, for
example, that some is a float variable and that you have the following statement:

 some = 4.0 * 2.0;

 Then 4.0 and 2.0 are stored as double , using (typically) 64 bits for each. The product is calcu-
lated using double precision arithmetic, and only then is the answer trimmed to regular float
size. This ensures greater precision for your calculations, but it can slow down a program.

 C enables you to override this default by using an f or F suffix to make the compiler treat a
floating-point constant as type float ; examples are 2.3f and 9.11E9F . An l or L suffix makes
a number type long double ; examples are 54.3l and 4.32e4L . Note that L is less likely to be
mistaken for 1 (one) than is l . If the floating-point number has no suffix, it is type double .

 Since C99, C has a new format for expressing floating-point constants. It uses a hexadecimal
prefix (0x or 0X) with hexadecimal digits, a p or P instead of e or E , and an exponent that is a
power of 2 instead of a power of 10. Here’s what such a number might look like:

 0xa.1fp10

 The a is 10 in hex, the .1f is 1/16th plus 15/256 th (f is 15 in hex), and the p10 is 2 10 , or
1024, making the complete value (10 + 1/16 + 15/256) x 1024, or 10364.0 in base 10 notation.

 Not all C compilers have added support for this feature.

 Printing Floating-Point Values

 The printf() function uses the %f format specifier to print type float and double numbers
using decimal notation, and it uses %e to print them in exponential notation. If your system
supports the hexadecimal format for floating-point numbers, you can use a or A instead of e
or E . The long double type requires the %Lf , %Le , and %La specifiers to print that type. Note
that both float and double use the %f , %e , or %a specifier for output. That’s because C auto-
matically expands type float values to type double when they are passed as arguments to any
function, such as printf() , that doesn’t explicitly prototype the argument type. Listing 3.7
illustrates these behaviors.

 Listing 3.7 The showf_pt.c Program

 /* showf_pt.c -- displays float value in two ways */

 #include <stdio.h>

 int main(void)

 {

 float aboat = 32000.0;

 double abet = 2.14e9;

 long double dip = 5.32e-5;

 printf("%f can be written %e\n", aboat, aboat);

 // next line requires C99 or later compliance

 printf("And it's %a in hexadecimal, powers of 2 notation\n", aboat);

ptg11524036

83Basic C Data Types

 printf("%f can be written %e\n", abet, abet);

 printf("%Lf can be written %Le\n", dip, dip);

 return 0;

 }

 This is the output, provided your compiler is C99/C11 compliant:

 32000.000000 can be written 3.200000e+04

 And it's 0x1.f4p+14 in hexadecimal, powers of 2 notation

 2140000000.000000 can be written 2.140000e+09

 0.000053 can be written 5.320000e-05

 This example illustrates the default output. The next chapter discusses how to control the
appearance of this output by setting field widths and the number of places to the right of the
decimal.

 Floating-Point Overflow and Underflow

 Suppose the biggest possible float value on your system is about 3.4E38 and you do this:

 float toobig = 3.4E38 * 100.0f;

 printf("%e\n", toobig);

 What happens? This is an example of overflow —when a calculation leads to a number too
large to be expressed. The behavior for this case used to be undefined, but now C specifies that
 toobig gets assigned a special value that stands for infinity and that printf() displays either
 inf or infinity (or some variation on that theme) for the value.

 What about dividing very small numbers? Here the situation is more involved. Recall that a
 float number is stored as an exponent and as a value part, or mantissa . There will be a number
that has the smallest possible exponent and also the smallest value that still uses all the bits
available to represent the mantissa. This will be the smallest number that still is represented
to the full precision available to a float value. Now divide it by 2. Normally, this reduces the
exponent, but the exponent already is as small as it can get. So, instead, the computer moves
the bits in the mantissa over, vacating the first position and losing the last binary digit. An
analogy would be taking a base 10 value with four significant digits, such as 0.1234E-10, divid-
ing by 10, and getting 0.0123E-10. You get an answer, but you’ve lost a digit in the process.
This situation is called underflow , and C refers to floating-point values that have lost the full
precision of the type as subnormal . So dividing the smallest positive normal floating-point value
by 2 results in a subnormal value. If you divide by a large enough value, you lose all the digits
and are left with 0. The C library now provides functions that let you check whether your
computations are producing subnormal values.

 There’s another special floating-point value that can show up: NaN , or not-a-number. For
example, you give the asin() function a value, and it returns the angle that has that value as
its sine. But the value of a sine can’t be greater than 1, so the function is undefined for values

ptg11524036

84 Chapter 3 Data and C

in excess of 1. In such cases, the function returns the NaN value, which printf() displays as
 nan , NaN , or something similar.

 Floating-Point Round-off Errors

 Take a number, add 1 to it, and subtract the original number. What do you get? You get 1. A
floating-point calculation, such as the following, may give another answer:

 /* floaterr.c--demonstrates round-off error */

 #include <stdio.h>

 int main(void)

 {

 float a,b;

 b = 2.0e20 + 1.0;

 a = b - 2.0e20;

 printf("%f \n", a);

 return 0;

 }

 The output is this:

 0.000000 older gcc on Linux

 -13584010575872.000000 Turbo C 1.5

 4008175468544.000000 XCode 4.5, Visual Studio 2012, current gcc

 The reason for these odd results is that the computer doesn’t keep track of enough decimal
places to do the operation correctly. The number 2.0e20 is 2 followed by 20 zeros and, by add-
ing 1, you are trying to change the 21st digit. To do this correctly, the program would need to
be able to store a 21-digit number. A float number is typically just six or seven digits scaled
to bigger or smaller numbers with an exponent. The attempt is doomed. On the other hand, if
you used 2.0e4 instead of 2.0e20, you would get the correct answer because you are trying to
change the fifth digit, and float numbers are precise enough for that.

 Floating-Point Representation

 The preceding sidebar listed different possible outputs for the same program, depending on
the computer system used. The reason is that there are many possible ways to implement
floating-point representation within the broad outlines discussed earlier. To provide greater
uniformity, the Institute of Electrical and Electronics Engineers (IEEE) developed a standard for
floating-point representation and computation, a standard now used by many hardware floating-
point units. In 2011 this standard was adopted as the international ISO/IEC/IEEE 60559:2011
standard. This standard is incorporated as an option in the C99 and C11 standards, with the
intention that it be supported on platforms with conforming hardware. The final example of out-
put for the floaterr.c program comes from systems supporting this floating-point standard. C
support includes tools for catching the problem. See Appendix B , Section V for more details.

ptg11524036

85Basic C Data Types

 Complex and Imaginary Types

 Many computations in science and engineering use complex and imaginary numbers. C99
supports these numbers, with some reservations. A free-standing implementation, such as that
used for embedded processors, doesn’t need to have these types. (A VCR chip probably doesn’t
need complex numbers to do its job.) Also, more generally, the imaginary types are optional.
With C11, the entire complex number package is optional.

 In brief, there are three complex types, called float _Complex , double _Complex , and long
double _Complex . A float _Complex variable, for example, would contain two float values,
one representing the real part of a complex number and one representing the imaginary part.
Similarly, there are three imaginary types, called float _Imaginary , double _Imaginary ,
and long double _Imaginary .

 Including the complex.h header file lets you substitute the word complex for _Complex and
the word imaginary for _Imaginary , and it allows you to use the symbol I to represent the
square root of –1.

 You may wonder why the C standard doesn’t simply use complex as the keyword instead
of using _Complex and then adding a header file to define complex as _Complex . The stan-
dards committee is hesitant to introduce a new keyword because that can invalidate existing
code that uses the same word as an identifier. For example, prior to C99, many programmers
had already used, say, struct complex to define a structure to represent complex numbers
or, perhaps, psychological conditions. (The keyword struct , as discussed in Chapter 14 ,
“Structures and Other Data Forms,” is used to define data structures capable of holding more
than one value.) Making complex a keyword would make these previous uses syntax errors. But
it’s much less likely that someone would have used struct _Complex , especially since using
identifiers having an initial underscore is supposed to be reserved. So the committee settled on
 _Complex as the keyword and made complex available as an option for those who don’t have
to worry about conflicts with past usage.

 Beyond the Basic Types

 That finishes the list of fundamental data types. For some of you, the list must seem long.
Others of you might be thinking that more types are needed. What about a character string
type? C doesn’t have one, but it can still deal quite well with strings. You will take a first look
at strings in Chapter 4 .

 C does have other types derived from the basic types. These types include arrays, pointers,
structures, and unions. Although they are subject matter for later chapters, we have already
smuggled some pointers into this chapter’s examples. For instance, a pointer points to the loca-
tion of a variable or other data object. The & prefix used with the scanf() function creates a
pointer telling scanf() where to place information.

ptg11524036

86 Chapter 3 Data and C

 Summary: The Basic Data Types

 Keywords:

 The basic data types are set up using 11 keywords: int , long , short , unsigned , char ,
 float , double , signed , _Bool , _Complex , and _Imaginary .

 Signed Integers:

 These can have positive or negative values:

 ■ int — The basic integer type for a given system. C guarantees at least 16 bits for int .

 ■ short or short int — The largest short integer is no larger than the largest int and
may be smaller. C guarantees at least 16 bits for short .

 ■ long or long int — Can hold an integer at least as large as the largest int and possi-
bly larger. C guarantees at least 32 bits for long .

 ■ long long or long long int — This type can hold an integer at least as large as the
largest long and possibly larger. The long long type is least 64 bits.

 Typically, long will be bigger than short , and int will be the same as one of the two. For
example, old DOS-based systems for the PC provided 16-bit short and int and 32-bit long ,
and Windows 95–based systems and later provide 16-bit short and 32-bit int and long .

 You can, if you want, use the keyword signed with any of the signed types, making the fact
that they are signed explicit.

 Unsigned Integers:

 These have zero or positive values only. This extends the range of the largest possible posi-
tive number. Use the keyword unsigned before the desired type: unsigned int , unsigned
long , unsigned short . A lone unsigned is the same as unsigned int .

 Characters:

 These are typographic symbols such as A , & , and + . By definition, the char type uses 1 byte of
memory to represent a character. Historically, this character byte has most often been 8 bits,
but it can be 16 bits or larger, if needed to represent the base character set.

 ■ char — The keyword for this type. Some implementations use a signed char , but others
use an unsigned char . C enables you to use the keywords signed and unsigned to
specify which form you want.

 Boolean:

 Boolean values represent true and false ; C uses 1 for true and 0 for false .

 ■ _Bool — The keyword for this type. It is an unsigned int and need only be large enough
to accommodate the range 0 through 1.

 Real Floating Point:

 These can have positive or negative values:

 ■ float — The basic floating-point type for the system; it can represent at least six signifi-
cant figures accurately.

 ■ double — A (possibly) larger unit for holding floating-point numbers. It may allow more sig-
nificant figures (at least 10, typically more) and perhaps larger exponents than float .

ptg11524036

87Basic C Data Types

 ■ long double — A (possibly) even larger unit for holding floating-point numbers. It may
allow more significant figures and perhaps larger exponents than double .

 Complex and Imaginary Floating Point:

 The imaginary types are optional. The real and imaginary components are based on the corre-
sponding real types:

 ■ float _Complex

 ■ double _Complex

 ■ long double _Complex

 ■ float _Imaginary

 ■ double _Imaginary

 ■ long double _Imaginary

 Summary: How to Declare a Simple Variable

 1. Choose the type you need.

 2. Choose a name for the variable using the allowed characters.

 3. Use the following format for a declaration statement:
 type-specifier variable-name ;

 The type-specifier is formed from one or more of the type keywords; here are exam-
ples of declarations:
 int erest;

 unsigned short cash;.

 4. You can declare more than one variable of the same type by separating the variable
names with commas. Here’s an example:
 char ch, init, ans;.

 5. You can initialize a variable in a declaration statement:
 float mass = 6.0E24;

 Type Sizes

 What type sizes does your system use? Try running the program in Listing 3.8 to find out.

 Listing 3.8 The typesize.c Program

 //* typesize.c -- prints out type sizes */

 #include <stdio.h>

 int main(void)

 {

 /* c99 provides a %zd specifier for sizes */

ptg11524036

88 Chapter 3 Data and C

 printf("Type int has a size of %zd bytes.\n", sizeof(int));

 printf("Type char has a size of %zd bytes.\n", sizeof(char));

 printf("Type long has a size of %zd bytes.\n", sizeof(long));

 printf("Type long long has a size of %zd bytes.\n",

 sizeof(long long));

 printf("Type double has a size of %zd bytes.\n",

 sizeof(double));

 printf("Type long double has a size of %zd bytes.\n",

 sizeof(long double));

 return 0;

 }

 C has a built-in operator called sizeof that gives sizes in bytes. C99 and C11 provide a %zd
specifier for this type used by sizeof . Noncompliant compilers may require %u or %lu instead.
Here is a sample output:

 Type int has a size of 4 bytes.

 Type char has a size of 1 bytes.

 Type long has a size of 8 bytes.

 Type long long has a size of 8 bytes.

 Type double has a size of 8 bytes.

 Type long double has a size of 16 bytes.

 This program found the size of only six types, but you can easily modify it to find the size of
any other type that interests you. Note that the size of char is necessarily 1 byte because C
defines the size of 1 byte in terms of char . So, on a system with a 16-bit char and a 64-bit
 double , sizeof will report double as having a size of 4 bytes. You can check the limits.h
and float.h header files for more detailed information on type limits. (The next chapter
discusses these two files further.)

 Incidentally, notice in the last few lines how a printf() statement can be spread over two
lines. You can do this as long as the break does not occur in the quoted section or in the
middle of a word.

 Using Data Types

 When you develop a program, note the variables you need and which type they should be.
Most likely, you can use int or possibly float for the numbers and char for the characters.
Declare them at the beginning of the function that uses them. Choose a name for the variable
that suggests its meaning. When you initialize a variable, match the constant type to the vari-
able type. Here’s an example:

 int apples = 3; /* RIGHT */

 int oranges = 3.0; /* POOR FORM */

ptg11524036

89Arguments and Pitfalls

 C is more forgiving about type mismatches than, say, Pascal. C compilers allow the second
initialization, but they might complain, particularly if you have activated a higher warning
level. It is best not to develop sloppy habits.

 When you initialize a variable of one numeric type to a value of a different type, C converts
the value to match the variable. This means you may lose some data. For example, consider the
following initializations:

 int cost = 12.99; /* initializing an int to a double */

 float pi = 3.1415926536; /* initializing a float to a double */

 The first declaration assigns 12 to cost ; when converting floating-point values to integers, C
simply throws away the decimal part (truncation) instead of rounding. The second declaration
loses some precision, because a float is guaranteed to represent only the first six digits accu-
rately. Compilers may issue a warning (but don’t have to) if you make such initializations. You
might have run into this when compiling Listing 3.1 .

 Many programmers and organizations have systematic conventions for assigning variable
names in which the name indicates the type of variable. For example, you could use an
 i_ prefix to indicate type int and us_ to indicate unsigned short , so i_smart would be
instantly recognizable as a type int variable and us_verysmart would be an unsigned short
variable.

 Arguments and Pitfalls

 It’s worth repeating and amplifying a caution made earlier in this chapter about using
 printf() . The items of information passed to a function, as you may recall, are termed argu-
ments . For instance, the function call printf("Hello, pal.") has one argument: "Hello,
pal." . A series of characters in quotes, such as "Hello, pal." , is called a string . We’ll discuss
strings in Chapter 4 . For now, the important point is that one string, even one containing
several words and punctuation marks, counts as one argument.

 Similarly, the function call scanf("%d", &weight) has two arguments: "%d" and &weight . C
uses commas to separate arguments to a function. The printf() and scanf() functions are
unusual in that they aren’t limited to a particular number of arguments. For example, we’ve
used calls to printf() with one, two, and even three arguments. For a program to work prop-
erly, it needs to know how many arguments there are. The printf() and scanf() functions
use the first argument to indicate how many additional arguments are coming. The trick is that
each format specification in the initial string indicates an additional argument. For instance,
the following statement has two format specifiers, %d and %d :

 printf("%d cats ate %d cans of tuna\n", cats, cans);

 This tells the program to expect two more arguments, and indeed, there are two more— cats
and cans .

ptg11524036

90 Chapter 3 Data and C

 Your responsibility as a programmer is to make sure that the number of format specifications
matches the number of additional arguments and that the specifier type matches the value
type. C now has a function-prototyping mechanism that checks whether a function call has
the correct number and correct kind of arguments, but it doesn’t work with printf() and
 scanf() because they take a variable number of arguments. What happens if you don’t live up
to the programmer’s burden? Suppose, for example, you write a program like that in
Listing 3.9 .

 Listing 3.9 The badcount.c Program

 /* badcount.c -- incorrect argument counts */

 #include <stdio.h>

 int main(void)

 {

 int n = 4;

 int m = 5;

 float f = 7.0f;

 float g = 8.0f;

 printf("%d\n", n, m); /* too many arguments */

 printf("%d %d %d\n", n); /* too few arguments */

 printf("%d %d\n", f, g); /* wrong kind of values */

 return 0;

 }

 Here’s a sample output from XCode 4.6 (OS 10.8):

 4

 4 1 -706337836

 1606414344 1

 Next, here’s a sample output from Microsoft Visual Studio Express 2012 (Windows 7):

 4

 4 0 0

 0 1075576832

 Note that using %d to display a float value doesn’t convert the float value to the nearest int .
Also, the results you get for too few arguments or the wrong kind of argument differ from plat-
form to platform and can from trial to trial.

 None of the compilers we tried refused to compile this code; although most did issue warnings
that something might be wrong. Nor were there any complaints when we ran the program. It
is true that some compilers might catch this sort of error, but the C standard doesn’t require
them to. Therefore, the computer may not catch this kind of error, and because the program
may otherwise run correctly, you might not notice the errors either. If a program doesn’t print

ptg11524036

91One More Example: Escape Sequences

the expected number of values or if it prints unexpected values, check to see whether you’ve
used the correct number of printf() arguments.

 One More Example: Escape Sequences

 Let’s run one more printing example, one that makes use of some of C’s special escape
sequences for characters. In particular, the program in Listing 3.10 shows how the backspace
(\b), tab (\t), and carriage return (\r) work. These concepts date from when computers used
teletype machines for output, and they don’t always translate successfully to contemporary
graphical interfaces. For example, Listing 3.10 doesn’t work as described on some Macintosh
implementations.

 Listing 3.10 The escape.c Program

 /* escape.c -- uses escape characters */

 #include <stdio.h>

 int main(void)

 {

 float salary;

 printf("\aEnter your desired monthly salary:");/* 1 */

 printf(" $_______\b\b\b\b\b\b\b"); /* 2 */

 scanf("%f", &salary);

 printf("\n\t$%.2f a month is $%.2f a year.", salary,

 salary * 12.0); /* 3 */

 printf("\rGee!\n"); /* 4 */

 return 0;

 }

 What Happens When the Program Runs

 Let’s walk through this program step by step as it would work under a system in which the
escape characters behave as described. (The actual behavior could be different. For instance,
XCode 4.6 displays the \a , \b , and \r characters as upside down question marks!)

 The first printf() statement (the one numbered 1) sounds the alert signal (prompted by the
 \a) and then prints the following:

 Enter your desired monthly salary:

 Because there is no \n at the end of the string, the cursor is left positioned after the colon.

 The second printf() statement picks up where the first one stops, so after it is finished, the
screen looks as follows:

 Enter your desired monthly salary: $_______

ptg11524036

92 Chapter 3 Data and C

 The space between the colon and the dollar sign is there because the string in the second
 printf() statement starts with a space. The effect of the seven backspace characters is to move
the cursor seven positions to the left. This backs the cursor over the seven underscore charac-
ters, placing the cursor directly after the dollar sign. Usually, backspacing does not erase the
characters that are backed over, but some implementations may use destructive backspacing,
negating the point of this little exercise.

 At this point, you type your response, say 4000.00 . Now the line looks like this:

 Enter your desired monthly salary: $4000.00

 The characters you type replace the underscore characters, and when you press Enter (or
Return) to enter your response, the cursor moves to the beginning of the next line.

 The third printf() statement output begins with \n\t . The newline character moves the
cursor to the beginning of the next line. The tab character moves the cursor to the next tab
stop on that line, typically, but not necessarily, to column 9. Then the rest of the string is
printed. After this statement, the screen looks like this:

 Enter your desired monthly salary: $4000.00

 $4000.00 a month is $48000.00 a year.

 Because the printf() statement doesn’t use the newline character, the cursor remains just
after the final period.

 The fourth printf() statement begins with \r . This positions the cursor at the beginning of
the current line. Then Gee! is displayed there, and the \n moves the cursor to the next line.
Here is the final appearance of the screen:

 Enter your desired monthly salary: $4000.00

 Gee! $4000.00 a month is $48000.00 a year.

 Flushing the Output

 When does printf() actually send output to the screen? Initially, printf() statements send
output to an intermediate storage area called a buffer . Every now and then, the material in the
buffer is sent to the screen. The standard C rules for when output is sent from the buffer to the
screen are clear: It is sent when the buffer gets full, when a newline character is encountered,
or when there is impending input. (Sending the output from the buffer to the screen or file is
called flushing the buffer .) For instance, the first two printf() statements don’t fill the buffer
and don’t contain a newline, but they are immediately followed by a scanf() statement asking
for input. That forces the printf() output to be sent to the screen.

 You may encounter an older implementation for which scanf() doesn’t force a flush, which
would result in the program looking for your input without having yet displayed the prompt
onscreen. In that case, you can use a newline character to flush the buffer. The code can be
changed to look like this:

 printf("Enter your desired monthly salary:\n");

ptg11524036

93Summary

 scanf("%f", &salary);

 This code works whether or not impending input flushes the buffer. However, it also puts the
cursor on the next line, preventing you from entering data on the same line as the prompting
string. Another solution is to use the fflush() function described in Chapter 13 , “File Input/
Output.”

 Key Concepts

 C has an amazing number of numeric types. This reflects the intent of C to avoid putting
obstacles in the path of the programmer. Instead of mandating, say, that one kind of integer is
enough, C tries to give the programmer the options of choosing a particular variety (signed or
unsigned) and size that best meet the needs of a particular program.

 Floating-point numbers are fundamentally different from integers on a computer. They are
stored and processed differently. Two 32-bit memory units could hold identical bit patterns,
but if one were interpreted as a float and the other as a long , they would represent totally
different and unrelated values. For example, on a PC, if you take the bit pattern that represents
the float number 256.0 and interpret it as a long value, you get 113246208. C does allow you
to write an expression with mixed data types, but it will make automatic conversions so that
the actual calculation uses just one data type.

 In computer memory, characters are represented by a numeric code. The ASCII code is the
most common in the U.S., but C supports the use of other codes. A character constant is the
symbolic representation for the numeric code used on a computer system—it consists of a char-
acter enclosed in single quotes, such as 'A' .

 Summary

 C has a variety of data types. The basic types fall into two categories: integer types and floating-
point types. The two distinguishing features for integer types are the amount of storage allotted
to a type and whether it is signed or unsigned. The smallest integer type is char , which can
be either signed or unsigned, depending on the implementation. You can use signed char
and unsigned char to explicitly specify which you want, but that’s usually done when you
are using the type to hold small integers rather than character codes. The other integer types
include the short , int , long , and long long type. C guarantees that each of these types
is at least as large as the preceding type. Each of them is a signed type, but you can use the
 unsigned keyword to create the corresponding unsigned types: unsigned short , unsigned
int , unsigned long , and unsigned long long . Or you can add the signed modifier to
explicitly state that the type is signed. Finally, there is the _Bool type, an unsigned type able to
hold the values 0 and 1 , representing false and true .

 The three floating-point types are float , double , and, since C90, long double . Each is at
least as large as the preceding type. Optionally, an implementation can support complex and

ptg11524036

94 Chapter 3 Data and C

imaginary types by using the keywords _Complex and _Imaginary in conjunction with the
floating-type keywords. For example, there would be a double _Complex type and a float
_Imaginary type.

 Integers can be expressed in decimal, octal, or hexadecimal form. A leading 0 indicates an octal
number, and a leading 0x or 0X indicates a hexadecimal number. For example, 32 , 040 , and
 0x20 are decimal, octal, and hexadecimal representations of the same value. An l or L suffix
indicates a long value, and an ll or LL indicates a long long value.

 Character constants are represented by placing the character in single quotes: 'Q' , '8' , and
 '$' , for example. C escape sequences, such as '\n' , represent certain nonprinting characters.
You can use the form '\007' to represent a character by its ASCII code.

 Floating-point numbers can be written with a fixed decimal point, as in 9393.912 , or in expo-
nential notation, as in 7.38E10 . C99 and C11 provide a third exponential notation using hexa-
decimal digits and powers of 2, as in 0xa.1fp10 .

 The printf() function enables you to print various types of values by using conversion speci-
fiers, which, in their simplest form, consist of a percent sign and a letter indicating the type, as
in %d or %f .

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. Which data type would you use for each of the following kinds of data (sometimes more
than one type could be appropriate)?

 a. The population of East Simpleton

 b. The cost of a movie on DVD

 c. The most common letter in this chapter

 d. The number of times that the letter occurs in this chapter

 2. Why would you use a type long variable instead of type int ?

 3. What portable types might you use to get a 32-bit signed integer, and what would the
rationale be for each choice?

 4. Identify the type and meaning, if any, of each of the following constants:

 a. '\b'

 b. 1066

 c. 99.44

ptg11524036

95Review Questions

 d. 0XAA

 e. 2.0e30

 5. Dottie Cawm has concocted an error-laden program. Help her find the mistakes.

 include <stdio.h>

 main

 (

 float g; h;

 float tax, rate;

 g = e21;

 tax = rate*g;

)

 6. Identify the data type (as used in declaration statements) and the printf() format
specifier for each of the following constants:

 Constant Type Specifier

 a. 12

 b. 0X3

 c. 'C'

 d. 2.34E07

 e. '\040'

 f. 7.0

 g. 6L

 h. 6.0f

 i. 0x5.b6p12

 7. Identify the data type (as used in declaration statements) and the printf() format
specifier for each of the following constants (assume a 16-bit int):

 Constant Type Specifier

 a. 012

 b. 2.9e05L

 c. 's'

 d. 100000

 e. '\n'

ptg11524036

96 Chapter 3 Data and C

 f. 20.0f

 g. 0x44

 h. -40

 8. Suppose a program begins with these declarations:

 int imate = 2;

 long shot = 53456;

 char grade = 'A';

 float log = 2.71828;

 Fill in the proper type specifiers in the following printf() statements:

 printf("The odds against the %__ were %__ to 1.\n", imate, shot);

 printf("A score of %__ is not an %__ grade.\n", log, grade);

 9. Suppose that ch is a type char variable. Show how to assign the carriage-return character
to ch by using an escape sequence, a decimal value, an octal character constant, and a
hex character constant. (Assume ASCII code values.)

 10. Correct this silly program. (The / in C means division.)

 void main(int) / this program is perfect /

 {

 cows, legs integer;

 printf("How many cow legs did you count?\n);

 scanf("%c", legs);

 cows = legs / 4;

 printf("That implies there are %f cows.\n", cows)

 }

 11. Identify what each of the following escape sequences represents:

 a. \n

 b. \\

 c. \"

 d. \t

ptg11524036

97Programming Exercises

 Programming Exercises

 1. Find out what your system does with integer overflow, floating-point overflow, and
floating-point underflow by using the experimental approach; that is, write programs
having these problems. (You can check the discussion in Chapter 4 of limits.h and
 float.h to get guidance on the largest and smallest values.)

 2. Write a program that asks you to enter an ASCII code value, such as 66, and then prints
the character having that ASCII code.

 3. Write a program that sounds an alert and then prints the following text:

 Startled by the sudden sound, Sally shouted,

 "By the Great Pumpkin, what was that!"

 4. Write a program that reads in a floating-point number and prints it first in decimal-point
notation, then in exponential notation, and then, if your system supports it, p notation.
Have the output use the following format (the actual number of digits displayed for the
exponent depends on the system):

 Enter a floating-point value: 64.25
 fixed-point notation: 64.250000

 exponential notation: 6.425000e+01

 p notation: 0x1.01p+6

 5. There are approximately 3.156 × 10 7 seconds in a year. Write a program that requests
your age in years and then displays the equivalent number of seconds.

 6. The mass of a single molecule of water is about 3.0×10 -23 grams. A quart of water is
about 950 grams. Write a program that requests an amount of water, in quarts, and
displays the number of water molecules in that amount.

 7. There are 2.54 centimeters to the inch. Write a program that asks you to enter your
height in inches and then displays your height in centimeters. Or, if you prefer, ask for
the height in centimeters and convert that to inches.

 8. In the U.S. system of volume measurements, a pint is 2 cups, a cup is 8 ounces, an
ounce is 2 tablespoons, and a tablespoon is 3 teaspoons. Write a program that requests a
volume in cups and that displays the equivalent volumes in pints, ounces, tablespoons,
and teaspoons. Why does a floating-point type make more sense for this application than
an integer type?

ptg11524036

This page intentionally left blank

ptg11524036

 4
 Character Strings and

Formatted Input/Output

 You will learn about the following in this chapter:

 ■ Function:

 strlen()

 ■ Keywords:

 const

 ■ Character strings

 ■ How character strings are created and stored

 ■ How you can use scanf() and printf() to read and display character strings

 ■ How to use the strlen() function to measure string lengths

 ■ The C preprocessor’s #define directive and ANSI C’s const modifier for creating
symbolic constants

 This chapter concentrates on input and output. You’ll add personality to your programs by
making them interactive and using character strings. You will also take a more detailed look at
those two handy C input/output functions, printf() and scanf() . With these two functions,
you have the program tools you need to communicate with users and to format output to meet
your needs and tastes. Finally, you’ll take a quick look at an important C facility, the C prepro-
cessor, and learn how to define and use symbolic constants.

 Introductory Program

 By now, you probably expect a sample program at the beginning of each chapter, so Listing 4.1
is a program that engages in a dialog with the user. To add a little variety, the code uses the
newer comment style.

ptg11524036

100 Chapter 4 Character Strings and Formatted Input/Output

 Listing 4.1 The talkback.c Program

 // talkback.c -- nosy, informative program

 #include <stdio.h>

 #include <string.h> // for strlen() prototype

 #define DENSITY 62.4 // human density in lbs per cu ft

 int main()

 {

 float weight, volume;

 int size, letters;

 char name[40]; // name is an array of 40 chars

 printf("Hi! What's your first name?\n");

 scanf("%s", name);

 printf("%s, what's your weight in pounds?\n", name);

 scanf("%f", &weight);

 size = sizeof name;

 letters = strlen(name);

 volume = weight / DENSITY;

 printf("Well, %s, your volume is %2.2f cubic feet.\n",

 name, volume);

 printf("Also, your first name has %d letters,\n",

 letters);

 printf("and we have %d bytes to store it.\n", size);

 return 0;

 }

 Running talkback.c produces results such as the following:

 Hi! What's your first name?

 Christine
 Christine, what's your weight in pounds?

 154
 Well, Christine, your volume is 2.47 cubic feet.

 Also, your first name has 9 letters,

 and we have 40 bytes to store it.

 Here are the main new features of this program:

 ■ It uses an array to hold a character string . Here, someone’s name is read into the array,
which, in this case, is a series of 40 consecutive bytes in memory, each able to hold a
single character value.

 ■ It uses the %s conversion specification to handle the input and output of the string. Note
that name , unlike weight , does not use the & prefix when used with scanf() . (As you’ll
see later, both &weight and name are addresses.)

ptg11524036

101Character Strings: An Introduction

 ■ It uses the C preprocessor to define the symbolic constant DENSITY to represent the value
 62.4 .

 ■ It uses the C function strlen() to find the length of a string.

 The C approach might seem a little complex compared with the input/output of, say, BASIC.
However, this complexity buys a finer control of I/O and greater program efficiency, and it’s
surprisingly easy once you get used to it.

 Let’s investigate these new ideas.

 Character Strings: An Introduction

 A character string is a series of one or more characters. Here is an example of a string:

 "Zing went the strings of my heart!"

 The double quotation marks are not part of the string. They inform the compiler that they
enclose a string, just as single quotation marks identify a character.

 Type char Arrays and the Null Character

 C has no special variable type for strings. Instead, strings are stored in an array of type char .
Characters in a string are stored in adjacent memory cells, one character per cell, and an array
consists of adjacent memory locations, so placing a string in an array is quite natural (see
 Figure 4.1).

Z i n w e en t t s t o f m h e a r t ! \0yr i n sghg

each cell is one byte null character

 Figure 4.1 A string in an array.

 Note that Figure 4.1 shows the character \0 in the last array position. This is the null charac-
ter , and C uses it to mark the end of a string. The null character is not the digit zero; it is the
nonprinting character whose ASCII code value (or equivalent) is 0 . Strings in C are always
stored with this terminating null character. The presence of the null character means that the
array must have at least one more cell than the number of characters to be stored. So when the
preceding program said it had 40 bytes to store the string, that meant it could hold up to 39
characters in addition to the null character.

 Now just what is an array? You can think of an array as several memory cells in a row. If you
prefer more formal language, an array is an ordered sequence of data elements of one type. This
example creates an array of 40 memory cells, or elements , each of which can store one
char -type value by using this declaration:

 char name[40];

ptg11524036

102 Chapter 4 Character Strings and Formatted Input/Output

 The brackets after name identify it as an array. The 40 within the brackets indicates the number
of elements in the array. The char identifies the type of each element (see Figure 4.2).

 name

type char
allocate 5 bytes

char name[5];

ch

type char
allocate 1 byte
char ch;

 Figure 4.2 Declaring a variable versus declaring an array.

 Using a character string is beginning to sound complicated! You have to create an array, place
the characters of a string into an array, one by one, and remember to add \0 at the end.
Fortunately, the computer can take care of most of the details itself.

 Using Strings

 Try the program in Listing 4.2 to see how easy it really is to use strings.

 Listing 4.2 The praise1.c Program

 /* praise1.c -- uses an assortment of strings */

 #include <stdio.h>

 #define PRAISE "You are an extraordinary being."

 int main(void)

 {

 char name[40];

 printf("What's your name? ");

 scanf("%s", name);

 printf("Hello, %s. %s\n", name, PRAISE);

 return 0;

 }

ptg11524036

103Character Strings: An Introduction

 The %s tells printf() to print a string. The %s appears twice because the program prints
two strings: the one stored in the name array and the one represented by PRAISE . Running
 praise1.c should produce an output similar to this:

 What's your name? Angela Plains
 Hello, Angela. You are an extraordinary being.

 You do not have to put the null character into the name array yourself. That task is done for
you by scanf() when it reads the input. Nor do you include a null character in the character
string constant PRAISE . We’ll explain the #define statement soon; for now, simply note that
the double quotation marks that enclose the text following PRAISE identify the text as a string.
The compiler takes care of putting in the null character.

 Note (and this is important) that scanf() just reads Angela Plains’s first name. After scanf()
starts to read input, it stops reading at the first whitespace (blank, tab, or newline) it encounters.
Therefore, it stops scanning for name when it reaches the blank between Angela and Plains .
In general, scanf() is used with %s to read only a single word, not a whole phrase, as a string.
C has other input-reading functions, such as fgets() , for handling general strings. Later chap-
ters will explore string functions more fully.

 Strings Versus Characters

 The string constant "x" is not the same as the character constant 'x' . One difference is that
 'x' is a basic type (char), but "x" is a derived type, an array of char . A second difference is
that "x" really consists of two characters, 'x' and '\0' , the null character (see Figure 4.3).

'x' the character

"x" the string

x

x \0

null character ends string

 Figure 4.3 The character 'x' and the string "x".

 The strlen() Function

 The previous chapter unleashed the sizeof operator, which gives the size of things in bytes.
The strlen() function gives the length of a string in characters. Because it takes one byte to
hold one character, you might suppose that both would give the same result when applied to a
string, but they don’t. Add a few lines to the example, as shown in Listing 4.3 , and see why.

ptg11524036

104 Chapter 4 Character Strings and Formatted Input/Output

 Listing 4.3 The praise2.c Program

 /* praise2.c */

 // try the %u or %lu specifiers if your implementation

 // does not recognize the %zd specifier

 #include <stdio.h>

 #include <string.h> /* provides strlen() prototype */

 #define PRAISE "You are an extraordinary being."

 int main(void)

 {

 char name[40];

 printf("What's your name? ");

 scanf("%s", name);

 printf("Hello, %s. %s\n", name, PRAISE);

 printf("Your name of %zd letters occupies %zd memory cells.\n",

 strlen(name), sizeof name);

 printf("The phrase of praise has %zd letters ",

 strlen(PRAISE));

 printf("and occupies %zd memory cells.\n", sizeof PRAISE);

 return 0;

 }

 If you are using a pre-ANSI C compiler, you might have to remove the following line:

 #include <string.h>

 The string.h file contains function prototypes for several string-related functions, including
 strlen() . Chapter 11 , “Character Strings and String Functions,” discusses this header file more
fully. (By the way, some pre-ANSI Unix systems use strings.h instead of string.h to contain
declarations for string functions.)

 More generally, C divides the C function library into families of related functions and provides
a header file for each family. For example, printf() and scanf() belong to a family of stan-
dard input and output functions and use the stdio.h header file. The strlen() function joins
several other string-related functions, such as functions to copy strings and to search through
strings, in a family served by the string.h header.

 Notice that Listing 4.3 uses two methods to handle long printf() statements. The first
method spreads one printf() statement over two lines. (You can break a line between argu-
ments to printf() but not in the middle of a string—that is, not between the quotation
marks.) The second method uses two printf() statements to print just one line. The newline
character (\n) appears only in the second statement. Running the program could produce the
following interchange:

 What's your name? Serendipity Chance
 Hello, Serendipity. You are an extraordinary being.

ptg11524036

105Character Strings: An Introduction

 Your name of 11 letters occupies 40 memory cells.

 The phrase of praise has 31 letters and occupies 32 memory cells.

 See what happens. The array name has 40 memory cells, and that is what the sizeof opera-
tor reports. Only the first 11 cells are needed to hold Serendipity, however, and that is what
 strlen() reports. The twelfth cell in the array name contains the null character, and its pres-
ence tells strlen() when to stop counting. Figure 4.4 illustrates this concept with a shorter
string.

5 characters

terminating null character

garbage (in general)

T u f f y \0

 Figure 4.4 The strlen() function knows when to stop.

 When you get to PRAISE , you find that strlen() again gives you the exact number of char-
acters (including spaces and punctuation) in the string. The sizeof operator gives you a
number one larger because it also counts the invisible null character used to end the string. The
program didn’t tell the computer how much memory to set aside to store the phrase. It had to
count the number of characters between the double quotes itself.

 As mentioned in Chapter 3 , “Data and C,” the C99 and C11 standards use a %zd specifier for
the type used by the sizeof operator. This also applies for type returned by strlen() . For
earlier versions of C you need to know the actual type returned by sizeof and strlen() ; typi-
cally that would be unsigned or unsigned long .

 One other point: The preceding chapter used sizeof with parentheses, but this example
doesn’t. Whether you use parentheses depends on whether you want the size of a type or the
size of a particular quantity. Parentheses are required for types but are optional for particular
quantities. That is, you would use sizeof(char) or sizeof(float) but can use sizeof name
or sizeof 6.28 . However, it is all right to use parentheses in these cases, too, as in sizeof
(6.28) .

 The last example used strlen() and sizeof for the rather trivial purpose of satisfying a user’s
potential curiosity. Actually, however, strlen() and sizeof are important programming
tools. For example, strlen() is useful in all sorts of character-string programs, as you’ll see in
 Chapter 11 .

 Let’s move on to the #define statement.

ptg11524036

106 Chapter 4 Character Strings and Formatted Input/Output

 Constants and the C Preprocessor

 Sometimes you need to use a constant in a program. For example, you could give the circum-
ference of a circle as follows:

 circumference = 3.14159 * diameter;

 Here, the constant 3.14159 represents the world-famous constant pi (π). To use a constant,
just type in the actual value, as in the example. However, there are good reasons to use a
 symbolic constant instead. That is, you could use a statement such as the following and have the
computer substitute in the actual value later:

 circumference = pi * diameter;

 Why is it better to use a symbolic constant? First, a name tells you more than a number does.
Compare the following two statements:

 owed = 0.015 * housevalue;

 owed = taxrate * housevalue;

 If you read through a long program, the meaning of the second version is plainer.

 Also, suppose you have used a constant in several places, and it becomes necessary to change
its value. After all, tax rates do change. Then you only need to alter the definition of the
symbolic constant, rather than find and change every occurrence of the constant in the
program.

 Okay, how do you set up a symbolic constant? One way is to declare a variable and set it equal
to the desired constant. You could write this:

 float taxrate;

 taxrate = 0.015;

 This provides a symbolic name, but taxrate is a variable, so your program might change its
value accidentally. Fortunately, C has a couple better ideas.

 The original better idea is the C preprocessor. In Chapter 2 , “Introducing C,” you saw how the
preprocessor uses #include to incorporate information from another file. The preprocessor
also lets you define constants. Just add a line like the following at the top of the file containing
your program:

 #define TAXRATE 0.015

 When your program is compiled, the value 0.015 will be substituted everywhere you have used
 TAXRATE . This is called a compile-time substitution . By the time you run the program, all the
substitutions have already been made (see Figure 4.5). Such defined constants are often termed
 manifest constants .

ptg11524036

107Constants and the C Preprocessor

what you type

preprocessor
at work

#define TAXRATE 0.015

int main(void)

{

•

•

•

bill=TAXRATE * sum;

{

•

•

•

}

int main(void)

{

•

•

•

bill=0.015 * sum;

•

•

•

}

COMPILER

 Figure 4.5 What you type versus what is compiled.

ptg11524036

108 Chapter 4 Character Strings and Formatted Input/Output

 Note the format. First comes #define . Next comes the symbolic name (TAXRATE) for the
constant and then the value (0.015) for the constant. (Note that this construction does not use
the = sign.) So the general form is as follows:

 #define NAME value

 You would substitute the symbolic name of your choice for NAME and the appropriate value
for value . No semicolon is used because this is a substitution mechanism handled by the
preprocessor, not a C statement. Why is TAXRATE capitalized? It is a sensible C tradition to type
constants in uppercase. Then, when you encounter one in the depths of a program, you know
immediately that it is a constant, not a variable. Capitalizing constants is just another tech-
nique to make programs more readable. Your programs will still work if you don’t capitalize the
constants, but capitalizing them is a reasonable habit to cultivate.

 Other, less common, naming conventions include prefixing a name with a c_ or k_ to indicate
a constant, producing names such as c_level or k_line .

 The names you use for symbolic constants must satisfy the same rules that the names of vari-
ables do. You can use uppercase and lowercase letters, digits, and the underscore character. The
first character cannot be a digit. Listing 4.4 shows a simple example.

 Listing 4.4 The pizza.c Program

 /* pizza.c -- uses defined constants in a pizza context */

 #include <stdio.h>

 #define PI 3.14159

 int main(void)

 {

 float area, circum, radius;

 printf("What is the radius of your pizza?\n");

 scanf("%f", &radius);

 area = PI * radius * radius;

 circum = 2.0 * PI *radius;

 printf("Your basic pizza parameters are as follows:\n");

 printf("circumference = %1.2f, area = %1.2f\n", circum,

 area);

 return 0;

 }

 The %1.2f in the printf() statement causes the printout to be rounded to two decimal places.
Of course, this program may not reflect your major pizza concerns, but it does fill a small niche
in the world of pizza programs. Here is a sample run:

 What is the radius of your pizza?

 6.0
 Your basic pizza parameters are as follows:

 circumference = 37.70, area = 113.10

ptg11524036

109Constants and the C Preprocessor

 The #define statement can be used for character and string constants, too. Just use single
quotes for the former and double quotes for the latter. The following examples are valid:

 #define BEEP '\a'

 #define TEE 'T'

 #define ESC '\033'

 #define OOPS "Now you have done it!"

 Remember that everything following the symbolic name is substituted for it. Don’t make this
common error:

 /* the following is wrong */

 #define TOES = 20

 If you do this, TOES is replaced by = 20 , not just 20 . In that case, a statement such as

 digits = fingers + TOES;

 is converted to the following misrepresentation:

 digits = fingers + = 20;

 The const Modifier

 C90 added a second way to create symbolic constants—using the const keyword to convert a
declaration for a variable into a declaration for a constant:

 const int MONTHS = 12; // MONTHS a symbolic constant for 12

 This makes MONTHS into a read-only value. That is, you can display MONTHS and use it in
calculations, but you cannot alter the value of MONTHS . This newer approach is more flex-
ible than using #define ; it lets you declare a type, and it allows better control over which
parts of a program can use the constant. Chapter 12 , “Storage Classes, Linkage, and Memory
Management,” discusses this and other uses of const .

 Actually, C has yet a third way to create symbolic constants, and that is the enum facility
discussed in Chapter 14 , “Structures and Other Data Forms.”

 Manifest Constants on the Job

 The C header files limits.h and float.h supply detailed information about the size limits of
integer types and floating types, respectively. Each file defines a series of manifest constants
that apply to your implementation. For instance, the limits.h file contains lines similar to the
following:

 #define INT_MAX +32767

 #define INT_MIN -32768

ptg11524036

110 Chapter 4 Character Strings and Formatted Input/Output

 These constants represent the largest and smallest possible values for the int type. If your
system uses a 32-bit int , the file would provide different values for these symbolic constants.
The file defines minimum and maximum values for all the integer types. If you include the
 limits.h file, you can use code such as the following:

 printf("Maximum int value on this system = %d\n", INT_MAX);

 If your system uses a 4-byte int , the limits.h file that comes with that system would provide
definitions for INT_MAX and INT_MIN that match the limits of a 4-byte int . Table 4.1 lists some
of the constants found in limits.h .

 Table 4.1 Some Symbolic Constants from limits.h

 Symbolic Constant Represents

 CHAR_BIT Number of bits in a char

 CHAR_MAX Maximum char value

 CHAR_MIN Minimum char value

 SCHAR_MAX Maximum signed char value

 SCHAR_MIN Minimum signed char value

 UCHAR_MAX Maximum unsigned char value

 SHRT_MAX Maximum short value

 SHRT_MIN Minimum short value

 USHRT_MAX Maximum unsigned short value

 INT_MAX Maximum int value

 INT_MIN Minimum int value

 UINT_MAX Maximum unsigned int value

 LONG_MAX Maximum long value

 LONG_MIN Minimum long value

 ULONG_MAX Maximum unsigned long value

 LLONG_MAX Maximum long long value

 LLONG_MIN Minimum long long value

 ULLONG_MAX Maximum unsigned long long value

 Similarly, the float.h file defines constants such as FLT_DIG and DBL_DIG , which represent
the number of significant figures supported by the float type and the double type. Table 4.2
lists some of the constants found in float.h . (You can use a text editor to open and inspect

ptg11524036

111Constants and the C Preprocessor

the float.h header file your system uses.) This example relates to the float type. Equivalent
constants are defined for types double and long double , with DBL and LDBL substituted for
 FLT in the name. (The table assumes the system represents floating-point numbers in terms of
powers of 2.)

 Table 4.2 Some Symbolic Constants from float.h

 Symbolic Constant Represents

 FLT_MANT_DIG Number of bits in the mantissa of a float

 FLT_DIG Minimum number of significant decimal digits for a float

 FLT_MIN_10_EXP Minimum base-10 negative exponent for a float with a full set of
significant figures

 FLT_MAX_10_EXP Maximum base-10 positive exponent for a float

 FLT_MIN Minimum value for a positive float retaining full precision

 FLT_MAX Maximum value for a positive float

 FLT_EPSILON Difference between 1.00 and the least float value greater than
1.00

 Listing 4.5 illustrates using data from float.h and limits.h . (Note that a compiler that
doesn’t fully support the C99 standard might not accept the LLONG_MIN identifier.)

 Listing 4.5 The defines.c Program

 // defines.c -- uses defined constants from limit.h and float.

 #include <stdio.h>

 #include <limits.h> // integer limits

 #include <float.h> // floating-point limits

 int main(void)

 {

 printf("Some number limits for this system:\n");

 printf("Biggest int: %d\n", INT_MAX);

 printf("Smallest long long: %lld\n", LLONG_MIN);

 printf("One byte = %d bits on this system.\n", CHAR_BIT);

 printf("Largest double: %e\n", DBL_MAX);

 printf("Smallest normal float: %e\n", FLT_MIN);

 printf("float precision = %d digits\n", FLT_DIG);

 printf("float epsilon = %e\n", FLT_EPSILON);

 return 0;

 }

ptg11524036

112 Chapter 4 Character Strings and Formatted Input/Output

 Here is the sample output:

 Some number limits for this system:

 Biggest int: 2147483647

 Smallest long long: -9223372036854775808

 One byte = 8 bits on this system.

 Largest double: 1.797693e+308

 Smallest normal float: 1.175494e-38

 float precision = 6 digits

 float epsilon = 1.192093e-07

 The C preprocessor is a useful, helpful tool, so take advantage of it when you can. We’ll show
you more applications as you move along through this book.

 Exploring and Exploiting printf() and scanf()

 The functions printf() and scanf() enable you to communicate with a program. They are
called input/output functions , or I/O functions for short. They are not the only I/O functions
you can use with C, but they are the most versatile. Historically, these functions, like all other
functions in the C library, were not part of the definition of C. C originally left the implemen-
tation of I/O up to the compiler writers; this made it possible to better match I/O to specific
machines. In the interests of compatibility, various implementations all came with versions
of scanf() and printf() . However, there were occasional discrepancies between implemen-
tations. The C90 and C99 standards describe standard versions of these functions, and we’ll
follow that standard.

 Although printf() is an output function and scanf() is an input function, both work much
the same, each using a control string and a list of arguments. We will show you how these
work, first with printf() and then with scanf() .

 The printf() Function

 The instructions you give printf() when you ask it to print a variable depend on the variable
type. For example, we have used the %d notation when printing an integer and the %c nota-
tion when printing a character. These notations are called conversion specifications because they
specify how the data is to be converted into displayable form. We’ll list the conversion speci-
fications that the ANSI C standard provides for printf() and then show how to use the more
common ones. Table 4.3 presents the conversion specifiers and the type of output they cause to
be printed.

 Table 4.3 Conversion Specifiers and the Resulting Printed Output

 Conversion Output Specification

 %a Floating-point number, hexadecimal digits and p-notation (C99/C11).

 %A Floating-point number, hexadecimal digits and P-notation (C99/C11).

ptg11524036

113Exploring and Exploiting printf() and scanf()

 Conversion Output Specification

 %c Single character.

 %d Signed decimal integer.

 %e Floating-point number, e-notation.

 %E Floating-point number, e-notation.

 %f Floating-point number, decimal notation.

 %g Use %f or %e , depending on the value. The %e style is used if the exponent is
less than −4 or greater than or equal to the precision.

 %G Use %f or %E , depending on the value. The %E style is used if the exponent is
less than −4 or greater than or equal to the precision.

 %i Signed decimal integer (same as %d).

 %o Unsigned octal integer.

 %p A pointer.

 %s Character string.

 %u Unsigned decimal integer.

 %x Unsigned hexadecimal integer, using hex digits 0f .

 %X Unsigned hexadecimal integer, using hex digits 0F .

 %% Prints a percent sign.

 Using printf()

 Listing 4.6 contains a program that uses some of the conversion specifications.

 Listing 4.6 The printout.c Program

 /* printout.c -- uses conversion specifiers */

 #include <stdio.h>

 #define PI 3.141593

 int main(void)

 {

 int number = 7;

 float pies = 12.75;

 int cost = 7800;

 printf("The %d contestants ate %f berry pies.\n", number,

 pies);

 printf("The value of pi is %f.\n", PI);

ptg11524036

114 Chapter 4 Character Strings and Formatted Input/Output

 printf("Farewell! thou art too dear for my possessing,\n");

 printf("%c%d\n", '$', 2 * cost);

 return 0;

 }

 The output, of course, is

 The 7 contestants ate 12.750000 berry pies.

 The value of pi is 3.141593.

 Farewell! thou art too dear for my possessing,

 $15600

 This is the format for using printf() :

 printf(Control-string , item1 , item2 ,...);

 Item1 , item2 , and so on, are the items to be printed. They can be variables or constants, or
even expressions that are evaluated first before the value is printed. Control-string is a char-
acter string describing how the items are to be printed. As mentioned in Chapter 3 , the control
string should contain a conversion specifier for each item to be printed. For example, consider
the following statement:

 printf("The %d contestants ate %f berry pies.\n", number,

 pies);

 Control-string is the phrase enclosed in double quotes. This particular control string
contains two conversion specifiers corresponding to number and pies —the two items to be
displayed. Figure 4.6 shows another example of a printf() statement.

variable listcontrol statement

printf("You look great in %s\n" , color);

 Figure 4.6 Arguments for printf().

 Here is another line from the example:

 printf("The value of pi is %f.\n", PI);

 This time, the list of items has just one member—the symbolic constant PI .

 As you can see in Figure 4.7 , Control-string contains two distinct forms of information:

 ■ Characters that are actually printed

 ■ Conversion specifications

ptg11524036

115Exploring and Exploiting printf() and scanf()

 Caution

 Don’t forget to use one conversion specification for each item in the list following
Control-string . Woe unto you should you forget this basic requirement! Don’t do the
following:
 printf("The score was Squids %d, Slugs %d.\n", score1);

 Here, there is no value for the second %d . The result of this faux pas depends on your system,
but at best you will get partial nonsense.

literal characters literal characters

conversion specifications

"The value of pi is %f. \n"

 Figure 4.7 Anatomy of a control string.

 If you want to print only a phrase, you don’t need any conversion specifications. If you just
want to print data, you can dispense with the running commentary. Each of the following
statements from Listing 4.6 is quite acceptable:

 printf("Farewell! thou art too dear for my possessing,\n");

 printf("%c%d\n", '$', 2 * cost);

 In the second statement, note that the first item on the print list was a character constant
rather than a variable and that the second item is a multiplication. This illustrates that
 printf() uses values, be they variables, constants, or expressions.

 Because the printf() function uses the % symbol to identify the conversion specifications,
there is a slight problem if you want to print the % sign itself. If you simply use a lone % sign,
the compiler thinks you have bungled a conversion specification. The way out is simple—just
use two % symbols, as shown here:

 pc = 2*6;

 printf("Only %d%% of Sally's gribbles were edible.\n", pc);

 The following output would result:

 Only 12% of Sally's gribbles were edible.

 Conversion Specification Modifiers for printf()

 You can modify a basic conversion specification by inserting modifiers between the % and the
defining conversion character. Tables 4.4 and 4.5 list the characters you can place there legally.
If you use more than one modifier, they should be in the same order as they appear in Table

ptg11524036

116 Chapter 4 Character Strings and Formatted Input/Output

 4.4 . Not all combinations are possible. The table reflects the C99 additions; your implementa-
tion may not support all the options shown here.

 Table 4.4 The printf() Modifiers

 Modifier Meaning

 flag The five flags (- , + , space, # , and 0) are described in Table 4.5 . Zero or more
flags may be present.

 Example: "%-10d".

 digit(s) The minimum field width. A wider field will be used if the printed number or string
won’t fit in the field.

 Example: "%4d".

 .digit(s) Precision. For %e , %E , and %f conversions, the number of digits to be printed to
the right of the decimal. For %g and %G conversions, the maximum number of
significant digits. For %s conversions, the maximum number of characters to be
printed. For integer conversions, the minimum number of digits to appear; leading
zeros are used if necessary to meet this minimum. Using only . implies a follow-
ing zero, so %.f is the same as %.0f .

 Example: "%5.2f" prints a float in a field five characters wide with two digits
after the decimal point.

 h Used with an integer conversion specifier to indicate a short int or unsigned
short int value.

 Examples: "%hu" , "%hx" , and "%6.4hd".

 hh Used with an integer conversion specifier to indicate a signed char or
 unsigned char value.

 Examples: "%hhu" , "%hhx" , and "%6.4hhd".

 j Used with an integer conversion specifier to indicate an intmax_t or uintmax_t
value; these are types defined in stdint.h .

 Examples: "%jd" and "%8jX".

 l Used with an integer conversion specifier to indicate a long int or unsigned
long int .

 Examples: "%ld" and "%8lu".

 ll Used with an integer conversion specifier to indicate a long long int or
 unsigned long long int . (C99).

 Examples: "%lld" and "%8llu".

 L Used with a floating-point conversion specifier to indicate a long double value.

 Examples: "%Lf" and "%10.4Le".

ptg11524036

117Exploring and Exploiting printf() and scanf()

 Modifier Meaning

 t Used with an integer conversion specifier to indicate a ptrdiff_t value. This is
the type corresponding to the difference between two pointers. (C99).

 Examples: "%td" and "%12ti".

 z Used with an integer conversion specifier to indicate a size_t value. This is the
type returned by sizeof . (C99).

 Examples: "%zd" and "%12zx".

 Note Type Portability

 The sizeof operator, recall, returns the size, in bytes, of a type or value. This should be some
form of integer, but the standard only provides that it should be an unsigned integer. Thus it
could be unsigned int , unsigned long , or even unsigned long long . So, if you were
to use printf() to display a sizeof expression, you might use %u on one system, %lu one
another, and %llu on a third. This means you would need to research the correct usage for
your system and that you might need to alter your program if you move it to a different system.
Well, it would have meant that except that C provides help to make the type more portable.
First, the stddef.h header file (included when you include stdio.h) defines size_t to be
whatever the type your system uses for sizeof ; this is called the underlying type. Second,
 printf() uses the z modifier to indicate the corresponding type for printing. Similarly, C
defines the ptrdiff_t type and t modifier to indicate whatever underlying signed integer type
the system used for the difference between two addresses.

 Note Conversion of float Arguments

 There are conversion specifiers to print the floating types double and long double . However,
there is no specifier for float . The reason is that float values were automatically converted
to type double before being used in an expression or as an argument under K&R C. ANSI C (or
later), in general, does not automatically convert float to double . To protect the enormous
number of existing programs that assume float arguments are converted to double , however,
all float arguments to printf() —as well as to any other C function not using an explicit pro-
totype—are still automatically converted to double . Therefore, under either K&R C or ANSI C,
no special conversion specifier is needed for displaying type float .

 Table 4.5 The printf() Flags

 Flag Meaning

 - The item is left-justified; that is, it is printed beginning at the left of the field.

 Example: "%-20s".

ptg11524036

118 Chapter 4 Character Strings and Formatted Input/Output

 Flag Meaning

 + Signed values are displayed with a plus sign, if positive, and with a minus sign, if
negative.

 Example: "%+6.2f".

 space Signed values are displayed with a leading space (but no sign) if positive and with
a minus sign if negative. A + flag overrides a space.

 Example: "% 6.2f".

 # Use an alternative form for the conversion specification. Produces an initial 0
for the %o form and an initial 0x or 0X for the %x or %X form, respectively. For
all floating-point forms, # guarantees that a decimal-point character is printed,
even if no digits follow. For %g and %G forms, it prevents trailing zeros from being
removed.

 Examples: "%#o" , "%#8.0f" , and "%+#10.3E".

 0 For numeric forms, pad the field width with leading zeros instead of with spaces.
This flag is ignored if a - flag is present or if, for an integer form, a precision is
specified.

 Examples: "%010d" and "%08.3f".

 Examples Using Modifiers and Flags

 Let’s put these modifiers to work, beginning with a look at the effect of the field width modifier
on printing an integer. Consider the program in Listing 4.7 .

 Listing 4.7 The width.c Program

 /* width.c -- field widths */

 #include <stdio.h>

 #define PAGES 959

 int main(void)

 {

 printf("*%d*\n", PAGES);

 printf("*%2d*\n", PAGES);

 printf("*%10d*\n", PAGES);

 printf("*%-10d*\n", PAGES);

 return 0;

 }

 Listing 4.7 prints the same quantity four times using four different conversion specifications. It
uses an asterisk (*) to show you where each field begins and ends. The output looks as follows:

ptg11524036

119Exploring and Exploiting printf() and scanf()

 959

 959

 * 959*

 *959 *

 The first conversion specification is %d with no modifiers. It produces a field with the same
width as the integer being printed. This is the default option; that is, it’s what’s printed if you
don’t give further instructions. The second conversion specification is %2d . This should produce
a field width of 2, but because the integer is three digits long, the field is expanded automati-
cally to fit the number. The next conversion specification is %10d . This produces a field 10
spaces wide, and, indeed, there are seven blanks and three digits between the asterisks, with the
number tucked into the right end of the field. The final specification is %-10d . It also produces
a field 10 spaces wide, and the - puts the number at the left end, just as advertised. After you
get used to it, this system is easy to use and gives you nice control over the appearance of your
output. Try altering the value for PAGES to see how different numbers of digits are printed.

 Now look at some floating-point formats. Enter, compile, and run the program in Listing 4.8 .

 Listing 4.8 The floats. c Program

 // floats.c -- some floating-point combinations

 #include <stdio.h>

 int main(void)

 {

 const double RENT = 3852.99; // const-style constant

 printf("*%f*\n", RENT);

 printf("*%e*\n", RENT);

 printf("*%4.2f*\n", RENT);

 printf("*%3.1f*\n", RENT);

 printf("*%10.3f*\n", RENT);

 printf("*%10.3E*\n", RENT);

 printf("*%+4.2f*\n", RENT);

 printf("*%010.2f*\n", RENT);

 return 0;

 }

 This time, the program uses the keyword const to create a symbolic constant. The output is

 3852.990000

 3.852990e+03

 3852.99

 3853.0

 * 3852.990*

 * 3.853E+03*

ptg11524036

120 Chapter 4 Character Strings and Formatted Input/Output

 +3852.99

 0003852.99

 The example begins with the default version, %f . In this case, there are two defaults—the field
width and the number of digits to the right of the decimal. The second default is six digits, and
the field width is whatever it takes to hold the number.

 Next is the default for %e . It prints one digit to the left of the decimal point and six places to
the right. We’re getting a lot of digits! The cure is to specify the number of decimal places to
the right of the decimal, and the next four examples in this segment do that. Notice how the
fourth and the sixth examples cause the output to be rounded off. Also, the sixth example uses
 E instead of e .

 Finally, the + flag causes the result to be printed with its algebraic sign, which is a plus sign in
this case, and the 0 flag produces leading zeros to pad the result to the full field width. Note
that in the specifier %010.2f , the first 0 is a flag, and the remaining digits before the period
(10) specify the field width.

 You can modify the RENT value to see how variously sized values are printed. Listing 4.9
demonstrates a few more combinations.

 Listing 4.9 The flags.c Program

 /* flags.c -- illustrates some formatting flags */

 #include <stdio.h>

 int main(void)

 {

 printf("%x %X %#x\n", 31, 31, 31);

 printf("**%d**% d**% d**\n", 42, 42, -42);

 printf("**%5d**%5.3d**%05d**%05.3d**\n", 6, 6, 6, 6);

 return 0;

 }

 The output looks as follows:

 1f 1F 0x1f

 42 42**-42**

 ** 6** 006**00006** 006**

 First, 1f is the hex equivalent of 31. The x specifier yields 1f , and the X specifier yields 1F .
Using the # flag provides an initial 0x .

 The second line of output illustrates how using a space in the specifier produces a leading space
for positive values, but not for negative values. This can produce a pleasing output because
positive and negative values with the same number of significant digits are printed with the
same field widths.

ptg11524036

121Exploring and Exploiting printf() and scanf()

 The third line illustrates how using a precision specifier (%5.3d) with an integer form produces
enough leading zeros to pad the number to the minimum value of digits (three, in this case).
Using the 0 flag, however, pads the number with enough leading zeros to fill the whole field
width. Finally, if you provide both the 0 flag and the precision specifier, the 0 flag is ignored.

 Now let’s examine some of the string options. Consider the example in Listing 4.10 .

 Listing 4.10 The stringf.c Program

 /* stringf.c -- string formatting */

 #include <stdio.h>

 #define BLURB "Authentic imitation!"

 int main(void)

 {

 printf("[%2s]\n", BLURB);

 printf("[%24s]\n", BLURB);

 printf("[%24.5s]\n", BLURB);

 printf("[%-24.5s]\n", BLURB);

 return 0;

 }

 Here is the output:

 [Authentic imitation!]

 [Authentic imitation!]

 [Authe]

 [Authe]

 Notice how, for the %2s specification, the field is expanded to contain all the characters in the
string. Also notice how the precision specification limits the number of characters printed. The
 .5 in the format specifier tells printf() to print just five characters. Again, the - modifier
left-justifies the text.

 Using What You Just Learned

 Okay, you’ve seen some examples. Now, how would you set up a statement to print something
having the following form?

 The NAME family just may be $XXX.XX dollars richer!

 Here, NAME and XXX.XX represent values that will be supplied by variables in the program—say,
 name[40] and cash .

 One solution is

 printf("The %s family just may be $%.2f richer!\n",name,cash);

ptg11524036

122 Chapter 4 Character Strings and Formatted Input/Output

 What Does a Conversion Specification Convert?

 Let’s take a closer look at what a conversion specification converts. It converts a value stored
in the computer in some binary format to a series of characters (a string) to be displayed. For
example, the number 76 may be stored internally as binary 01001100. The %d conversion speci-
fier converts this to the characters 7 and 6 , displaying 76 . The %x conversion converts the same
value (01001100) to the hexadecimal representation 4c . The %c converts the same value to the
character representation L .

 The term conversion is probably somewhat misleading because it might suggest that the original
value is replaced with a converted value. Conversion specifications are really translation specifi-
cations; %d means “translate the given value to a decimal integer text representation and print
the representation.”

 Mismatched Conversions

 Naturally, you should match the conversion specification to the type of value being printed.
Often, you have choices. For instance, if you want to print a type int value, you can use %d ,
 %x, or %o . All these specifiers assume that you are printing a type int value; they merely
provide different representations of the value. Similarly, you can use %f , %e , or %g to represent
a type double value.

 What if you mismatch the conversion specification to the type? You’ve seen in the preceding
chapter that mismatches can cause problems. This is a very important point to keep in mind,
so Listing 4.11 shows some more examples of mismatches within the integer family.

 Listing 4.11 The intconv.c Program

 /* intconv.c -- some mismatched integer conversions */

 #include <stdio.h>

 #define PAGES 336

 #define WORDS 65618

 int main(void)

 {

 short num = PAGES;

 short mnum = -PAGES;

 printf("num as short and unsigned short: %hd %hu\n", num,

 num);

 printf("-num as short and unsigned short: %hd %hu\n", mnum,

 mnum);

 printf("num as int and char: %d %c\n", num, num);

 printf("WORDS as int, short, and char: %d %hd %c\n",

 WORDS, WORDS, WORDS);

 return 0;

 }

ptg11524036

123Exploring and Exploiting printf() and scanf()

 Our system produces the following results:

 num as short and unsigned short: 336 336

 -num as short and unsigned short: -336 65200

 num as int and char: 336 P

 WORDS as int, short, and char: 65618 82 R

 Looking at the first line, you can see that both %hd and %hu produce 336 as output for the vari-
able num ; no problem there. On the second line, the %u (unsigned) version of mnum came out
as 65200 , however, not as the 336 you might have expected; this results from the way that
signed short int values are represented on our reference system. First, they are 2 bytes in size.
Second, the system uses a method called the two’s complement to represent signed integers. In
this method, the numbers 0 to 32767 represent themselves, and the numbers 32768 to 65535
represent negative numbers, with 65535 being −1, 65534 being −2, and so forth. Therefore,
 −336 is represented by 65536 - 336 , or 65200 . So 65200 represents −336 when interpreted as
a signed int and represents 65200 when interpreted as an unsigned int . Be wary! One number
can be interpreted as two different values. Not all systems use this method to represent negative
integers. Nonetheless, there is a moral: Don’t expect a %u conversion to simply strip the sign
from a number.

 The third line shows what happens if you try to convert a value greater than 255 to a char-
acter. On this system, a short int is 2 bytes and a char is 1 byte. When printf() prints
336 using %c , it looks at only 1 byte out of the 2 used to hold 336. This truncation (see Figure
 4.8) amounts to dividing the integer by 256 and keeping just the remainder. In this case,
the remainder is 80, which is the ASCII value for the character P . More technically, you can
say that the number is interpreted modulo 256 , which means using the remainder when the
number is divided by 256.

80 in binary ASCII 'P'

336 in binary

0 1 0 1 0 0 0 0

1 0 1 0 0 0 001000000 0

 Figure 4.8 Reading 336 as a character.

 Finally, we tried printing an integer (65618) larger than the maximum short int (32767)
allowed on our system. Again, the computer does its modulo thing. The number 65618,
because of its size, is stored as a 4-byte int value on our system. When we print it using the
 %hd specification, printf() uses only the last 2 bytes. This corresponds to using the remain-
der after dividing by 65536. In this case, the remainder is 82. A remainder between 32767 and
65536 would be printed as a negative number because of the way negative numbers are stored.
Systems with different integer sizes would have the same general behavior, but with different
numerical values.

ptg11524036

124 Chapter 4 Character Strings and Formatted Input/Output

 When you start mixing integer and floating types, the results are more bizarre. Consider, for
example, Listing 4.12 .

 Listing 4.12 The floatcnv.c Program

 /* floatcnv.c -- mismatched floating-point conversions */

 #include <stdio.h>

 int main(void)

 {

 float n1 = 3.0;

 double n2 = 3.0;

 long n3 = 2000000000;

 long n4 = 1234567890;

 printf("%.1e %.1e %.1e %.1e\n", n1, n2, n3, n4);

 printf("%ld %ld\n", n3, n4);

 printf("%ld %ld %ld %ld\n", n1, n2, n3, n4);

 return 0;

 }

 On one system, Listing 4.12 produces the following output:

 3.0e+00 3.0e+00 3.1e+46 1.7e+266

 2000000000 1234567890

 0 1074266112 0 1074266112

 The first line of output shows that using a %e specifier does not convert an integer to a floating-
point number. Consider, for example, what happens when you try to print n3 (type long) using
the %e specifier. First, the %e specifier causes printf() to expect a type double value, which
is an 8-byte value on this system. When printf() looks at n3 , which is a 4-byte value on this
system, it also looks at the adjacent 4 bytes. Therefore, it looks at an 8-byte unit in which the
actual n3 is embedded. Second, it interprets the bits in this unit as a floating-point number. Some
bits, for example, would be interpreted as an exponent. So even if n3 had the correct number of
bits, they would be interpreted differently under %e than under %ld . The net result is nonsense.

 The first line also illustrates what we mentioned earlier—that float is converted to double
when used as arguments to printf() . On this system, float is 4 bytes, but n1 was expanded
to 8 bytes so that printf() would display it correctly.

 The second line of output shows that printf() can print n3 and n4 correctly if the correct
specifier is used.

 The third line of output shows that even the correct specifier can produce phony results if the
 printf() statement has mismatches elsewhere. As you might expect, trying to print a floating-
point value with an %ld specifier fails, but here, trying to print a type long using %ld fails! The
problem lies in how C passes information to a function. The exact details of this failure are imple-
mentation dependent, but the sidebar “Passing Arguments” discusses a representative system.

ptg11524036

125Exploring and Exploiting printf() and scanf()

 Passing Arguments

 The mechanics of argument passing depend on the implementation. This is how argument
passing works on one system. The function call looks as follows:

 printf("%ld %ld %ld %ld\n", n1, n2, n3, n4);

 This call tells the computer to hand over the values of the variables n1 , n2 , n3 , and n4 to the
computer. Here’s one common way that’s accomplished. The program places the values in
an area of memory called the stack . When the computer puts these values on the stack, it is
guided by the types of the variables, not by the conversion specifiers. Consequently, for n1 , it
places 8 bytes on the stack (float is converted to double). Similarly, it places 8 more bytes
for n2 , followed by 4 bytes each for n3 and n4 . Then control shifts to the printf() function.
This function reads the values off the stack but, when it does so, it reads them according to
the conversion specifiers. The %ld specifier indicates that printf() should read 4 bytes, so
 printf() reads the first 4 bytes in the stack as its first value. This is just the first half of n1 ,
and it is interpreted as a long integer. The next %ld specifier reads 4 more bytes; this is just
the second half of n1 and is interpreted as a second long integer (see Figure 4.9). Similarly,
the third and fourth instances of %ld cause the first and second halves of n2 to be read and
to be interpreted as two more long integers, so although we have the correct specifiers for n3
and n4 , printf() is reading the wrong bytes.

Arguments n1 and n2 placed
on stack as type double values,
n3 and n4 as type long

printf() removes
values from stack as
type long

float n1; /* passed as type double */

double n2;

long n3, n4;

...

printf("%ld %1d %ld %ld\n", n1, n2, n3, n4);

n4

8 bytes

4 bytes

%ld

%ld

%ld

%ld

n3

n2

n1

 Figure 4.9 Passing arguments.

ptg11524036

126 Chapter 4 Character Strings and Formatted Input/Output

 The Return Value of printf()

 As mentioned in Chapter 2 , a C function generally has a return value. This is a value that the
function computes and returns to the calling program. For example, the C library contains a
 sqrt() function that takes a number as an argument and returns its square root. The return
value can be assigned to a variable, can be used in a computation, can be passed as an argu-
ment—in short, it can be used like any other value. The printf() function also has a return
value; it returns the number of characters it printed. If there is an output error, printf()
returns a negative value. (Some ancient versions of printf() have different return values.)

 The return value for printf() is incidental to its main purpose of printing output, and it
usually isn’t used. One reason you might use the return value is to check for output errors. This
is more commonly done when writing to a file rather than to a screen. If a full CD or DVD
prevented writing from taking place, you could then have the program take some appropriate
action, such as beeping the terminal for 30 seconds. However, you have to know about the if
statement before doing that sort of thing. The simple example in Listing 4.13 shows how you
can determine the return value.

 Listing 4.13 The prntval.c Program

 /* prntval.c -- finding printf()'s return value */

 #include <stdio.h>

 int main(void)

 {

 int bph2o = 212;

 int rv;

 rv = printf("%d F is water's boiling point.\n", bph2o);

 printf("The printf() function printed %d characters.\n",

 rv);

 return 0;

 }

 The output is as follows:

 212 F is water's boiling point.

 The printf() function printed 32 characters.

 First, the program used the form rv = printf(...); to assign the return value to rv . This
statement therefore performs two tasks: printing information and assigning a value to a vari-
able. Second, note that the count includes all the printed characters, including the spaces and
the unseen newline character.

 Printing Long Strings

 Occasionally, printf() statements are too long to put on one line. Because C ignores
whitespace (spaces, tabs, newlines) except when used to separate elements, you can spread

ptg11524036

127Exploring and Exploiting printf() and scanf()

a statement over several lines, as long as you put your line breaks between elements. For
example, Listing 4.13 used two lines for a statement.

 printf("The printf() function printed %d characters.\n",

 rv);

 The line is broken between the comma element and rv . To show a reader that the line was
being continued, the example indents the rv . C ignores the extra spaces.

 However, you cannot break a quoted string in the middle. Suppose you try something like the
following:

 printf("The printf() function printed %d

 characters.\n", rv);

 C will complain that you have an illegal character in a string constant. You can use \n in a
string to symbolize the newline character, but you can’t have the actual newline character
generated by the Enter (or Return) key in a string.

 If you do have to split a string, you have three choices, as shown in Listing 4.14 .

 Listing 4.14 The longstrg.c Program

 /* longstrg.c –– printing long strings */

 #include <stdio.h>

 int main(void)

 {

 printf("Here's one way to print a ");

 printf("long string.\n");

 printf("Here's another way to print a \

 long string.\n");

 printf("Here's the newest way to print a "

 "long string.\n"); /* ANSI C */

 return 0;

 }

 Here is the output:

 Here's one way to print a long string.

 Here's another way to print a long string.

 Here's the newest way to print a long string.

 Method 1 is to use more than one printf() statement. Because the first string printed doesn’t
end with a \n character, the second string continues where the first ends.

 Method 2 is to terminate the end of the first line with a backslash/return combination. This
causes the text onscreen to start a new line without a newline character being included in the
string. The effect is to continue the string over to the next line. However, the next line has to

ptg11524036

128 Chapter 4 Character Strings and Formatted Input/Output

start at the far left, as shown. If you indent that line, say, five spaces, those five spaces become
part of the string.

 Method 3, which ANSI C introduced, is string concatenation. If you follow one quoted string
constant with another, separated only by whitespace, C treats the combination as a single
string, so the following three forms are equivalent:

 printf("Hello, young lovers, wherever you are.");

 printf("Hello, young " "lovers" ", wherever you are.");

 printf("Hello, young lovers"

 ", wherever you are.");

 With all these methods, you should include any required spaces in the strings: "young"
"lovers" becomes "younglovers" , but the combination "young " "lovers" is "young
lovers" .

 Using scanf()

 Now let’s go from output to input and examine the scanf() function. The C library contains
several input functions, and scanf() is the most general of them, because it can read a variety
of formats. Of course, input from the keyboard is text because the keys generate text characters:
letters, digits, and punctuation. When you want to enter, say, the integer 2014, you type the
characters 2 0 1 and 4 . If you want to store that as a numerical value rather than as a string,
your program has to convert the string character-by-character to a numerical value; that is what
 scanf() does! It converts string input into various forms: integers, floating-point numbers,
characters, and C strings. It is the inverse of printf() , which converts integers, floating-point
numbers, characters, and C strings to text that is to be displayed onscreen.

 Like printf() , scanf() uses a control string followed by a list of arguments. The control
string indicates the destination data types for the input stream of characters. The chief differ-
ence is in the argument list. The printf() function uses variable names, constants, and expres-
sions. The scanf() function uses pointers to variables. Fortunately, you don’t have to know
anything about pointers to use the function. Just remember these simple rules:

 ■ If you use scanf() to read a value for one of the basic variable types we’ve discussed,
precede the variable name with an & .

 ■ If you use scanf() to read a string into a character array, don’t use an & .

 Listing 4.15 presents a short program illustrating these rules.

 Listing 4.15 The input.c Program

 // input.c -- when to use &

 #include <stdio.h>

 int main(void)

 {

 int age; // variable

ptg11524036

129Exploring and Exploiting printf() and scanf()

 float assets; // variable

 char pet[30]; // string

 printf("Enter your age, assets, and favorite pet.\n");

 scanf("%d %f", &age, &assets); // use the & here

 scanf("%s", pet); // no & for char array

 printf("%d $%.2f %s\n", age, assets, pet);

 return 0;

 }

 Here is a sample exchange:

 Enter your age, assets, and favorite pet.

 38
 92360.88 llama
 38 $92360.88 llama

 The scanf() function uses whitespace (newlines, tabs, and spaces) to decide how to divide the
input into separate fields. It matches up consecutive conversion specifications to consecutive
fields, skipping over the whitespace in between. Note how this sample run spread the input
over two lines. You could just as well have used one or five lines, as long as you had at least
one newline, space, or tab between each entry:

 Enter your age, assets, and favorite pet.

 42

 2121.45

 guppy
 42 $2121.45 guppy

 The only exception to this is the %c specification, which reads the very next character, even if
that character is whitespace. We’ll return to this topic in a moment.

 The scanf() function uses pretty much the same set of conversion-specification characters as
 printf() does. The main difference is that printf() uses %f , %e , %E , %g , and %G for both type
 float and type double , whereas scanf() uses them just for type float , requiring the l modi-
fier for double . Table 4.6 lists the main conversion specifiers as described in the C99 standard.

 Table 4.6 ANSI C Conversion Specifiers for scanf()

 Conversion Specifier Meaning

 %c Interpret input as a character.

 %d Interpret input as a signed decimal integer.

ptg11524036

130 Chapter 4 Character Strings and Formatted Input/Output

 Conversion Specifier Meaning

 %e , %f , %g , %a Interpret input as a floating-point number (%a is C99).

 %E , %F , %G , %A Interpret input as a floating-point number (%A is C99).

 %i Interpret input as a signed decimal integer.

 %o Interpret input as a signed octal integer.

 %p Interpret input as a pointer (an address).

 %s Interpret input as a string. Input begins with the first non-whitespace
character and includes everything up to the next whitespace character.

 %u Interpret input as an unsigned decimal integer.

 %x , %X Interpret input as a signed hexadecimal integer.

 You also can use modifiers in the conversion specifiers shown in Table 4.6 . The modifiers go
between the percent sign and the conversion letter. If you use more than one in a specifier,
they should appear in the same order as shown in Table 4.7 .

 Table 4.7 Conversion Modifiers for scanf()

 Modifier Meaning

 * Suppress assignment (see text).

 Example: "%*d".

 digit(s) Maximum field width. Input stops when the maximum field width is reached or
when the first whitespace character is encountered, whichever comes first.

 Example: "%10s".

 hh Read an integer as a signed char or unsigned char .

 Examples: "%hhd" "%hhu".

 ll Read an integer as a long long or unsigned long long (C99) .

 Examples: "%lld" "%llu".

 h , l , or L "%hd" and "%hi" indicate that the value will be stored in a short int . "%ho" ,
 "%hx" , and "%hu" indicate that the value will be stored in an unsigned short
int . "%ld" and "%li" indicate that the value will be stored in a long . "%lo" ,
 "%lx" , and "%lu" indicate that the value will be stored in unsigned long .
 "%le" , "%lf" , and "%lg" indicate that the value will be stored in type double .
Using L instead of l with e , f , and g indicates that the value will be stored in
type long double . In the absence of these modifiers, d , i , o , and x indicate
type int , and e , f , and g indicate type float .

ptg11524036

131Exploring and Exploiting printf() and scanf()

 Modifier Meaning

 j When followed by an integer specifier, indicates using the intmax_t or
 uintmax_t type (C99).

 Examples: "%jd" "%ju".

 z When followed by an integer specifier, indicates using the type returned by
 sizeof (C99).

 Examples: "%zd" "%zo".

 t When followed by an integer specifier, indicates using the type used to represent
the difference between two pointers (C99).

 Examples: "%td" "%tx".

 As you can see, using conversion specifiers can be involved, and these tables have omitted
some of the features. The omitted features primarily facilitate reading selected data from highly
formatted sources, such as punched cards or other data records. Because this book uses scanf()
primarily as a convenient means for feeding data to a program interactively, it won’t discuss
the more esoteric features.

 The scanf() View of Input

 Let’s look in more detail at how scanf() reads input. Suppose you use a %d specifier to read
an integer. The scanf() function begins reading input a character at a time. It skips over
whitespace characters (spaces, tabs, and newlines) until it finds a non-whitespace charac-
ter. Because it is attempting to read an integer, scanf() expects to find a digit character or,
perhaps, a sign (+ or -). If it finds a digit or a sign, it saves that character and then reads the
next character. If that is a digit, it saves the digit and reads the next character. scanf() contin-
ues reading and saving characters until it encounters a nondigit. It then concludes that it has
reached the end of the integer. scanf() places the nondigit back into the input. This means
that the next time the program goes to read input, it starts at the previously rejected, nondigit
character. Finally, scanf() computes the numerical value corresponding to the digits (and
possible sign) it read and places that value in the specified variable.

 If you use a field width, scanf() halts at the field end or at the first whitespace, whichever
comes first.

 What if the first non-whitespace character is, say, an A instead of a digit? Then scanf()
stops right there and places the A (or whatever) back in the input. No value is assigned to the
specified variable, and the next time the program reads input, it starts at the A again. If your
program has only %d specifiers, scanf() will never get past that A . Also, if you use a scanf()
statement with several specifiers, C requires the function to stop reading input at the first
failure.

ptg11524036

132 Chapter 4 Character Strings and Formatted Input/Output

 Reading input using the other numeric specifiers works much the same as the %d case. The
main difference is that scanf() may recognize more characters as being part of the number.
For instance, the %x specifier requires that scanf() recognize the hexadecimal digits a–f and
A–F. Floating-point specifiers require scanf() to recognize decimal points, e-notation, and the
new p-notation.

 If you use an %s specifier, any character other than whitespace is acceptable, so scanf() skips
whitespace to the first non-whitespace character and then saves up non-whitespace characters
until hitting whitespace again. This means that %s results in scanf() reading a single word—
that is, a string with no whitespace in it. If you use a field width, scanf() stops at the end of
the field or at the first whitespace, whichever comes first. You can’t use the field width to make
 scanf() read more than one word for one %s specifier. A final point: When scanf() places
the string in the designated array, it adds the terminating '\0' to make the array contents a C
string.

 If you use a %c specifier, all input characters are fair game. If the next input character is a
space or a newline, a space or a newline is assigned to the indicated variable; whitespace is not
skipped.

 Actually, scanf() is not the most commonly used input function in C. It is featured here
because of its versatility (it can read all the different data types), but C has several other input
functions, such as getchar() and fgets() , that are better suited for specific tasks, such as
reading single characters or reading strings containing spaces. We will cover some of these
functions in Chapter 7 , “C Control Statements: Branching and Jumps”; Chapter 11 , “Character
Strings and String Functions”; and Chapter 13 , “File Input/Output.” In the meantime, if you
need an integer, decimal fraction, a character, or a string, you can use scanf() .

 Regular Characters in the Format String

 The scanf() function does enable you to place ordinary characters in the format string.
Ordinary characters other than the space character must be matched exactly by the input
string. For example, suppose you accidentally place a comma between two specifiers:

 scanf("%d,%d", &n, &m);

 The scanf() function interprets this to mean that you will type a number, type a comma, and
then type a second number. That is, you would have to enter two integers as follows:

 88,121

 Because the comma comes immediately after the %d in the format string, you would have to
type it immediately after the 88 . However, because scanf() skips over whitespace preceding an
integer, you could type a space or newline after the comma when entering the input. That is,

 88, 121

 and

 88,

 121

ptg11524036

133Exploring and Exploiting printf() and scanf()

 also would be accepted.

 A space in the format string means to skip over any whitespace before the next input item. For
instance, the statement

 scanf("%d ,%d", &n, &m);

 would accept any of the following input lines:

 88,121

 88 ,121

 88 , 121

 Note that the concept of “any whitespace” includes the special cases of no whitespace.

 Except for %c , the specifiers automatically skip over whitespace preceding an input value, so
 scanf("%d%d", &n, &m) behaves the same as scanf("%d %d", &n, &m) . For %c , adding a
space character to the format string does make a difference. For example, if %c is preceded by
a space in the format string, scanf() does skip to the first non-whitespace character. That is,
the command scanf("%c", &ch) reads the first character encountered in input, and scanf("
%c", &ch) reads the first non-whitespace character encountered.

 The scanf() Return Value

 The scanf() function returns the number of items that it successfully reads. If it reads no
items, which happens if you type a nonnumeric string when it expects a number, scanf()
returns the value 0 . It returns EOF when it detects the condition known as “end of file.” (EOF is
a special value defined in the stdio.h file. Typically, a #define directive gives EOF the value
 –1 .) We’ll discuss end of file in Chapter 6 , “C Control Statements: Looping,” and make use of
 scanf() ’s return value later in the book. After you learn about if statements and while state-
ments, you can use the scanf() return value to detect and handle mismatched input.

 The * Modifier with printf() and scanf()

 Both printf() and scanf() can use the * modifier to modify the meaning of a specifier, but
they do so in dissimilar fashions. First, let’s see what the * modifier can do for printf() .

 Suppose that you don’t want to commit yourself to a field width in advance but rather you
want the program to specify it. You can do this by using * instead of a number for the field
width, but you also have to add an argument to tell what the field width should be. That is,
if you have the conversion specifier %*d , the argument list should include a value for * and a
value for d . The technique also can be used with floating-point values to specify the precision
as well as the field width. Listing 4.16 is a short example showing how this works.

 Listing 4.16 The varwid.c Program

 /* varwid.c -- uses variable-width output field */

 #include <stdio.h>

ptg11524036

134 Chapter 4 Character Strings and Formatted Input/Output

 int main(void)

 {

 unsigned width, precision;

 int number = 256;

 double weight = 242.5;

 printf("Enter a field width:\n");

 scanf("%d", &width);

 printf("The number is :%*d:\n", width, number);

 printf("Now enter a width and a precision:\n");

 scanf("%d %d", &width, &precision);

 printf("Weight = %*.*f\n", width, precision, weight);

 printf("Done!\n");

 return 0;

 }

 The variable width provides the field width , and number is the number to be printed.
Because the * precedes the d in the specifier, width comes before number in printf() ’s argu-
ment list. Similarly, width and precision provide the formatting information for printing
 weight . Here is a sample run:

 Enter a field width:

 6
 The number is : 256:

 Now enter a width and a precision:

 8 3
 Weight = 242.500

 Done!

 Here, the reply to the first question was 6 , so 6 was the field width used. Similarly, the second
reply produced a width of 8 with 3 digits to the right of the decimal. More generally, a program
could decide on values for these variables after looking at the value of weight .

 The * serves quite a different purpose for scanf() . When placed between the % and the speci-
fier letter, it causes that function to skip over corresponding input. Listing 4.17 provides an
example.

 Listing 4.17 The skip2.c Program

 /* skiptwo.c -- skips over first two integers of input */

 #include <stdio.h>

 int main(void)

 {

 int n;

 printf("Please enter three integers:\n");

ptg11524036

135Exploring and Exploiting printf() and scanf()

 scanf("%*d %*d %d", &n);

 printf("The last integer was %d\n", n);

 return 0;

 }

 The scanf() instruction in Listing 4.17 says, “Skip two integers and copy the third into n .”
Here is a sample run:

 Please enter three integers:

 2013 2014 2015
 The last integer was 2015

 This skipping facility is useful if, for example, a program needs to read a particular column of a
file that has data arranged in uniform columns.

 Usage Tips for printf()
 Specifying fixed field widths is useful when you want to print columns of data. Because the
default field width is just the width of the number, the repeated use of, say,

 printf("%d %d %d\n", val1, val2, val3);

 produces ragged columns if the numbers in a column have different sizes. For example, the
output could look like the following:

 12 234 1222

 4 5 23

 22334 2322 10001

 (This assumes that the value of the variables has been changed between print statements.)

 The output can be cleaned up by using a sufficiently large fixed field width. For example, using

 printf("%9d %9d %9d\n", val1, val2, val3);

 yields the following:

 12 234 1222

 4 5 23

 22334 2322 10001

 Leaving a blank between one conversion specification and the next ensures that one number
never runs into the next, even if it overflows its own field. This is so because the regular charac-
ters in the control string, including spaces, are printed.

 On the other hand, if a number is to be embedded in a phrase, it is often convenient to specify
a field as small or smaller than the expected number width. This makes the number fit in
without unnecessary blanks. For example,

ptg11524036

136 Chapter 4 Character Strings and Formatted Input/Output

 printf("Count Beppo ran %.2f miles in 3 hours.\n", distance);

 might produce

 Count Beppo ran 10.22 miles in 3 hours.

 Changing the conversion specification to %10.2f would give you the following:

 Count Beppo ran 10.22 miles in 3 hours.

 Locale Choices

 The United States and many other parts of the world use a period to separate the integer part
of a decimal value from the fractional part, as in 3.14159. But many other parts of the world
use a comma instead, as in 3,14159. You may have noticed that the printf() and scanf()
specifiers don’t seem to offer the comma format. But C hasn’t ignored the rest of the world.
As outlined in Appendix B , Section V, “The Standard ANSI C Library with C99 Additions,” C sup-
ports the concept of a locale . This gives a C program the option of choosing a particular locale.
For example, it might specify a Netherlands locale, and printf() and scanf() would use
the local convention (a comma, in this case) when displaying and reading floating-point values.
Also, once you specified that environment, you would use the comma convention for numbers
appearing in your code:

 double pi = 3,14159; // Netherlands locale

 The C standard requires but two locales: "C" and "" . By default, programs use the "C" locale
which, basically, is U.S. usage. The "" locale stands for a local locale in use on your system.
In principle, it could be the same as the "C" locale. In practice, operating systems such as
Unix, Linux, and Windows offer long lists of locale choices. However, they might not offer the
same lists.

 Key Concepts

 The C char type represents a single character. To represent a sequence of characters, C uses
the character string. One form of string is the character constant, in which the characters are
enclosed in double quotation marks; "Good luck, my friend" is an example. You can store
a string in a character array, which consists of adjacent bytes in memory. Character strings,
whether expressed as a character constant or stored in a character array, are terminated by a
hidden character called the null character.

 It’s a good idea to represent numerical constants in a program symbolically, either by using
 #define or the keyword const . Symbolic constants make a program more readable and easier
to maintain and modify.

 The standard C input and output functions scanf() and printf() use a system in which
you have to match type specifiers in the first argument to values in the subsequent arguments.
Matching, say, an int specifier such as %d to a float value produces odd results. You have to

ptg11524036

137Summary

exert care to match the number and type of specifiers to the rest of the function arguments. For
 scanf() , remember to prefix variables’ names with the address operator (&).

 Whitespace characters (tabs, spaces, and newlines) play a critical role in how scanf() views
input. Except when in the %c mode (which reads just the next character), scanf() skips over
whitespace characters to the first non-whitespace character when reading input. It then keeps
reading characters either until encountering whitespace or until encountering a character that
doesn’t fit the type being read. Let’s consider what happens if we feed the identical input line
to several different scanf() input modes. Start with the following input line:

 -13.45e12# 0

 First, suppose we use the %d mode; scanf() would read the three characters (−13) and stop
at the period, leaving the period as the next input character. scanf() then would convert
the character sequence −13 into the corresponding integer value and store that value in the
destination int variable. Next, reading the same line in the %f mode, scanf() would read the
 −13.45E12 characters and stop at the # symbol, leaving it as the next input character. It then
would convert the character sequence −13.45E12 into the corresponding floating-point value
and store that value in the destination float variable. Reading the same line in the %s mode,
 scanf() would read −13.45E12# , stopping at the space, leaving it as the next input character.
It then would store the character codes for these 10 characters into the destination character
array, appending a null character at the end. Finally, reading the same line using the %c speci-
fier, scanf() would read and store the first character, in this case a space.

 Summary

 A string is a series of characters treated as a unit. In C, strings are represented by a series of
characters terminated by the null character, which is the character whose ASCII code is 0.
Strings can be stored in character arrays. An array is a series of items, or elements, all of the
same type. To declare an array called name that has 30 elements of type char , do the following:

 char name[30];

 Be sure to allot a number of elements sufficient to hold the entire string, including the null
character.

 String constants are represented by enclosing the string in double quotes: "This is an
example of a string" .

 The strlen() function (declared in the string.h header file) can be used to find the length of
a string (not counting the terminating null character). The scanf() function, when used with
the %s specifier, can be used to read in single-word strings.

 The C preprocessor searches a source code program for preprocessor directives, which begin
with the # symbol, and acts upon them before the program is compiled. The #include direc-
tive causes the processor to add the contents of another file to your file at the location of
the directive. The #define directive lets you establish manifest constants—that is, symbolic

ptg11524036

138 Chapter 4 Character Strings and Formatted Input/Output

representations for constants. The limits.h and float.h header files use #define to define a
set of constants representing various properties of integer and floating-point types. You also can
use the const modifier to create symbolic constants.

 The printf() and scanf() functions provide versatile support for input and output. Each uses
a control string containing embedded conversion specifiers to indicate the number and type
of data items to be read or printed. Also, you can use the conversion specifiers to control the
appearance of the output: field widths, decimal places, and placement within a field.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. Run Listing 4.1 again, but this time give your first and last name when it asks you for
your first name. What happens? Why?

 2. Assuming that each of the following examples is part of a complete program, what will
each one print?

 a.

 printf("He sold the painting for $%2.2f.\n", 2.345e2);

 b.

 printf("%c%c%c\n", 'H', 105, '\41');

 c.

 #define Q "His Hamlet was funny without being vulgar."

 printf("%s\nhas %d characters.\n", Q, strlen(Q));

 d.

 printf("Is %2.2e the same as %2.2f?\n", 1201.0, 1201.0);

 3. In Question 2c, what changes could you make so that string Q is printed out enclosed in
double quotation marks?

 4. It’s find the error time!

 define B booboo

 define X 10

 main(int)

 {

 int age;

 char name;

ptg11524036

139Review Questions

 printf("Please enter your first name.");

 scanf("%s", name);

 printf("All right, %c, what's your age?\n", name);

 scanf("%f", age);

 xp = age + X;

 printf("That's a %s! You must be at least %d.\n", B, xp);

 rerun 0;

 }

 5. Suppose a program starts as follows:

 #define BOOK "War and Peace"

 int main(void)

 {

 float cost =12.99;

 float percent = 80.0;

 Construct a printf() statement that uses BOOK , cost , and percent to print the
following:

 This copy of "War and Peace" sells for $12.99.

 That is 80% of list.

 6. What conversion specification would you use to print each of the following?

 a. A decimal integer with a field width equal to the number of digits

 b. A hexadecimal integer in the form 8A in a field width of 4

 c. A floating-point number in the form 232.346 with a field width of 10

 d. A floating-point number in the form 2.33e+002 with a field width of 12

 e. A string left-justified in a field of width 30

 7. Which conversion specification would you use to print each of the following?

 a. An unsigned long integer in a field width of 15

 b. A hexadecimal integer in the form 0x8a in a field width of 4

 c. A floating-point number in the form 2.33E+02 that is left-justified in a field width
of 12

 d. A floating-point number in the form +232.346 in a field width of 10

 e. The first eight characters of a string in a field eight characters wide

ptg11524036

140 Chapter 4 Character Strings and Formatted Input/Output

 8. What conversion specification would you use to print each of the following?

 a. A decimal integer having a minimum of four digits in a field width of 6

 b. An octal integer in a field whose width will be given in the argument list

 c. A character in a field width of 2

 d. A floating-point number in the form +3.13 in a field width equal to the number of
characters in the number

 e. The first five characters in a string left-justified in a field of width 7

 9. For each of the following input lines, provide a scanf() statement to read it. Also
declare any variables or arrays used in the statement.

 a. 101

 b. 22.32 8.34E−09

 c. linguini

 d. catch 22

 e. catch 22 (but skip over catch)

 10. What is whitespace?

 11. What’s wrong with the following statement and how can you fix it?

 printf("The double type is %z bytes..\n", sizeof (double));

 12. Suppose that you would rather use parentheses than braces in your programs. How well
would the following work?

 #define ({

 #define) }

 Programming Exercises

 1. Write a program that asks for your first name, your last name, and then prints the names
in the format last, first .

 2. Write a program that requests your first name and does the following with it:

 a. Prints it enclosed in double quotation marks

 b. Prints it in a field 20 characters wide, with the whole field in quotes and the name
at the right end of the field

ptg11524036

141Programming Exercises

 c. Prints it at the left end of a field 20 characters wide, with the whole field enclosed
in quotes

 d. Prints it in a field three characters wider than the name

 3. Write a program that reads in a floating-point number and prints it first in decimal-point
notation and then in exponential notation. Have the output use the following formats
(the number of digits shown in the exponent may be different for your system):

 a. The input is 21.3 or 2.1e+001 .

 b. The input is +21.290 or 2.129E+001 .

 4. Write a program that requests your height in inches and your name, and then displays
the information in the following form:

 Dabney, you are 6.208 feet tall

 Use type float , and use / for division. If you prefer, request the height in centimeters
and display it in meters.

 5. Write a program that requests the download speed in megabits per second (Mbs) and
the size of a file in megabytes (MB). The program should calculate the download time
for the file. Note that in this context one byte is eight bits. Use type float , and use /
for division. The program should report all three values (download speed, file size, and
download time) showing two digits to the right of the decimal point, as in the following:

 At 18.12 megabits per second, a file of 2.20 megabytes

 downloads in 0.97 seconds.

 6. Write a program that requests the user’s first name and then the user’s last name. Have
it print the entered names on one line and the number of letters in each name on the
following line. Align each letter count with the end of the corresponding name, as in the
following:

 Melissa Honeybee

 7 8

 Next, have it print the same information, but with the counts aligned with the beginning
of each name.

 Melissa Honeybee

 7 8

 7. Write a program that sets a type double variable to 1.0/3.0 and a type float variable
to 1.0/3.0. Display each result three times—once showing four digits to the right of the
decimal, once showing 12 digits to the right of the decimal, and once showing 16 digits

ptg11524036

142 Chapter 4 Character Strings and Formatted Input/Output

to the right of the decimal. Also have the program include float.h and display the
values of FLT_DIG and DBL_DIG . Are the displayed values of 1.0/3.0 consistent with these
values?

 8. Write a program that asks the user to enter the number of miles traveled and the number
of gallons of gasoline consumed. It should then calculate and display the miles-per-gallon
value, showing one place to the right of the decimal. Next, using the fact that one gallon
is about 3.785 liters and one mile is about 1.609 kilometers, it should convert the mile-
per-gallon value to a liters-per-100-km value, the usual European way of expressing fuel
consumption, and display the result, showing one place to the right of the decimal. Note
that the U. S. scheme measures the distance traveled per amount of fuel (higher is better),
whereas the European scheme measures the amount of fuel per distance (lower is better).
Use symbolic constants (using const or #define) for the two conversion factors.

ptg11524036

 5
 Operators, Expressions, and

Statements

 You will learn about the following in this chapter:

 ■ Keyword:

 while , typedef

 ■ Operators:

 = - * /

 % ++ -- (type)

 ■ C’s multitudinous operators, including those used for common arithmetic operations

 ■ Operator precedence and the meanings of the terms statement and expression

 ■ The handy while loop

 ■ Compound statements, automatic type conversions, and type casts

 ■ How to write functions that use arguments

 Now that you’ve looked at ways to represent data, let’s explore ways to process data. C offers a
wealth of operations for that purpose. You can do arithmetic, compare values, modify variables,
combine relationships logically, and more. Let’s start with basic arithmetic—addition, subtrac-
tion, multiplication, and division.

 Another aspect of processing data is organizing your programs so that they take the right steps
in the right order. C has several language features to help you with that task. One of these
features is the loop, and in this chapter you get a first look at it. A loop enables you to repeat
actions and makes your programs more interesting and powerful.

ptg11524036

144 Chapter 5 Operators, Expressions, and Statements

 Introducing Loops

 Listing 5.1 shows a sample program that does a little arithmetic to calculate the length in
inches of a foot that wears a U. S. size 9 (men’s) shoe. To enhance your appreciation of loops,
this first version illustrates the limitations of programming without using a loop.

 Listing 5.1 The shoes1. c Program

 /* shoes1.c -- converts a shoe size to inches */

 #include <stdio.h>

 #define ADJUST 7.31 // one kind of symbolic constant

 int main(void)

 {

 const double SCALE = 0.333; // another kind of symbolic constant

 double shoe, foot;

 shoe = 9.0;

 foot = SCALE * shoe + ADJUST;

 printf("Shoe size (men's) foot length\n");

 printf("%10.1f %15.2f inches\n", shoe, foot);

 return 0;

 }

 Here is the output:

 Shoe size (men's) foot length

 9.0 10.31 inches

 The program demonstrates two ways to create symbolic constants, and it uses multiplication
and addition. It takes your shoe size (if you wear a size 9) and tells you how long your foot is in
inches. “But,” you say, “I could solve this problem by hand (or with a calculator) more quickly
than you could type the program.” That’s a good point. A one-shot program that does just one
shoe size is a waste of time and effort. You could make the program more useful by writing it as
an interactive program, but that still barely taps the potential of a computer.

 What’s needed is some way to have a computer do repetitive calculations for a succession of
shoe sizes. After all, that’s one of the main reasons for using a computer to do arithmetic. C
offers several methods for doing repetitive calculations, and we will outline one here. This
method, called a while loop , will enable you to make a more interesting exploration of opera-
tors. Listing 5.2 presents the improved shoe-sizing program.

 Listing 5.2 The shoes2.c Program

 /* shoes2.c -- calculates foot lengths for several sizes */

 #include <stdio.h>

 #define ADJUST 7.31 // one kind of symbolic constant

ptg11524036

145Introducing Loops

 int main(void)

 {

 const double SCALE = 0.333; // another kind of symbolic constant

 double shoe, foot;

 printf("Shoe size (men's) foot length\n");

 shoe = 3.0;

 while (shoe < 18.5) /* starting the while loop */

 { /* start of block */

 foot = SCALE * shoe + ADJUST;

 printf("%10.1f %15.2f inches\n", shoe, foot);

 shoe = shoe + 1.0;

 } /* end of block */

 printf("If the shoe fits, wear it.\n");

 return 0;

 }

 Here is a condensed version of shoes2.c ’s output:

 Shoe size (men's) foot length

 3.0 8.31 inches

 4.0 8.64 inches

 5.0 8.97 inches

 6.0 9.31 inches

 ...

 16.0 12.64 inches

 17.0 12.97 inches

 18.0 13.30 inches

 If the shoe fits, wear it.

 (Those of you with a serious interest in shoe sizes should be aware the program makes the unre-
alistic assumption that there is a rational and uniform system of shoe sizes. Real-world sizing
may be different.)

 Here is how the while loop works. When the program first reaches the while statement, it
checks to see whether the condition within parentheses is true. In this case, the expression is as
follows:

 shoe < 18.5

 The < symbol means “is less than.” The variable shoe was initialized to 3.0 , which is certainly
less than 18.5 . Therefore, the condition is true and the program proceeds to the next state-
ment, which converts the size to inches. Then it prints the results. The next statement increases
 shoe by 1.0, making it 4.0:

 shoe = shoe + 1.0;

ptg11524036

146 Chapter 5 Operators, Expressions, and Statements

 At this point, the program returns to the while portion to check the condition. Why at this
point? Because the next line is a closing brace (}), and the code uses a set of braces ({}) to mark
the extent of the while loop. The statements between the two braces are the ones that are
repeated. The section of program between and including the braces is called a block . Now back
to the program. The value 4 is less than 18.5 , so the whole cycle of embraced commands (the
block) following the while is repeated. (In computerese, the program is said to “loop” through
these statements.) This continues until shoe reaches a value of 19.0 . Now the condition

 shoe < 18.5

 becomes false because 19.0 is not less than 18.5 . When this happens, control passes to the
first statement following the while loop. In this case, that is the final printf() statement.

 You can easily modify this program to do other conversions. For example, change SCALE to 1.8
and ADJUST to 32.0 , and you have a program that converts Centigrade to Fahrenheit. Change
 SCALE to 0.6214 and ADJUST to 0 , and you convert kilometers to miles. If you make these
changes, you should change the printed messages, too, to prevent confusion.

 The while loop provides a convenient, flexible means of controlling a program. Now let’s turn
to the fundamental operators that you can use in your programs.

 Fundamental Operators

 C uses operators to represent arithmetic operations. For example, the + operator causes the two
values flanking it to be added together. If the term operator seems odd to you, please keep in
mind that those things had to be called something. “Operator” does seem to be a better choice
than, say, “those things” or “arithmetical transactors.” Now take a look at the operators used
for basic arithmetic: = , + , - , * , and / . (C does not have an exponentiating operator. The stan-
dard C math library, however, provides the pow() function for that purpose. For example,
 pow(3.5, 2.2) returns 3.5 raised to the power of 2.2.)

 Assignment Operator: =

 In C, the equal sign does not mean “equals.” Rather, it is a value-assigning operator. The
statement

 bmw = 2002;

 assigns the value 2002 to the variable named bmw . That is, the item to the left of the = sign is
the name of a variable, and the item on the right is the value assigned to the variable. The =
symbol is called the assignment operator . Again, don’t think of the line as saying, "bmw equals
 2002 .” Instead, read it as “assign the value 2002 to the variable bmw .” The action goes from
right to left for this operator.

 Perhaps this distinction between the name of a variable and the value of a variable seems like
hair-splitting, but consider the following common type of computer statement:

 i = i + 1;

ptg11524036

147Fundamental Operators

 As mathematics, this statement makes no sense. If you add 1 to a finite number, the result isn’t
“equal to” the number you started with, but as a computer assignment statement, it is perfectly
reasonable. It means “Find the value of the variable named i , add 1 to that value, and then
assign this new value to the variable i" (see Figure 5.1).

i i

22

i=i+1;

i=22+1;

i=23;

23

 Figure 5.1 The statement i = i + 1; .

 A statement such as

 2002 = bmw;

 makes no sense in C (and, indeed, is invalid) because 2002 is what C calls an rvalue , in this
case, just a literal constant. You can’t assign a value to a constant; it already is its value. When
you sit down at the keyboard, therefore, remember that the item to the left of the = sign must
be the name of a variable. Actually, the left side must refer to a storage location. The simplest
way is to use the name of a variable, but, as you will see later, a “pointer” can be used to point
to a location. More generally, C uses the term modifiable lvalue to label those entities to which
you can assign values. “Modifiable lvalue” is not, perhaps, the most intuitive phrase you’ve
encountered, so let’s look at some definitions.

 Some Terminology: Data Objects, Lvalues, Rvalues, and Operands

 Consider an assignment statement. Its purpose is to store a value at a memory location. Data
object is a general term for a region of data storage that can be used to hold values. The C
standard uses just the term object for this concept. One way to identify an object is by using
the name of a variable. But, as you will eventually learn, there are other was to identify an
object. For example, you could specify an element of an array, a member of a structure, or use
a pointer expression that involves the address of the object. C uses the term lvalue to mean any
such name or expression that identifies a particular data object. Object refers to the actual data
storage, but an lvalue is a label used to identify, or locate, that storage.

 In the early days of C, saying something was an lvalue meant two things:

 1. It specified an object, hence referred to an address in memory.

 2. It could be used on the left side of an assignment operator, hence the “l” in lvalue.

 But then C added the const modifier. This allows you to create an object, but one whose value
cannot be changed. So a const identifier satisfies the first of the two properties above, but not
the second. At this point the standard continued to use lvalue for any expression identifying an
object, even though some lvalues could not be used on the left side of an assignment operator.

ptg11524036

148 Chapter 5 Operators, Expressions, and Statements

And C added the term modifiable lvalue to identify an object whose value can be changed.
Therefore, the left side of an assignment operator should be a modifiable lvalue.

 The current standard suggests that object locator value might be a better term.

 The term rvalue refers to quantities that can be assigned to modifiable lvalues but which are not
themselves lvalues For instance, consider the following statement:

 bmw = 2002;

 Here, bmw is a modifiable lvalue, and 2002 is an rvalue. As you probably guessed, the r in rvalue
comes from right . Rvalues can be constants, variables, or any other expression that yields a
value, such as a function call. Indeed, the current standard uses value of an expression instead of
 rvalue .

 Let’s look at a short example:

 int ex;

 int why;

 int zee;

 const int TWO = 2;

 why = 42;

 zee = why;

 ex = TWO * (why + zee);

 Here ex , why , and zee all are modifiable lvalues (or object locator values). They can be used
either on the left side or the right side of an assignment operator. TWO is a non-modifiable
lvalue; it can only be used on the right side. (In the context of initializing TWO to 2 , the =
operator represents initialization, not assignment, so the rule isn’t violated.) Meanwhile, 42 is
an rvalue; it doesn’t refer to some specific memory location. Also, while why and zee are modi-
fiable lvalues, the expression (why + zee) is an rvalue; it doesn’t represent a specific memory
location and you can’t assign to it. It’s just a temporary value the program calculates, and then
discards when it’s finished with it.

 As long as you are learning the names of things, the proper term for what we have called an
“item” (as in “the item to the left of the =") is operand . Operands are what operators operate
on. For example, you can describe eating a hamburger as applying the “eat” operator to the
“hamburger” operand; similarly, you can say that the left operand of the = operator shall be a
modifiable lvalue.

 The basic C assignment operator is a little flashier than most. Try the short program in Listing
 5.3 .

 Listing 5.3 The golf.c Program

 /* golf.c -- golf tournament scorecard */

 #include <stdio.h>

 int main(void)

 {

ptg11524036

149Fundamental Operators

 int jane, tarzan, cheeta;

 cheeta = tarzan = jane = 68;

 printf(" cheeta tarzan jane\n");

 printf("First round score %4d %8d %8d\n",cheeta,tarzan,jane);

 return 0;

 }

 Many languages would balk at the triple assignment made in this program, but C accepts
it routinely. The assignments are made right to left: First, jane gets the value 68 , and then
 tarzan does, and finally cheeta does. Therefore, the output is as follows:

 cheeta tarzan jane

 First round score 68 68 68

 Addition Operator: +

 The addition operator causes the two values on either side of it to be added together. For
example, the statement

 printf("%d", 4 + 20);

 causes the number 24 to be printed, not the expression

 4 + 20.

 The values (operands) to be added can be variables as well as constants. Therefore, the
statement

 income = salary + bribes;

 causes the computer to look up the values of the two variables on the right, add them, and
then assign this total to the variable income .

 As a reminder, note that income , salary , and bribes all are modifiable lvalues because each
identifies a data object that could be assigned a value, but the expression salary + bribes is
an rvalue, a calculated value not identified with a particular memory location.

 Subtraction Operator: –

 The subtraction operator causes the number after the – sign to be subtracted from the number
before the sign. The statement

 takehome = 224.00 – 24.00;

 assigns the value 200.0 to takehome .

ptg11524036

150 Chapter 5 Operators, Expressions, and Statements

 The + and – operators are termed binary , or dyadic, operators, meaning that they require two
operands.

 Sign Operators: – and +

 The minus sign can also be used to indicate or to change the algebraic sign of a value. For
instance, the sequence

 rocky = –12;

 smokey = –rocky;

 gives smokey the value 12 .

 When the minus sign is used in this way, it is called a unary operator , meaning that it takes just
one operand (see Figure 5.2).

 The C90 standard adds a unary + operator to C. It doesn’t alter the value or sign of its operand;
it just enables you to use statements such as

 dozen = +12;

 without getting a compiler complaint. Formerly, this construction was not allowed.

value is 24

two operands

36–12

binary

–16

unary

–(12–20)

both

value is -16

value is 8

two operands

one operand

one operand

 Figure 5.2 Unary and binary operators.

ptg11524036

151Fundamental Operators

 Multiplication Operator: *

 Multiplication is indicated by the * symbol. The statement

 cm = 2.54 * inch;

 multiplies the variable inch by 2.54 and assigns the answer to cm .

 By any chance, do you want a table of squares? C doesn’t have a squaring function, but, as
shown in Listing 5.4 , you can use multiplication to calculate squares.

 Listing 5.4 The squares. c Program

 /* squares.c -- produces a table of first 20 squares */

 #include <stdio.h>

 int main(void)

 {

 int num = 1;

 while (num < 21)

 {

 printf("%4d %6d\n", num, num * num);

 num = num + 1;

 }

 return 0;

 }

 This program prints the first 20 integers and their squares, as you can verify for yourself. Let’s
look at a more interesting example.

 Exponential Growth

 You have probably heard the story of the powerful ruler who seeks to reward a scholar who
has done him a great service. When the scholar is asked what he would like, he points to a
chessboard and says, just one grain of wheat on the first square, two on the second, four on the
third, eight on the next, and so on. The ruler, lacking mathematical erudition, is astounded at
the modesty of this request, for he had been prepared to offer great riches. The joke, of course,
is on the ruler, as the program in Listing 5.5 shows. It calculates how many grains go on each
square and keeps a running total. Because you might not be up to date on wheat crops, the
program also compares the running total to a very rough estimate of the annual world wheat
crop.

 Listing 5.5 The wheat.c Program

 /* wheat.c -- exponential growth */

 #include <stdio.h>

 #define SQUARES 64 // squares on a checkerboard

ptg11524036

152 Chapter 5 Operators, Expressions, and Statements

 int main(void)

 {

 const double CROP = 2E16; // world wheat production in wheat grains

 double current, total;

 int count = 1;

 printf("square grains total ");

 printf("fraction of \n");

 printf(" added grains ");

 printf("world total\n");

 total = current = 1.0; /* start with one grain */

 printf("%4d %13.2e %12.2e %12.2e\n", count, current,

 total, total/CROP);

 while (count < SQUARES)

 {

 count = count + 1;

 current = 2.0 * current;

 /* double grains on next square */

 total = total + current; /* update total */

 printf("%4d %13.2e %12.2e %12.2e\n", count, current,

 total, total/CROP);

 }

 printf("That's all.\n");

 return 0;

 }

 The output begins innocuously enough:

 square grains total fraction of

 added grains world total

 1 1.00e+00 1.00e+00 5.00e-17

 2 2.00e+00 3.00e+00 1.50e-16

 3 4.00e+00 7.00e+00 3.50e-16

 4 8.00e+00 1.50e+01 7.50e-16

 5 1.60e+01 3.10e+01 1.55e-15

 6 3.20e+01 6.30e+01 3.15e-15

 7 6.40e+01 1.27e+02 6.35e-15

 8 1.28e+02 2.55e+02 1.27e-14

 9 2.56e+02 5.11e+02 2.55e-14

 10 5.12e+02 1.02e+03 5.12e-14

 After 10 squares, the scholar has acquired just a little over a thousand grains of wheat, but look
what has happened by square 55!

 55 1.80e+16 3.60e+16 1.80e+00

ptg11524036

153Fundamental Operators

 The haul has exceeded the total world annual output! If you want to see what happens by the
64th square, you will have to run the program yourself.

 This example illustrates the phenomenon of exponential growth. The world population growth
and our use of energy resources have followed the same pattern.

 Division Operator: /

 C uses the / symbol to represent division. The value to the left of the / is divided by the value
to the right. For example, the following gives four the value of 4.0 :

 four = 12.0/3.0;

 Division works differently for integer types than it does for floating types. Floating-type divi-
sion gives a floating-point answer, but integer division yields an integer answer. An integer
can’t have a fractional part, which makes dividing 5 by 3 awkward, because the answer does
have a fractional part. In C, any fraction resulting from integer division is discarded. This
process is called truncation .

 Try the program in Listing 5.6 to see how truncation works and how integer division differs
from floating-point division.

 Listing 5.6 The divide.c Program

 /* divide.c -- divisions we have known */

 #include <stdio.h>

 int main(void)

 {

 printf("integer division: 5/4 is %d \n", 5/4);

 printf("integer division: 6/3 is %d \n", 6/3);

 printf("integer division: 7/4 is %d \n", 7/4);

 printf("floating division: 7./4. is %1.2f \n", 7./4.);

 printf("mixed division: 7./4 is %1.2f \n", 7./4);

 return 0;

 }

 Listing 5.6 includes a case of “mixed types” by having a floating-point value divided by an
integer. C is a more forgiving language than some and will let you get away with this, but
normally you should avoid mixing types. Now for the results:

 integer division: 5/4 is 1

 integer division: 6/3 is 2

 integer division: 7/4 is 1

 floating division: 7./4. is 1.75

 mixed division: 7./4 is 1.75

ptg11524036

154 Chapter 5 Operators, Expressions, and Statements

 Notice how integer division does not round to the nearest integer, but always truncates (that
is, discards the entire fractional part). When you mixed integers with floating point, the answer
came out the same as floating point. Actually, the computer is not really capable of dividing a
floating-point type by an integer type, so the compiler converts both operands to a single type.
In this case, the integer is converted to floating point before division.

 Until the C99 standard, C gave language implementers some leeway in deciding how integer
division with negative numbers worked. One could take the view that the rounding proce-
dure consists of finding the largest integer smaller than or equal to the floating-point number.
Certainly, 3 fits that description when compared to 3.8. But what about −3.8? The largest
integer method would suggest rounding to −4 because −4 is less than −3.8. But another way of
looking at the rounding process is that it just dumps the fractional part; that interpretation,
called truncating toward zero , suggests converting −3.8 to −3. Before C99, some implementations
used one approach, some the other. But C99 says to truncate toward zero, so −3.8 is converted
to −3.

 The properties of integer division turn out to be handy for some problems, and you’ll see
an example fairly soon. First, there is another important matter: What happens when you
combine more than one operation into one statement? That is the next topic.

 Operator Precedence

 Consider the following line of code:

 butter = 25.0 + 60.0 * n / SCALE;

 This statement has an addition, a multiplication, and a division operation. Which operation
takes place first? Is 25.0 added to 60.0 , the result of 85.0 then multiplied by n , and that result
then divided by SCALE ? Is 60.0 multiplied by n , the result added to 25.0 , and that answer
then divided by SCALE ? Is it some other order? Let’s take n to be 6.0 and SCALE to be 2.0. If
you work through the statement using these values, you will find that the first approach yields
a value of 255. The second approach yields 192.5. A C program must have some other order in
mind, because it would give a value of 205.0 for butter .

 Clearly, the order of executing the various operations can make a difference, so C needs unam-
biguous rules for choosing what to do first. C does this by setting up an operator pecking order.
Each operator is assigned a precedence level. As in ordinary arithmetic, multiplication and divi-
sion have a higher precedence than addition and subtraction, so they are performed first. What
if two operators have the same precedence? If they share an operand, they are executed accord-
ing to the order in which they occur in the statement. For most operators, the order is from left
to right. (The = operator was an exception to this.) Therefore, in the statement

 butter = 25.0 + 60.0 * n / SCALE;

 the order of operations is as follows:

 60.0 * n The first * or / in the expression (assuming n is 6 so that 60.0 * n is
 360.0)

ptg11524036

155Fundamental Operators

 360.0 / SCALE Then the second * or / in the expression

 25.0 + 180 Finally (because SCALE is 2.0), the first + or - in the expression, to yield
 205.0

 Many people like to represent the order of evaluation with a type of diagram called an expres-
sion tree . Figure 5.3 is an example of such a diagram. The diagram shows how the original
expression is reduced by steps to a single value.

SCALE=2;

n=6;

butter=25.0+60.0*n/ SCALE;

+

/

*

25.0

60.0 n

SCALE

+

/
25.0

360.0

180

205.0
2

+

25.0

 Figure 5.3 Expression trees showing operators, operands, and order of evaluation.

 What if you want an addition operation to take place before division? Then you can do as we
have done in the following line:

 flour = (25.0 + 60.0 * n) / SCALE;

 Whatever is enclosed in parentheses is executed first. Within the parentheses, the usual
rules hold. For this example, first the multiplication takes place and then the addition. That
completes the expression in the parentheses. Now the result can be divided by SCALE .

 Table 5.1 summarizes the rules for the operators used so far. (The inside back cover of this book
presents a table covering all operators.)

 Table 5.1 Operators in Order of Decreasing Precedence

 Operators Associativity

 () Left to right

 + - (unary) Right to left

 * / Left to right

ptg11524036

156 Chapter 5 Operators, Expressions, and Statements

 Operators Associativity

 + - (binary) Left to right

 = Right to left

 Notice that the two uses of the minus sign have different precedences, as do the two uses of the
plus sign. The associativity column tells you how an operator associates with its operands. For
example, the unary minus sign associates with the quantity to its right, and in division the left
operand is divided by the right.

 Precedence and the Order of Evaluation

 Operator precedence provides vital rules for determining the order of evaluation in an expres-
sion, but it doesn’t necessarily determine the complete order. C leaves some choices up to the
implementation. Consider the following statement:

 y = 6 * 12 + 5 * 20;

 Precedence dictates the order of evaluation when two operators share an operand. For example,
the 12 is an operand for both the * and the + operators, and precedence says that multiplica-
tion comes first. Similarly, precedence says that the 5 is to be multiplied, not added. In short,
the multiplications 6 * 12 and 5 * 20 take place before any addition. What precedence does
not establish is which of these two multiplications occurs first. C leaves that choice to the
implementation because one choice might be more efficient for one kind of hardware, but the
other choice might work better on another kind of hardware. In either case, the expression
reduces to 72 + 100 , so the choice doesn’t affect the final value for this particular example.
“But,” you say, “multiplication associates from left to right. Doesn’t that mean the leftmost
multiplication is performed first?” (Well, maybe you don’t say that, but somewhere someone
does.) The association rule applies for operators that share an operand. For instance, in the
expression 12 / 3 * 2 , the / and * operators, which have the same precedence, share the
operand 3 . Therefore, the left-to-right rule applies in this case, and the expression reduces to 4
* 2 , or 8 . (Going from right to left would give 12 / 6 , or 2 . Here the choice does matter.) In
the previous example, the two * operators did not share a common operand, so the left-to-right
rule did not apply.

 Trying the Rules

 Let’s try these rules on a more complex example— Listing 5.7 .

 Listing 5.7 The rules.c Program

 /* rules.c -- precedence test */

 #include <stdio.h>

 int main(void)

ptg11524036

157Some Additional Operators

 {

 int top, score;

 top = score = -(2 + 5) * 6 + (4 + 3 * (2 + 3));

 printf("top = %d, score = %d\n", top, score);

 return 0;

 }

 What value will this program print? Figure it out, and then run the program or read the follow-
ing description to check your answer.

 First, parentheses have the highest precedence. Whether the parentheses in -(2 + 5) * 6 or
in (4 + 3 * (2 + 3)) are evaluated first depends on the implementation, as just discussed.
Either choice will lead to the same result for this example, so let’s take the left one first. The
high precedence of parentheses means that in the subexpression -(2 + 5) * 6 , you evalu-
ate (2 + 5) first, getting 7 . Next, you apply the unary minus operator to 7 to get -7 . Now the
expression is

 top = score = -7 * 6 + (4 + 3 * (2 + 3))

 The next step is to evaluate 2 + 3 . The expression becomes

 top = score = -7 * 6 + (4 + 3 * 5)

 Next, because the * in the parentheses has priority over + , the expression becomes

 top = score = -7 * 6 + (4 + 15)

 and then

 top = score = -7 * 6 + 19

 Multiply -7 by 6 and get the following expression:

 top = score = -42 + 19

 Then addition makes it

 top = score = -23

 Now score is assigned the value -23 , and, finally, top gets the value -23 . Remember that the =
operator associates from right to left.

 Some Additional Operators

 C has about 40 operators, but some are used much more than others. The ones just covered are
among the most common, but let’s add four more useful operators to the list.

ptg11524036

158 Chapter 5 Operators, Expressions, and Statements

 The sizeof Operator and the size_t Type

 You saw the sizeof operator in Chapter 3 , “Data and C.” To review, the sizeof operator
returns the size, in bytes, of its operand. (Recall that a C byte is defined as the size used by the
 char type. In the past, this has most often been 8 bits, but some character sets may use larger
bytes.) The operand can be a specific data object, such as the name of a variable, or it can be a
type. If it is a type, such as float , the operand must be enclosed in parentheses. The example
in Listing 5.8 shows both forms.

 Listing 5.8 The sizeof.c Program

 // sizeof.c -- uses sizeof operator

 // uses C99 %z modifier -- try %u or %lu if you lack %zd

 #include <stdio.h>

 int main(void)

 {

 int n = 0;

 size_t intsize;

 intsize = sizeof (int);

 printf("n = %d, n has %zd bytes; all ints have %zd bytes.\n",

 n, sizeof n, intsize);

 return 0;

 }

 C says that sizeof returns a value of type size_t . This is an unsigned integer type, but not a
brand-new type. Instead, as you may recall from the preceding chapter, it is defined in terms of
the standard types. C has a typedef mechanism (discussed further in Chapter 14 , “Structures
and Other Data Forms”) that lets you create an alias for an existing type. For example,

 typedef double real;

 makes real another name for double . Now you can declare a variable of type real :

 real deal; // using a typedef

 The compiler will see the word real , recall that the typedef statement made real an alias for
 double , and create deal as a type double variable. Similarly, the C header files system can use
 typedef to make size_t a synonym for unsigned int on one system or for unsigned long
on another. Thus, when you use the size_t type, the compiler will substitute the standard
type that works for your system.

 C99 goes a step further and supplies %zd as a printf() specifier for displaying a size_t value.
If your system doesn’t implement %zd , you can try using %u or %lu instead.

ptg11524036

159Some Additional Operators

 Modulus Operator: %

 The modulus operator is used in integer arithmetic. It gives the remainder that results when the
integer to its left is divided by the integer to its right. For example, 13 % 5 (read as “13 modulo
5”) has the value 3, because 5 goes into 13 twice, with a remainder of 3. Don’t bother trying to
use this operator with floating-point numbers. It just won’t work.

 At first glance, this operator might strike you as an esoteric tool for mathematicians, but it
is actually rather practical and helpful. One common use is to help you control the flow of a
program. Suppose, for example, you are working on a bill-preparing program designed to add in
an extra charge every third month. Just have the program evaluate the month number modulo
3 (that is, month % 3) and check to see whether the result is 0. If it is, the program adds in
the extra charge. After you learn about if statements in Chapter 7 , “C Control Statements:
Branching and Jumps,” you’ll understand this better.

 Listing 5.9 shows another use for the % operator. It also shows another way to use a while
loop.

 Listing 5.9 The min_sec.c Program

 // min_sec.c -- converts seconds to minutes and seconds

 #include <stdio.h>

 #define SEC_PER_MIN 60 // seconds in a minute

 int main(void)

 {

 int sec, min, left;

 printf("Convert seconds to minutes and seconds!\n");

 printf("Enter the number of seconds (<=0 to quit):\n");

 scanf("%d", &sec); // read number of seconds

 while (sec > 0)

 {

 min = sec / SEC_PER_MIN; // truncated number of minutes

 left = sec % SEC_PER_MIN; // number of seconds left over

 printf("%d seconds is %d minutes, %d seconds.\n", sec,

 min, left);

 printf("Enter next value (<=0 to quit):\n");

 scanf("%d", &sec);

 }

 printf("Done!\n");

 return 0;

 }

 Here is some sample output:

 Convert seconds to minutes and seconds!

 Enter the number of seconds (<=0 to quit):

ptg11524036

160 Chapter 5 Operators, Expressions, and Statements

 154
 154 seconds is 2 minutes, 34 seconds.

 Enter next value (<=0 to quit):

 567
 567 seconds is 9 minutes, 27 seconds.

 Enter next value (<=0 to quit):

 0
 Done!

 Listing 5.2 used a counter to control a while loop. When the counter exceeded a given size,
the loop quit. Listing 5.9 , however, uses scanf() to fetch new values for the variable sec . As
long as the value is positive, the loop continues. When the user enters a zero or negative value,
the loop quits. The important design point in both cases is that each loop cycle revises the
value of the variable being tested.

 What about negative numbers? Before C99 settled on the “truncate toward zero” rule for
integer division, there were a couple of possibilities. But with the rule in place, you get a nega-
tive modulus value if the first operand is negative, and you get a positive modulus otherwise:

 11 / 5 is 2 , and 11 % 5 is 1

 11 / -5 is -2 , and 11 % -2 is 1

 -11 / -5 is 2 , and -11 % -5 is -1

 -11 / 5 is -2 , and -11 % 5 is -1

 If your system shows different behavior, it hasn’t caught up to the C99 standard. In any case,
the standard says, in effect, that if a and b are integer values, you can calculate a%b by subtract-
ing (a/b)*b from a . For example, you can evaluate -11%5 this way:

 -11 - (-11/5) * 5 = -11 -(-2)*5 = -11 -(-10) = -1

 Increment and Decrement Operators: ++ and --

 The increment operator performs a simple task; it increments (increases) the value of its operand
by 1. This operator comes in two varieties. The first variety has the ++ come before the affected
variable; this is the prefix mode. The second variety has the ++ after the affected variable; this
is the postfix mode. The two modes differ with regard to the precise time that the increment-
ing takes place. We’ll explain the similarities first and then return to that difference. The short
example in Listing 5.10 shows how the increment operators work.

 Listing 5.10 The add_one.c Program

 /* add_one.c -- incrementing: prefix and postfix */

 #include <stdio.h>

 int main(void)

 {

ptg11524036

161Some Additional Operators

 int ultra = 0, super = 0;

 while (super < 5)

 {

 super++;

 ++ultra;

 printf("super = %d, ultra = %d \n", super, ultra);

 }

 return 0;

 }

 Running add_one.c produces this output:

 super = 1, ultra = 1

 super = 2, ultra = 2

 super = 3, ultra = 3

 super = 4, ultra = 4

 super = 5, ultra = 5

 The program counted to five twice and simultaneously. You could get the same results by
replacing the two increment statements with this:

 super = super + 1;

 ultra = ultra + 1;

 These are simple enough statements. Why bother creating one, let alone two, abbreviations?
One reason is that the compact form makes your programs neater and easier to follow. These
operators give your programs an elegant gloss that cannot fail to please the eye. For example,
you can rewrite part of shoes2.c (Listing 5.2) this way:

 shoe = 3.0;

 while (shoe < 18.5)

 {

 foot = SCALE * size + ADJUST;

 printf("%10.1f %20.2f inches\n", shoe, foot);

 ++shoe;

 }

 However, you still haven’t taken full advantage of the increment operator. You can shorten the
fragment this way:

 shoe = 2.0;

 while (++shoe < 18.5)

 {

 foot = SCALE*shoe + ADJUST;

 printf("%10.1f %20.2f inches\n", shoe, foot);

 }

ptg11524036

162 Chapter 5 Operators, Expressions, and Statements

 Here you have combined the incrementing process and the while comparison into one expres-
sion. This type of construction is so common in C that it merits a closer look.

 First, how does this construction work? Simply. The value of shoe is increased by 1 and then
compared to 18.5 . If it is less than 18.5 , the statements between the braces are executed
once. Then shoe is increased by 1 again, and the cycle is repeated until shoe gets too big. We
changed the initial value of shoe from 3.0 to 2.0 to compensate for shoe being incremented
before the first evaluation of foot (see Figure 5.4).

shoe = 2.0;

while (++shoe < 18.5)

{

 foot=SCALE*shoe + ADJUST;

 printf("––––––", shoe, foot);

}

while loop

increment shoe to 3

evaluate test (true)

do these statements

return to beginning of loop

1

2
3

4

 Figure 5.4 Through the loop once.

 Second, what’s so good about this approach? It is more compact. More important, it gathers
in one place the two processes that control the loop. The primary process is the test: Do you
continue or not? In this case, the test is checking to see whether the shoe size is less than 18.5.
The secondary process changes an element of the test; in this case, the shoe size is increased.

 Suppose you forgot to change the shoe size. Then shoe would always be less than 18.5 , and
the loop would never end. The computer would churn out line after identical line, caught in
a dreaded infinite loop . Eventually, you would lose interest in the output and have to kill the
program somehow. Having the loop test and the loop change at one place, instead of at sepa-
rate locations, helps you to remember to update the loop.

 A disadvantage is that combining two operations in a single expression can make the code
harder to follow and can make it easier to make counting errors.

 Another advantage of the increment operator is that it usually produces slightly more efficient
machine language code because it is similar to actual machine language instructions. However,
as vendors produce better C compilers, this advantage may disappear. A smart compiler can
recognize that x = x + 1 can be treated the same as ++x .

 Finally, these operators have an additional feature that can be useful in certain delicate situa-
tions. To find out what this feature is, try running the program in Listing 5.11 .

ptg11524036

163Some Additional Operators

 Listing 5.11 The post_pre.c Program

 /* post_pre.c -- postfix vs prefix */

 #include <stdio.h>

 int main(void)

 {

 int a = 1, b = 1;

 int a_post, pre_b;

 a_post = a++; // value of a++ during assignment phase

 pre_b = ++b; // value of ++b during assignment phase

 printf("a a_post b pre_b \n");

 printf("%1d %5d %5d %5d\n", a, a_post, b, pre_b);

 return 0;

 }

 If you and your compiler do everything correctly, you should get this result:

 a a_post b pre_b

 2 1 2 2

 Both a and b were increased by 1, as promised. However, a_post has the value of a before a
changed, but b_pre has the value of b after b changed. This is the difference between the prefix
form and the postfix form (see Figure 5.5).

 a_post = a++; // postfix: a is changed after its value is used

 b_pre= ++b; // prefix: b is changed before its value is used

 When one of these increment operators is used by itself, as in a solitary ego++; statement, it
doesn’t matter which form you use. The choice does matter, however, when the operator and
its operand are part of a larger expression, as in the assignment statements you just saw. In this
kind of situation, you must give some thought to the result you want. For instance, recall that
we suggested using the following:

 while (++shoe < 18.5)

 This test condition provides a table up to size 18. If you use shoe++ instead of ++shoe , the
table will go to size 19 because shoe will be increased after the comparison instead of before.

 Of course, you could fall back on the less subtle form,

 shoe = shoe + 1;

 but then no one will believe you are a true C programmer.

 You should pay special attention to the examples of increment operators as you read through
this book. Ask yourself if you could have used the prefix and the suffix forms interchangeably
or if circumstances dictated a particular choice.

ptg11524036

164 Chapter 5 Operators, Expressions, and Statements

 Perhaps an even wiser policy is to avoid code in which it makes a difference whether you use
the prefix or postfix form. For example, instead of

 b = ++i; // different result for b if i++ is used

 use

 ++i; // line 1

 b = i; // same result for b as if i++ used in line 1

 However, sometimes it’s more fun to be a little reckless, so this book will not always follow this
sensible advice.

 Decrementing: --

 For each form of increment operator, there is a corresponding form of decrement operator .
Instead of ++ , use -- :

 -- count; // prefix form of decrement operator

 count --; // postfix form of decrement operator

 Listing 5.12 illustrates that computers can be accomplished lyricists.

 Listing 5.12 The bottles.c Program

 #include <stdio.h>

 #define MAX 100

 int main(void)

 {

 int count = MAX + 1;

 while (--count > 0) {

 printf("%d bottles of spring water on the wall, "

q = 2*++a;

prefix

q = 2*a++;

postfix

first, increment a by 1;
then, multiply a by 2 and assign to q

first, multiply a by 2, assign to q
then, increment a by 1

 Figure 5.5 Prefix and postfix.

ptg11524036

165Some Additional Operators

 "%d bottles of spring water!\n", count, count);

 printf("Take one down and pass it around,\n");

 printf("%d bottles of spring water!\n\n", count - 1);

 }

 return 0;

 }

 The output starts like this:

 100 bottles of spring water on the wall, 100 bottles of spring water!

 Take one down and pass it around,

 99 bottles of spring water!

 99 bottles of spring water on the wall, 99 bottles of spring water!

 Take one down and pass it around,

 98 bottles of spring water!

 It goes on a bit and ends this way:

 1 bottles of spring water on the wall, 1 bottles of spring water!

 Take one down and pass it around,

 0 bottles of spring water!

 Apparently the accomplished lyricist has a problem with plurals, but that could be fixed by
using the conditional operator of Chapter 7 .

 Incidentally, the > operator stands for “is greater than.” Like < (“is less than”), it is a relational
 operator . You will get a longer look at relational operators in Chapter 6 , “C Control Statements:
Looping.”

 Precedence

 The increment and decrement operators have a very high precedence of association; only
parentheses are higher. Therefore, x*y++ means (x)*(y++) , not (x*y)++ , which is fortunate
because the latter is invalid. The increment and decrement operators affect a variable (or, more
generally, a modifiable lvalue), and the combination x*y is not itself a modifiable lvalue,
although its parts are.

 Don’t confuse precedence of these two operators with the order of evaluation. Suppose you
have the following:

 y = 2;

 n = 3;

 nextnum = (y + n++)*6;

ptg11524036

166 Chapter 5 Operators, Expressions, and Statements

 What value does nextnum get? Substituting in values yields

 nextnum = (2 + 3)*6 = 5*6 = 30

 Only after n is used is it increased to 4 . Precedence tells us that the ++ is attached only to the n ,
not to y + n . It also tells us when the value of n is used for evaluating the expression, but the
nature of the increment operator determines when the value of n is changed.

 When n++ is part of an expression, you can think of it as meaning “use n ; then increment it.”
On the other hand, ++n means “increment n ; then use it.”

 Don’t Be Too Clever

 You can get fooled if you try to do too much at once with the increment operators. For
example, you might think that you could improve on the squares.c program (Listing 5.4) to
print integers and their squares by replacing the while loop with this one:

 while (num < 21)

 {

 printf("%10d %10d\n", num, num*num++);

 }

 This looks reasonable. You print the number num , multiply it by itself to get the square, and
then increase num by 1. In fact, this program may even work on some systems, but not all. The
problem is that when printf() goes to get the values for printing, it might evaluate the last
argument first and increment num before getting to the other argument. Therefore, instead of
printing

 5 25

 it may print

 6 25

 It even might work from right to left, using 5 for the rightmost num and 6 for the next two,
resulting in this output:

 6 30

 In C, the compiler can choose which arguments in a function to evaluate first. This freedom
increases compiler efficiency, but can cause trouble if you use an increment operator on a func-
tion argument.

 Another possible source of trouble is a statement like this one:

 ans = num/2 + 5*(1 + num++);

 Again, the problem is that the compiler may not do things in the same order you have in
mind. You would think that it would find num/2 first and then move on, but it might do the
last term first, increase num , and use the new value in num/2 . There is no guarantee.

ptg11524036

167Expressions and Statements

 Yet another troublesome case is this:

 n = 3;

 y = n++ + n++;

 Certainly, n winds up larger by 2 after the statement is executed, but the value for y is ambigu-
ous. A compiler can use the old value of n twice in evaluating y and then increment n twice.
This gives y the value 6 and n the value 5 , or it can use the old value once, increment n once,
use that value for the second n in the expression, and then increment n a second time. This
gives y the value 7 and n the value 5 . Either choice is allowable. More exactly, the result is
undefined, which means the C standard fails to define what the result should be.

 You can easily avoid these problems:

 ■ Don’t use increment or decrement operators on a variable that is part of more than one
argument of a function.

 ■ Don’t use increment or decrement operators on a variable that appears more than once
in an expression.

 On the other hand, C does have some guarantees about when incrementing takes place. We’ll
return to this subject when we discuss sequence points later this chapter in the section, “Side
Effects and Sequence Points.”

 Expressions and Statements

 We have been using the terms expression and statement throughout these first few chapters,
and now the time has come to study their meanings more closely. Statements form the basic
program steps of C, and most statements are constructed from expressions. This suggests that
you look at expressions first.

 Expressions

 An expression consists of a combination of operators and operands. (An operand, recall, is what
an operator operates on.) The simplest expression is a lone operand, and you can build in
complexity from there. Here are some expressions:

 4

 -6

 4+21

 a*(b + c/d)/20

 q = 5*2

 x = ++q % 3

 q > 3

ptg11524036

168 Chapter 5 Operators, Expressions, and Statements

 As you can see, the operands can be constants, variables, or combinations of the two. Some
expressions are combinations of smaller expressions, called subexpressions . For example, c/d is a
subexpression of the fourth example.

 Every Expression Has a Value

 An important property of C is that every C expression has a value. To find the value, you
perform the operations in the order dictated by operator precedence. The value of the first few
expressions we just listed is clear, but what about the ones with = signs? Those expressions
simply have the same value that the variable to the left of the = sign receives. Therefore, the
expression q=5*2 as a whole has the value 10 . What about the expression q > 3 ? Such rela-
tional expressions have the value 1 if true and 0 if false. Here are some expressions and their
values:

 Expression Value

 -4 + 6 2

 c = 3 + 8 11

 5 > 3 1

 6 + (c = 3 + 8) 17

 The last expression looks strange! However, it is perfectly legal (but ill-advised) in C because it
is the sum of two subexpressions, each of which has a value.

 Statements

 Statements are the primary building blocks of a program. A program is a series of statements with
some necessary punctuation. A statement is a complete instruction to the computer. In C, state-
ments are indicated by a semicolon at the end. Therefore,

 legs = 4

 is just an expression (which could be part of a larger expression), but

 legs = 4;

 is a statement.

 The simplest possible statement is the null statement:

 ; // null statement

 It does nothing, a special case of an instruction.

 More generally, what makes a complete instruction? First, C considers any expression to be
a statement if you append a semicolon. (These are called expression statements .) Therefore, C
won’t object to lines such as the following:

ptg11524036

169Expressions and Statements

 8;

 3 + 4;

 However, these statements do nothing for your program and can’t really be considered sensible
statements. More typically, statements change values and call functions:

 x = 25;

 ++x;

 y = sqrt(x);

 Although a statement (or, at least, a sensible statement) is a complete instruction, not all
complete instructions are statements. Consider the following statement:

 x = 6 + (y = 5);

 In it, the subexpression y = 5 is a complete instruction, but it is only part of the statement.
Because a complete instruction is not necessarily a statement, a semicolon is needed to identify
instructions that truly are statements.

 So far you have encountered five kinds of statements (not counting the null statement). Listing
 5.13 gives a short example that uses all five.

 Listing 5.13 The addemup.c Program

 /* addemup.c -- five kinds of statements */

 #include <stdio.h>

 int main(void) /* finds sum of first 20 integers */

 {

 int count, sum; /* declaration statement */

 count = 0; /* assignment statement */

 sum = 0; /* ditto */

 while (count++ < 20) /* while */

 sum = sum + count; /* statement */

 printf("sum = %d\n", sum);/* function statement */

 return 0; /* return statement */

 Let’s discuss Listing 5.13 . By now, you must be pretty familiar with the declaration statement.
Nonetheless, we will remind you that it establishes the names and type of variables and causes
memory locations to be set aside for them. Note that a declaration statement is not an expres-
sion statement. That is, if you remove the semicolon from a declaration, you get something
that is not an expression and that does not have a value:

 int port /* not an expression, has no value */

 The assignment statement is the workhorse of many programs; it assigns a value to a variable. It
consists of a variable name followed by the assignment operator (=) followed by an expression

ptg11524036

170 Chapter 5 Operators, Expressions, and Statements

followed by a semicolon. Note that this particular while statement includes an assignment
statement within it. An assignment statement is an example of an expression statement.

 A function statement causes the function to do whatever it does. In this example, the printf()
function is invoked to print some results. A while statement has three distinct parts (see Figure
 5.6). First is the keyword while . Then, in parentheses, is a test condition. Finally, you have the
statement that is performed if the test is met. Only one statement is included in the loop. It
can be a simple statement, as in this example, in which case no braces are needed to mark it
off, or the statement can be a compound statement, like some of the earlier examples, in which
case braces are required. You can read about compound statements just ahead.

while

false

go to next
statement

loop
back

true

(test condition)

printf("Be my Valentine!\n");

 Figure 5.6 Structure of a simple while loop.

 The while statement belongs to a class of statements sometimes called structured statements
because they possess a structure more complex than that of a simple assignment statement. In
later chapters, you will encounter many other kinds of structured statements.

 The return statement terminates the execution of a function.

 Side Effects and Sequence Points

 Now for a little more C terminology: A side effect is the modification of a data object or file. For
instance, the side effect of the statement

 states = 50;

 is to set the states variable to 50 . Side effect? This looks more like the main intent! From the
standpoint of C, however, the main intent is evaluating expressions. Show C the expression
 4 + 6 , and C evaluates it to 10. Show it the expression states = 50 , and C evaluates it to
50. Evaluating that expression has the side effect of changing the states variable to 50 . The

ptg11524036

171Expressions and Statements

increment and decrement operators, like the assignment operator, have side effects and are
used primarily because of their side effects.

 Similarly, when you call the printf() function, the fact that it displays information is a side
effect. (The value of printf() , recall, is the number of items displayed.)

 A sequence point is a point in program execution at which all side effects are evaluated before
going on to the next step. In C, the semicolon in a statement marks a sequence point. That
means all changes made by assignment operators, increment operators, and decrement opera-
tors in a statement must take place before a program proceeds to the next statement. Some
operators that we’ll discuss in later chapters have sequence points. Also, the end of any full
expression is a sequence point.

 What’s a full expression? A full expression is one that’s not a subexpression of a larger expres-
sion. Examples of full expressions include the expression in an expression statement and the
expression serving as a test condition for a while loop.

 Sequence points help clarify when postfix incrementation takes place. Consider, for instance,
the following code:

 while (guests++ < 10)

 printf("%d \n", guests);

 Sometimes C newcomers assume that “use the value and then increment it” means, in
this context, to increment guests after it’s used in the printf() statement. However, the
 guests++ < 10 expression is a full expression because it is a while loop test condition, so the
end of this expression is a sequence point. Therefore, C guarantees that the side effect (incre-
menting guests) takes place before the program moves on to printf() . Using the postfix
form, however, guarantees that guests will be incremented after the comparison to 10 is made.

 Now consider this statement:

 y = (4 + x++) + (6 + x++);

 The expression 4 + x++ is not a full expression, so C does not guarantee that x will be incre-
mented immediately after the subexpression 4 + x++ is evaluated. Here, the full expression
is the entire assignment statement, and the semicolon marks the sequence point, so all that C
guarantees is that x will have been incremented twice by the time the program moves to the
following statement. C does not specify whether x is incremented after each subexpression is
evaluated or only after all the expressions have been evaluated, which is why you should avoid
statements of this kind.

 Compound Statements (Blocks)

 A compound statement is two or more statements grouped together by enclosing them in braces;
it is also called a block . The shoes2.c program used a block to let the while statement encom-
pass several statements. Compare the following program fragments:

 /* fragment 1 */

ptg11524036

172 Chapter 5 Operators, Expressions, and Statements

 index = 0;

 while (index++ < 10)

 sam = 10 * index + 2;

 printf("sam = %d\n", sam);

 /* fragment 2 */

 index = 0;

 while (index++ < 10)

 {

 sam = 10 * index + 2;

 printf("sam = %d\n", sam);

 }

 In fragment 1, only the assignment statement is included in the while loop. In the absence of
braces, a while statement runs from the while to the next semicolon. The printf() function
will be called just once, after the loop has been completed.

 In fragment 2, the braces ensure that both statements are part of the while loop, and
 printf() is called each time the loop is executed. The entire compound statement is consid-
ered to be the single statement in terms of the structure of a while statement (see Figure 5.7).

while

false

note prefix notation:
fish gets incremented

before each test
calculation

loop
back

true

(++fish<school)

{

 food = quota * fish;

 printf("%d----%d---", food, fish);

}

 Figure 5.7 A while loop with a compound statement.

ptg11524036

173Expressions and Statements

 Tip Style Tips

 Look again at the two while fragments and notice how an indentation marks off the body of
each loop. The indentation makes no difference to the compiler; it uses the braces and its
knowledge of the structure of while loops to decide how to interpret your instructions. The
indentation is there so you can see at a glance how the program is organized.

 The example shows one popular style for positioning the braces for a block, or compound,
statement. Another very common style is this:
 while (index++ < 10) {

 sam = 10*index + 2;

 printf("sam = %d \n", sam);

 }

 This style highlights the attachment of the block to the while loop. The other style emphasizes
that the statements form a block. Again, as far as the compiler is concerned, both forms are
identical.

 To sum up, use indentation as a tool to point out the structure of a program to the reader.

 Summary: Expressions and Statements

 Expressions:

 An expression is a combination of operators and operands. The simplest expression is just a
constant or a variable with no operator, such as 22 or beebop . More complex examples are 55
+ 22 and vap = 2 * (vip + (vup = 4)) .

 Statements:

 A statement is a command to the computer. There are simple statements and compound state-
ments. Simple statements terminate in a semicolon, as in these examples:

 Declaration statement: int toes;

 Assignment statement: toes = 12;

 Function call statement: printf("%d\n", toes);

 Structured statement: while (toes < 20) toes = toes + 2;

 Return statement: return 0;

 null statement: ; /* does nothing */

 Compound statements , or blocks , consist of one or more statements (which themselves can
be compound statements) enclosed in braces. The following while statement contains an
example:

 while (years < 100)

 {

 wisdom = wisdom * 1.05;

 printf("%d %d\n", years, wisdom);

 years = years + 1;

 }

ptg11524036

174 Chapter 5 Operators, Expressions, and Statements

 Type Conversions

 Statements and expressions should normally use variables and constants of just one type. If,
however, you mix types, C doesn’t stop dead in its tracks the way, say, Pascal does. Instead, it
uses a set of rules to make type conversions automatically. This can be a convenience, but it
can also be a danger, especially if you are mixing types inadvertently. (The lint program, found
on many Unix systems, checks for type “clashes.” Many non-Unix C compilers report possible
type problems if you select a higher error level.) It is a good idea to have at least some knowl-
edge of the type conversion rules.

 The basic rules are

 1. When appearing in an expression, char and short , both signed and unsigned , are
automatically converted to int or, if necessary, to unsigned int . (If short is the
same size as int , unsigned short is larger than int ; in that case, unsigned short
is converted to unsigned int .) Under K&R C, but not under current C, float is
automatically converted to double . Because they are conversions to larger types, they are
called promotions .

 2. In any operation involving two types, both values are converted to the higher ranking of
the two types.

 3. The ranking of types, from highest to lowest, is long double , double , float , unsigned
long long , long long , unsigned long , long , unsigned int , and int . One possible
exception is when long and int are the same size, in which case unsigned int
outranks long . The short and char types don’t appear in this list because they would
have been already promoted to int or perhaps unsigned int .

 4. In an assignment statement, the final result of the calculations is converted to the type of
the variable being assigned a value. This process can result in promotion, as described in
rule 1, or demotion , in which a value is converted to a lower-ranking type.

 5. When passed as function arguments, char and short are converted to int , and float is
converted to double . This automatic promotion is overridden by function prototyping,
as discussed in Chapter 9 , “Functions.”

 Promotion is usually a smooth, uneventful process, but demotion can lead to real trouble. The
reason is simple: The lower-ranking type may not be big enough to hold the complete number.
For instance, an 8-bit char variable can hold the integer 101 but not the integer 22334 .

 What happens when the converted value won’t fit into the destination? The answer depends
on the types involved. Here are the rules for when the assigned value doesn’t fit into the desti-
nation type:

 1. When the destination is some form of unsigned integer and the assigned value is an
integer, the extra bits that make the value too big are ignored. For instance, if the
destination is 8-bit unsigned char , the assigned value is the original value modulus
256.

ptg11524036

175Type Conversions

 2. If the destination type is a signed integer and the assigned value is an integer, the result
is implementation-dependent.

 3. If the destination type is an integer and the assigned value is floating point, the behavior
is undefined.

 What if a floating-point value will fit into an integer type? When floating types are demoted to
integer types, they are truncated, or rounded toward zero. That means 23.12 and 23.99 both
are truncated to 23 and that -23.5 is truncated to -23 .

 Listing 5.14 illustrates the working of some of these rules.

 Listing 5.14 The convert. c Program

 /* convert.c -- automatic type conversions */

 #include <stdio.h>

 int main(void)

 {

 char ch;

 int i;

 float fl;

 fl = i = ch = 'C'; /* line 9 */

 printf("ch = %c, i = %d, fl = %2.2f\n", ch, i, fl); /* line 10 */

 ch = ch + 1; /* line 11 */

 i = fl + 2 * ch; /* line 12 */

 fl = 2.0 * ch + i; /* line 13 */

 printf("ch = %c, i = %d, fl = %2.2f\n", ch, i, fl); /* line 14 */

 ch = 1107; /* line 15 */

 printf("Now ch = %c\n", ch); /* line 16 */

 ch = 80.89; /* line 17 */

 printf("Now ch = %c\n", ch); /* line 18 */

 return 0;

 }

 Running convert.c produces the following output:

 ch = C, i = 67, fl = 67.00

 ch = D, i = 203, fl = 339.00

 Now ch = S

 Now ch = P

 On this system, which has an 8-bit char and a 32-bit int , here is what happened:

 ■ Lines 9 and 10 — The character 'C' is stored as a 1-byte ASCII value in ch . The integer
variable i receives the integer conversion of 'C' , which is 67 stored as 4 bytes. Finally,
 fl receives the floating conversion of 67 , which is 67.00 .

ptg11524036

176 Chapter 5 Operators, Expressions, and Statements

 ■ Lines 11 and 14 — The character variable 'C' is converted to the integer 67 , which is
then added to the 1 . The resulting 4-byte integer 68 is truncated to 1 byte and stored in
 ch . When printed using the %c specifier, 68 is interpreted as the ASCII code for 'D' .

 ■ Lines 12 and 14 — The value of ch is converted to a 4-byte integer (68) for the
multiplication by 2 . The resulting integer (136) is converted to floating point in order to
be added to fl . The result (203.00f) is converted to int and stored in i .

 ■ Lines 13 and 14 — The value of ch ('D' , or 68) is converted to floating point for
multiplication by 2.0 . The value of i (203) is converted to floating point for the
addition, and the result (339.00) is stored in fl .

 ■ Lines 15 and 16 — Here the example tries a case of demotion, setting ch equal to an
out-of-range number. After the extra bits are ignored, ch winds up with the ASCII code
for the S character. Or, more specifically, 1107 % 256 is 83 , the code for S .

 ■ Lines 17 and 18 — Here the example tries another case of demotion, setting ch equal to
a floating point number. After truncation takes place, ch winds up with the ASCII code
for the P character.

 The Cast Operator

 You should usually steer clear of automatic type conversions, especially of demotions, but
sometimes it is convenient to make conversions, provided you exercise care. The type conver-
sions we’ve discussed so far are done automatically. However, it is possible for you to demand
the precise type conversion that you want or else document that you know you’re making a
type conversion. The method for doing this is called a cast and consists of preceding the quan-
tity with the name of the desired type in parentheses. The parentheses and type name together
constitute a cast operator . This is the general form of a cast operator:

 (type)

 The actual type desired, such as long , is substituted for the word type .

 Consider the next two code lines, in which mice is an int variable. The second line contains
two casts to type int .

 mice = 1.6 + 1.7;

 mice = (int) 1.6 + (int) 1.7;

 The first example uses automatic conversion. First, 1.6 and 1.7 are added to yield 3.3 . This
number is then converted through truncation to the integer 3 to match the int variable. In the
second example, 1.6 is converted to an integer (1) before addition, as is 1.7 , so that mice is
assigned the value 1+1 , or 2 . Neither form is intrinsically more correct than the other; you have
to consider the context of the programming problem to see which makes more sense.

 Normally, you shouldn’t mix types (that is why some languages don’t allow it), but there are
occasions when it is useful. The C philosophy is to avoid putting barriers in your way and to
give you the responsibility of not abusing that freedom.

ptg11524036

177Function with Arguments

 Summary: Operating in C

 Here are the operators we have discussed so far:

 Assignment Operator:

 = Assigns the value at its right to the variable at its left.

 Arithmetic Operators:

 + Adds the value at its right to the value at its left.

 – Subtracts the value at its right from the value at its left.

 – As a unary operator, changes the sign of the value at its right.

 * Multiplies the value at its left by the value at its right.

 / Divides the value at its left by the value at its right. The answer is truncated if
both operands are integers.

 % Yields the remainder when the value at its left is divided by the value to its right
(integers only).

 ++ Adds 1 to the value of the variable to its right (prefix mode) or to the value of the
variable to its left (postfix mode).

 -- Like ++ , but subtracts 1.

 Miscellaneous Operators:

 sizeof Yields the size, in bytes, of the operand to its right. The operand can be a type
specifier in parentheses, as in sizeof (float) , or it can be the name of a par-
ticular variable, array, and so forth, as in sizeof foo .

 (type) As the cast operator, converts the following value to the type specified by the
enclosed keyword(s). For example, (float) 9 converts the integer 9 to the float-
ing-point number 9.0f .

 Function with Arguments

 By now, you’re familiar with using function arguments. The next step along the road to func-
tion mastery is learning how to write your own functions that use arguments. Let’s preview
that skill now. (At this point, you might want to review the butler() function example near
the end of Chapter 2 , “Introducing C”; it shows how to write a function without an argument.)
 Listing 5.15 includes a pound() function that prints a specified number of pound signs (#).
(This symbol also is called the number sign and the hash symbol.) The example also illustrates
some points about type conversion.

ptg11524036

178 Chapter 5 Operators, Expressions, and Statements

 Listing 5.15 The pound.c Program

 /* pound.c -- defines a function with an argument */

 #include <stdio.h>

 void pound(int n); // ANSI function prototype declaration

 int main(void)

 {

 int times = 5;

 char ch = '!'; // ASCII code is 33

 float f = 6.0f;

 pound(times); // int argument

 pound(ch); // same as pound((int)ch);

 pound(f); // same as pound((int)f);

 return 0;

 }

 void pound(int n) // ANSI-style function header

 { // says takes one int argument

 while (n-- > 0)

 printf("#");

 printf("\n");

 }

 Running the program produces this output:

 #####

 #################################

 ######

 First, let’s examine the function heading:

 void pound(int n)

 If the function took no arguments, the parentheses in the function heading would contain the
keyword void . Because the function takes one type int argument, the parentheses contain
a declaration of an int variable called n . You can use any name consistent with C’s naming
rules.

 Declaring an argument creates a variable called the formal argument or the formal parameter .
In this case, the formal parameter is the int variable called n . Making a function call such as
 pound(10) acts to assign the value 10 to n . In this program, the call pound(times) assigns the
value of times (5) to n . We say that the function call passes a value, and this value is called the
 actual argument or the actual parameter , so the function call pound(10) passes the actual argu-
ment 10 to the function, where 10 is assigned to the formal parameter (the variable n). That is,
the value of the times variable in main() is copied to the new variable n in pound() .

ptg11524036

179Function with Arguments

 Note Arguments Versus Parameters

 Although the terms argument and parameter often have been used interchangeably, the C99
documentation has decided to use the term argument for actual argument or actual parameter
and the term parameter for formal parameter or formal argument. With this convention, we can
say that parameters are variables and that arguments are values provided by a function call
and assigned to the corresponding parameters. Thus, in Listing 5.15 , times is an argument to
 pound() , and n is a parameter for pound() . Similarly, in the function call pound(times+4) ,
the value of the expression times+4 would be the argument.

 Variable names are private to the function. This means that a name defined in one function
doesn’t conflict with the same name defined elsewhere. If you used times instead of n in
 pound() , that would create a variable distinct from the times in main() . That is, you would
have two variables with the same name, but the program keeps track of which is which.

 Now let’s look at the function calls. The first one is pound(times) , and, as we said, it causes
the times value of 5 to be assigned to n . This causes the function to print five pound signs and
a newline.

 The second call is pound(ch) . Here, ch is type char . It is initialized to the ! character, which,
on ASCII systems, means that ch has the numerical value 33. But char is the wrong type for
the pound() function. This is where the function prototype near the top of the program comes
into play. A prototype is a function declaration that describes a function’s return value and its
arguments. This particular prototype says two things about the pound() function:

 ■ The function has no return value (that’s the void part).

 ■ The function takes one argument, which is a type int value.

 In this case, the prototype informs the compiler that pound() expects an int argument. In
response, when the compiler reaches the pound(ch) expression, it automatically applies a type-
cast to the ch argument, converting it to an int argument. On this system, the argument is
changed from 33 stored in 1 byte to 33 stored in 4 bytes, so the value 33 is now in the correct
form to be used as an argument to this function. Similarly, the last call, pound(f) , generates a
type cast to convert the type float variable f to the proper type for this argument.

 Before ANSI C, C used function declarations that weren’t prototypes; they just indicated the
name and return type but not the argument types. For backwards compatibility, C still allows
this form:

 void pound(); /* pre-ANSI function declaration */

 What would happen in the pound.c program if you used this form of declaration instead of
a prototype? The first function call, pound(times) , would work because times is type int .
The second call, pound(ch) would also work because, in the absence of a prototype, C auto-
matically promotes char and short arguments to int . The third call, pound(f) , would fail,
however, because, in the absence of a prototype, float is automatically promoted to double ,

ptg11524036

180 Chapter 5 Operators, Expressions, and Statements

which doesn’t really help much. The program will still run, but it won’t behave correctly. You
could fix it by using an explicit type cast in the function call:

 pound ((int) f); // force correct type

 Note that this still might not help if the value of f is too large to fit into type int .

 A Sample Program

 Listing 5.16 is a useful program (for a narrowly defined subgrouping of humanity) that illus-
trates several of the ideas in this chapter. It looks long, but all the calculations are done in six
lines near the end. The bulk of the program relays information between the computer and the
user. We’ve tried using enough comments to make it nearly self-explanatory. Read through it,
and when you are done, we’ll clear up a few points.

 Listing 5.16 The running.c Program

 // running.c -- A useful program for runners

 #include <stdio.h>

 const int S_PER_M = 60; // seconds in a minute

 const int S_PER_H = 3600; // seconds in an hour

 const double M_PER_K = 0.62137; // miles in a kilometer

 int main(void)

 {

 double distk, distm; // distance run in km and in miles

 double rate; // average speed in mph

 int min, sec; // minutes and seconds of running time

 int time; // running time in seconds only

 double mtime; // time in seconds for one mile

 int mmin, msec; // minutes and seconds for one mile

 printf("This program converts your time for a metric race\n");

 printf("to a time for running a mile and to your average\n");

 printf("speed in miles per hour.\n");

 printf("Please enter, in kilometers, the distance run.\n");

 scanf("%lf", &distk); // %lf for type double

 printf("Next enter the time in minutes and seconds.\n");

 printf("Begin by entering the minutes.\n");

 scanf("%d", &min);

 printf("Now enter the seconds.\n");

 scanf("%d", &sec);

 // converts time to pure seconds

 time = S_PER_M * min + sec;

 // converts kilometers to miles

 distm = M_PER_K * distk;

 // miles per sec x sec per hour = mph

ptg11524036

181A Sample Program

 rate = distm / time * S_PER_H;

 // time/distance = time per mile

 mtime = (double) time / distm;

 mmin = (int) mtime / S_PER_M; // find whole minutes

 msec = (int) mtime % S_PER_M; // find remaining seconds

 printf("You ran %1.2f km (%1.2f miles) in %d min, %d sec.\n",

 distk, distm, min, sec);

 printf("That pace corresponds to running a mile in %d min, ",

 mmin);

 printf("%d sec.\nYour average speed was %1.2f mph.\n",msec,

 rate);

 return 0;

 }

 Listing 5.16 uses the same approach used earlier in min_sec to convert the final time to
minutes and seconds, but it also makes type conversions. Why? Because you need integer
arguments for the seconds-to-minutes part of the program, but the metric-to-mile conversion
involves floating-point numbers. We have used the cast operator to make these conversions
explicit.

 To tell the truth, it should be possible to write the program using just automatic conversions.
In fact, we did so, using mtime of type int to force the time calculation to be converted to
integer form. However, that version failed to run on one of the 11 systems we tried. That
compiler (an ancient and obsolete version) failed to follow the C rules. Using type casts makes
your intent clearer not only to the reader, but perhaps to the compiler as well.

 Here’s some sample output:

 This program converts your time for a metric race

 to a time for running a mile and to your average

 speed in miles per hour.

 Please enter, in kilometers, the distance run.

 10.0
 Next enter the time in minutes and seconds.

 Begin by entering the minutes.

 36
 Now enter the seconds.

 23
 You ran 10.00 km (6.21 miles) in 36 min, 23 sec.

 That pace corresponds to running a mile in 5 min, 51 sec.

 Your average speed was 10.25 mph.

ptg11524036

182 Chapter 5 Operators, Expressions, and Statements

 Key Concepts

 C uses operators to provide a variety of services. Each operator can be characterized by the
number of operands it requires, its precedence, and its associativity. The last two qualities deter-
mine which operator is applied first when the two share an operand. Operators are combined
with values to produce expressions, and every C expression has a value. If you are not aware
of operator precedence and associativity, you may construct expressions that are illegal or that
have values different from what you intend; that would not enhance your reputation as a
programmer.

 C allows you to write expressions combining different numerical types. But arithmetic opera-
tions require operands to be of the same type, so C makes automatic conversions. However, it’s
good programming practice not to rely upon automatic conversions. Instead, make your choice
of types explicit either by choosing variables of the correct type or by using typecasts. That
way, you won’t fall prey to automatic conversions that you did not expect.

 Summary

 C has many operators, such as the assignment and arithmetic operators discussed in this
chapter. In general, an operator operates on one or more operands to produce a value. Operators
that take one operand, such as the minus sign and sizeof , are termed unary operators .
Operators requiring two operands, such as the addition and the multiplication operators, are
called binary operators .

 Expressions are combinations of operators and operands. In C, every expression has a value,
including assignment expressions and comparison expressions. Rules of operator precedence help
determine how terms are grouped when expressions are evaluated. When two operators share
an operand, the one of higher precedence is applied first. If the operators have equal prece-
dence, the associativity (left-right or right-left) determines which operator is applied first.

 Statements are complete instructions to the computer and are indicated in C by a terminating
semicolon. So far, you have worked with declaration statements, assignment statements, func-
tion call statements, and control statements. Statements included within a pair of braces consti-
tute a compound statement , or block . One particular control statement is the while loop, which
repeats statements as long as a test condition remains true.

 In C, many type conversions take place automatically. The char and short types are promoted
to type int whenever they appear in expressions or as function arguments to a function
without a prototype. The float type is promoted to type double when used as a function
argument. Under K&R C (but not ANSI C), float is also promoted to double when used in
an expression. When a value of one type is assigned to a variable of a second type, the value
is converted to the same type as the variable. When larger types are converted to smaller types
(long to short or double to float , for example), there might be a loss of data. In cases of
mixed arithmetic, smaller types are converted to larger types following the rules outlined in
this chapter.

ptg11524036

183Review Questions

 When you define a function that takes an argument, you declare a variable , or formal argument ,
in the function definition. Then the value passed in a function call is assigned to this variable,
which can now be used in the function.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. Assume all variables are of type int . Find the value of each of the following variables:

 a. x = (2 + 3) * 6;

 b. x = (12 + 6)/2*3;

 c. y = x = (2 + 3)/4;

 d. y = 3 + 2*(x = 7/2);

 2. Assume all variables are of type int . Find the value of each of the following variables:

 a. x = (int) 3.8 + 3.3;

 b. x = (2 + 3) * 10.5;

 c. x = 3 / 5 * 22.0;

 d. x = 22.0 * 3 / 5;

 3. Evaluate each of the following expressions:

 a. 30.0 / 4.0 * 5.0;

 b. 30.0 / (4.0 * 5.0);

 c. 30 / 4 * 5;

 d. 30 * 5 / 4;

 e. 30 / 4.0 * 5;

 f. 30 / 4 * 5.0;

 4. You suspect that there are some errors in the next program. Can you find them?

 int main(void)

 {

 int i = 1,

 float n;

 printf("Watch out! Here come a bunch of fractions!\n");

 while (i < 30)

 n = 1/i;

 printf(" %f", n);

ptg11524036

184 Chapter 5 Operators, Expressions, and Statements

 printf("That's all, folks!\n");

 return;

 }

 5. Here’s an alternative design for Listing 5.9 . It appears to simplify the code by replacing
the two scanf() statements in Listing 5.9 with a single scanf() statement. What makes
this design inferior to the original?

 #include <stdio.h>

 #define S_TO_M 60

 int main(void)

 {

 int sec, min, left;

 printf("This program converts seconds to minutes and ");

 printf("seconds.\n");

 printf("Just enter the number of seconds.\n");

 printf("Enter 0 to end the program.\n");

 while (sec > 0) {

 scanf("%d", &sec);

 min = sec/S_TO_M;

 left = sec % S_TO_M;

 printf("%d sec is %d min, %d sec. \n", sec, min, left);

 printf("Next input?\n");

 }

 printf("Bye!\n");

 return 0;

 }

 6. What will this program print?

 #include <stdio.h>

 #define FORMAT "%s! C is cool!\n"

 int main(void)

 {

 int num = 10;

 printf(FORMAT,FORMAT);

 printf("%d\n", ++num);

 printf("%d\n", num++);

 printf("%d\n", num--);

 printf("%d\n", num);

 return 0;

 }

ptg11524036

185Review Questions

 7. What will the following program print?

 #include <stdio.h>

 int main(void)

 {

 char c1, c2;

 int diff;

 float num;

 c1 = 'S';

 c2 = 'O';

 diff = c1 - c2;

 num = diff;

 printf("%c%c%c:%d %3.2f\n", c1, c2, c1, diff, num);

 return 0;

 }

 8. What will this program print?

 #include <stdio.h>

 #define TEN 10

 int main(void)

 {

 int n = 0;

 while (n++ < TEN)

 printf("%5d", n);

 printf("\n");

 return 0;

 }

 9. Modify the last program so that it prints the letters a through g instead.

 10. If the following fragments were part of a complete program, what would they print?

 a.

 int x = 0;

 while (++x < 3)

 printf("%4d", x);

 b.

 int x = 100;

 while (x++ < 103)

ptg11524036

186 Chapter 5 Operators, Expressions, and Statements

 printf("%4d\n",x);

 printf("%4d\n",x);

 c.

 char ch = 's';

 while (ch < 'w')

 {

 printf("%c", ch);

 ch++;

 }

 printf("%c\n",ch);

 11. What will the following program print?

 #define MESG "COMPUTER BYTES DOG"

 #include <stdio.h>

 int main(void)

 {

 int n = 0;

 while (n < 5)

 printf("%s\n", MESG);

 n++;

 printf("That's all.\n");

 return 0;

 }

 12. Construct statements that do the following (or, in other terms, have the following side
effects):

 a. Increase the variable x by 10 .

 b. Increase the variable x by 1 .

 c. Assign twice the sum of a and b to c .

 d. Assign a plus twice b to c .

 13. Construct statements that do the following:

 a. Decrease the variable x by 1 .

 b. Assigns to m the remainder of n divided by k .

 c. Divide q by b minus a and assign the result to p .

 d. Assign to x the result of dividing the sum of a and b by the product of c and d .

ptg11524036

187Programming Exercises

 Programming Exercises

 1. Write a program that converts time in minutes to time in hours and minutes. Use
 #define or const to create a symbolic constant for 60. Use a while loop to allow the
user to enter values repeatedly and terminate the loop if a value for the time of 0 or less
is entered.

 2. Write a program that asks for an integer and then prints all the integers from (and
including) that value up to (and including) a value larger by 10. (That is, if the input is 5,
the output runs from 5 to 15.) Be sure to separate each output value by a space or tab or
newline.

 3. Write a program that asks the user to enter the number of days and then converts that
value to weeks and days. For example, it would convert 18 days to 2 weeks, 4 days.
Display results in the following format:

 18 days are 2 weeks, 4 days.

 Use a while loop to allow the user to repeatedly enter day values; terminate the loop
when the user enters a nonpositive value, such as 0 or -20 .

 4. Write a program that asks the user to enter a height in centimeters and then displays the
height in centimeters and in feet and inches. Fractional centimeters and inches should
be allowed, and the program should allow the user to continue entering heights until a
nonpositive value is entered. A sample run should look like this:

 Enter a height in centimeters: 182
 182.0 cm = 5 feet, 11.7 inches

 Enter a height in centimeters (<=0 to quit): 168.7
 168.0 cm = 5 feet, 6.4

 inches

 Enter a height in centimeters (<=0 to quit): 0
 bye

 5. Change the program addemup.c (Listing 5.13), which found the sum of the first 20
integers. (If you prefer, you can think of addemup.c as a program that calculates how
much money you get in 20 days if you receive $1 the first day, $2 the second day, $3 the
third day, and so on.) Modify the program so that you can tell it interactively how far
the calculation should proceed. That is, replace the 20 with a variable that is read in.

 6. Now modify the program of Programming Exercise 5 so that it computes the sum of the
squares of the integers. (If you prefer, how much money you receive if you get $1 the
first day, $4 the second day, $9 the third day, and so on. This looks like a much better
deal!) C doesn’t have a squaring function, but you can use the fact that the square of n is
 n * n .

ptg11524036

188 Chapter 5 Operators, Expressions, and Statements

 7. Write a program that requests a type double number and prints the value of the number
cubed. Use a function of your own design to cube the value and print it. The main()
program should pass the entered value to this function.

 8. Write a program that displays the results of applying the modulus operation. The user
should first enter an integer to be used as the second operand, which will then remain
unchanged. Then the user enters the numbers for which the modulus will be computed,
terminating the process by entering 0 or less. A sample run should look like this:

 This program computes moduli.

 Enter an integer to serve as the second operand: 256
 Now enter the first operand: 438
 438 % 256 is 182

 Enter next number for first operand (<= 0 to quit): 1234567
 1234567 % 256 is 135

 Enter next number for first operand (<= 0 to quit): 0
 Done

 9. Write a program that requests the user to enter a Fahrenheit temperature. The program
should read the temperature as a type double number and pass it as an argument to
a user-supplied function called Temperatures() . This function should calculate the
Celsius equivalent and the Kelvin equivalent and display all three temperatures with a
precision of two places to the right of the decimal. It should identify each value with the
temperature scale it represents. Here is the formula for converting Fahrenheit to Celsius:

 Celsius = 5.0 / 9.0 * (Fahrenheit - 32.0)

 The Kelvin scale, commonly used in science, is a scale in which 0 represents absolute
zero, the lower limit to possible temperatures. Here is the formula for converting Celsius
to Kelvin:

 Kelvin = Celsius + 273.16

 The Temperatures() function should use const to create symbolic representations of
the three constants that appear in the conversions. The main() function should use
a loop to allow the user to enter temperatures repeatedly, stopping when a q or other
nonnumeric value is entered. Use the fact that scanf() returns the number of items
read, so it will return 1 if it reads a number, but it won’t return 1 if the user enters q . The
 == operator tests for equality, so you can use it to compare the return value of scanf()
with 1 .

ptg11524036

 6
 C Control Statements:

Looping

 You will learn about the following in this chapter:

 ■ Keywords:

 for

 while

 do while

 ■ Operators:

 < > >=

 <= != == +=

 *= -= /= %=

 ■ Functions:

 fabs()

 ■ C’s three loop structures— while , for , and do while

 ■ Using relational operators to construct expressions to control these loops

 ■ Several other operators

 ■ Arrays, which are often used with loops

 ■ Writing functions that have return values

 Powerful, intelligent, versatile, and useful! Most of us wouldn’t mind being described that
way. With C, there’s at least the chance of having our programs described that way. The trick
is controlling the flow of a program. According to computer science (which is the science of
computers and not science by computers...yet), a good language should provide these three
forms of program flow:

ptg11524036

190 Chapter 6 C Control Statements: Looping

 ■ Executing a sequence of statements

 ■ Repeating a sequence of statements until some condition is met (looping)

 ■ Using a test to decide between alternative sequences (branching)

 The first form you know well; all the previous programs have consisted of a sequence of state-
ments. The while loop is one example of the second form. This chapter takes a closer look
at the while loop along with two other loop structures— for and do while . The final form,
choosing between different possible courses of action, makes a program much more “intel-
ligent” and increases the usefulness of a computer enormously. Sadly, you’ll have to wait a
chapter before being entrusted with such power. This chapter also introduces arrays because
they give you something to do with your new knowledge of loops. In addition, this chapter
continues your education about functions. Let’s begin by reviewing the while loop.

 Revisiting the while Loop

 You are already somewhat familiar with the while loop, but let’s review it with a program that
sums integers entered from the keyboard (see Listing 6.1). This example makes use of the return
value of scanf() to terminate input.

 Listing 6.1 The summing.c Program

 /* summing.c -- sums integers entered interactively */

 #include <stdio.h>

 int main(void)

 {

 long num;

 long sum = 0L; /* initialize sum to zero */

 int status;

 printf("Please enter an integer to be summed ");

 printf("(q to quit): ");

 status = scanf("%ld", &num);

 while (status == 1) /* == means "is equal to" */

 {

 sum = sum + num;

 printf("Please enter next integer (q to quit): ");

 status = scanf("%ld", &num);

 }

 printf("Those integers sum to %ld.\n", sum);

 return 0;

 }

ptg11524036

191Revisiting the while Loop

 Listing 6.1 uses type long to allow for larger numbers. For consistency, the program initializes
 sum to 0L (type long zero) rather than to 0 (type int zero), even though C’s automatic conver-
sions enable you to use a plain 0 .

 Here is a sample run:

 Please enter an integer to be summed (q to quit): 44
 Please enter next integer (q to quit): 33
 Please enter next integer (q to quit): 88
 Please enter next integer (q to quit): 121
 Please enter next integer (q to quit): q
 Those integers sum to 286.

 Program Comments

 Let’s look at the while loop first. The test condition for this loop is the following expression:

 status == 1

 The == operator is C’s equality operator ; that is, this expression tests whether status is equal to
 1 . Don’t confuse it with status = 1 , which assigns 1 to status . With the status == 1 test
condition, the loop repeats as long as status is 1 . For each cycle, the loop adds the current
value of num to sum , so that sum maintains a running total. When status gets a value other
than 1 , the loop terminates, and the program reports the final value of sum .

 For the program to work properly, it should get a new value for num on each loop cycle, and
it should reset status on each cycle. The program accomplishes this by using two distinct
features of scanf() . First, it uses scanf() to attempt to read a new value for num . Second, it
uses the scanf() return value to report on the success of that attempt. Recall from Chapter 4 ,
“Character Strings and Formatted Input/Output,” that scanf() returns the number of items
successfully read. If scanf() succeeds in reading an integer, it places the integer into num and
returns the value 1 , which is assigned to status . (Note that the input value goes to num , not
to status .) This updates both num and the value of status , and the while loop goes through
another cycle. If you respond with nonnumeric input, such as q , scanf() fails to find an
integer to read, so its return value and status will be 0 . That terminates the loop. The input
character q , because it isn’t a number, is placed back into the input queue; it does not get read.
(Actually, any nonnumeric input, not just q , terminates the loop, but asking the user to enter q
is a simpler instruction than asking the user to enter nonnumeric input.)

 If scanf() runs into a problem before attempting to convert the value (for example, by detect-
ing the end of the file or by encountering a hardware problem), it returns the special value EOF ,
which typically is defined as -1 . This value, too, will cause the loop to terminate.

 This dual use of scanf() gets around a troublesome aspect of interactive input to a loop: How
do you tell the loop when to stop? Suppose, for instance, that scanf() did not have a return
value. Then, the only thing that would change on each loop is the value of num . You could use
the value of num to terminate the loop, using, say, num > 0 (num greater than 0) or num != 0
(num not equal to 0) as a test condition, but this prevents you from entering certain values,

ptg11524036

192 Chapter 6 C Control Statements: Looping

such as –3 or 0 , as input. Instead, you could add new code to the loop, such as asking “Do you
wish to continue? <y/n>” at each cycle, and then test to see whether the user entered y . This is
a bit clunky and slows down input. Using the return value of scanf() avoids these problems.

 Now let’s take a closer look at the program structure. We can summarize it as follows:

 initialize sum to 0

 prompt user

 read input

 while the input is an integer,

 add the input to sum,

 prompt user,

 then read next input

 after input completes, print sum

 This, incidentally, is an example of pseudocode , which is the art of expressing a program in
simple English that parallels the forms of a computer language. Pseudocode is useful for
working out the logic of a program. After the logic seems right, you can translate the pseudo-
code to the actual programming code. One advantage of pseudocode is that it enables you to
concentrate on the logic and organization of a program and spares you from simultaneously
worrying about how to express the ideas in a computer language. Here, for example, you can
use indentation to indicate a block of code and not worry about C syntax requiring braces.
Another advantage is that pseudocode is not tied to a particular language, so the same pseudo-
code can be translated into different computer languages.

 Anyway, because the while loop is an entry-condition loop, the program must get the input
and check the value of status before it goes to the body of the loop. That is why the program
has a scanf() before the while . For the loop to continue, you need a read statement inside
the loop so that it can find out the status of the next input. That is why the program also has a
 scanf() statement at the end of the while loop; it readies the loop for its next iteration. You
can think of the following as a standard format for a loop:

 get first value to be tested

 while the test is successful

 process value

 get next value

 C-Style Reading Loop

 Listing 6.1 could be written in Pascal, BASIC, or FORTRAN along the same design displayed in
the pseudocode. C, however, offers a shortcut. The construction

 status = scanf("%ld", &num);

 while (status == 1)

 {

 /* loop actions */

 status = scanf("%ld", &num);

 }

ptg11524036

193The while Statement

 can be replaced by the following:

 while (scanf("%ld", &num) == 1)

 {

 /* loop actions */

 }

 The second form uses scanf() in two different ways simultaneously. First, the function call,
if successful, places a value in num . Second, the function’s return value (which is 1 or 0 and
not the value of num) controls the loop. Because the loop condition is tested at each iteration,
 scanf() is called at each iteration, providing a new num and a new test. In other words, C’s
syntax features let you replace the standard loop format with the following condensed version:

 while getting and testing the value succeeds

 process the value

 Now let’s take a more formal look at the while statement.

 The while Statement

 This is the general form of the while loop:

 while (expression)

 statement

 The statement part can be a simple statement with a terminating semicolon, or it can be a
compound statement enclosed in braces.

 So far, the examples have used relational expressions for the expression part; that is,
expression has been a comparison of values. More generally, you can use any expression.
If expression is true (or, more generally, nonzero), the statement is executed once and then
the expression is tested again. This cycle of test and execution is repeated until expression
becomes false (zero). Each cycle is called an iteration (see Figure 6.1).

while

false

true

count++<limit

printf("Tra la la la!\n");

next

statement

 Figure 6.1 Structure of the while loop.

ptg11524036

194 Chapter 6 C Control Statements: Looping

 Terminating a while Loop

 Here is a crucial point about while loops: When you construct a while loop, it must include
something that changes the value of the test expression so that the expression eventually
becomes false. Otherwise, the loop never terminates. (Actually, you can use break and an if
statement to terminate a loop, but you haven’t learned about them yet.) Consider this example:

 index = 1;

 while (index < 5)

 printf("Good morning!\n");

 The preceding fragment prints its cheerful message indefinitely. Why? Because nothing within
the loop changes the value of index from its initial value of 1 . Now consider this:

 index = 1;

 while (--index < 5)

 printf("Good morning!\n");

 This last fragment isn’t much better. It changes the value of index , but in the wrong direc-
tion! At least this version will terminate eventually when index drops below the most nega-
tive number that the system can handle and becomes the largest possible positive value. (The
 toobig.c program in Chapter 3 , “Data and C,” illustrates how adding 1 to the largest positive
number typically produces a negative number; similarly, subtracting 1 from the most negative
number typically yields a positive value.)

 When a Loop Terminates

 It is important to realize that the decision to terminate the loop or to continue takes place only
when the test condition is evaluated. For example, consider the program shown in Listing 6.2 .

 Listing 6.2 The when.c Program

 // when.c -- when a loop quits

 #include <stdio.h>

 int main(void)

 {

 int n = 5;

 while (n < 7) // line 7

 {

 printf("n = %d\n", n);

 n++; // line 10

 printf("Now n = %d\n", n); // line 11

 }

 printf("The loop has finished.\n");

 return 0;

 }

ptg11524036

195The while Statement

 Running Listing 6.2 produces the following output:

 n = 5

 Now n = 6

 n = 6

 Now n = 7

 The loop has finished.

 The variable n first acquires the value 7 on line 10 during the second cycle of the loop.
However, the program doesn’t quit then. Instead, it completes the loop (line 11) and quits the
loop only when the test condition on line 7 is evaluated for the third time. (The variable n was
 5 for the first test and 6 for the second test.)

 while : An Entry-Condition Loop

 The while loop is a conditional loop using an entry condition. It is called “conditional” because
the execution of the statement portion depends on the condition described by the test expres-
sion, such as (index < 5) . The expression is an entry condition because the condition must be
met before the body of the loop is entered. In a situation such as the following, the body of the
loop is never entered because the condition is false to begin with:

 index = 10;

 while (index++ < 5)

 printf("Have a fair day or better.\n");

 Change the first line to

 index = 3;

 and the loop will execute.

 Syntax Points

 When using while , keep in mind that only the single statement, simple or compound, follow-
ing the test condition is part of the loop. Indentation is an aid to the reader, not the computer.
 Listing 6.3 shows what can happen if you forget this.

 Listing 6.3 The while1.c Program

 /* while1.c -- watch your braces */

 /* bad coding creates an infinite loop */

 #include <stdio.h>

 int main(void)

 {

 int n = 0;

 while (n < 3)

ptg11524036

196 Chapter 6 C Control Statements: Looping

 printf("n is %d\n", n);

 n++;

 printf("That's all this program does\n");

 return 0;

 }

 Listing 6.3 produces the following output:

 n is 0

 n is 0

 n is 0

 n is 0

 n is 0

 ...and so on, until you kill the program.

 Although this example indents the n++; statement, it doesn’t enclose it and the preceding
statement within braces. Therefore, only the single print statement immediately following the
test condition is part of the loop. The variable n is never updated, the condition n < 3 remains
eternally true, and you get a loop that goes on printing n is 0 until you kill the program. This
is an example of an infinite loop , one that does not quit without outside intervention.

 Always remember that the while statement itself, even if it uses compound statements, counts
syntactically as a single statement. The statement runs from the while to the first semicolon
or, in the case of using a compound statement, to the terminating brace.

 Be careful where you place your semicolons. For instance, consider the program in Listing 6.4 .

 Listing 6.4 The while2.c Program

 /* while2.c -- watch your semicolons */

 #include <stdio.h>

 int main(void)

 {

 int n = 0;

 while (n++ < 3); /* line 7 */

 printf("n is %d\n", n); /* line 8 */

 printf("That's all this program does.\n");

 return 0;

 }

 Listing 6.4 produces the following output:

 n is 4

 That's all this program does.

ptg11524036

197Which Is Bigger: Using Relational Operators and Expressions

 As we said earlier, the loop ends with the first statement, simple or compound, following the
test condition. Because there is a semicolon immediately after the test condition on line 7, the
loop ends there, because a lone semicolon counts as a statement. The print statement on line 8
is not part of the loop, so n is incremented on each loop, but it is printed only after the loop is
exited.

 In this example, the test condition is followed with the null statement , one that does nothing.
In C, the lone semicolon represents the null statement. Occasionally, programmers intention-
ally use the while statement with a null statement because all the work gets done in the test.
For example, suppose you want to skip over input to the first character that isn’t whitespace or
a digit. You can use a loop like this:

 while (scanf("%d", &num) == 1)

 ; /* skip integer input */

 As long as scanf() reads an integer, it returns 1 , and the loop continues. Note that, for clarity,
you should put the semicolon (the null statement) on the line below instead of on the same
line. This makes it easier to see the null statement when you read a program and also reminds
you that the null statement is there deliberately. Even better, use the continue statement
discussed in the next chapter.

 Which Is Bigger: Using Relational Operators and

Expressions

 While loops often rely on test expressions that make comparisons, comparison expressions
merit a closer look. Such expressions are termed relational expressions , and the operators that
appear in them are called relational operators . You have used several already, and Table 6.1 gives
a complete list of C relational operators. This table pretty much covers all the possibilities for
numerical relationships. (Numbers, even complex ones, are less complex than humans.)

 Table 6.1 Relational Operators

 Operator Meaning

 < Is less than

 <= Is less than or equal to

 == Is equal to

 >= Is greater than or equal to

 > Is greater than

 != Is not equal to

ptg11524036

198 Chapter 6 C Control Statements: Looping

 The relational operators are used to form the relational expressions used in while statements
and in other C statements that we’ll discuss later. These statements check to see whether the
expression is true or false. Here are three unrelated statements containing examples of rela-
tional expressions. The meaning, we hope, is clear.

 while (number < 6)

 {

 printf("Your number is too small.\n");

 scanf("%d", &number);

 }

 while (ch != '$')

 {

 count++;

 scanf("%c", &ch);

 }

 while (scanf("%f", &num) == 1)

 sum = sum + num;

 Note in the second example that the relational expressions can be used with characters, too.
The machine character code (which we have been assuming is ASCII) is used for the compari-
son. However, you can’t use the relational operators to compare strings. Chapter 11 , “Character
Strings and String Functions,” will show you what to use for strings.

 The relational operators can be used with floating-point numbers, too. Beware, though: You
should limit yourself to using only < and > in floating-point comparisons. The reason is that
round-off errors can prevent two numbers from being equal, even though logically they
should be. For example, certainly the product of 3 and 1/3 is 1.0. If you express 1/3 as a six-
place decimal fraction, however, the product is .999999, which is not quite equal to 1. The
 fabs() function, declared in the math.h header file, can be handy for floating-point tests. This
function returns the absolute value of a floating-point value—that is, the value without the
algebraic sign. For example, you could test whether a number is close to a desired result with
something like Listing 6.5 .

 Listing 6.5 The cmpflt.c Program

 // cmpflt.c -- floating-point comparisons

 #include <math.h>

 #include <stdio.h>

 int main(void)

 {

 const double ANSWER = 3.14159;

 double response;

 printf("What is the value of pi?\n");

 scanf("%lf", &response);

ptg11524036

199Which Is Bigger: Using Relational Operators and Expressions

 while (fabs(response - ANSWER) > 0.0001)

 {

 printf("Try again!\n");

 scanf("%lf", &response);

 }

 printf("Close enough!\n");

 return 0;

 }

 This loop continues to elicit a response until the user gets within 0.0001 of the correct value:

 What is the value of pi?

 3.14
 Try again!

 3.1416
 Close enough!

 Each relational expression is judged to be true or false (but never maybe). This raises an inter-
esting question.

 What Is Truth?

 You can answer this age-old question, at least as far as C is concerned. Recall that an expression
in C always has a value. This is true even for relational expressions, as the example in Listing
 6.6 shows. That example prints the values of two relational expressions—one true and one
false.

 Listing 6.6 The t_and_f.c Program

 /* t_and_f.c -- true and false values in C */

 #include <stdio.h>

 int main(void)

 {

 int true_val, false_val;

 true_val = (10 > 2); // value of a true relationship

 false_val = (10 == 2); // value of a false relationship

 printf("true = %d; false = %d \n", true_val, false_val);

 return 0;

 }

ptg11524036

200 Chapter 6 C Control Statements: Looping

 Listing 6.6 assigns the values of two relational expressions to two variables. Being straightfor-
ward, it assigns true_val the value of a true expression, and false_val the value of a false
expression. Running the program produces the following simple output:

 true = 1; false = 0

 Aha! For C, a true expression has the value 1 , and a false expression has the value 0 . Indeed,
some C programs use the following construction for loops that are meant to run forever
because 1 always is true:

 while (1)

 {

 ...

 }

 What Else Is True?

 If you can use a 1 or a 0 as a while statement test expression, can you use other numbers? If
so, what happens? Let’s experiment by trying the program in Listing 6.7 .

 Listing 6.7 The truth.c Program

 // truth.c -- what values are true?

 #include <stdio.h>

 int main(void)

 {

 int n = 3;

 while (n)

 printf("%2d is true\n", n--);

 printf("%2d is false\n", n);

 n = -3;

 while (n)

 printf("%2d is true\n", n++);

 printf("%2d is false\n", n);

 return 0;

 }

 Here are the results:

 3 is true

 2 is true

 1 is true

 0 is false

 -3 is true

ptg11524036

201Which Is Bigger: Using Relational Operators and Expressions

 -2 is true

 -1 is true

 0 is false

 The first loop executes when n is 3 , 2 , and 1 , but terminates when n is 0 . Similarly, the second
loop executes when n is -3 , -2 , and -1 , but terminates when n is 0 . More generally, all nonzero
values are regarded as true, and only 0 is recognized as false. C has a very tolerant notion of
truth!

 Alternatively, you can say that a while loop executes as long as its test condition evaluates to
nonzero. This puts test conditions on a numeric basis instead of a true/false basis. Keep in mind
that relational expressions evaluate to 1 if true and to 0 if false, so such expressions really are
numeric.

 Many C programmers make use of this property of test conditions. For example, the phrase
 while (goats != 0) can be replaced by while (goats) because the expression (goats
!= 0) and the expression (goats) both become 0 , or false, only when goats has the value 0 .
The first form probably is clearer to those just learning the language, but the second form is the
idiom most often used by C programmers. You should try to become sufficiently familiar with
the while (goats) form so that it seems natural to you.

 Troubles with Truth

 C’s tolerant notion of truth can lead to trouble. For example, let’s make one subtle change to
the program from Listing 6.1 , producing the program shown in Listing 6.8 .

 Listing 6.8 The trouble.c Program

 // trouble.c -- misuse of =

 // will cause infinite loop

 #include <stdio.h>

 int main(void)

 {

 long num;

 long sum = 0L;

 int status;

 printf("Please enter an integer to be summed ");

 printf("(q to quit): ");

 status = scanf("%ld", &num);

 while (status = 1)

 {

 sum = sum + num;

 printf("Please enter next integer (q to quit): ");

 status = scanf("%ld", &num);

 }

ptg11524036

202 Chapter 6 C Control Statements: Looping

 printf("Those integers sum to %ld.\n", sum);

 return 0;

 }

 Listing 6.8 produces output like the following:

 Please enter an integer to be summed (q to quit): 20
 Please enter next integer (q to quit): 5
 Please enter next integer (q to quit): 30
 Please enter next integer (q to quit): q
 Please enter next integer (q to quit):

 Please enter next integer (q to quit):

 Please enter next integer (q to quit):

 Please enter next integer (q to quit):

 ...and so on until you kill the program—so perhaps you shouldn’t actually try running this
example.

 This troublesome example made a change in the while test condition, replacing status ==
1 with status = 1 . The second statement is an assignment statement, so it gives status the
value 1 . Furthermore, the value of an assignment statement is the value of the left side, so
 status = 1 has the same numerical value of 1 . So for all practical purposes, the while loop is
the same as using while (1) ; that is, it is a loop that never quits. You enter q , and status is
set to 0 , but the loop test resets status to 1 and starts another cycle.

 You might wonder why, because the program keeps looping, the user doesn’t get a chance
to type in any more input after entering q . When scanf() fails to read the specified form of
input, it leaves the nonconforming input in place to be read the next time. When scanf()
tries to read the q as an integer and fails, it leaves the q there. During the next loop cycle,
 scanf() attempts to read where it left off the last time—at the q . Once again, scanf() fails to
read the q as an integer, so not only does this example set up an infinite loop, it also creates a
loop of infinite failure, a daunting concept. It is fortunate that computers, as yet, lack feelings.
Following stupid instructions eternally is no better or worse to a computer than successfully
predicting the stock market for the next 10 years.

 Don’t use = for == . Some computer languages (BASIC, for example) do use the same symbol for
both the assignment operator and the relational equality operator, but the two operations are
quite different (see Figure 6.2). The assignment operator assigns a value to the left variable. The
relational equality operator, however, checks to see whether the left and right sides are already
equal. It doesn’t change the value of the left-hand variable, if one is present. Here’s an example:

 canoes = 5 Assigns the value 5 to canoes

 canoes == 5 Checks to see whether canoes has the value 5

ptg11524036

203Which Is Bigger: Using Relational Operators and Expressions

 Be careful about using the correct operator. A compiler will let you use the wrong form, yield-
ing results other than what you expect. (However, so many people have misused = so often
that most compilers today will issue a warning to the effect that perhaps you didn’t mean to
use this.) If one of the values being compared is a constant, you can put it on the left side of
the comparison to help catch errors:

 5 = canoes syntax error

 5 == canoes Checks to see whether canoes has the value 5

 The point is that it is illegal to assign to a constant, so the compiler will tag the use of
the assignment operator as a syntax error. Many practitioners put the constant first when
constructing expressions that test for equality.

canoes == 5

comparison

canoes = 5

assignment

== checks to see if the
value of canoes is 5

= gives canoes
the value of 5

 Figure 6.2 The relational operator == and the assignment operator = .

 To sum up, the relational operators are used to form relational expressions. Relational expres-
sions have the value 1 if true and 0 if false. Statements (such as while and if) that normally
use relational expressions as tests can use any expression as a test, with nonzero values recog-
nized as “true” and zero values as “false.”

 The New _Bool Type

 Variables intended to represent true/false values traditionally have been represented by type
 int in C. C99 adds the _Bool type specifically for variables of this sort. The type is named after
George Boole, the English mathematician who developed a system of algebra to represent and
solve problems in logic. In programming, variables representing true or false have come to be
known as Boolean variables , so _Bool is the C type name for a Boolean variable. A _Bool vari-
able can only have a value of 1 (true) or 0 (false). If you try to assign a nonzero numeric value
to a _Bool variable, the variable is set to 1, reflecting that C considers any nonzero value to be
true.

ptg11524036

204 Chapter 6 C Control Statements: Looping

 Listing 6.9 fixes the test condition in Listing 6.8 and replaces the int variable status with the
 _Bool variable input_is_good . It’s a common practice to give Boolean variables names that
suggest true or false values.

 Listing 6.9 The boolean.c Program

 // boolean.c -- using a _Bool variable

 #include <stdio.h>

 int main(void)

 {

 long num;

 long sum = 0L;

 _Bool input_is_good;

 printf("Please enter an integer to be summed ");

 printf("(q to quit): ");

 input_is_good = (scanf("%ld", &num) == 1);

 while (input_is_good)

 {

 sum = sum + num;

 printf("Please enter next integer (q to quit): ");

 input_is_good = (scanf("%ld", &num) == 1);

 }

 printf("Those integers sum to %ld.\n", sum);

 return 0;

 }

 Note how the code assigns the result of a comparison to the variable:

 input_is_good = (scanf("%ld", &num) == 1);

 This makes sense, because the == operator returns either a value of 1 or 0. Incidentally, the
parentheses enclosing the == expression are not needed because the == operator has higher
precedence than = ; however, they may make the code easier to read. Also note how the choice
of name for the variable makes the while loop test easy to understand:

 while (input_is_good)

 C99 also provides for a stdbool.h header file. This header file makes bool an alias for _Bool
and defines true and false as symbolic constants for the values 1 and 0. Including this header
file allows you to write code that is compatible with C++, which defines bool , true , and false
as keywords.

 If your system does not yet support the _Bool type, you can replace _Bool with int , and the
example will work the same.

ptg11524036

205Which Is Bigger: Using Relational Operators and Expressions

 Precedence of Relational Operators

 The precedence of the relational operators is less than that of the arithmetic operators, includ-
ing + and - , and greater than that of assignment operators. This means, for example, that

 x > y + 2

 means the same as

 x > (y + 2)

 It also means that

 x = y > 2

 means

 x = (y > 2)

 In other words, x is assigned 1 if y is greater than 2 and is 0 otherwise; x is not assigned the
value of y .

 The relational operators have a greater precedence than the assignment operator. Therefore,

 x_bigger = x > y;

 means

 x_bigger = (x > y);

 The relational operators are themselves organized into two different precedences.

 Higher precedence group: < <= > >=

 Lower precedence group: == !=

 Like most other operators, the relational operators associate from left to right. Therefore,

 ex != wye == zee

 is the same as

 (ex != wye) == zee

 First, C checks to see whether ex and wye are unequal. Then, the resulting value of 1 or 0 (true
or false) is compared to the value of zee . We don’t anticipate using this sort of construction,
but we feel it is our duty to point out such sidelights.

 Table 6.2 shows the priorities of the operators introduced so far, and Reference Section II, “C
Operators,” in Appendix B has a complete precedence ranking of all operators.

ptg11524036

206 Chapter 6 C Control Statements: Looping

 Table 6.2 Operator Precedence

 Operators (From High to Low Precedence) Associativity

 () L–R

 - + ++ –– sizeof R–L (type) (all unary)

 * / % L–R

 + - L–R

 < > <= >= L–R

 == != L–R

 = R–L

 Summary: The while Statement

 Keyword:

 while

 General Comments:

 The while statement creates a loop that repeats until the test expression becomes false, or
zero. The while statement is an entry-condition loop—that is, the decision to go through one
more pass of the loop is made before the loop is traversed. Therefore, it is possible that the
loop is never traversed. The statement part of the form can be a simple statement or a com-
pound statement.

 Form:

 while (expression)

 statement

 The statement portion is repeated until the expression becomes false or 0.

 Examples:

 while (n++ < 100)

 printf(" %d %d\n",n, 2 * n + 1); // single statement

 while (fargo < 1000)

 { // compound statement

 fargo = fargo + step;

 step = 2 * step;

 }

ptg11524036

207Indefinite Loops and Counting Loops

 Summary: Relational Operators and Expressions

 Relational Operators:

 Each relational operator compares the value at its left to the value at its right.

 < Is less than

 <= Is less than or equal to

 == Is equal to

 >= Is greater than or equal to

 > Is greater than

 != Is unequal to

 Relational Expressions:

 A simple relational expression consists of a relational operator with an operand on each side.
If the relation is true, the relational expression has the value 1 . If the relation is false, the rela-
tional expression has the value 0 .

 Examples:

 5 > 2 is true and has the value 1 .

 (2 + a) == a is false and has the value 0 .

 Indefinite Loops and Counting Loops

 Some of the while loop examples have been indefinite loops. That means we don’t know in
advance how many times the loop will be executed before the expression becomes false. For
example, when Listing 6.1 used an interactive loop to sum integers, we didn’t know beforehand
how many integers would be entered. Other examples, however, have been counting loops.
They execute a predetermined number of repetitions. Listing 6.10 is a short example of a while
counting loop.

 Listing 6.10 The sweetie1.c Program

 // sweetie1.c -- a counting loop

 #include <stdio.h>

 int main(void)

 {

 const int NUMBER = 22;

 int count = 1; // initialization

 while (count <= NUMBER) // test

 {

 printf("Be my Valentine!\n"); // action

 count++; // update count

 }

ptg11524036

208 Chapter 6 C Control Statements: Looping

 return 0;

 }

 Although the form used in Listing 6.10 works fine, it is not the best choice for this situation
because the actions defining the loop are not all gathered together. Let’s elaborate on that
point.

 Three actions are involved in setting up a loop that is to be repeated a fixed number of times:

 1. A counter must be initialized.

 2. The counter is compared with some limiting value.

 3. The counter is incremented each time the loop is traversed.

 The while loop condition takes care of the comparison. The increment operator takes care of
the incrementing. In Listing 6.10 , the incrementing is done at the end of the loop. This choice
makes it possible to omit the incrementing accidentally. So it would be better to combine the
test and update actions into one expression by using count++ <= NUMBER , but the initializa-
tion of the counter is still done outside the loop, making it possible to forget to initialize a
counter. Experience teaches us that what might happen will happen eventually, so let’s look at
a control statement that avoids these problems.

 The for Loop

 The for loop gathers all three actions (initializing, testing, and updating) into one place. By
using a for loop, you can replace the preceding program with the one shown in Listing 6.11 .

 Listing 6.11 The sweetie2.c Program

 // sweetie2.c -- a counting loop using for

 #include <stdio.h>

 int main(void)

 {

 const int NUMBER = 22;

 int count;

 for (count = 1; count <= NUMBER; count++)

 printf("Be my Valentine!\n");

 return 0;

 }

 The parentheses following the keyword for contain three expressions separated by two semi-
colons. The first expression is the initialization. It is done just once, when the for loop first

ptg11524036

209The for Loop

starts. The second expression is the test condition; it is evaluated before each potential execu-
tion of a loop. When the expression is false (when count is greater than NUMBER), the loop is
terminated. The third expression, the change or update, is evaluated at the end of each loop.
 Listing 6.10 uses it to increment the value of count , but it needn’t be restricted to that use. The
 for statement is completed by following it with a single simple or compound statement. Each
of the three control expressions is a full expression, so any side effects in a control expression,
such as incrementing a variable, take place before the program evaluates another expression.
 Figure 6.3 summarizes the structure of a for loop.

 To show another example, Listing 6.12 uses the for loop in a program that prints a table of
cubes.

for

false

true

count<=number;

printf("Be my Valentine!\n");

count=1;

count++;

initialize expression once
before loop begins

this expression is done
at end of each loop

 Figure 6.3 Structure of a for loop.

 Listing 6.12 The for_cube.c Program

 /* for_cube.c -- using a for loop to make a table of cubes */

 #include <stdio.h>

 int main(void)

 {

 int num;

 printf(" n n cubed\n");

 for (num = 1; num <= 6; num++)

 printf("%5d %5d\n", num, num*num*num);

 return 0;

 }

ptg11524036

210 Chapter 6 C Control Statements: Looping

 Listing 6.12 prints the integers 1 through 6 and their cubes.

 n n cubed

 1 1

 2 8

 3 27

 4 64

 5 125

 6 216

 The first line of the for loop tells us immediately all the information about the loop param-
eters: the starting value of num , the final value of num , and the amount that num increases on
each looping.

 Using for for Flexibility

 Although the for loop looks similar to the FORTRAN DO loop, the Pascal FOR loop, and the
BASIC FOR...NEXT loop, it is much more flexible than any of them. This flexibility stems from
how the three expressions in a for specification can be used. The examples so far have used
the first expression to initialize a counter, the second expression to express the limit for the
counter, and the third expression to increase the value of the counter by 1. When used this
way, the C for statement is very much like the others we have mentioned. However, there are
many more possibilities; here are nine variations:

 ■ You can use the decrement operator to count down instead of up:

 /* for_down.c */

 #include <stdio.h>

 int main(void)

 {

 int secs;

 for (secs = 5; secs > 0; secs--)

 printf("%d seconds!\n", secs);

 printf("We have ignition!\n");

 return 0;

 }

 Here is the output:

 5 seconds!

 4 seconds!

 3 seconds!

 2 seconds!

 1 seconds!

 We have ignition!

ptg11524036

211The for Loop

 ■ You can count by twos, tens, and so on, if you want:

 /* for_13s.c */

 #include <stdio.h>

 int main(void)

 {

 int n; // count by 13s from 2

 for (n = 2; n < 60; n = n + 13)

 printf("%d \n", n);

 return 0;

 }

 This would increase n by 13 during each cycle, printing the following:

 2

 15

 28

 41

 54

 ■ You can count by characters instead of by numbers:

 /* for_char.c */

 #include <stdio.h>

 int main(void)

 {

 char ch;

 for (ch = 'a'; ch <= 'z'; ch++)

 printf("The ASCII value for %c is %d.\n", ch, ch);

 return 0;

 }

 The program assumes the system uses ASCII code for characters. Here’s the abridged
output:

 The ASCII value for a is 97.

 The ASCII value for b is 98.

 ...

 The ASCII value for x is 120.

 The ASCII value for y is 121.

 The ASCII value for z is 122.

 The program works because characters are stored as integers, so this loop really counts by
integers anyway.

 ■ You can test some condition other than the number of iterations. In the for_cube
program, you can replace

 for (num = 1; num <= 6; num++)

ptg11524036

212 Chapter 6 C Control Statements: Looping

 with

 for (num = 1; num*num*num <= 216; num++)

 You would use this test condition if you were more concerned with limiting the size of
the cube than with limiting the number of iterations.

 ■ You can let a quantity increase geometrically instead of arithmetically; that is, instead of
adding a fixed amount each time, you can multiply by a fixed amount:

 /* for_geo.c */

 #include <stdio.h>

 int main(void)

 {

 double debt;

 for (debt = 100.0; debt < 150.0; debt = debt * 1.1)

 printf("Your debt is now $%.2f.\n", debt);

 return 0;

 }

 This program fragment multiplies debt by 1.1 for each cycle, increasing it by 10% each
time. The output looks like this:

 Your debt is now $100.00.

 Your debt is now $110.00.

 Your debt is now $121.00.

 Your debt is now $133.10.

 Your debt is now $146.41.

 ■ You can use any legal expression you want for the third expression. Whatever you put in
will be updated for each iteration.

 /* for_wild.c */

 #include <stdio.h>

 int main(void)

 {

 int x;

 int y = 55;

 for (x = 1; y <= 75; y = (++x * 5) + 50)

 printf("%10d %10d\n", x, y);

 return 0;

 }

 This loop prints the values of x and of the algebraic expression ++x * 5 + 50 . The
output looks like this:

 1 55

 2 60

 3 65

ptg11524036

213The for Loop

 4 70

 5 75

 Notice that the test involves y , not x . Each of the three expressions in the for loop
control can use different variables. (Note that although this example is valid, it does not
show good style. The program would have been clearer if we hadn’t mixed the updating
process with an algebraic calculation.)

 ■ You can even leave one or more expressions blank (but don’t omit the semicolons). Just
be sure to include within the loop itself some statement that eventually causes the loop
to terminate.

 /* for_none.c */

 #include <stdio.h>

 int main(void)

 {

 int ans, n;

 ans = 2;

 for (n = 3; ans <= 25;)

 ans = ans * n;

 printf("n = %d; ans = %d.\n", n, ans);

 return 0;

 }

 Here is the output:

 n = 3; ans = 54.

 The loop keeps the value of n at 3. The variable ans starts with the value 2, and then
increases to 6 and 18 and obtains a final value of 54. (The value 18 is less than 25, so the
 for loop goes through one more iteration, multiplying 18 by 3 to get 54.) Incidentally,
an empty middle control expression is considered to be true, so the following loop goes
on forever:

 for (; ;)

 printf("I want some action\n");

 ■ The first expression need not initialize a variable. It could, instead, be a printf()
statement of some sort. Just remember that the first expression is evaluated or executed
only once, before any other parts of the loop are executed.

 /* for_show.c */

 #include <stdio.h>

 int main(void)

 {

 int num = 0;

 for (printf("Keep entering numbers!\n"); num != 6;)

 scanf("%d", &num);

ptg11524036

214 Chapter 6 C Control Statements: Looping

 printf("That's the one I want!\n");

 return 0;

 }

 This fragment prints the first message once and then keeps accepting numbers until you
enter 6:

 Keep entering numbers!

 3
 5
 8
 6
 That's the one I want!

 ■ The parameters of the loop expressions can be altered by actions within the loop. For
example, suppose you have the loop set up like this:

 for (n = 1; n < 10000; n = n + delta)

 If after a few iterations your program decides that delta is too small or too large, an
if statement (see Chapter 7 , “C Control Statements: Branching and Jumps”) inside the
loop can change the size of delta . In an interactive program, delta can be changed
by the user as the loop runs. This sort of adjustment is a bit on the dangerous side; for
example, setting delta to 0 gets you (and the loop) nowhere.

 In short, the freedom you have in selecting the expressions that control a for loop makes this
loop able to do much more than just perform a fixed number of iterations. The usefulness of
the for loop is enhanced further by the operators we will discuss shortly.

 Summary: The for Statement

 Keyword: for

 General Comments:

 The for statement uses three control expressions, separated by semicolons, to control a
looping process. The initialize expression is executed once, before any of the loop state-
ments are executed. Then the test expression is evaluated and, if it is true (or nonzero), the
loop is cycled through once. Then the update expression is evaluated, and it is time to check
the test expression again. The for statement is an entry-condition loop—the decision to go
through one more pass of the loop is made before the loop is traversed. Therefore, it is pos-
sible that the loop is never traversed. The statement part of the form can be a simple state-
ment or a compound statement.

 Form:

 for (initialize ; test ; update)

 statement

 The loop is repeated until test becomes false or zero.

ptg11524036

215The Comma Operator

 Example:

 for (n = 0; n < 10 ; n++)

 printf(" %d %d\n", n, 2 * n + 1);

 More Assignment Operators: += , -= , *= , /= , %=

 C has several assignment operators. The most basic one, of course, is = , which simply assigns
the value of the expression at its right to the variable at its left. The other assignment operators
update variables. Each is used with a variable name to its left and an expression to its right. The
variable is assigned a new value equal to its old value adjusted by the value of the expression at
the right. The exact adjustment depends on the operator. For example,

 scores += 20 is the same as scores = scores + 20 .

 dimes -= 2 is the same as dimes = dimes - 2 .

 bunnies *= 2 is the same as bunnies = bunnies * 2 .

 time /= 2.73 is the same as time = time / 2.73 .

 reduce %= 3 is the same as reduce = reduce % 3 .

 The preceding list uses simple numbers on the right, but these operators also work with more
elaborate expressions, such as the following:

 x *= 3 * y + 12 is the same as x = x * (3 * y + 12) .

 The assignment operators we’ve just discussed have the same low priority that = does—that is,
less than that of + or * . This low priority is reflected in the last example in which 12 is added
to 3 * y before the result is multiplied by x .

 You are not required to use these forms. They are, however, more compact, and they may
produce more efficient machine code than the longer form. The combination assignment oper-
ators are particularly useful when you are trying to squeeze something complex into a
for loop specification.

 The Comma Operator

 The comma operator extends the flexibility of the for loop by enabling you to include more
than one initialization or update expression in a single for loop specification. For example,
 Listing 6.13 shows a program that prints first-class postage rates. (At the time of this writing,
the rate is 46 cents for the first ounce and 20 cents for each additional ounce. You can check
the Internet for the current rates.)

ptg11524036

216 Chapter 6 C Control Statements: Looping

 Listing 6.13 The postage.c Program

 // postage.c -- first-class postage rates

 #include <stdio.h>

 int main(void)

 {

 const int FIRST_OZ = 46; // 2013 rate

 const int NEXT_OZ = 20; // 2013 rate

 int ounces, cost;

 printf(" ounces cost\n");

 for (ounces=1, cost=FIRST_OZ; ounces <= 16; ounces++,

 cost += NEXT_OZ)

 printf("%5d $%4.2f\n", ounces, cost/100.0);

 return 0;

 }

 The first five lines of the output look like this:

 ounces cost

 1 $0.46

 2 $0.66

 3 $0.86

 4 $1.06

 The program uses the comma operator in the initialize and the update expressions. Its presence
in the first expression causes ounces and cost to be initialized. Its second occurrence causes
 ounces to be increased by 1 and cost to be increased by 20 (the value of NEXT_OZ) for each
iteration. All the calculations are done in the for loop specifications (see Figure 6.4).

for

false

true

ounces<=16;

do this;

ounces++,

cost+=NEXT_02

ounces=1,

cost=FIRST_02;

 Figure 6.4 The comma operator and the for loop.

ptg11524036

217The Comma Operator

 The comma operator is not restricted to for loops, but that’s where it is most often used. The
operator has two further properties. First, it guarantees that the expressions it separates are eval-
uated in a left-to-right order. (In other words, the comma is a sequence point, so all side effects
to the left of the comma take place before the program moves to the right of the comma.)
Therefore, ounces is initialized before cost . The order is not important for this example, but
it would be important if the expression for cost contained ounces . Suppose, for instance, that
you had this expression:

 ounces++, cost = ounces * FIRST_OZ

 This would increment ounces and then use the new value for ounces in the second subexpres-
sion. The comma being a sequence point guarantees that the side effects of the left subexpres-
sion occur before the right subexpression is evaluated.

 Second, the value of the whole comma expression is the value of the right-hand member. The
effect of the statement

 x = (y = 3, (z = ++y + 2) + 5);

 is to first assign 3 to y , increment y to 4 , and then add 2 to 4 and assign the resulting value of
 6 to z , next add 5 to z , and finally assign the resulting value of 11 to x . Why anyone would
do this is beyond the scope of this book. On the other hand, suppose you get careless and use
comma notation in writing a number:

 houseprice = 249,500;

 This is not a syntax error. Instead, C interprets this as a comma expression, with houseprice
= 249 being the left subexpression and 500 the right subexpression. Therefore, the value of
the whole comma expression is the value of the right-hand expression, and the left substate-
ment assigns the value 249 to the houseprice variable. Therefore, the effect is the same as the
following code:

 houseprice = 249;

 500;

 Remember that any expression becomes a statement with the addition of a semicolon, so 500;
is a statement that does nothing.

 On the other hand, the statement

 houseprice = (249,500);

 assigns 500, the value of the right subexpression, to houseprice .

 The comma also is used as a separator, so the commas in

 char ch, date;

 and

 printf("%d %d\n", chimps, chumps);

ptg11524036

218 Chapter 6 C Control Statements: Looping

 are separators, not comma operators.

 Summary: The New Operators

 Assignment Operators:

 Each of these operators updates the variable at its left by the value at its right, using the indi-
cated operation:

 += Adds the right-hand quantity to the left-hand variable

 -= Subtracts the right-hand quantity from the left-hand variable

 *= Multiplies the left-hand variable by the right-hand quantity

 /= Divides the left-hand variable by the right-hand quantity

 %= Gives the remainder obtained from dividing the left-hand variable by the right-hand
quantity

 Example:

 rabbits *= 1.6;

 is the same as

 rabbits = rabbits * 1.6;

 These combination assignment operators have the same low precedence as the regular assign-
ment operator, lower than arithmetic operators. Therefore, a statement such as

 contents *= old_rate + 1.2;

 has the same final effect as this:

 contents = contents * (old_rate + 1.2);

 The Comma Operator:

 The comma operator links two expressions into one and guarantees that the leftmost expres-
sion is evaluated first. It is typically used to include more information in a for loop control
expression. The value of the whole expression is the value of the right-hand expression.

 Example:

 for (step = 2, fargo = 0; fargo < 1000; step *= 2)

 fargo += step;

 Zeno Meets the for Loop

 Let’s see how the for loop and the comma operator can help solve an old paradox. The Greek
philosopher Zeno once argued that an arrow will never reach its target. First, he said, the arrow
covers half the distance to the target. Then it has to cover half of the remaining distance. Then
it still has half of what’s left to cover, ad infinitum. Because the journey has an infinite number
of parts, Zeno argued, it would take the arrow an infinite amount of time to reach its journey’s

ptg11524036

219The Comma Operator

end. We doubt, however, that Zeno would have volunteered to be a target on the strength of
this argument.

 Let’s take a quantitative approach and suppose that it takes the arrow 1 second to travel the
first half. Then it would take 1/2 second to travel half of what was left, 1/4 second to travel
half of what was left next, and so on. You can represent the total time by the following infinite
series:

 1 + 1/2 + 1/4 + 1/8 + 1/16 +....

 The short program in Listing 6.14 finds the sum of the first few terms. The variable
power_of_two takes on the values 1.0 , 2.0 , 4.0 , 8.0 , and so on.

 Listing 6.14 The zeno.c Program

 /* zeno.c -- series sum */

 #include <stdio.h>

 int main(void)

 {

 int t_ct; // term count

 double time, power_of_2;

 int limit;

 printf("Enter the number of terms you want: ");

 scanf("%d", &limit);

 for (time=0, power_of_2=1, t_ct=1; t_ct <= limit;

 t_ct++, power_of_2 *= 2.0)

 {

 time += 1.0/power_of_2;

 printf("time = %f when terms = %d.\n", time, t_ct);

 }

 return 0;

 }

 Here is the output for 15 terms:

 Enter the number of terms you want: 15
 time = 1.000000 when terms = 1.

 time = 1.500000 when terms = 2.

 time = 1.750000 when terms = 3.

 time = 1.875000 when terms = 4.

 time = 1.937500 when terms = 5.

 time = 1.968750 when terms = 6.

 time = 1.984375 when terms = 7.

 time = 1.992188 when terms = 8.

 time = 1.996094 when terms = 9.

ptg11524036

220 Chapter 6 C Control Statements: Looping

 time = 1.998047 when terms = 10.

 time = 1.999023 when terms = 11.

 time = 1.999512 when terms = 12.

 time = 1.999756 when terms = 13.

 time = 1.999878 when terms = 14.

 time = 1.999939 when terms = 15.

 You can see that although you keep adding more terms, the total seems to level out. Indeed,
mathematicians have proven that the total approaches 2.0 as the number of terms approaches
infinity, just as this program suggests. Here’s one demonstration. Suppose you let S represent
the sum:

 S = 1 + 1/2 + 1/4 + 1/8 + ...

 Here the ellipsis mean “and so on.” Then dividing by 2 gives

 S/2 = 1/2 + 1/4 + 1/8 + 1/16 + ...

 Subtracting the second expression from the first gives

 S - S/2 = 1 +1/2 -1/2 + 1/4 -1/4 +...

 Except for the initial value of 1 , each other value occurs in pairs, one positive and one negative,
so those terms cancel each other, leaving

 S/2 = 1.

 Then, multiplying both sides by 2 gives

 S = 2.

 One possible moral to draw from this is that before doing an involved calculation, check to see
whether mathematicians have an easier way to do it.

 What about the program itself? It shows that you can use more than one comma operator in
an expression. You initialized time , power_of_2 , and count . After you set up the conditions
for the loop, the program itself is extremely brief.

 An Exit-Condition Loop: do while

 The while loop and the for loop are both entry-condition loops. The test condition is checked
 before each iteration of the loop, so it is possible for the statements in the loop to never
execute. C also has an exit-condition loop, in which the condition is checked after each iteration
of the loop, guaranteeing that statements are executed at least once. This variety is called a
do while loop. Listing 6.15 shows an example.

ptg11524036

221An Exit-Condition Loop: do while

 Listing 6.15 The do_while.c Program

 /* do_while.c -- exit condition loop */

 #include <stdio.h>

 int main(void)

 {

 const int secret_code = 13;

 int code_entered;

 do

 {

 printf("To enter the triskaidekaphobia therapy club,\n");

 printf("please enter the secret code number: ");

 scanf("%d", &code_entered);

 } while (code_entered != secret_code);

 printf("Congratulations! You are cured!\n");

 return 0;

 }

 The program in Listing 6.15 reads input values until the user enters 13 . The following is a
sample run:

 To enter the triskaidekaphobia therapy club,

 please enter the secret code number: 12
 To enter the triskaidekaphobia therapy club,

 please enter the secret code number: 14
 To enter the triskaidekaphobia therapy club,

 please enter the secret code number: 13
 Congratulations! You are cured!

 An equivalent program using a while loop would be a little longer, as shown in Listing 6.16 .

 Listing 6.16 The entry.c Program

 /* entry.c -- entry condition loop */

 #include <stdio.h>

 int main(void)

 {

 const int secret_code = 13;

 int code_entered;

 printf("To enter the triskaidekaphobia therapy club,\n");

 printf("please enter the secret code number: ");

 scanf("%d", &code_entered);

 while (code_entered != secret_code)

 {

ptg11524036

222 Chapter 6 C Control Statements: Looping

 printf("To enter the triskaidekaphobia therapy club,\n");

 printf("please enter the secret code number: ");

 scanf("%d", &code_entered);

 }

 printf("Congratulations! You are cured!\n");

 return 0;

 }

 Here is the general form of the do while loop:

 do

 statement

 while (expression);

 The statement can be simple or compound. Note that the do while loop itself counts as a
statement and, therefore, requires a terminating semicolon. Also, see Figure 6.5 .

while

false

do

true

count++<limit

printf("Fa la la la!\n");

next

statement

 Figure 6.5 Structure of a do while loop.

 A do while loop is always executed at least once because the test is made after the body of the
loop has been executed. A for loop or a while loop, on the other hand, can be executed zero
times because the test is made before execution. You should restrict the use of do while loops
to cases that require at least one iteration. For example, a password program could include a
loop along these pseudocode lines:

 do

 {

 prompt for password

 read user input

 } while (input not equal to password);

ptg11524036

223Which Loop?

 Avoid a do while structure of the type shown in the following pseudocode:

 do

 {

 ask user if he or she wants to continue

 some clever stuff

 } while (answer is yes);

 Here, after the user answers “no,” some clever stuff gets done anyway because the test comes
too late.

 Summary: The do while Statement

 Keywords:

 do while

 General Comments:

 The do while statement creates a loop that repeats until the test expression becomes false
or zero. The do while statement is an exit-condition loop—the decision to go through one
more pass of the loop is made after the loop has been traversed. Therefore, the loop must be
executed at least once. The statement part of the form can be a simple statement or a com-
pound statement.

 Form:

 do

 statement

 while (expression);

 The statement portion is repeated until the expression becomes false or zero.

 Example:

 do

 scanf("%d", &number);

 while (number != 20);

 Which Loop?

 When you decide you need a loop, which one should you use? First, decide whether you need
an entry-condition loop or an exit-condition loop. Your answer should usually be an entry-
condition loop. There are several reasons computer scientists consider an entry-condition loop
to be superior. One is the general principle that it is better to look before you leap (or loop)
than after. A second is that a program is easier to read if the loop test is found at the beginning
of the loop. Finally, in many uses, it is important that the loop be skipped entirely if the test is
not initially met.

ptg11524036

224 Chapter 6 C Control Statements: Looping

 Assume that you need an entry-condition loop. Should it be a for or a while ? This is partly a
matter of taste, because what you can do with one, you can do with the other. To make a for
loop like a while , you can omit the first and third expressions. For example,

 for (; test ;)

 is the same as

 while (test)

 To make a while like a for , preface it with an initialization and include update statements. For
example,

 initialize;

 while (test)

 {

 body ;

 update ;

 }

 is the same as

 for (initialize ; test ; update)

 body ;

 In terms of prevailing style, a for loop is appropriate when the loop involves initializing and
updating a variable, and a while loop is better when the conditions are otherwise. A while
loop is natural for the following condition:

 while (scanf("%ld", &num) == 1)

 The for loop is a more natural choice for loops involving counting with an index:

 for (count = 1; count <= 100; count++)

 Nested Loops

 A nested loop is one loop inside another loop. A common use for nested loops is to display data
in rows and columns. One loop can handle, say, all the columns in a row, and the second loop
handles the rows. Listing 6.17 shows a simple example.

 Listing 6.17 The rows1.c Program

 /* rows1.c -- uses nested loops */

 #include <stdio.h>

 #define ROWS 6

 #define CHARS 10

 int main(void)

 {

ptg11524036

225Nested Loops

 int row;

 char ch;

 for (row = 0; row < ROWS; row++) /* line 10 */

 {

 for (ch = 'A'; ch < ('A' + CHARS); ch++) /* line 12 */

 printf("%c", ch);

 printf("\n");

 }

 return 0;

 }

 Running the program produces this output:

 ABCDEFGHIJ

 ABCDEFGHIJ

 ABCDEFGHIJ

 ABCDEFGHIJ

 ABCDEFGHIJ

 ABCDEFGHIJ

 Program Discussion

 The for loop beginning on line 10 is called an outer loop, and the loop beginning on line 12
is called an inner loop because it is inside the other loop. The outer loop starts with row having
a value of 0 and terminates when row reaches 6 . Therefore, the outer loop goes through six
cycles, with row having the values 0 through 5 . The first statement in each cycle is the inner
 for loop. This loop goes through 10 cycles, printing the characters A through J on the same
line. The second statement of the outer loop is printf("\n"); . This statement starts a new
line so that the next time the inner loop is run, the output is on a new line.

 Note that, with a nested loop, the inner loop runs through its full range of iterations for each
single iteration of the outer loop. In the last example, the inner loop prints 10 characters to a
row, and the outer loop creates six rows.

 A Nested Variation

 In the preceding example, the inner loop did the same thing for each cycle of the outer loop.
You can make the inner loop behave differently each cycle by making part of the inner loop
depend on the outer loop. Listing 6.18 , for example, alters the last program slightly by making
the starting character of the inner loop depend on the cycle number of the outer loop. It also
uses the newer comment style and const instead of #define to help you get comfortable with
both approaches.

ptg11524036

226 Chapter 6 C Control Statements: Looping

 Listing 6.18 The rows2.c Program

 // rows2.c -- using dependent nested loops

 #include <stdio.h>

 int main(void)

 {

 const int ROWS = 6;

 const int CHARS = 6;

 int row;

 char ch;

 for (row = 0; row < ROWS; row++)

 {

 for (ch = ('A' + row); ch < ('A' + CHARS); ch++)

 printf("%c", ch);

 printf("\n");

 }

 return 0;

 }

 Here’s the output this time:

 ABCDEF

 BCDEF

 CDEF

 DEF

 EF

 F

 Because row is added to 'A' during each cycle of the outer loop, ch is initialized in each row to
one character later in the alphabet. The test condition, however, is unaltered, so each row still
ends on F . This results in one fewer character being printed in each row.

 Introducing Arrays

 Arrays are important features in many programs. They enable you to store several items of
related information in a convenient fashion. We will devote all of Chapter 10 , “Arrays and
Pointers,” to arrays, but because arrays are often used with loops, we want to introduce them
now.

 An array is a series of values of the same type, such as 10 char s or 15 int s, stored sequentially.
The whole array bears a single name, and the individual items, or elements , are accessed by
using an integer index. For example, the declaration

 float debts[20];

ptg11524036

227Introducing Arrays

 announces that debts is an array with 20 elements, each of which can hold a type float
value. The first element of the array is called debts[0] , the second element is called debts[1] ,
and so on, up to debts[19] . Note that the numbering of array elements starts with 0, not 1.
Each element can be assigned a float value. For example, you can have the following:

 debts[5] = 32.54;

 debts[6] = 1.2e+21;

 In fact, you can use an array element the same way you would use a variable of the same type.
For example, you can read a value into a particular element:

 scanf("%f", &debts[4]); // read a value into the 5th element

 One potential pitfall is that, in the interest of speed of execution, C doesn’t check to see
whether you use a correct subscript. Each of the following, for example, is bad code:

 debts[20] = 88.32; // no such array element

 debts[33] = 828.12; // no such array element

 However, the compiler doesn’t look for such errors. When the program runs, these statements
would place data in locations possibly used for other data, potentially corrupting the output of
the program or even causing it to abort.

 An array can be of any data type.

 int nannies[22]; /* an array to hold 22 integers */

 char actors[26]; /* an array to hold 26 characters */

 long big[500]; /* an array to hold 500 long integers */

 Earlier, for example, we talked about strings, which are a special case of what can be stored in
a char array. (A char array, in general, is one whose elements are assigned char values.) The
contents of a char array form a string if the array contains the null character, \0 , which marks
the end of the string (see Figure 6.6).

character array but not a string

y o u c a n s e e i t .

character array and a string

null character

y o u c a n s e e i t . \0

 Figure 6.6 Character arrays and strings.

ptg11524036

228 Chapter 6 C Control Statements: Looping

 The numbers used to identify the array elements are called subscripts , indices , or offsets . The
subscripts must be integers, and, as mentioned, the subscripting begins with 0. The array
elements are stored next to each other in memory, as shown in Figure 6.7 .

348161980

int boo[4] (note: 2 bytes per int)

46

boo[3]boo[2]boo[0] boo[1]

plh e

char foo[4] (note: 1-byte char)

foo[3]foo[2]foo[0] foo[1]

 Figure 6.7 The char and int arrays in memory.

 Using a for Loop with an Array

 There are many, many uses for arrays. Listing 6.19 is a relatively simple one. It’s a program that
reads in 10 golf scores that will be processed later. By using an array, you avoid the need to
invent 10 different variable names, one for each score. Also, you can use a for loop to do the
reading. The program goes on to report the sum of the scores and their average and a handicap,
which is the difference between the average and a standard score, or par.

 Listing 6.19 The scores_in.c Program

 // scores_in.c -- uses loops for array processing

 #include <stdio.h>

 #define SIZE 10

 #define PAR 72

 int main(void)

 {

 int index, score[SIZE];

 int sum = 0;

 float average;

 printf("Enter %d golf scores:\n", SIZE);

 for (index = 0; index < SIZE; index++)

 scanf("%d", &score[index]); // read in the ten scores

 printf("The scores read in are as follows:\n");

 for (index = 0; index < SIZE; index++)

 printf("%5d", score[index]); // verify input

 printf("\n");

ptg11524036

229Introducing Arrays

 for (index = 0; index < SIZE; index++)

 sum += score[index]; // add them up

 average = (float) sum / SIZE; // time-honored method

 printf("Sum of scores = %d, average = %.2f\n", sum, average);

 printf("That's a handicap of %.0f.\n", average - PAR);

 return 0;

 }

 Let’s see if Listing 6.19 works; then we can make a few comments. Here is the output:

 Enter 10 golf scores:

 99 95 109 105 100
 96 98 93 99 97 98
 The scores read in are as follows:

 99 95 109 105 100 96 98 93 99 97

 Sum of scores = 991, average = 99.10

 That's a handicap of 27.

 It works, so let’s check out some of the details. First, note that although the example shows
11 numbers typed, only 10 were read because the reading loop reads just 10 values. Because
 scanf() skips over whitespace, you can type all 10 numbers on one line, place each number
on its own line, or, as in this case, use a mixture of newlines and spaces to separate the input.
(Because input is buffered, the numbers are sent to the program only when you press the Enter
key.)

 Next, using arrays and loops is much more convenient than using 10 separate scanf()
statements and 10 separate printf() statements to read in and verify the 10 scores. The
 for loop offers a simple and direct way to use the array subscripts. Notice that an element
of an int array is handled like an int variable. To read the int variable fue , you would
use scanf("%d", &fue) . Listing 6.19 is reading the int element score[index] , so it uses
 scanf("%d", &score[index]) .

 This example illustrates several style points. First, it’s a good idea to use a #define directive to
create a manifest constant (SIZE) to specify the size of the array. You use this constant in defin-
ing the array and in setting the loop limits. If you later need to expand the program to handle
20 scores, simply redefine SIZE to be 20. You don’t have to change every part of the program
that uses the array size. Second, the idiom

 for (index = 0; index < SIZE; index++)

 is a handy one for processing an array of size SIZE . It’s important to get the right array limits.
The first element has index 0 , and the loop starts by setting index to 0 . Because the numbering
starts with 0 , the element index for the last element is SIZE - 1 . That is, the tenth element is
 score[9] . Using the test condition index < SIZE accomplishes this, making the last value of
 index used in the loop SIZE - 1 .

ptg11524036

230 Chapter 6 C Control Statements: Looping

 Third, a good practice is to have a program repeat or “echo” the values it has just read in. This
helps ensure that the program is processing the data you think it is.

 Finally, note that Listing 6.19 uses three separate for loops. You might wonder if this is really
necessary. Could you have combined some of the operations in one loop? The answer is yes,
you could have done so. That would have made the program more compact. However, you
should be swayed by the principle of modularity . The idea behind this term is that a program
should be broken into separate units, with each unit having one task to perform. This makes
a program easier to read. Perhaps even more important, modularity makes it much easier to
update or modify a program if different parts of the program are not intermingled. When
you know enough about functions, you could make each unit into a function, enhancing the
modularity of the program.

 A Loop Example Using a Function Return Value

 The last example in this chapter uses a function that calculates the result of raising a number to
an integer power. (For the serious number-cruncher, the math.h library provides a more power-
ful power function called pow() that allows floating-point exponents.) The three main tasks in
this exercise are devising the algorithm for calculating the answer, expressing the algorithm in
a function that returns the answer, and providing a convenient way of testing the function.

 First, let’s look at an algorithm. We’ll keep the function simple by restricting it to positive
integer powers. Then, to raise n to the p power, just multiply n times itself p times. This is a
natural task for a loop. You can set the variable pow to 1 and then repeatedly multiply it by n :

 for(i = 1; i <= p; i++)

 pow *= n;

 Recall that the *= operator multiplies the left side by the right side. After the first loop cycle,
 pow is 1 times n , or n . After the second cycle, pow is its previous value (n) times n , or n squared,
and so on. The for loop is natural in this context because the loop is executed a predetermined
(after p is known) number of times.

 Now that we have an algorithm, we can decide which data types to use. The exponent p , being
an integer, should be type int . To allow ample range in values for n and its power, make n and
 pow type double .

 Next, let’s consider how to put the function together. We need to give the function two values,
and the function should give back one. To get information to the function, we can use two
arguments, one double and one int , specifying which number to raise to what power. How do
we arrange for the function to return a value to the calling program? To write a function with a
return value, do the following:

 1. When you define a function, state the type of value it returns.

 2. Use the keyword return to indicate the value to be returned.

ptg11524036

231A Loop Example Using a Function Return Value

 For example, we can do this:

 double power(double n, int p) // returns a double

 {

 double pow = 1;

 int i;

 for (i = 1; i <= p; i++)

 pow *= n;

 return pow; // return the value of pow

 }

 To declare the function type, preface the function name with the type, just as you do when
declaring a variable. The keyword return causes the function to return the following value
to the calling function. Here the function returns the value of a variable, but it can return the
value of expressions, too. For instance, the following is a valid statement:

 return 2 * x + b;

 The function would compute the value of the expression and return it. In the calling function,
the return value can be assigned to another variable, can be used as a value in an expression,
can be used as an argument to another function—as in printf("%f", power(6.28, 3)) —or
can be ignored.

 Now let’s use the function in a program. To test the function, it would be convenient to be
able to feed several values to the function to see how it reacts. This suggests setting up an input
loop. The natural choice is the while loop. You can use scanf() to read in two values at a
time. If successful in reading two values, scanf() returns the value 2 , so you can control the
loop by comparing the scanf() return value to 2. One more point: To use the power() func-
tion in your program, you need to declare it, just as you declare variables that the program
uses. Listing 6.20 shows the program.

 Listing 6.20 The power.c Program

 // power.c -- raises numbers to integer powers

 #include <stdio.h>

 double power(double n, int p); // ANSI prototype

 int main(void)

 {

 double x, xpow;

 int exp;

 printf("Enter a number and the positive integer power");

 printf(" to which\nthe number will be raised. Enter q");

 printf(" to quit.\n");

 while (scanf("%lf%d", &x, &exp) == 2)

 {

ptg11524036

232 Chapter 6 C Control Statements: Looping

 xpow = power(x,exp); // function call

 printf("%.3g to the power %d is %.5g\n", x, exp, xpow);

 printf("Enter next pair of numbers or q to quit.\n");

 }

 printf("Hope you enjoyed this power trip -- bye!\n");

 return 0;

 }

 double power(double n, int p) // function definition

 {

 double pow = 1;

 int i;

 for (i = 1; i <= p; i++)

 pow *= n;

 return pow; // return the value of pow

 }

 Here is a sample run:

 Enter a number and the positive integer power to which

 the number will be raised. Enter q to quit.

 1.2 12
 1.2 to the power 12 is 8.9161

 Enter next pair of numbers or q to quit.

 2
 16
 2 to the power 16 is 65536

 Enter next pair of numbers or q to quit.

 q
 Hope you enjoyed this power trip -- bye!

 Program Discussion

 The main() program is an example of a driver , a short program designed to test a function.

 The while loop is a generalization of a form we’ve used before. Entering 1.2 12 causes
 scanf() to read two values successfully and to return 2 , and the loop continues. Because
 scanf() skips over whitespace, input can be spread over more than one line, as the sample
output shows, but entering q produces a return value of 0 because q can’t be read using the %lf
specifier. This causes scanf() to return 0 , thus terminating the loop. Similarly, entering 2.8 q
would produce a scanf() return value of 1 ; that, too, would terminate the loop.

ptg11524036

233A Loop Example Using a Function Return Value

 Now let’s look at the function-related matters. The power() function appears three times in
this program. The first appearance is this:

 double power(double n, int p); // ANSI prototype

 This statement announces, or declares , that the program will be using a function called
 power() . The initial keyword double indicates that the power() function returns a type
 double value. The compiler needs to know what kind of value power() returns so that it will
know how many bytes of data to expect and how to interpret them; this is why you have to
declare the function. The double n, int p within the parentheses means that power() takes
two arguments. The first should be a type double value, and the second should be type int .

 The second appearance is this:

 xpow = power(x,exp); // function call

 Here the program calls the function, passing it two values. The function calculates x to the exp
power and returns the result to the calling program, where the return value is assigned to the
variable xpow .

 The third appearance is in the head of the function definition:

 double power(double n, int p) // function definition

 Here power() takes two parameters, a double and an int , represented by the variables n and p .
Note that power() is not followed by a semicolon when it appears in a function definition, but
is followed by a semicolon when in a function declaration. After the function heading comes
the code that specifies what power() does.

 Recall that the function uses a for loop to calculate the value of n to the p power and assign it
to pow . The following line makes the value of pow the function return value:

 return pow; // return the value of pow

 Using Functions with Return Values

 Declaring the function, calling the function, defining the function, using the return
keyword—these are the basic elements in defining and using a function with a return value.

 At this point, you might have some questions. For example, if you are supposed to declare
functions before you use their return values, how come you used the return value of scanf()
without declaring scanf() ? Why do you have to declare power() separately when your defini-
tion of it says it is type double ?

 Let’s take the second question first. The compiler needs to know what type power() is when
it first encounters power() in the program. At this point, the compiler has not yet encoun-
tered the definition of power() , so it doesn’t know that the definition says the return type is
 double . To help out the compiler, you preview what is to come by using a forward declaration .
This declaration informs the compiler that power() is defined elsewhere and that it will return
type double . If you place the power() function definition ahead of main() in the file, you can

ptg11524036

234 Chapter 6 C Control Statements: Looping

omit the forward declaration because the compiler will know all about power() before reach-
ing main() . However, that is not standard C style. Because main() usually provides the overall
framework for a program, it’s best to show main() first. Also, functions often are kept in sepa-
rate files, so a forward declaration is essential.

 Next, why didn’t you declare scanf() ? Well, you did. The stdio.h header file has function
declarations for scanf() , printf() , and several other I/O functions. The scanf() declaration
states that it returns type int .

 Key Concepts

 The loop is a powerful programming tool. You should pay particular attention to three aspects
when setting up a loop:

 ■ Clearly defining the condition that causes the loop to terminate

 ■ Making sure the values used in the loop test are initialized before the first use

 ■ Making sure the loop does something to update the test each cycle

 C handles test conditions by evaluating them numerically. A result of 0 is false, and any other
value is true. Expressions using the relational operators often are used as tests, and they are a
bit more specific. Relational expressions evaluate to 1 if true and to 0 if false, which is consis-
tent with the values allowed for the new _Bool type.

 Arrays consist of adjacent memory locations all of the same type. You need to keep in mind
that array element numbering starts with 0 so that the subscript of the last element is always
one less than the number of elements. C doesn’t check to see if you use valid subscript values,
so the responsibility is yours.

 Employing a function involves three separate steps:

 1. Declare the function with a function prototype.

 2. Use the function from within a program with a function call.

 3. Define the function.

 The prototype allows the compiler to see whether you’ve used the function correctly, and the
definition sets down how the function works. The prototype and definition are examples of the
contemporary programming practice of separating a program element into an interface and an
implementation. The interface describes how a feature is used, which is what a prototype does,
and the implementation sets forth the particular actions taken, which is what the definition
does.

ptg11524036

235Summary

 Summary

 The main topic of this chapter has been program control. C offers you many aids for structur-
ing your programs. The while and the for statements provide entry-condition loops. The for
statements are particularly suited for loops that involve initialization and updating. The comma
operator enables you to initialize and update more than one variable in a for loop. For the less
common occasion when an exit-condition loop is needed, C has the do while statement.

 A typical while loop design looks like this:

 get first value

 while (value meets test)

 {

 process the value

 get next value

 }

 A for loop doing the same thing would look like this:

 for (get first value; value meets test; get next value)

 process the value

 All these loops use a test condition to determine whether another loop cycle is to be executed.
In general, the loop continues if the test expression evaluates to a nonzero value; otherwise, it
terminates. Often, the test condition is a relational expression, which is an expression formed
by using a relational operator. Such an expression has a value of 1 if the relation is true and a
value of 0 otherwise. Variables of the _Bool type, introduced by C99, can only hold the value 1
or 0 , signifying true or false.

 In addition to relational operators, this chapter looked at several of C’s arithmetic assignment
operators, such as += and *= . These operators modify the value of the left-hand operand by
performing an arithmetic operation on it.

 Arrays were the next subject. Arrays are declared using brackets to indicate the number of
elements. The first element of an array is numbered 0; the second is numbered 1, and so forth.
For example, the declaration

 double hippos[20];

 creates an array of 20 elements, and the individual elements range from hippos[0] through
 hippos[19] . The subscripts used to number arrays can be manipulated conveniently by using
loops.

 Finally, the chapter showed how to write and use a function with a return value.

ptg11524036

236 Chapter 6 C Control Statements: Looping

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. Find the value of quack after each line; each of the final five statements uses the value of
 quack produced by the preceding statement.

 int quack = 2;

 quack += 5;

 quack *= 10;

 quack -= 6;

 quack /= 8;

 quack %= 3;

 2. Given that value is an int , what output would the following loop produce?

 for (value = 36; value > 0; value /= 2)

 printf("%3d", value);

 What problems would there be if value were double instead of int ?

 3. Represent each of the following test conditions:

 a. x is greater than 5 .

 b. scanf() attempts to read a single double (called x) and fails.

 c. x has the value 5 .

 4. Represent each of the following test conditions:

 a. scanf() succeeds in reading a single integer.

 b. x is not 5 .

 c. x is 20 or greater.

 5. You suspect that the following program is not perfect. What errors can you find?

 #include <stdio.h>

 int main(void)

 { /* line 3 */

 int i, j, list(10); /* line 4 */

 for (i = 1, i <= 10, i++) /* line 6 */

 { /* line 7 */

 list[i] = 2*i + 3; /* line 8 */

 for (j = 1, j > = i, j++) /* line 9 */

 printf(" %d", list[j]); /* line 10 */

ptg11524036

237Review Questions

 printf("\n"); /* line 11 */

 } /* line 12 */

 6. Use nested loops to write a program that produces this pattern:

 $$$$$$$$

 $$$$$$$$

 $$$$$$$$

 $$$$$$$$

 7. What will each of the following programs print?

 a.

 #include <stdio.h>

 int main(void)

 {

 int i = 0;

 while (++i < 4)

 printf("Hi! ");

 do

 printf("Bye! ");

 while (i++ < 8);

 return 0;

 }

 b.

 #include <stdio.h>

 int main(void)

 {

 int i;

 char ch;

 for (i = 0, ch = 'A'; i < 4; i++, ch += 2 * i)

 printf("%c", ch);

 return 0;

 }

 8. Given the input Go west, young man! , what would each of the following programs
produce for output? (The ! follows the space character in the ASCII sequence.)

 a.

 #include <stdio.h>

ptg11524036

238 Chapter 6 C Control Statements: Looping

 int main(void)

 {

 char ch;

 scanf("%c", &ch);

 while (ch != 'g')

 {

 printf("%c", ch);

 scanf("%c", &ch);

 }

 return 0;

 }

 b.

 #include <stdio.h>

 int main(void)

 {

 char ch;

 scanf("%c", &ch);

 while (ch != 'g')

 {

 printf("%c", ++ch);

 scanf("%c", &ch);

 }

 return 0;

 }

 c.

 #include <stdio.h>

 int main(void)

 {

 char ch;

 do {

 scanf("%c", &ch);

 printf("%c", ch);

 } while (ch != 'g');

 return 0;

 }

 d.

 #include <stdio.h>

 int main(void)

ptg11524036

239Review Questions

 {

 char ch;

 scanf("%c", &ch);

 for (ch = '$'; ch != 'g'; scanf("%c", &ch))

 printf("%c", ch);

 return 0;

 }

 9. What will the following program print?

 #include <stdio.h>

 int main(void)

 {

 int n, m;

 n = 30;

 while (++n <= 33)

 printf("%d|",n);

 n = 30;

 do

 printf("%d|",n);

 while (++n <= 33);

 printf("\n***\n");

 for (n = 1; n*n < 200; n += 4)

 printf("%d\n", n);

 printf("\n***\n");

 for (n = 2, m = 6; n < m; n *= 2, m+= 2)

 printf("%d %d\n", n, m);

 printf("\n***\n");

 for (n = 5; n > 0; n--)

 {

 for (m = 0; m <= n; m++)

 printf("=");

 printf("\n");

 }

 return 0;

 }

ptg11524036

240 Chapter 6 C Control Statements: Looping

 10. Consider the following declaration:

 double mint[10];

 a. What is the array name?

 b. How many elements does the array have?

 c. What kind of value can be stored in each element?

 d. Which of the following is a correct usage of scanf() with this array?

 i. scanf("%lf", mint[2])

 ii. scanf("%lf", &mint[2])

 iii. scanf("%lf", &mint)

 11. Mr. Noah likes counting by twos, so he’s written the following program to create an array
and to fill it with the integers 2, 4, 6, 8, and so on. What, if anything, is wrong with this
program?

 #include <stdio.h>

 #define SIZE 8

 int main(void)

 {

 int by_twos[SIZE];

 int index;

 for (index = 1; index <= SIZE; index++)

 by_twos[index] = 2 * index;

 for (index = 1; index <= SIZE; index++)

 printf("%d ", by_twos);

 printf("\n");

 return 0;

 }

 12. You want to write a function that returns a long value. What should your definition of
the function include?

 13. Define a function that takes an int argument and that returns, as a long , the square of
that value.

 14. What will the following program print?

 #include <stdio.h>

 int main(void)

 {

 int k;

ptg11524036

241Programming Excercises

 for(k = 1, printf("%d: Hi!\n", k); printf("k = %d\n",k),

 k*k < 26; k+=2, printf("Now k is %d\n", k))

 printf("k is %d in the loop\n",k);

 return 0;

 }

 Programming Exercises

 1. Write a program that creates an array with 26 elements and stores the 26 lowercase
letters in it. Also have it show the array contents.

 2. Use nested loops to produce the following pattern:

 $

 $$

 $$$

 $$$$

 $$$$$

 3. Use nested loops to produce the following pattern:

 F

 FE

 FED

 FEDC

 FEDCB

 FEDCBA

 Note: If your system doesn’t use ASCII or some other code that encodes letters in
numeric order, you can use the following to initialize a character array to the letters of
the alphabet:

 char lets[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 Then you can use the array index to select individual letters; for example, lets[0] is
 'A' , and so on.

 4. Use nested loops to produce the following pattern:

 A

 BC

 DEF

 GHIJ

 KLMNO

 PQRSTU

ptg11524036

242 Chapter 6 C Control Statements: Looping

 If your system doesn’t encode letters in numeric order, see the suggestion in
programming exercise 3.

 5. Have a program request the user to enter an uppercase letter. Use nested loops to produce
a pyramid pattern like this:

 A

 ABA

 ABCBA

 ABCDCBA

 ABCDEDCBA

 The pattern should extend to the character entered. For example, the preceding pattern
would result from an input value of E . Hint: Use an outer loop to handle the rows. Use
three inner loops in a row, one to handle the spaces, one for printing letters in ascending
order, and one for printing letters in descending order. If your system doesn’t use ASCII
or a similar system that represents letters in strict number order, see the suggestion in
programming exercise 3.

 6. Write a program that prints a table with each line giving an integer, its square, and its
cube. Ask the user to input the lower and upper limits for the table. Use a for loop.

 7. Write a program that reads a single word into a character array and then prints the word
backward. Hint: Use strlen() (Chapter 4) to compute the index of the last character in
the array.

 8. Write a program that requests two floating-point numbers and prints the value of their
difference divided by their product. Have the program loop through pairs of input values
until the user enters nonnumeric input.

 9. Modify exercise 8 so that it uses a function to return the value of the calculation.

 10. Write a program that requests lower and upper integer limits, calculates the sum of all
the integer squares from the square of the lower limit to the square of the upper limit,
and displays the answer. The program should then continue to prompt for limits and
display answers until the user enters an upper limit that is equal to or less than the lower
limit. A sample run should look something like this:

 Enter lower and upper integer limits: 5 9
 The sums of the squares from 25 to 81 is 255

 Enter next set of limits: 3 25
 The sums of the squares from 9 to 625 is 5520

 Enter next set of limits: 5 5
 Done

ptg11524036

243Programming Exercises

 11. Write a program that reads eight integers into an array and then prints them in reverse
order.

 12. Consider these two infinite series:

 1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 + ...

 1.0 - 1.0/2.0 + 1.0/3.0 - 1.0/4.0 + ...

 Write a program that evaluates running totals of these two series up to some limit of
number of terms. Hint: –1 times itself an odd number of times is –1, and –1 times itself
an even number of times is 1. Have the user enter the limit interactively; let a zero or
negative value terminate input. Look at the running totals after 100 terms, 1000 terms,
10,000 terms. Does either series appear to be converging to some value?

 13. Write a program that creates an eight-element array of int s and sets the elements to the
first eight powers of 2 and then prints the values. Use a for loop to set the values, and,
for variety, use a do while loop to display the values.

 14. Write a program that creates two eight-element arrays of double s and uses a loop to let
the user enter values for the eight elements of the first array. Have the program set the
elements of the second array to the cumulative totals of the elements of the first array.
For example, the fourth element of the second array should equal the sum of the first
four elements of the first array, and the fifth element of the second array should equal
the sum of the first five elements of the first array. (It’s possible to do this with nested
loops, but by using the fact that the fifth element of the second array equals the fourth
element of the second array plus the fifth element of the first array, you can avoid
nesting and just use a single loop for this task.) Finally, use loops to display the contents
of the two arrays, with the first array displayed on one line and with each element of the
second array displayed below the corresponding element of the first array.

 15. Write a program that reads in a line of input and then prints the line in reverse order.
You can store the input in an array of char ; assume that the line is no longer than 255
characters. Recall that you can use scanf() with the %c specifier to read a character at
a time from input and that the newline character (\n) is generated when you press the
Enter key.

 16. Daphne invests $100 at 10% simple interest. (That is, every year, the investment earns
an interest equal to 10% of the original investment.) Deirdre invests $100 at 5% interest
compounded annually. (That is, interest is 5% of the current balance, including previous
addition of interest.) Write a program that finds how many years it takes for the value
of Deirdre’s investment to exceed the value of Daphne’s investment. Also show the two
values at that time.

ptg11524036

244 Chapter 6 C Control Statements: Looping

 17. Chuckie Lucky won a million dollars (after taxes), which he places in an account that
earns 8% a year. On the last day of each year, Chuckie withdraws $100,000. Write a
program that finds out how many years it takes for Chuckie to empty his account.

 18. Professor Rabnud joined a social media group. Initially he had five friends. He noticed
that his friend count grew in the following fashion. The first week one friend dropped
out and the remaining number of friends doubled. The second week two friends dropped
out and the remaining number of friends doubled. In general, in the Nth week, N friends
dropped out and the remaining number doubled. Write a program that computes and
displays the number of friends each week. The program should continue until the count
exceeds Dunbar’s number. Dunbar’s number is a rough estimate of the maximum size of
a cohesive social group in which each member knows every other member and how they
relate to one another. Its approximate value is 150.

ptg11524036

 7
 C Control Statements:
Branching and Jumps

 You will learn about the following in this chapter:

 ■ Keywords

 if , else , switch , continue

 break , case , default , goto

 ■ Operators

 && || ?:

 ■ Functions

 getchar() , putchar() , the ctype.h family

 ■ How to use the if and if else statements and how to nest them

 ■ Using logical operators to combine relational expressions into more involved test
expressions

 ■ C’s conditional operator

 ■ The switch statement

 ■ The break , continue , and goto jumps

 ■ Using C’s character I/O functions— getchar() and putchar()

 ■ The family of character-analysis functions provided by the ctype.h header file

 As you grow more comfortable with C, you will probably want to tackle more complex tasks.
When you do, you’ll need ways to control and organize these projects. C has the tools to meet
these needs. You’ve already learned to use loops to program repetitive tasks. In this chapter,
you’ll learn about branching structures such as if and switch , which allow a program to base
its actions on conditions it checks. Also, you are introduced to C’s logical operators, which
enable you to test for more than one relationship in a while or if condition, and you look at

ptg11524036

246 Chapter 7 C Control Statements: Branching and Jumps

C’s jump statements, which shift the program flow to another part of a program. By the end of
this chapter, you’ll have all the basic information you need to design a program that behaves
the way you want.

 The if Statement

 Let’s start with a simple example of an if statement, shown in Listing 7.1 . This program reads
in a list of daily low temperatures (in Celsius) and reports the total number of entries and the
percentage that were below freezing (that is, below zero degrees Celsius). It uses scanf() in a
loop to read in the values. Once during each loop cycle, it increments a counter to keep track
of the number of entries. An if statement identifies temperatures below freezing and keeps
track of the number of below-freezing days separately.

 Listing 7.1 The colddays.c Program

 // colddays.c -- finds percentage of days below freezing

 #include <stdio.h>

 int main(void)

 {

 const int FREEZING = 0;

 float temperature;

 int cold_days = 0;

 int all_days = 0;

 printf("Enter the list of daily low temperatures.\n");

 printf("Use Celsius, and enter q to quit.\n");

 while (scanf("%f", &temperature) == 1)

 {

 all_days++;

 if (temperature < FREEZING)

 cold_days++;

 }

 if (all_days != 0)

 printf("%d days total: %.1f%% were below freezing.\n",

 all_days, 100.0 * (float) cold_days / all_days);

 if (all_days == 0)

 printf("No data entered!\n");

 return 0;

 }

 Here is a sample run:

 Enter the list of daily low temperatures.

 Use Celsius, and enter q to quit.

ptg11524036

247The if Statement

 12 5 -2.5 0 6 8 -3 -10 5 10 q
 10 days total: 30.0% were below freezing.

 The while loop test condition uses the return value of scanf() to terminate the loop when
 scanf() encounters nonnumeric input. By using float instead of int for temperature , the
program is able to accept input such as -2.5 as well as 8 .

 Here is the new statement in the while block:

 if (temperature < FREEZING)

 cold_days++;

 This if statement instructs the computer to increase cold_days by 1 if the value just read
(temperature) is less than zero. What happens if temperature is not less than zero? Then the
 cold_days++; statement is skipped, and the while loop moves on to read the next tempera-
ture value.

 The program uses the if statement two more times to control the output. If there is data, the
program prints the results. If there is no data, the program reports that fact. (Soon you’ll see a
more elegant way to handle this part of the program.)

 To avoid integer division, the example uses the cast to float when the percentage is being
calculated. You don’t really need the type cast because in the expression 100.0 * cold_days
/ all_days , the subexpression 100.0 * cold_days is evaluated first and is forced into float-
ing point by the automatic type conversion rules. Using the type cast documents your intent,
however, and helps protect the program against misguided revisions. The if statement is called
a branching statement or selection statement because it provides a junction where the program has
to select which of two paths to follow. The general form is this:

 if (expression)

 statement

 If expression evaluates to true (nonzero), statement is executed. Otherwise, it is skipped. As
with a while loop, statement can be either a single statement or a single block (also termed
a compound statement). The structure is very similar to that of a while statement. The chief
difference is that in an if statement, the test and (possibly) the execution are done just once,
but in the while loop, the test and execution can be repeated several times.

 Normally, expression is a relational expression; that is, it compares the magnitude of two
quantities, as in the expressions x > y and c == 6 . If expression is true (x is greater than y ,
or c does equal 6), the statement is executed. Otherwise, the statement is ignored. More gener-
ally, any expression can be used, and an expression with a 0 value is taken to be false.

 The statement portion can be a simple statement, as in the example, or it can be a compound
statement or block, marked off by braces:

 if (score > big)

 printf("Jackpot!\n"); // simple statement

 if (joe > ron)

ptg11524036

248 Chapter 7 C Control Statements: Branching and Jumps

 { // compound statement

 joecash++;

 printf("You lose, Ron.\n");

 }

 Note that the entire if structure counts as a single statement, even when it uses a compound
statement.

 Adding else to the if Statement

 The simple form of an if statement gives you the choice of executing a statement (possibly
compound) or skipping it. C also enables you to choose between two statements by using the
 if else form. Let’s use the if else form to fix an awkward segment from Listing 7.1 .

 if (all_days != 0)

 printf("%d days total: %.1f%% were below freezing.\n",

 all_days, 100.0 * (float) cold_days / all_days);

 if (all_days == 0)

 printf("No data entered!\n");

 If the program finds that all_days is not equal to 0 , it should know that days must be 0
without retesting, and it does. With if else , you can take advantage of that knowledge by
rewriting the fragment this way:

 if (all_days!= 0)

 printf("%d days total: %.1f%% were below freezing.\n",

 all_days, 100.0 * (float) cold_days / all_days);

 else

 printf("No data entered!\n");

 Only one test is made. If the if test expression is true, the temperature data is printed. If it’s
false, the warning message is printed.

 Note the general form of the if else statement:

 if (expression)

 statement1

 else

 statement2

 If expression is true (nonzero), statement1 is executed. If expression is false or zero, the
single statement following the else is executed. The statements can be simple or compound. C
doesn’t require indentation, but it is the standard style. Indentation shows at a glance the state-
ments that depend on a test for execution.

 If you want more than one statement between the if and the else , you must use braces
to create a single block. The following construction violates C syntax, because the compiler
expects just one statement (single or compound) between the if and the else :

ptg11524036

249Adding else to the if Statement

 if (x > 0)

 printf("Incrementing x:\n");

 x++;

 else // will generate an error

 printf("x <= 0 \n");

 The compiler sees the printf() statement as part of the if statement, and it sees the x++;
statement as a separate statement, not as part of the if statement. It then sees the else as
being unattached to an if , which is an error. Instead, use this:

 if (x > 0)

 {

 printf("Incrementing x:\n");

 x++;

 }

 else

 printf("x <= 0 \n");

 The if statement enables you to choose whether to do one action. The if else statement
enables you to choose between two actions. Figure 7.1 compares the two statements.

if

truefalse

(num>10)

num=2*num;

printf("%d\n",num);

if

true

next statement

else

(num>10)

num=2*num;printf("%d\n",num);

 Figure 7.1 if versus if else .

ptg11524036

250 Chapter 7 C Control Statements: Branching and Jumps

 Another Example: Introducing getchar() and putchar()

 Most of the examples so far have used numeric input. To give you practice with other types,
let’s look at a character-oriented example. You already know how to use scanf() and
 printf() with the %c specifier to read and write characters; but now you’ll meet a pair of C
functions specifically designed for character-oriented I/O— getchar() and putchar() .

 The getchar() function takes no arguments, and it returns the next character from input. For
example, the following statement reads the next input character and assigns its value to the
variable ch :

 ch = getchar();

 This statement has the same effect as the following statement:

 scanf("%c", &ch);

 The putchar() function prints its argument. For example, the next statement prints as a char-
acter the value previously assigned to ch :

 putchar(ch);

 This statement has the same effect as the following:

 printf("%c", ch);

 Because these functions deal only with characters, they are faster and more compact than the
more general scanf() and printf() functions. Also, note that they don’t need format speci-
fiers; that’s because they work with characters only. Both functions are typically defined in the
 stdio.h file. (Also, typically, they are preprocessor macros rather than true functions; we’ll talk
about function-like macros in Chapter 16 , “The C Preprocessor and the C Library.”)

 Let’s see how these functions work by writing a program that repeats an input line but replaces
each non-space character with the character that follows it in the ASCII code sequence. Spaces
will be reproduced as spaces. You can state the desired response as, “If the character is a space,
print it; otherwise, print the next character in the ASCII sequence.”

 The C code looks much like this statement, as you can see in Listing 7.2 .

 Listing 7.2 The cypher1.c Program

 // cypher1.c -- alters input, preserving spaces

 #include <stdio.h>

 #define SPACE ' ' // that's quote-space-quote

 int main(void)

 {

 char ch;

 ch = getchar(); // read a character

 while (ch != '\n') // while not end of line

 {

ptg11524036

251Adding else to the if Statement

 if (ch == SPACE) // leave the space

 putchar(ch); // character unchanged

 else

 putchar(ch + 1); // change other characters

 ch = getchar(); // get next character

 }

 putchar(ch); // print the newline

 return 0;

 }

 (If your compiler complains about possible data loss due to conversion, don’t worry. Chapter 8 ,
“Character Input/Output and Input Validation,” will explain all when it introduces EOF .)

 Here is a sample run:

 CALL ME HAL.
 DBMM NF IBM/

 Compare this loop to the one from Listing 7.1 . Listing 7.1 uses the status returned by scanf()
instead of the value of the input item to determine when to terminate the loop. Listing 7.2 ,
however, uses the value of the input item itself to decide when to terminate the loop. This
difference results in a slightly different loop structure, with one read statement before the loop
and one read statement at the end of each loop. C’s flexible syntax, however, enables you to
emulate Listing 7.1 by combining reading and testing into a single expression. That is, you can
replace a loop of the form

 ch = getchar(); /* read a character */

 while (ch != '\n') /* while not end of line */

 {

 ... /* process character */

 ch = getchar(); /* get next character */

 }

 with one that looks like this:

 while ((ch = getchar()) != '\n')

 {

 ... /* process character */

 }

 The critical line is

 while ((ch = getchar()) != '\n')

 It demonstrates a characteristic C programming style—combining two actions in one expres-
sion. C’s free-formatting facility can help to make the separate components of the line clearer:

ptg11524036

252 Chapter 7 C Control Statements: Branching and Jumps

 while (

 (ch = getchar()) // assign a value to ch

 != '\n') // compare ch to \n

 The actions are assigning a value to ch and comparing this value to the newline character. The
parentheses around ch = getchar() make it the left operand of the != operator. To evaluate
this expression, the computer must first call the getchar() function and then assign its return
value to ch . Because the value of an assignment expression is the value of the left member, the
value of ch = getchar() is just the new value of ch . Therefore, after ch is read, the test condi-
tion boils down to ch != '\n' (that is, to ch not being the newline character).

 This particular idiom is very common in C programming, so you should be familiar with it.
You also should make sure you remember to use parentheses to group the subexpressions
properly.

 All the parentheses are necessary. Suppose that you mistakenly used this:

 while (ch = getchar() != '\n')

 The != operator has higher precedence than = , so the first expression to be evaluated is
 getchar() != '\n' . Because this is a relational expression, its value is 1 or 0 (true or false).
Then this value is assigned to ch . Omitting the parentheses means that ch is assigned 0 or 1
rather than the return value of getchar() ; this is not desirable.

 The statement

 putchar(ch + 1); /* change other characters */

 illustrates once again that characters really are stored as integers. In the expression ch + 1 ,
 ch is expanded to type int for the calculation, and the resulting int is passed to putchar() ,
which takes an int argument but only uses the final byte to determine which character to
display.

 The ctype.h Family of Character Functions

 Notice that the output for Listing 7.2 shows a period being converted to a slash; that’s because
the ASCII code for the slash character is one greater than the code for the period character.
But if the point of the program is to convert only letters, it would be nice to leave all non-
letters, not just spaces, unaltered. The logical operators, discussed later in this chapter, provide
a way to test whether a character is not a space, not a comma, and so on, but it would be
rather cumbersome to list all the possibilities. Fortunately, C has a standard set of functions
for analyzing characters; the ctype.h header file contains the prototypes. These functions take
a character as an argument and return nonzero (true) if the character belongs to a particular
category and zero (false) otherwise. For example, the isalpha() function returns a nonzero
value if its argument is a letter. Listing 7.3 generalizes Listing 7.2 by using this function; it also
incorporates the shortened loop structure we just discussed.

ptg11524036

253Adding else to the if Statement

 Listing 7.3 The cypher2.c Program

 // cypher2.c -- alters input, preserving non-letters

 #include <stdio.h>

 #include <ctype.h> // for isalpha()

 int main(void)

 {

 char ch;

 while ((ch = getchar()) != '\n')

 {

 if (isalpha(ch)) // if a letter,

 putchar(ch + 1); // display next letter

 else // otherwise,

 putchar(ch); // display as is

 }

 putchar(ch); // display the newline

 return 0;

 }

 Here is a sample run; note how both lowercase and uppercase letters are enciphered, but spaces
and punctuation are not:

 Look! It's a programmer!
 Mppl! Ju't b qsphsbnnfs!

 Tables 7.1 and 7.2 list several functions provided when you include the ctype.h header file.
Some mention a locale; this refers to C’s facility for specifying a locale that modifies or extends
basic C usage. (For example, many nations use a comma instead of a decimal point when
writing decimal fractions, and a particular locale could specify that C use the comma in the
same way for floating-point output, thus displaying 123.45 as 123,45 .) Note that the mapping
functions don’t modify the original argument; instead, they return the modified value. That is,

 tolower(ch); // no effect on ch

 doesn’t change ch . To change ch , do this:

 ch = tolower(ch); // convert ch to lowercase

 Table 7.1 The ctype.h Character-Testing Functions

 Name True If the Argument Is

 isalnum() Alphanumeric (alphabetic or numeric)

 isalpha() Alphabetic

ptg11524036

254 Chapter 7 C Control Statements: Branching and Jumps

 Name True If the Argument Is

 isblank() A standard blank character (space, horizontal tab, or newline) or any additional
locale-specific character so specified

 iscntrl() A control character, such as Ctrl+B

 isdigit() A digit

 isgraph() Any printing character other than a space

 islower() A lowercase character

 isprint() A printing character

 ispunct() A punctuation character (any printing character other than a space or an alpha-
numeric character)

 isspace() A whitespace character (a space, newline, formfeed, carriage return, vertical
tab, horizontal tab, or, possibly, other locale-defined character)

 isupper() An uppercase character

 isxdigit() A hexadecimal-digit character

 Table 7.2 The ctype.h Character-Mapping Functions

 Name Action

 tolower() If the argument is an uppercase character, this function returns the low-
ercase version; otherwise, it just returns the original argument.

 toupper() If the argument is a lowercase character, this function returns the upper-
case version; otherwise, it just returns the original argument.

 Multiple Choice else if

 Life often offers us more than two choices. You can extend the if else structure with else
if to accommodate this fact. Let’s look at a particular example. Utility companies often
have charges that depend on the amount of energy the customer uses. Here are the rates one
company charges for electricity, based on kilowatt-hours (kWh):

 First 360 kWh: $0.13230 per kWh

 Next 108 kWh: $0.15040 per kWh

 Next 252 kWh: $0.30025 per kWh

 Over 720 kWh: $0.34025 per kWh

ptg11524036

255Adding else to the if Statement

 If you worry about your energy management, you might want to prepare a program to calcu-
late your energy costs. The program in Listing 7.4 is a first step in that direction.

 Listing 7.4 The electric.c Program

 // electric.c -- calculates electric bill

 #include <stdio.h>

 #define RATE1 0.13230 // rate for first 360 kwh

 #define RATE2 0.15040 // rate for next 108 kwh

 #define RATE3 0.30025 // rate for next 252 kwh

 #define RATE4 0.34025 // rate for over 720 kwh

 #define BREAK1 360.0 // first breakpoint for rates

 #define BREAK2 468.0 // second breakpoint for rates

 #define BREAK3 720.0 // third breakpoint for rates

 #define BASE1 (RATE1 * BREAK1)

 // cost for 360 kwh

 #define BASE2 (BASE1 + (RATE2 * (BREAK2 - BREAK1)))

 // cost for 468 kwh

 #define BASE3 (BASE1 + BASE2 + (RATE3 *(BREAK3 - BREAK2)))

 //cost for 720 kwh

 int main(void)

 {

 double kwh; // kilowatt-hours used

 double bill; // charges

 printf("Please enter the kwh used.\n");

 scanf("%lf", &kwh); // %lf for type double

 if (kwh <= BREAK1)

 bill = RATE1 * kwh;

 else if (kwh <= BREAK2) // kwh between 360 and 468

 bill = BASE1 + (RATE2 * (kwh - BREAK1));

 else if (kwh <= BREAK3) // kwh betweent 468 and 720

 bill = BASE2 + (RATE3 * (kwh - BREAK2));

 else // kwh above 680

 bill = BASE3 + (RATE4 * (kwh - BREAK3));

 printf("The charge for %.1f kwh is $%1.2f.\n", kwh, bill);

 return 0;

 }

 Here’s some sample output:

 Please enter the kwh used.

 580
 The charge for 580.0 kwh is $97.50.

ptg11524036

256 Chapter 7 C Control Statements: Branching and Jumps

 Listing 7.4 uses symbolic constants for the rates so that the constants are conveniently gath-
ered in one place. If the power company changes its rates (it’s possible), having the rates in
one place makes them easy to update. The listing also expresses the rate breakpoints symboli-
cally. They, too, are subject to change. BASE1 and BASE2 are expressed in terms of the rates
and breakpoints. Then, if the rates or breakpoints change, the bases are updated automatically.
You may recall that the preprocessor does not do calculations. Where BASE1 appears in the
program, it will be replaced by 0.13230 * 360.0 . Don’t worry; the compiler does evaluate this
expression to its numerical value (47.628) so that the final program code uses 47.628 rather
than a calculation.

 The flow of the program is straightforward. The program selects one of three formulas, depend-
ing on the value of kwh . You should pay particular attention to the fact that the only way
the program can reach the first else is if kwh is equal to or greater than 360 . Therefore, the
 else if (kwh <= BREAK2) line really is equivalent to demanding that kwh be between 360
and 482 , as the program comment notes. Similarly, the final else can be reached only if kwh
exceeds 720 . Finally, note that BASE1 , BASE2 , and BASE3 represent the total charges for the first
360, 468, and 720 kilowatt-hours, respectively. Therefore, you need to add on only the addi-
tional charges for electricity in excess of those amounts.

 Actually, the else if is a variation on what you already knew. For example, the core of the
program is just another way of writing

 if (kwh <= BREAK1)

 bill = RATE1 * kwh;

 else

 if (kwh <= BREAK2) // kwh between 360 and 468

 bill = BASE1 + (RATE2 * (kwh - BREAK1));

 else

 if (kwh <= BREAK3) // kwh betweent 468 and 720

 bill = BASE2 + (RATE3 * (kwh - BREAK2));

 else // kwh above 680

 bill = BASE3 + (RATE4 * (kwh - BREAK3));

 That is, the program consists of an if else statement for which the statement part of the
 else is another if else statement. The second if else statement is said to be nested inside
the first and the third inside the second. Recall that the entire if else structure counts as a
single statement, which is why we didn’t have to enclose the nested if else statements in
braces. However, using braces would clarify the intent of this particular format.

 These two forms are perfectly equivalent. The only differences are in where you put spaces and
newlines, and these differences are ignored by the compiler. Nonetheless, the first form is better
because it shows more clearly that you are making a four-way choice. This form makes it easier
to skim the program and see what the choices are. Save the nested forms of indentation for
when they are needed—for example, when you must test two separate quantities. An example
of such a situation is having a 10% surcharge for kilowatt-hours in excess of 720 during the
summer only.

ptg11524036

257Adding else to the if Statement

 You can string together as many else if statements as you need (within compiler limits, of
course), as illustrated by this fragment:

 if (score < 1000)

 bonus = 0;

 else if (score < 1500)

 bonus = 1;

 else if (score < 2000)

 bonus = 2;

 else if (score < 2500)

 bonus = 4;

 else

 bonus = 6;

 (This might be part of a game program, in which bonus represents how many additional
photon bombs or food pellets you get for the next round.)

 Speaking of compiler limits, the C99 standard requires that a compiler support a minimum of
127 levels of nesting.

 Pairing else with if

 When you have a lot of if s and else s, how does the computer decide which if goes with
which else ? For example, consider the following program fragment:

 if (number > 6)

 if (number < 12)

 printf("You're close!\n");

 else

 printf("Sorry, you lose a turn!\n");

 When is Sorry, you lose a turn! printed? When number is less than or equal to 6 ,
or when number is greater than 12 ? In other words, does the else go with the first if or
the second? The answer is, the else goes with the second if . That is, you would get these
responses:

 Number Response

 5 None

 10 You’re close!

 15 Sorry, you lose a turn!

 The rule is that an else goes with the most recent if unless braces indicate otherwise (see
 Figure 7.2).

ptg11524036

258 Chapter 7 C Control Statements: Branching and Jumps

else goes with the most
recent if

if (condition)

 do this;

if (condition)

 do this;

else

 do this;

else goes with the first if
since braces enclose inner
if statements

if (condition)

{

 do this;

 if (condition)

 do this;

}

else

 do this;

 Figure 7.2 The rule for if else pairings.

 Note: Indent the next-to-last “do this;” two spaces and terminate the last “do this” with a semi-
colon. Move the } and { two spaces to the left.

 The indentation of the first example makes it look as though the else goes with the first if ,
but remember that the compiler ignores indentation. If you really want the else to go with the
first if , you could write the fragment this way:

 if (number > 6)

 {

 if (number < 12)

 printf("You're close!\n");

 }

 else

 printf("Sorry, you lose a turn!\n");

 Now you would get these responses:

ptg11524036

259Adding else to the if Statement

 Number Response

 5 Sorry, you lose a turn!

 10 You’re close!

 15 None

 More Nested if s

 You’ve already seen that the if...else if...else sequence is a form of nested if , one that
selects from a series of alternatives. Another kind of nested if is used when choosing a particu-
lar selection leads to an additional choice. For example, a program could use an if else to
select between males and females. Each branch within the if else could then contain another
 if else to distinguish between different income groups.

 Let’s apply this form of nested if to the following problem. Given an integer, print all the inte-
gers that divide into it evenly; if there are no divisors, report that the number is prime.

 This problem requires some forethought before you whip out the code. First, you need an
overall design for the program. For convenience, the program should use a loop to enable you
to input numbers to be tested. That way, you don’t have to run the program again each time
you want to examine a new number. We’ve already developed a model for this kind of loop:

 prompt user

 while the scanf() return value is 1

 analyze the number and report results

 prompt user

 Recall that by using scanf() in the loop test condition, the program attempts both to read a
number and to check to see whether the loop should be terminated.

 Next, you need a plan for finding divisors. Perhaps the most obvious approach is something
like this:

 for (div = 2; div < num; div++)

 if (num % div == 0)

 printf("%d is divisible by %d\n", num, div);

 The loop checks all the numbers between 2 and num to see whether they divide evenly into
 num . Unfortunately, this approach is wasteful of computer time. You can do much better.
Consider, for example, finding the divisors of 144. You find that 144 % 2 is 0, meaning 2 goes
into 144 evenly. If you then actually divide 2 into 144, you get 72, which also is a divisor, so
you can get two divisors instead of one divisor out of a successful num % div test. The real
payoff, however, comes in changing the limits of the loop test. To see how this works, look
at the pairs of divisors you get as the loop continues: 2,72, 3,48, 4,36, 6,24, 8,18, 9,16, 12,12,
16,9, 18,8, and so on. Ah! After you get past the 12,12 pair, you start getting the same divisors

ptg11524036

260 Chapter 7 C Control Statements: Branching and Jumps

(in reverse order) that you already found. Instead of running the loop to 143, you can stop after
reaching 12. That saves a lot of cycles!

 Generalizing this discovery, you see that you have to test only up to the square root of num
instead of to num . For numbers such as 9, this is not a big savings, but the difference is enor-
mous for a number such as 10,000. Instead of messing with square roots, however, you can
express the test condition as follows:

 for (div = 2; (div * div) <= num; div++)

 if (num % div == 0)

 printf("%d is divisible by %d and %d.\n",

 num, div, num / div);

 If num is 144 , the loop runs through div = 12 . If num is 145 , the loop runs through div = 13 .

 There are two reasons for using this test rather than a square root test. First, integer multipli-
cation is faster than extracting a square root. Second, the square root function hasn’t been
formally introduced yet.

 We need to address just two more problems, and then you’ll be ready to program. First, what
if the test number is a perfect square? Reporting that 144 is divisible by 12 and 12 is a little
clumsy, but you can use a nested if statement to test whether div equals num / div . If so, the
program will print just one divisor instead of two.

 for (div = 2; (div * div) <= num; div++)

 {

 if (num % div == 0)

 {

 if (div * div != num)

 printf("%d is divisible by %d and %d.\n",

 num, div, num / div);

 else

 printf("%d is divisible by %d.\n", num, div);

 }

 }

 Note

 Technically, the if else statement counts as a single statement, so the braces around it are
not needed. The outer if is a single statement also, so the braces around it are not needed.
However, when statements get long, the braces make it easier to see what is happening, and
they offer protection if later you add another statement to an if or to the loop.

 Second, how do you know if a number is prime? If num is prime, program flow never gets inside
the if statement. To solve this problem, you can set a variable to some value, say 1 , outside the
loop and reset the variable to 0 inside the if statement. Then, after the loop is completed, you
can check to see whether the variable is still 1 . If it is, the if statement was never entered, and
the number is prime. Such a variable is often called a flag .

ptg11524036

261Adding else to the if Statement

 Traditionally, C has used the int type for flags, but the new _Bool type matches the require-
ments perfectly. Furthermore, by including the stdbool.h header file, you can use bool
instead of the keyword _Bool for the type and use the identifiers true and false instead of 1
and 0 .

 Listing 7.5 incorporates all these ideas. To extend the range, the program uses type long
instead of type int . (If your system doesn’t support the _Bool type, you can use the int type
for isPrime and use 1 and 0 instead of true and false .)

 Listing 7.5 The divisors.c Program

 // divisors.c -- nested ifs display divisors of a number

 #include <stdio.h>

 #include <stdbool.h>

 int main(void)

 {

 unsigned long num; // number to be checked

 unsigned long div; // potential divisors

 bool isPrime; // prime flag

 printf("Please enter an integer for analysis; ");

 printf("Enter q to quit.\n");

 while (scanf("%lu", &num) == 1)

 {

 for (div = 2, isPrime = true; (div * div) <= num; div++)

 {

 if (num % div == 0)

 {

 if ((div * div) != num)

 printf("%lu is divisible by %lu and %lu.\n",

 num, div, num / div);

 else

 printf("%lu is divisible by %lu.\n",

 num, div);

 isPrime= false; // number is not prime

 }

 }

 if (isPrime)

 printf("%lu is prime.\n", num);

 printf("Please enter another integer for analysis; ");

 printf("Enter q to quit.\n");

 }

 printf("Bye.\n");

 return 0;

 }

ptg11524036

262 Chapter 7 C Control Statements: Branching and Jumps

 Note that the program uses the comma operator in the for loop control expression to enable
you to initialize isPrime to true for each new input number.

 Here’s a sample run:

 Please enter an integer for analysis; Enter q to quit.

 123456789
 123456789 is divisible by 3 and 41152263.

 123456789 is divisible by 9 and 13717421.

 123456789 is divisible by 3607 and 34227.

 123456789 is divisible by 3803 and 32463.

 123456789 is divisible by 10821 and 11409.

 Please enter another integer for analysis; Enter q to quit.

 149
 149 is prime.

 Please enter another integer for analysis; Enter q to quit.

 2013
 2013 is divisible by 3 and 671.

 2013 is divisible by 11 and 183.

 2013 is divisible by 33 and 61.

 Please enter another integer for analysis; Enter q to quit.

 q
 Bye.

 The program will identify 1 as prime, which, technically, it isn’t. The logical operators, coming
up in the next section, would let you exclude 1 from the prime list.

 Summary: Using if Statements for Making Choices

 Keywords:

 if , else

 General Comments:

 In each of the following forms, the statement can be either a simple statement or a compound
statement. A true expression means one with a nonzero value.

 Form 1:

 if (expression)

 statement

 The statement is executed if the expression is true.

 Form 2:

 if (expression)

 statement1

 else

 statement2

ptg11524036

263Let’s Get Logical

 If the expression is true, statement1 is executed. Otherwise, statement2 is executed.

 Form 3:

 if (expression1)

 statement1

 else if (expression2)

 statement2

 else

 statement3

 If expression1 is true, statement1 is executed. If expression1 is false but expression2
is true, statement2 is executed. Otherwise, if both expressions are false, statement3 is
executed.

 Example:

 if (legs == 4)

 printf("It might be a horse.\n");

 else if (legs > 4)

 printf("It is not a horse.\n");

 else /* case of legs < 4 */

 {

 legs++;

 printf("Now it has one more leg.\n");

 }

 Let’s Get Logical

 You’ve seen how if and while statements often use relational expressions as tests. Sometimes
you will find it useful to combine two or more relational expressions. For example, suppose you
want a program that counts how many times the characters other than single or double quotes
appear in an input sentence. You can use logical operators to meet this need, and you can use
the period character (.) to identify the end of a sentence. Listing 7.6 presents a short program
illustrating this method.

 Listing 7.6 The chcount.c Program

 // chcount.c -- use the logical AND operator

 #include <stdio.h>

 #define PERIOD '.'

 int main(void)

 {

 char ch;

 int charcount = 0;

 while ((ch = getchar()) != PERIOD)

ptg11524036

264 Chapter 7 C Control Statements: Branching and Jumps

 {

 if (ch != '"' && ch != '\'')

 charcount++;

 }

 printf("There are %d non-quote characters.\n", charcount);

 return 0;

 }

 The following is a sample run:

 I didn't read the "I'm a Programming Fool" best seller.
 There are 50 non-quote characters.

 The action begins as the program reads a character and checks to see whether it is a period,
because the period marks the end of a sentence. Next comes something new, a statement using
the logical AND operator, && . You can translate the if statement as, “If the character is not a
double quote AND if it is not a single quote, increase charcount by 1.”

 Both conditions must be true if the whole expression is to be true. The logical operators have
a lower precedence than the relational operators, so it is not necessary to use additional paren-
theses to group the subexpressions.

 C has three logical operators:

 Operator Meaning

 && and

 || or

 ! not

 Suppose exp1 and exp2 are two simple relational expressions, such as cat > rat and debt ==
1000 . Then you can state the following:

 ■ exp1 && exp2 is true only if both exp1 and exp2 are true.

 ■ exp1 || exp2 is true if either exp1 or exp2 is true or if both are true.

 ■ !exp1 is true if exp1 is false, and it’s false if exp1 is true.

 Here are some concrete examples:

 5 > 2 && 4 > 7 is false because only one subexpression is true.

 5 > 2 || 4 > 7 is true because at least one of the subexpressions is true.

 !(4 > 7) is true because 4 is not greater than 7 .

ptg11524036

265Let’s Get Logical

 The last expression, incidentally, is equivalent to the following:

 4 <= 7

 If you are unfamiliar or uncomfortable with logical operators, remember that

 (practice && time) == perfection

 Alternate Spellings: The iso646.h Header File

 C was developed in the United States on systems using the standard U.S. keyboards. But in the
wider world, not all keyboards have the same symbols as U.S. keyboards do. Therefore, the C99
standard added alternative spellings for the logical operators. They are defined in the iso646.h
header file. If you use this header file, you can use and instead of && , or instead of || , and not
instead of ! . For example, you can rewrite

 if (ch != '"' && ch != '\'')

 charcount++;

 this way:

 if (ch != '"' and ch != '\'')

 charcount++;

 Table 7.3 lists your choices; they are pretty easy to remember. In fact, you might wonder why
C didn’t simply use the new terms. The answer probably is that C historically has tried to keep
the number of keywords small. Reference Section V, “The Standard ANSI C Library with C99
and C11 Additions,” lists additional alternative spellings for some operators you haven’t met
yet.

 Table 7.3 Alternative Representations of Logical Operators

 Traditional iso646.h

 && and

 || or

 ! not

 Precedence

 The ! operator has a very high precedence—higher than multiplication, the same as the incre-
ment operators, and just below that of parentheses. The && operator has higher precedence
than || , and both rank below the relational operators and above assignment in precedence.
Therefore, the expression

 a > b && b > c || b > d

ptg11524036

266 Chapter 7 C Control Statements: Branching and Jumps

 would be interpreted as

 ((a > b) && (b > c)) || (b > d)

 That is, b is between a and c , or b is greater than d .

 Many programmers would use parentheses, as in the second version, even though they are not
needed. That way, the meaning is clear even if the reader doesn’t quite remember the prece-
dence of the logical operators.

 Order of Evaluation

 Aside from those cases in which two operators share an operand, C ordinarily does not guar-
antee which parts of a complex expression are evaluated first. For example, in the following
statement, the expression 5 + 3 might be evaluated before 9 + 6 , or it might be evaluated
afterward:

 apples = (5 + 3) * (9 + 6);

 This ambiguity was left in the language so that compiler designers could make the most effi-
cient choice for a particular system. One exception to this rule (or lack of rule) is the treatment
of logical operators. C guarantees that logical expressions are evaluated from left to right. The
 && and || operators are sequence points, so all side effects take place before a program moves
from one operand to the next. Furthermore, it guarantees that as soon as an element is found
that invalidates the expression as a whole, the evaluation stops. These guarantees make it possi-
ble to use constructions such as the following:

 while ((c = getchar()) != ' ' && c != '\n')

 This construction sets up a loop that reads characters up to the first space or newline charac-
ter. The first subexpression gives a value to c , which then is used in the second subexpression.
Without the order guarantee, the computer might try to test the second expression before
finding out what value c has.

 Here is another example:

 if (number != 0 && 12/number == 2)

 printf("The number is 5 or 6.\n");

 If number has the value 0 , the first subexpression is false, and the relational expression is not
evaluated any further. This spares the computer the trauma of trying to divide by zero. Many
languages do not have this feature. After seeing that number is 0, they still plunge ahead to
check the next condition.

 Finally, consider this example:

 while (x++ < 10 && x + y < 20)

 The fact that the && operator is a sequence point guarantees that x is incremented before the
expression on the right is evaluated.

ptg11524036

267Let’s Get Logical

 Summary: Logical Operators and Expressions

 Logical Operators:

 Logical operators normally take relational expressions as operands. The ! operator takes one
operand. The rest take two—one to the left, one to the right.

 Operator Meaning

 && and

 || or

 ! not

 Logical Expressions:

 expression1 && expression2 is true if and only if both expressions are true. expression1
|| expression2 is true if either one or both expressions are true. !expression is true if the
expression is false, and vice versa.

 Order of Evaluation:

 Logical expressions are evaluated from left to right. Evaluation stops as soon as something is
discovered that renders the expression false.

 Examples:

 6 > 2 && 3 == 3 True.

 ! (6 > 2 && 3 == 3) False.

 x != 0 && (20 / x) < 5 The second expression is evaluated only if x is nonzero.

 Ranges

 You can use the && operator to test for ranges. For example, to test for score being in the range
90 to 100, you can do this:

 if (range >= 90 && range <= 100)

 printf("Good show!\n");

 It’s important to avoid imitating common mathematical notation, as in the following:

 if (90 <= range <= 100) // NO! Don't do it!

 printf("Good show!\n");

 The problem is that the code is a semantic error, not a syntax error, so the compiler will not
catch it (although it might issue a warning). Because the order of evaluation for the <= operator
is left-to-right, the test expression is interpreted as follows:

 (90 <= range) <= 100

ptg11524036

268 Chapter 7 C Control Statements: Branching and Jumps

 The subexpression 90 <= range either has the value 1 (for true) or 0 (for false). Either value is
less than 100, so the whole expression is always true, regardless of the value of range . So use
 && for testing for ranges.

 A lot of code uses range tests to see whether a character is, say, a lowercase letter. For instance,
suppose ch is a char variable:

 if (ch >= 'a' && ch <= 'z')

 printf("That's a lowercase character.\n");

 This works for character codes such as ASCII, in which the codes for consecutive letters are
consecutive numbers. However, this is not true for some codes, including EBCDIC. The more
portable way of doing this test is to use the islower() function from the ctype.h family (refer
to Table 7.1):

 if (islower(ch))

 printf("That's a lowercase character.\n");

 The islower() function works regardless of the particular character code used. (However, some
ancient implementations lack the ctype.h family.)

 A Word-Count Program

 Now you have the tools to make a word-counting program (that is, a program that reads input
and reports the number of words it finds). You may as well count characters and lines while
you are at it. Let’s see what such a program involves.

 First, the program should read input character-by-character, and it should have some way of
knowing when to stop. Second, it should be able to recognize and count the following units:
characters, lines, and words. Here’s a pseudocode representation:

 read a character

 while there is more input

 increment character count

 if a line has been read, increment line count

 if a word has been read, increment word count

 read next character

 You already have a model for the input loop:

 while ((ch = getchar()) != STOP)

 {

 ...

 }

 Here, STOP represents some value for ch that signals the end of the input. The examples so far
have used the newline character and a period for this purpose, but neither is satisfactory for
a general word-counting program. For the present, choose a character (such as |) that is not

ptg11524036

269A Word-Count Program

common in text. In Chapter 8 , “Character Input/Output and Input Validation,” we’ll present a
better solution that also allows the program to be used with text files as well as keyboard input.

 Now let’s consider the body of the loop. Because the program uses getchar() for input, it
can count characters by incrementing a counter during each loop cycle. To count lines, the
program can check for newline characters. If a character is a newline, the program should incre-
ment the line count. One question to decide is what to do if the STOP character comes in the
middle of a line. Should that count as a line or not? One answer is to count it as a partial line—
that is, a line with characters but no newline. You can identify this case by keeping track of the
previous character read. If the last character read before the STOP character isn’t a newline, you
have a partial line.

 The trickiest part is identifying words. First, you have to define what you mean by a word. Let’s
take a relatively simple approach and define a word as a sequence of characters that contains
no whitespace (that is, no spaces, tabs, or newlines). Therefore, “glymxck” and “r2d2” are
words. A word starts when the program first encounters non-whitespace, and then it ends
when the next whitespace character shows up. Here is the most straightforward test expression
for detecting non-whitespace:

 c != ' ' && c != '\n' && c != '\t' /* true if c is not whitespace */

 And the most straightforward test for detecting whitespace is

 c == ' ' || c == '\n' || c == '\t' /* true if c is whitespace */

 However, it is simpler to use the ctype.h function isspace() , which returns true if its argu-
ment is a whitespace character. So isspace(c) is true if c is whitespace, and !isspace(c) is
true if c isn’t whitespace.

 To keep track of whether a character is in a word, you can set a flag (call it inword) to 1 when
the first character in a word is read. You can also increment the word count at that point.
Then, as long as inword remains 1 (or true), subsequent non-whitespace characters don’t mark
the beginning of a word. At the next whitespace character, you must reset the flag to 0 (or
false) and then the program will be ready to find the next word. Let’s put that into pseudocode:

 if c is not whitespace and inword is false

 set inword to true and count the word

 if c is whitespace and inword is true

 set inword to false

 This approach sets inword to 1 (true) at the beginning of each word and to 0 (false) at the end
of each word. Words are counted only at the time the flag setting is changed from 0 to 1 . If
you have the _Bool type available, you can include the stdbool.h header file and use bool for
the inword type and true and false for the values. Otherwise, use the int type and 1 and 0
as the values.

 If you do use a Boolean variable, the usual idiom is to use the value of the variable itself as a
test condition. That is, use

 if (inword)

ptg11524036

270 Chapter 7 C Control Statements: Branching and Jumps

 instead of

 if (inword == true)

 and use

 if (!inword)

 instead of

 if (inword == false)

 The reasoning is that the expression inword == true evaluates to true if inword is true and
to false if inword is false , so you may as well just use inword as the test. Similarly, !inword
has the same value as the expression inword == false (not true is false , and not false is
 true).

 Listing 7.7 translates these ideas (identifying lines, identifying partial lines, and identifying
words) into C.

 Listing 7.7 The wordcnt.c Program

 // wordcnt.c -- counts characters, words, lines

 #include <stdio.h>

 #include <ctype.h> // for isspace()

 #include <stdbool.h> // for bool, true, false

 #define STOP '|'

 int main(void)

 {

 char c; // read in character

 char prev; // previous character read

 long n_chars = 0L; // number of characters

 int n_lines = 0; // number of lines

 int n_words = 0; // number of words

 int p_lines = 0; // number of partial lines

 bool inword = false; // == true if c is in a word

 printf("Enter text to be analyzed (| to terminate):\n");

 prev = '\n'; // used to identify complete lines

 while ((c = getchar()) != STOP)

 {

 n_chars++; // count characters

 if (c == '\n')

 n_lines++; // count lines

 if (!isspace(c) && !inword)

 {

 inword = true; // starting a new word

 n_words++; // count word

 }

ptg11524036

271The Conditional Operator: ?:

 if (isspace(c) && inword)

 inword = false; // reached end of word

 prev = c; // save character value

 }

 if (prev != '\n')

 p_lines = 1;

 printf("characters = %ld, words = %d, lines = %d, ",

 n_chars, n_words, n_lines);

 printf("partial lines = %d\n", p_lines);

 return 0;

 }

 Here is a sample run:

 Enter text to be analyzed (| to terminate):

 Reason is a
 powerful servant but
 an inadequate master.
 |
 characters = 55, words = 9, lines = 3, partial lines = 0

 The program uses logical operators to translate the pseudocode to C. For example,

 if c is not whitespace and inword is false

 gets translated into the following:

 if (!isspace(c) && !inword)

 Note again that !inword is equivalent to inword == false . The entire test condition
certainly is more readable than testing for each whitespace character individually:

 if (c != ' ' && c != '\n' && c != '\t' && !inword)

 Either form says, “If c is not whitespace and if you are not in a word.” If both conditions are
met, you must be starting a new word, and n_words is incremented. If you are in the middle
of a word, the first condition holds, but inword will be true , and n_words is not incremented.
When you reach the next whitespace character, inword is set equal to false again. Check the
coding to see whether the program gets confused when there are several spaces between one
word and the next. Chapter 8 shows how to modify this program to count words in a file.

 The Conditional Operator: ?:

 C offers a shorthand way to express one form of the if else statement. It is called a condi-
tional expression and uses the ?: conditional operator. This is a two-part operator that has three
operands. Recall that operators with one operand are called unary operators and that operators

ptg11524036

272 Chapter 7 C Control Statements: Branching and Jumps

with two operands are called binary operators. In that tradition, operators with three operands
are called ternary operators, and the conditional operator is C’s only example in that category.
Here is an example that yields the absolute value of a number:

 x = (y < 0) ? -y : y;

 Everything between the = and the semicolon is the conditional expression. The meaning of the
statement is “If y is less than zero, x = -y ; otherwise, x = y .” In if else terms, the meaning
can be expressed as follows:

 if (y < 0)

 x = -y;

 else

 x = y;

 The following is the general form of the conditional expression:

 expression1 ? expression2 : expression3

 If expression1 is true (nonzero), the whole conditional expression has the same value as
 expression2 . If expression1 is false (zero), the whole conditional expression has the same
value as expression3 .

 You can use the conditional expression when you have a variable to which you want to assign
one of two possible values. A typical example is setting a variable equal to the maximum of two
values:

 max = (a > b) ? a : b;

 This sets max to a if it is greater than b , and to b otherwise.

 Usually, an if else statement can accomplish the same thing as the conditional operator. The
conditional operator version, however, is more compact and, depending on the compiler, may
result in more compact program code.

 Let’s look at a paint program example, shown in Listing 7.8 . The program calculates how many
cans of paint are needed to paint a given number of square feet. The basic algorithm is simple:
Divide the square footage by the number of square feet covered per can. However, suppose the
answer is 1.7 cans. Stores sell whole cans, not fractional cans, so you would have to buy two
cans. Therefore, the program should round up to the next integer when a fractional paint can
is involved. The conditional operator is used to handle that situation, and it’s also used to
print cans or can , as appropriate.

 Listing 7.8 The paint.c Program

 /* paint.c -- uses conditional operator */

 #include <stdio.h>

 #define COVERAGE 350 // square feet per paint can

 int main(void)

 {

ptg11524036

273The Conditional Operator: ?:

 int sq_feet;

 int cans;

 printf("Enter number of square feet to be painted:\n");

 while (scanf("%d", &sq_feet) == 1)

 {

 cans = sq_feet / COVERAGE;

 cans += ((sq_feet % COVERAGE == 0)) ? 0 : 1;

 printf("You need %d %s of paint.\n", cans,

 cans == 1 ? "can" : "cans");

 printf("Enter next value (q to quit):\n");

 }

 return 0;

 }

 Here’s a sample run:

 Enter number of square feet to be painted:

 349
 You need 1 can of paint.

 Enter next value (q to quit):

 351
 You need 2 cans of paint.

 Enter next value (q to quit):

 q

 Because the program is using type int , the division is truncated; that is, 351/350 becomes 1 .
Therefore, cans is rounded down to the integer part. If sq_feet % COVERAGE is 0, COVERAGE
divides evenly into sq_feet and cans is left unchanged. Otherwise, there is a remainder, so 1
is added. This is accomplished with the following statement:

 cans += ((sq_feet % COVERAGE == 0)) ? 0 : 1;

 It adds the value of the expression to the right of += to cans . The expression to the right is
a conditional expression having the value 0 or 1 , depending on whether COVERAGE divides
evenly into sq_feet .

 The final argument to the printf() function is also a conditional expression:

 cans == 1 ? "can" : "cans");

 If the value of cans is 1 , the string "can" is used. Otherwise, "cans" is used. This demonstrates
that the conditional operator can use strings for its second and third operands.

ptg11524036

274 Chapter 7 C Control Statements: Branching and Jumps

 Summary: The Conditional Operator

 The Conditional Operator:

 ?:

 General Comments:

 This operator takes three operands, each of which is an expression. They are arranged as fol-
lows:

 expression1 ? expression2 : expression3

 The value of the whole expression equals the value of expression2 if expression1 is true.
Otherwise, it equals the value of expression3 .

 Examples:

 (5 > 3) ? 1 : 2 has the value 1 .

 (3 > 5) ? 1 : 2 has the value 2 .

 (a > b) ? a : b has the value of the larger of a or b .

 Loop Aids: continue and break

 Normally, after the body of a loop has been entered, a program executes all the statements in
the body before doing the next loop test. The continue and break statements enable you to
skip part of a loop or even terminate it, depending on tests made in the body of the loop.

 The continue Statement

 This statement can be used in the three loop forms. When encountered, it causes the rest of an
iteration to be skipped and the next iteration to be started. If the continue statement is inside
nested structures, it affects only the innermost structure containing it. Let’s try continue in
the short program in Listing 7.9 .

 Listing 7.9 The skippart.c Program

 /* skippart.c -- uses continue to skip part of loop */

 #include <stdio.h>

 int main(void)

 {

 const float MIN = 0.0f;

 const float MAX = 100.0f;

 float score;

 float total = 0.0f;

 int n = 0;

 float min = MAX;

ptg11524036

275Loop Aids: continue and break

 float max = MIN;

 printf("Enter the first score (q to quit): ");

 while (scanf("%f", &score) == 1)

 {

 if (score < MIN || score > MAX)

 {

 printf("%0.1f is an invalid value. Try again: ",

 score);

 continue; // jumps to while loop test condition

 }

 printf("Accepting %0.1f:\n", score);

 min = (score < min)? score: min;

 max = (score > max)? score: max;

 total += score;

 n++;

 printf("Enter next score (q to quit): ");

 }

 if (n > 0)

 {

 printf("Average of %d scores is %0.1f.\n", n, total / n);

 printf("Low = %0.1f, high = %0.1f\n", min, max);

 }

 else

 printf("No valid scores were entered.\n");

 return 0;

 }

 In Listing 7.9 , the while loop reads input until you enter nonnumeric data. The if statement
within the loop screens out invalid score values. If, say, you enter 188 , the program tells you
 188 is an invalid value . Then the continue statement causes the program to skip over
the rest of the loop, which is devoted to processing valid input. Instead, the program starts the
next loop cycle by attempting to read the next input value.

 Note that there are two ways you could have avoided using continue . One way is omitting the
 continue and making the remaining part of the loop an else block:

 if (score < 0 || score > 100)

 /* printf() statement */

 else

 {

 /* statements */

 }

 Alternatively, you could have used this format instead:

 if (score >= 0 && score <= 100)

 {

ptg11524036

276 Chapter 7 C Control Statements: Branching and Jumps

 /* statements */

 }

 An advantage of using continue in this case is that you can eliminate one level of indentation
in the main group of statements. Being concise can enhance readability when the statements
are long or are deeply nested already.

 Another use for continue is as a placeholder. For example, the following loop reads and
discards input up to, and including, the end of a line:

 while (getchar() != '\n')

 ;

 Such a technique is handy when a program has already read some input from a line and needs
to skip to the beginning of the next line. The problem is that the lone semicolon is hard to
spot. The code is much more readable if you use continue :

 while (getchar() != '\n')

 continue;

 Don’t use continue if it complicates rather than simplifies the code. Consider the following
fragment, for example:

 while ((ch = getchar()) != '\n')

 {

 if (ch == '\t')

 continue;

 putchar(ch);

 }

 This loop skips over the tabs and quits only when a newline character is encountered. The loop
could have been expressed more economically as this:

 while ((ch = getchar()) != '\n')

 if (ch != '\t')

 putchar(ch);

 Often, as in this case, reversing an if test eliminates the need for a continue .

 You’ve seen that the continue statement causes the remaining body of a loop to be skipped.
Where exactly does the loop resume? For the while and do while loops, the next action taken
after the continue statement is to evaluate the loop test expression. Consider the following
loop, for example:

 count = 0;

 while (count < 10)

 {

 ch = getchar();

 if (ch == '\n')

ptg11524036

277Loop Aids: continue and break

 continue;

 putchar(ch);

 count++;

 }

 It reads 10 characters (excluding newlines, because the count++; statement gets skipped when
 ch is a newline) and echoes them, except for newlines. When the continue statement is
executed, the next expression evaluated is the loop test condition.

 For a for loop, the next actions are to evaluate the update expression and then the loop test
expression. Consider the following loop, for example:

 for (count = 0; count < 10; count++)

 {

 ch = getchar();

 if (ch == '\n')

 continue;

 putchar(ch);

 }

 In this case, when the continue statement is executed, first count is incremented and then it’s
compared to 10 . Therefore, this loop behaves slightly differently from the while example. As
before, only non-newline characters are displayed. However, this time, newline characters are
included in the count, so it reads 10 characters, including newlines.

 The break Statement

 A break statement in a loop causes the program to break free of the loop that encloses it and
to proceed to the next stage of the program. In Listing 7.9 , replacing continue with break
would cause the loop to quit when, say, 188 is entered, instead of just skipping to the next
loop cycle. Figure 7.3 compares break and continue . If the break statement is inside nested
loops, it affects only the innermost loop containing it.

 Sometimes break is used to leave a loop when there are two separate reasons to leave. Listing
 7.10 uses a loop that calculates the area of a rectangle. The loop terminates if you respond with
nonnumeric input for the rectangle’s length or width.

 Listing 7.10 The break.c Program

 /* break.c -- uses break to exit a loop */

 #include <stdio.h>

 int main(void)

 {

 float length, width;

 printf("Enter the length of the rectangle:\n");

 while (scanf("%f", &length) == 1)

ptg11524036

278 Chapter 7 C Control Statements: Branching and Jumps

 {

 printf("Length = %0.2f:\n", length);

 printf("Enter its width:\n");

 if (scanf("%f", &width) != 1)

 break;

 printf("Width = %0.2f:\n", width);

 printf("Area = %0.2f:\n", length * width);

 printf("Enter the length of the rectangle:\n");

 }

 printf("Done.\n");

 return 0;

 }

while ((ch = getchar()) !=EOF)

{

 blahblah(ch);

 if (ch == '\n')

 break;

 yakyak(ch);

}

blunder(n,m);

while ((ch = getchar()) !=EOF)

{

 blahblah(ch);

 if (ch == '\n')

 continue;

 yakyak(ch);

}

blunder(n,m);

 Figure 7.3 Comparing break and continue .

ptg11524036

279Loop Aids: continue and break

 You could have controlled the loop this way:

 while (scanf("%f %f", &length, &width) == 2)

 However, using break makes it simple to echo each input value individually.

 As with continue , don’t use break when it complicates code. For example, consider the
following loop:

 while ((ch = getchar()) != '\n')

 {

 if (ch == '\t')

 break;

 putchar(ch);

 }

 The logic is clearer if both tests are in the same place:

 while ((ch = getchar()) != '\n' && ch != '\t')

 putchar(ch);

 The break statement is an essential adjunct to the switch statement, which is coming up next.

 A break statement takes execution directly to the first statement following the loop; unlike the
case for continue in a for loop, the update part of the control section is skipped. A break in a
nested loop just takes the program out of the inner loop; to get out of the outer loop requires a
second break :

 int p, q;

 scanf("%d", &p);

 while (p > 0)

 {

 printf("%d\n", p);

 scanf("%d", &q);

 while(q > 0)

 {

 printf("%d\n",p*q);

 if (q > 100)

 break; // break from inner loop

 scanf("%d", &q);

 }

 if (q > 100)

 break; // break from outer loop

 scanf("%d", &p);

 }

ptg11524036

280 Chapter 7 C Control Statements: Branching and Jumps

 Multiple Choice: switch and break

 The conditional operator and the if else construction make it easy to write programs that
choose between two alternatives. Sometimes, however, a program needs to choose one of
several alternatives. You can do this by using if else if...else . However, in many cases, it
is more convenient to use the C switch statement. Listing 7.11 shows how the switch state-
ment works. This program reads in a letter and then responds by printing an animal name that
begins with that letter.

 Listing 7.11 The animals.c Program

 /* animals.c -- uses a switch statement */

 #include <stdio.h>

 #include <ctype.h>

 int main(void)

 {

 char ch;

 printf("Give me a letter of the alphabet, and I will give ");

 printf("an animal name\nbeginning with that letter.\n");

 printf("Please type in a letter; type # to end my act.\n");

 while ((ch = getchar()) != '#')

 {

 if('\n' == ch)

 continue;

 if (islower(ch)) /* lowercase only */

 switch (ch)

 {

 case 'a' :

 printf("argali, a wild sheep of Asia\n");

 break;

 case 'b' :

 printf("babirusa, a wild pig of Malay\n");

 break;

 case 'c' :

 printf("coati, racoonlike mammal\n");

 break;

 case 'd' :

 printf("desman, aquatic, molelike critter\n");

 break;

 case 'e' :

 printf("echidna, the spiny anteater\n");

 break;

 case 'f' :

 printf("fisher, brownish marten\n");

 break;

ptg11524036

281Multiple Choice: switch and break

 default :

 printf("That's a stumper!\n");

 } /* end of switch */

 else

 printf("I recognize only lowercase letters.\n");

 while (getchar() != '\n')

 continue; /* skip rest of input line */

 printf("Please type another letter or a #.\n");

 } /* while loop end */

 printf("Bye!\n");

 return 0;

 }

 We got a little lazy and stopped at f , but we could have continued in the same manner. Let’s
look at a sample run before explaining the program further:

 Give me a letter of the alphabet, and I will give an animal name

 beginning with that letter.

 Please type in a letter; type # to end my act.

 a [enter]
 argali, a wild sheep of Asia

 Please type another letter or a #.

 dab [enter]
 desman, aquatic, molelike critter

 Please type another letter or a #.

 r [enter]
 That's a stumper!

 Please type another letter or a #.

 Q [enter]
 I recognize only lowercase letters.

 Please type another letter or a #.

 # [enter]
 Bye!

 The program’s two main features are its use of the switch statement and its handling of input.
We’ll look first at how switch works.

 Using the switch Statement

 The expression in the parentheses following the word switch is evaluated. In this case, it has
whatever value you last entered for ch . Then the program scans the list of labels (here, case
'a' : , case 'b' : , and so on) until it finds one matching that value. The program then
jumps to that line. What if there is no match? If there is a line labeled default : , the program
jumps there. Otherwise, the program proceeds to the statement following the switch .

ptg11524036

282 Chapter 7 C Control Statements: Branching and Jumps

 What about the break statement? It causes the program to break out of the switch and skip to
the next statement after the switch (see Figure 7.4). Without the break statement, every state-
ment from the matched label to the end of the switch would be processed. For example, if you
removed all the break statements from the program and then ran the program using the letter
 d , you would get this exchange:

 Give me a letter of the alphabet, and I will give an animal name

 beginning with that letter.

 Please type in a letter; type # to end my act.

 d [enter]
 desman, aquatic, molelike critter

 echidna, the spiny anteater

 fisher, a brownish marten

 That's a stumper!

 Please type another letter or a #.

 # [enter]
 Bye!

switch(number)

{

case 1: statement 1;

 break;

case 2: statement 2;

 break;

case 3: statement 3;

 break

default: statement 4;

}

statement 5;

switch(number)

{

case 1: statement 1;

case 2: statement 2;

case 3: statement 3;

default: statement 4;

}

statement 5;

 Figure 7.4 Program flow in switch es, with and without break s.

ptg11524036

283Multiple Choice: switch and break

 All the statements from case 'd' : to the end of the switch were executed.

 Incidentally, a break statement works with loops and with switch , but continue works just
with loops. However, continue can be used as part of a switch statement if the statement is in
a loop. In that situation, as with other loops, continue causes the program to skip over the rest
of the loop, including other parts of the switch .

 If you are familiar with Pascal, you will recognize the switch statement as being similar to the
Pascal case statement. The most important difference is that the switch statement requires
the use of a break if you want only the labeled statement to be processed. Also, you can’t use a
range as a C case.

 The switch test expression in the parentheses should be one with an integer value (including
type char). The case labels must be integer-type (including char) constants or integer constant
expressions (expressions containing only integer constants). You can’t use a variable for a case
label. Here, then, is the structure of a switch :

 switch (integer expression)

 {

 case constant1 :

 statements <--optional

 case constant2 :

 statements <--optional

 default : <--optional

 statements <--optional

 }

 Reading Only the First Character of a Line

 The other new feature incorporated into animals.c is how it reads input. As you might have
noticed in the sample run, when dab was entered, only the first character was processed. This
behavior of disposing of the rest of the line is often desirable in interactive programs looking
for single-character responses. The following code produced this behavior:

 while (getchar() != '\n')

 continue; /* skip rest of input line */

 This loop reads characters from input up to and including the newline character generated by
the Enter key. Note that the function return value is not assigned to ch , so the characters are
merely read and discarded. Because the last character discarded is the newline character, the
next character to be read is the first character of the next line. It gets read by getchar() and
assigned to ch in the outer while loop.

 Suppose a user starts out by pressing Enter so that the first character encountered is a newline.
The following code takes care of that possibility:

 if (ch == '\n')

 continue;

ptg11524036

284 Chapter 7 C Control Statements: Branching and Jumps

 Multiple Labels

 You can use multiple case labels for a given statement, as shown in Listing 7.12 .

 Listing 7.12 The vowels.c Program

 // vowels.c -- uses multiple labels

 #include <stdio.h>

 int main(void)

 {

 char ch;

 int a_ct, e_ct, i_ct, o_ct, u_ct;

 a_ct = e_ct = i_ct = o_ct = u_ct = 0;

 printf("Enter some text; enter # to quit.\n");

 while ((ch = getchar()) != '#')

 {

 switch (ch)

 {

 case 'a' :

 case 'A' : a_ct++;

 break;

 case 'e' :

 case 'E' : e_ct++;

 break;

 case 'i' :

 case 'I' : i_ct++;

 break;

 case 'o' :

 case 'O' : o_ct++;

 break;

 case 'u' :

 case 'U' : u_ct++;

 break;

 default : break;

 } // end of switch

 } // while loop end

 printf("number of vowels: A E I O U\n");

 printf(" %4d %4d %4d %4d %4d\n",

 a_ct, e_ct, i_ct, o_ct, u_ct);

 return 0;

 }

ptg11524036

285Multiple Choice: switch and break

 If ch is, say, the letter i , the switch statement goes to the location labeled case 'i' : .
Because there is no break associated with that label, program flow goes to the next statement,
which is i_ct++; . If ch is I , program flow goes directly to that statement. In essence, both
labels refer to the same statement.

 Strictly speaking, the break statement for case 'U' isn’t needed, because in its absence,
program flow goes to the next statement in the switch , which is the break for the default
case. So the case 'U' break could be dropped, thus shortening the code. On the other hand, if
other cases might be added later (you might want to count the letter y as a sometimes vowel),
having the break already in place protects you from forgetting to add one.

 Here’s a sample run:

 Enter some text; enter # to quit.

 I see under the overseer.#
 number of vowels: A E I O U

 0 7 1 1 1

 In this particular case, you can avoid multiple labels by using the toupper() function from the
 ctype.h family (refer to Table 7.2) to convert all letters to uppercase before testing:

 while ((ch = getchar()) != '#')

 {

 ch = toupper(ch);

 switch (ch)

 {

 case 'A' : a_ct++;

 break;

 case 'E' : e_ct++;

 break;

 case 'I' : i_ct++;

 break;

 case 'O' : o_ct++;

 break;

 case 'U' : u_ct++;

 break;

 default : break;

 } // end of switch

 } // while loop end

 Or, if you want to, you could leave ch unchanged and use toupper(ch) as the test condition:

 switch(toupper(ch))

ptg11524036

286 Chapter 7 C Control Statements: Branching and Jumps

 Summary: Multiple Choice with switch
 Keyword:

 switch

 General Comments:

 Program control jumps to the case label bearing the value of expression . Program flow then
proceeds through all the remaining statements unless redirected again with a break state-
ment. Both expression and case labels must have integer values (type char is included),
and the labels must be constants or expressions formed solely from constants. If no case
label matches the expression value, control goes to the statement labeled default , if present.
Otherwise, control passes to the next statement following the switch statement.

 Form:

 switch (expression)

 {

 case label1 : statement1 // use break to skip to end

 case label2 : statement2

 default : statement3

 }

 There can be more than two labeled statements, and the default case is optional.

 Example:

 switch (choice)

 {

 case 1 :

 case 2 : printf("Darn tootin'!\n"); break;

 case 3 : printf("Quite right!\n");

 case 4 : printf("Good show!\n"); break;

 default : printf("Have a nice day.\n");

 }

 If choice has the integer value 1 or 2 , the first message is printed. If it is 3 , the second and
third messages are printed. (Flow continues to the following statement because there is no
 break statement after case 3 .) If it is 4 , the third message is printed. Other values print only
the last message.

 switch and if else

 When should you use a switch and when should you use the if else construction? Often
you don’t have a choice. You can’t use a switch if your choice is based on evaluating a float-
ing-point variable or expression. Nor can you conveniently use a switch if a variable must fall
into a certain range. It is simple to write the following:

 if (integer < 1000 && integer > 2)

ptg11524036

287The goto Statement

 Unhappily, covering this range with a switch would involve setting up case labels for each
integer from 3 to 999. However, if you can use a switch , your program often runs a little faster
and takes less code.

 The goto Statement

 The goto statement, bulwark of the older versions of BASIC and FORTRAN, is available in C.
However, C, unlike those two languages, can get along quite well without it. Kernighan and
Ritchie refer to the goto statement as “infinitely abusable” and suggest that it “be used spar-
ingly, if at all.” First, we will show you how to use goto . Then, we will show why you usually
don’t need to.

 The goto statement has two parts—the goto and a label name. The label is named following
the same convention used in naming a variable, as in this example:

 goto part2;

 For the preceding statement to work, the function must contain another statement bearing the
 part2 label. This is done by beginning a statement with the label name followed by a colon:

 part2: printf("Refined analysis:\n");

 Avoiding goto

 In principle, you never need to use the goto statement in a C program, but if you have a
background in older versions of FORTRAN or BASIC, both of which require its use, you might
have developed programming habits that depend on using goto . To help you get over that
dependence, we will outline some familiar goto situations and then show you a more C-like
approach:

 ■ Handling an if situation that requires more than one statement:

 if (size > 12)

 goto a;

 goto b;

 a: cost = cost * 1.05;

 flag = 2;

 b: bill = cost * flag;

 In old-style BASIC and FORTRAN, only the single statement immediately following
the if condition is attached to the if . No provision is made for blocks or compound
statements. We have translated that pattern into the equivalent C. The standard C
approach of using a compound statement or block is much easier to follow:

 if (size > 12)

 {

 cost = cost * 1.05;

 flag = 2;

ptg11524036

288 Chapter 7 C Control Statements: Branching and Jumps

 }

 bill = cost * flag;

 ■ Choosing from two alternatives:

 if (ibex > 14)

 goto a;

 sheds = 2;

 goto b;

 a: sheds= 3;

 b: help = 2 * sheds;

 Having the if else structure available allows C to express this choice more cleanly:

 if (ibex > 14)

 sheds = 3;

 else

 sheds = 2;

 help = 2 * sheds;

 Indeed, newer versions of BASIC and FORTRAN have incorporated else into their
syntax.

 ■ Setting up an indefinite loop:

 readin: scanf("%d", &score);

 if (score < O)

 goto stage2;

 lots of statements

 goto readin;

 stage2: more stuff;

 Use a while loop instead:

 scanf("%d", &score);

 while (score <= 0)

 {

 lots of statements

 scanf("%d", &score);

 }

 more stuff;

 ■ Skipping to the end of a loop and starting the next cycle. Use continue instead.

 ■ Leaving a loop. Use break instead. Actually, break and continue are specialized forms
of goto . The advantages of using them are that their names tell you what they are
supposed to do and that, because they don’t use labels, there is no danger of putting a
label in the wrong place.

 ■ Leaping madly about to different parts of a program. In a word, don’t!

ptg11524036

289The goto Statement

 There is a use of goto tolerated by many C practitioners—getting out of a nested set of loops if
trouble shows up (a single break gets you out of the innermost loop only):

 while (funct > 0)

 {

 for (i = 1, i <= 100; i++)

 {

 for (j = 1; j <= 50; j++)

 {

 statements galore;

 if (bit trouble)

 goto help;

 statements;

 }

 more statements;

 }

 yet more statements;

 }

 and more statements;

 help : bail out;

 As you can see from the other examples, the alternative forms are clearer than the goto forms.
This difference grows even greater when you mix several of these situations. Which goto s are
helping if s, which are simulating if else s, which are controlling loops, which are just there
because you have programmed yourself into a corner? By using goto s excessively, you create a
labyrinth of program flow. If you aren’t familiar with goto s, keep it that way. If you are used to
using them, try to train yourself not to. Ironically, C, which doesn’t need a goto , has a better
 goto than most languages because it enables you to use descriptive words for labels instead of
numbers.

 Summary: Program Jumps

 Keywords:

 break , continue , goto

 General Comments:

 These three instructions cause program flow to jump from one location of a program to another
location.

 The break Command:

 The break command can be used with any of the three loop forms and with the switch state-
ment. It causes program control to skip the rest of the loop or the switch containing it and to
resume with the next command following the loop or switch .

 Example:

 switch (number)

 {

 case 4: printf("That's a good choice.\n");

ptg11524036

290 Chapter 7 C Control Statements: Branching and Jumps

 break;

 case 5: printf("That's a fair choice.\n");

 break;

 default: printf("That's a poor choice.\n");

 }

 The continue Command:

 The continue command can be used with any of the three loop forms but not with a switch .
It causes program control to skip the remaining statements in a loop. For a while or for loop,
the next loop cycle is started. For a do while loop, the exit condition is tested and then, if
necessary, the next loop cycle is started.

 Example:

 while ((ch = getchar()) != '\n')

 {

 if (ch == ' ')

 continue;

 putchar(ch);

 chcount++;

 }

 This fragment echoes and counts non-space characters.

 The goto Command:

 A goto statement causes program control to jump to a statement bearing the indicated label. A
colon is used to separate a labeled statement from its label. Label names follow the rules for
variable names. The labeled statement can come either before or after the goto .

 Form:

 goto label ;

 .

 .

 .

 label : statement

 Example:

 top : ch = getchar();

 .

 .

 .

 if (ch != 'y')

 goto top;

ptg11524036

291Summary

 Key Concepts

 One aspect of intelligence is the ability to adjust one’s responses to the circumstances.
Therefore, selection statements are the foundation for developing programs that behave intel-
ligently. In C, the if , if else , and switch statements, along with the conditional operator
(?:), implement selection.

 The if and if else statements use a test condition to determine which statements are
executed. Any nonzero value is treated as true , whereas zero is treated as false . Typically,
tests involve relational expressions, which compare two values, and logical expressions, which
use logical operators to combine or modify other expressions.

 One general principle to keep in mind is that if you want to test for two conditions, you should
use a logical operator together with two complete test expressions. For instance, the following
two attempts are faulty:

 if (a < x < z) // wrong --no logical operator

 ...

 if (ch != 'q' && != 'Q') // wrong -- missing a complete test

 ...

 Remember, the correct way is to join two relational expressions with a logical operator:

 if (a < x && x < z) // use && to combine two expressions

 ...

 if (ch != 'q' && ch != 'Q') // use && to combine two expressions

 ...

 The control statements presented in these last two chapters will enable you to tackle programs
that are much more powerful and ambitious than those you worked with before. For evidence,
just compare some of the examples in these chapters to those of the earlier chapters.

 Summary

 This chapter has presented quite a few topics to review, so let’s get to it. The if statement uses
a test condition to control whether a program executes the single simple statement or block
following the test condition. Execution occurs if the test expression has a nonzero value and
doesn’t occur if the value is zero. The if else statement enables you to select from two alter-
natives. If the test condition is nonzero, the statement before the else is executed. If the test
expression evaluates to zero, the statement following the else is executed. By using another if
statement to immediately follow the else , you can set up a structure that chooses between a
series of alternatives.

 The test condition is often a relational expression —that is, an expression formed by using one of
the relational operators, such as < or == . By using C’s logical operators, you can combine rela-
tional expressions to create more complex tests.

ptg11524036

292 Chapter 7 C Control Statements: Branching and Jumps

 The conditional operator (? :) creates an expression that, in many cases, provides a more
compact alternative to an if else statement.

 The ctype.h family of character functions, such as isspace() and isalpha() , offers conve-
nient tools for creating test expressions based on classifying characters.

 The switch statement enables you to select from a series of statements labeled with integer
values. If the integer value of the test condition following the switch keyword matches a label,
execution goes to the statement bearing that label. Execution then proceeds through the state-
ments following the labeled statement unless you use a break statement.

 Finally, break , continue , and goto are jump statements that cause program flow to jump to
another location in the program. A break statement causes the program to jump to the next
statement following the end of the loop or switch containing the break . The continue state-
ment causes the program to skip the rest of the containing loop and to start the next cycle.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. Determine which expressions are true and which are false .

 a. 100 > 3 && 'a'>'c'

 b. 100 > 3 || 'a'>'c'

 c. !(100>3)

 2. Construct an expression to express the following conditions:

 a. number is equal to or greater than 90 but smaller than 100.

 b. ch is not a q or a k character.

 c. number is between 1 and 9 (including the end values) but is not a 5.

 d. number is not between 1 and 9.

 3. The following program has unnecessarily complex relational expressions as well as some
outright errors. Simplify and correct it.

 #include <stdio.h>

 int main(void) /* 1 */

 { /* 2 */

 int weight, height; /* weight in lbs, height in inches */

 /* 4 */

 scanf("%d , weight, height); /* 5 */

 if (weight < 100 && height > 64) /* 6 */

 if (height >= 72) /* 7 */

 printf("You are very tall for your weight.\n");

ptg11524036

293Review Questions

 else if (height < 72 && > 64) /* 9 */

 printf("You are tall for your weight.\n"); /* 10 */

 else if (weight > 300 && ! (weight <= 300) /* 11 */

 && height < 48) /* 12 */

 if (!(height >= 48)) /* 13 */

 printf(" You are quite short for your weight.\n");

 else /* 15 */

 printf("Your weight is ideal.\n"); /* 16 */

 /* 17 */

 return 0;

 }

 4. What is the numerical value of each of the following expressions?

 a. 5 > 2

 b. 3 + 4 > 2 && 3 < 2

 c. x >= y || y > x

 d. d = 5 + (6 > 2)

 e. 'X' > 'T' ? 10 : 5

 f. x > y ? y > x : x > y

 5. What will the following program print?

 #include <stdio.h>

 int main(void)

 {

 int num;

 for (num = 1; num <= 11; num++)

 {

 if (num % 3 == 0)

 putchar('$');

 else

 putchar('*');

 putchar('#');

 putchar('%');

 }

 putchar('\n');

 return 0;

 }

 6. What will the following program print?

 #include <stdio.h>

 int main(void)

ptg11524036

294 Chapter 7 C Control Statements: Branching and Jumps

 {

 int i = 0;

 while (i < 3) {

 switch(i++) {

 case 0 : printf("fat ");

 case 1 : printf("hat ");

 case 2 : printf("cat ");

 default: printf("Oh no!");

 }

 putchar('\n');

 }

 return 0;

 }

 7. What’s wrong with this program?

 #include <stdio.h>

 int main(void)

 {

 char ch;

 int lc = 0; /* lowercase char count

 int uc = 0; /* uppercase char count

 int oc = 0; /* other char count

 while ((ch = getchar()) != '#')

 {

 if ('a' <= ch >= 'z')

 lc++;

 else if (!(ch < 'A') || !(ch > 'Z')

 uc++;

 oc++;

 }

 printf(%d lowercase, %d uppercase, %d other, lc, uc, oc);

 return 0;

 }

 8. What will the following program print?

 /* retire.c */

 #include <stdio.h>

 int main(void)

 {

 int age = 20;

ptg11524036

295Review Questions

 while (age++ <= 65)

 {

 if ((age % 20) == 0) /* is age divisible by 20? */

 printf("You are %d. Here is a raise.\n", age);

 if (age = 65)

 printf("You are %d. Here is your gold watch.\n", age);

 }

 return 0;

 }

 9. What will the following program print when given this input?

 q

 c

 h

 b

 #include <stdio.h>

 int main(void)

 {

 char ch;

 while ((ch = getchar()) != '#')

 {

 if (ch == '\n')

 continue;

 printf("Step 1\n");

 if (ch == 'c')

 continue;

 else if (ch == 'b')

 break;

 else if (ch == 'h')

 goto laststep;

 printf("Step 2\n");

 laststep: printf("Step 3\n");

 }

 printf("Done\n");

 return 0;

 }

 10. Rewrite the program in Review Question 9 so that it exhibits the same behavior but does
not use a continue or a goto .

ptg11524036

296 Chapter 7 C Control Statements: Branching and Jumps

 Programming Exercises

 1. Write a program that reads input until encountering the # character and then reports
the number of spaces read, the number of newline characters read, and the number of all
other characters read.

 2. Write a program that reads input until encountering # . Have the program print each
input character and its ASCII decimal code. Print eight character-code pairs per line.
Suggestion: Use a character count and the modulus operator (%) to print a newline
character for every eight cycles of the loop.

 3. Write a program that reads integers until 0 is entered. After input terminates, the
program should report the total number of even integers (excluding the 0) entered, the
average value of the even integers, the total number of odd integers entered, and the
average value of the odd integers.

 4. Using if else statements, write a program that reads input up to # , replaces each period
with an exclamation mark, replaces each exclamation mark initially present with two
exclamation marks, and reports at the end the number of substitutions it has made.

 5. Redo exercise 4 using a switch .

 6. Write a program that reads input up to # and reports the number of times that the
sequence ei occurs.

 Note

 The program will have to “remember” the preceding character as well as the current character.
Test it with input such as “Receive your eieio award.”

 7. Write a program that requests the hours worked in a week and then prints the gross pay,
the taxes, and the net pay. Assume the following:

 a. Basic pay rate = $10.00/hr

 b. Overtime (in excess of 40 hours) = time and a half

 c. Tax rate: #15% of the first $300

 20% of the next $150

 25% of the rest

 Use #define constants, and don’t worry if the example does not conform to current
tax law.

ptg11524036

297Programming Exercises

 8. Modify assumption a. in exercise 7 so that the program presents a menu of pay rates
from which to choose. Use a switch to select the pay rate. The beginning of a run
should look something like this:

 Enter the number corresponding to the desired pay rate or action:

 1) $8.75/hr 2) $9.33/hr

 3) $10.00/hr 4) $11.20/hr

 5) quit

 If choices 1 through 4 are selected, the program should request the hours worked. The
program should recycle until 5 is entered. If something other than choices 1 through 5
is entered, the program should remind the user what the proper choices are and then
recycle. Use #defined constants for the various earning rates and tax rates.

 9. Write a program that accepts a positive integer as input and then displays all the prime
numbers smaller than or equal to that number.

 10. The 1988 United States Federal Tax Schedule was the simplest in recent times. It had
four categories, and each category had two rates. Here is a summary (dollar amounts are
taxable income):

 Category Tax

 Single 15% of first $17,850 plus 28% of excess

 Head of Household 15% of first $23,900 plus 28% of excess

 Married, Joint 15% of first $29,750 plus 28% of excess

 Married, Separate 15% of first $14,875 plus 28% of excess

 For example, a single wage earner with a taxable income of $20,000 owes 0.15 × $17,850
+ 0.28 × ($20,000−$17,850). Write a program that lets the user specify the tax category
and the taxable income and that then calculates the tax. Use a loop so that the user can
enter several tax cases.

 11. The ABC Mail Order Grocery sells artichokes for $2.05 per pound, beets for $1.15 per
pound, and carrots for $1.09 per pound. It gives a 5% discount for orders of $100 or
more prior to adding shipping costs. It charges $6.50 shipping and handling for any
order of 5 pounds or under, $14.00 shipping and handling for orders over 5 pounds
and under 20 pounds, and $14.00 plus $0.50 per pound for shipments of 20 pounds or
more. Write a program that uses a switch statement in a loop such that a response of a
lets the user enter the pounds of artichokes desired, b the pounds of beets, c the pounds
of carrots, and q allows the user to exit the ordering process. The program should keep
track of cumulative totals. That is, if the user enters 4 pounds of beets and later enters
5 pounds of beets, the program should use report 9 pounds of beets. The program then

ptg11524036

298 Chapter 7 C Control Statements: Branching and Jumps

should compute the total charges, the discount, if any, the shipping charges, and the
grand total. The program then should display all the purchase information: the cost per
pound, the pounds ordered, and the cost for that order for each vegetable, the total cost
of the order, the discount (if there is one), the shipping charge, and the grand total of all
the charges.

ptg11524036

 8
 Character Input/Output and

Input Validation

 You will learn about the following in this chapter:

 ■ More about input, output, and the differences between buffered and unbuffered input

 ■ How to simulate the end-of-file condition from the keyboard

 ■ How to use redirection to connect your programs to files

 ■ Making the user interface friendlier

 In the computing world, we use the words input and output in several ways. We speak of input
and output devices, such as keyboards, USB drives, scanners, and laser printers. We talk about
the data used for input and output. We discuss the functions that perform input and output.
This chapter concentrates on the functions used for input and output (or I/O , for short).

 I/O functions transport information to and from your program; printf() , scanf() ,
 getchar() , and putchar() are examples. You’ve seen these functions in previous chapters,
and now you’ll be able to look at their conceptual basis. Along the way, you’ll see how to
improve the program-user interface.

 Originally, input/output functions were not part of the definition of C. Their development was
left to C implementations. In practice, the Unix implementation of C has served as a model for
these functions. The ANSI C library, recognizing past practice, contains a large number of these
Unix I/O functions, including the ones we’ve used. Because such standard functions must work
in a wide variety of computer environments, they seldom take advantage of features peculiar to
a particular system. Therefore, many C vendors supply additional I/O functions that do make
use of special features of the hardware. Other functions or families of functions tap into partic-
ular operating systems that support, for example, specific graphical interfaces, such as those
provided by Windows or Macintosh OS. These specialized, nonstandard functions enable you
to write programs that use a particular computer more effectively. Unfortunately, they often
can’t be used on other computer systems. Consequently, we’ll concentrate on the standard I/O
functions available on all systems, because they enable you to write portable programs that can

ptg11524036

300 Chapter 8 Character Input/Output and Input Validation

be moved easily from one system to another. They also generalize to programs using files for
input and output.

 One important task many programs face is that of validating input; that is, determining
whether the user has entered input that matches the expectations of a program. This chapter
illustrates some of the problems and solutions associated with input validation.

 Single-Character I/O: getchar() and putchar()

 As you saw in Chapter 7 , “C Control Statements: Branching and Jumps,” getchar() and
 putchar() perform input and output one character at a time. That method might strike you as
a rather silly way of doing things. After all, you can easily read groupings larger than a single
character, but this method does suit the capability of a computer. Furthermore, this approach
is the heart of most programs that deal with text—that is, with ordinary words. To remind
yourself of how these functions work, examine Listing 8.1 , a very simple example. All it does is
fetch characters from keyboard input and send them to the screen. This process is called echoing
the input . It uses a while loop that terminates when the # character is encountered.

 Listing 8.1 The echo.c Program

 /* echo.c -- repeats input */

 #include <stdio.h>

 int main(void)

 {

 char ch;

 while ((ch = getchar()) != '#')

 putchar(ch);

 return 0;

 }

 Since the ANSI standard, C associates the stdio.h header file with using getchar() and
 putchar() , which is why we have included that file in the program. (Typically, getchar()
and putchar() are not true functions, but are defined using preprocessor macros, a topic we’ll
cover in Chapter 16 , “The C Preprocessor and the C Library.”) Using this program produces
exchanges like this:

 Hello, there. I would[enter]

 Hello, there. I would

 like a #3 bag of potatoes.[enter]

 like a

ptg11524036

301Buffers

 After watching this program run, you might wonder why you must type a whole line before
the input is echoed. You might also wonder if there is a better way to terminate input. Using
a particular character, such as # , to terminate input prevents you from using that character in
the text. To answer these questions, let’s look at how C programs handle keyboard input. In
particular, let’s examine buffering and the concept of a standard input file.

 Buffers

 If you ran the previous program on some older systems, the text you input would be echoed
immediately. That is, a sample run would look like this:

 HHeelllloo,, tthheerree.. II wwoouulldd[enter]

 lliikkee aa #

 The preceding behavior is the exception. On most systems, nothing happens until you press
Enter, as in the first example. The immediate echoing of input characters is an instance of
 unbuffered (or direct) input, meaning that the characters you type are immediately made avail-
able to the waiting program. The delayed echoing, on the other hand, illustrates buffered input,
in which the characters you type are collected and stored in an area of temporary storage called
a buffer. Pressing Enter causes the block of characters you typed to be made available to your
program. Figure 8.1 compares these two kinds of input.

 Why have buffers? First, it is less time-consuming to transmit several characters as a block
than to send them one by one. Second, if you mistype, you can use your keyboard correction
features to fix your mistake. When you finally press Enter, you can transmit the corrected
version.

 Unbuffered input, on the other hand, is desirable for some interactive programs. In a game, for
instance, you would like each command to take place as soon as you press a key. Therefore,
both buffered and unbuffered input have their uses.

 Buffering comes in two varieties: fully buffered I/O and line-buffered I/O. For fully buffered input,
the buffer is flushed (the contents are sent to their destination) when it is full. This kind of
buffering usually occurs with file input. The buffer size depends on the system, but 512 bytes
and 4096 bytes are common values. With line-buffered I/O, the buffer is flushed whenever a
newline character shows up. Keyboard input is normally line buffered, so that pressing Enter
flushes the buffer.

 Which kind of input do you have: buffered or unbuffered? ANSI C and subsequent C standards
specify that input should be buffered, but K&R originally left the choice open to the compiler
writer. You can find out by running the echo.c program and seeing which behavior results.

ptg11524036

302 Chapter 8 Character Input/Output and Input Validation

 The reason ANSI C settled on buffered input as the standard is that some computer designs
don’t permit unbuffered input. If your particular computer does allow unbuffered input,
most likely your C compiler offers unbuffered input as an option. Many compilers for IBM
PC compatibles, for example, supply a special family of functions, supported by the conio.h
header file, for unbuffered input. These functions include getche() for echoed unbuffered
input and getch() for unechoed unbuffered input. (Echoed input means the character you
type shows onscreen, and unechoed input means the keystrokes don’t show.) Unix systems use
a different approach, for Unix itself controls buffering. With Unix, you use the ioctl() func-
tion (part of the Unix library but not part of standard C) to specify the type of input you want,
and getchar() behaves accordingly. In ANSI C, the setbuf() and setvbuf() functions (see
 Chapter 13 , “File Input/Output”) supply some control over buffering, but the inherent limita-
tions of some systems can restrict the effectiveness of these functions. In short, there is no stan-
dard ANSI way of invoking unbuffered input; the means depend on the computer system. In
this book, with apologies to our unbuffered friends, we assume you are using buffered input.

 Terminating Keyboard Input

 The echo.c program halts when # is entered, which is convenient as long as you exclude that
character from normal input. As you’ve seen, however, # can show up in normal input. Ideally,
you’d like a terminating character that normally does not show up in text. Such a character
won’t pop up accidentally in the middle of some input, stopping the program before you
want it to stop. C has an answer to this need, but, to understand it, you need to know how C
handles files.

HI!

HI!

type HI!

type HI!
buffer

!IH

contents made immediately
available to program

characters sent
one by one to buffer as typed

buffer contents made
available to program

unbuffered input

buffered input

H I !

 Figure 8.1 Buffered versus unbuffered input.

ptg11524036

303Terminating Keyboard Input

 Files, Streams, and Keyboard Input

 A file is an area of memory in which information is stored. Normally, a file is kept in some sort
of permanent memory, such as a hard disk, USB flash drive, or optical disc, such as a DVD.
You are doubtless aware of the importance of files to computer systems. For example, your C
programs are kept in files, and the programs used to compile your programs are kept in files.
This last example points out that some programs need to be able to access particular files.
When you compile a program stored in a file called echo.c , the compiler opens the echo.c file
and reads its contents. When the compiler finishes, it closes the file. Other programs, such as
word processors, not only open, read, and close files, they also write to them.

 C, being powerful, flexible, and so on, has many library functions for opening, reading, writing,
and closing files. On one level, it can deal with files by using the basic file tools of the host
operating system. This is called low-level I/O . Because of the many differences among computer
systems, it is impossible to create a standard library of universal low-level I/O functions, and
ANSI C does not attempt to do so; however, C also deals with files on a second level called the
 standard I/O package. This involves creating a standard model and a standard set of I/O func-
tions for dealing with files. At this higher level, differences between systems are handled by
specific C implementations so that you deal with a uniform interface.

 What sort of differences are we talking about? Different systems, for example, store files differ-
ently. Some store the file contents in one place and information about the file elsewhere. Some
build a description of the file into the file itself. In dealing with text, some systems use a single
newline character to mark the end of a line. Others might use the combination of the carriage
return and linefeed characters to represent the end of a line. Some systems measure file sizes to
the nearest byte; some measure in blocks of bytes.

 When you use the standard I/O package, you are shielded from these differences. Therefore, to
check for a newline, you can use if (ch == '\n') . If the system actually uses the carriage-
return/linefeed combination, the I/O functions automatically translate back and forth between
the two representations.

 Conceptually, the C program deals with a stream instead of directly with a file. A stream is an
idealized flow of data to which the actual input or output is mapped. That means various kinds
of input with differing properties are represented by streams with more uniform properties. The
process of opening a file then becomes one of associating a stream with the file, and reading
and writing take place via the stream.

 Chapter 13 discusses files in greater detail. For this chapter, simply note that C treats input
and output devices the same as it treats regular files on storage devices. In particular, the
keyboard and the display device are treated as files opened automatically by every C program.
Keyboard input is represented by a stream called stdin , and output to the screen (or teletype
or other output device) is represented by a stream called stdout . The getchar() , putchar() ,
 printf() , and scanf() functions are all members of the standard I/O package, and they deal
with these two streams.

 One implication of all this is that you can use the same techniques with keyboard input as you
do with files. For example, a program reading a file needs a way to detect the end of the file so

ptg11524036

304 Chapter 8 Character Input/Output and Input Validation

that it knows where to stop reading. Therefore, C input functions come equipped with a built-
in, end-of-file detector. Because keyboard input is treated like a file, you should be able to use
that end-of-file detector to terminate keyboard input, too. Let’s see how this is done, beginning
with files.

 The End of File

 A computer operating system needs some way to tell where each file begins and ends. One
method to detect the end of a file is to place a special character in the file to mark the end. This
is the method once used, for example, in CP/M, IBM-DOS, and MS-DOS text files. Today, these
operating systems may use an embedded Ctrl+Z character to mark the ends of files. At one
time, this was the sole means these operating systems used, but there are other options now,
such as keeping track of the file size. So a modern text file may or may not have an embedded
Ctrl+Z, but if it does, the operating system will treat it as an end-of-file marker. Figure 8.2 illus-
trates this approach.

Ishphat the robot\n slid open the hatch\n and shouted his challenge.\n^Z

Ishphat the robot
slid open the hatch
and shouted his challenge.

prose:

prose in a file:

 Figure 8.2 A file with an end-of-file marker.

 A second approach is for the operating system to store information on the size of the file. If
a file has 3000 bytes and a program has read 3000 bytes, the program has reached the end.
MS-DOS and its relatives use this approach for binary files because this method allows the files
to hold all characters, including Ctrl+Z. Newer versions of DOS also use this approach for text
files. Unix uses this approach for all files.

 C handles this variety of methods by having the getchar() function return a special value
when the end of a file is reached, regardless of how the operating system actually detects the
end of file. The name given to this value is EOF (end of file). Therefore, the return value for
 getchar() when it detects an end of file is EOF . The scanf() function also returns EOF on
detecting the end of a file. Typically, EOF is defined in the stdio.h file as follows:

 #define EOF (-1)

 Why -1 ? Normally, getchar() returns a value in the range 0 through 127 , because those are
values corresponding to the standard character set, but it might return values from 0 through
 255 if the system recognizes an extended character set. In either case, the value -1 does not
correspond to any character, so it can be used to signal the end of a file.

ptg11524036

305Terminating Keyboard Input

 Some systems may define EOF to be a value other than -1 , but the definition is always different
from a return value produced by a legitimate input character. If you include the stdio.h file
and use the EOF symbol, you don’t have to worry about the numeric definition. The important
point is that EOF represents a value that signals the end of a file was detected; it is not a symbol
actually found in the file.

 Okay, how can you use EOF in a program? Compare the return value of getchar() with EOF .
If they are different, you have not yet reached the end of a file. In other words, you can use an
expression like this:

 while ((ch = getchar()) != EOF)

 What if you are reading keyboard input and not a file? Most systems (but not all) have a way to
simulate an end-of-file condition from the keyboard. Knowing that, you can rewrite the basic
read and echo program, as shown in Listing 8.2 .

 Listing 8.2 The echo_eof.c Program

 /* echo_eof.c -- repeats input to end of file */

 #include <stdio.h>

 int main(void)

 {

 int ch;

 while ((ch = getchar()) != EOF)

 putchar(ch);

 return 0;

 }

 Note these points:

 ■ You don’t have to define EOF because stdio.h takes care of that.

 ■ You don’t have to worry about the actual value of EOF , because the #define statement
in stdio.h enables you to use the symbolic representation EOF . You shouldn’t write code
that assumes EOF has a particular value.

 ■ The variable ch is changed from type char to type int because char variables may be
represented by unsigned integers in the range 0 to 255 , but EOF may have the numeric
value -1 . That is an impossible value for an unsigned char variable, but not for an
 int . Fortunately, getchar() is actually type int itself, so it can read the EOF character.
Implementations that use a signed char type may get by with declaring ch as type char ,
but it is better to use the more general form.

 ■ The fact that getchar() is type int is why some compilers warn of possible data loss if
you assign the getchar() return value to a type char variable.

ptg11524036

306 Chapter 8 Character Input/Output and Input Validation

 ■ The fact that ch is an integer doesn’t faze putchar() . It still prints the character
equivalent.

 ■ To use this program on keyboard input, you need a way to type the EOF character.
No, you can’t just type the letters E O F , and you can’t just type –1 . (Typing -1 would
transmit two characters: a hyphen and the digit 1.) Instead, you have to find out what
your system requires. On most Unix and Linux systems, for example, pressing Ctrl+D
at the beginning of a line causes the end-of-file signal to be transmitted. Many micro-
computing systems recognize Ctrl+Z at the beginning of a line as an end-of-file signal;
some interpret a Ctrl+Z anywhere as an end-of-file signal.

 Here is a buffered example of running echo_eof.c on a Unix system:

 She walks in beauty, like the night

 She walks in beauty, like the night

 Of cloudless climes and starry skies...

 Of cloudless climes and starry skies...

 Lord Byron

 Lord Byron

 [Ctrl+D]

 Each time you press Enter, the characters stored in the buffer are processed, and a copy of the
line is printed. This continues until you simulate the end of file, Unix-style. On a PC, you
would press Ctrl+Z instead.

 Let’s stop for a moment and think about the possibilities for echo_eof.c . It copies onto the
screen whatever input you feed it. Suppose you could somehow feed a file to it. Then it would
print the contents of the file onscreen, stopping when it reached the end of the file, on finding
an EOF signal. Suppose, instead, that you could find a way to direct the program’s output to a
file. Then you could enter data from the keyboard and use echo_eof.c to store what you type
in a file. Suppose you could do both simultaneously: Direct input from one file into echo_
eof.c and send the output to another file. Then you could use echo_eof.c to copy files. This
little program has the potential to look at the contents of files, to create new files, and to make
copies of files—pretty good for such a short program! The key is to control the flow of input
and output, and that is the next topic.

 Note Simulated EOF and Graphical Interfaces

 The concept of simulated EOF arose in a command-line environment using a text interface. In
such an environment, the user interacts with a program through keystrokes, and the operating
system generates the EOF signal. Some practices don’t translate particularly well to graphical
interfaces, such as Windows and the Macintosh, with more complex user interfaces that incor-
porate mouse movement and button clicks. The program behavior on encountering a simulated
EOF depends on the compiler and project type. For example, a Ctrl+Z may terminate input or it
may terminate the entire program, depending on the particular settings.

ptg11524036

307Redirection and Files

 Redirection and Files

 Input and output involve functions, data, and devices. Consider, for instance, the echo_eof.c
program. It uses the input function getchar() . The input device (we have assumed) is a
keyboard, and the input data stream consists of individual characters. Suppose you want
to keep the same input function and the same kind of data, but want to change where the
program looks for data. A good question to ask is, “How does a program know where to look
for its input?”

 By default, a C program using the standard I/O package looks to the standard input as its
source for input. This is the stream identified earlier as stdin . It is whatever has been set up as
the usual way for reading data into the computer. It could be an old-fashioned device, such as
magnetic tape, punched cards, or a teletype, or (as we will continue to assume) your keyboard,
or some upcoming technology, such as voice input. A modern computer is a suggestible tool,
however, and you can influence it to look elsewhere for input. In particular, you can tell a
program to seek its input from a file instead of from a keyboard.

 There are two ways to get a program to work with files. One way is to explicitly use special
functions that open files, close files, read files, write in files, and so forth. That method we’ll
save for Chapter 13 . The second way is to use a program designed to work with a keyboard
and screen, but to redirect input and output along different channels—to and from files, for
example. In other words, you reassign the stdin stream to a file. The getchar() program
continues to get its data from the stream, not really caring from where the stream gets its
data. This approach (redirection) is more limited in some respects than the first, but it is much
simpler to use, and it allows you to gain familiarity with common file-processing techniques.

 One major problem with redirection is that it is associated with the operating system, not C.
However, the many C environments, including Unix, Linux, and the Windows Command-
Prompt mode, feature redirection, and some C implementations simulate it on systems lacking
the feature. Apple OS X runs on top of Unix, and you can use the Unix command-line mode
by starting the Terminal application. We’ll look at the Unix, Linux, and Windows versions or
redirection.

 Unix, Linux, and Windows Command Prompt Redirection

 Unix (when run in command-line mode), Linux (ditto), and the Windows Command Prompt
(which mimics the old DOS command-line environment) enable you to redirect both input and
output. Redirecting input enables your program to use a file instead of the keyboard for input,
and redirecting output enables it to use a file instead of the screen for output.

 Redirecting Input

 Suppose you have compiled the echo_eof.c program and placed the executable version in a
file called echo_eof (or echo_eof.exe on a Windows system). To run the program, type the
executable file’s name:

 echo_eof

ptg11524036

308 Chapter 8 Character Input/Output and Input Validation

 The program runs as described earlier, taking its input from the keyboard. Now suppose you
want to use the program on a text file called words . A text file is one containing text—that is,
data stored as human-readable characters. It could be an essay or a program in C, for example.
A file containing machine language instructions, such as the file holding the executable version
of a program, is not a text file. Because the program works with characters, it should be used
with text files. All you need to do is enter this command instead of the previous one:

 echo_eof < words

 The < symbol is a Unix and Linux and DOS/Windows redirection operator. It causes the words
file to be associated with the stdin stream, channeling the file contents into the echo_eof
program. The echo_eof program itself doesn’t know (or care) that the input is coming from a
file instead of the keyboard. All it knows is that a stream of characters is being fed to it, so it
reads them and prints them one character at a time until the end of file shows up. Because C
puts files and I/O devices on the same footing, the file is now the I/O device . Try it!

 Note Redirection Sidelights

 With Unix, Linux, and Windows Command Prompt, the spaces on either side of the < are
optional. Some systems, such as AmigaDOS (for those who still play in the good old days), sup-
port redirection but don’t allow a space between the redirection symbol and the filename.

 Here is a sample run for one particular words file; the $ is one of the standard Unix and Linux
prompts. On a Windows/DOS system, you would see the DOS prompt, perhaps an A> or C> .

 $ echo_eof < words

 The world is too much with us: late and soon,

 Getting and spending, we lay waste our powers:

 Little we see in Nature that is ours;

 We have given our hearts away, a sordid boon!

 $

 Well, that time we got our words’ worth.

 Redirecting Output

 Now suppose you want to have echo_eof send your keyboard input to a file called mywords .
Then you can enter the following and begin typing:

 echo_eof > mywords

 The > is a second redirection operator. It causes a new file called mywords to be created for your
use, and then it redirects the output of echo_eof (that is, a copy of the characters you type) to
that file. The redirection reassigns stdout from the display device (your screen) to the mywords
file instead. If you already have a file with the name mywords , normally it would be erased
and then replaced by the new one. (Many operating systems, however, give you the option of
protecting existing files by making them read-only.) All that appears on your screen are the
letters as you type them, and the copies go to the file instead. To end the program, press Ctrl+D

ptg11524036

309Redirection and Files

(Unix) or Ctrl+Z (DOS) at the beginning of a line. Try it. If you can’t think of anything to type,
just imitate the next example. In it, we use the $ Unix prompt. Remember to end each line by
pressing Enter to send the buffer contents to the program.

 $ echo_eof > mywords

 You should have no problem recalling which redirection

 operator does what. Just remember that each operator points

 in the direction the information flows. Think of it as

 a funnel.

 [Ctrl+D]

 $

 After the Ctrl+D or Ctrl+Z is processed, the program terminates and your system prompt
returns. Did the program work? The Unix ls command or Windows Command Prompt dir
command, which lists filenames, should show you that the file mywords now exists. You can
use the Unix and Linux cat or DOS type command to check the contents, or you can use
 echo_eof again, this time redirecting the file to the program:

 $ echo_eof < mywords

 You should have no problem recalling which redirection

 operator does what. Just remember that each operator points

 in the direction the information flows. Think of it as a

 funnel.

 $

 Combined Redirection

 Now suppose you want to make a copy of the file mywords and call it savewords . Just issue
this next command,

 echo_eof < mywords > savewords

 and the deed is done. The following command would have worked as well, because the order of
redirection operations doesn’t matter:

 echo_eof > savewords < mywords

 Beware: Don’t use the same file for both input and output to the same command.

 echo_eof < mywords > mywords....<--WRONG

 The reason is that > mywords causes the original mywords to be truncated to zero length before
it is ever used as input.

 In brief, here are the rules governing the use of the two redirection operators (< and >) with
Unix, Linux, or Windows/DOS:

 ■ A redirection operator connects an executable program (including standard operating
system commands) with a data file. It cannot be used to connect one data file to another,
nor can it be used to connect one program to another program.

ptg11524036

310 Chapter 8 Character Input/Output and Input Validation

 ■ Input cannot be taken from more than one file, nor can output be directed to more than
one file by using these operators.

 ■ Normally, spaces between the names and operators are optional, except occasionally
when some characters with special meaning to the Unix shell or Linux shell or the
Windows Command Prompt mode are used. We could, for example, have used echo_
eof<words .

 You have already seen several proper examples. Here are some wrong examples, with addup
and count as executable programs and fish and beets as text files:

 fish > beets Violates the first rule

 addup < count Violates the first rule

 addup < fish < beets Violates the second rule

 count > beets fish Violates the second rule

 Unix, Linux, and Windows/DOS also feature the >> operator, which enables you to add data to
the end of an existing file, and the pipe operator (|), which enables you to connect the output
of one program to the input of a second program. See a Unix book, such as UNIX Primer Plus,
Third Edition (Wilson, Pierce, and Wessler; Sams Publishing), for more information on all these
operators.

 Comments

 Redirection enables you to use keyboard-input programs with files. For this to work, the
program has to test for the end of file. For example, Chapter 7 presents a word-counting
program that counts words up to the first | character. Change ch from type char to type int ,
and replace '|' with EOF in the loop test, and you can use the program to count words in text
files.

 Redirection is a command-line concept, because you indicate it by typing special symbols on
the command line. If you are not using a command-line environment, you might still be able
to try the technique. First, some integrated environments have menu options that let you indi-
cate redirection. Second, for Windows systems, you can open the Command Prompt window
and run the executable file from the command line. Microsoft Visual Studio, by default, puts
the executable file in a subfolder, called Debug , of the project folder. The filename will have
the same base name as the project name and use the .exe extension. By default Xcode also
names the executable file after the project name and places it in a Debug folder. You can run
the executable from the Terminal utility, which runs a version of Unix. However, if you use
Terminal, it’s probably simpler to use one of the command-line compilers (GCC or Clang) that
can be downloaded from Apple.

 If redirection doesn’t work for you, you can try having the program open a file directly. Listing
 8.3 shows an example with minimal explanation. You’ll have to wait until Chapter 13 for the
details. The file to be read should be in the same directory as the executable file.

ptg11524036

311Redirection and Files

 Listing 8.3 The file_eof.c Program

 // file_eof.c --open a file and display it

 #include <stdio.h>

 #include <stdlib.h> // for exit()

 int main()

 {

 int ch;

 FILE * fp;

 char fname[50]; // to hold the file name

 printf("Enter the name of the file: ");

 scanf("%s", fname);

 fp = fopen(fname, "r"); // open file for reading

 if (fp == NULL) // attempt failed

 {

 printf("Failed to open file. Bye\n");

 exit(1); // quit program

 }

 // getc(fp) gets a character from the open file

 while ((ch = getc(fp)) != EOF)

 putchar(ch);

 fclose(fp); // close the file

 return 0;

 }

 Summary: How to Redirect Input and Output

 With most C systems, you can use redirection, either for all programs through the operating
system or else just for C programs, courtesy of the C compiler. In the following, let prog be the
name of the executable program and let file1 and file2 be names of files.

 Redirecting Output to a File: >

 prog >file1

 Redirecting Input from a File: <

 prog <file2

 Combined Redirection:

 prog <file2 >file1

 prog >file1 <file2

 Both forms use file2 for input and file1 for output.

 Spacing:

 Some systems require a space to the left of the redirection operator and no space to the right.
Other systems (Unix, for example) accept either spaces or no spaces on either side.

ptg11524036

312 Chapter 8 Character Input/Output and Input Validation

 Creating a Friendlier User Interface

 Most of us have on occasion written programs that are awkward to use. Fortunately, C gives
you the tools to make input a smoother, more pleasant process. Unfortunately, learning these
tools could, at first, lead to new problems. The goal in this section is to guide you through
some of these problems to a friendlier user interface, one that eases interactive data entry and
smoothes over the effects of faulty input.

 Working with Buffered Input

 Buffered input is often a convenience to the user, providing an opportunity to edit input before
sending it on to a program, but it can be bothersome to the programmer when character input
is used. The problem, as you’ve seen in some earlier examples, is that buffered input requires
you to press the Enter key to transmit your input. This act also transmits a newline character
that the program must handle. Let’s examine this and other problems with a guessing program.
You pick a number, and the program tries to guess it. The program uses a plodding method,
but we are concentrating on I/O, not algorithms. See Listing 8.4 for the starting version of the
program, one that will need further work.

 Listing 8.4 The guess.c Program

 /* guess.c -- an inefficient and faulty number-guesser */

 #include <stdio.h>

 int main(void)

 {

 int guess = 1;

 printf("Pick an integer from 1 to 100. I will try to guess ");

 printf("it.\nRespond with a y if my guess is right and with");

 printf("\nan n if it is wrong.\n");

 printf("Uh...is your number %d?\n", guess);

 while (getchar() != 'y') /* get response, compare to y */

 printf("Well, then, is it %d?\n", ++guess);

 printf("I knew I could do it!\n");

 return 0;

 }

 Here’s a sample run:

 Pick an integer from 1 to 100. I will try to guess it.

 Respond with a y if my guess is right and with

 an n if it is wrong.

 Uh...is your number 1?

 n

 Well, then, is it 2?

ptg11524036

313Creating a Friendlier User Interface

 Well, then, is it 3?

 n

 Well, then, is it 4?

 Well, then, is it 5?

 y

 I knew I could do it!

 Out of consideration for the program’s pathetic guessing algorithm, we chose a small number.
Note that the program makes two guesses every time you enter n . What’s happening is that the
program reads the n response as a denial that the number is 1 and then reads the newline char-
acter as a denial that the number is 2.

 One solution is to use a while loop to discard the rest of the input line, including the newline
character. This has the additional merit of treating responses such as no and no way the same
as a simple n . The version in Listing 8.4 treats no as two responses. Here is a revised loop that
fixes the problem:

 while (getchar() != 'y') /* get response, compare to y */

 {

 printf("Well, then, is it %d?\n", ++guess);

 while (getchar() != '\n')

 continue; /* skip rest of input line */

 }

 Using this loop produces responses such as the following:

 Pick an integer from 1 to 100. I will try to guess it.

 Respond with a y if my guess is right and with

 an n if it is wrong.

 Uh...is your number 1?

 n

 Well, then, is it 2?

 no

 Well, then, is it 3?

 no sir

 Well, then, is it 4?

 forget it

 Well, then, is it 5?

 y

 I knew I could do it!

 That takes care of the problems with the newline character. However, as a purist, you might
not like f being treated as meaning the same as n . To eliminate that defect, you can use an if
statement to screen out other responses. First, add a char variable to store the response:

 char response;

ptg11524036

314 Chapter 8 Character Input/Output and Input Validation

 Then change the loop to this:

 while ((response = getchar()) != 'y') /* get response */

 {

 if (response == 'n')

 printf("Well, then, is it %d?\n", ++guess);

 else

 printf("Sorry, I understand only y or n.\n");

 while (getchar() != '\n')

 continue; /* skip rest of input line */

 }

 Now the program’s response looks like this:

 Pick an integer from 1 to 100. I will try to guess it.

 Respond with a y if my guess is right and with

 an n if it is wrong.

 Uh...is your number 1?

 n

 Well, then, is it 2?

 no

 Well, then, is it 3?

 no sir

 Well, then, is it 4?

 forget it

 Sorry, I understand only y or n.

 n

 Well, then, is it 5?

 y

 I knew I could do it!

 When you write interactive programs, you should try to anticipate ways in which users might
fail to follow instructions. Then you should design your program to handle user failures grace-
fully. Tell them when they are wrong, and give them another chance.

 You should, of course, provide clear instructions to the user, but no matter how clear you make
them, someone will always misinterpret them and then blame you for poor instructions.

 Mixing Numeric and Character Input

 Suppose your program requires both character input using getchar() and numeric input
using scanf() . Each of these functions does its job well, but the two don’t mix together well.
That’s because getchar() reads every character, including spaces, tabs, and newlines, whereas
 scanf() , when reading numbers, skips over spaces, tabs, and newlines.

 To illustrate the sort of problem this causes, Listing 8.5 presents a program that reads in a
character and two numbers as input. It then prints the character using the number of rows and
columns specified in the input.

ptg11524036

315Creating a Friendlier User Interface

 Listing 8.5 The showchar1.c Program

 /* showchar1.c -- program with a BIG I/O problem */

 #include <stdio.h>

 void display(char cr, int lines, int width);

 int main(void)

 {

 int ch; /* character to be printed */

 int rows, cols; /* number of rows and columns */

 printf("Enter a character and two integers:\n");

 while ((ch = getchar()) != '\n')

 {

 scanf("%d %d", &rows, &cols);

 display(ch, rows, cols);

 printf("Enter another character and two integers;\n");

 printf("Enter a newline to quit.\n");

 }

 printf("Bye.\n");

 return 0;

 }

 void display(char cr, int lines, int width)

 {

 int row, col;

 for (row = 1; row <= lines; row++)

 {

 for (col = 1; col <= width; col++)

 putchar(cr);

 putchar('\n'); /* end line and start a new one */

 }

 }

 Note that the program reads a character as type int to enable the EOF test. However, it passes
the character as type char to the display() function. Because char is smaller than int , some
compilers will warn about the conversion. In this case, you can ignore the warning. Or you can
eliminate the warning by using a typecast:

 display(char(ch), rows, cols);

 The program is set up so that main() gets the data and the display() function does the print-
ing. Let’s look at a sample run to see what the problem is:

 Enter a character and two integers:

 c 2 3

 ccc

 ccc

ptg11524036

316 Chapter 8 Character Input/Output and Input Validation

 Enter another character and two integers;

 Enter a newline to quit.

 Bye.

 The program starts off fine. Enter c 2 3 , and it prints two rows of three c characters, as
expected. Then the program prompts you to enter a second set of data and quits before you
have a chance to respond! What’s wrong? It’s that newline character again, this time the one
immediately following the 3 on the first input line. The scanf() function leaves it in the input
queue. Unlike scanf() , getchar() doesn’t skip over newline characters, so this newline char-
acter is read by getchar() during the next cycle of the loop before you have a chance to enter
anything else. Then it’s assigned to ch , and ch being the newline character is the condition
that terminates the loop.

 To clear up this problem, the program has to skip over any newlines or spaces between the last
number typed for one cycle of input and the character typed at the beginning of the next line.
Also, it would be nice if the program could be terminated at the scanf() stage in addition to
the getchar() test. The next version, shown in Listing 8.6 , accomplishes this.

 Listing 8.6 The showchar2.c Program

 /* showchar2.c -- prints characters in rows and columns */

 #include <stdio.h>

 void display(char cr, int lines, int width);

 int main(void)

 {

 int ch; /* character to be printed */

 int rows, cols; /* number of rows and columns */

 printf("Enter a character and two integers:\n");

 while ((ch = getchar()) != '\n')

 {

 if (scanf("%d %d",&rows, &cols) != 2)

 break;

 display(ch, rows, cols);

 while (getchar() != '\n')

 continue;

 printf("Enter another character and two integers;\n");

 printf("Enter a newline to quit.\n");

 }

 printf("Bye.\n");

 return 0;

 }

 void display(char cr, int lines, int width)

 {

ptg11524036

317Input Validation

 int row, col;

 for (row = 1; row <= lines; row++)

 {

 for (col = 1; col <= width; col++)

 putchar(cr);

 putchar('\n'); /* end line and start a new one */

 }

 }

 The while statement causes the program to dispose of all characters following the scanf()
input, including the newline. This prepares the loop to read the first character at the beginning
of the next line. This means you can enter data fairly freely:

 Enter a character and two integers:

 c 1 2

 cc

 Enter another character and two integers;

 Enter a newline to quit.

 ! 3 6

 !!!!!!

 !!!!!!

 !!!!!!

 Enter another character and two integers;

 Enter a newline to quit.

 Bye.

 By using an if statement with a break , we terminate the program if the return value of
 scanf() is not 2 . This occurs if one or both input values are not integers or if end-of-file is
encountered.

 Input Validation

 In practice, program users don’t always follow instructions, and you can get a mismatch
between what a program expects as input and what it actually gets. Such conditions can cause
a program to fail. However, often you can anticipate likely input errors, and, with some extra
programming effort, have a program detect and work around them.

 Suppose, for instance, that you had a loop that processes nonnegative numbers. One kind of
error the user can make is to enter a negative number. You can use a relational expression to
test for that:

 long n;

 scanf("%ld", &n); // get first value

 while (n >= 0) // detect out-of-range value

ptg11524036

318 Chapter 8 Character Input/Output and Input Validation

 {

 // process n

 scanf("%ld", &n); // get next value

 }

 Another potential pitfall is that the user might enter the wrong type of value, such as the
character q . One way to detect this kind of misuse is to check the return value of scanf() .
This function, as you’ll recall, returns the number of items it successfully reads; therefore, the
expression

 scanf("%ld", &n) == 1

 is true only if the user inputs an integer. This suggests the following revision of the code:

 long n;

 while (scanf("%ld", &n) == 1 && n >= 0)

 {

 // process n

 }

 In words, the while loop condition is “while input is an integer and the integer is positive.”

 The last example terminates input if the user enters the wrong type of value. You can, however,
choose to make the program a little more user friendly and give the user the opportunity
to try to enter the correct type of value. In that case, you need to dispose of the input that
caused scanf() to fail in the first place, for scanf() leaves the bad input in the input queue.
Here, the fact that input really is a stream of characters comes in handy, because you can use
 getchar() to read the input character-by-character. You could even incorporate all these ideas
into a function such as the following:

 long get_long(void)

 {

 long input;

 char ch;

 while (scanf("%ld", &input) != 1)

 {

 while ((ch = getchar()) != '\n')

 putchar(ch); // dispose of bad input

 printf(" is not an integer.\nPlease enter an ");

 printf("integer value, such as 25, -178, or 3: ");

 }

 return input;

 }

 This function attempts to read an int value into the variable input . If it fails to do so, the
function enters the body of the outer while loop. The inner while loop then reads the

ptg11524036

319Input Validation

offending input character-by-character. Note that this function chooses to discard all the
remaining input on the line. Other possible choices are to discard just the next character or
word. Then the function prompts the user to try again. The outer loop keeps going until the
user successfully enters an integer, causing scanf() to return the value 1 .

 After the user clears the hurdle of entering integers, the program can check to see whether the
values are valid. Consider an example that requires the user to enter a lower limit and an upper
limit defining a range of values. In this case, you probably would want the program to check
that the first value isn’t greater than the second (usually ranges assume that the first value is
the smaller one). It may also need to check that the values are within acceptable limits. For
example, the archive search may not work with year values less than 1958 or greater than 2014.
This checking, too, can be accomplished with a function.

 Here’s one possibility; the following function assumes that the stdbool.h header file has been
included. If you don’t have _Bool on your system, you can substitute int for bool , 1 for true ,
and 0 for false . Note that the function returns true if the input is invalid; hence the name
 bad_limits() :

 bool bad_limits(long begin, long end,

 long low, long high)

 {

 bool not_good = false;

 if (begin > end)

 {

 printf("%ld isn't smaller than %ld.\n", begin, end);

 not_good = true;

 }

 if (begin < low || end < low)

 {

 printf("Values must be %ld or greater.\n", low);

 not_good = true;

 }

 if (begin > high || end > high)

 {

 printf("Values must be %ld or less.\n", high);

 not_good = true;

 }

 return not_good;

 }

 Listing 8.7 uses these two functions to feed integers to an arithmetic function that calculates
the sum of the squares of all the integers in a specified range. The program limits the upper and
lower bounds of the range to 1000 and −1000, respectively.

ptg11524036

320 Chapter 8 Character Input/Output and Input Validation

 Listing 8.7 The checking.c Program

 // checking.c -- validating input

 #include <stdio.h>

 #include <stdbool.h>

 // validate that input is an integer

 long get_long(void);

 // validate that range limits are valid

 bool bad_limits(long begin, long end,

 long low, long high);

 // calculate the sum of the squares of the integers

 // a through b

 double sum_squares(long a, long b);

 int main(void)

 {

 const long MIN = -10000000L; // lower limit to range

 const long MAX = +10000000L; // upper limit to range

 long start; // start of range

 long stop; // end of range

 double answer;

 printf("This program computes the sum of the squares of "

 "integers in a range.\nThe lower bound should not "

 "be less than -10000000 and\nthe upper bound "

 "should not be more than +10000000.\nEnter the "

 "limits (enter 0 for both limits to quit):\n"

 "lower limit: ");

 start = get_long();

 printf("upper limit: ");

 stop = get_long();

 while (start !=0 || stop != 0)

 {

 if (bad_limits(start, stop, MIN, MAX))

 printf("Please try again.\n");

 else

 {

 answer = sum_squares(start, stop);

 printf("The sum of the squares of the integers ");

 printf("from %ld to %ld is %g\n",

 start, stop, answer);

 }

 printf("Enter the limits (enter 0 for both "

 "limits to quit):\n");

 printf("lower limit: ");

 start = get_long();

 printf("upper limit: ");

 stop = get_long();

ptg11524036

321Input Validation

 }

 printf("Done.\n");

 return 0;

 }

 long get_long(void)

 {

 long input;

 char ch;

 while (scanf("%ld", &input) != 1)

 {

 while ((ch = getchar()) != '\n')

 putchar(ch); // dispose of bad input

 printf(" is not an integer.\nPlease enter an ");

 printf("integer value, such as 25, -178, or 3: ");

 }

 return input;

 }

 double sum_squares(long a, long b)

 {

 double total = 0;

 long i;

 for (i = a; i <= b; i++)

 total += (double)i * (double)i;

 return total;

 }

 bool bad_limits(long begin, long end,

 long low, long high)

 {

 bool not_good = false;

 if (begin > end)

 {

 printf("%ld isn't smaller than %ld.\n", begin, end);

 not_good = true;

 }

 if (begin < low || end < low)

 {

 printf("Values must be %ld or greater.\n", low);

 not_good = true;

ptg11524036

322 Chapter 8 Character Input/Output and Input Validation

 }

 if (begin > high || end > high)

 {

 printf("Values must be %ld or less.\n", high);

 not_good = true;

 }

 return not_good;

 }

 Here’s a sample run:

 This program computes the sum of the squares of integers in a range.

 The lower bound should not be less than -10000000 and

 the upper bound should not be more than +10000000.

 Enter the limits (enter 0 for both limits to quit):

 lower limit: low

 low is not an integer.

 Please enter an integer value, such as 25, -178, or 3: 3

 upper limit: a big number

 a big number is not an integer.

 Please enter an integer value, such as 25, -178, or 3: 12

 The sum of the squares of the integers from 3 to 12 is 645

 Enter the limits (enter 0 for both limits to quit):

 lower limit: 80

 upper limit: 10

 80 isn't smaller than 10.

 Please try again.

 Enter the limits (enter 0 for both limits to quit):

 lower limit: 0

 upper limit: 0

 Done.

 Analyzing the Program

 The computational core (the function sum_squares()) of the checking.c program is short,
but the input validation support makes it more involved than the examples we have given
before. Let’s look at some of its elements, first focusing on overall program structure.

 We’ve followed a modular approach, using separate functions (modules) to verify input and to
manage the display. The larger a program is, the more vital it is to use modular programming.

 The main() function manages the flow, delegating tasks to the other functions. It uses get_
long() to obtain values, a while loop to process them, the badlimits() function to check for
valid values, and the sum_squares() function to do the actual calculation:

 start = get_long();

 printf("upper limit: ");

ptg11524036

323Input Validation

 stop = get_long();

 while (start !=0 || stop != 0)

 {

 if (bad_limits(start, stop, MIN, MAX))

 printf("Please try again.\n");

 else

 {

 answer = sum_squares(start, stop);

 printf("The sum of the squares of the integers ");

 printf("from %ld to %ld is %g\n", start, stop, answer);

 }

 printf("Enter the limits (enter 0 for both "

 "limits to quit):\n");

 printf("lower limit: ");

 start = get_long();

 printf("upper limit: ");

 stop = get_long();

 }

 The Input Stream and Numbers

 When writing code to handle bad input, such as that used in Listing 8.7 , you should have a
clear picture of how C input works. Consider a line of input like the following:

 is 28 12.4

 To our eyes, it looks like a string of characters followed by an integer followed by a floating-
point value. To a C program it looks like a stream of bytes. The first byte is the character code
for the letter i , the second is the character code for the letter s , the third is the character
code for the space character, the fourth is the character code for the digit 2 , and so on. So if
 get_long() encounters this line, which begins with a nondigit, the following code reads and
discards the entire line, including the numbers, which just are other characters on the line:

 while ((ch = getchar()) != '\n')

 putchar(ch); // dispose of bad input

 Although the input stream consists of characters, the scanf() function can convert them to a
numeric value if you tell it to. For example, consider the following input:

 42

 If you use scanf() with a %c specifier, it will just read the 4 character and store it in a char
variable. If you use the %s specifier, it will read two characters, the 4 character and the 2 char-
acter, and store them in a character string. If you use the %d specifier, scanf() reads the same
two characters, but then proceeds to calculate that the integer value corresponding to them is 4
× 10 + 2, or 42. It then stores the integer binary representation of that value in an int variable.
If you use an %f specifier, scanf() reads the two characters, calculates that they correspond to

ptg11524036

324 Chapter 8 Character Input/Output and Input Validation

the numeric value 42.0, expresses that value in the internal floating-point representation, and
stores the result in a float variable.

 In short, input consists of characters, but scanf() can convert that input to an integer or
floating-point value. Using a specifier such as %d or %f restricts the types of characters that are
acceptable input, but getchar() and scanf() using %c accept any character.

 Menu Browsing

 Many computer programs use menus as part of the user interface. Menus make programs easier
for the user, but they do pose some problems for the programmer. Let’s see what’s involved.

 A menu offers the user a choice of responses. Here’s a hypothetical example:

 Enter the letter of your choice:

 a. advice b. bell

 c. count q. quit

 Ideally, the user then enters one of these choices, and the program acts on that choice. As a
programmer, you want to make this process go smoothly. The first goal is for the program to
work smoothly when the user follows instructions. The second goal is for the program to work
smoothly when the user fails to follow instructions. As you might expect, the second goal is
the more difficult because it’s hard to anticipate all the possible mistreatment that might come
your program’s way.

 Modern applications typically use graphical interfaces—buttons to click, boxes to check, icons
to touch—instead of the command-line approach of our examples, but the general process
remains much the same: Offer the user choices, detect and act upon the user’s response, and
protect against possible misuse. The underlying program structure would be much the same
for these different interfaces. However, using a graphical interface can make it easier to control
input by limiting choices.

 Tasks

 Let’s get more specific and look at the tasks a menu program needs to perform. It needs to get
the user’s response, and it needs to select a course of action based on the response. Also, the
program should provide a way to return to the menu for further choices. C’s switch statement
is a natural vehicle for choosing actions because each user choice can be made to correspond to
a particular case label. You can use a while statement to provide repeated access to the menu.
In pseudocode, you can describe the process this way:

 get choice

 while choice is not 'q'

 switch to desired choice and execute it

 get next choice

ptg11524036

325Menu Browsing

 Toward a Smoother Execution

 The goals of program smoothness (smoothness when processing correct input and smooth-
ness when handling incorrect input) come into play when you decide how to implement this
plan. One thing you can do, for example, is have the “get choice” part of the code screen
out inappropriate responses so that only correct responses are passed on to the switch . That
suggests representing the input process with a function that can return only correct responses.
Combining that with a while loop and a switch leads to the following program structure:

 #include <stdio.h>

 char get_choice(void);

 void count(void);

 int main(void)

 {

 int choice;

 while ((choice = get_choice()) != 'q')

 {

 switch (choice)

 {

 case 'a' : printf("Buy low, sell high.\n");

 break;

 case 'b' : putchar('\a'); /* ANSI */

 break;

 case 'c' : count();

 break;

 default : printf("Program error!\n");

 break;

 }

 }

 return 0;

 }

 The get_choice() function is defined so that it can return only the values 'a' , 'b' , 'c' ,
and 'q' . You use it much as you use getchar() —getting a value and comparing it to a termi-
nation value ('q' , in this case). We’ve kept the actual menu choices simple so that you can
concentrate on the program structure; we’ll get to the count() function soon. The default
case is handy for debugging. If the get_choice() function fails to limit its return value to the
intended values, the default case lets you know something fishy is going on.

 The get_choice() Function

 Here, in pseudocode, is one possible design for this function:

 show choices

 get response

 while response is not acceptable

 prompt for more response

 get response

ptg11524036

326 Chapter 8 Character Input/Output and Input Validation

 And here is a simple, but awkward, implementation:

 char get_choice(void)

 {

 int ch;

 printf("Enter the letter of your choice:\n");

 printf("a. advice b. bell\n");

 printf("c. count q. quit\n");

 ch = getchar();

 while ((ch < 'a' || ch > 'c') && ch != 'q')

 {

 printf("Please respond with a, b, c, or q.\n");

 ch = getchar();

 }

 return ch;

 }

 The problem is that with buffered input, every newline generated by the Return key is treated
as an erroneous response. To make the program interface smoother, the function should skip
over newlines.

 There are several ways to do that. One is to replace getchar() with a new function called
 get_first() that reads the first character on a line and discards the rest. This method also has
the advantage of treating an input line consisting of, say, act , as being the same as a simple a ,
instead of treating it as one good response followed by c for count . With this goal in mind, we
can rewrite the input function as follows:

 char get_choice(void)

 {

 int ch;

 printf("Enter the letter of your choice:\n");

 printf("a. advice b. bell\n");

 printf("c. count q. quit\n");

 ch = get_first();

 while ((ch < 'a' || ch > 'c') && ch != 'q')

 {

 printf("Please respond with a, b, c, or q.\n");

 ch = getfirst();

 }

 return ch;

 }

 char get_first(void)

 {

 int ch;

ptg11524036

327Menu Browsing

 ch = getchar(); /* read next character */

 while (getchar() != '\n')

 continue; /* skip rest of line */

 return ch;

 }

 Mixing Character and Numeric Input

 Creating menus provides another illustration of how mixing character input with numeric
input can cause problems. Suppose, for example, the count() function (choice c) were to look
like this:

 void count(void)

 {

 int n,i;

 printf("Count how far? Enter an integer:\n");

 scanf("%d", &n);

 for (i = 1; i <= n; i++)

 printf("%d\n", i);

 }

 If you then responded by entering 3 , scanf() would read the 3 and leave a newline character
as the next character in the input queue. The next call to get_choice() would result in get_
first() returning this newline character, leading to undesirable behavior.

 One way to fix that problem is to rewrite get_first() so that it returns the next non-
whitespace character rather than just the next character encountered. We leave that as an
exercise for the reader. A second approach is having the count() function tidy up and clear the
newline itself. This is the approach this example takes:

 void count(void)

 {

 int n,i;

 printf("Count how far? Enter an integer:\n");

 n = get_int();

 for (i = 1; i <= n; i++)

 printf("%d\n", i);

 while (getchar() != '\n')

 continue;

 }

 This function also uses the get_long() function from Listing 8.7 , but changes it to get_int()
to fetch type int instead of type long ; recall that the original checks for valid input and gives
the user a chance to try again. Listing 8.8 shows the final menu program.

ptg11524036

328 Chapter 8 Character Input/Output and Input Validation

 Listing 8.8 The menuette.c Program

 /* menuette.c -- menu techniques */

 #include <stdio.h>

 char get_choice(void);

 char get_first(void);

 int get_int(void);

 void count(void);

 int main(void)

 {

 int choice;

 void count(void);

 while ((choice = get_choice()) != 'q')

 {

 switch (choice)

 {

 case 'a' : printf("Buy low, sell high.\n");

 break;

 case 'b' : putchar('\a'); /* ANSI */

 break;

 case 'c' : count();

 break;

 default : printf("Program error!\n");

 break;

 }

 }

 printf("Bye.\n");

 return 0;

 }

 void count(void)

 {

 int n,i;

 printf("Count how far? Enter an integer:\n");

 n = get_int();

 for (i = 1; i <= n; i++)

 printf("%d\n", i);

 while (getchar() != '\n')

 continue;

 }

 char get_choice(void)

 {

 int ch;

ptg11524036

329Menu Browsing

 printf("Enter the letter of your choice:\n");

 printf("a. advice b. bell\n");

 printf("c. count q. quit\n");

 ch = get_first();

 while ((ch < 'a' || ch > 'c') && ch != 'q')

 {

 printf("Please respond with a, b, c, or q.\n");

 ch = get_first();

 }

 return ch;

 }

 char get_first(void)

 {

 int ch;

 ch = getchar();

 while (getchar() != '\n')

 continue;

 return ch;

 }

 int get_int(void)

 {

 int input;

 char ch;

 while (scanf("%d", &input) != 1)

 {

 while ((ch = getchar()) != '\n')

 putchar(ch); // dispose of bad input

 printf(" is not an integer.\nPlease enter an ");

 printf("integer value, such as 25, -178, or 3: ");

 }

 return input;

 }

 Here is a sample run:

 Enter the letter of your choice:

 a. advice b. bell

 c. count q. quit

 a

ptg11524036

330 Chapter 8 Character Input/Output and Input Validation

 Buy low, sell high.

 Enter the letter of your choice:

 a. advice b. bell

 c. count q. quit

 count

 Count how far? Enter an integer:

 two

 two is not an integer.

 Please enter an integer value, such as 25, -178, or 3: 5

 1

 2

 3

 4

 5

 Enter the letter of your choice:

 a. advice b. bell

 c. count q. quit

 d

 Please respond with a, b, c, or q.

 q

 It can be hard work getting a menu interface to work as smoothly as you might want, but after
you develop a viable approach, you can reuse it in a variety of situations.

 Another point to notice is how each function, when faced with doing something a bit compli-
cated, delegated the task to another function, thus making the program much more modular.

 Key Concepts

 C programs see input as a stream of incoming bytes. The getchar() function interprets each
byte as being a character code. The scanf() function sees input the same way, but, guided
by its conversion specifiers, it can convert character input to numeric values. Many operating
systems provide redirection, which allows you to substitute a file for a keyboard for input and
to substitute a file for a monitor for output.

 Programs often expect a particular form of input. You can make a program much more robust
and user friendly by anticipating entry errors a user might make and enabling the program to
cope with them.

 With a small program, input validation might be the most involved part of the code. It also
opens up many choices. For example, if the user enters the wrong kind of information, you can
terminate the program, you can give the user a fixed number of chances to get the input right,
or you give the user an unlimited number of chances.

ptg11524036

331Review Questions

 Summary

 Many programs use getchar() to read input character-by-character. Typically, systems use line-
buffered input, meaning that input is transmitted to the program when you press Enter. Pressing
Enter also transmits a newline character that may require programming attention. ANSI C
requires buffered input as the standard.

 C features a family of functions, called the standard I/O package , that treats different file forms
on different systems in a uniform manner. The getchar() and scanf() functions belong to
this family. Both functions return the value EOF (defined in the stdio.h header) when they
detect the end of a file. Unix systems enable you to simulate the end-of-file condition from the
keyboard by pressing Ctrl+D at the beginning of a line; DOS systems use Ctrl+Z for the same
purpose.

 Many operating systems, including Unix and DOS, feature redirection, which enables you to use
files instead of the keyboard and screen for input and output. Programs that read input up to
 EOF can then be used either with keyboard input and simulated end-of-file signals or with redi-
rected files.

 Interspersing calls to getchar() with calls to scanf() can cause problems when scanf()
leaves a newline character in the input just before a call to getchar() . By being aware of this
problem, however, you can program around it.

 When you are writing a program, plan the user interface thoughtfully. Try to anticipate the sort
of errors users are likely to make and then design your program to handle them.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. putchar(getchar()) is a valid expression; what does it do? Is getchar(putchar())
also valid?

 2. What would each of the following statements accomplish?

 a. putchar('H');

 b. putchar('\007');

 c. putchar('\n');

 d. putchar('\b');

 3. Suppose you have an executable program named count that counts the characters in its
input. Devise a command-line command using the count program to count the number
of characters in the file essay and to store the result in a file named essayct .

ptg11524036

332 Chapter 8 Character Input/Output and Input Validation

 4. Given the program and files in question 3, which of the following are valid commands?

 a. essayct <essay

 b. count essay

 c. essay >count

 5. What is EOF ?

 6. What is the output of each of the following fragments for the indicated input (assume
that ch is type int and that the input is buffered)?

 a. The input is as follows:

 If you quit, I will.[enter]

 The fragment is as follows:

 while ((ch = getchar()) != 'i')

 putchar(ch);

 b. The input is as follows:

 Harhar[enter]

 The fragment is as follows:

 while ((ch = getchar()) != '\n')

 {

 putchar(ch++);

 putchar(++ch);

 }

 7. How does C deal with different computers systems having different file and newline
conventions?

 8. What potential problem do you face when intermixing numeric input with character
input on a buffered system?

 Programming Exercises

 Several of the following programs ask for input to be terminated by EOF . If your operating
system makes redirection awkward or impossible, use some other test for terminating input,
such as reading the & character.

 1. Devise a program that counts the number of characters in its input up to the end of file.

ptg11524036

333Programming Exercises

 2. Write a program that reads input as a stream of characters until encountering EOF . Have
the program print each input character and its ASCII decimal value. Note that characters
preceding the space character in the ASCII sequence are nonprinting characters.
Treat them specially. If the nonprinting character is a newline or tab, print \n or \t ,
respectively. Otherwise, use control-character notation. For instance, ASCII 1 is Ctrl+A,
which can be displayed as ̂ A . Note that the ASCII value for A is the value for Ctrl+A
plus 64. A similar relation holds for the other nonprinting characters. Print 10 pairs per
line, except start a fresh line each time a newline character is encountered. (Note: The
operating system may have special interpretations for some control characters and keep
them from reaching the program.)

 3. Write a program that reads input as a stream of characters until encountering EOF .
Have it report the number of uppercase letters, the number of lowercase letters, and the
number of other characters in the input. You may assume that the numeric values for the
lowercase letters are sequential and assume the same for uppercase. Or, more portably,
you can use appropriate classification functions from the ctype.h library.

 4. Write a program that reads input as a stream of characters until encountering EOF . Have
it report the average number of letters per word. Don’t count whitespace as being letters
in a word. Actually, punctuation shouldn’t be counted either, but don’t worry about that
now. (If you do want to worry about it, consider using the ispunct() function from the
 ctype.h family.)

 5. Modify the guessing program of Listing 8.4 so that it uses a more intelligent guessing
strategy. For example, have the program initially guess 50, and have it ask the user
whether the guess is high, low, or correct. If, say, the guess is low, have the next guess
be halfway between 50 and 100, that is, 75. If that guess is high, let the next guess be
halfway between 75 and 50, and so on. Using this binary search strategy, the program
quickly zeros in on the correct answer, at least if the user does not cheat.

 6. Modify the get_first() function of Listing 8.8 so that it returns the first non-
whitespace character encountered. Test it in a simple program.

 7. Modify Programming Exercise 8 from Chapter 7 so that the menu choices are labeled by
characters instead of by numbers; use q instead of 5 as the cue to terminate input.

 8. Write a program that shows you a menu offering you the choice of addition, subtraction,
multiplication, or division. After getting your choice, the program asks for two numbers,
then performs the requested operation. The program should accept only the offered
menu choices. It should use type float for the numbers and allow the user to try again
if he or she fails to enter a number. In the case of division, the program should prompt
the user to enter a new value if 0 is entered as the value for the second number. A typical
program run should look like this:

ptg11524036

334 Chapter 8 Character Input/Output and Input Validation

 Enter the operation of your choice:

 a. add s. subtract

 m. multiply d. divide

 q. quit

 a

 Enter first number: 22 .4

 Enter second number: one

 one is not an number.

 Please enter a number, such as 2.5, -1.78E8, or 3: 1

 22.4 + 1 = 23.4

 Enter the operation of your choice:

 a. add s. subtract

 m. multiply d. divide

 q. quit

 d

 Enter first number: 18.4

 Enter second number: 0

 Enter a number other than 0: 0.2

 18.4 / 0.2 = 92

 Enter the operation of your choice:

 a. add s. subtract

 m. multiply d. divide

 q. quit

 q

 Bye.

ptg11524036

 9
 Functions

 You will learn about the following in this chapter:

 ■ Keyword:

 return

 ■ Operators:

 * (unary) & (unary)

 ■ Functions and how to define them

 ■ How to use arguments and return values

 ■ How to use pointer variables as function arguments

 ■ Function types

 ■ ANSI C prototypes

 ■ Recursion

 How do you organize a program? C’s design philosophy is to use functions as building blocks.
We’ve already relied on the standard C library for functions such as printf() , scanf() ,
 getchar() , putchar() , and strlen() . Now we’re ready for a more active role—creating our
own functions. You’ve previewed several aspects of that process in earlier chapters, and this
chapter consolidates your earlier information and expands on it.

 Reviewing Functions

 First, what is a function? A function is a self-contained unit of program code designed to accom-
plish a particular task. Syntax rules define the structure of a function and how it can be used.
A function in C plays the same role that functions, subroutines, and procedures play in other
languages, although the details might differ. Some functions cause an action to take place. For
example, printf() causes data to be printed on your screen. Some functions find a value for a
program to use. For instance, strlen() tells a program how long a certain string is. In general,
a function can both produce actions and provide values.

ptg11524036

336 Chapter 9 Functions

 Why should you use functions? For one, they save you from repetitious programming. If you
have to do a certain task several times in a program, you only need to write an appropriate
function once. The program can then use that function wherever needed, or you can use the
same function in different programs, just as you have used putchar() in many programs. Also,
even if you do a task just once in just one program, using a function is worthwhile because it
makes a program more modular, hence easier to read and easier to change or fix. Suppose, for
example, that you want to write a program that does the following:

 ■ Read in a list of numbers

 ■ Sort the numbers

 ■ Find their average

 ■ Print a bar graph

 You could use this program:

 #include <stdio.h>

 #define SIZE 50

 int main(void)

 {

 float list[SIZE];

 readlist(list, SIZE);

 sort(list, SIZE);

 average(list, SIZE);

 bargraph(list, SIZE);

 return 0;

 }

 Of course, you would also have to write the four functions readlist() , sort() , average() ,
and bargraph() —mere details. Descriptive function names make it clear what the program
does and how it is organized. You can then work with each function separately until it does
its job right, and, if you make the functions general enough, you can reuse them in other
programs.

 Many programmers like to think of a function as a “black box” defined in terms of the infor-
mation that goes in (its input) and the value or action it produces (its output). What goes on
inside the black box is not your concern, unless you are the one who has to write the function.
For example, when you use printf() , you know that you have to give it a control string and,
perhaps, some arguments. You also know what output printf() should produce. You don’t
have to think about the programming that went into creating printf() . Thinking of functions
in this manner helps you concentrate on the program’s overall design rather than the details.
Think carefully about what the function should do and how it relates to the program as a
whole before worrying about writing the code.

 What do you need to know about functions? You need to know how to define them properly,
how to call them up for use, and how to set up communication between functions. To refresh

ptg11524036

337Reviewing Functions

your memory on these points, we will begin with a very simple example and then bring in
more features until you have the full story.

 Creating and Using a Simple Function

 Our modest first goal is to create a function that types 40 asterisks in a row. To give the func-
tion a context, let’s use it in a program that prints a simple letterhead. Listing 9.1 presents the
complete program. It consists of the functions main() and starbar() .

 Listing 9.1 The lethead1.c Program

 /* lethead1.c */

 #include <stdio.h>

 #define NAME "GIGATHINK, INC."

 #define ADDRESS "101 Megabuck Plaza"

 #define PLACE "Megapolis, CA 94904"

 #define WIDTH 40

 void starbar(void); /* prototype the function */

 int main(void)

 {

 starbar();

 printf("%s\n", NAME);

 printf("%s\n", ADDRESS);

 printf("%s\n", PLACE);

 starbar(); /* use the function */

 return 0;

 }

 void starbar(void) /* define the function */

 {

 int count;

 for (count = 1; count <= WIDTH; count++)

 putchar('*');

 putchar('\n');

 }

 The output is as follows:

 **

 GIGATHINK, INC.

 101 Megabuck Plaza

 Megapolis, CA 94904

 **

ptg11524036

338 Chapter 9 Functions

 Analyzing the Program

 Here are several major points to note about this program:

 ■ It uses the starbar identifier in three separate contexts: a function prototype that tells the
compiler what sort of function starbar() is, a function call that causes the function to
be executed, and a function definition that specifies exactly what the function does.

 ■ Like variables, functions have types. Any program that uses a function should declare the
type for that function before it is used. Consequently, this ANSI C prototype precedes the
 main() function definition:

 void starbar(void);

 The parentheses indicate that starbar is a function name. The first void is a function
type; the void type indicates that the function does not return a value. The second
 void (the one in the parentheses) indicates that the function takes no arguments. The
semicolon indicates that you are declaring the function, not defining it. That is, this
line announces that the program uses a function called starbar() , that the function
has no return value and has no arguments, and that the compiler should expect to find
the definition for this function elsewhere. For compilers that don’t recognize ANSI C
prototyping, just declare the type, as follows:

 void starbar();

 Note that some very old compilers don’t recognize the void type. In that case, use type
 int for functions that don’t have return values. And look into getting a compiler from
the current century.

 ■ In general, a prototype specifies both the type of value a function returns and the types
of arguments it expects. Collectively, this information is called the signature of the
function. In this particular case, the signature is that the function has no return value
and has no arguments.

 ■ The program places the starbar() prototype before main() ; instead, it can go inside
 main() , at the same location you would place any variable declarations. Either way is
fine.

 ■ The program calls (invokes , summons) the function starbar() from main() by using its
name followed by parentheses and a semicolon, thus creating the statement

 starbar();

 This is the form for calling up a type void function. Whenever the computer reaches a
 starbar(); statement, it looks for the starbar() function and follows the instructions
there. When finished with the code within starbar() , the computer returns to the
next line of the calling function — main() , in this case (see Figure 9.1). (More exactly,
the compiler translates the C program to machine-language code that behaves in this
fashion.)

ptg11524036

339Reviewing Functions

each function may "call"
other functions
each function is "run" in turn

starbar()

starbar()

main()

printf()

putchar()

{

}

putchar()

printf()

printf()

 Figure 9.1 Control flow for lethead1.c (Listing 9.1).

 ■ The program follows the same form in defining starbar() as it does in defining main() .
It starts with the type, name, and parentheses. Then it supplies the opening brace, a
declaration of variables used, the defining statements of the function, and then the
closing brace (see Figure 9.2). Note that this instance of starbar() is not followed by a
semicolon. The lack of a semicolon tells the compiler that you are defining starbar()
instead of calling or prototyping it.

 ■ The program includes starbar() and main() in the same file. You can use two separate
files. The single-file form is slightly easier to compile. Two separate files make it simpler
to use the same function in different programs. If you do place the function in a separate
file, you would also place the necessary #define and #include directives in that file. We
will discuss using two or more files later. For now, we will keep all the functions together
in one file. The closing brace of main() tells the compiler where that function ends, and
the following starbar() header tells the compiler that starbar() is a function.

ptg11524036

340 Chapter 9 Functions

 ■ The variable count in starbar() is a local variable. This means it is known only to
 starbar() . You can use the name count in other functions, including main() , and
there will be no conflict. You simply end up with separate, independent variables having
the same name.

preprocessor instructions

function name

#include <stdio.h>

#define LIMIT 65

void starbar (void)

header

{

int count;

for (count=1;---)

 putchar ('*');

putchar('\n');

}

body

declaration statement

function statement

control loop statement
function statement

 Figure 9.2 Structure of a simple function.

 If you think of starbar() as a black box, its action is printing a line of stars. It doesn’t have
any input because it doesn’t need to use any information from the calling function. It doesn’t
provide (or return) any information to main() , so starbar() doesn’t have a return value. In
short, starbar() doesn’t require any communication with the calling function.

 Let’s create a case where communication is needed.

 Function Arguments

 The letterhead shown earlier would look nicer if the text were centered. You can center text
by printing the correct number of leading spaces before printing the text. This is similar to the
 starbar() function, which printed a certain number of asterisks, but now you want to print
a certain number of spaces. Instead of writing separate functions for each task, we’ll write a
single, more general function that does both. We’ll call the new function show_n_char() (to
suggest displaying a character n times). The only change is that instead of using built-in values
for the display character and number of repetitions, show_n_char() will use function argu-
ments to convey those values.

 Let’s get more specific. Think of the available space being exactly 40 characters wide. The bar
of stars is 40 characters wide, fitting exactly, and the function call show_n_char('*', 40)

ptg11524036

341Reviewing Functions

should print that, just as starbar() did earlier. What about spaces for centering GIGATHINK,
INC ? GIGATHINK, INC. is 15 spaces wide, so in the first version, there were 25 spaces following
the heading. To center it, you should lead off with 12 spaces, which will result in 12 spaces on
one side of the phrase and 13 spaces on the other. Therefore, you could use the call show_n_
char(' ', 12) .

 Aside from using arguments, the show_n_char() function will be quite similar to starbar() .
One difference is that it won’t add a newline the way starbar() does because you might want
to print other text on the same line. Listing 9.2 shows the revised program. To emphasize how
arguments work, the program uses a variety of argument forms.

 Listing 9.2 The lethead2.c Program

 /* lethead2.c */

 #include <stdio.h>

 #include <string.h> /* for strlen() */

 #define NAME "GIGATHINK, INC."

 #define ADDRESS "101 Megabuck Plaza"

 #define PLACE "Megapolis, CA 94904"

 #define WIDTH 40

 #define SPACE ' '

 void show_n_char(char ch, int num);

 int main(void)

 {

 int spaces;

 show_n_char('*', WIDTH); /* using constants as arguments */

 putchar('\n');

 show_n_char(SPACE, 12); /* using constants as arguments */

 printf("%s\n", NAME);

 spaces = (WIDTH - strlen(ADDRESS)) / 2;

 /* Let the program calculate */

 /* how many spaces to skip */

 show_n_char(SPACE, spaces);/* use a variable as argument */

 printf("%s\n", ADDRESS);

 show_n_char(SPACE, (WIDTH - strlen(PLACE)) / 2);

 /* an expression as argument */

 printf("%s\n", PLACE);

 show_n_char('*', WIDTH);

 putchar('\n');

 return 0;

 }

 /* show_n_char() definition */

ptg11524036

342 Chapter 9 Functions

 void show_n_char(char ch, int num)

 {

 int count;

 for (count = 1; count <= num; count++)

 putchar(ch);

 }

 Here is the result of running the program:

 **

 GIGATHINK, INC.

 101 Megabuck Plaza

 Megapolis, CA 94904

 **

 Now let’s review how to set up a function that takes arguments. After that, you’ll look at how
the function is used.

 Defining a Function with an Argument: Formal Parameters

 The function definition begins with the following ANSI C function header:

 void show_n_char(char ch, int num)

 This line informs the compiler that show_n_char() uses two arguments called ch and num ,
that ch is type char , and that num is type int . Both the ch and num variables are called formal
arguments or (the phrase currently in favor) formal parameters . Like variables defined inside the
function, formal parameters are local variables, private to the function. That means you don’t
have to worry if the names duplicate variable names used in other functions. These variables
will be assigned values each time the function is called.

 Note that the ANSI C form requires that each variable be preceded by its type. That is, unlike
the case with regular declarations, you can’t use a list of variables of the same type:

 void dibs(int x, y, z) /* invalid function header */

 void dubs(int x, int y, int z) /* valid function header */

 ANSI C also recognizes the pre-ANSI C form but characterizes it as obsolescent:

 void show_n_char(ch, num)

 char ch;

 int num;

 Here, the parentheses contain the list of argument names, but the types are declared afterward.
Note that the arguments are declared before the brace that marks the start of the function’s
body, but ordinary local variables are declared after the brace. This form does enable you to use
comma-separated lists of variable names if the variables are of the same type, as shown here:

ptg11524036

343Reviewing Functions

 void dibs(x, y, z)

 int x, y, z; /* valid */

 The intent of the standard is to phase out the pre-ANSI C form. You should be aware of it so
that you can understand older code, but you should use the modern form for new programs.
(C99 and C11 continue to warn of impending obsolescence.)

 Although the show_n_char() function accepts values from main() , it doesn’t return a value.
Therefore, show_n_char() is type void .

 Now let’s see how this function is used.

 Prototyping a Function with Arguments

 We used an ANSI C prototype to declare the function before it is used:

 void show_n_char(char ch, int num);

 When a function takes arguments, the prototype indicates their number and type by using a
comma-separated list of the types. If you like, you can omit variable names in the prototype:

 void show_n_char(char, int);

 Using variable names in a prototype doesn’t actually create variables. It merely clarifies the fact
that char means a char variable, and so on.

 Again, ANSI C also recognizes the older form of declaring a function, which is without an argu-
ment list:

 void show_n_char();

 This form eventually will be dropped from the standard. Even if it weren’t, the prototype
format is a much better design, as you’ll see later. The main reason you need to know this form
is so that you’ll recognize and understand it if you encounter it in older code.

 Calling a Function with an Argument: Actual Arguments

 You give ch and num values by using actual arguments in the function call. Consider the first use
of show_n_char() :

 show_n_char(SPACE, 12);

 The actual arguments are the space character and 12 . These values are assigned to the corre-
sponding formal parameters in show_n_char() —the variables ch and num . In short, the formal
parameter is a variable in the called function, and the actual argument is the particular value
assigned to the function variable by the calling function. As the example shows, the actual
argument can be a constant, a variable, or an even more elaborate expression. Regardless of
which it is, the actual argument is evaluated, and its value is copied to the corresponding
formal parameter for the function. For instance, consider the final use of show_n_char() :

 show_n_char(SPACE, (WIDTH - strlen(PLACE)) / 2);

ptg11524036

344 Chapter 9 Functions

 The long expression forming the second actual argument is evaluated to 10 . Then the value
 10 is assigned to the variable num . The function neither knows nor cares whether that number
came from a constant, a variable, or a more general expression. Once again, the actual argu-
ment is a specific value that is assigned to the variable known as the formal parameter (see
 Figure 9.3). Because the called function works with data copied from the calling function, the
original data in the calling function is protected from whatever manipulations the called func-
tion applies to the copies.

 Note Actual Arguments and Formal Parameters

 The actual argument is an expression that appears in the parentheses of a function call. The
formal parameter is a variable declared in the header of a function definition. When a func-
tion is called, the variables declared as formal parameters are created and initialized to the
values obtained by evaluating the actual arguments. In Listing 9.2 , '*' and WIDTH are actual
arguments for the first time show_n_char() is called, and SPACE and 11 are actual argu-
ments the second time that function is called. In the function definition, ch and num are formal
parameters.

actual argument =25 passed by
main() to space() and assigned
to number

 int main(void)

{

space(25);

}

formal parameter = name
created by function definition

•

•

•

void space (int number)

{

}

 Figure 9.3 Formal parameters and actual arguments.

ptg11524036

345Reviewing Functions

 The Black-Box Viewpoint

 Taking a black-box viewpoint of show_n_char() , the input is the character to be displayed and
the number of spaces to be skipped. The resulting action is printing the character the specified
number of times. The input is communicated to the function via arguments. This information
is enough to tell you how to use the function in main() . Also, it serves as a design specification
for writing the function.

 The fact that ch , num , and count are local variables private to the show_n_char() function is
an essential aspect of the black box approach. If you were to use variables with the same names
in main() , they would be separate, independent variables. That is, if main() had a count vari-
able, changing its value wouldn’t change the value of count in show_n_char() , and vice versa.
What goes on inside the black box is hidden from the calling function.

 Returning a Value from a Function with return

 You have seen how to communicate information from the calling function to the called func-
tion. To send information in the other direction, you use the function return value. To refresh
your memory on how that works, we’ll construct a function that returns the smaller of its two
arguments. We’ll call the function imin() because it’s designed to handle int values. Also,
we will create a simple main() whose sole purpose is to check to see whether imin() works.
A program designed to test functions this way is sometimes called a driver . The driver takes a
function for a spin. If the function pans out, it can be installed in a more noteworthy program.
 Listing 9.3 shows the driver and the minimum value function.

 Listing 9.3 The lesser.c Program

 /* lesser.c -- finds the lesser of two evils */

 #include <stdio.h>

 int imin(int, int);

 int main(void)

 {

 int evil1, evil2;

 printf("Enter a pair of integers (q to quit):\n");

 while (scanf("%d %d", &evil1, &evil2) == 2)

 {

 printf("The lesser of %d and %d is %d.\n",

 evil1, evil2, imin(evil1,evil2));

 printf("Enter a pair of integers (q to quit):\n");

 }

 printf("Bye.\n");

 return 0;

 }

ptg11524036

346 Chapter 9 Functions

 int imin(int n,int m)

 {

 int min;

 if (n < m)

 min = n;

 else

 min = m;

 return min;

 }

 Recall that scanf() returns the number of items successfully read, so input other than two
integers will cause the while loop to terminate. Here is a sample run:

 Enter a pair of integers (q to quit):

 509 333

 The lesser of 509 and 333 is 333.

 Enter a pair of integers (q to quit):

 -9393 6

 The lesser of -9393 and 6 is -9393.

 Enter a pair of integers (q to quit):

 q

 Bye.

 The keyword return causes the value of the following expression to be the return value of the
function. In this case, the function returns the value that was assigned to min . Because min is
type int , so is the imin() function.

 The variable min is private to imin() , but the value of min is communicated back to the calling
function with return . The effect of a statement such as the next one is to assign the value of
 min to lesser :

 lesser = imin(n,m);

 Could you say the following instead?

 imin(n,m);

 lesser = min;

 No, because the calling function doesn’t even know that min exists. Remember that imin() ’s
variables are local to imin() . The function call imin(evil1,evil2) copies the values of one
set of variables to another set.

 Not only can the returned value be assigned to a variable, it can also be used as part of an
expression. You can do this, for example:

 answer = 2 * imin(z, zstar) + 25;

 printf("%d\n", imin(-32 + answer, LIMIT));

ptg11524036

347Reviewing Functions

 The return value can be supplied by any expression, not just a variable. For example, you can
shorten the program to the following:

 /* minimum value function, second version */

 imin(int n,int m)

 {

 return (n < m) ? n : m;

 }

 The conditional expression is evaluated to either n or m , whichever is smaller, and that value is
returned to the calling function. If you prefer, for clarity or style, to enclose the return value in
parentheses, you may, although parentheses are not required.

 What if the function returns a type different from the declared type?

 int what_if(int n)

 {

 double z = 100.0 / (double) n;

 return z; // what happens?

 }

 Then the actual return value is what you would get if you assigned the indicated return value
to a variable of the declared return type. So, in this example, the net effect would be the same
as if you assigned the value of z to an int variable and then returned that value. For example,
suppose we have the following function call:

 result = what_if(64);

 Then z is assigned 1.5625 . The return statement, however, returns the int value 1 .

 Using return has one other effect. It terminates the function and returns control to the next
statement in the calling function. This occurs even if the return statement is not the last in
the function. Therefore, you can write imin() this way:

 /* minimum value function, third version */

 imin(int n,int m)

 {

 if (n < m)

 return n;

 else

 return m;

 }

 Many, but not all, C practitioners deem it better to use return just once and at the end of
a function to make it easier for someone to follow the control flow through the function.
However, it’s no great sin to use multiple return s in a function as short as this one. Anyway,
to the user, all three versions are the same, because all take the same input and produce the
same output. Just the innards are different. Even this version works the same:

 /* minimum value function, fourth version */

 imin(int n, int m)

ptg11524036

348 Chapter 9 Functions

 {

 if (n < m)

 return n;

 else

 return m;

 printf("Professor Fleppard is like totally a fopdoodle.\n");

 }

 The return statements prevent the printf() statement from ever being reached. Professor
Fleppard can use the compiled version of this function in his own programs and never learn
the true feelings of his student programmer.

 You can also use a statement like this:

 return;

 It causes the function to terminate and return control to the calling function. Because no
expression follows return , no value is returned, and this form should be used only in a type
 void function.

 Function Types

 Functions should be declared by type. A function with a return value should be declared the
same type as the return value. Functions with no return value should be declared as type void .
If no type is given for a function, older versions of C assume that the function is type int .
This convention stems from the early days of C when most functions were type int anyway.
However, the C99 standard drops support for this implicit assumption of type int .

 The type declaration is part of the function definition. Keep in mind that it refers to the return
value, not to the function arguments. For example, the following function heading indicates
that you are defining a function that takes two type int arguments but that returns a type
 double value:

 double klink(int a, int b)

 To use a function correctly, a program needs to know the function type before the function is
used for the first time. One way to accomplish this is to place the complete function definition
ahead of its first use. However, this method could make the program harder to read. Also, the
functions might be part of the C library or in some other file. Therefore, you generally inform
the compiler about functions by declaring them in advance. For example, the main() function
in Listing 9.3 contains these lines:

 #include <stdio.h>

 int imin(int, int);

 int main(void)

 {

 int evil1, evil2, lesser;

ptg11524036

349ANSI C Function Prototyping

 The second line establishes that imin is the name of a function that has two int parameters
and returns a type int value. Now the compiler will know how to treat imin() when it appears
later in the program.

 We’ve placed the advance function declarations outside the function using them. They can
also be placed inside the function. For example, you can rewrite the beginning of lesser.c as
follows:

 #include <stdio.h>

 int main(void)

 {

 int imin(int, int); /* imin() declaration */

 int evil1, evil2, lesser;

 In either case, your chief concern should be that the function declaration appears before the
function is used.

 In the ANSI C standard library, functions are grouped into families, each having its own header
file. These header files contain, among other things, the declarations for the functions in the
family. For example, the stdio.h header contains function declarations for the standard I/O
library functions, such as printf() and scanf() . The math.h header contains function decla-
rations for a variety of mathematical functions. For example, it contains

 double sqrt(double);

 to tell the compiler that the sqrt() function has a double parameter and returns a type
 double value. Don’t confuse these declarations with definitions. A function declaration
informs the compiler which type the function is, but the function definition supplies the actual
code. Including the math.h header file tells the compiler that sqrt() returns type double , but
the code for sqrt() resides in a separate file of library functions.

 ANSI C Function Prototyping

 The traditional, pre-ANSI C scheme for declaring functions was deficient in that it declared
a function’s return type but not its arguments. Let’s look at the kinds of problems that arise
when the old form of function declaration is used.

 The following pre-ANSI C declaration informs the compiler that imin() returns a type int
value:

 int imin();

 However, it says nothing about the number or type of imin() ’s arguments. Therefore, if you
use imin() with the wrong number or type of arguments, the compiler doesn’t catch the error.

ptg11524036

350 Chapter 9 Functions

 The Problem

 Let’s look at some examples involving imax() , a close relation to imin() . Listing 9.4 shows a
program that declares imax() the old-fashioned way and then uses imax() incorrectly.

 Listing 9.4 The misuse.c Program

 /* misuse.c -- uses a function incorrectly */

 #include <stdio.h>

 int imax(); /* old-style declaration */

 int main(void)

 {

 printf("The maximum of %d and %d is %d.\n",

 3, 5, imax(3));

 printf("The maximum of %d and %d is %d.\n",

 3, 5, imax(3.0, 5.0));

 return 0;

 }

 int imax(n, m)

 int n, m;

 {

 return (n > m ? n : m);

 }

 The first call to printf() omits an argument to imax() , and the second call uses floating-
point arguments instead of integers. Despite these errors, the program compiles and runs.

 Here’s a sample output using Xcode 4.6:

 The maximum of 3 and 5 is 1606416656.

 The maximum of 3 and 5 is 3886.

 A sample run using gcc produced values of 1359379472 and 1359377160. The two compilers
work fine; they are merely victims of the program’s failure to use function prototypes.

 What’s happening? The mechanics may differ among systems, but here’s what goes on with
a PC or VAX. The calling function places its arguments in a temporary storage area called the
 stack , and the called function reads those arguments off the stack. These two processes are not
coordinated with one another. The calling function decides which type to pass based on the
actual arguments in the call, and the called function reads values based on the types of its
formal arguments. Therefore, the call imax(3) places one integer on the stack. When the imax()
function starts up, it reads two integers off the stack. Only one was actually placed on the stack,
so the second value read is whatever value happened to be sitting in the stack at the time.

 The second time the example uses imax() , it passes float values to imax() . This places two
 double values on the stack. (Recall that a float is promoted to double when passed as an

ptg11524036

351ANSI C Function Prototyping

argument.) On our system, that’s two 64-bit values, so 128 bits of data are placed on the stack.
When imax() reads two int s from the stack, it reads the first 64 bits on the stack because, on
our system, each int is 32 bits. These bits happened to correspond to two integer values, the
larger of which was 3886.

 The ANSI C Solution

 The ANSI C standard’s solution to the problems of mismatched arguments is to permit the
function declaration to declare the variable types, too. The result is a function prototype —a decla-
ration that states the return type, the number of arguments, and the types of those arguments.
To indicate that imax() requires two int arguments, you can declare it with either of the
following prototypes:

 int imax(int, int);

 int imax(int a, int b);

 The first form uses a comma-separated list of types. The second adds variable names to the
types. Remember that the variable names are dummy names and don’t have to match the
names used in the function definition.

 With this information at hand, the compiler can check to see whether the function call
matches the prototype. Are there the right number of arguments? Are they the correct type?
If there is a type mismatch and if both types are numbers, the compiler converts the values of
the actual arguments to the same type as the formal arguments. For example, imax(3.0, 5.0)
becomes imax(3, 5) . We’ve modified Listing 9.4 to use a function prototype. The result is
shown in Listing 9.5 .

 Listing 9.5 The proto.c Program

 /* proto.c -- uses a function prototype */

 #include <stdio.h>

 int imax(int, int); /* prototype */

 int main(void)

 {

 printf("The maximum of %d and %d is %d.\n",

 3, 5, imax(3));

 printf("The maximum of %d and %d is %d.\n",

 3, 5, imax(3.0, 5.0));

 return 0;

 }

 int imax(int n, int m)

 {

 return (n > m ? n : m);

 }

ptg11524036

352 Chapter 9 Functions

 When we tried to compile Listing 9.5 , our compiler gave an error message stating that the call
to imax() had too few parameters.

 What about the type errors? To investigate those, we replaced imax(3) with imax(3, 5) and
tried compilation again. This time there were no error messages, and we ran the program. Here
is the resulting output:

 The maximum of 3 and 5 is 5.

 The maximum of 3 and 5 is 5.

 As promised, the 3.0 and 5.0 of the second call were converted to 3 and 5 so that the function
could handle the input properly.

 Although it gave no error message, our compiler did give a warning to the effect that a double
was converted to int and that there was a possible loss of data. For example, the call

 imax(3.9, 5.4)

 becomes equivalent to the following:

 imax(3, 5)

 The difference between an error and a warning is that an error prevents compilation and a
warning permits compilation. Some compilers make this type cast without telling you. That’s
because the standard doesn’t require warnings. However, many compilers enable you to select a
warning level that controls how verbose the compiler will be in issuing warnings.

 No Arguments and Unspecified Arguments

 Suppose you give a prototype like this:

 void print_name();

 An ANSI C compiler will assume that you have decided to forego function prototyping, and it
will not check arguments. To indicate that a function really has no arguments, use the void
keyword within the parentheses:

 void print_name(void);

 ANSI C interprets the preceding expression to mean that print_name() takes no arguments. It
then checks to see that you, in fact, do not use arguments when calling this function.

 A few functions, such as printf() and scanf() , take a variable number of arguments. In
 printf() , for example, the first argument is a string, but the remaining arguments are fixed
in neither type nor number. ANSI C allows partial prototyping for such cases. You could, for
example, use this prototype for printf() :

 int printf(const char *, ...);

ptg11524036

353Recursion

 This prototype says that the first argument is a string (Chapter 11 , “Character Strings and String
Functions,” elucidates that point) and that there may be further arguments of an unspecified
nature.

 The C library, through the stdarg.h header file, provides a standard way for defining a func-
tion with a variable number of parameters; Chapter 16 , “The C Preprocessor and the C Library,”
covers the details.

 Hooray for Prototypes

 Prototypes are a strong addition to the language. They enable the compiler to catch many
errors or oversights you might make using a function. These are problems that, if not caught,
might be hard to trace. Do you have to use them? No, you can use the old type of function
declaration (the one showing no parameters) instead, but there is no advantage and many
disadvantages to that.

 There is one way to omit a prototype yet retain the advantages of prototyping. The reason for
the prototype is to show the compiler how the function should be used before the compiler
reaches the first actual use. You can accomplish the same end by placing the entire func-
tion definition before the first use. Then the definition acts as its own prototype. This is most
commonly done with short functions:

 // the following is a definition and a prototype

 int imax(int a, int b) { return a > b ? a : b; }

 int main()

 {

 int x, z;

 ...

 z = imax(x, 50);

 ...

 }

 Recursion

 C permits a function to call itself. This process is termed recursion . Recursion is a sometimes
tricky, sometimes convenient tool. It’s tricky to get recursion to end because a function that
calls itself tends to do so indefinitely unless the programming includes a conditional test to
terminate recursion.

 Recursion often can be used where loops can be used. Sometimes the loop solution is more
obvious; sometimes the recursive solution is more obvious. Recursive solutions tend to be more
elegant and less efficient than loop solutions.

ptg11524036

354 Chapter 9 Functions

 Recursion Revealed

 To see what’s involved, let’s look at an example. The function main() in Listing 9.6 calls the
 up_and_down() function. We’ll term this the “first level of recursion.” Then up_and_down()
calls itself; we’ll call that the “second level of recursion.” The second level calls the third
level, and so on. This example is set up to go four levels. To provide an inside look at what is
happening, the program not only displays the value of the variable n , it also displays &n , which
is the memory address at which the variable n is stored. (This chapter discusses the & opera-
tor more fully later. The printf() function uses the %p specifier for addresses. If your system
doesn’t support that format, try %u or %lu .)

 Listing 9.6 The recur.c Program

 /* recur.c -- recursion illustration */

 #include <stdio.h>

 void up_and_down(int);

 int main(void)

 {

 up_and_down(1);

 return 0;

 }

 void up_and_down(int n)

 {

 printf("Level %d: n location %p\n", n, &n); // 1

 if (n < 4)

 up_and_down(n+1);

 printf("LEVEL %d: n location %p\n", n, &n); // 2

 }

 The output on one system looks like this:

 Level 1: n location 0x0012ff48

 Level 2: n location 0x0012ff3c

 Level 3: n location 0x0012ff30

 Level 4: n location 0x0012ff24

 LEVEL 4: n location 0x0012ff24

 LEVEL 3: n location 0x0012ff30

 LEVEL 2: n location 0x0012ff3c

 LEVEL 1: n location 0x0012ff48

 Let’s trace through the program to see how recursion works. First, main() calls up_and_down()
with an argument of 1 . As a result, the formal parameter n in up_and_down() has the value 1 ,
so print statement #1 prints Level 1 . Then, because n is less than 4 , up_and_down() (Level
1) calls up_and_down() (Level 2) with an actual argument of n + 1 , or 2 . This causes n in the

ptg11524036

355Recursion

Level 2 call to be assigned the value 2 , so print statement #1 prints Level 2 . Similarly, the
next two calls lead to printing Level 3 and Level 4 .

 When Level 4 is reached, n is 4 , so the if test fails. The up_and_down() function is not called
again. Instead, the Level 4 call proceeds to print statement #2, which prints LEVEL 4 , because
 n is 4 . Then it reaches the return statement. At this point, the Level 4 call ends, and control
passes back to the function that called it (the Level 3 call). The last statement executed in the
Level 3 call was the call to Level 4 in the if statement. Therefore, Level 3 resumes with the
following statement, which is print statement #2. This causes LEVEL 3 to be printed. Then
Level 3 ends, passing control to Level 2, which prints LEVEL 2 , and so on.

 Note that each level of recursion uses its own private n variable. You can tell this is so by
looking at the address values. (Of course, different systems, in general, will report different
addresses, possibly in a different format. The critical point is that the address on the Level 1
line is the same as the address on the LEVEL 1 line, and so on.)

 If you find this a bit confusing, think about when you have a chain of function calls, with
 fun1() calling fun2() , fun2() calling fun3() , and fun3() calling fun4() . When fun4()
finishes, it passes control back to fun3() . When fun3() finishes, it passes control back to
 fun2() . And when fun2() finishes, it passes control back to fun1() . The recursive case works
the same, except that fun1() , fun2() , fun3() , and fun4() are all the same function.

 Recursion Fundamentals

 Recursion can be confusing at first, so let’s look at a few basic points that will help you under-
stand the process.

 First, each level of function call has its own variables. That is, the n of Level 1 is a different
variable from the n of Level 2, so the program created four separate variables, each called n ,
but each having a distinct value. When the program finally returned to the first-level call of
 up_and_down() , the original n still had the value 1 it started with (see Figure 9.4).

1
1 2
1 2 3
1 2 3 4
1 2 3
1 2
1

(all gone)

after level 1 call
after level 2 call
after level 3 call
after level 4 call

after return from level 4
after return from level 3
after return from level 2
after return from level 1

variables: n n n n

 Figure 9.4 Recursion variables.

ptg11524036

356 Chapter 9 Functions

 Second, each function call is balanced with a return. When program flow reaches the return at
the end of the last recursion level, control passes to the previous recursion level. The program
does not jump all the way back to the original call in main() . Instead, the program must move
back through each recursion level, returning from one level of up_and_down() to the level of
 up_and_down() that called it.

 Third, statements in a recursive function that come before the recursive call are executed in the
same order that the functions are called. For example, in Listing 9.6 , print statement #1 comes
before the recursive call. It was executed four times in the order of the recursive calls: Level 1,
Level 2, Level 3, and Level 4.

 Fourth, statements in a recursive function that come after the recursive call are executed in the
opposite order from which the functions are called. For example, print statement #2 comes
after the recursive call, and it was executed in the order: Level 4, Level 3, Level 2, Level 1. This
feature of recursion is useful for programming problems involving reversals of order. You’ll see
an example soon.

 Fifth, although each level of recursion has its own set of variables, the code itself is not dupli-
cated. The code is a sequence of instructions, and a function call is a command to go to the
beginning of that set of instructions. A recursive call, then, returns the program to the begin-
ning of that instruction set. Aside from recursive calls creating new variables on each call, they
are much like a loop. Indeed, sometimes recursion can be used instead of loops, and vice versa.

 Finally, it’s vital that a recursive function contain something to halt the sequence of recursive
calls. Typically, a recursive function uses an if test, or equivalent, to terminate recursion when
a function parameter reaches a particular value. For this to work, each call needs to use a differ-
ent value for the parameter. For example, in the last example, up_and_down(n) calls up_and_
down(n+1) . Eventually, the actual argument reaches the value 4 , causing the if (n < 4) test
to fail.

 Tail Recursion

 In the simplest form of recursion, the recursive call is at the end of the function, just before the
 return statement. This is called tail recursion , or end recursion , because the recursive call comes
at the end. Tail recursion is the simplest form because it acts like a loop.

 Let’s look at both a loop version and a tail recursion version of a function to calculate facto-
rials. The factorial of an integer is the product of the integers from 1 through that number.
For example, 3 factorial (written 3!) is 1*2*3 . Also, 0! is taken to be 1, and factorials are not
defined for negative numbers. Listing 9.7 presents one function that uses a for loop to calcu-
late factorials and a second that uses recursion.

 Listing 9.7 The factor.c Program

 // factor.c -- uses loops and recursion to calculate factorials

 #include <stdio.h>

 long fact(int n);

ptg11524036

357Recursion

 long rfact(int n);

 int main(void)

 {

 int num;

 printf("This program calculates factorials.\n");

 printf("Enter a value in the range 0-12 (q to quit):\n");

 while (scanf("%d", &num) == 1)

 {

 if (num < 0)

 printf("No negative numbers, please.\n");

 else if (num > 12)

 printf("Keep input under 13.\n");

 else

 {

 printf("loop: %d factorial = %ld\n",

 num, fact(num));

 printf("recursion: %d factorial = %ld\n",

 num, rfact(num));

 }

 printf("Enter a value in the range 0-12 (q to quit):\n");

 }

 printf("Bye.\n");

 return 0;

 }

 long fact(int n) // loop-based function

 {

 long ans;

 for (ans = 1; n > 1; n--)

 ans *= n;

 return ans;

 }

 long rfact(int n) // recursive version

 {

 long ans;

 if (n > 0)

 ans= n * rfact(n-1);

 else

 ans = 1;

 return ans;

 }

ptg11524036

358 Chapter 9 Functions

 The test driver program limits input to the integers 0–12. It turns out that 12! is slightly under
half a billion, which makes 13! much larger than long on our system. To go beyond 12! , you
would have to use a type with greater range, such as double or long long .

 Here’s a sample run:

 This program calculates factorials.

 Enter a value in the range 0-12 (q to quit):

 5

 loop: 5 factorial = 120

 recursion: 5 factorial = 120

 Enter a value in the range 0-12 (q to quit):

 10

 loop: 10 factorial = 3628800

 recursion: 10 factorial = 3628800

 Enter a value in the range 0-12 (q to quit):

 q

 Bye.

 The loop version initializes ans to 1 and then multiplies it by the integers from n down to 2 .
Technically, you should multiply by 1 , but that doesn’t change the value.

 Now consider the recursive version. The key is that n! = n × (n-1)! . This follows because
 (n-1)! is the product of all the positive integers through n-1 . Therefore, multiplying by
 n gives the product through n . This suggests a recursive approach. If you call the function
 rfact() , rfact(n) is n * rfact(n-1) . You can thus evaluate rfact(n) by having it call
 rfact(n-1) , as in Listing 9.7 . Of course, you have to end the recursion at some point, and you
can do this by setting the return value to 1 when n is 0 .

 The recursive version of Listing 9.7 produces the same output as the loop version. Note that
although the recursive call to rfact() is not the last line in the function, it is the last state-
ment executed when n > 0 , so it is tail recursion.

 Given that you can use either a loop or recursion to code a function, which should you use?
Normally, the loop is the better choice. First, because each recursive call gets its own set of
variables, recursion uses more memory; each recursive call places a new set of variables on the
stack. And space restrictions in the stack can limit the number of recursive calls. Second, recur-
sion is slower because each function call takes time. So why show this example? Because tail
recursion is the simplest form of recursion to understand, and recursion is worth understanding
because in some cases, there is no simple loop alternative.

 Recursion and Reversal

 Now let’s look at a problem in which recursion’s ability to reverse order is handy. (This is a
case for which recursion is simpler than using a loop.) The problem is this: Write a function
that prints the binary equivalent of an integer. Binary notation represents numbers in terms of
powers of 2. Just as 234 in decimal means 2 × 10 2 + 3 × 10 1 + 4 × 10 0 , so 101 in binary means
1 × 2 2 + 0 × 2 1 + 1 × 2 0 . Binary numbers use only the digits 0 and 1.

ptg11524036

359Recursion

 You need a method, or algorithm . How can you, say, find the binary equivalent of 5? Well, odd
numbers must have a binary representation ending in 1. Even numbers end in 0, so you can
determine whether the last digit is a 1 or a 0 by evaluating 5 % 2 . If the result is 1, 5 is odd,
and the last digit is 1. In general, if n is a number, the final digit is n % 2 , so the first digit you
find is the last digit you want to print. This suggests using a recursive function in which n %
2 is calculated before the recursive call but in which it is printed after the recursive call. That
way, the first value calculated is the last value printed.

 To get the next digit, divide the original number by 2. This is the binary equivalent of moving
the decimal point one place to the left so that you can examine the next binary digit. If this
value is even, the next binary digit is 0. If it is odd, the binary digit is 1. For example, 5/2 is
2 (integer division), so the next digit is 0. This gives 01 so far. Now repeat the process. Divide
2 by 2 to get 1. Evaluate 1 % 2 to get 1, so the next digit is 1. This gives 101. When do you
stop? You stop when the result of dividing by 2 is less than 2 because as long as it is 2 or
greater, there is one more binary digit. Each division by 2 lops off one more binary digit until
you reach the end. (If this seems confusing to you, try working through the decimal analogy.
The remainder of 628 divided by 10 is 8, so 8 is the last digit. Integer division by 10 yields 62,
and the remainder from dividing 62 by 10 is 2, so that’s the next digit, and so on.) Listing 9.8
implements this approach.

 Listing 9.8 The binary.c Program

 /* binary.c -- prints integer in binary form */

 #include <stdio.h>

 void to_binary(unsigned long n);

 int main(void)

 {

 unsigned long number;

 printf("Enter an integer (q to quit):\n");

 while (scanf("%lu", &number) == 1)

 {

 printf("Binary equivalent: ");

 to_binary(number);

 putchar('\n');

 printf("Enter an integer (q to quit):\n");

 }

 printf("Done.\n");

 return 0;

 }

 void to_binary(unsigned long n) /* recursive function */

 {

 int r;

ptg11524036

360 Chapter 9 Functions

 r = n % 2;

 if (n >= 2)

 to_binary(n / 2);

 putchar(r == 0 ? '0' : '1');

 return;

 }

 The to_binary() should display the character '0' if r has the numeric value 0 and '1' if
 r has the numeric value 1 . The conditional expression r == 0 ? '0' : '1' provides this
conversion of a numeric to character values.

 Here’s a sample run:

 Enter an integer (q to quit):

 9

 Binary equivalent: 1001

 Enter an integer (q to quit):

 255

 Binary equivalent: 11111111

 Enter an integer (q to quit):

 1024

 Binary equivalent: 10000000000

 Enter an integer (q to quit):

 q

 done.

 Could you use this algorithm for calculating a binary representation without using recursion?
Yes, you could. But because the algorithm calculates the final digit first, you’d have to store all
the digits somewhere (in an array, for example) before displaying the result. Chapter 15 , “Bit
Fiddling,” shows an example of a nonrecursive approach.

 Recursion Pros and Cons

 Recursion has its good points and bad points. One good point is that recursion offers the
simplest solution to some programming problems. One bad point is that some recursive algo-
rithms can rapidly exhaust a computer’s memory resources. Also, recursion can be difficult
to document and maintain. Let’s look at an example that illustrates both the good and bad
aspects.

 Fibonacci numbers can be defined as follows: The first Fibonacci number is 1, the second
Fibonacci number is 1, and each subsequent Fibonacci number is the sum of the preceding two.
Therefore, the first few numbers in the sequence are 1, 1, 2, 3, 5, 8, 13. Fibonacci numbers are
among the most beloved in mathematics; there even is a journal devoted to them. But let’s not
get into that. Instead, let’s create a function that, given a positive integer n , returns the corre-
sponding Fibonacci number.

ptg11524036

361Compiling Programs with Two or More Source Code Files

 First, the recursive strength: Recursion supplies a simple definition. If we name the function
 Fibonacci() , Fibonacci(n) should return 1 if n is 1 or 2, and it should return the sum
 Fibonacci(n-1) + Fibonacci(n-2) otherwise:

 unsigned long Fibonacci(unsigned n)

 {

 if (n > 2)

 return Fibonacci(n-1) + Fibonacci(n-2);

 else

 return 1;

 }

 The recursive C function merely restates the recursive mathematical definition. This function
uses double recursion ; that is, the function calls itself twice. And that leads to a weakness.

 To see the nature of that weakness, suppose you use the function call Fibonacci(40) .
That would be the first level of recursion, and it allocates a variable called n . It then evokes
 Fibonacci() twice, creating two more variables called n at the second level of recursion.
Each of those two calls generates two more calls, requiring four more variables called n at the
third level of recursion, for a total of seven variables. Each level requires twice the number of
variables as the preceding level, and the number of variables grows exponentially! As you saw
in the grains-of-wheat example in Chapter 5 , “Operators, Expressions, and Statements,” expo-
nential growth rapidly leads to large values. In this case, exponential growth soon leads to the
computer requiring an enormous amount of memory, most likely causing the program to crash.

 Well, this is an extreme example, but it does illustrate the need for caution when using recur-
sion, particularly when efficiency is important.

 All C Functions Are Created Equal

 Each C function in a program is on equal footing with the others. Each can call any other func-
tion or be called by any other function. This makes the C function somewhat different from
Pascal and Modula-2 procedures because those procedures can be nested within other proce-
dures. Procedures in one nest are ignorant of procedures in another nest.

 Isn’t the function main() special? Yes, it is a little special in that when a program of several
functions is put together, execution starts with the first statement in main() , but that is the
limit of its preference. Even main() can be called by itself recursively or by other functions,
although this is rarely done.

 Compiling Programs with Two or More Source Code Files

 The simplest approach to using several functions is to place them in the same file. Then just
compile that file as you would a single-function file. Other approaches are more system depen-
dent, as the next few sections illustrate.

ptg11524036

362 Chapter 9 Functions

 Unix

 This assumes the Unix system has the Unix C compiler cc installed. (The original cc has
been retired, but many Unix systems make the cc command an alias for some other compiler
command, typically gcc or clang .) Suppose that file1.c and file2.c are two files contain-
ing C functions. Then the following command will compile both files and produce an execut-
able file called a.out :

 cc file1.c file2.c

 In addition, two object files called file1.o and file2.o are produced. If you later change
 file1.c but not file2.c , you can compile the first and combine it with the object code
version of the second file by using this command:

 cc file1.c file2.o

 Unix has a make command that automates management of multifile programs, but that’s
beyond the scope of this book.

 Note that the OS X Terminal utility opens a command-line Unix environment, but you have to
download the command-line compilers (GCC and Clang) from Apple.

 Linux

 This assumes the Linux system has the GNU C compiler GCC installed. Suppose that file1.c
and file2.c are two files containing C functions. Then the following command will compile
both files and produce an executable file called a.out :

 gcc file1.c file2.c

 In addition, two object files called file1.o and file2.o are produced. If you later change
 file1.c but not file2.c , you can compile the first and combine it with the object code
version of the second file by using this command:

 gcc file1.c file2.o

 DOS Command-Line Compilers

 Most DOS command-line compilers work similarly to the Unix cc command, but using a differ-
ent name. One difference is that object files wind up with an .obj extension instead of an .o
extension. Some compilers produce intermediate files in assembly language or in some other
special code, instead of object code files.

 Windows and Apple IDE Compilers

 Integrated development environment compilers for Windows and Macintosh are project oriented .
A project describes the resources a particular program uses. The resources include your source
code files. If you’ve been using one of these compilers, you’ve probably had to create projects

ptg11524036

363Compiling Programs with Two or More Source Code Files

to run one-file programs. For multiple-file programs, find the menu command that lets you add
a source code file to a project. You should make sure all your source code files (the ones with
the .c extension) are listed as part of the project. With many IDEs, you don’t list your header
files (the ones with the .h extension) in a project list. The idea is that the project manages
which source code files are used, and #include directives in the source code files manage
which header files get used. However, with Xcode, you do add header files to the project.

 Using Header Files

 If you put main() in one file and your function definitions in a second file, the first file still
needs the function prototypes. Rather than type them in each time you use the function file,
you can store the function prototypes in a header file. That is what the standard C library
does, placing I/O function prototypes in stdio.h and math function prototypes in math.h , for
example. You can do the same for your function files.

 Also, you will often use the C preprocessor to define constants used in a program. Such defini-
tions hold only for the file containing the #define directives. If you place the functions of a
program into separate files, you also have to make the #define directives available to each file.
The most direct way is to retype the directives for each file, but this is time-consuming and
increases the possibility for error. Also, it poses a maintenance problem: If you revise a #define
value, you have to remember to do so for each file. A better solution is to place the #define
directives in a header file and then use the #include directive in each source code file.

 So it’s good programming practice to place function prototypes and defined constants in a
header file. Let’s examine an example. Suppose you manage a chain of four hotels. Each hotel
charges a different room rate, but all the rooms in a given hotel go for the same rate. For
people who book multiple nights, the second night goes for 95% of the first night, the third
night goes for 95% of the second night, and so on. (Don’t worry about the economics of such
a policy.) You want a program that enables you to specify the hotel and the number of nights
and gives you the total charge. You’d like the program to have a menu that enables you to
continue entering data until you choose to quit.

 Listings 9.9 , 9.10 , and 9.11 show what you might come up with. The first listing contains the
 main() function, which provides the overall organization for the program. The second listing
contains the supporting functions, which we assume are kept in a separate file. Finally, Listing
 9.11 shows a header file that contains the defined constants and function prototypes for all the
program’s source files. Recall that in the Unix and DOS environments, the double quotes in the
directive #include "hotels.h" indicate that the include file is in the current working direc-
tory (typically the directory containing the source code). If you use an IDE, you’ll need to know
how it incorporates header files into a project.

 Listing 9.9 The usehotel.c Control Module

 /* usehotel.c -- room rate program */

 /* compile with Listing 9.10 */

 #include <stdio.h>

ptg11524036

364 Chapter 9 Functions

 #include "hotel.h" /* defines constants, declares functions */

 int main(void)

 {

 int nights;

 double hotel_rate;

 int code;

 while ((code = menu()) != QUIT)

 {

 switch(code)

 {

 case 1 : hotel_rate = HOTEL1;

 break;

 case 2 : hotel_rate = HOTEL2;

 break;

 case 3 : hotel_rate = HOTEL3;

 break;

 case 4 : hotel_rate = HOTEL4;

 break;

 default: hotel_rate = 0.0;

 printf("Oops!\n");

 break;

 }

 nights = getnights();

 showprice(hotel_rate, nights);

 }

 printf("Thank you and goodbye.\n");

 return 0;

 }

 Listing 9.10 The hotel.c Function Support Module

 /* hotel.c -- hotel management functions */

 #include <stdio.h>

 #include "hotel.h"

 int menu(void)

 {

 int code, status;

 printf("\n%s%s\n", STARS, STARS);

 printf("Enter the number of the desired hotel:\n");

 printf("1) Fairfield Arms 2) Hotel Olympic\n");

 printf("3) Chertworthy Plaza 4) The Stockton\n");

 printf("5) quit\n");

ptg11524036

365Compiling Programs with Two or More Source Code Files

 printf("%s%s\n", STARS, STARS);

 while ((status = scanf("%d", &code)) != 1 ||

 (code < 1 || code > 5))

 {

 if (status != 1)

 scanf("%*s"); // dispose of non-integer input

 printf("Enter an integer from 1 to 5, please.\n");

 }

 return code;

 }

 int getnights(void)

 {

 int nights;

 printf("How many nights are needed? ");

 while (scanf("%d", &nights) != 1)

 {

 scanf("%*s"); // dispose of non-integer input

 printf("Please enter an integer, such as 2.\n");

 }

 return nights;

 }

 void showprice(double rate, int nights)

 {

 int n;

 double total = 0.0;

 double factor = 1.0;

 for (n = 1; n <= nights; n++, factor *= DISCOUNT)

 total += rate * factor;

 printf("The total cost will be $%0.2f.\n", total);

 }

 Listing 9.11 The hotel.h Header File

 /* hotel.h -- constants and declarations for hotel.c */

 #define QUIT 5

 #define HOTEL1 180.00

 #define HOTEL2 225.00

 #define HOTEL3 255.00

 #define HOTEL4 355.00

 #define DISCOUNT 0.95

ptg11524036

366 Chapter 9 Functions

 #define STARS "**********************************"

 // shows list of choices

 int menu(void);

 // returns number of nights desired

 int getnights(void);

 // calculates price from rate, nights

 // and displays result

 void showprice(double rate, int nights);

 Here’s a sample run:

 **

 Enter the number of the desired hotel:

 1) Fairfield Arms 2) Hotel Olympic

 3) Chertworthy Plaza 4) The Stockton

 5) quit

 **

 3

 How many nights are needed? 1

 The total cost will be $255.00.

 **

 Enter the number of the desired hotel:

 1) Fairfield Arms 2) Hotel Olympic

 3) Chertworthy Plaza 4) The Stockton

 5) quit

 **

 4

 How many nights are needed? 3

 The total cost will be $1012.64.

 **

 Enter the number of the desired hotel:

 1) Fairfield Arms 2) Hotel Olympic

 3) Chertworthy Plaza 4) The Stockton

 5) quit

 **

 5

 Thank you and goodbye.

 Incidentally, the program itself has some interesting features. In particular, the menu() and
 getnights() functions skip over nonnumeric data by testing the return value of scanf() and
by using the scanf("%*s") call to skip to the next whitespace. Note how the following excerpt
from menu() checks for both nonnumeric input and out-of-limits numerical input:

ptg11524036

367Finding Addresses: The & Operator

 while ((status = scanf("%d", &code)) != 1 ||

 (code < 1 || code > 5))

 This code fragment uses C’s guarantee that logical expressions are evaluated from left to right
and that evaluation ceases the moment the statement is clearly false. In this instance, the
values of code are checked only after it is determined that scanf() succeeded in reading an
integer value.

 Assigning separate tasks to separate functions encourages this sort of refinement. A first pass at
 menu() or getnights() might use a simple scanf() without the data-verification features that
have been added. Then, after the basic version works, you can begin improving each module.

 Finding Addresses: The & Operator

 One of the most important C concepts (and sometimes one of the most perplexing) is the
 pointer , which is a variable used to store an address. You’ve already seen that scanf() uses
addresses for arguments. More generally, any C function that modifies a value in the calling
function without using a return value uses addresses. We’ll cover functions using addresses
next, beginning with the unary & operator. (The next chapter continues the exploration and
exploitation of pointers.)

 The unary & operator gives you the address where a variable is stored. If pooh is the name of
a variable, &pooh is the address of the variable. You can think of the address as a location in
memory. Suppose you have the following statement:

 pooh = 24;

 Suppose that the address where pooh is stored is 0B76 . (PC addresses often are given as hexa-
decimal values.) Then the statement

 printf("%d %p\n", pooh, &pooh);

 would produce this (%p is the specifier for addresses):

 24 0B76

 Listing 9.12 uses this operator to see where variables of the same name—but in different func-
tions—are kept.

 Listing 9.12 The loccheck.c Program

 /* loccheck.c -- checks to see where variables are stored */

 #include <stdio.h>

 void mikado(int); /* declare function */

 int main(void)

 {

 int pooh = 2, bah = 5; /* local to main() */

ptg11524036

368 Chapter 9 Functions

 printf("In main(), pooh = %d and &pooh = %p\n",

 pooh, &pooh);

 printf("In main(), bah = %d and &bah = %p\n",

 bah, &bah);

 mikado(pooh);

 return 0;

 }

 void mikado(int bah) /* define function */

 {

 int pooh = 10; /* local to mikado() */

 printf("In mikado(), pooh = %d and &pooh = %p\n",

 pooh, &pooh);

 printf("In mikado(), bah = %d and &bah = %p\n",

 bah, &bah);

 }

 Listing 9.12 uses the ANSI C %p format for printing the addresses. Our system produced the
following output for this little exercise:

 In main(), pooh = 2 and &pooh = 0x7fff5fbff8e8

 In main(), bah = 5 and &bah = 0x7fff5fbff8e4

 In mikado(), pooh = 10 and &pooh = 0x7fff5fbff8b8

 In mikado(), bah = 2 and &bah = 0x7fff5fbff8bc

 The way that %p represents addresses varies among implementations. However, many imple-
mentations, such as one used for this example, display the address in hexadecimal form.
Incidentally, given that each hexadecimal digit corresponds to four bits, these 12-digit address
correspond to 48-bit addresses.

 What does this output show? First, the two pooh s have different addresses. The same is true
for the two bah s. So, as promised, the computer considers them to be four separate vari-
ables. Second, the call mikado(pooh) did convey the value (2) of the actual argument (pooh
of main()) to the formal argument (bah of mikado()). Note that just the value was trans-
ferred. The two variables involved (pooh of main() and bah of mikado()) retain their distinct
identities.

 We raise the second point because it is not true for all languages. In FORTRAN, for example,
the subroutine affects the original variable in the calling routine. The subroutine’s variable
might have a different name, but the address is the same. C doesn’t do this. Each function uses
its own variables. This is preferable because it prevents the original variable from being altered
mysteriously by some side effect of the called function. However, it can make for some difficul-
ties, too, as the next section shows.

ptg11524036

369Altering Variables in the Calling Function

 Altering Variables in the Calling Function

 Sometimes you want one function to make changes in the variables of a different function.
For example, a common task in sorting problems is interchanging the values of two variables.
Suppose you have two variables called x and y and you want to swap their values. The simple
sequence

 x = y;

 y = x;

 does not work because by the time the second line is reached, the original value of x has
already been replaced by the original y value. An additional line is needed to temporarily store
the original value of x .

 temp = x;

 x = y;

 y = temp;

 Now that the method works, you can put it into a function and construct a driver to test it. To
make clear which variables belong to main() and which belong to the interchange() func-
tion, Listing 9.13 uses x and y for the first, and u and v for the second.

 Listing 9.13 The swap1.c Program

 /* swap1.c -- first attempt at a swapping function */

 #include <stdio.h>

 void interchange(int u, int v); /* declare function */

 int main(void)

 {

 int x = 5, y = 10;

 printf("Originally x = %d and y = %d.\n", x , y);

 interchange(x, y);

 printf("Now x = %d and y = %d.\n", x, y);

 return 0;

 }

 void interchange(int u, int v) /* define function */

 {

 int temp;

 temp = u;

 u = v;

 v = temp;

 }

ptg11524036

370 Chapter 9 Functions

 Running the program gives these results:

 Originally x = 5 and y = 10.

 Now x = 5 and y = 10.

 Oops! The values didn’t get switched! Let’s put some print statements into interchange() to
see what has gone wrong (see Listing 9.14).

 Listing 9.14 The swap2.c Program

 /* swap2.c -- researching swap1.c */

 #include <stdio.h>

 void interchange(int u, int v);

 int main(void)

 {

 int x = 5, y = 10;

 printf("Originally x = %d and y = %d.\n", x , y);

 interchange(x, y);

 printf("Now x = %d and y = %d.\n", x, y);

 return 0;

 }

 void interchange(int u, int v)

 {

 int temp;

 printf("Originally u = %d and v = %d.\n", u , v);

 temp = u;

 u = v;

 v = temp;

 printf("Now u = %d and v = %d.\n", u, v);

 }

 Here is the new output:

 Originally x = 5 and y = 10.

 Originally u = 5 and v = 10.

 Now u = 10 and v = 5.

 Now x = 5 and y = 10.

 Nothing is wrong with interchange() ; it does swap the values of u and v . The problem is in
communicating the results to main() . As we pointed out, interchange() uses different vari-
ables from main() , so interchanging the values of u and v has no effect on x and y ! Can you
somehow use return ? Well, you could finish interchange() with the line

ptg11524036

371Pointers: A First Look

 return(u);

 and then change the call in main() to this:

 x = interchange(x,y);

 This change gives x its new value, but it leaves y in the cold. With return , you can send just
one value back to the calling function, but you need to communicate two values. It can be
done! All you have to do is use pointers.

 Pointers: A First Look

 Pointers? What are they? Basically, a pointer is a variable (or, more generally, a data object)
whose value is a memory address. Just as a char variable has a character as a value and an int
variable has an integer as a value, the pointer variable has an address as a value. Pointers have
many uses in C; in this chapter, you’ll see how and why they are used as function parameters.

 If you give a particular pointer variable the name ptr , you can have statements such as the
following:

 ptr = &pooh; // assigns pooh's address to ptr

 We say that ptr “points to” pooh . The difference between ptr and &pooh is that ptr is a vari-
able, and &pooh is a constant. Or, ptr is a modifiable lvalue and &pooh is an rvalue. If you
want, you can make ptr point elsewhere:

 ptr = &bah; // make ptr point to bah instead of to pooh

 Now the value of ptr is the address of bah .

 To create a pointer variable, you need to be able to declare its type. Suppose you want to
declare ptr so that it can hold the address of an int . To make this declaration, you need to use
a new operator. Let’s examine that operator now.

 The Indirection Operator: *

 Suppose you know that ptr points to bah , as shown here:

 ptr = &bah;

 Then you can use the indirection operator * (also called the dereferencing operator) to find the
value stored in bah (don’t confuse this unary indirection operator with the binary * operator of
multiplication—same symbol, different syntax):

 val = *ptr; // finding the value ptr points to

 The statements ptr = &bah; and val = *ptr; taken together amount to the following
statement:

 val = bah;

ptg11524036

372 Chapter 9 Functions

 Using the address and indirection operators is a rather indirect way of accomplishing this
result, hence the name “indirection operator.”

 Summary: Pointer-Related Operators

 The Address Operator:

 &

 General Comments:

 When followed by a variable name, & gives the address of that variable.

 Example:

 &nurse is the address of the variable nurse .

 The Indirection Operator: *

 General Comments:

 When followed by a pointer name or an address, * gives the value stored at the pointed-to
address.

 Example:

 nurse = 22;

 ptr = &nurse; // pointer to nurse

 val = *ptr; // assigns value at location ptr to val

 The net effect is to assign the value 22 to val .

 Declaring Pointers

 You already know how to declare int variables and other fundamental types. How do you
declare a pointer variable? You might guess that the form is like this:

 pointer ptr; // not the way to declare a pointer/

 Why not? Because it is not enough to say that a variable is a pointer. You also have to specify
the kind of variable to which the pointer points. The reason is that different variable types take
up different amounts of storage, and some pointer operations require knowledge of that storage
size. Also, the program has to know what kind of data is stored at the address. A long and a
 float might use the same amount of storage, but they store numbers quite differently. Here’s
how pointers are declared:

 int * pi; // pi is a pointer to an integer variable

 char * pc; // pc is a pointer to a character variable

 float * pf, * pg; // pf, pg are pointers to float variables

 The type specification identifies the type of variable pointed to, and the asterisk (*) identifies
the variable itself as a pointer. The declaration int * pi; says that pi is a pointer and that
 *pi is type int (see Figure 9.5).

ptg11524036

373Pointers: A First Look

G 7776 1942 2.015x1030 q

ch feet

int *pfeet;

pfeet = &feet;

*pfeet

date sunmass quit

byte byte

&feet &sunmass

byte byte byte byte byte byte byte byte

52000 5200152002 52003 52004 52005 ... 52009 52010

by

machine address

value in memory

variable name

declaring pointers
giving pointer
values (addresses)

getting value
stored at address

indirection operators

address operators

float *psun;

psun = &sunmass;

*psun

 Figure 9.5 Declaring and using pointers.

 The space between the * and the pointer name is optional. Often, programmers use the space
in a declaration and omit it when dereferencing a variable.

 The value (*pc) of what pc points to is of type char . What of pc itself? We describe it as being
of type “pointer to char .” The value of pc is an address, and it is represented internally as an
unsigned integer on most systems. However, you shouldn’t think of a pointer as an integer
type. There are things you can do with integers that you can’t do with pointers, and vice versa.
For example, you can multiply one integer by another, but you can’t multiply one pointer by
another. So a pointer really is a new type, not an integer type. Therefore, as mentioned before,
ANSI C provides the %p form specifically for pointers.

 Using Pointers to Communicate Between Functions

 We have touched only the surface of the rich and fascinating world of pointers, but our
concern here is using pointers to solve our communication problem. Listing 9.15 shows a
program that uses pointers to make the interchange() function work. Let’s look at it, run it,
and then try to understand how it works.

 Listing 9.15 The swap3.c Program

 /* swap3.c -- using pointers to make swapping work */

 #include <stdio.h>

 void interchange(int * u, int * v);

 int main(void)

 {

 int x = 5, y = 10;

ptg11524036

374 Chapter 9 Functions

 printf("Originally x = %d and y = %d.\n", x, y);

 interchange(&x, &y); // send addresses to function

 printf("Now x = %d and y = %d.\n", x, y);

 return 0;

 }

 void interchange(int * u, int * v)

 {

 int temp;

 temp = *u; // temp gets value that u points to

 *u = *v;

 *v = temp;

 }

 After all this build-up, does Listing 9.15 really work?

 Originally x = 5 and y = 10.

 Now x = 10 and y = 5.

 Yes, it works.

 Now, let’s see how Listing 9.15 works. First, the function call looks like this:

 interchange(&x, &y);

 Instead of transmitting the values of x and y , the function transmits their addresses . That means
the formal arguments u and v , appearing in the prototype and in the definition of
interchange() , will have addresses as their values. Therefore, they should be declared as
pointers. Because x and y are integers, u and v are pointers to integers, so declare them as
follows:

 void interchange (int * u, int * v)

 Next, the body of the function declares

 int temp;

 to provide the needed temporary storage. To store the value of x in temp , use

 temp = *u;

 Remember, u has the value &x , so u points to x . This means that *u gives you the value of x ,
which is what we want. Don’t write

 temp = u; /* NO */

 because that would assign temp the address of x rather than its value, and we are trying to
interchange values, not addresses.

ptg11524036

375Pointers: A First Look

 Similarly, to assign the value of y to x , use

 *u = *v;

 which ultimately has this effect:

 x = y;

 Let’s summarize what this example does. We want a function that alters the values x and y . By
passing the function the addresses of x and y , we give interchange() access to those variables.
Using pointers and the * operator, the function can examine the values stored at those loca-
tions and change them.

 You can omit the variable names in the ANSI C prototype. Then the prototype declaration
looks like this:

 void interchange(int *, int *);

 In general, you can communicate two kinds of information about a variable to a function. If
you use a call of the form

 function1(x);

 you transmit the value of x . If you use a call of the form

 function2(&x);

 you transmit the address of x . The first form requires that the function definition includes a
formal argument of the same type as x :

 int function1(int num)

 The second form requires the function definition to include a formal parameter that is a
pointer to the right type:

 int function2(int * ptr)

 Use the first form if the function needs a value for some calculation or action. Use the second
form if the function needs to alter variables in the calling function. You have been doing this
all along with the scanf() function. When you want to read in a value for a variable (num , for
example), you use scanf("%d", &num) . That function reads a value and then uses the address
you give it to store the value.

 Pointers enable you to get around the fact that the variables of interchange() are local. They
let that function reach out into main() and alter what is stored there.

 Pascal and Modula-2 users might recognize the first form as being the same as Pascal’s value
parameter and the second form as being similar (but not identical) to Pascal’s variable param-
eter. C++ users will recognize pointer variables and wonder if C, like C++, also has reference
variables. The answer to that question is no. BASIC users might find the whole setup a bit
unsettling. If this section seems strange to you, be assured that a little practice will make at
least some uses of pointers seem simple, normal, and convenient (see Figure 9.6).

ptg11524036

376 Chapter 9 Functions

 Variables: Names, Addresses, and Values

 The preceding discussion of pointers has hinged on the relationships between the names,
addresses, and values of variables. Let’s discuss these matters further.

 When you write a program, you can think of a variable as having two attributes: a name and a
value. (There are other attributes, including type, but that’s another matter.) After the program
has been compiled and loaded, the computer also thinks of the same variable as having two
attributes: an address and a value. An address is the computer’s version of a name.

 In many languages, the address is the computer’s business, concealed from the programmer.
In C, however, you can access the address through the & operator.

 For example, &barn is the address of the variable barn .

 You can get the value from the name just by using the name.

 For example, printf("%d\n", barn) prints the value of barn .

 You can get the value from the address by using the * operator.

 Given pbarn = &barn; , *pbarn is the value stored at address &barn .

 In short, a regular variable makes the value the primary quantity and the address a derived
quantity, via the & operator. A pointer variable makes the address the primary quantity and the
value a derived quantity via the * operator.

 Although you can print an address to satisfy your curiosity, that is not the main use for the &
operator. More important, using & , * , and pointers enables you to manipulate addresses and
their contents symbolically, as in swap3.c (Listing 9.15).

G 7776 1942 2.015x1030 q

ch feet

&ch = 52000

&feet = 52001

&date = 52003

&sunmass = 52005

&quit = 52009

date sunmass quit

byte byte byte byte byte byte byte byte byte byte

52000 5200152002 52003 52004 52005 ... 52009 52010

bye

machine address

value in memory

variable name

float type variable
takes 4 bytes

address operator

 Figure 9.6 Names, addresses, and values in a byte-addressable system, such as a PC.

ptg11524036

377Pointers: A First Look

 Summary: Functions

 Form:

 A typical ANSI C function definition has this form:

 return-type name (parameter declaration list)

 function body

 The argument declaration list is a comma-separated list of variable declarations. Variables
other than the function parameters are declared within the body, which is bounded by braces.

 Example:

 int diff(int x, int y) // ANSI C

 { // begin function body

 int z; // declare local variable

 z = x - y;

 return z; // return a value

 } // end function body

 Communicating Values:

 Arguments are used to convey values from the calling function to the function. If variables a
and b have the values 5 and 2 , the call

 c = diff(a,b);

 transmits 5 and 2 to the variables x and y . The values 5 and 2 are called actual arguments ,
and the diff() variables x and y are called formal parameters . The keyword return communi-
cates one value from the function to the calling function. In this example, c receives the value
of z , which is 3 . A function ordinarily has no effect on the variables in a calling function. To
directly affect variables in the calling function, use pointers as arguments. This might be neces-
sary if you want to communicate more than one value back to the calling function.

 Function Return Type:

 The function return type indicates the type of value the function returns. If the returned value is
of a type different from the declared return type, the value is type cast to the declared type.

 Function Signature:

 The function return type together with the function parameter list constitute the function sig-
nature. Thus, it specifies the types for values that go into the function and for the value that
comes out of the function.

 Example:

 double duff(double, int); // function prototype

 int main(void)

 {

 double q, x;

 int n;

ptg11524036

378 Chapter 9 Functions

 ...

 q = duff(x,n); // function call

 ...

 }

 double duff(double u, int k) // function definition

 {

 double tor;

 ...

 return tor; // returns a double value

 }

 Key Concepts

 If you want to program successfully and efficiently in C, you need to understand functions.
It’s useful, even essential, to organize larger programs into several functions. If you follow the
practice of giving one function one task, your programs will be easier to understand and debug.
Make sure that you understand how functions communicate information to one another—that
is, that you understand how function arguments and return values work. Also, be aware how
function parameters and other local variables are private to a function; thus, declaring two vari-
ables of the same name in different functions creates two distinct variables. Also, one function
does not have direct access to variables declared in another function. This limited access helps
preserve data integrity. However, if you do need one function to access another function’s data,
you can use pointer function arguments.

 Summary

 Use functions as building blocks for larger programs. Each function should have a single, well-
defined purpose. Use arguments to communicate values to a function, and use the keyword
 return to communicate back a value. If the function returns a value not of type int , you must
specify the function type in the function definition and in the declaration section of the calling
function. If you want the function to affect variables in the calling function, use addresses and
pointers.

 ANSI C offers function prototyping , a powerful C enhancement that allows compilers to verify
that the proper number and types of arguments are used in a function call.

 A C function can call itself; this is called recursion . Some programming problems lend them-
selves to recursive solutions, but recursion can be inefficient in its use of memory and time.

ptg11524036

379Summary

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. What is the difference between an actual argument and a formal parameter?

 2. Write ANSI C function headings for the following functions described. Note we are
asking just for the headings, not the body.

 a. donut() takes an int argument and prints that number of 0 s.

 b. gear() takes two int arguments and returns type int .

 c. guess() takes no arguments and returns an int value.

 d. stuff_it() takes a double and the address of a double variable and stores the
first value in the given location.

 3. Write ANSI C function headings for the following functions described. Note that you
need write only the headings, not the body.

 a. n_to_char() takes an int argument and returns a char .

 b. digits() takes a double argument and an int argument and returns an int .

 c. which() takes two addresses of double as arguments and returns the address of a
 double .

 d. random() takes no argument and returns an int .

 4. Devise a function that returns the sum of two integers.

 5. What changes, if any, would you need to make to have the function of question 4 add
two double numbers instead?

 6. Devise a function called alter() that takes two int variables, x and y , and changes their
values to their sum and their difference, respectively.

 7. Is anything wrong with this function definition?

 void salami(num)

 {

 int num, count;

 for (count = 1; count <= num; num++)

 printf(" O salami mio!\n");

 }

ptg11524036

380 Chapter 9 Functions

 8. Write a function that returns the largest of three integer arguments.

 9. Given the following output:

 Please choose one of the following:

 1) copy files 2) move files

 3) remove files 4) quit

 Enter the number of your choice:

 a. Write a function that displays a menu of four numbered choices and asks you to
choose one. (The output should look like the preceding.)

 b. Write a function that has two int arguments: a lower limit and an upper limit.
The function should read an integer from input. If the integer is outside the limits,
the function should print a menu again (using the function from part “a” of this
question) to reprompt the user and then get a new value. When an integer in
the proper limits is entered, the function should return that value to the calling
function. Entering a noninteger should cause the function to return the quit value
of 4 .

 c. Write a minimal program using the functions from parts “a” and “b” of this
question. By minimal , we mean it need not actually perform the actions promised
by the menu; it should just show the choices and get a valid response.

 Programming Exercises

 1. Devise a function called min(x,y) that returns the smaller of two double values. Test
the function with a simple driver.

 2. Devise a function chline(ch,i,j) that prints the requested character in columns i
through j . Test it in a simple driver.

 3. Write a function that takes three arguments: a character and two integers. The character
is to be printed. The first integer specifies the number of times that the character is to
be printed on a line, and the second integer specifies the number of lines that are to be
printed. Write a program that makes use of this function.

 4. The harmonic mean of two numbers is obtained by taking the inverses of the two
numbers, averaging them, and taking the inverse of the result. Write a function that
takes two double arguments and returns the harmonic mean of the two numbers.

 5. Write and test a function called larger_of() that replaces the contents of two double
variables with the maximum of the two values. For example, larger_of(x,y) would
reset both x and y to the larger of the two.

ptg11524036

381Summary

 6. Write and test a function that takes the addresses of three double variables as arguments
and that moves the value of the smallest variable into the first variable, the middle value
to the second variable, and the largest value into the third variable.

 7. Write a program that reads characters from the standard input to end-of-file. For each
character, have the program report whether it is a letter. If it is a letter, also report
its numerical location in the alphabet. For example, c and C would both be letter 3.
Incorporate a function that takes a character as an argument and returns the numerical
location if the character is a letter and that returns –1 otherwise.

 8. Chapter 6 , “C Control Statements: Looping,” (Listing 6.20) shows a power() function
that returned the result of raising a type double number to a positive integer value.
Improve the function so that it correctly handles negative powers. Also, build into the
function that 0 to any power other than 0 is 0 and that any number to the 0 power is 1.
(It should report that 0 to the 0 is undefined, then say it’s using a value of 1.) Use a loop.
Test the function in a program.

 9. Redo Programming Exercise 8, but this time use a recursive function.

 10. Generalize the to_binary() function of Listing 9.8 to a to_base_n() function that
takes a second argument in the range 2–10. It then should print the number that is its
first argument to the number base given by the second argument. For example, to_
base_n(129,8) would display 201 , the base-8 equivalent of 129 . Test the function in a
complete program.

 11. Write and test a Fibonacci() function that uses a loop instead of recursion to calculate
Fibonacci numbers.

ptg11524036

This page intentionally left blank

ptg11524036

 10
 Arrays and Pointers

 You will learn about the following in this chapter:

 ■ Keyword:

 static

 ■ Operators:

 & * (unary)

 ■ How to create and initialize arrays

 ■ Pointers (building on the basics you already know) and see how they relate to arrays

 ■ Writing functions that process arrays

 ■ Two-dimensional arrays

 People turn to computers for tasks such as tracking monthly expenses, daily rainfall, quarterly
sales, and weekly weights. Enterprises turn to computers to manage payrolls, inventory, and
customer transactions. As a programmer, you inevitably have to deal with large quantities of
related data. Often, arrays offer the best way to handle such data in an efficient, convenient
manner. Chapter 6 , “C Control Statements: Looping,” introduced arrays, and this chapter takes
a more thorough look. In particular, it examines how to write array-processing functions. Such
functions enable you to extend the advantages of modular programming to arrays. In doing so,
you can see the intimate relationship between arrays and pointers.

 Arrays

 Recall that an array is composed of a series of elements of one data type. You use declarations
to tell the compiler when you want an array. An array declaration tells the compiler how many
elements the array contains and what the type is for these elements. Armed with this informa-
tion, the compiler can set up the array properly. Array elements can have the same types as
ordinary variables. Consider the following example of array declarations:

 /* some array declarations */

 int main(void)

ptg11524036

384 Chapter 10 Arrays and Pointers

 {

 float candy[365]; /* array of 365 floats */

 char code[12]; /* array of 12 chars */

 int states[50]; /* array of 50 ints */

 ...

 }

 The brackets ([]) identify candy and the rest as arrays, and the number enclosed in the brack-
ets indicates the number of elements in the array.

 To access elements in an array, you identify an individual element by using its subscript
number, also called its index . The numbering starts with 0. Hence, candy[0] is the first element
of the candy array, and candy[364] is the 365th and last element.

 This is rather old hat; let’s learn something new.

 Initialization

 Arrays are often used to store data needed for a program. For example, a 12-element array can
store the number of days in each month. In cases such as these, it’s convenient to initialize the
array at the beginning of a program. Let’s see how it is done.

 You know you can initialize single-valued variables (sometimes called scalar variables) in a
declaration with expressions such as

 int fix = 1;

 float flax = PI * 2;

 where, one hopes, PI was defined earlier as a macro. C extends initialization to arrays with a
new syntax, as shown next:

 int main(void)

 {

 int powers[8] = {1,2,4,6,8,16,32,64}; /* ANSI C and later */

 ...

 }

 As you can see, you initialize an array by using a comma-separated list of values enclosed in
braces. You can use spaces between the values and the commas, if you want. The first element
(powers[0]) is assigned the value 1 , and so on. (If your compiler rejects this form of initial-
ization as a syntax error, you may be suffering from a pre-ANSI compiler. Prefixing the array
declaration with the keyword static should solve the problem. Chapter 12 , “Storage Classes,
Linkage, and Memory Management,” discusses the meaning of this keyword.)

 Listing 10.1 presents a short program that prints the number of days per month.

ptg11524036

385Arrays

 Listing 10.1 The day_mon1.c Program

 /* day_mon1.c -- prints the days for each month */

 #include <stdio.h>

 #define MONTHS 12

 int main(void)

 {

 int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};

 int index;

 for (index = 0; index < MONTHS; index++)

 printf("Month %d has %2d days.\n", index +1,

 days[index]);

 return 0;

 }

 The output looks like this:

 Month 1 has 31 days.

 Month 2 has 28 days.

 Month 3 has 31 days.

 Month 4 has 30 days.

 Month 5 has 31 days.

 Month 6 has 30 days.

 Month 7 has 31 days.

 Month 8 has 31 days.

 Month 9 has 30 days.

 Month 10 has 31 days.

 Month 11 has 30 days.

 Month 12 has 31 days.

 Not quite a superb program, but it’s wrong only one month in every four years. The program
initializes days[] with a list of comma-separated values enclosed in braces.

 Note that this example used the symbolic constant MONTHS to represent the array size. This is a
common and recommended practice. For example, if the world switched to a 13-month calen-
dar, you just have to modify the #define statement and don’t have to track down every place
in the program that uses the array size.

 Note Using const with Arrays

 Sometimes you might use an array that’s intended to be a read-only array. That is, the program
will retrieve values from the array, but it won’t try to write new values into the array. In such
cases, you can, and should, use the const keyword when you declare and initialize the array.
Therefore, a better choice for Listing 10.1 would be
 const int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};

ptg11524036

386 Chapter 10 Arrays and Pointers

 This makes the program treat each element in the array as a constant. Just as with regular
variables, you should use the declaration to initialize const data because once it’s declared
 const , you can’t assign values later. Now that you know about this, we can use const in sub-
sequent examples.

 What if you fail to initialize an array? Listing 10.2 shows what happens.

 Listing 10.2 The no_data.c Program

 /* no_data.c -- uninitialized array */

 #include <stdio.h>

 #define SIZE 4

 int main(void)

 {

 int no_data[SIZE]; /* uninitialized array */

 int i;

 printf("%2s%14s\n",

 "i", "no_data[i]");

 for (i = 0; i < SIZE; i++)

 printf("%2d%14d\n", i, no_data[i]);

 return 0;

 }

 Here is some sample output (your results may vary):

 i no_data[i]

 0 0

 1 4204937

 2 4219854

 3 2147348480

 The array members are like ordinary variables—if you don’t initialize them, they might have
any value. The compiler is allowed to just use whatever values were already present at those
memory locations, which is why your results may vary from these.

 Note Storage Class Caveat

 Arrays, like other variables, can be created using different storage classes . Chapter 12 inves-
tigates this topic, but for now, you should be aware that the current chapter describes arrays
that belong to the automatic storage class. That means they are declared inside of a function
and without using the keyword static . All the variables and arrays used in this book, so far,
are of the automatic kind.

 The reason for mentioning storage classes at this point is that occasionally the different stor-
age classes have different properties, so you can’t generalize everything in this chapter to other
storage classes. In particular, variables and arrays of some of the other storage classes have
their contents set to 0 if they are not initialized.

ptg11524036

387Arrays

 The number of items in the list should match the size of the array. But what if you count
wrong? Let’s try the last example again, as shown in Listing 10.3 , with a list that is two too
short.

 Listing 10.3 The somedata.c Program

 /* some_data.c -- partially initialized array */

 #include <stdio.h>

 #define SIZE 4

 int main(void)

 {

 int some_data[SIZE] = {1492, 1066};

 int i;

 printf("%2s%14s\n",

 "i", "some_data[i]");

 for (i = 0; i < SIZE; i++)

 printf("%2d%14d\n", i, some_data[i]);

 return 0;

 }

 This time the output looks like this:

 i some_data[i]

 0 1492

 1 1066

 2 0

 3 0

 As you can see, the compiler had no problem. When it ran out of values from the list, it initial-
ized the remaining elements to 0 . That is, if you don’t initialize an array at all, its elements, like
uninitialized ordinary variables, get garbage values, but if you partially initialize an array, the
remaining elements are set to 0 .

 The compiler is not so forgiving if you have too many list values. This overgenerosity is consid-
ered an error. However, there is no need to subject yourself to the ridicule of your compiler.
Instead, you can let the compiler match the array size to the list by omitting the size from the
braces (see Listing 10.4).

 Listing 10.4 The day_mon2.c Program

 /* day_mon2.c -- letting the compiler count elements */

 #include <stdio.h>

 int main(void)

 {

 const int days[] = {31,28,31,30,31,30,31,31,30,31};

 int index;

ptg11524036

388 Chapter 10 Arrays and Pointers

 for (index = 0; index < sizeof days / sizeof days[0]; index++)

 printf("Month %2d has %d days.\n", index +1,

 days[index]);

 return 0;

 }

 There are two main points to note in Listing 10.4 :

 ■ When you use empty brackets to initialize an array, the compiler counts the number of
items in the list and makes the array that large.

 ■ Notice what we did in the for loop control statement. Lacking faith (justifiably) in our
ability to count correctly, we let the computer give us the size of the array. The sizeof
operator gives the size, in bytes, of the object, or type , following it. So sizeof days is
the size, in bytes, of the whole array, and sizeof days[0] is the size, in bytes, of one
element. Dividing the size of the entire array by the size of one element tells us how
many elements are in the array.

 Here is the result of running this program:

 Month 1 has 31 days.

 Month 2 has 28 days.

 Month 3 has 31 days.

 Month 4 has 30 days.

 Month 5 has 31 days.

 Month 6 has 30 days.

 Month 7 has 31 days.

 Month 8 has 31 days.

 Month 9 has 30 days.

 Month 10 has 31 days.

 Oops! We put in just 10 values, but our method of letting the program find the array size kept
us from trying to print past the end of the array. This points out a potential disadvantage of
automatic counting: Errors in the number of elements could pass unnoticed.

 There is one more short method of initializing arrays. Because it works only for character
strings, however, we will save it for the next chapter.

 Designated Initializers (C99)

 C99 added a new capability: designated initializers . This feature allows you to pick and choose
which elements are initialized. Suppose, for example, that you just want to initialize the last
element in an array. With traditional C initialization syntax, you also have to initialize every
element preceding the last one:

 int arr[6] = {0,0,0,0,0,212}; // traditional syntax

ptg11524036

389Arrays

 With C99, you can use an index in brackets in the initialization list to specify a particular
element:

 int arr[6] = {[5] = 212}; // initialize arr[5] to 212

 As with regular initialization, after you initialize at least one element, the uninitialized
elements are set to 0 . Listing 10.5 shows a more involved example.

 Listing 10.5 The designate.c Program

 // designate.c -- use designated initializers

 #include <stdio.h>

 #define MONTHS 12

 int main(void)

 {

 int days[MONTHS] = {31,28, [4] = 31,30,31, [1] = 29};

 int i;

 for (i = 0; i < MONTHS; i++)

 printf("%2d %d\n", i + 1, days[i]);

 return 0;

 }

 Here’s the output if the compiler supports this C99 feature:

 1 31

 2 29

 3 0

 4 0

 5 31

 6 30

 7 31

 8 0

 9 0

 10 0

 11 0

 12 0

 The output reveals a couple important features of designated initializers. First, if the code
follows a designated initializer with further values, as in the sequence [4] = 31,30,31 , these
further values are used to initialize the subsequent elements. That is, after initializing days[4]
to 31 , the code initializes days[5] and days[6] to 30 and 31 , respectively. Second, if the code
initializes a particular element to a value more than once, the last initialization is the one that
takes effect. For example, in Listing 10.5 , the start of the initialization list initializes days[1] to
 28 , but that is overridden by the [1] = 29 designated initialization later.

ptg11524036

390 Chapter 10 Arrays and Pointers

 Suppose you don’t specify the array size?

 int stuff[] = {1, [6] = 23}; // what happens?

 int staff[] = {1, [6] = 4, 9, 10}; // what happens?

 The compiler will make the array big enough to accommodate the initialization values. So
 stuff will have seven elements, numbered 0-6, and staff will have two more elements, or 9.

 Assigning Array Values

 After an array has been declared, you can assign values to array members by using an array
index, or subscript . For example, the following fragment assigns even numbers to an array:

 /* array assignment */

 #include <stdio.h>

 #define SIZE 50

 int main(void)

 {

 int counter, evens[SIZE];

 for (counter = 0; counter < SIZE; counter++)

 evens[counter] = 2 * counter;

 ...

 }

 Note that the code uses a loop to assign values element by element. C doesn’t let you assign
one array to another as a unit. Nor can you use the list-in-braces form except when initializing.
The following code fragment shows some forms of assignment that are not allowed:

 /* nonvalid array assignment */

 #define SIZE 5

 int main(void)

 {

 int oxen[SIZE] = {5,3,2,8}; /* ok here */

 int yaks[SIZE];

 yaks = oxen; /* not allowed */

 yaks[SIZE] = oxen[SIZE]; /* out of range */

 yaks[SIZE] = {5,3,2,8}; /* doesn't work */

 Recall that the last element of oxen is oxen[SIZE-1] , so oxen[SIZE] and yaks[SIZE] refer to
data past the ends of the two arrays.

 Array Bounds

 You have to make sure you use array indices that are within bounds; that is, you have to
make sure they have values valid for the array. For instance, suppose you make the following
declaration:

 int doofi[20];

ptg11524036

391Arrays

 Then it’s your responsibility to make sure the program uses indices only in the range 0 through
19, because the compiler isn’t required to check for you. (However, some compilers will warn
you of the problem, but continue on to compile the program anyway.)

 Consider the program in Listing 10.6 . It creates an array with four elements and then carelessly
uses index values ranging from −1 to 6.

 Listing 10.6 The bounds.c Program

 // bounds.c -- exceed the bounds of an array

 #include <stdio.h>

 #define SIZE 4

 int main(void)

 {

 int value1 = 44;

 int arr[SIZE];

 int value2 = 88;

 int i;

 printf("value1 = %d, value2 = %d\n", value1, value2);

 for (i = -1; i <= SIZE; i++)

 arr[i] = 2 * i + 1;

 for (i = -1; i < 7; i++)

 printf("%2d %d\n", i , arr[i]);

 printf("value1 = %d, value2 = %d\n", value1, value2);

 printf("address of arr[-1]: %p\n", &arr[-1]);

 printf("address of arr[4]: %p\n", &arr[4]);

 printf("address of value1: %p\n", &value1);

 printf("address of value2: %p\n", &value2);

 return 0;

 }

 The compiler doesn’t check to see whether the indices are valid. The result of using a bad index
is, in the language of the C standard, undefined. That means when you run the program, it
might seem to work, it might work oddly, or it might abort. Here is sample output using GCC:

 value1 = 44, value2 = 88

 -1 -1

 0 1

 1 3

 2 5

 3 7

 4 9

 5 1624678494

 6 32767

 value1 = 9, value2 = -1

ptg11524036

392 Chapter 10 Arrays and Pointers

 address of arr[-1]: 0x7fff5fbff8cc

 address of arr[4]: 0x7fff5fbff8e0

 address of value1: 0x7fff5fbff8e0

 address of value2: 0x7fff5fbff8cc

 Note that this compiler appears to have stored value1 just after the array and value2 just
ahead of it. (Other compilers might store the data in a different order in memory.) In this case,
as shown in the output, arr[-1] corresponded to the same memory location as value2 , and
 arr[4] corresponded to the same memory location as value1 . Therefore, using out-of-bounds
array indices resulted in the program altering the value of other variables. Another compiler
might produce different results, including a program that aborts.

 You might wonder why C allows nasty things like that to happen. It goes back to the C
philosophy of trusting the programmer. Not checking bounds allows a C program to run faster.
The compiler can’t necessarily catch all index errors because the value of an index might not
be determined until after the resulting program begins execution. Therefore, to be safe, the
compiler would have to add extra code to check the value of each index during runtime, and
that would slow things down. So C trusts the programmer to do the coding correctly and
rewards the programmer with a faster program. Of course, not all programmers deserve that
trust, and then problems can arise.

 One simple thing to remember is that array numbering begins with 0. One simple habit to
develop is to use a symbolic constant in the array declaration and in other places the array size
is used:

 #define SIZE 4

 int main(void)

 {

 int arr[SIZE];

 for (i = 0; i < SIZE; i++)

 This helps ensure that you use the same array size consistently throughout the program.

 Specifying an Array Size

 So far, the examples have used integer constants when declaring arrays:

 #define SIZE 4

 int main(void)

 {

 int arr[SIZE]; // symbolic integer constant

 double lots[144]; // literal integer constant

 ...

 What else is allowed? Until the C99 standard, the answer has been that you have to use a
 constant integer expression between the brackets when declaring an array. A constant integer

ptg11524036

393Multidimensional Arrays

expression is one formed from integer constants. For this purpose, a sizeof expression is
considered an integer constant, but (unlike the case in C++) a const value isn’t. Also, the value
of the expression must be greater than 0:

 int n = 5;

 int m = 8;

 float a1[5]; // yes

 float a2[5*2 + 1]; // yes

 float a3[sizeof(int) + 1]; // yes

 float a4[-4]; // no, size must be > 0

 float a5[0]; // no, size must be > 0

 float a6[2.5]; // no, size must be an integer

 float a7[(int)2.5]; // yes, typecast float to int constant

 float a8[n]; // not allowed before C99

 float a9[m]; // not allowed before C99

 As the comments indicate, C compilers following the C90 standard would not allow the last
two declarations. As of C99, however, C does allow them, but they create a new breed of array,
something called a variable-length array , or VLA for short. (C11 retreats from this bold initiative,
making VLAs an optional rather than mandatory language feature.)

 C99 introduced variable-length arrays primarily to allow C to become a better language
for numerical computing. For instance, VLAs make it easier to convert existing libraries of
FORTRAN numerical calculation routines to C. VLAs have some restrictions; for example, you
can’t initialize a VLA in its declaration. This chapter will return to VLAs later, after you’ve
learned enough to understand more about the limitations of the classic C array.

 Multidimensional Arrays

 Tempest Cloud, a weather person who takes her subject “cirrusly,” wants to analyze five years
of monthly rainfall data. One of her first decisions is how to represent the data. One choice is
to use 60 variables, one for each data item. (We mentioned this choice once before, and it is as
senseless now as it was then.) Using an array with 60 elements would be an improvement, but
it would be even nicer still if she could keep each year’s data separate. She could use five arrays,
each with 12 elements, but that is clumsy and could get really awkward if Tempest decides to
study 50 years’ worth of rainfall instead of five. She needs something better.

 The better approach is to use an array of arrays. The master array would have five elements,
one for each year. Each of those elements, in turn, would be a 12-element array, one for each
month. Here is how to declare such an array:

 float rain[5][12]; // array of 5 arrays of 12 floats

 One way to view this declaration is to first look at the inner portion (the part in bold):

 float rain[5] [12]; // rain is an array of 5 somethings

ptg11524036

394 Chapter 10 Arrays and Pointers

 It tells us that rain is an array with five elements. But what is each of those elements? Now
look at the remaining part of the declaration (now in bold):

 float rain[5] [12] ; // an array of 12 floats

 This tells us that each element is of type float[12] ; that is, each of the five elements of rain
is, in itself, an array of 12 float values.

 Pursuing this logic, rain[0] , being the first element of rain , is an array of 12 float values.
So are rain[1] , rain[2] , and so on. If rain[0] is an array, its first element is rain[0][0] , its
second element is rain[0][1] , and so on. In short, rain is a five-element array of 12-element
arrays of float , rain[0] is an array of 12 float s, and rain[0][0] is a float . To access, say,
the value in row 2, column 3, use rain[2][3] . (Remember, array counting starts at 0, so row 2
is the third row.)

 You can also visualize this rain array as a two-dimensional array consisting of five rows, each
of 12 columns, as shown in Figure 10.1 . By changing the second subscript, you move along a
row, month by month. By changing the first subscript, you move vertically along a column,
year by year.

const float rain[5][12]

5

12

rain[0][0] rain[0][1] rain[0][2] rain[0][3]

rain[1][0] rain[1][1] rain[1][2] rain[1][3]

rain[2][0] rain[2][1] rain[2][2] rain[2][3]

ra

 Figure 10.1 Two-dimensional array.

 The two-dimensional view is merely a convenient way of visualizing an array with two indices.
Internally, such an array is stored sequentially, beginning with the first 12-element array,
followed by the second 12-element array, and so on.

 Let’s use this two-dimensional array in a weather program. The program goal is to find the
total rainfall for each year, the average yearly rainfall, and the average rainfall for each month.
To find the total rainfall for a year, you have to add all the data in a given row. To find the
average rainfall for a given month, you have to add all the data in a given column. The two-
dimensional array makes it easy to visualize and execute these activities. Listing 10.7 shows the
program.

ptg11524036

395Multidimensional Arrays

 Listing 10.7 The rain.c Program

 /* rain.c -- finds yearly totals, yearly average, and monthly

 average for several years of rainfall data */

 #include <stdio.h>

 #define MONTHS 12 // number of months in a year

 #define YEARS 5 // number of years of data

 int main(void)

 {

 // initializing rainfall data for 2010 - 2014

 const float rain[YEARS][MONTHS] =

 {

 {4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6},

 {8.5,8.2,1.2,1.6,2.4,0.0,5.2,0.9,0.3,0.9,1.4,7.3},

 {9.1,8.5,6.7,4.3,2.1,0.8,0.2,0.2,1.1,2.3,6.1,8.4},

 {7.2,9.9,8.4,3.3,1.2,0.8,0.4,0.0,0.6,1.7,4.3,6.2},

 {7.6,5.6,3.8,2.8,3.8,0.2,0.0,0.0,0.0,1.3,2.6,5.2}

 };

 int year, month;

 float subtot, total;

 printf(" YEAR RAINFALL (inches)\n");

 for (year = 0, total = 0; year < YEARS; year++)

 { // for each year, sum rainfall for each month

 for (month = 0, subtot = 0; month < MONTHS; month++)

 subtot += rain[year][month];

 printf("%5d %15.1f\n", 2010 + year, subtot);

 total += subtot; // total for all years

 }

 printf("\nThe yearly average is %.1f inches.\n\n",

 total/YEARS);

 printf("MONTHLY AVERAGES:\n\n");

 printf(" Jan Feb Mar Apr May Jun Jul Aug Sep Oct ");

 printf(" Nov Dec\n");

 for (month = 0; month < MONTHS; month++)

 { // for each month, sum rainfall over years

 for (year = 0, subtot =0; year < YEARS; year++)

 subtot += rain[year][month];

 printf("%4.1f ", subtot/YEARS);

 }

 printf("\n");

 return 0;

 }

ptg11524036

396 Chapter 10 Arrays and Pointers

 Here is the output:

 YEAR RAINFALL (inches)

 2010 32.4

 2011 37.9

 2012 49.8

 2013 44.0

 2014 32.9

 The yearly average is 39.4 inches.

 MONTHLY AVERAGES:

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

 7.3 7.3 4.9 3.0 2.3 0.6 1.2 0.3 0.5 1.7 3.6 6.7

 As you study this program, concentrate on the initialization and on the computation scheme.
The initialization is the more involved of the two, so let’s look at the simpler part (the compu-
tation) first.

 To find the total for a given year, keep year constant and let month go over its full range. This
is the inner for loop of the first part of the program. Then repeat the process for the next value
of year . This is the outer loop of the first part of the program. A nested loop structure like this
one is natural for handling a two-dimensional array. One loop handles the first subscript, and
the other loop handles the second subscript:

 for (year = 0, total = 0; year < YEARS; year++)

 { // process each year

 for (month = 0, subtot = 0; month < MONTHS; month++)

 ... // process each month

 ... // process each year

 }

 The second part of the program has the same structure, but now it changes year with the inner
loop and month with the outer. Remember, each time the outer loop cycles once, the inner
loop cycles its full allotment. Therefore, this arrangement cycles through all the years before
changing months. You get a five-year average for the first month, and so on:

 for (month = 0; month < MONTHS; month++)

 { // process each month

 for (year = 0, subtot =0; year < YEARS; year++)

 ... // process each year

 ... // process each month

 }

ptg11524036

397Multidimensional Arrays

 Initializing a Two-Dimensional Array

 Initializing a two-dimensional array builds on the technique for initializing a one-dimensional
array. First, recall that initializing a one-dimensional array looks like this:

 sometype ar1[5] = {val1, val2, val3, val4, val5};

 Here val1 , val2 , and so on are each a value appropriate for sometype . For example, if
sometype were int , val1 might be 7 , or if sometype were double , val1 might be 11.34 . But
 rain is a five-element array for which each element is of type array-of-12- float . So, for rain ,
 val1 would be a value appropriate for initializing a one-dimensional array of float , such as
the following:

 {4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6}

 That is, if sometype is array-of-12- double , val1 is a list of 12 double values. Therefore, we
need a comma-separated list of five of these things to initialize a two-dimensional array, such
as rain :

 const float rain[YEARS][MONTHS] =

 {

 {4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6},

 {8.5,8.2,1.2,1.6,2.4,0.0,5.2,0.9,0.3,0.9,1.4,7.3},

 {9.1,8.5,6.7,4.3,2.1,0.8,0.2,0.2,1.1,2.3,6.1,8.4},

 {7.2,9.9,8.4,3.3,1.2,0.8,0.4,0.0,0.6,1.7,4.3,6.2},

 {7.6,5.6,3.8,2.8,3.8,0.2,0.0,0.0,0.0,1.3,2.6,5.2}

 };

 This initialization uses five embraced lists of numbers, all enclosed by one outer set of braces.
The data in the first interior set of braces is assigned to the first row of the array, the data in the
second interior set goes to the second row, and so on. The rules we discussed about mismatches
between data and array sizes apply to each row. That is, if the first inner set of braces encloses
10 numbers, only the first 10 elements of the first row are affected. The last two elements in
that row are then initialized by default to zero. If there are too many numbers, it is an error;
the numbers do not get shoved into the next row.

 You could omit the interior braces and just retain the two outermost braces. As long as you
have the right number of entries, the effect is the same. If you are short of entries, however, the
array is filled sequentially, row by row, until the data runs out. Then the remaining elements
are initialized to 0 . Figure 10.2 shows both ways of initializing an array.

 int sq[2][3] = {{5,6},{7,8}}; int sq[2][3] = {5,6,7, 8};

5 6 0

7 8 0

5 6 7

8 0 0

 Figure 10.2 Two methods of initializing an array.

ptg11524036

398 Chapter 10 Arrays and Pointers

 Because the rain array holds data that should not be modified, the program uses the const
modifier when declaring the array.

 More Dimensions

 Everything we have said about two-dimensional arrays can be generalized to three-dimensional
arrays and further. You can declare a three-dimensional array this way:

 int box[10][20][30];

 You can visualize a one-dimensional array as a row of data, a two-dimensional array as a table
of data, and a three-dimensional array as a stack of data tables. For example, you can visualize
the box array as 10 two-dimensional arrays (each 20×30) stacked atop each other.

 The other way to think of box is as an array of arrays of arrays. That is, it is a 10-element array,
each element of which is a 20-element array. Each 20-element array then has elements that
are 30-element arrays. Or, you can simply think of arrays in terms of the number of indices
needed.

 Typically, you would use three nested loops to process a three-dimensional array, four nested
loops to process a four-dimensional array, and so on. We’ll stick to two dimensions in our
examples.

 Pointers and Arrays

 Pointers, as you might recall from Chapter 9 , “Functions,” provide a symbolic way to use
addresses. Because the hardware instructions of computing machines rely heavily on addresses,
pointers enable you to express yourself in a way that is close to how the machine expresses
itself. This correspondence makes programs with pointers efficient. In particular, pointers offer
an efficient way to deal with arrays. Indeed, as you will see, array notation is simply a disguised
use of pointers.

 An example of this disguised use is that an array name is also the address of the first element of
the array. That is, if flizny is an array, the following is true:

 flizny == &flizny[0]; // name of array is the address of the first element

 Both flizny and &flizny[0] represent the memory address of that first element. (Recall that
 & is the address operator.) Both are constants because they remain fixed for the duration of the
program. However, they can be assigned as values to a pointer variable , and you can change the
value of a variable, as Listing 10.8 shows. Notice what happens to the value of a pointer when
you add a number to it. (Recall that the %p specifier for pointers typically displays hexadecimal
values.)

ptg11524036

399Pointers and Arrays

 Listing 10.8 The pnt_add.c Program

 // pnt_add.c -- pointer addition

 #include <stdio.h>

 #define SIZE 4

 int main(void)

 {

 short dates [SIZE];

 short * pti;

 short index;

 double bills[SIZE];

 double * ptf;

 pti = dates; // assign address of array to pointer

 ptf = bills;

 printf("%23s %15s\n", "short", "double");

 for (index = 0; index < SIZE; index ++)

 printf("pointers + %d: %10p %10p\n",

 index, pti + index, ptf + index);

 return 0;

 }

 Here is sample output:

 short double

 pointers + 0: 0x7fff5fbff8dc 0x7fff5fbff8a0

 pointers + 1: 0x7fff5fbff8de 0x7fff5fbff8a8

 pointers + 2: 0x7fff5fbff8e0 0x7fff5fbff8b0

 pointers + 3: 0x7fff5fbff8e2 0x7fff5fbff8b8

 The second line prints the beginning addresses of the two arrays, and the next line gives the
result of adding 1 to the address, and so on. Keep in mind that the addresses are in hexadeci-
mal, so dd is 1 more than dc and a1 is 1 more than a0. But what do we have here?

 0x7fff5fbff8dc + 1 is 0x7fff5fbff8de?

 0x7fff5fbff8a0 + 1 is 0x7fff5fbff8a8?

 Pretty dumb? Like a fox! Our system is addressed by individual bytes, but type short uses 2
bytes and type double uses 8 bytes. What is happening here is that when you say “add 1 to a
pointer,” C adds one storage unit . For arrays, that means the address is increased to the address
of the next element , not just the next byte (see Figure 10.3). This is one reason why you have
to declare the sort of object to which a pointer points. The address is not enough because the
computer needs to know how many bytes are used to store the object. (This is true even for
pointers to scalar variables; otherwise, the *pt operation to fetch the value wouldn’t work
correctly.)

ptg11524036

400 Chapter 10 Arrays and Pointers

pti + 2

56014 56015

dates[0]

int dates[y], *pti;

pti = dates; (or pti = & dates[0];)

dates[1] dates[2] dates[3]

56016 56017 56018 56019 56020 56021

pointer variable pti is assigned the
address of the first element of the array dates

machine address

pointer addition increase by 2
since pti is type int

pti + 3pti + 1pti

array elements

 Figure 10.3 An array and pointer addition.

 Now we can define more clearly what is meant by pointer-to- int , pointer-to- float , or pointer-
to–any other data object:

 ■ The value of a pointer is the address of the object to which it points. How the address
is represented internally is hardware dependent. Many computers, including PCs and
Macintoshes, are byte addressable , meaning that each byte in memory is numbered
sequentially. Here, the address of a large object, such as type double variable, typically is
the address of the first byte of the object.

 ■ Applying the * operator to a pointer yields the value stored in the pointed-to object.

 ■ Adding 1 to the pointer increases its value by the size, in bytes, of the pointed-to type.

 As a result of C’s cleverness, we have the following equalities:

 dates + 2 == &date[2] // same address

 *(dates + 2) == dates[2] // same value

 These relationships sum up the close connection between arrays and pointers. They mean that
you can use a pointer to identify an individual element of an array and to obtain its value. In
essence, we have two different notations for the same thing. Indeed, the C language standard
describes array notation in terms of pointers. That is, it defines ar[n] to mean *(ar + n) . You
can think of the second expression as meaning, “Go to memory location ar , move over n units,
and retrieve the value there.”

ptg11524036

401Functions, Arrays, and Pointers

 Incidentally, don’t confuse *(dates+2) with *dates+2 . The indirection operator (*) binds
more tightly (that is, has higher precedence) than + , so the latter means (*dates)+2 :

 *(dates + 2) // value of the 3rd element of dates

 *dates + 2 // 2 added to the value of the 1st element

 The relationship between arrays and pointers means that you can often use either approach
when writing a program. Listing 10.9 , for instance, produces the same output as Listing 10.1
when compiled and run.

 Listing 10.9 The day_mon3.c Program

 /* day_mon3.c -- uses pointer notation */

 #include <stdio.h>

 #define MONTHS 12

 int main(void)

 {

 int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};

 int index;

 for (index = 0; index < MONTHS; index++)

 printf("Month %2d has %d days.\n", index +1,

 *(days + index)); // same as days[index]

 return 0;

 }

 Here, days is the address of the first element of the array, days + index is the address
of element days[index] , and *(days + index) is the value of that element, just as
 days[index] is. The loop references each element of the array, in turn, and prints the contents
of what it finds.

 Is there an advantage to writing the program this way? Not really—the compiler produces the
same code for either. The point to Listing 10.9 is that pointer notation and array notation are
two equivalent methods. This example shows that you can use pointer notation with arrays.
The reverse is also true; you can use array notation with pointers. This turns out to be impor-
tant when you have a function with an array as an argument.

 Functions, Arrays, and Pointers

 Suppose you want to write a function that operates on an array. For example, suppose you
want a function that returns the sum of the elements of an array. Suppose marbles is the name
of an array of int . What would the function call look like? A reasonable guess would be this:

 total = sum(marbles); // possible function call

ptg11524036

402 Chapter 10 Arrays and Pointers

 What would the prototype be? Remember, the name of an array is the address of its first
element, so the actual argument marbles , being the address of an int , should be assigned to a
formal parameter that is a pointer-to- int :

 int sum(int * ar); // corresponding prototype

 What information does sum() get from this argument? It gets the address of the first element
of the array, and it learns that it will find an int at that location. Note that this information
says nothing about the number of elements in the array. We’re left with a couple choices of
how to get that information to the function. The first choice is to code a fixed array size into
the function:

 int sum(int * ar) // corresponding definition

 {

 int i;

 int total = 0;

 for(i = 0; i < 10; i++) // assume 10 elements

 total += ar[i]; // ar[i] the same as *(ar + i)

 return total;

 }

 Here, we make use of the fact that just as you can use pointer notation with array names, you
can use array notation with a pointer. Also, recall that the += operator adds the value of the
operand on its right to the operand on its left. Therefore, total is a running sum of the array
elements.

 This function definition is limited; it will work only with int arrays of 10 elements. A more
flexible approach is to pass the array size as a second argument:

 int sum(int * ar, int n) // more general approach

 {

 int i;

 int total = 0;

 for(i = 0; i < n; i++) // use n elements

 total += ar[i]; // ar[i] the same as *(ar + i)

 return total;

 }

 Here, the first parameter tells the function where to find the array and the type of data in the
array, and the second parameter tells the function how many elements are present.

 There’s one more thing to tell about function parameters. In the context of a function proto-
type or function definition header, and only in that context, you can substitute int ar[] for
 int * ar :

 int sum (int ar[], int n);

ptg11524036

403Functions, Arrays, and Pointers

 The form int * ar always means that ar is type pointer-to- int . The form int ar[] also
means that ar is type pointer-to- int , but only when used to declare formal parameters. The
idea is that the second form reminds the reader that not only does ar point to an int , it points
to an int that’s an element of an array.

 Note Declaring Array Parameters

 Because the name of an array is the address of the first element, an actual argument of an
array name requires that the matching formal argument be a pointer. In this context, and only
in this context, C interprets int ar[] to mean the same as int * ar ; that is, ar is type
pointer-to- int . Because prototypes allow you to omit a name, all four of the following proto-
types are equivalent:
 int sum(int *ar, int n);

 int sum(int *, int);

 int sum(int ar[], int n);

 int sum(int [], int);

 You can’t omit names in function definitions, so, for definitions, the following two forms are
equivalent:
 int sum(int *ar, int n)

 {

 // code goes here

 }

 int sum(int ar[], int n);

 {

 // code goes here

 }

 You should be able to use any of the four prototypes with either of the two definitions shown
here.

 Listing 10.10 shows a program using the sum() function. To point out an interesting fact about
array arguments, the program also prints the size of the original array and the size of the func-
tion parameter representing the array. (Use %u or perhaps %lu if your compiler doesn’t support
the %zd specifier for printing sizeof quantities.)

 Listing 10.10 The sum_arr1.c Program

 // sum_arr1.c -- sums the elements of an array

 // use %u or %lu if %zd doesn't work

 #include <stdio.h>

 #define SIZE 10

 int sum(int ar[], int n);

 int main(void)

 {

ptg11524036

404 Chapter 10 Arrays and Pointers

 int marbles[SIZE] = {20,10,5,39,4,16,19,26,31,20};

 long answer;

 answer = sum(marbles, SIZE);

 printf("The total number of marbles is %ld.\n", answer);

 printf("The size of marbles is %zd bytes.\n",

 sizeof marbles);

 return 0;

 }

 int sum(int ar[], int n) // how big an array?

 {

 int i;

 int total = 0;

 for(i = 0; i < n; i++)

 total += ar[i];

 printf("The size of ar is %zd bytes.\n", sizeof ar);

 return total;

 }

 The output on our system looks like this:

 The size of ar is 8 bytes.

 The total number of marbles is 190.

 The size of marbles is 40 bytes.

 Note that the size of marbles is 40 bytes. This makes sense because marbles contains 10
 int s, each 4 bytes, for a total of 40 bytes. But the size of ar is just 8 bytes. That’s because ar is
not an array itself; it is a pointer to the first element of marbles . Our system uses 8 bytes for
storing addresses, so the size of a pointer variable is 8 bytes. (Other systems might use a differ-
ent number of bytes.) In short, in Listing 10.10 , marbles is an array, ar is a pointer to the first
element of marbles , and the C connection between arrays and pointers lets you use array nota-
tion with the pointer ar .

 Using Pointer Parameters

 A function working on an array needs to know where to start and stop. The sum() function
uses a pointer parameter to identify the beginning of the array and an integer parameter to
indicate how many elements to process. (The pointer parameter also identifies the type of data
in the array.) But this is not the only way to tell a function what it needs to know. Another
way to describe the array is by passing two pointers, with the first indicating where the array
starts (as before) and the second where the array ends. Listing 10.11 illustrates this approach. It
also uses the fact that a pointer parameter is a variable, which means that instead of using an

ptg11524036

405Functions, Arrays, and Pointers

index to indicate which element in the array to access, the function can alter the value of the
pointer itself, making it point to each array element in turn.

 Listing 10.11 The sum_arr2.c Program

 /* sum_arr2.c -- sums the elements of an array */

 #include <stdio.h>

 #define SIZE 10

 int sump(int * start, int * end);

 int main(void)

 {

 int marbles[SIZE] = {20,10,5,39,4,16,19,26,31,20};

 long answer;

 answer = sump(marbles, marbles + SIZE);

 printf("The total number of marbles is %ld.\n", answer);

 return 0;

 }

 /* use pointer arithmetic */

 int sump(int * start, int * end)

 {

 int total = 0;

 while (start < end)

 {

 total += *start; // add value to total

 start++; // advance pointer to next element

 }

 return total;

 }

 The pointer start begins by pointing to the first element of marbles , so the assignment
expression total +=*start adds the value of the first element (20) to total . Then the expres-
sion start++ increments the pointer variable start so that it points to the next element in
the array. Because start points to type int , C increments the value of start by the size of
 int .

 Note that the sump() function uses a different method from sum() to end the summation
loop. The sum() function uses the number of elements as a second argument, and the loop
uses that value as part of the loop test:

 for(i = 0; i < n; i++)

ptg11524036

406 Chapter 10 Arrays and Pointers

 The sump() function, however, uses a second pointer to end the loop:

 while (start < end)

 Because the test is for inequality, the last element processed is the one just before the element
pointed to by end . This means that end actually points to the location after the final element
in the array. C guarantees that when it allocates space for an array, a pointer to the first loca-
tion after the end of the array is a valid pointer. That makes constructions such as this one
valid, because the final value that start gets in the loop is end . Note that using this “past-the-
end” pointer makes the function call neat:

 answer = sump(marbles, marbles + SIZE);

 Because indexing starts at 0 , marbles + SIZE points to the next element after the end. If end
pointed to the last element instead of to one past the end, you would have to use the following
code instead:

 answer = sump(marbles, marbles + SIZE - 1);

 Not only is this code less elegant in appearance, it’s harder to remember, so it is more likely to
lead to programming errors. By the way, although C guarantees that the pointer marbles +
SIZE is a valid pointer, it makes no guarantees about marbles[SIZE] , the value stored at that
location, so a program should not attempt to access that location.

 You can also condense the body of the loop to one line:

 total += *start++;

 The unary operators * and ++ have the same precedence but associate from right to left. This
means the ++ applies to start , not to *start . That is, the pointer is incremented, not the
value pointed to. The use of the postfix form (start++ rather than ++start) means that the
pointer is not incremented until after the pointed-to value is added to total . If the program
used *++start , the order would be increment the pointer, then use the value pointed to. If
the program used (*start)++ , however, it would use the value of start and then increment
the value, not the pointer. That would leave the pointer pointing to the same element, but the
element would contain a new number. Although the *start++ notation is commonly used,
the *(start++) notation is clearer. Listing 10.12 illustrates these niceties of precedence.

 Listing 10.12 The order.c Program

 /* order.c -- precedence in pointer operations */

 #include <stdio.h>

 int data[2] = {100, 200};

 int moredata[2] = {300, 400};

 int main(void)

 {

 int * p1, * p2, * p3;

 p1 = p2 = data;

ptg11524036

407Pointer Operations

 p3 = moredata;

 printf(" *p1 = %d, *p2 = %d, *p3 = %d\n",

 *p1 , *p2 , *p3);

 printf("*p1++ = %d, *++p2 = %d, (*p3)++ = %d\n",

 *p1++ , *++p2 , (*p3)++);

 printf(" *p1 = %d, *p2 = %d, *p3 = %d\n",

 *p1 , *p2 , *p3);

 return 0;

 }

 Here is its output:

 *p1 = 100, *p2 = 100, *p3 = 300

 *p1++ = 100, *++p2 = 200, (*p3)++ = 300

 *p1 = 200, *p2 = 200, *p3 = 301

 The only operation that altered an array value is (*p3)++ . The other two operations caused p1
and p2 to advance to point to the next array element.

 Comment: Pointers and Arrays

 As you have seen, functions that process arrays actually use pointers as arguments, but you do
have a choice between array notation and pointer notation for writing array-processing func-
tions. Using array notation, as in Listing 10.10 , makes it more obvious that the function is
working with arrays. Also, array notation has a more familiar look to programmers versed in
other languages, such as FORTRAN, Pascal, Modula-2, or BASIC. Other programmers might be
more accustomed to working with pointers and might find the pointer notation, such as that
in Listing 10.11 , more natural.

 As far as C goes, the two expressions ar[i] and *(ar+i) are equivalent in meaning. Both
work if ar is the name of an array, and both work if ar is a pointer variable. However, using an
expression such as ar++ only works if ar is a pointer variable.

 Pointer notation, particularly when used with the increment operator, is closer to machine
language and, with some compilers, leads to more efficient code. However, many programmers
believe that the programmer’s main concerns should be correctness and clarity and that code
optimization should be left to the compiler.

 Pointer Operations

 Just what can you do with pointers? C offers several basic operations you can perform on
pointers, and the next program demonstrates eight of these possibilities. To show the results of
each operation, the program prints the value of the pointer (which is the address to which it
points), the value stored in the pointed-to address, and the address of the pointer itself. (If your

ptg11524036

408 Chapter 10 Arrays and Pointers

compiler doesn’t support the %p specifier, try %u or perhaps %lu for printing the addresses. If it
doesn’t support the %td specifier, used for address differences, try %d or perhaps %ld .)

 Listing 10.13 shows eight basic operations that can be performed with pointer variables. In
addition to these operations, you can use the relational operators to compare pointers.

 Listing 10.13 The ptr_ops.c Program

 // ptr_ops.c -- pointer operations

 #include <stdio.h>

 int main(void)

 {

 int urn[5] = {100,200,300,400,500};

 int * ptr1, * ptr2, *ptr3;

 ptr1 = urn; // assign an address to a pointer

 ptr2 = &urn[2]; // ditto

 // dereference a pointer and take

 // the address of a pointer

 printf("pointer value, dereferenced pointer, pointer address:\n");

 printf("ptr1 = %p, *ptr1 =%d, &ptr1 = %p\n",

 ptr1, *ptr1, &ptr1);

 // pointer addition

 ptr3 = ptr1 + 4;

 printf("\nadding an int to a pointer:\n");

 printf("ptr1 + 4 = %p, *(ptr4 + 3) = %d\n",

 ptr1 + 4, *(ptr1 + 3));

 ptr1++; // increment a pointer

 printf("\nvalues after ptr1++:\n");

 printf("ptr1 = %p, *ptr1 =%d, &ptr1 = %p\n",

 ptr1, *ptr1, &ptr1);

 ptr2--; // decrement a pointer

 printf("\nvalues after --ptr2:\n");

 printf("ptr2 = %p, *ptr2 = %d, &ptr2 = %p\n",

 ptr2, *ptr2, &ptr2);

 --ptr1; // restore to original value

 ++ptr2; // restore to original value

 printf("\nPointers reset to original values:\n");

 printf("ptr1 = %p, ptr2 = %p\n", ptr1, ptr2);

 // subtract one pointer from another

 printf("\nsubtracting one pointer from another:\n");

 printf("ptr2 = %p, ptr1 = %p, ptr2 - ptr1 = %td\n",

 ptr2, ptr1, ptr2 - ptr1);

 // subtract an integer from a pointer

 printf("\nsubtracting an int from a pointer:\n");

 printf("ptr3 = %p, ptr3 - 2 = %p\n",

ptg11524036

409Pointer Operations

 ptr3, ptr3 - 2);

 return 0;

 }

 Here is the output on one system:

 pointer value, dereferenced pointer, pointer address:

 ptr1 = 0x7fff5fbff8d0, *ptr1 =100, &ptr1 = 0x7fff5fbff8c8

 adding an int to a pointer:

 ptr1 + 4 = 0x7fff5fbff8e0, *(ptr4 + 3) = 400

 values after ptr1++:

 ptr1 = 0x7fff5fbff8d4, *ptr1 =200, &ptr1 = 0x7fff5fbff8c8

 values after --ptr2:

 ptr2 = 0x7fff5fbff8d4, *ptr2 = 200, &ptr2 = 0x7fff5fbff8c0

 Pointers reset to original values:

 ptr1 = 0x7fff5fbff8d0, ptr2 = 0x7fff5fbff8d8

 subtracting one pointer from another:

 ptr2 = 0x7fff5fbff8d8, ptr1 = 0x7fff5fbff8d0, ptr2 - ptr1 = 2

 subtracting an int from a pointer:

 ptr3 = 0x7fff5fbff8e0, ptr3 - 2 = 0x7fff5fbff8d8

 The following list describes the basic operations that can be performed with or on pointer
variables:

 ■ Assignment— You can assign an address to a pointer. The assigned value can be, for
example, an array name, a variable preceded by address operator (&), or another second
pointer. In the example, ptr1 is assigned the address of the beginning of the array urn .
This address happens to be memory cell number 0x7fff5fbff8d0 . The variable ptr2
gets the address of the third and last element, urn[2] . Note that the address should be
compatible with the pointer type. That is, you can’t assign the address of a double to a
pointer-to- int , at least not without making an ill-advised type cast. C99/C11 enforces
this rule.

 ■ Value finding (dereferencing)— The * operator gives the value stored in the pointed-to
location. Therefore, *ptr1 is initially 100 , the value stored at location 0x7fff5fbff8d0 .

 ■ Taking a pointer address— Like all variables, a pointer variable has an address and a
value. The & operator tells you where the pointer itself is stored. In this example, ptr1
is stored in memory location 0x7fff5fbff8c8 . The content of that memory cell is
 0x7fff5fbff8d0 , the address of urn . So &pt1 is a pointer to pt1 , which, in turn, is a
pointer to urn[0] .

ptg11524036

410 Chapter 10 Arrays and Pointers

 ■ Adding an integer to a pointer— You can use the + operator to add an integer to a
pointer or a pointer to an integer. In either case, the integer is multiplied by the number
of bytes in the pointed-to type, and the result is added to the original address. This
makes ptr1 + 4 the same as &urn[4] . The result of addition is undefined if it lies
outside of the array into which the original pointer points, except that the address one
past the end element of the array is guaranteed to be valid.

 ■ Incrementing a pointer— Incrementing a pointer to an array element makes it move to
the next element of the array. Therefore, ptr1++ increases the numerical value of ptr1
by 4 (4 bytes per int on our system) and makes ptr1 point to urn[1] (see Figure 10.4 ,
which uses simplified addresses). Now ptr1 has the value 0x7fff5fbff8d4 (the next
array address), and *ptr1 has the value 200 (the value of urn[1]). Note that the address
of ptr1 itself remains 0x7fff5fbff8c8 . After all, a variable doesn’t move around just
because it changes value!

ptr1=urn;

ptr1 set to 00DC

then
ptr1++ sets ptr1 to 00DE

etc.

ptr1

100

00DC 00DD 00DE 00DF 00F0 00F1 0C00 0C01

200 300 00DC

*ptr1 is the value of the address
00DC, which is currently 100

memory
address

urn[0] urn[1] urn[2] ptr1
array
element

array
values

address stored
here

 Figure 10.4 Incrementing a type int pointer.

 ■ Subtracting an integer from a pointer— You can use the - operator to subtract an
integer from a pointer; the pointer has to be the first operand and the integer value the
second operand. The integer is multiplied by the number of bytes in the pointed-to type,
and the result is subtracted from the original address. This makes ptr3 - 2 the same as
 &urn[2] because ptr3 points to &urn[4] . The result of subtraction is undefined if it lies
outside of the array into which the original pointer points, except that the address one
past the end element of the array is guaranteed to be valid.

 ■ Decrementing a pointer— Of course, you can also decrement a pointer. In this example,
decrementing ptr2 makes it point to the second array element instead of the third. Note
that you can use both the prefix and postfix forms of the increment and decrement

ptg11524036

411Pointer Operations

operators. Also note that both ptr1 and ptr2 wind up pointing to the same element,
 urn[1] , before they get reset.

 ■ Differencing— You can find the difference between two pointers. Normally, you do this
for two pointers to elements that are in the same array to find out how far apart the
elements are. The result is in the same units as the type size. For example, in the output
from Listing 10.13 , ptr2 - ptr1 has the value 2 , meaning that these pointers point
to objects separated by two int s, not by 2 bytes. Subtraction is guaranteed to be a valid
operation as long as both pointers point into the same array (or possibly to a position
one past the end). Applying the operation to pointers to two different arrays might
produce a value or could lead to a runtime error.

 ■ Comparisons— You can use the relational operators to compare the values of two
pointers, provided the pointers are of the same type.

 Note that there are two forms of subtraction. You can subtract one pointer from another to get
an integer, and you can subtract an integer from a pointer and get a pointer.

 There are some cautions to remember when incrementing or decrementing a pointer. The
computer does not keep track of whether a pointer still points to an array element. C guar-
antees that, given an array, a pointer to any array element, or to the position after the last
element, is a valid pointer. But the effect of incrementing or decrementing a pointer beyond
these limits is undefined. Also, you can dereference a pointer to any array element. However,
even though a pointer to one past the end element is valid, it’s not guaranteed that such a one-
past-the-end pointer can be dereferenced.

 Dereferencing an Uninitialized Pointer

 Speaking of cautions, there is one rule you should burn into your memory: Do not dereference
an uninitialized pointer. For example, consider the following:

 int * pt; // an uninitialized pointer

 *pt = 5; // a terrible error

 Why is this so bad? The second line means store the value 5 in the location to which pt
points. But pt , being uninitialized, has a random value, so there is no knowing where the 5 will
be placed. It might go somewhere harmless, it might overwrite data or code, or it might cause
the program to crash. Remember, creating a pointer only allocates memory to store the pointer
itself; it doesn’t allocate memory to store data. Therefore, before you use a pointer, it should
be assigned a memory location that has already been allocated. For example, you can assign
the address of an existing variable to the pointer. (This is what happens when you use a func-
tion with a pointer parameter.) Or you can use the malloc() function, as discussed in Chapter
 12 , to allocate memory first. Anyway, to drive the point home, do not dereference an uninitial-
ized pointer!

 double * pd; // uninitialized pointer

 *pd = 2.4; // DON'T DO IT

ptg11524036

412 Chapter 10 Arrays and Pointers

 Given

 int urn[3];

 int * ptr1, * ptr2;

 the following are some valid and invalid statements:

 Valid Invalid

 ptr1++; urn++;

 ptr2 = ptr1 + 2; ptr2 = ptr2 + ptr1;

 ptr2 = urn + 1; ptr2 = urn * ptr1;

 The valid operations open many possibilities. C programmers create arrays of pointers, pointers
to functions, arrays of pointers to pointers, arrays of pointers to functions, and so on. Relax,
though—we’ll stick to the basic uses we have already unveiled. The first basic use for pointers
is to communicate information to and from functions. You already know that you must use
pointers if you want a function to affect variables in the calling function. The second use is in
functions designed to manipulate arrays. Let’s look at another programming example using
functions and arrays.

 Protecting Array Contents

 When you write a function that processes a fundamental type, such as int , you have a choice
of passing the int by value or of passing a pointer-to- int . The usual rule is to pass quantities
by value unless the program needs to alter the value, in which case you pass a pointer. Arrays
don’t give you that choice; you must pass a pointer. The reason is efficiency. If a function
passed an array by value, it would have to allocate enough space to hold a copy of the original
array and then copy all the data from the original array to the new array. It is much quicker to
pass the address of the array and have the function work with the original data.

 This technique can cause problems. The reason C ordinarily passes data by value is to preserve
the integrity of the data. If a function works with a copy of the original data, it won’t acciden-
tally modify the original data. But, because array-processing functions do work with the origi-
nal data, they can modify the array. Sometimes that’s desirable. For example, here’s a function
that adds the same value to each member of an array:

 void add_to(double ar[], int n, double val)

 {

 int i;

 for(i = 0; i < n; i++)

 ar[i] += val;

 }

ptg11524036

413Protecting Array Contents

 Therefore, the function call

 add_to(prices, 100, 2.50);

 causes each element in the prices array to be replaced by a value larger by 2.5; this function
modifies the contents of the array. It can do so because, by working with pointers, the function
uses the original data.

 Other functions, however, do not have the intent of modifying data. The following function,
for example, is intended to find the sum of the array’s contents; it shouldn’t change the array.
However, because ar is really a pointer, a programming error could lead to the original data
being corrupted. Here, for example, the expression ar[i]++ results in each element having 1
added to its value:

 int sum(int ar[], int n) // faulty code

 {

 int i;

 int total = 0;

 for(i = 0; i < n; i++)

 total += ar[i]++; // error increments each element

 return total;

 }

 Using const with Formal Parameters

 With K&R C, the only way to avoid this sort of error is to be vigilant. Since ANSI C, there is
an alternative. If a function’s intent is that it not change the contents of the array, use the
keyword const when declaring the formal parameter in the prototype and in the function defi-
nition. For example, the prototype and definition for sum() should look like this:

 int sum(const int ar[], int n); /* prototype */

 int sum(const int ar[], int n) /* definition */

 {

 int i;

 int total = 0;

 for(i = 0; i < n; i++)

 total += ar[i];

 return total;

 }

 This tells the compiler that the function should treat the array pointed to by ar as though the
array contains constant data. Then, if you accidentally use an expression such as ar[i]++ , the
compiler can catch it and generate an error message, telling you that the function is attempting
to alter constant data.

ptg11524036

414 Chapter 10 Arrays and Pointers

 It’s important to understand that using const this way does not require that the original array
 be constant; it just says that the function has to treat the array as though it were constant. Using
 const this way provides the protection for arrays that passing by value provides for fundamen-
tal types; it prevents a function from modifying data in the calling function. In general, if you
write a function intended to modify an array, don’t use const when declaring the array param-
eter. If you write a function not intended to modify an array, do use const when declaring the
array parameter.

 In the program shown in Listing 10.14 , one function displays an array and one function multi-
plies each element of an array by a given value. Because the first function should not alter
the array, it uses const . Because the second function has the intent of modifying the array, it
doesn’t use const .

 Listing 10.14 The arf.c Program

 /* arf.c -- array functions */

 #include <stdio.h>

 #define SIZE 5

 void show_array(const double ar[], int n);

 void mult_array(double ar[], int n, double mult);

 int main(void)

 {

 double dip[SIZE] = {20.0, 17.66, 8.2, 15.3, 22.22};

 printf("The original dip array:\n");

 show_array(dip, SIZE);

 mult_array(dip, SIZE, 2.5);

 printf("The dip array after calling mult_array():\n");

 show_array(dip, SIZE);

 return 0;

 }

 /* displays array contents */

 void show_array(const double ar[], int n)

 {

 int i;

 for (i = 0; i < n; i++)

 printf("%8.3f ", ar[i]);

 putchar('\n');

 }

 /* multiplies each array member by the same multiplier */

 void mult_array(double ar[], int n, double mult)

 {

 int i;

ptg11524036

415Protecting Array Contents

 for (i = 0; i < n; i++)

 ar[i] *= mult;

 }

 Here is the output:

 The original dip array:

 20.000 17.660 8.200 15.300 22.220

 The dip array after calling mult_array():

 50.000 44.150 20.500 38.250 55.550

 Note that both functions are type void . The mult_array() function does provide new values
to the dip array, but not by using the return mechanism.

 More About const

 Earlier, you saw that you can use const to create symbolic constants:

 const double PI = 3.14159;

 That was something you could do with the #define directive, too, but const additionally lets
you create constant arrays, constant pointers, and pointers to constants.

 Listing 10.4 showed how to use the const keyword to protect an array:

 #define MONTHS 12

 ...

 const int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};

 If the program code subsequently tries to alter the array, you’ll get a compile-time error
message:

 days[9] = 44; /* compile error */

 Pointers to constants can’t be used to change values. Consider the following code:

 double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

 const double * pd = rates; // pd points to beginning of the array

 The second line of code declares that the type double value to which pd points is a const .
That means you can’t use pd to change pointed-to values:

 *pd = 29.89; // not allowed

 pd[2] = 222.22; // not allowed

 rates[0] = 99.99; // allowed because rates is not const

 Whether you use pointer notation or array notation, you are not allowed to use pd to change
the value of pointed-to data. Note, however, that because rates was not declared as a constant,

ptg11524036

416 Chapter 10 Arrays and Pointers

you can still use rates to change values. Also, note that you can make pd point somewhere
else:

 pd++; /* make pd point to rates[1] -- allowed */

 A pointer-to-constant is normally used as a function parameter to indicate that the function
won’t use the pointer to change data. For example, the show_array() function from Listing
 10.14 could have been prototyped as

 void show_array(const double *ar, int n);

 There are some rules you should know about pointer assignments and const . First, it’s valid to
assign the address of either constant data or non-constant data to a pointer-to-constant:

 double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

 const double locked[4] = {0.08, 0.075, 0.0725, 0.07};

 const double * pc = rates; // valid

 pc = locked; // valid

 pc = &rates[3]; // valid

 However, only the addresses of non-constant data can be assigned to regular pointers:

 double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

 const double locked[4] = {0.08, 0.075, 0.0725, 0.07};

 double * pnc = rates; // valid

 pnc = locked; // not valid

 pnc = &rates[3]; // valid

 This is a reasonable rule. Otherwise, you could use the pointer to change data that was
supposed to be constant.

 A practical consequence of these rules is that a function such as show_array() can accept
the names of regular arrays and of constant arrays as actual arguments, because either can be
assigned to a pointer-to-constant:

 show_array(rates, 5); // valid

 show_array(locked, 4); // valid

 Therefore, using const in a function parameter definition not only protects data, it also allows
the function to work with arrays that have been declared const .

 A function such as mult_array() , however, shouldn’t be passed the name of a constant array
as an argument:

 mult_array(rates, 5, 1.2); // valid

 mult_array(locked, 4, 1.2); // bad idea

 What the C standard says is that an attempt to modify const data, such as locked , using a
non- const identifier, such as the mult_array() formal argument ar , results in undefined
behavior.

ptg11524036

417Pointers and Multidimensional Arrays

 There are more possible uses of const . For example, you can declare and initialize a pointer so
that it can’t be made to point elsewhere. The trick is the placement of the keyword const :

 double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

 double * const pc = rates; // pc points to beginning of the array

 pc = &rates[2]; // not allowed to point elsewhere

 *pc = 92.99; // ok -- changes rates[0]

 Such a pointer can still be used to change values, but it can point only to the location origi-
nally assigned to it.

 Finally, you can use const twice to create a pointer that can neither change where it’s pointing
nor change the value to which it points:

 double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

 const double * const pc = rates;

 pc = &rates[2]; // not allowed

 *pc = 92.99; // not allowed

 Pointers and Multidimensional Arrays

 How do pointers relate to multidimensional arrays? And why would you want to know?
Functions that work with multidimensional arrays do so with pointers, so you need some
further pointer background before working with such functions. As to the first question, let’s
look at some examples now to find the answer. To simplify the discussion, let’s use a small
array. Suppose you have this declaration:

 int zippo[4][2]; /* an array of arrays of ints */

 Then zippo , being the name of an array, is the address of the first element of the array. In this
case, the first element of zippo is itself an array of two int s, so zippo is the address of an array
of two int s. Let’s analyze that further in terms of pointer properties:

 ■ Because zippo is the address of the array’s first element, zippo has the same value as
 &zippo[0] . Next, zippo[0] is itself an array of two integers, so zippo[0] has the same
value as &zippo[0][0] , the address of its first element, an int . In short, zippo[0] is
the address of an int -sized object, and zippo is the address of a two- int -sized object.
Because both the integer and the array of two integers begin at the same location, both
 zippo and zippo[0] have the same numeric value.

 ■ Adding 1 to a pointer or address yields a value larger by the size of the referred-to object.
In this respect, zippo and zippo[0] differ, because zippo refers to an object two int s
in size, and zippo[0] refers to an object one int in size. Therefore, zippo + 1 has a
different value from zippo[0] + 1 .

 ■ Dereferencing a pointer or an address (applying the * operator or else the [] operator
with an index) yields the value represented by the referred-to object. Because zippo[0] is
the address of its first element, (zippo[0][0]), *(zippo[0]) represents the value stored

ptg11524036

418 Chapter 10 Arrays and Pointers

in zippo[0][0] , an int value. Similarly, *zippo represents the value of its first element,
 zippo[0] , but zippo[0] itself is the address of an int . It’s the address &zippo[0][0] ,
so *zippo is &zippo[0][0] . Applying the dereferencing operator to both expressions
implies that **zippo equals *&zippo[0][0] , which reduces to zippo[0][0] , an int .
In short, zippo is the address of an address and must be dereferenced twice to get an
ordinary value. An address of an address or a pointer of a pointer is an example of double
indirection .

 Clearly, increasing the number of array dimensions increases the complexity of the pointer
view. At this point, most students of C begin realizing why pointers are considered one of the
more difficult aspects of the language. You might want to study the preceding points carefully
and see how they are illustrated in Listing 10.15 , which displays some address values and array
contents.

 Listing 10.15 The zippo1.c Program

 /* zippo1.c -- zippo info */

 #include <stdio.h>

 int main(void)

 {

 int zippo[4][2] = { {2,4}, {6,8}, {1,3}, {5, 7} };

 printf(" zippo = %p, zippo + 1 = %p\n",

 zippo, zippo + 1);

 printf("zippo[0] = %p, zippo[0] + 1 = %p\n",

 zippo[0], zippo[0] + 1);

 printf(" *zippo = %p, *zippo + 1 = %p\n",

 *zippo, *zippo + 1);

 printf("zippo[0][0] = %d\n", zippo[0][0]);

 printf(" *zippo[0] = %d\n", *zippo[0]);

 printf(" **zippo = %d\n", **zippo);

 printf(" zippo[2][1] = %d\n", zippo[2][1]);

 printf("*(*(zippo+2) + 1) = %d\n", *(*(zippo+2) + 1));

 return 0;

 }

 Here is the output for one system:

 zippo = 0x0064fd38, zippo + 1 = 0x0064fd40

 zippo[0] = 0x0064fd38, zippo[0] + 1 = 0x0064fd3c

 *zippo = 0x0064fd38, *zippo + 1 = 0x0064fd3c

 zippo[0][0] = 2

 *zippo[0] = 2

ptg11524036

419Pointers and Multidimensional Arrays

 **zippo = 2

 zippo[1][2] = 3

 ((zippo+1) + 2) = 3

 Other systems might display different address values and address formats, but the relationships
will be the same as described here. The output shows that the address of the two-dimensional
array, zippo , and the address of the one-dimensional array, zippo[0] , are the same. Each
is the address of the corresponding array’s first element, and this is the same numerically as
 &zippo[0][0] .

 Nonetheless, there is a difference. On our system, int is 4 bytes. As discussed earlier, zippo[0]
points to a 4-byte data object. Adding 1 to zippo[0] should produce a value larger by 4, which
it does. (In hex, 38 + 4 is 3c .) The name zippo is the address of an array of two int s, so it
identifies an 8-byte data object. Therefore, adding 1 to zippo should produce an address 8
bytes larger, which it does. (In hex, 40 is 8 larger than 38 .)

 The program shows that zippo[0] and *zippo are identical, and they should be. Next, it
shows that the name of a two-dimensional array has to be dereferenced twice to get a value
stored in the array. This can be done by using the indirection operator (*) twice or by using the
bracket operator ([]) twice. (It also can be done by using one * and one set of [] , but let’s
not get carried away by all the possibilities.)

 In particular, note that the pointer notation equivalent of zippo[2][1] is *(*(zippo+2) +
1) . You probably should make the effort at least once in your life to break this down. Let’s
build up the expression in steps:

 zippo the address of the first two- int element

 zippo+2 the address of the third two- int element

 *(zippo+2) the third element, a two- int array, hence the address of its first ele-
ment, an int

 *(zippo+2) + 1 the address of the second element of the two- int array, also an int

 ((zippo+2) + 1) the value of the second int in the third row (zippo[2][1])

 The point of the baroque display of pointer notation is not that you can use it instead of the
simpler zippo[2][1] but that, if you happen to have a pointer to a two-dimensional array and
want to extract a value, you can use the simpler array notation rather than pointer notation.

 Figure 10.5 provides another view of the relationships among array addresses, array contents,
and pointers.

ptg11524036

420 Chapter 10 Arrays and Pointers

*zippo

*zippo+1

zippo [0]

zippo

*zippo+2

zippo

[0][0]

zippo

[0][1]

zippo

[1][0]

zippo

[1][1]

zippo

[2][0]

zippo

[2][1]

zippo

[3][0]

zippo

[3][1]

0BF2 0BF4 0BF6 0BF8 0BFA 0BFC 0BFE 0C00

zippo [1]

zippo+1

zippo [2]

zippo+2

zippo [3]

zippo+3

addresses

 Figure 10.5 An array of arrays.

 Pointers to Multidimensional Arrays

 How would you declare a pointer variable pz that can point to a two-dimensional array such as
 zippo ? Such a pointer could be used, for example, in writing a function to deal with zippo -like
arrays. Will the type pointer-to- int suffice? No. That type is compatible with zippo[0] , which
points to a single int . But zippo is the address of its first element, which is an array of two
 int s. Hence, pz must point to an array of two int s, not to a single int . Here is what you can
do:

 int (* pz)[2]; // pz points to an array of 2 ints

 This statement says that pz is a pointer to an array of two int s. Why the parentheses? Well, []
has a higher precedence than * . Therefore, with a declaration such as

 int * pax[2]; // pax is an array of two pointers-to-int

 you apply the brackets first, making pax an array of two somethings. Next, you apply the * ,
making pax an array of two pointers. Finally, use the int , making pax an array of two pointers
to int . This declaration creates two pointers to single int s, but the original version uses paren-
theses to apply the * first, creating one pointer to an array of two int s. Listing 10.16 shows
how you can use such a pointer just like the original array.

 Listing 10.16 The zippo2.c Program

 /* zippo2.c -- zippo info via a pointer variable */

 #include <stdio.h>

 int main(void)

 {

 int zippo[4][2] = { {2,4}, {6,8}, {1,3}, {5, 7} };

 int (*pz)[2];

 pz = zippo;

 printf(" pz = %p, pz + 1 = %p\n",

ptg11524036

421Pointers and Multidimensional Arrays

 pz, pz + 1);

 printf("pz[0] = %p, pz[0] + 1 = %p\n",

 pz[0], pz[0] + 1);

 printf(" *pz = %p, *pz + 1 = %p\n",

 *pz, *pz + 1);

 printf("pz[0][0] = %d\n", pz[0][0]);

 printf(" *pz[0] = %d\n", *pz[0]);

 printf(" **pz = %d\n", **pz);

 printf(" pz[2][1] = %d\n", pz[2][1]);

 printf("*(*(pz+2) + 1) = %d\n", *(*(pz+2) + 1));

 return 0;

 }

 Here is the new output:

 pz = 0x0064fd38, pz + 1 = 0x0064fd40

 pz[0] = 0x0064fd38, pz[0] + 1 = 0x0064fd3c

 *pz = 0x0064fd38, *pz + 1 = 0x0064fd3c

 pz[0][0] = 2

 *pz[0] = 2

 **pz = 2

 pz[2][1] = 3

 ((pz+2) + 1) = 3

 Again, you might get different addresses, but the relationships will be the same. As promised,
you can use notation such as pz[2][1] , even though pz is a pointer, not an array name. More
generally, you can represent individual elements by using array notation or pointer notation
with either an array name or a pointer:

 zippo[m][n] == *(*(zippo + m) + n)

 pz[m][n] == *(*(pz + m) + n)

 Pointer Compatibility

 The rules for assigning one pointer to another are tighter than the rules for numeric types. For
example, you can assign an int value to a double variable without using a type conversion,
but you can’t do the same for pointers to these two types:

 int n = 5;

 double x;

 int * p1 = &n;

 double * pd = &x;

 x = n; // implicit type conversion

 pd = p1; // compile-time error

ptg11524036

422 Chapter 10 Arrays and Pointers

 These restrictions extend to more complex types. Suppose we have the following declarations:

 int * pt;

 int (*pa)[3];

 int ar1[2][3];

 int ar2[3][2];

 int **p2; // a pointer to a pointer

 Then we have the following:

 pt = &ar1[0][0]; // both pointer-to-int

 pt = ar1[0]; // both pointer-to-int

 pt = ar1; // not valid

 pa = ar1; // both pointer-to-int[3]

 pa = ar2; // not valid

 p2 = &pt; // both pointer-to-int *

 *p2 = ar2[0]; // both pointer-to-int

 p2 = ar2; // not valid

 Notice that the nonvalid assignments all involve two pointers that don’t point to the same
type. For example, pt points to a single int , but ar1 points to an array of three int s. Similarly,
 pa points to an array of two int s, so it is compatible with ar1 , but not with ar2 , which points
to an array of two int s.

 The last two examples are somewhat tricky. The variable p2 is a pointer-to-pointer-to- int ,
whereas ar2 is a pointer-to-array-of-two- int s (or, more concisely, pointer-to- int[2]). So p2
and ar2 are of different types, and you can’t assign ar2 to p2 . But *p2 is type pointer-to- int ,
making it compatible with ar2[0] . Recall that ar2[0] is a pointer to its first element, ar2[0]
[0] , making ar2[0] type pointer-to- int also.

 In general, multiple indirection is tricky. For instance, consider the next snippet of code:

 int x = 20;

 const int y = 23;

 int * p1 = &x;

 const int * p2 = &y;

 const int ** pp2;

 p1 = p2; // not safe -- assigning const to non-const

 p2 = p1; // valid -- assigning non-const to const

 pp2 = &p1; // not safe -- assigning nested pointer types

 As we saw earlier, assigning a const pointer to a non- const pointer is not safe, because you
could use the new pointer to alter const data. While the code would compile, perhaps with a
warning, the effect of executing the code is undefined. But assigning a non- const pointer to a
 const pointer is okay, provided that you’re dealing with just one level of indirection:

 p2 = p1; // valid -- assigning non-const to const

ptg11524036

423Pointers and Multidimensional Arrays

 But such assignments no longer are safe when you go to two levels of indirection. For instance,
you could do something like this:

 const int **pp2;

 int *p1;

 const int n = 13;

 pp2 = &p1; // allowed, but const qualifier disregarded

 *pp2 = &n; // valid, both const, but sets p1 to point at n

 *p1 = 10; // valid, but tries to change const n

 What happens? As mentioned before, the standard says the effect of altering const data using
a non-const pointer is undefined. For instance, compiling a short program with this code
using gcc in Terminal (OS X’s access to the underlying Unix system) led to n ending up with
the value 13, but using clang in the same environment led to a value of 10. Both compilers did
warn about incompatible pointer types. You can, of course, ignore the warnings, but you’d best
not rely upon the results of running the program.

 C const and C++ const

 C and C++ use const similarly, but not identically. One difference is that C++ allows using a
 const integer value to declare an array size and C is more restrictive. Another is that C++ has
stricter rules about pointer assignments:

 const int y;

 const int * p2 = &y;

 int * p1;

 p1 = p2; // error in C++, possible warning in C

 In C++ you are not allowed to assign a const pointer to a non- const pointer. In C, you can
make this assignment, but the behavior is undefined if you try to use p1 to alter y .

 Functions and Multidimensional Arrays

 If you want to write functions that process two-dimensional arrays, you need to understand
pointers well enough to make the proper declarations for function arguments. In the function
body itself, you can usually get by with array notation.

 Let’s write a function to deal with two-dimensional arrays. One possibility is to use a for loop
to apply a one-dimensional array function to each row of the two-dimensional array. That is,
you could do something like the following:

 int junk[3][4] = { {2,4,5,8}, {3,5,6,9}, {12,10,8,6} };

 int i, j;

 int total = 0;

 for (i = 0; i < 3 ; i++)

 total += sum(junk[i], 4); // junk[i] -- one-dimensional array

ptg11524036

424 Chapter 10 Arrays and Pointers

 Remember, if junk is a two-dimensional array, junk[i] is a one-dimensional array, which you
can visualize as being one row of the two-dimensional array. Here, the sum() function calcu-
lates the subtotal of each row of the two-dimensional array, and the for loop adds up these
subtotals.

 However, this approach loses track of the column-and-row information. In this application
(summing all), that information is unimportant, but suppose each row represented a year and
each column a month. Then you might want a function to, say, total up individual columns.
In that case, the function should have the row and column information available. This can be
accomplished by declaring the right kind of formal variable so that the function can pass the
array properly. In this case, the array junk is an array of three arrays of four int s. As the earlier
discussion pointed out, that means junk is a pointer to an array of four int s. You can declare a
function parameter of this type like this:

 void somefunction(int (* pt)[4]);

 Alternatively, if (and only if) pt is a formal parameter to a function, you can declare it as
follows:

 void somefunction(int pt[][4]);

 Note that the first set of brackets is empty. The empty brackets identify pt as being a pointer.
Such a variable can then be used in the same way as junk . That is what we have done in the
next example, shown in Listing 10.17 . Notice that the listing exhibits three equivalent alterna-
tives for the prototype syntax.

 Listing 10.17 The array2d.c Program

 // array2d.c -- functions for 2d arrays

 #include <stdio.h>

 #define ROWS 3

 #define COLS 4

 void sum_rows(int ar[][COLS], int rows);

 void sum_cols(int [][COLS], int); // ok to omit names

 int sum2d(int (*ar)[COLS], int rows); // another syntax

 int main(void)

 {

 int junk[ROWS][COLS] = {

 {2,4,6,8},

 {3,5,7,9},

 {12,10,8,6}

 };

 sum_rows(junk, ROWS);

 sum_cols(junk, ROWS);

 printf("Sum of all elements = %d\n", sum2d(junk, ROWS));

 return 0;

ptg11524036

425Pointers and Multidimensional Arrays

 }

 void sum_rows(int ar[][COLS], int rows)

 {

 int r;

 int c;

 int tot;

 for (r = 0; r < rows; r++)

 {

 tot = 0;

 for (c = 0; c < COLS; c++)

 tot += ar[r][c];

 printf("row %d: sum = %d\n", r, tot);

 }

 }

 void sum_cols(int ar[][COLS], int rows)

 {

 int r;

 int c;

 int tot;

 for (c = 0; c < COLS; c++)

 {

 tot = 0;

 for (r = 0; r < rows; r++)

 tot += ar[r][c];

 printf("col %d: sum = %d\n", c, tot);

 }

 }

 int sum2d(int ar[][COLS], int rows)

 {

 int r;

 int c;

 int tot = 0;

 for (r = 0; r < rows; r++)

 for (c = 0; c < COLS; c++)

 tot += ar[r][c];

 return tot;

 }

ptg11524036

426 Chapter 10 Arrays and Pointers

 Here is the output:

 row 0: sum = 20

 row 1: sum = 24

 row 2: sum = 36

 col 0: sum = 17

 col 1: sum = 19

 col 2: sum = 21

 col 3: sum = 23

 Sum of all elements = 80

 The program in Listing 10.17 passes as arguments the name junk , which is a pointer to the
first element, a subarray, and the symbolic constant ROWS , representing 3 , the number of rows.
Each function then treats ar as an array of arrays of four int s. The number of columns is built
in to the function, but the number of rows is left open. The same function will work with,
say, a 12×4 array if 12 is passed as the number of rows. That’s because rows is the number of
elements; however, because each element is an array, or row, rows becomes the number of
rows.

 Note that ar is used in the same fashion as junk is used in main() . This is possible because ar
and junk are the same type: pointer-to-array-of-four- int s.

 Be aware that the following declaration will not work properly:

 int sum2(int ar[][], int rows); // faulty declaration

 Recall that the compiler converts array notation to pointer notation. This means, for example,
that ar[1] will become ar+1 . For the compiler to evaluate this, it needs to know the size object
to which ar points. The declaration

 int sum2(int ar[][4], int rows); // valid declaration

 says that ar points to an array of four int s (hence, to an object 16 bytes long on our system),
so ar+1 means “add 16 bytes to the address.” With the empty-bracket version, the compiler
would not know what to do.

 You can also include a size in the other bracket pair, as shown here, but the compiler ignores it:

 int sum2(int ar[3][4], int rows); // valid declaration, 3 ignored

 This is convenient for those who use typedef s (mentioned in Chapter 5 , “Operators,
Expressions, and Statements,” and discussed in Chapter 14 , “Structures and Other Data
Forms”):

 typedef int arr4[4]; // arr4 array of 4 int

 typedef arr4 arr3x4[3]; // arr3x4 array of 3 arr4

 int sum2(arr3x4 ar, int rows); // same as next declaration

 int sum2(int ar[3][4], int rows); // same as next declaration

 int sum2(int ar[][4], int rows); // standard form

ptg11524036

427Variable-Length Arrays (VLAs)

 In general, to declare a pointer corresponding to an N -dimensional array, you must supply
values for all but the leftmost set of brackets:

 int sum4d(int ar[][12][20][30], int rows);

 That’s because the first set of brackets indicates a pointer, whereas the rest of the brack-
ets describe the type of data object being pointed to, as the following equivalent prototype
illustrates:

 int sum4d(int (*ar)[12][20][30], int rows); // ar a pointer

 Here, ar points to a 12×20×30 array of int s.

 Variable-Length Arrays (VLAs)

 You might have noticed an oddity about functions dealing with two-dimensional arrays: You
can describe the number of rows with a function parameter, but the number of columns is built
in to the function. For example, look at this definition:

 #define COLS 4

 int sum2d(int ar[][COLS], int rows)

 {

 int r;

 int c;

 int tot = 0;

 for (r = 0; r < rows; r++)

 for (c = 0; c < COLS; c++)

 tot += ar[r][c];

 return tot;

 }

 Next, suppose the following arrays have been declared:

 int array1[5][4];

 int array2[100][4];

 int array3[2][4];

 You can use the sum2d() function with any of these arrays:

 tot = sum2d(array1, 5); // sum a 5 x 4 array

 tot = sum2d(array2, 100); // sum a 100 x 4 array

 tot = sum2d(array3, 2); // sum a 2 x 4 array

 That’s because the number of rows is passed to the rows parameter, a variable. But if you
wanted to sum a 6×5 array, you would need to use a new function, one for which COLS is
defined to be 5 . This behavior is a result of the fact that you have to use constants for array
dimensions; therefore, you can’t replace COLS with a variable.

ptg11524036

428 Chapter 10 Arrays and Pointers

 If you really want to create a single function that will work with any size two-dimensional
array, you can, but it’s awkward to do. (You have to pass the array as a one-dimensional array
and have the function calculate where each row starts.) Furthermore, this technique doesn’t
mesh smoothly with FORTRAN subroutines, which do allow one to specify both dimensions in
a function call. FORTRAN might be a hoary old programming language, but over the decades
experts in the field of numerical calculations have developed many useful computational librar-
ies in FORTRAN. C is being positioned to take over from FORTRAN, so the ability to convert
FORTRAN libraries with a minimum of fuss is useful.

 This need was the primary impulse for C99 introducing variable-length arrays, which allow you
to use variables when dimensioning an array. For example, you can do this:

 int quarters = 4;

 int regions = 5;

 double sales[regions][quarters]; // a VLA

 As mentioned earlier, VLAs have some restrictions. They need to have the automatic storage
class, which means they are declared either in a function without using the static or extern
storage class modifiers (Chapter 12) or as function parameters. Also, you can’t initialize them in
a declaration. Finally, under C11, VLAs are an optional feature rather than a mandatory feature,
as they were under C99.

 Note VLAs Do Not Change Size

 The term variable in variable-length array does not mean that you can modify the length of the
array after you create it. Once created, a VLA keeps the same size. What the term variable
does mean is that you can use a variable when specifying the array dimensions when first cre-
ating the array.

 Because VLAs are a new addition to the language, support for them is incomplete at the
present. Let’s look at a simple example that shows how to write a function that will sum the
contents of any two-dimensional array of int s.

 First, here’s how to declare a function with a two-dimensional VLA argument:

 int sum2d(int rows, int cols, int ar[rows][cols]); // ar a VLA

 Note that the first two parameters (rows and cols) are used as dimensions for declaring the
array parameter ar . Because the ar declaration uses rows and cols , they have to be declared
before ar in the parameter list. Therefore, the following prototype is in error:

 int sum2d(int ar[rows][cols], int rows, int cols); // invalid order

 The C99/C11 standard says you can omit names from the prototype; but in that case, you need
to replace the omitted dimensions with asterisks:

 int sum2d(int, int, int ar[*][*]); // ar a VLA, names omitted

ptg11524036

429Variable-Length Arrays (VLAs)

 Second, here’s how to define the function:

 int sum2d(int rows, int cols, int ar[rows][cols])

 {

 int r;

 int c;

 int tot = 0;

 for (r = 0; r < rows; r++)

 for (c = 0; c < cols; c++)

 tot += ar[r][c];

 return tot;

 }

 Aside from the new function header, the only difference from the classic C version of this func-
tion (Listing 10.17) is that the constant COLS has been replaced with the variable cols . The
presence of the variable length array in the function header is what makes this change possible.
Also, having variables that represent both the number of rows and columns lets us use the new
 sum2d() with any size of two-dimensional array of int s. Listing 10.18 illustrates this point.
However, it does require a C compiler that implements the VLA feature. It also demonstrates
that this VLA-based function can be used with either traditional C arrays or with a variable-
length array.

 Listing 10.18 The vararr2d.c Program

 //vararr2d.c -- functions using VLAs

 #include <stdio.h>

 #define ROWS 3

 #define COLS 4

 int sum2d(int rows, int cols, int ar[rows][cols]);

 int main(void)

 {

 int i, j;

 int rs = 3;

 int cs = 10;

 int junk[ROWS][COLS] = {

 {2,4,6,8},

 {3,5,7,9},

 {12,10,8,6}

 };

 int morejunk[ROWS-1][COLS+2] = {

 {20,30,40,50,60,70},

 {5,6,7,8,9,10}

 };

 int varr[rs][cs]; // VLA

ptg11524036

430 Chapter 10 Arrays and Pointers

 for (i = 0; i < rs; i++)

 for (j = 0; j < cs; j++)

 varr[i][j] = i * j + j;

 printf("3x5 array\n");

 printf("Sum of all elements = %d\n",

 sum2d(ROWS, COLS, junk));

 printf("2x6 array\n");

 printf("Sum of all elements = %d\n",

 sum2d(ROWS-1, COLS+2, morejunk));

 printf("3x10 VLA\n");

 printf("Sum of all elements = %d\n",

 sum2d(rs, cs, varr));

 return 0;

 }

 // function with a VLA parameter

 int sum2d(int rows, int cols, int ar[rows][cols])

 {

 int r;

 int c;

 int tot = 0;

 for (r = 0; r < rows; r++)

 for (c = 0; c < cols; c++)

 tot += ar[r][c];

 return tot;

 }

 Here is the output:

 3x5 array

 Sum of all elements = 80

 2x6 array

 Sum of all elements = 315

 3x10 VLA

 Sum of all elements = 270

 One point to note is that a VLA declaration in a function definition parameter list doesn’t actu-
ally create an array. Just as with the old syntax, the VLA name really is a pointer. This means a
function with a VLA parameter actually works with the data in the original array, and therefore

ptg11524036

431Compound Literals

has the ability to modify the array passed as an argument. The following snippet points out
when a pointer is declared and when an actual array is declared:

 int thing[10][6];

 twoset(10,6,thing);

 ...

 }

 void twoset (int n, int m, int ar[n][m]) // ar a pointer to

 // an array of m ints

 {

 int temp[n][m]; // temp an n x m array of int

 temp[0][0] = 2; // set an element of temp to 2

 ar[0][0] = 2; // set thing[0][0] to 2

 }

 When twoset() is called as shown, ar becomes a pointer to thing[0] , and temp is created
as a 10×6 array. Because both ar and thing are pointers to thing[0] , ar[0][0] accesses the
same data location as thing[0][0] .

 Variable-length arrays also allow for dynamic memory allocation. This means you can specify
the size of the array while the program is running. Regular C arrays have static memory allo-
cation, meaning the size of the array is determined at compile time. That’s because the array
sizes, being constants, are known to the compiler. Chapter 12 looks at dynamic memory
allocation.

 const and Array Sizes

 Can you use a const symbolic constant when declaring an array?

 const int SZ = 80;

 ...

 double ar[SZ]; // permitted?

 For C90, the answer is no (probably). The size has to be given by an integer constant expres-
sion, which can be a combination of integer constants, such as 20 , sizeof expressions, and
a few other things, none of which are const . An implementation can expand the range of what
is considered an integer constant expression, so it could permit using const , but the code
wouldn’t be portable.

 For C99/C11, the answer is yes, if the array could otherwise be a VLA. So the definition would
have to be for an automatic storage class array declared inside a block.

 Compound Literals

 Suppose you want to pass a value to a function with an int parameter; you can pass an int
variable, but you also can pass an int constant, such as 5 . Before C99, the situation for a func-
tion with an array argument was different; you could pass an array, but there was no equivalent

ptg11524036

432 Chapter 10 Arrays and Pointers

to an array constant. C99 changed that with the addition of compound literals . Literals are
constants that aren’t symbolic. For example, 5 is a type int literal, 81.3 is a type double
literal, 'Y' is a type char literal, and "elephant" is a string literal. The committee that devel-
oped the C99 standard concluded that it would be convenient to have compound literals that
could represent the contents of arrays and of structures.

 For arrays, a compound literal looks like an array initialization list preceded by a type name
that is enclosed in parentheses. For example, here’s an ordinary array declaration:

 int diva[2] = {10, 20};

 And here’s a compound literal that creates a nameless array containing the same two int
values:

 (int [2]){10, 20} // a compound literal

 Note that the type name is what you would get if you removed diva from the earlier declara-
tion, leaving int [2] behind.

 Just as you can leave out the array size if you initialize a named array, you can omit it from a
compound literal, and the compiler will count how many elements are present:

 (int []){50, 20, 90} // a compound literal with 3 elements

 Because these compound literals are nameless, you can’t just create them in one statement and
then use them later. Instead, you have to use them somehow when you make them. One way
is to use a pointer to keep track of the location. That is, you can do something like this:

 int * pt1;

 pt1 = (int [2]) {10, 20};

 Note that this literal constant is identified as an array of int s. Like the name of an array, this
translates to the address of the first element, so it can be assigned to a pointer-to- int . You then
can use the pointer later. For example, *pt1 would be 10 in this case, and pt1[1] would be 20.

 Another thing you could do with a compound literal is pass it as an actual argument to a func-
tion with a matching formal parameter:

 int sum(const int ar[], int n);

 ...

 int total3;

 total3 = sum((int []){4,4,4,5,5,5}, 6);

 Here, the first argument is a six-element array of int s that acts like the address of the first
element, just as an array name does. This kind of use, in which you pass information to a func-
tion without having to create an array first, is a typical use for compound literals.

 You can extend the technique to two-dimensional arrays, and beyond. Here, for example, is
how to create a two-dimensional array of int s and store the address:

 int (*pt2)[4]; // declare a pointer to an array of 4-int arrays

 pt2 = (int [2][4]) { {1,2,3,-9}, {4,5,6,-8} };

ptg11524036

433Compound Literals

 Here, the type is int [2][4] , a 2×4 array of int s.

 Listing 10.19 incorporates these examples into a complete program.

 Listing 10.19 The flc.c Program

 // flc.c -- funny-looking constants

 #include <stdio.h>

 #define COLS 4

 int sum2d(const int ar[][COLS], int rows);

 int sum(const int ar[], int n);

 int main(void)

 {

 int total1, total2, total3;

 int * pt1;

 int (*pt2)[COLS];

 pt1 = (int [2]) {10, 20};

 pt2 = (int [2][COLS]) { {1,2,3,-9}, {4,5,6,-8} };

 total1 = sum(pt1, 2);

 total2 = sum2d(pt2, 2);

 total3 = sum((int []){4,4,4,5,5,5}, 6);

 printf("total1 = %d\n", total1);

 printf("total2 = %d\n", total2);

 printf("total3 = %d\n", total3);

 return 0;

 }

 int sum(const int ar[], int n)

 {

 int i;

 int total = 0;

 for(i = 0; i < n; i++)

 total += ar[i];

 return total;

 }

 int sum2d(const int ar[][COLS], int rows)

 {

 int r;

 int c;

 int tot = 0;

ptg11524036

434 Chapter 10 Arrays and Pointers

 for (r = 0; r < rows; r++)

 for (c = 0; c < COLS; c++)

 tot += ar[r][c];

 return tot;

 }

 You’ll need a compiler that accepts this C99 addition (not all do). Here is the output:

 total1 = 30

 total2 = 4

 total3 = 27

 Keep in mind that a compound literal is a means for providing values that are needed only
temporarily. It has block scope, a concept covered in Chapter 12 . That means its existence is
not guaranteed once program execution leaves the block in which the compound literal is
defined, that is, the innermost pair of braces containing the definition.

 Key Concepts

 When you need to store many items, all of the same kind, an array might be the answer. C
refers to arrays as derived types because they are built on other types. That is, you don’t simply
declare an array. Instead, you declare an array-of- int or an array-of- float , or an array of some
other type. That other type can itself be an array type, in which case, you get an array of arrays,
or a two-dimensional array.

 It’s often advantageous to write functions to process arrays; that helps modularize a program
by locating specific tasks in specific functions. It’s important to realize that when you use an
array name as an actual argument, you’re not passing the entire array to the function; you are
just passing the address of the array (hence, the corresponding formal parameter is a pointer).
To process the array, the function has to know where the array is and how many elements the
array has. The array address provides the “where”; the “how many” either has to be built in to
the function or be passed as a separate argument. The second approach is more general so that
the same function can work with arrays of different sizes.

 The connection between arrays and pointers is an intimate one, and you can often represent
the same operation using either array notation or pointer notation. It’s this connection that
allows you to use array notation in an array-processing function even though the formal
parameter is a pointer, not an array.

 You must specify the size of a conventional C array with a constant expression, so the size is
determined at compile time. C99/C11 offers the variable-length array alternative for which the
size specifier can be a variable. This allows you to delay specifying the size of a VLA until the
program is running.

ptg11524036

435Key Concepts

 Summary

 An array is a set of elements that all have the same data type. Array elements are stored sequen-
tially in memory and are accessed by using an integer index (or offset). In C, the first element
of an array has an index of 0 , so the final element in an array of n elements has an index of n
- 1 . It’s your responsibility to use array indices that are valid for the array, because neither the
compiler nor the running program need check for this.

 To declare a simple one-dimensional array, use this form:

 type name [size];

 Here, type is the data type for each and every element, name is the name of the array, and
 size is the number of elements. Traditionally, C has required that size be a constant integer
expression. C99/C11 allows you to use a nonconstant integer expression; in that case, the array
is termed a variable-length array.

 C interprets the name of an array to be the address of the first element of the array. In other
terms, the name of an array is equivalent to a pointer to the first element. In general, arrays
and pointers are closely connected. If ar is an array, then the expressions ar[i] and *(ar +
i) are equivalent.

 C does not enable entire arrays to be passed as function arguments, but you can pass the
address of an array. The function can then use this address to manipulate the original array.
If the intent of the function is not to modify the original array, you should use the const
keyword when declaring the formal parameter representing the array. You can use either array
notation or pointer notation in the called function. In either case, you’re actually using a
pointer variable.

 Adding an integer to a pointer or incrementing a pointer changes the value of the pointer by
the number of bytes of the object being pointed to. That is, if pd points to an 8-byte double
value in an array, adding 1 to pd increases its value by 8 so that it will point to the next
element of the array.

 Two-dimensional arrays represent an array of arrays. For instance, the declaration

 double sales[5][12];

 creates an array called sales having five elements, each of which is an array of 12 double s.
The first of these one-dimensional arrays can be referred to as sales[0] , the second as
 sales[1] , and so on, with each being an array of 12 double s. Use a second index to access a
particular element in these arrays. For example, sales[2][5] is the sixth element of sales[2] ,
and sales[2] is the third element of sales .

 The traditional C method for passing a multidimensional array to a function is to pass the
array name, which is an address, to a suitably typed pointer parameter. The declaration for this
pointer should specify all the dimensions of the array aside from the first; the dimension of the
first parameter typically is passed as a second argument. For example, to process the previously
mentioned sales array, the function prototype and function call would look like this:

ptg11524036

436 Chapter 10 Arrays and Pointers

 void display(double ar[][12], int rows);

 ...

 display(sales, 5);

 Variable-length arrays provide a second syntax in which both array dimensions are passed as
arguments. In this case, the function prototype and function call would look like this:

 void display(int rows, int cols, double ar[rows][cols]);

 ...

 display(5, 12, sales);

 We’ve used int arrays and double arrays in this discussion, but the same concepts apply to
other types. Character strings, however, have many special rules. This stems from the fact
that the terminal null character in a string provides a way for functions to detect the end of
a string without being passed a size. We will look at character strings in detail in Chapter 11 ,
“Character Strings and String Functions.”

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. What will this program print?

 #include <stdio.h>

 int main(void)

 {

 int ref[] = {8, 4, 0, 2};

 int *ptr;

 int index;

 for (index = 0, ptr = ref; index < 4; index++, ptr++)

 printf("%d %d\n", ref[index], *ptr);

 return 0;

 }

 2. In question 1, how many elements does ref have?

 3. In question 1, ref is the address of what? What about ref + 1 ? What does ++ref
point to?

 4. What is the value of *ptr and of *(ptr + 2) in each case?

 a.

 int *ptr;

 int torf[2][2] = {12, 14, 16};

 ptr = torf[0];

ptg11524036

437Review Questions

 b.

 int * ptr;
 int fort[2][2] = { {12}, {14,16} };

 ptr = fort[0];

 5. What is the value of **ptr and of **(ptr + 1) in each case?

 a.

 int (*ptr)[2];
 int torf[2][2] = {12, 14, 16};

 ptr = torf;

 b.

 int (*ptr)[2];
 int fort[2][2] = { {12}, {14,16} };

 ptr = fort;

 6. Suppose you have the following declaration:

 int grid[30][100];.

 a. Express the address of grid[22][56] one way.

 b. Express the address of grid[22][0] two ways.

 c. Express the address of grid[0][0] three ways.

 7. Create an appropriate declaration for each of the following variables:

 a. digits is an array of 10 ints .

 b. rates is an array of six floats .

 c. mat is an array of three arrays of five integers.

 d. psa is an array of 20 pointers to char .

 e. pstr is a pointer to an array of 20 chars .

 8.

 a. Declare an array of six int s and initialize it to the values 1 , 2 , 4 , 8 , 16 , and 32 .

 b. Use array notation to represent the third element (the one with the value 4) of the
array in part a.

 c. Assuming C99/C11 rules are in effect, declare an array of 100 int s and initialize it
so that the last element is -1 ; don’t worry about the other elements.

 d. Assuming C99/C11 rules are in effect, declare an array of 100 int s and initialize
it so that elements 5, 10, 11, 12, and 3 are 101 ; don’t worry about the other
elements.

ptg11524036

438 Chapter 10 Arrays and Pointers

 9. What is the index range for a 10-element array?

 10. Suppose you have these declarations:

 float rootbeer[10], things[10][5], *pf, value = 2.2;

 int i = 3;

 Identify each of the following statements as valid or invalid:

 a. rootbeer[2] = value;

 b. scanf("%f", &rootbeer);

 c. rootbeer = value;

 d. printf("%f", rootbeer);

 e. things[4][4] = rootbeer[3];

 f. things[5] = rootbeer;

 g. pf = value;

 h. pf = rootbeer;

 11. Declare an 800×600 array of int .

 12. Here are three array declarations:

 double trots[20];

 short clops[10][30];

 long shots[5][10][15];

 a. Show a function prototype and a function call for a traditional void function that
processes trots and also for a C function using a VLA.

 b. Show a function prototype and a function call for a traditional void function that
processes clops and also for a C function using a VLA.

 c. Show a function prototype and a function call for a traditional void function that
processes shots and also for a C function using a VLA.

 13. Here are two function prototypes:

 void show(const double ar[], int n); // n is number of elements

 void show2(const double ar2[][3], int n); // n is number of rows

 a. Show a function call that passes a compound literal containing the values 8 , 3 , 9 ,
and 2 to the show() function.

 b. Show a function call that passes a compound literal containing the values 8 , 3 ,
and 9 as the first row and the values 5 , 4 , and 1 as the second row to the show2()
function.

ptg11524036

439Programming Exercises

 Programming Exercises

 1. Modify the rain program in Listing 10.7 so that it does the calculations using pointers
instead of subscripts. (You still have to declare and initialize the array.)

 2. Write a program that initializes an array-of- double and then copies the contents of the
array into three other arrays. (All four arrays should be declared in the main program.) To
make the first copy, use a function with array notation. To make the second copy, use a
function with pointer notation and pointer incrementing. Have the first two functions
take as arguments the name of the target array, the name of the source array, and the
number of elements to be copied. Have the third function take as arguments the name
of the target, the name of the source, and a pointer to the element following the last
element of the source. That is, the function calls would look like this, given the following
declarations:

 double source[5] = {1.1, 2.2, 3.3, 4.4, 5.5};

 double target1[5];

 double target2[5];

 double target3[5];

 copy_arr(target1, source, 5);

 copy_ptr(target2, source, 5);

 copy_ptrs(target3, source, source + 5);

 3. Write a function that returns the largest value stored in an array-of- int . Test the function
in a simple program.

 4. Write a function that returns the index of the largest value stored in an array-of- double .
Test the function in a simple program.

 5. Write a function that returns the difference between the largest and smallest elements of
an array-of- double . Test the function in a simple program.

 6. Write a function that reverses the contents of an array of double and test it in a simple
program.

 7. Write a program that initializes a two-dimensional array-of- double and uses one of the
copy functions from exercise 2 to copy it to a second two-dimensional array. (Because a
two-dimensional array is an array of arrays, a one-dimensional copy function can be used
with each subarray.)

 8. Use a copy function from Programming Exercise 2 to copy the third through fifth
elements of a seven-element array into a three-element array. The function itself need

ptg11524036

440 Chapter 10 Arrays and Pointers

not be altered; just choose the right actual arguments. (The actual arguments need not be
an array name and array size. They only have to be the address of an array element and a
number of elements to be processed.)

 9. Write a program that initializes a two-dimensional 3×5 array-of- double and uses a VLA-
based function to copy it to a second two-dimensional array. Also provide a VLA-based
function to display the contents of the two arrays. The two functions should be capable,
in general, of processing arbitrary N×M arrays. (If you don’t have access to a VLA-capable
compiler, use the traditional C approach of functions that can process an N×5 array).

 10. Write a function that sets each element in an array to the sum of the corresponding
elements in two other arrays. That is, if array 1 has the values 2 , 4 , 5 , and 8 and array 2
has the values 1 , 0 , 4 , and 6 , the function assigns array 3 the values 3 , 4 , 9 , and 14 . The
function should take three array names and an array size as arguments. Test the function
in a simple program.

 11. Write a program that declares a 3×5 array of int and initializes it to some values of
your choice. Have the program print the values, double all the values, and then display
the new values. Write a function to do the displaying and a second function to do the
doubling. Have the functions take the array name and the number of rows as arguments.

 12. Rewrite the rain program in Listing 10.7 so that the main tasks are performed by
functions instead of in main() .

 13. Write a program that prompts the user to enter three sets of five double numbers each.
(You may assume the user responds correctly and doesn’t enter non-numeric data.) The
program should accomplish all of the following:

 a. Store the information in a 3×5 array.

 b. Compute the average of each set of five values.

 c. Compute the average of all the values.

 d. Determine the largest value of the 15 values.

 e. Report the results.

 Each major task should be handled by a separate function using the traditional C
approach to handling arrays. Accomplish task “b” by using a function that computes
and returns the average of a one-dimensional array; use a loop to call this function three
times. The other tasks should take the entire array as an argument, and the functions
performing tasks “c” and “d” should return the answer to the calling program.

 14. Do Programming Exercise 13, but use variable-length array function parameters.

ptg11524036

 11
 Character Strings and String

Functions

 You will learn about the following in this chapter:

 ■ Functions:

 gets() , gets_s() , fgets() , puts() , fputs() , strcat() , strncat() , strcmp() ,
 strncmp() , strcpy() , strncpy() , sprintf() , strchr()

 ■ Creating and using strings

 ■ Using several string and character functions from the C library and creating your own
string functions

 ■ Using command-line arguments

 The character string is one of the most useful and important data types in C. You have been
using character strings all along, but there still is much to learn about them. The C library
provides a wide range of functions for reading and writing strings, copying strings, comparing
strings, combining strings, searching strings, and more. This chapter will add these capabilities
to your programming skills.

 Representing Strings and String I/O

 Of course, you already know the most basic fact: A character string is a char array terminated
with a null character (\0). Therefore, what you’ve learned about arrays and pointers carries
over to character strings. But because character strings are so commonly used, C provides many
functions specifically designed to work with strings. This chapter discusses the nature of strings,
how to declare and initialize strings, how to get them into and out of programs, and how to
manipulate strings.

 Let’s look at a short program (see Listing 11.1) that illustrates some of the ways to represent
strings in a program.

ptg11524036

442 Chapter 11 Character Strings and String Functions

 Listing 11.1 The strings1.c Program

 // strings1.c

 #include <stdio.h>

 #define MSG "I am a symbolic string constant."

 #define MAXLENGTH 81

 int main(void)

 {

 char words[MAXLENGTH] = "I am a string in an array.";

 const char * pt1 = "Something is pointing at me.";

 puts("Here are some strings:");

 puts(MSG);

 puts(words);

 puts(pt1);

 words[8] = 'p';

 puts(words);

 return 0;

 }

 The puts() function, like printf() , belongs to the the stdio.h family of input/output func-
tions. It only displays strings, and, unlike printf() , it automatically appends a newline to the
string it displays. Here’s the output:

 Here are some strings:

 I am an old-fashioned symbolic string constant.

 I am a string in an array.

 Something is pointing at me.

 I am a spring in an array.

 Rather than going through Listing 11.1 line-by-line, let’s take a more encompassing approach.
First, we will look at ways of defining a string within a program. Then we will see what is
involved in reading a string into a program. Finally, we will study ways to output a string.

 Defining Strings Within a Program

 As you probably noticed when you read Listing 11.1 , there are many ways to define a string.
The principal ways are using string constants, using char arrays, and using char pointers. A
program should make sure there is a place to store a string, and we will cover that topic, too.

 Character String Literals (String Constants)

 A string literal , also termed a string constant , is anything enclosed in double quotation
marks. The enclosed characters, plus a terminating \0 character automatically provided by
the compiler, are stored in memory as a character string. So "I am a symbolic string
constant." , "I am a string in an array." , "Something is pointed at me." , and
 "Here are some strings:" all are string literals.

ptg11524036

443Representing Strings and String I/O

 Recall that, beginning with the ANSI C standard, C concatenates string literals if they are sepa-
rated by nothing or by whitespace. For example,

 char greeting[50] = "Hello, and"" how are" " you"

 " today!";

 is equivalent to this:

 char greeting[50] = "Hello, and how are you today!";

 If you want to use a double quotation mark within a string, precede the quotation mark with a
backslash, as follows:

 printf("\"Run, Spot, run!\" exclaimed Dick.\n");

 This produces the following output:

 "Run, Spot, run!" exclaimed Dick.

 Character string constants are placed in the static storage class, which means that if you use
a string constant in a function, the string is stored just once and lasts for the duration of the
program, even if the function is called several times. The entire quoted phrase acts as a pointer
to where the string is stored. This action is analogous to the name of an array acting as a
pointer to the array’s location. If this is true, what kind of output should the program in Listing
 11.2 produce?

 Listing 11.2 The strptr.c Program

 /* strptr.c -- strings as pointers */

 #include <stdio.h>

 int main(void)

 {

 printf("%s, %p, %c\n", "We", "are", *"space farers");

 return 0;

 }

 The %s format should print the string We . The %p format produces an address. So if the phrase
 "are" is an address, then %p should print the address of the first character in the string.
(Pre-ANSI implementations might have to use %u or %lu instead of %p .) Finally, *"space
farers" should produce the value to which the address points, which should be the first char-
acter of the string "space farers" . Does this really happen? Well, here is the output:

 We, 0x100000f61, s

ptg11524036

444 Chapter 11 Character Strings and String Functions

 Character String Arrays and Initialization

 When you define a character string array, you must let the compiler know how much space
is needed. One way is to specify an array size large enough to hold the string. The following
declaration initializes the array m1 to the characters of the indicated string:

 const char m1[40] = "Limit yourself to one line's worth.";

 The const indicates the intent to not alter this string.

 This form of initialization is short for the standard array initialization form:

 const char m1[40] = { 'L',

 'i', 'm', 'i', 't', ' ', 'y', 'o', 'u', 'r', 's', 'e', 'l',

 'f', ' ', 't', 'o', ' ', 'o', 'n', 'e', ' ',

 'l', 'i', 'n', 'e', '\", 's', ' ', 'w', 'o', 'r',

 't', 'h', '.', '\0'

 };

 Note the closing null character. Without it, you have a character array, but not a string.

 When you specify the array size, be sure that the number of elements is at least one more (that
null character again) than the string length. Any unused elements are automatically initialized
to 0 (which in char form is the null character, not the zero digit character). See Figure 11.1 .

 const char pets[12] = "nice cat.";

n i c e c a t . \0 \0 \0

extra elements initialized to \0

 Figure 11.1 Initializing an array.

 Often, it is convenient to let the compiler determine the array size; recall that if you omit the
size in an initializing declaration, the compiler determines the size for you:

 const char m2[] = "If you can't think of anything, fake it.";

 Initializing character arrays is one case when it really does make sense to let the compiler deter-
mine the array size. That’s because string-processing functions typically don’t need to know the
size of the array because they can simply look for the null character to mark the end.

 Letting the compiler compute the size of the array works only if you initialize the array. If you
create an array you intend to fill later, you need to specify the size when you declare it. When
you do declare an array size, the array size must evaluate to an integer. Prior to the advent of
variable length arrays (VLAs) with C99, the size had to be an integer constant, which includes
the possibility of an expression formed from constant integer values.

ptg11524036

445Representing Strings and String I/O

 int n = 8;

 char cookies[1]; // valid

 char cakes[2 + 5]; // valid, size is a constant expression

 char pies[2*sizeof(long double) + 1]; // valid

 char crumbs[n]; // invalid prior to C99, a VLA after C99

 The name of a character array, like any array name, yields the address of the first element of
the array. Therefore, the following holds:

 char car[10] = "Tata";

 car == &car[0] , *car == 'T', and *(car+1) == car[1] == 'a'

 Indeed, you can use pointer notation to set up a string. For example, Listing 11.1 uses the
following declaration:

 const char * pt1 = "Something is pointing at me.";

 This declaration is very nearly the same as this one:

 const char ar1[] = "Something is pointing at me.";

 The declarations amount to saying that both pt1 and ar1 are addresses of strings. In both
cases, the quoted string itself determines the amount of storage set aside for the string.
Nonetheless, the forms are not identical.

 Array Versus Pointer

 What is the difference, then, between an array and a pointer form? The array form (ar1[])
causes an array of 29 elements (one for each character plus one for the terminating '\0') to
be allocated in the computer memory. Each element is initialized to the corresponding char-
acter of the string literal. Typically, what happens is that the quoted string is stored in a data
segment that is part of the executable file; when the program is loaded into memory, so is that
string. The quoted string is said to be in static memory . But the memory for the array is allo-
cated only after the program begins running. At that time, the quoted string is copied into the
array. (Chapter 12 , “Storage Classes, Linkage, and Memory Management,” will discuss memory
management more fully.) Note that, at this time, there are two copies of the string. One is the
string literal in static memory, and one is the string stored in the ar1 array.

 Hereafter, the compiler will recognize the name ar1 as a synonym for the address of the first
array element, &ar1[0] . One important point here is that in the array form, ar1 is an address
 constant . You can’t change ar1 , because that would mean changing the location (address)
where the array is stored. You can use operations such as ar1+1 to identify the next element in
an array, but ++ar1 is not allowed. The increment operator can be used only with the names of
variables (or, more generally, modifiable lvalues), not with constants.

 The pointer form (*pt1) also causes 29 elements in static storage to be set aside for the string.
In addition, once the program begins execution, it sets aside one more storage location for the
pointer variable pt1 and stores the address of the string in the pointer variable. This variable

ptg11524036

446 Chapter 11 Character Strings and String Functions

initially points to the first character of the string, but the value can be changed. Therefore, you
can use the increment operator. For instance, ++pt1 would point to the second character (o).

 A string literal is considered to be const data. Because pt1 points to that data, it should be
declared as pointing to const data. This doesn’t mean you can’t change the value of pt1 (i.e.,
where it points), but it does mean you can’t use pt1 to change the data itself. If you copy a
string literal to an array, on the other hand, you are free to change the data unless you choose
to declare the array as const .

 In short, initializing the array copies a string from static storage to the array, whereas initializ-
ing the pointer merely copies the address of the string. Listing 11.3 illustrates these points.

 Listing 11.3 The addresses.c Program

 // addresses.c -- addresses of strings

 #define MSG "I'm special."

 #include <stdio.h>

 int main()

 {

 char ar[] = MSG;

 const char *pt = MSG;

 printf("address of \"I'm special\": %p \n", "I'm special");

 printf(" address ar: %p\n", ar);

 printf(" address pt: %p\n", pt);

 printf(" address of MSG: %p\n", MSG);

 printf("address of \"I'm special\": %p \n", "I'm special");

 return 0;

 }

 Here’s the output from one system:

 address of "I'm special": 0x100000f0c

 address ar: 0x7fff5fbff8c7

 address pt: 0x100000ee0

 address of MSG: 0x100000ee0

 address of "I'm special": 0x100000f0c

 What does this show? First, pt and MSG are the same address, while ar is a different address,
just as promised. Second, although the string literal "I'm special." occurs twice in the
 printf() statements, the compiler chose to use one storage location, but not the same address
as MSG . The compiler has the freedom to store a literal that’s used more than once in one or
more locations. Another compiler might choose to represent all three occurrences of "I'm
special." with a single storage location. Third, the part of memory used for static data is
different from that used for dynamic memory, the memory used for ar . Not only are the values

ptg11524036

447Representing Strings and String I/O

different, but this particular compiler even uses a different number of bits to represent the two
kinds of memory.

 Are the differences between array and pointer representations of strings important? Often they
are not, but it depends on what you try to do. Let’s look further into the matter.

 Array and Pointer Differences

 Let’s examine the differences between initializing a character array to hold a string and initial-
izing a pointer to point to a string. (By “pointing to a string,” we really mean pointing to the
first character of a string.) For example, consider these two declarations:

 char heart[] = "I love Tillie!";

 const char *head = "I love Millie!";

 The chief difference is that the array name heart is a constant, but the pointer head is a vari-
able. What practical difference does this make?

 First, both can use array notation:

 for (i = 0; i < 6; i++)

 putchar(heart[i]);

 putchar('\n');

 for (i = 0; i < 6; i++)

 putchar(head[i]));

 putchar('\n');

 This is the output:

 I love

 I love

 Next, both can use pointer addition:

 for (i = 0; i < 6; i++)

 putchar(*(heart + i));

 putchar('\n');

 for (i = 0; i < 6; i++)

 putchar(*(head + i));

 putchar('\n');

 Again, the output is as follows:

 I love

 I love

 Only the pointer version, however, can use the increment operator:

 while (*(head) != '\0') /* stop at end of string */

 putchar(*(head++)); /* print character, advance pointer */

ptg11524036

448 Chapter 11 Character Strings and String Functions

 This produces the following output:

 I love Millie!

 Suppose you want head to agree with heart . You can say

 head = heart; /* head now points to the array heart */

 This makes the head pointer point to the first element of the heart array.

 However, you cannot say

 heart = head; /* illegal construction */

 The situation is analogous to x = 3; versus 3 = x; . The left side of the assignment statement
must be a variable or, more generally, a modifiable lvalue , such as *p_int . Incidentally, head
= heart; does not make the Millie string vanish; it just changes the address stored in head .
Unless you’ve saved the address of "I love Millie!" elsewhere, however, you won’t be able
to access that string when head points to another location.

 There is a way to alter the heart message—go to the individual array elements:

 heart[7]= 'M';

 or

 *(heart + 7) = 'M';

 The elements of an array are variables (unless the array was declared as const), but the name is
not a variable.

 Let’s go back to a pointer initialization that doesn’t use the const modifier:

 char * word = "frame";

 Can you use the pointer to change this string?

 word[1] = 'l'; // allowed??

 Your compiler may allow this, but, under the current C standard, the behavior for such an
action is undefined. Such a statement could, for example, lead to memory access errors. The
reason is that, as mentioned before, a compiler can choose to represent all identical string liter-
als with a single copy in memory. For example, the following statements could all refer to a
single memory location of string "Klingon" :

 char * p1 = "Klingon";

 p1[0] = 'F'; // ok?

 printf("Klingon");

 printf(": Beware the %ss!\n", "Klingon");

 That is, the compiler can replace each instance of "Klingon" with the same address. If the
compiler uses this single-copy representation and allows changing p1[0] to 'F' , that would

ptg11524036

449Representing Strings and String I/O

affect all uses of the string, so statements printing the string literal "Klingon" would actually
display "Flingon" :

 Flingon: Beware the Flingons!

 In fact, in the past, several compilers did behave this rather confusing way, whereas others
produced programs that abort. Therefore, the recommended practice for initializing a pointer to
a string literal is to use the const modifier:

 const char * pl = "Klingon"; // recommended usage

 Initializing a non- const array with a string literal, however, poses no such problems, because
the array gets a copy of the original string.

 In short, don’t use a pointer to a string literal if you plan to alter the string.

 Arrays of Character Strings

 It is often convenient to have an array of character strings. Then you can use a subscript to
access several different strings. Listing 11.4 shows two approaches: an array of pointers to
strings and an array of char arrays.

 Listing 11.4 The arrchar.c Program

 // arrchar.c -- array of pointers, array of strings

 #include <stdio.h>

 #define SLEN 40

 #define LIM 5

 int main(void)

 {

 const char *mytalents[LIM] = {

 "Adding numbers swiftly",

 "Multiplying accurately", "Stashing data",

 "Following instructions to the letter",

 "Understanding the C language"

 };

 char yourtalents[LIM][SLEN] = {

 "Walking in a straight line",

 "Sleeping", "Watching television",

 "Mailing letters", "Reading email"

 };

 int i;

 puts("Let's compare talents.");

 printf ("%-36s %-25s\n", "My Talents", "Your Talents");

 for (i = 0; i < LIM; i++)

 printf("%-36s %-25s\n", mytalents[i], yourtalents[i]);

ptg11524036

450 Chapter 11 Character Strings and String Functions

 printf("\nsizeof mytalents: %zd, sizeof yourtalents: %zd\n",

 sizeof(mytalents), sizeof(yourtalents));

 return 0;

 }

 Here is the output:

 Let's compare talents.

 My Talents Your Talents

 Adding numbers swiftly Walking in a straight line

 Multiplying accurately Sleeping

 Stashing data Watching television

 Following instructions to the letter Mailing letters

 Understanding the C language Reading email

 sizeof mytalents: 40, sizeof yourtalents: 200

 In some ways, mytalents and yourtalents are much alike. Each represents five strings. When
used with one index, as in mytalents[0] and yourtalents[0] , the result is a single string.
And, just as mytalents[1][2] is 'l' , the third character of the second string represented by
 mytalents , yourtalents[1][2] is 'e' , the third character of the second string represented by
 yourtalents . Both are initialized in the same fashion.

 But there are differences, too. The mytalents array is an array of five pointers, taking up 40
bytes on our system. But yourtalents is an array of five arrays, each of 40 char values, occu-
pying 200 bytes on our system. So mytalents is a different type from yourtalents , even
though mytalents[0] and yourtalents[0] both are strings. The pointers in mytalents point
to the locations of the string literals used for initialization, which are stored in static memory.
The arrays in yourtalents , however, contain copies of the string literals, so each string is
stored twice. Furthermore, the allocation of memory in the arrays is inefficient, for each
element of yourtalents has to be the same size, and that size has to be at least large enough
to hold the longest string.

 One way of visualizing this difference is to think of yourtalents as a rectangular two-dimen-
sional array, with each row being of the same length, 40 bytes, in this case. Next, think of
 mytalents as a ragged array, one in which the row length varies. Figure 11.2 shows the two
kinds of arrays. (Actually, the strings pointed to by the mytalents array elements don’t neces-
sarily have to be stored consecutively in memory, but the figure does illustrate the difference in
storage requirements.)

ptg11524036

451Representing Strings and String I/O

char fruit1[3][7]=

 {"Apple",

 "Pear",

 "Orange"

 };

const char * fruit2[3]=

 {"Apple",

 "Pear",

 "Orange"

 };

A p p l e \0 \0

P e a r \0 \0 \0

O r a n g e \0

A p p l e \0

P e a r \0

\0O r a n g e

differences in
declarations

 Figure 11.2 Rectangular versus ragged array.

 The upshot is that, if you want to use an array to represent a bunch of strings to be displayed,
an array of pointers is more efficient than an array of character arrays. There is, however, a
catch. Because the pointers in mytalents point to string literals, these strings shouldn’t be
altered. The contents of yourtalents , however, can be changed. So if you want to alter strings
or set aside space for string input, don’t use pointers to string literals.

 Pointers and Strings

 Perhaps you noticed an occasional reference to pointers in this discussion of strings. Most
C operations for strings actually work with pointers. Consider, for example, the instructive
program shown in Listing 11.5 .

ptg11524036

452 Chapter 11 Character Strings and String Functions

 Listing 11.5 The p_and_s.c Program

 /* p_and_s.c -- pointers and strings */

 #include <stdio.h>

 int main(void)

 {

 const char * mesg = "Don't be a fool!";

 const char * copy;

 copy = mesg;

 printf("%s\n", copy);

 printf("mesg = %s; &mesg = %p; value = %p\n",

 mesg, &mesg, mesg);

 printf("copy = %s; © = %p; value = %p\n",

 copy, ©, copy);

 return 0;

 }

 Note

 Use %u or %lu instead of %p if your compiler doesn’t support %p .

 Looking at this program, you might think that it makes a copy of the string "Don't be a
fool!" , and your first glance at the output might seem to confirm this guess:

 Don't be a fool!

 mesg = Don't be a fool!; &mesg = 0x0012ff48; value = 0x0040a000

 copy = Don't be a fool!; © = 0x0012ff44; value = 0x0040a000

 But study the printf() output more carefully. First, mesg and copy are printed as strings (%s).
No surprises here; all the strings are "Don't be a fool!" .

 The next item on each line is the address of the specified pointer. For this particular run, the
two pointers mesg and copy are stored in locations 0x0012ff48 and 0x0012ff44 , respectively.

 Now notice the final item, the one we called value . It is the value of the specified pointer.
The value of the pointer is the address it contains. You can see that mesg points to location
 0x0040a000 , and so does copy . Therefore, the string itself was never copied. All that copy =
mesg; does is produce a second pointer pointing to the very same string.

 Why all this pussyfooting around? Why not just copy the whole string? Well, ask yourself
which is more efficient: copying one address or copying, say, 50 separate elements? Often, the
address is all that is needed to get the job done. If you truly require a copy that is a duplicate,
you can use the strcpy() or strncpy() function, discussed later in this chapter.

 Now that we have discussed defining strings within a program, let’s turn to strings provided by
keyboard input.

ptg11524036

453String Input

 String Input

 If you want to read a string into a program, you must first set aside space to store the string and
then use an input function to fetch the string.

 Creating Space

 The first order of business is setting up a place to put the string after it is read. As mentioned
earlier, this means you need to allocate enough storage to hold whatever strings you expect to
read. Don’t expect the computer to count the string length as it is read and then allot space for
it. The computer won’t (unless you write a function to do so). For example, suppose you try
something like this:

 char *name;

 scanf("%s", name);

 It will probably get by the compiler, most likely with a warning, but when the name is read,
the name might be written over data or code in your program, and it might cause a program
abort. That’s because scanf() copies information to the address given by the argument, and in
this case, the argument is an uninitialized pointer; name might point anywhere. Most program-
mers regard this as highly humorous, but only in other people’s programs.

 The simplest course is to include an explicit array size in the declaration:

 char name[81];

 Now name is the address of an allocated block of 81 bytes. Another possibility is to use the C
library functions that allocate memory, and we’ll touch on those in Chapter 12 .

 After you have set aside space for the string, you can read the string. The C library supplies a
trio of functions that can read strings: scanf() , gets() , and fgets() . The most commonly
used one has been gets() , which we discuss first.

 The Unfortunate gets() Function

 Recall that, when reading a string, scanf() and the %s specifier read just a single word. Often
it’s useful if a program can read an entire line of input at a time instead of a single word. For
many years, the gets() function has served that purpose. It’s a simple function, easy to use. It
reads an entire line up through the newline character, discards the newline character, stores the
remaining characters, adding a null character to create a C string. It’s often paired with puts() ,
which displays a string, adding a newline. Listing 11.6 presents a modest example.

 Listing 11.6 The getsputs.c Program

 /* getsputs.c -- using gets() and puts() */

 #include <stdio.h>

ptg11524036

454 Chapter 11 Character Strings and String Functions

 #define STLEN 81

 int main(void)

 {

 char words[STLEN];

 puts("Enter a string, please.");

 gets(words);

 printf("Your string twice:\n");

 printf("%s\n", words);

 puts(words);

 puts("Done.");

 return 0;

 }

 Here’s a sample run, or, at least what once would have been a sample run:

 Enter a string, please.

 I want to learn about string theory!

 Your string twice:

 I want to learn about string theory!

 I want to learn about string theory!

 Done.

 Note that the entire line of input, aside from the newline, is stored in words and that
 puts(words) has the same effect as printf("%s\n", words) .

 Next, here is a more contemporary sample run:

 Enter a string, please.

 warning: this program uses gets(), which is unsafe.

 Oh, no!

 Your string twice:

 Oh, no!

 Oh, no!

 Done.

 The compiler has taken the rather unusual action of inserting a warning into the program
output! So this message gets displayed every time you or anyone else runs the program. Not all
compilers will do this. Others may issue a warning during the compiling process, but that isn’t
quite as attention getting.

 So what’s the problem? The problem is that gets() doesn’t check to see if the input line actu-
ally fits into the array. Given that its only argument here is words , gets() can’t check. Recall
that the name of an array is converted to the address of the first element. Thus gets() only
knows where the array begins, not how many elements it has.

ptg11524036

455String Input

 If the input string is too long, you get buffer overflow , meaning the excess characters overflow
the designated target. The extra characters might just go into unused memory and cause no
immediate problems, or they may overwrite other data in your program, but those certainly
aren’t the only possibilities. Here’s a sample run for which SLEN was reset to 5 to make it easier
to overflow the buffer:

 Enter a string, please.

 warning: this program uses gets(), which is unsafe.

 I think I'll be just fine.

 Your string twice:

 I think I'll be just fine.

 I think I'll be just fine.

 Done.

 Segmentation fault: 11

 “Segmentation fault” doesn’t sound healthy, and it isn’t. On a Unix system, this message indi-
cates the program attempted to access memory not allocated to it.

 But C provides many paths for poor programming to lead to embarrassing and difficult to trace
failures. Why, then, single out gets() for special mention? Probably because its unsafe behav-
ior poses a security risk. In the past, people have taken advantage of system programming that
uses gets() to insert and run code that compromised system security.

 For a while, many in the C programming community have recommended banishing gets()
from the programming vocabulary. The committee that created the C99 standard also
published a rationale for the standard. This rationale acknowledged the problems with gets()
and discouraged its use. However, it justified keeping gets() as part of the standard because it
was a convenient function, in the right circumstances, and because it was part of much existing
code.

 The C11 committee, however, has taken a tougher view and has dropped gets() from the
standard. However, a standard establishes what a compiler must support, not what it must not
support. In practice, most compilers will continue to provide the function in the interests of
backwards compatibility. But, as with the compiler we used, they don’t have to be happy about
it.

 The Alternatives to gets()
 The traditional alternative to gets() is fgets() , which has a slightly more complex interface
and which handles input slightly differently. The C11 standard adds gets_s() to the mix.
It’s a bit more like gets() and is more easily substituted into existing code as a replacement.
However, it’s part of an optional extension to the stdio.h family of input/output functions, so
C11 C compilers need not support it.

ptg11524036

456 Chapter 11 Character Strings and String Functions

 The fgets() Function (and fputs())

 The fgets() function meets the possible overflow problem by taking a second argument
that limits the number of characters to be read. This function is designed for file input, which
makes it a little more awkward to use. Here is how fgets() differs from gets() :

 ■ It takes a second argument indicating the maximum number of characters to read. If this
argument has the value n , fgets() reads up to n-1 characters or through the newline
character, whichever comes first.

 ■ If fgets() reads the newline, it stores it in the string, unlike gets() , which discards it.

 ■ It takes a third argument indicating which file to read. To read from the keyboard, use
 stdin (for standard input) as the argument; this identifier is defined in stdio.h .

 Because the fgets() function includes the newline as part of the string (assuming the input
line fits), it’s often paired with fputs() , which works like puts() , except that it doesn’t auto-
matically append a newline. It takes a second argument to indicate which file to write to. For
the computer monitor we can use stdout (for standard output) as an argument. Listing 11.7
illustrates how fgets() and fputs() behave.

 Listing 11.7 The fgets1.c Program

 /* fgets1.c -- using fgets() and fputs() */

 #include <stdio.h>

 #define STLEN 14

 int main(void)

 {

 char words[STLEN];

 puts("Enter a string, please.");

 fgets(words, STLEN, stdin);

 printf("Your string twice (puts(), then fputs()):\n");

 puts(words);

 fputs(words, stdout);

 puts("Enter another string, please.");

 fgets(words, STLEN, stdin);

 printf("Your string twice (puts(), then fputs()):\n");

 puts(words);

 fputs(words, stdout);

 puts("Done.");

 return 0;

 }

 Here’s a sample run:

 Enter a string, please.

 apple pie

ptg11524036

457String Input

 Your string twice (puts(), then fputs()):

 apple pie

 apple pie

 Enter another string, please.

 strawberry shortcake

 Your string twice (puts(), then fputs()):

 strawberry sh

 strawberry shDone.

 The first input, apple pie , is short enough that fgets() reads the whole input line and stores
 apple pie\n\0 in the array. So when puts() displays the string and adds its own newline to
the output, it produces a blank output line after apple pie . Because fputs() doesn’t add a
newline, it doesn’t produce a blank line.

 The second input line, strawberry shortcake , exceeds the size limit, so fgets() reads the
first 13 characters and stores strawberry sh\0 in the array. Again, puts() adds a newline to
the output and fputs() doesn’t.

 The fgets() function returns a pointer to char . If all goes well, it just returns the same address
that was passed to it as the first argument. If the function encounters end-of-file, however,
it returns a special pointer called the null pointer . This is a pointer guaranteed not to point to
valid data so it can be used to indicate a special case. In code it can be represented by the digit
 0 or, more commonly in C, by the macro NULL . (The function also returns NULL if there is some
sort of read error.) Listing 11.8 shows a simple loop that reads and echoes text until fgets()
encounters end-of-file or until it reads a blank line, indicated by the first character being a
newline character.

 Listing 11.8 The fgets2.c Program

 /* fgets2.c -- using fgets() and fputs() */

 #include <stdio.h>

 #define STLEN 10

 int main(void)

 {

 char words[STLEN];

 puts("Enter strings (empty line to quit):");

 while (fgets(words, STLEN, stdin) != NULL && words[0] != '\n')

 fputs(words, stdout);

 puts("Done.");

 return 0;

 }

ptg11524036

458 Chapter 11 Character Strings and String Functions

 Here’s a sample run:

 Enter strings (empty line to quit):

 By the way, the gets() function

 By the way, the gets() function

 also returns a null pointer if it

 also returns a null pointer if it

 encounters end-of-file.

 encounters end-of-file.

 Done.

 Interesting—even though STLEN is 10, the program seems to have no problem processing input
lines much longer than that. What’s happening is that, in this program, fgets() reads in
input STLEN – 1 (i.e., 9) characters at a time. So it begins by reading “By the wa”, storing it
as By the wa\0 . Then fputs() displays this string and does not advance to the next output
line. Next, fgets() resumes where it left off on the original input, that is, it reads “y, the ge”
and stores it as y, the ge\0 . Then fputs() displays it on the same line it used before. Then
 fgets() resumes reading the input, and so on, until all that’s left is “tion\n”; fgets() stores
 tion\n\0 , fputs() displays it, and the embedded newline character moves the cursor to the
next line.

 The system uses buffered I/O. This means the input is stored in temporary memory (the buffer)
until the Return key is pressed; this adds a newline character to the input and sends the whole
line on to fgets() . On output, fputs() sends characters to another buffer, and when a
newline is sent, the buffer contents are sent on to the display.

 The fact that fgets() stores the newline presents a problem and an opportunity. The problem
is that you might not want the newline as part of the string you store. The opportunity is the
presence or absence of a newline character in the stored string can be used to tell whether the
whole line was read. If it wasn’t, then you can decide what to do with the rest of the line.

 First, how can you get rid of a newline? One way is to search the stored string for a newline
and to replace it with a null character:

 while (words[i] != '\n') // assuming \n in words

 i++;

 words[i] = '\0';

 Second, what if there are still characters left in the input line? One reasonable choice if the
whole line doesn’t fit into the destination array is to discard the part that doesn’t fit:

 while (getchar() != '\n') // read but don't store

 continue; // input including \n

 Listing 11.9 adds a little more testing to these basic ideas to produce code that reads lines of
inputs, removes the stored newlines, if any, and discards the part of a line that doesn’t fit.

ptg11524036

459String Input

 Listing 11.9 The fgets3.c Program

 /* fgets3.c -- using fgets() */

 #include <stdio.h>

 #define STLEN 10

 int main(void)

 {

 char words[STLEN];

 int i;

 puts("Enter strings (empty line to quit):");

 while (fgets(words, STLEN, stdin) != NULL

 && words[0] != '\n')

 {

 i = 0;

 while (words[i] != '\n' && words[i] != '\0')

 i++;

 if (words[i] == '\n')

 words[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 puts(words);

 }

 puts("done");

 return 0;

 }

 The loop

 while (words[i] != '\n' && words[i] != '\0')

 i++;

 marches through the string until reaching a newline or null character, whichever comes first.
If that character is a newline, the following if statement replaces it with a null character.
Otherwise, the else part disposes of the rest of the input line. Here is sample run:

 Enter strings (empty line to quit):

 This

 This

 program seems

 program s

 unwilling to accept long lines.

 unwilling

 But it doesn't get stuck on long

 But it do

ptg11524036

460 Chapter 11 Character Strings and String Functions

 lines either.

 lines eit

 done

 Null and Null

 Null character and null pointer both appear in Listing 11.9 . Conceptually, these two nulls are
different from one another. The null character, or '\0' , is the character used to mark the end
of a C string. It’s the character whose code is zero. Because that isn’t the code of any charac-
ter, it won’t show up accidentally in some other part of the string.

 The null pointer, or NULL , has a value that doesn’t correspond to a valid address of data. It’s
often used by functions that otherwise return valid addresses to indicate some special occur-
rence, such as encountering end-of-file or failing to perform as expected.

 So the null character is an integer type, while the null pointer is a pointer type. What some-
times causes confusion is that both can be represented numerically by the value 0. But, con-
ceptually, they are different types of 0. Also, while the null character, being a character, is one
byte, the null pointer, being an address, typically is four bytes.

 The gets_s() Function

 C11’s optional gets_s() function, like fgets() , uses an argument to limit the number of
characters read. Given the same definitions used in Listing 11.9 , the following code would read
a line of input into the words array providing the newline shows up in the first 9 characters of
input:

 gets_s(words, STLEN);

 The three main differences from fgets() are these:

 ■ gets_s() just reads from the standard input, so it doesn’t need a third argument.

 ■ If gets_s() does read a newline; it discards it rather than storing it.

 ■ If gets_s() reads the maximum number of characters and fails to read a newline, it
takes several steps. It sets the first character of the destination array to the null character.
It reads and discards subsequent input until a newline or end-of-file is encountered. It
returns the null pointer. It invokes an implementation-dependent “handler” function (or
else one you’ve selected), which may cause the program to exit or abort.

 The second feature means that, as long as the input line isn’t too long, gets_s() behaves like
 gets() , making it easier to replace gets() with gets_s() rather than with fgets() . The third
feature means there’s a learning curve to using this function.

 Let’s compare the suitability of gets() , fgets() , and gets_s() . If the input line fits into the
target storage, all three work fine. But fgets() does include the newline as part of the string,
and you may need to provide code to replace it with a null character.

ptg11524036

461String Input

 What if the input line doesn’t fit? Then gets() isn’t safe; it can corrupt your data and compro-
mise security. The gets_s() function is safe, but, if you don’t want the program to abort or
otherwise exit, you’ll need to learn how to write and register special “handlers.” Also, if you
manage to keep the program running, gets_s() disposes of the rest of the input line whether
you want to or not. The fgets() function is the easiest to work with if the line doesn’t fit, and
it leaves more choices up to you. If you want the program to process the rest of the input line,
you can, as Listing 11.8 shows. If, instead, you want to dispose of the rest of the input line, you
can do that, too, as Listing 11.9 shows.

 So gets_s() , when input fails to meet expectations, is less convenient and flexible than
 fgets() . Perhaps that’s one reason that gets_s() is just an optional extension of the C
library. And given that gets_s() is optional, using fgets() usually is the better choice.

 The s _ gets() Function

 Listing 11.9 presented one way to use fgets() : Read a whole line and replace the newline
character with a null character, or read the part of a line that fits and discard the rest—sort of
a gets_s() function without the extra baggage. No standard function meets that description,
but we can create one. It’ll come in handy in later examples. Listing 11.10 shows one approach.

 Listing 11.10 The s_gets() Function

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val) // i.e., ret_val != NULL

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 If fgets() returns NULL , indicating end-of-file or a read error, s_gets() skips the rest of the
processing. Otherwise, it imitates Listing 11.9 , replacing the newline character with a null char-
acter if the former is present in the string, and discarding the rest of the line otherwise. It then
returns the same value fgets() returned. We’ll use this function in later examples.

ptg11524036

462 Chapter 11 Character Strings and String Functions

 Perhaps you are wondering what’s the rationale for discarding the rest of a too-long line. The
problem is that if the remainder of the line is left in place, it becomes the input for the next
read statement. This can, for example, cause the program to crash if the next read statement
is looking for a type double value. Discarding the rest of the line keeps the read statements
synchronized with the keyboard input.

 Our s_gets() function isn’t perfect. Its most serious flaw is that it is silent about encountering
input that doesn’t fit. It discards the extra input with neither the program nor the user being
informed, thus closing off other options, such as having the user try again or finding more
storage space. Another flaw is that it doesn’t cope with misuse such as being passed a size of 1
or less. But it’s good enough to serve as a gets() substitute for our examples.

 The scanf() Function

 Let’s visit scanf() again. We’ve used scanf() with the %s format before to read a string. The
chief difference between scanf() and gets() or fgets() lies in how they decide when they
have reached the end of the string: scanf() is more of a “get word” than a “get string” func-
tion. The gets() function, as you’ve seen, takes in all the characters up to the first newline, as
does fgets() , if the string is short enough. The scanf() function has two choices for termi-
nating input. For either choice, the string starts at the first non-whitespace character encoun-
tered. If you use the %s format, the string runs up to (but not including) the next whitespace
character (blank, tab, or newline). If you specify a field width, as in %10s , the scanf()
collects up to 10 characters or up to the first whitespace character, whichever comes first (see
 Figure 11.3).

Input
Statement

Original Input
Queue*

Name
Contents

Remaining
Queue

scanf('%s", name); Fleebert Hup Fleebert Hup

scanf('%5s", name); Fleebert Hup Fleeb ert Hup

scanf('%5s", name); Ann Ular Ann Ular

*the represents the space character

 Figure 11.3 Field widths and scanf() .

 Recall that the scanf() function returns an integer value that equals the number of items
successfully read or returns EOF if it encounters the end of file.

 Listing 11.11 illustrates how scanf() works when you specify a field width.

 Listing 11.11 The scan_str.c Program

 /* scan_str.c -- using scanf() */

 #include <stdio.h>

ptg11524036

463String Input

 int main(void)

 {

 char name1[11], name2[11];

 int count;

 printf("Please enter 2 names.\n");

 count = scanf("%5s %10s",name1, name2);

 printf("I read the %d names %s and %s.\n",

 count, name1, name2);

 return 0;

 }

 Here are three runs:

 Please enter 2 names.

 Jesse Jukes

 I read the 2 names Jesse and Jukes.

 Please enter 2 names.

 Liza Applebottham

 I read the 2 names Liza and Applebotth.

 Please enter 2 names.

 Portensia Callowit

 I read the 2 names Porte and nsia.

 In the first example, both names fell within the allowed size limits. In the second example,
only the first 10 characters of Applebottham were read because we used a %10s format. In the
third example, the last four letters of Portensia went into name2 because the second call to
 scanf() resumed reading input where the first ended; in this case, that was still inside the
word Portensia .

 Depending on the nature of the desired input, you may be better off using f gets() to read
text from the keyboard. For example, scanf() wouldn’t be that useful for entering the name
of book or song, unless the name were a single word. The typical use for scanf() is reading
and converting a mixture of data types in some standard form. For example, if each input line
contains the name of a tool, the number in stock, and the cost of the item, you might use
 scanf() , or you might throw together a function of your own that does some entry error-
checking. If you want to process input a word at a time, you can use scanf() .

 The scanf() function has the same potential defect as gets() ; it can create an overflow if the
input word doesn’t fit the destination. But you can use the field-width option in the %s speci-
fier to prevent overflow.

ptg11524036

464 Chapter 11 Character Strings and String Functions

 String Output

 Now let’s move from string input to string output. Again, we will use library functions. C has
three standard library functions for printing strings: puts() , fputs() , and printf() .

 The puts() Function

 The puts() function is very easy to use. Just give it the address of a string for an argument.
 Listing 11.12 illustrates some of the many ways to do this.

 Listing 11.12 The put_out.c Program

 /* put_out.c -- using puts() */

 #include <stdio.h>

 #define DEF "I am a #defined string."

 int main(void)

 {

 char str1[80] = "An array was initialized to me.";

 const char * str2 = "A pointer was initialized to me.";

 puts("I'm an argument to puts().");

 puts(DEF);

 puts(str1);

 puts(str2);

 puts(&str1[5]);

 puts(str2+4);

 return 0;

 }

 The output is this:

 I'm an argument to puts().

 I am a #defined string.

 An array was initialized to me.

 A pointer was initialized to me.

 ray was initialized to me.

 inter was initialized to me.

 As with previous examples, each string appears on its own line because puts() automatically
appends a newline when it displays a string.

 This example reminds you that phrases in double quotation marks are string constants and
are treated as addresses. Also, the names of character array strings are treated as addresses.
The expression &str1[5] is the address of the sixth element of the array str1 . That element
contains the character 'r' , and that is what puts() uses for its starting point. Similarly,

ptg11524036

465String Output

 str2+4 points to the memory cell containing the 'i' of "pointer" , and the printing starts
there.

 How does puts() know when to stop? It stops when it encounters the null character, so there
had better be one. Don’t emulate the program in Listing 11.13 !

 Listing 11.13 The nono.c Program

 /* nono.c -- no! */

 #include <stdio.h>

 int main(void)

 {

 char side_a[] = "Side A";

 char dont[] = {'W', 'O', 'W', '!' };

 char side_b[] = "Side B";

 puts(dont); /* dont is not a string */

 return 0;

 }

 Because dont lacks a closing null character, it is not a string, so puts() won’t know where to
stop. It will just keep printing from memory following dont until it finds a null somewhere.
To ensure that a null character is not too distant, the program stores dont between two true
strings. Here’s a sample run:

 WOW!Side A

 The particular compiler used here stored the side_a array after the dont array in memory, so
 puts() kept going until hitting the null character in side_a . You may get different results,
depending on how your compiler arranges data in memory. What if the program had omitted
the arrays side_a and side_b ? There are usually lots of nulls in memory, and if you’re lucky,
 puts() might find one soon, but don’t count on it.

 The fputs() Function

 The fputs() function is the file-oriented version of puts() . The main differences are these:

 ■ The fputs() function takes a second argument indicating the file to which to write. You
can use stdout (for standard output), which is defined in stdio.h , as an argument to
output to your display.

 ■ Unlike puts() , fputs() does not automatically append a newline to the output.

 Note that gets() discards a newline on input, but puts() adds a newline on output. On the
other hand, fgets() stores the newline on input, and fputs() doesn’t add a newline on
output. Suppose you want to write a loop that reads a line and echoes it on the next line. You
can do this:

ptg11524036

466 Chapter 11 Character Strings and String Functions

 char line[81];

 while (gets(line)) // same as while (gets(line) != NULL)

 puts(line);

 Recall that gets() returns the null pointer if it encounters end-of-file. The null pointer evalu-
ates as zero, or false, so that terminates the loop. Or you can do this:

 char line[81];

 while (fgets(line, 81, stdin))

 fputs(line, stdout);

 With the first loop, the string in the line array is displayed on a line of its own because
 puts() adds a newline. With the second loop, the string in the line array is displayed on a
line of its own because fgets() stores a newline. Note that if you mix fgets() input with
 puts() output, you’d get two newlines displayed for each string. The point is that puts() is
designed to work with gets() , and fputs() is designed to work with fgets() .

 Of course we mention gets() only so that you’ll know how it works if you run across it in
code and not to encourage you to use it.

 The printf() Function

 We discussed printf() pretty thoroughly in Chapter 4 , “Character Strings and Formatted
Input/Output.” Like puts() , it takes a string address as an argument. The printf() function
is less convenient to use than puts() , but it is more versatile because it formats various data
types.

 One difference is that printf() does not automatically print each string on a new line.
Instead, you must indicate where you want new lines. Therefore,

 printf("%s\n", string);

 has the same effect as

 puts(string);

 As you can see, the first form takes more typing. It also takes longer for the computer to
execute (not that you would notice). On the other hand, printf() makes it simple to combine
strings for one line of printing. For example, the following statement combines Well, with the
user’s name and a #defined character string, all on one line:

 printf("Well, %s, %s\n", name, MSG);

 The Do-It-Yourself Option

 You aren’t limited to the standard C library options for input and output. If you don’t have
these options or don’t like them, you can prepare your own versions, building on getchar()

ptg11524036

467The Do-It-Yourself Option

and putchar() . Suppose you want a function like puts() that doesn’t automatically add a
newline. Listing 11.14 shows one way to create it.

 Listing 11.14 The put1() Function

 /* put1.c -- prints a string without adding \n */

 #include <stdio.h>

 void put1(const char * string) /* string not altered */

 {

 while (*string != '\0')

 putchar(*string++);

 }

 The char pointer string initially points to the first element of the called argument. Because
this function doesn’t change the string, use the const modifier. After the contents of that
element are printed, the pointer increments and points to the next element. This goes on until
the pointer points to an element containing the null character. Remember, the higher prece-
dence of ++ compared to * means that putchar(*string++) prints the value pointed to by
 string but increments string itself, not the character to which it points.

 You can regard put1.c as a model for writing string-processing functions. Because each string
has a null character marking its end, you don’t have to pass a size to the function. Instead, the
function processes each character in turn until it encounters the null character.

 A somewhat longer way of writing the function is to use array notation:

 int i = 0;

 while (string[i]!= '\0')

 putchar(string[i++]);

 This involves an additional variable for the index.

 Many C programmers would use the following test for the while loop:

 while (*string)

 When string points to the null character, *string has the value 0 , which terminates the
loop. This approach certainly takes less typing than the previous version. If you are not familiar
with C practice, it is less obvious. However, this idiom is widespread, and C programmers are
expected to be familiar with it.

 Note

 Why does Listing 11.14 use const char * string rather than const char string[] as
the formal argument? Technically, the two are equivalent, so either form will work. One reason
to use bracket notation is to remind the user that the function processes an array. With strings,
however, the actual argument can be the name of an array, a quoted string, or a variable that
has been declared as type char * . Using const char * string reminds you that the actual
argument isn’t necessarily an array.

ptg11524036

468 Chapter 11 Character Strings and String Functions

 Suppose you want a function like puts() that also tells you how many characters are printed.
As Listing 11.15 demonstrates, it’s easy to add that feature.

 Listing 11.15 The put2() Function

 /* put2.c -- prints a string and counts characters */

 #include <stdio.h>

 int put2(const char * string)

 {

 int count = 0;

 while (*string) /* common idiom */

 {

 putchar(*string++);

 count++;

 }

 putchar('\n'); /* newline not counted */

 return(count);

 }

 The following call prints the string pizza :

 put1("pizza");

 The next call also returns a character count that is assigned to num (in this case, the value 5):

 num = put2("pizza");

 Listing 11.16 presents a driver using put1() and put2() and showing nested function calls.

 Listing 11.16 The put_put.c Program

 //put_put.c -- user-defined output functions

 #include <stdio.h>

 void put1(const char *);

 int put2(const char *);

 int main(void)

 {

 put1("If I'd as much money");

 put1(" as I could spend,\n");

 printf("I count %d characters.\n",

 put2("I never would cry old chairs to mend."));

 return 0;

 }

 void put1(const char * string)

ptg11524036

469String Functions

 {

 while (*string) /* same as *string != '\0' */

 putchar(*string++);

 }

 int put2(const char * string)

 {

 int count = 0;

 while (*string)

 {

 putchar(*string++);

 count++;

 }

 putchar('\n');

 return(count);

 }

 Hmmm, we are using printf() to print the value of put2() , but in the act of finding the
value of put2() , the computer first must execute that function, causing the string to be
printed. Here’s the output:

 If I'd as much money as I could spend,

 I never would cry old chairs to mend.

 I count 37 characters.

 String Functions

 The C library supplies several string-handling functions; ANSI C uses the string.h header file
to provide the prototypes. We’ll look at some of the most useful and common ones: strlen() ,
 strcat() , strncat() , strcmp() , strncmp() , strcpy() , and strncpy() . We’ll also examine
 sprintf() , supported by the stdio.h header file. For a complete list of the string.h family
of functions, see Reference Section V, “The Standard ANSI C Library with C99 Additions,” in
 Appendix B .

 The strlen() Function

 The strlen() function, as you already know, finds the length of a string. It’s used in the next
example, a function that shortens lengthy strings:

 void fit(char *string, unsigned int size)

 {

 if (strlen(string) > size)

 string[size] = '\0';

 }

ptg11524036

470 Chapter 11 Character Strings and String Functions

 This function does change the string, so the function header doesn’t use const in declaring the
formal parameter string .

 Try the fit() function in the test program of Listing 11.17 . Note that the code uses C’s string
literal concatenation feature.

 Listing 11.17 The test_fit.c Program

 /* test_fit.c -- try the string-shrinking function */

 #include <stdio.h>

 #include <string.h> /* contains string function prototypes */

 void fit(char *, unsigned int);

 int main(void)

 {

 char mesg[] = "Things should be as simple as possible,"

 " but not simpler.";

 puts(mesg);

 fit(mesg,38);

 puts(mesg);

 puts("Let's look at some more of the string.");

 puts(mesg + 39);

 return 0;

 }

 void fit(char *string, unsigned int size)

 {

 if (strlen(string) > size)

 string[size] = '\0';

 }

 The output is this:

 Things should be as simple as possible, but not simpler.

 Things should be as simple as possible

 Let's look at some more of the string.

 but not simpler.

 The fit() function placed a '\0' character in the 39th element of the array, replacing a
comma. The puts() function stops at the first null character and ignores the rest of the array.
However, the rest of the array is still there, as shown by the following call:

 puts(mesg + 8);

ptg11524036

471String Functions

 The expression mesg + 39 is the address of mesq[39] , which is a space character. So puts()
displays that character and keeps going until it runs into the original null character. Figure 11.4
illustrates (with a shorter string) what’s happening in this program.

 (Variations of the quotation in the mesg array are attributed to Albert Einstein, but it appears
more likely to be a representation of his philosophy than a direct quote.)

 puts(mesg);

start stop

Original string:

H o l o u r h a t s , h a c k e r s . \0d o n o yt

String after fit(mesg, 7):

H o l o u r h a t s , h a c k e r s . \0\0d o n o yt

puts(mesg + 8);

start stop

 Figure 11.4 The puts() function and the null character.

 The string.h file contains function prototypes for the C family of string functions, which is
why this example includes it.

 Note

 Some pre-ANSI systems use strings.h instead, and others might lack a string header file
entirely.

 The strcat() Function

 The strcat() (for string concatenation) function takes two strings for arguments. A copy of the
second string is tacked onto the end of the first, and this combined version becomes the new
first string. The second string is not altered. The strcat() function is type char * (that is, a
pointer-to- char). It returns the value of its first argument—the address of the first character of
the string to which the second string is appended.

 Listing 11.18 illustrates what strcat() can do. It also uses the s_gets() function we defined
in Listing 11.10 ; recall that it uses fgets() to read a line, and then removes the newline char-
acter, if present.

ptg11524036

472 Chapter 11 Character Strings and String Functions

 Listing 11.18 The str_cat.c Program

 /* str_cat.c -- joins two strings */

 #include <stdio.h>

 #include <string.h> /* declares the strcat() function */

 #define SIZE 80

 char * s_gets(char * st, int n);

 int main(void)

 {

 char flower[SIZE];

 char addon[] = "s smell like old shoes.";

 puts("What is your favorite flower?");

 if (s_gets(flower, SIZE))

 {

 strcat(flower, addon);

 puts(flower);

 puts(addon);

 }

 else

 puts("End of file encountered!");

 puts("bye");

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

ptg11524036

473String Functions

 This is a sample output:

 What is your favorite flower?

 wonderflower

 wonderflowers smell like old shoes.

 s smell like old shoes.

 bye

 The output illustrates that flower is altered while addon is not.

 The strncat() Function

 The strcat() function does not check to see whether the second string will fit in the first
array. If you fail to allocate enough space for the first array, you will run into problems as
excess characters overflow into adjacent memory locations. Of course, you can use strlen() to
look before you leap, as shown in Listing 11.15 . Note that it adds 1 to the combined lengths to
allow space for the null character. Alternatively, you can use strncat() , which takes a second
argument indicating the maximum number of characters to add. For example, strncat(bugs,
addon, 13) will add the contents of the addon string to bugs , stopping when it reaches 13
additional characters or the null character, whichever comes first. Therefore, counting the null
character (which is appended in either case), the bugs array should be large enough to hold
the original string (not counting the null character), a maximum of 13 additional characters,
and the terminal null character. Listing 11.19 uses this information to calculate a value for the
 available variable, which is used as the maximum number of additional characters allowed.

 Listing 11.19 The join_chk.c Program

 /* join_chk.c -- joins two strings, check size first */

 #include <stdio.h>

 #include <string.h>

 #define SIZE 30

 #define BUGSIZE 13

 char * s_gets(char * st, int n);

 int main(void)

 {

 char flower[SIZE];

 char addon[] = "s smell like old shoes.";

 char bug[BUGSIZE];

 int available;

 puts("What is your favorite flower?");

 s_gets(flower, SIZE);

 if ((strlen(addon) + strlen(flower) + 1) <= SIZE)

 strcat(flower, addon);

 puts(flower);

 puts("What is your favorite bug?");

ptg11524036

474 Chapter 11 Character Strings and String Functions

 s_gets(bug, BUGSIZE);

 available = BUGSIZE - strlen(bug) - 1;

 strncat(bug, addon, available);

 puts(bug);

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 Here is a sample run:

 What is your favorite flower?

 Rose

 Roses smell like old shoes.

 What is your favorite bug?

 Aphid

 Aphids smell

 You may have noticed that strcat() , like gets() , can lead to buffer overflows. Why, then,
doesn’t the C11 standard dump strcat() and just offer strncat() ? One reason may be
that gets() exposes a program to dangers from those who use the program, while strcat()
exposes the program to the dangers of a careless programmer. You can’t control what some
user will do in the future, but you can control what goes in your program. The C philosophy
of trust the programmer brings with it the responsibility of recognizing when you can use
 strcat() safely.

ptg11524036

475String Functions

 The strcmp() Function

 Suppose you want to compare someone’s response to a stored string, as shown in Listing 11.20 .

 Listing 11.20 The nogo.c Program

 /* nogo.c -- will this work? */

 #include <stdio.h>

 #define ANSWER "Grant"

 #define SIZE 40

 char * s_gets(char * st, int n);

 int main(void)

 {

 char try[SIZE];

 puts("Who is buried in Grant's tomb?");

 s_gets(try, SIZE);

 while (try != ANSWER)

 {

 puts("No, that's wrong. Try again.");

 s_gets(try, SIZE);

 }

 puts("That's right!");

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

ptg11524036

476 Chapter 11 Character Strings and String Functions

 As nice as this program might look, it will not work correctly. ANSWER and try really are point-
ers, so the comparison try != ANSWER doesn’t check to see whether the two strings are the
same. Rather, it checks to see whether the two strings have the same address. Because ANSWER
and try are stored in different locations, the two addresses are never the same, and the user is
forever told that he or she is wrong. Such programs tend to discourage people.

 What you need is a function that compares string contents , not string addresses . You could
devise one, but the job has been done for you with strcmp() (for string comparison). This func-
tion does for strings what relational operators do for numbers. In particular, it returns 0 if its
two string arguments are the same and nonzero otherwise. The revised program is shown in
 Listing 11.21 .

 Listing 11.21 The compare.c Program

 /* compare.c -- this will work */

 #include <stdio.h>

 #include <string.h> // declares strcmp()

 #define ANSWER "Grant"

 #define SIZE 40

 char * s_gets(char * st, int n);

 int main(void)

 {

 char try[SIZE];

 puts("Who is buried in Grant's tomb?");

 s_gets(try, SIZE);

 while (strcmp(try,ANSWER) != 0)

 {

 puts("No, that's wrong. Try again.");

 s_gets(try, SIZE);

 }

 puts("That's right!");

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

ptg11524036

477String Functions

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 Note

 Because any nonzero value is “true,” most experienced C programmers would abbreviate the
 while statement to while (strcmp(try,ANSWER)) .

 One of the nice features of strcmp() is that it compares strings, not arrays. Although the array
 try occupies 40 memory cells and "Grant" only six (one for the null character), the compari-
son looks only at the part of try up to its first null character. Therefore, strcmp() can be used
to compare strings stored in arrays of different sizes.

 What if the user answers "GRANT" or "grant" or "Ulysses S. Grant" ? The user is told that
he or she is wrong. To make a friendlier program, you have to anticipate all possible correct
answers. There are some tricks you can use. For example, you can use #define to define the
answer as "GRANT" and write a function that converts all input to uppercase. That eliminates
the problem of capitalization, but you still have the other forms to worry about, as well as the
fact that his wife Julia is entombed there, too. We leave these concerns as exercises for you.

 The strcmp() Return Value

 What value does strcmp() return if the strings are not the same? Listing 11.22 shows an
example.

 Listing 11.22 The compback.c Program

 /* compback.c -- strcmp returns */

 #include <stdio.h>

 #include <string.h>

 int main(void)

 {

 printf("strcmp(\"A\", \"A\") is ");

 printf("%d\n", strcmp("A", "A"));

 printf("strcmp(\"A\", \"B\") is ");

 printf("%d\n", strcmp("A", "B"));

ptg11524036

478 Chapter 11 Character Strings and String Functions

 printf("strcmp(\"B\", \"A\") is ");

 printf("%d\n", strcmp("B", "A"));

 printf("strcmp(\"C\", \"A\") is ");

 printf("%d\n", strcmp("C", "A"));

 printf("strcmp(\"Z\", \"a\") is ");

 printf("%d\n", strcmp("Z", "a"));

 printf("strcmp(\"apples\", \"apple\") is ");

 printf("%d\n", strcmp("apples", "apple"));

 return 0;

 }

 Here is the output on one system:

 strcmp("A", "A") is 0

 strcmp("A", "B") is -1

 strcmp("B", "A") is 1

 strcmp("C", "A") is 1

 strcmp("Z", "a") is -1

 strcmp("apples", "apple") is 1

 Comparing "A" to itself returns 0 . Comparing "A" to "B" returns -1 , and reversing the
comparison returns 1 . These results suggest that strcmp() returns a negative number if the
first string precedes the second alphabetically and that it returns a positive number if the
order is the other way. Therefore, comparing "C" to "A" gives a 1 . Other systems might return
 2 —the difference in ASCII code values. The ANSI standard says that strcmp() returns a nega-
tive number if the first string comes before the second alphabetically, returns 0 if they are the
same, and returns a positive number if the first string follows the second alphabetically. The
exact numerical values, however, are left open to the implementation. Here, for example, is
the output for another implementation, one that returns the difference between the character
codes:

 strcmp("A", "A") is 0

 strcmp("A", "B") is -1

 strcmp("B", "A") is 1

 strcmp("C", "A") is 2

 strcmp("Z", "a") is -7

 strcmp("apples", "apple") is 115

 What if the initial characters are identical? In general, strcmp() moves along until it finds
the first pair of disagreeing characters. It then returns the corresponding code. For instance, in
the very last example, "apples" and "apple" agree until the final s of the first string. This
matches up with the sixth character in "apple" , which is the null character, ASCII 0. Because

ptg11524036

479String Functions

the null character is the very first character in the ASCII sequence, s comes after it, and the
function returns a positive value.

 The last comparison points out that strcmp() compares all characters, not just letters, so
instead of saying the comparison is alphabetic, we should say that strcmp() goes by the
machine collating sequence . That means characters are compared according to their numeric
representation, typically the ASCII values. In ASCII, the codes for uppercase letters precede
those for lowercase letters. Therefore, strcmp("Z", "a") is negative.

 Most often, you won’t care about the exact value returned. You just want to know if it is zero
or nonzero—that is, whether there is a match or not—or you might be trying to sort the strings
alphabetically, in which case you want to know if the comparison is positive, negative, or zero.

 Note

 The strcmp() function is for comparing strings , not characters . So you can use arguments
such as "apples" and "A" , but you cannot use character arguments, such as 'A' . However,
recall that the char type is an integer type, so you can use the relational operators for charac-
ter comparisons. Suppose word is a string stored in an array of char and that ch is a char
variable. Then the following statements are valid:
 if (strcmp(word, "quit") == 0) // use strcmp() for strings

 puts("Bye!");

 if (ch == 'q') // use == for chars

 puts("Bye!");

 However, don’t use ch or 'q' as arguments for strcmp() .

 Listing 11.23 uses the strcmp() function for checking to see whether a program should stop
reading input.

 Listing 11.23 The quit_chk.c Program

 /* quit_chk.c -- beginning of some program */

 #include <stdio.h>

 #include <string.h>

 #define SIZE 80

 #define LIM 10

 #define STOP "quit"

 char * s_gets(char * st, int n);

 int main(void)

 {

 char input[LIM][SIZE];

 int ct = 0;

 printf("Enter up to %d lines (type quit to quit):\n", LIM);

 while (ct < LIM && s_gets(input[ct], SIZE) != NULL &&

ptg11524036

480 Chapter 11 Character Strings and String Functions

 strcmp(input[ct],STOP) != 0)

 {

 ct++;

 }

 printf("%d strings entered\n", ct);

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 This program quits reading input when it encounters an EOF character (s_gets() returns NULL
in that case), when you enter the word quit, or when you reach the limit LIM .

 Incidentally, sometimes it is more convenient to terminate input by entering an empty line—
that is, by pressing the Enter key or Return key without entering anything else. To do so, you
can modify the while loop control statement so that it looks like this:

 while (ct < LIM && s_gets(input[ct], SIZE) != NULL

 && input[ct][0] != '\0')

 Here, input[ct] is the string just entered and input[ct][0] is the first character of that
string. If the user enters an empty line, s_gets() places the null character in the first element,
so the expression

 input[ct][0] != '\0'

 tests for an empty input line.

ptg11524036

481String Functions

 The strncmp() Variation

 The strcmp() function compares strings until it finds corresponding characters that differ,
which could take the search to the end of one of the strings. The strncmp() function
compares the strings until they differ or until it has compared a number of characters specified
by a third argument. For example, if you wanted to search for strings that begin with "astro" ,
you could limit the search to the first five characters. Listing 11.24 shows how.

 Listing 11.24 The starsrch.c Program

 /* starsrch.c -- use strncmp() */

 #include <stdio.h>

 #include <string.h>

 #define LISTSIZE 6

 int main()

 {

 const char * list[LISTSIZE] =

 {

 "astronomy", "astounding",

 "astrophysics", "ostracize",

 "asterism", "astrophobia"

 };

 int count = 0;

 int i;

 for (i = 0; i < LISTSIZE; i++)

 if (strncmp(list[i],"astro", 5) == 0)

 {

 printf("Found: %s\n", list[i]);

 count++;

 }

 printf("The list contained %d words beginning"

 " with astro.\n", count);

 return 0;

 }

 Here is the output:

 Found: astronomy

 Found: astrophysics

 Found: astrophobia

 The list contained 3 words beginning with astro.

ptg11524036

482 Chapter 11 Character Strings and String Functions

 The strcpy() and strncpy() Functions

 We’ve said that if pts1 and pts2 are both pointers to strings, the expression

 pts2 = pts1;

 copies only the address of a string, not the string itself. Suppose, though, that you do want to
copy a string. Then you can use the strcpy() function. Listing 11.25 asks the user to enter
words beginning with q . The program copies the input into a temporary array, and if the
first letter is a q , the program uses strcpy() to copy the string from the temporary array to
a permanent destination. The strcpy() function is the string equivalent of the assignment
operator.

 Listing 11.25 The copy1.c Program

 /* copy1.c -- strcpy() demo */

 #include <stdio.h>

 #include <string.h> // declares strcpy()

 #define SIZE 40

 #define LIM 5

 char * s_gets(char * st, int n);

 int main(void)

 {

 char qwords[LIM][SIZE];

 char temp[SIZE];

 int i = 0;

 printf("Enter %d words beginning with q:\n", LIM);

 while (i < LIM && s_gets(temp, SIZE))

 {

 if (temp[0] != 'q')

 printf("%s doesn't begin with q!\n", temp);

 else

 {

 strcpy(qwords[i], temp);

 i++;

 }

 }

 puts("Here are the words accepted:");

 for (i = 0; i < LIM; i++)

 puts(qwords[i]);

 return 0;

 }

 char * s_gets(char * st, int n)

 {

ptg11524036

483String Functions

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 Here is a sample run:

 Enter 5 words beginning with q:

 quackery

 quasar

 quilt

 quotient

 no more

 no more doesn't begin with q!

 quiz

 Here are the words accepted:

 quackery

 quasar

 quilt

 quotient

 quiz

 Note that the counter i is incremented only when the word entered passes the q test. Also note
that the program uses a character-based test:

 if (temp[0] != 'q')

 That is, is the first character in the temp array not a q ? Another possibility is using a string-
based test:

 if (strncmp(temp, "q", 1) != 0)

 That is, are the strings temp and "q" different from each other in the first element?

 Note that the string pointed to by the second argument (temp) is copied into the array pointed
to by the first argument (qword[i]). The copy is called the target , and the original string is

ptg11524036

484 Chapter 11 Character Strings and String Functions

called the source . You can remember the order of the arguments by noting that it is the same as
the order in an assignment statement (the target string is on the left):

 char target[20];

 int x;

 x = 50; /* assignment for numbers */

 strcpy(target, "Hi ho!"); /* assignment for strings */

 target = "So long"; /* syntax error */

 It is your responsibility to make sure the destination array has enough room to copy the source.
The following is asking for trouble:

 char * str;

 strcpy(str, "The C of Tranquility"); // a problem

 The function will copy the string "The C of Tranquility" to the address specified by str ,
but str is uninitialized, so the copy might wind up anywhere!

 In short, strcpy() takes two string pointers as arguments. The second pointer, which points
to the original string, can be a declared pointer, an array name, or a string constant. The first
pointer, which points to the copy, should point to a data object, such as an array, roomy
enough to hold the string. Remember, declaring an array allocates storage space for data;
declaring a pointer only allocates storage space for one address.

 Further strcpy() Properties

 The strcpy() function has two more properties that you might find useful. First, it is type
 char * . It returns the value of its first argument—the address of a character. Second, the first
argument need not point to the beginning of an array; this lets you copy just part of an array.
 Listing 11.26 illustrates both these points.

 Listing 11.26 The copy2.c Program

 /* copy2.c -- strcpy() demo */

 #include <stdio.h>

 #include <string.h> // declares strcpy()

 #define WORDS "beast"

 #define SIZE 40

 int main(void)

 {

 const char * orig = WORDS;

 char copy[SIZE] = "Be the best that you can be.";

 char * ps;

 puts(orig);

 puts(copy);

 ps = strcpy(copy + 7, orig);

ptg11524036

485String Functions

 puts(copy);

 puts(ps);

 return 0;

 }

 Here is the output:

 beast

 Be the best that you can be.

 Be the beast

 beast

 Note that strcpy() copies the null character from the source string. In this example, the null
character overwrites the first t in that in copy so that the new string ends with beast (see
 Figure 11.5). Also note that ps points to the eighth element (index of 7) of copy because the
first argument is copy + 7 . Therefore, puts(ps) prints the string starting at that point.

B e h e sb e t t h a t y o u c a n b e . \0t

copy copy + 7

the command
strcpy (copy + 7, orig);

means "copy string from orig to here"

b e a t \0s

orig

B e h e sb e t \0 h aa t y o u c a n b e . \0t

 Figure 11.5 The strcpy() function uses pointers.

 The Careful Choice: strncpy()

 The strcpy() function shares a problem with strcat() —neither checks to see whether the
source string actually fits in the target string. The safer way to copy strings is to use strncpy() .
It takes a third argument, which is the maximum number of characters to copy. Listing 11.27 is
a rewrite of Listing 11.25 , using strncpy() instead of strcpy() . To illustrate what happens if
the source string is too large, it uses a rather small size (seven elements, six characters) for the
target strings.

ptg11524036

486 Chapter 11 Character Strings and String Functions

 Listing 11.27 The copy3.c Program

 /* copy3.c -- strncpy() demo */

 #include <stdio.h>

 #include <string.h> /* declares strncpy() */

 #define SIZE 40

 #define TARGSIZE 7

 #define LIM 5

 char * s_gets(char * st, int n);

 int main(void)

 {

 char qwords[LIM][TARGSIZE];

 char temp[SIZE];

 int i = 0;

 printf("Enter %d words beginning with q:\n", LIM);

 while (i < LIM && s_gets(temp, SIZE))

 {

 if (temp[0] != 'q')

 printf("%s doesn't begin with q!\n", temp);

 else

 {

 strncpy(qwords[i], temp, TARGSIZE - 1);

 qwords[i][TARGSIZE - 1] = '\0';

 i++;

 }

 }

 puts("Here are the words accepted:");

 for (i = 0; i < LIM; i++)

 puts(qwords[i]);

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

ptg11524036

487String Functions

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 Here is a sample run:

 Enter 5 words beginning with q:

 quack

 quadratic

 quisling

 quota

 quagga

 Here are the words accepted:

 quack

 quadra

 quisli

 quota

 quagga

 The function call strncpy(target, source, n) copies up to n characters or up through the
null character (whichever comes first) from source to target . Therefore, if the number of
characters in source is less than n , the entire string is copied, including the null character. The
function never copies more than n characters, so if it reaches the limit before reaching the end
of the source string, no null character is added. As a result, the final product may or may not
have a null character. For this reason, the program sets n to one less than the size of the target
array and then sets the final element in the array to the null character:

 strncpy(qwords[i], temp, TARGSIZE - 1);

 qwords[i][TARGSIZE - 1] = '\0';

 This ensures that you’ve stored a string. If the source string actually fits, the null character
copied with it marks the true end of the string. If the source string doesn’t fit, this final null
character marks the end of the string.

 The sprintf() Function

 The sprintf() function is declared in stdio.h instead of string.h . It works like printf() ,
but it writes to a string instead of writing to a display. Therefore, it provides a way to combine
several elements into a single string. The first argument to sprintf() is the address of the
target string. The remaining arguments are the same as for printf() —a conversion specifica-
tion string followed by a list of items to be written.

ptg11524036

488 Chapter 11 Character Strings and String Functions

 Listing 11.28 uses sprintf() to combine three items (two strings and a number) into a single
string. Note that it uses sprintf() the same way you would use printf() , except that the
resulting string is stored in the array formal instead of being displayed onscreen.

 Listing 11.28 The format.c Program

 /* format.c -- format a string */

 #include <stdio.h>

 #define MAX 20

 char * s_gets(char * st, int n);

 int main(void)

 {

 char first[MAX];

 char last[MAX];

 char formal[2 * MAX + 10];

 double prize;

 puts("Enter your first name:");

 s_gets(first, MAX);

 puts("Enter your last name:");

 s_gets(last, MAX);

 puts("Enter your prize money:");

 scanf("%lf", &prize);

 sprintf(formal, "%s, %-19s: $%6.2f\n", last, first, prize);

 puts(formal);

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

ptg11524036

489String Functions

 Here’s a sample run:

 Enter your first name:

 Annie

 Enter your last name:

 von Wurstkasse

 Enter your prize money:

 25000

 von Wurstkasse, Annie : $25000.00

 The sprintf() command took the input and formatted it into a standard form, which it then
stored in the string formal .

 Other String Functions

 The ANSI C library has more than 20 string-handling functions, and the following list summa-
rizes some of the more commonly used ones:

 ■ char *strcpy(char * restrict s1, const char * restrict s2);

 This function copies the string (including the null character) pointed to by s2 to the
location pointed to by s1 . The return value is s1 .

 ■ char *strncpy(char * restrict s1, const char * restrict s2, size_t n);

 This function copies to the location pointed to by s1 no more than n characters from the
string pointed to by s2 . The return value is s1 . No characters after a null character are
copied and, if the source string is shorter than n characters, the target string is padded
with null characters. If the source string has n or more characters, no null character is
copied. The return value is s1 .

 ■ char *strcat(char * restrict s1, const char * restrict s2);

 The string pointed to by s2 is copied to the end of the string pointed to by s1 . The first
character of the s2 string is copied over the null character of the s1 string. The return
value is s1 .

 ■ char *strncat(char * restrict s1, const char * restrict s2, size_t n);

 No more than the first n characters of the s2 string are appended to the s1 string, with
the first character of the s2 string being copied over the null character of the s1 string.
The null character and any characters following it in the s2 string are not copied, and a
null character is appended to the result. The return value is s1 .

 ■ int strcmp(const char * s1, const char * s2);

 This function returns a positive value if the s1 string follows the s2 string in the
machine collating sequence, the value 0 if the two strings are identical, and a negative
value if the first string precedes the second string in the machine collating sequence.

 ■ int strncmp(const char * s1, const char * s2, size_t n);

 This function works like strcmp() , except that the comparison stops after n characters or
when the first null character is encountered, whichever comes first.

ptg11524036

490 Chapter 11 Character Strings and String Functions

 ■ char *strchr(const char * s, int c);

 This function returns a pointer to the first location in the string s that holds the
character c . (The terminating null character is part of the string, so it can be searched
for.) The function returns the null pointer if the character is not found.

 ■ char *strpbrk(const char * s1, const char * s2);

 This function returns a pointer to the first location in the string s1 that holds any
character found in the s2 string. The function returns the null pointer if no character is
found.

 ■ char *strrchr(const char * s, int c);

 This function returns a pointer to the last occurrence of the character c in the string
 s . (The terminating null character is part of the string, so it can be searched for.) The
function returns the null pointer if the character is not found.

 ■ char *strstr(const char * s1, const char * s2);

 This function returns a pointer to the first occurrence of string s2 in string s1 . The
function returns the null pointer if the string is not found.

 ■ size_t strlen(const char * s);

 This function returns the number of characters, not including the terminating null
character, found in the string s .

 Note that these prototypes use the keyword const to indicate which strings are not altered by a
function. For example, consider the following:

 char *strcpy(char * restrict s1, const char * restrict s2);

 It means s2 points to a string that can’t be changed, at least not by the strcpy() function,
but s1 points to a string that can be changed. This makes sense, because s1 is the target string,
which gets altered, and s2 is the source string, which should be left unchanged.

 The keyword restrict , discussed in Chapter 12 , indicates restrictions on how the function
arguments should be used, for example, not copying a string into itself.

 The size_t type, as discussed in Chapter 5 , “Operators, Expressions, and Statements,” is what-
ever type the sizeof operator returns. C states that the sizeof operator returns an integer
type, but it doesn’t specify which integer type, so size_t can be unsigned int on one system
and unsigned long on another. The string.h file defines size_t for a particular system or
else refers to another header file having the definition.

 As mentioned earlier, Reference Section V lists all the functions in the string.h family. Many
implementations provide additional functions beyond those required by the ANSI standard.
You should check the documentation for your implementation to see what is available.

ptg11524036

491A String Example: Sorting Strings

 Let’s look at a simple use of one of these functions. Earlier we saw that fgets() , when it
reads a line of input, stores the newline in the destination string. Our s_gets() function used
a while loop to detect that newline character, but we can use strchr() instead. First, use
 strchr() to find the newline, if any. If the function finds the newline, it returns the address of
the newline, and you then can place a null character at that address:

 char line[80];

 char * find;

 fgets(line, 80, stdin);

 find = strchr(line, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 If strchr() fails to find a newline, fgets() ran into the size limit before reaching the end of
the line. You can add an else , as we did in s_gets() , to the if to process that circumstance.

 Next, let’s look at a full program that handles strings.

 A String Example: Sorting Strings

 Let’s tackle the practical problem of sorting strings alphabetically. This task can show up in
preparing name lists, in making up an index, and in many other situations. One of the main
tools in such a program is strcmp() because it can be used to determine the order of two
strings. The general plan will be to read an array of strings, sort them, and print them. Earlier,
we presented a scheme for reading strings, and we will start the program that way. Printing
the strings is no problem. We’ll use a standard sorting algorithm that we’ll explain later. We
will also do one slightly tricky thing; see whether you can spot it. Listing 11.29 presents the
program.

 Listing 11.29 The sort_str.c Program

 /* sort_str.c -- reads in strings and sorts them */

 #include <stdio.h>

 #include <string.h>

 #define SIZE 81 /* string length limit, including \0 */

 #define LIM 20 /* maximum number of lines to be read */

 #define HALT "" /* null string to stop input */

 void stsrt(char *strings[], int num);/* string-sort function */

 char * s_gets(char * st, int n);

 int main(void)

 {

ptg11524036

492 Chapter 11 Character Strings and String Functions

 char input[LIM][SIZE]; /* array to store input */

 char *ptstr[LIM]; /* array of pointer variables */

 int ct = 0; /* input count */

 int k; /* output count */

 printf("Input up to %d lines, and I will sort them.\n",LIM);

 printf("To stop, press the Enter key at a line's start.\n");

 while (ct < LIM && s_gets(input[ct], SIZE) != NULL

 && input[ct][0] != '\0')

 {

 ptstr[ct] = input[ct]; /* set ptrs to strings */

 ct++;

 }

 stsrt(ptstr, ct); /* string sorter */

 puts("\nHere's the sorted list:\n");

 for (k = 0; k < ct; k++)

 puts(ptstr[k]) ; /* sorted pointers */

 return 0;

 }

 /* string-pointer-sorting function */

 void stsrt(char *strings[], int num)

 {

 char *temp;

 int top, seek;

 for (top = 0; top < num-1; top++)

 for (seek = top + 1; seek < num; seek++)

 if (strcmp(strings[top],strings[seek]) > 0)

 {

 temp = strings[top];

 strings[top] = strings[seek];

 strings[seek] = temp;

 }

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

ptg11524036

493A String Example: Sorting Strings

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 We fed Listing 11.29 an obscure nursery rhyme to test it:

 Input up to 20 lines, and I will sort them.

 To stop, press the Enter key at a line's start.

 O that I was where I would be,

 Then would I be where I am not;

 But where I am I must be,

 And where I would be I can not.

 Here's the sorted list:

 And where I would be I can not.

 But where I am I must be,

 O that I was where I would be,

 Then would I be where I am not;

 Hmm, the nursery rhyme doesn’t seem to suffer much from being alphabetized.

 Sorting Pointers Instead of Strings

 The tricky part of the program is that instead of rearranging the strings themselves, we just
rearranged pointers to the strings. Let’s see what that means. Originally, ptrst[0] is set to
 input[0] , and so on. That means the pointer ptrst[i] points to the first character in the
array input[i] . Each input[i] is an array of 81 elements, and each ptrst[i] is a single
variable. The sorting procedure rearranges ptrst , leaving input untouched. If, for example,
 input[1] comes before input[0] alphabetically, the program switches ptrsts , causing
 ptrst[0] to point to the beginning of input[1] and causing ptrst[1] to point to the begin-
ning of input[0] . This is much easier than using, say, strcpy() to interchange the contents
of the two input strings. See Figure 11.6 for another view of this process. It also has the advan-
tage of preserving the original order in the input array.

ptg11524036

494 Chapter 11 Character Strings and String Functions

before sorting:

0

[0][0] [0][80][0][1] ...

t hinput[0]

ptrst[0] points to input[0]

ptrst[1] points to input[1]

etc

after sorting:

ptrst[0] points to input[3]

ptrst[1] points to input[2]

etc

T

[1][0] [1][80][1][1] ...

e nhinput[1]

B

[2][0] [2][80][2][1] ...

tinput[2]

A

[3][0] [3][80][3][1] ...

dninput[3]

u

 Figure 11.6 Sorting string pointers.

 The Selection Sort Algorithm

 To sort the pointers, we use the selection sort algorithm. The idea is to use a for loop to
compare each element in turn with the first element. If the compared element precedes the
current first element, the program swaps the two. By the time the program reaches the end of
the loop, the first element contains a pointer to whichever string is first in the machine collat-
ing sequence. Then the outer for loop repeats the process, this time starting with the second
element of input . When the inner loop completes, the pointer to the second-ranking string
ends up in the second element of ptrst . The process continues until all the elements have
been sorted.

ptg11524036

495The ctype.h Character Functions and Strings

 Now let’s take a more detailed look at the selection sort. Here is an outline in pseudocode:

 for n = first to n = next-to-last element,

 find largest remaining number and place it in the nth element

 The plan works like this: First, start with n = 0 . Scan the entire array, find the largest number,
and swap it with the first element. Next, set n = 1 and then scan all but the first element of
the array. Find the largest remaining number and swap it with the second element. Continue
this process until reaching the next-to-last element. Now only two elements are left. Compare
them and place the larger in the next-to-last position. This leaves the smallest element of all in
the final position.

 It looks like a for loop task, but we still have to describe the “find and place” process in
more detail. One way to select the largest remaining value is to compare the first and second
elements of the remaining array. If the second is larger, swap the two values. Now compare the
first element with the third. If the third is larger, swap those two. Each swap moves a larger
element to the top. Continue this way until you have compared the first with the last element.
When you finish, the largest value is now in the first element of the remaining array. You have
sorted the array for the first element, but the rest of the array is in a jumble. Here is the proce-
dure in pseudocode:

 for n - second element to last element,

 compare nth element with first element; if nth is greater, swap values

 This process looks like another for loop. It will be nested in the first for loop. The outer loop
indicates which array element is to be filled, and the inner loop finds the value to put there.
Putting the two parts of the pseudocode together and translating them into C, we get the
function in Listing 11.29 . Incidentally, the C library includes a more advanced sorting func-
tion called qsort() . Among other things, it uses a pointer to a function to make the sorting
comparison. Chapter 16 , “The C Preprocessor and the C Library,” gives examples of its use.

 The ctype.h Character Functions and Strings

 Chapter 7 , “C Control Statements: Branching and Jumps,” introduced the ctype.h family of
character-related functions. These functions can’t be applied to a string as a whole, but they
can be applied to the individual characters in a string. Listing 11.30 , for example, defines a
function that applies the toupper() function to each character in a string, thus converting the
whole string to uppercase. It also defines a function that uses ispunct() to count the number
of punctuation characters in a string. Finally, the program uses strchr() , as described earlier,
to handle the newline, if any, in the string read by fgets() .

 Listing 11.30 The mod_str.c Program

 /* mod_str.c -- modifies a string */

 #include <stdio.h>

 #include <string.h>

ptg11524036

496 Chapter 11 Character Strings and String Functions

 #include <ctype.h>

 #define LIMIT 81

 void ToUpper(char *);

 int PunctCount(const char *);

 int main(void)

 {

 char line[LIMIT];

 char * find;

 puts("Please enter a line:");

 fgets(line, LIMIT, stdin);

 find = strchr(line, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 ToUpper(line);

 puts(line);

 printf("That line has %d punctuation characters.\n",

 PunctCount(line));

 return 0;

 }

 void ToUpper(char * str)

 {

 while (*str)

 {

 *str = toupper(*str);

 str++;

 }

 }

 int PunctCount(const char * str)

 {

 int ct = 0;

 while (*str)

 {

 if (ispunct(*str))

 ct++;

 str++;

 }

 return ct;

 }

ptg11524036

497Command-Line Arguments

 The while (*str) loop processes each character in the string pointed to by str until the null
character is reached. At that point, the value of *str becomes 0 (the code for the null charac-
ter), or false, and the loop terminates. Here is a sample run:

 Please enter a line:

 Me? You talkin' to me? Get outta here!

 ME? YOU TALKIN' TO ME? GET OUTTA HERE!

 That line has 4 punctuation characters.

 The ToUpper() function applies toupper() to each character in a string. (The fact that C
distinguishes between uppercase and lowercase makes these two function names different from
one another.) As defined by ANSI C, the toupper() function alters only characters that are
lowercase. However, very old implementations of C don’t do that check automatically, so old
code normally does something like this:

 if (islower(*str)) /* pre-ANSI C -- check before converting */

 *str = toupper(*str);

 Incidentally, the ctype.h functions are usually implemented as macros . These are C prepro-
cessor constructions that act much like functions but have some important differences. We’ll
cover macros in Chapter 16 .

 This program used a combination of fgets() and strchr() to read a line of input and replace
the newline with a null character. The main difference between this approach and using
 s_gets() is that the latter disposes of the rest of the input line, if any, preparing the program
for the next input statement. In this case, there is only one input statement, so that extra step
isn’t needed.

 Next, let’s try to fill an old emptiness in our lives, namely, the void between the parentheses in
 main() .

 Command-Line Arguments

 Before the modern graphical interface, there was the command-line interface. DOS and Unix
are examples, and Linux terminal provides a Unix-like command-line environment. The
 command line is the line you type to run your program in a command-line environment.
Suppose you have a program in a file named fuss . Then the command line to run it might
look like this in Unix:

 $ fuss

 Or it might look like this in the Windows Command Prompt mode:

 C> fuss

 Command-line arguments are additional items on the same line. Here’s an example:

 $ fuss -r Ginger

ptg11524036

498 Chapter 11 Character Strings and String Functions

 A C program can read those additional items for its own use (see Figure 11.7).

run program with

command-line
arguments

/* repeat.c */

int main(int argc,char*argv[])

{

•

•

•

}

repeat I'm fine

argv[0] argv[1] argv[2]

executable file
called "repeat"

three strings

argc = 3

 Figure 11.7 Command-line arguments.

 A C program reads these items by using arguments to main() . Listing 11.31 shows a typical
example.

 Listing 11.31 The repeat.c Program

 /* repeat.c -- main() with arguments */

 #include <stdio.h>

 int main(int argc, char *argv[])

 {

 int count;

 printf("The command line has %d arguments:\n", argc - 1);

 for (count = 1; count < argc; count++)

 printf("%d: %s\n", count, argv[count]);

 printf("\n");

 return 0;

 }

 Compile this program into an executable file called repeat . Here is what happens when you
run it from a command line:

 C> repeat Resistance is futile

ptg11524036

499Command-Line Arguments

 The command line has 3 arguments:

 1: Resistance

 2: is

 3: futile

 You can see why it is called repeat , but you might wonder how it works. We’ll explain now.

 C compilers allow main() to have no arguments or else to have two arguments. (Some imple-
mentations allow additional arguments, but that would be an extension of the standard.) With
two arguments, the first argument is the number of strings in the command line. By tradition
(but not by necessity), this int argument is called argc for argument count . The system uses
spaces to tell when one string ends and the next begins. Therefore, the repeat example has
four strings, including the command name, and the fuss example has three. The program
stores the command line strings in memory and stores the address of each string in an array
of pointers. The address of this array is stored in the second argument. By convention, this
pointer to pointers is called argv , for argument values . When possible (some operating systems
don’t allow this), argv[0] is assigned the name of the program itself. Then argv[1] is assigned
the first following string, and so on. For our example, we have the following relationships:

 argv[0] points to repeat (for most systems)

 argv[1] points to Resistance

 argv[2] points to is

 argv[3] points to futile

 The program in Listing 11.31 uses a for loop to print each string in turn. Recall that the %s
specifier for printf() expects the address of a string to be provided as an argument. Each
element— argv[0] , argv[1] , and so on—is just such an address.

 The form is the same as for any other function having formal arguments. Many programmers
use a different declaration for argv :

 int main(int argc, char **argv)

 This alternative declaration for argv really is equivalent to char *argv[] . It says that argv
is a pointer to a pointer to char . The example comes down to the same thing. It had an array
with seven elements. The name of the array is a pointer to the first element, so argv points to
 argv[0] , and argv[0] is a pointer to char . Hence, even with the original definition, argv is a
pointer to a pointer to char . You can use either form, but we think that the first more clearly
suggests that argv represents a set of strings.

 Incidentally, many environments, including Unix and DOS, allow the use of quotation marks
to lump several words into a single argument. For example, the command

 repeat "I am hungry" now

 would assign the string "I am hungry" to argv[1] and the string "now" to argv[2] .

ptg11524036

500 Chapter 11 Character Strings and String Functions

 Command-Line Arguments in Integrated Environments

 Integrated Windows environments, such as Apple’s Xcode, Microsoft Visual C++, and
Embarcadero C++ Builder, don’t use command lines to run programs. However, some have
a project dialog box that enables you to specify a command-line argument for a particular
project. In other cases, you may be able to compile the program in the IDE and then open an
MS-DOS window to run the program in command-line mode. But it’s simpler if your system
has the option of running a command-line compiler such as GCC.

 Command-Line Arguments with the Macintosh

 If you are using Xcode 4.6 (or similar version), you can provide command-line arguments
by going to the Products menu and selecting Scheme, Edit Scheme, Run. Then select the
Arguments tab and enter arguments in the Arguments Pass on Launch.

 Or you can enter the Mac’s Terminal mode and the world of command-line Unix. Then
you can either locate the directory (Unix for folder) containing the executable code for your
program, or, if you have downloaded the command-line tools, use gcc or clang to compile the
program.

 String-to-Number Conversions

 Numbers can be stored either as strings or in numeric form. Storing a number as a string means
storing the digit characters. For example, the number 213 can be stored in a character string
array as the digits '2' , '1' , '3' , '\0' . Storing 213 in numeric form means storing it as, say, an
 int .

 C requires numeric forms for numeric operations, such as addition and comparison, but
displaying numbers on your screen requires a string form because a screen displays charac-
ters. The printf() and sprintf() functions, through their %d and other specifiers, convert
numeric forms to string forms, and scanf() can convert input strings into numeric forms.. C
also has functions whose sole purpose is to convert string forms to numeric forms.

 Suppose, for example, that you want a program to use a numeric command-line argument.
Unfortunately, command-line arguments are read as strings. Therefore, to use the numeric
value, you must first convert the string to a number. If the number is an integer, you can use
the atoi() function (for alphanumeric to integer). It takes a string as an argument and returns
the corresponding integer value. Listing 11.32 shows a sample use.

 Listing 11.32 The hello.c Program

 /* hello.c -- converts command-line argument to number */

 #include <stdio.h>

 #include <stdlib.h>

 int main(int argc, char *argv[])

ptg11524036

501String-to-Number Conversions

 {

 int i, times;

 if (argc < 2 || (times = atoi(argv[1])) < 1)

 printf("Usage: %s positive-number\n", argv[0]);

 else

 for (i = 0; i < times; i++)

 puts("Hello, good looking!");

 return 0;

 }

 Here’s a sample run:

 $ hello 3

 Hello, good looking!

 Hello, good looking!

 Hello, good looking!

 The $ is a Unix and Linux prompt. (Some Unix systems use % .)The command-line argument of
 3 was stored as the string 3\0 . The atoi() function converted this string to the integer value 3 ,
which was assigned to times . This then determined the number of for loop cycles executed.

 If you run the program without a command-line argument, the argc < 2 test aborts the
program and prints a usage message. The same thing happens if times is 0 or negative. C’s
order-of-evaluation rule for logical operators guarantees that if argc < 2 , atoi(argv[1]) is
not evaluated.

 The atoi() function still works if the string only begins with an integer. In that case, it
converts characters until it encounters something that is not part of an integer. For example,
 atoi("42regular") returns the integer 42 . What if the command line is something like hello
what ? On the implementations we’ve used, the atoi() function returns a value of 0 if its argu-
ment is not recognizable as a number. However, the C standard says the behavior in that case
is undefined. The strtol() function, discussed shortly, provides error checking that is more
reliable.

 We include the stdlib.h header because, since ANSI C, it contains the function declaration
for atoi() . That header file also includes declarations for atof() and atol() . The atof()
function converts a string to a type double value, and the atol() function converts a string
to a type long value. They work analogously to atoi() , so they are type double and long ,
respectively.

 ANSI C has supplied more sophisticated versions of these functions: strtol() converts a string
to a long , strtoul() converts a string to an unsigned long , and strtod() converts a string
to double . The more sophisticated aspect is that the functions identify and report the first
character in the string that is not part of a number. Also, strtol() and strtoul() allow you
to specify a number base.

ptg11524036

502 Chapter 11 Character Strings and String Functions

 Let’s look at an example involving strtol(). Its prototype is as follows:

 long strtol(const char * restrict nptr, char ** restrict endptr, int base);

 Here, nptr is a pointer to the string you want to convert, endptr is the address of a pointer
that gets set to the address of the character terminating the input number, and base is the
number base the number is written in. An example, given in Listing 11.33 , makes this clearer.

 Listing 11.33 The strcnvt.c Program

 /* strcnvt.c -- try strtol() */

 #include <stdio.h>

 #include <stdlib.h>

 #define LIM 30

 char * s_gets(char * st, int n);

 int main()

 {

 char number[LIM];

 char * end;

 long value;

 puts("Enter a number (empty line to quit):");

 while(s_gets(number, LIM) && number[0] != '\0')

 {

 value = strtol(number, &end, 10); /* base 10 */

 printf("base 10 input, base 10 output: %ld, stopped at %s (%d)\n",

 value, end, *end);

 value = strtol(number, &end, 16); /* base 16 */

 printf("base 16 input, base 10 output: %ld, stopped at %s (%d)\n",

 value, end, *end);

 puts("Next number:");

 }

 puts("Bye!\n");

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

ptg11524036

503String-to-Number Conversions

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 Here is some sample output:

 Enter a number (empty line to quit):

 10

 base 10 input, base 10 output: 10, stopped at (0)

 base 16 input, base 10 output: 16, stopped at (0)

 Next number:

 10atom

 base 10 input, base 10 output: 10, stopped at atom (97)

 base 16 input, base 10 output: 266, stopped at tom (116)

 Next number:

 Bye!

 First, note that the string "10" is converted to the number 10 when base is 10 and to 16 when
 base is 16. Also note that if end points to a character, *end is a character. Therefore, the first
conversion ended when the null character was reached, so end pointed to the null character.
Printing end displays an empty string, and printing *end with the %d format displays the ASCII
code for the null character.

 For the second input string (base-10 interpretation), end is given the address of the 'a' charac-
ter. So printing end displays the string "atom" , and printing *end displays the ASCII code for
the 'a' character. When the base is changed to 16, however, the 'a' character is recognized as
a valid hexadecimal digit, and the function converts the hexadecimal number 10a to 266 , base
10.

 The strtol() function goes up to base 36, using the letters through 'z' as digits. The
 strtoul() function does the same, but converts unsigned values. The strtod() function does
only base 10, so it uses just two arguments.

 Many implementations have itoa() and ftoa() functions for converting integers and
floating-point values to strings. However, they are not part of the standard C library; use
 sprintf() , instead, for greater compatibility.

ptg11524036

504 Chapter 11 Character Strings and String Functions

 Key Concepts

 Many programs deal with text data. A program may ask you to enter your name, a list of
corporations, an address, the botanical name for a type of fern, the cast of a musical, or...well,
because we interact with the world using words, there’s really no end to examples using text.
And strings are the means a C program uses to handle strings.

 A C string —whether it be identified by a character array, a pointer, or a string literal—is stored
as a series of bytes containing character codes, and the sequence is terminated by the null char-
acter. C recognizes the usefulness of strings by providing a library of functions for manipulat-
ing them, searching them, and analyzing them. In particular, keep in mind that you should
use strcmp() instead of relational operators when comparing strings, and you should use
 strcpy() or strncpy() instead of the assignment operator to assign a string to a character
array.

 Summary

 A C string is a series of char s terminated by the null character, '\0' . A string can be stored in a
character array. A string can also be represented with a string constant , in which the characters,
aside from the null character, are enclosed in double quotation marks. The compiler supplies
the null character. Therefore, "joy" is stored as the four characters j , o , y , and \0 . The length
of a string, as measured by strlen() , doesn’t count the null character.

 String constants, also known as string literals , can be used to initialize character arrays. The
array size should be at least one greater than the string length to accommodate the terminating
null character. String constants can also be used to initialize pointers of type pointer-to- char .

 Functions use pointers to the first character of a string to identify on which string to act.
Typically, the corresponding actual argument is an array name, a pointer variable, or a quoted
string. In each case, the address of the first character is passed. In general, it is not necessary
to pass the length of the string, because the function can use the terminating null character to
locate the end of a string.

 The f gets() function fetches a line of input, and the puts() and fputs() functions display a
line of output. They are part of the stdio.h family of functions, as once was the now disgraced
and abandoned function gets() .

 The C library includes several string-handling functions. Under ANSI C, these functions are
declared in the string.h file. The library also has several character-processing functions; they are
declared in the ctype.h file.

 You can give a program access to command-line arguments by providing the proper two formal
variables to the main() function. The first argument, traditionally called argc , is an int and is
assigned the count of command-line words. The second argument, traditionally called argv , is
a pointer to an array of pointers to char . Each pointer-to- char points to one of the command-
line argument strings, with argv[0] pointing to the command name, argv[1] pointing to the
first command-line argument, and so on.

ptg11524036

505Review Questions

 The atoi() , atol() , and atof() functions convert string representations of numbers to type
 int , long , and double forms, respectively. The strtol() , strtoul() , and strtod() func-
tions convert string representations of numbers to type long , unsigned long , and double
forms, respectively.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. What’s wrong with this attempted declaration of a character string?

 int main(void)

 {

 char name[] = {'F', 'e', 's', 's' };

 ...

 }

 2. What will this program print?

 #include <stdio.h>

 int main(void)

 {

 char note[] = "See you at the snack bar.";

 char *ptr;

 ptr = note;

 puts(ptr);

 puts(++ptr);

 note[7] = '\0';

 puts(note);

 puts(++ptr);

 return 0;

 }

 3. What will this program print?

 #include <stdio.h>

 #include <string.h>

 int main(void)

 {

 char food[] = "Yummy";

 char *ptr;

 ptr = food + strlen(food);

 while (--ptr >= food)

ptg11524036

506 Chapter 11 Character Strings and String Functions

 puts(ptr);

 return 0;

 }

 4. What will the following program print?

 #include <stdio.h>

 #include <string.h>

 int main(void)

 {

 char goldwyn[40] = "art of it all ";

 char samuel[40] = "I read p";

 const char * quote = "the way through.";

 strcat(goldwyn, quote);

 strcat(samuel, goldwyn);

 puts(samuel);

 return 0;

 }

 5. The following provides practice with strings, loops, pointers, and pointer incrementing.
First, suppose you have this function definition:

 #include <stdio.h>

 char *pr (char *str)

 {

 char *pc;

 pc = str;

 while (*pc)

 putchar(*pc++);

 do {

 putchar(*--pc);

 } while (pc - str);

 return (pc);

 }

 Consider the following function call:

 x = pr("Ho Ho Ho!");

 a. What is printed?

 b. What type should x be?

 c. What value does x get?

 d. What does the expression *--pc mean, and how is it different from --*pc ?

ptg11524036

507Review Questions

 e. What would be printed if *--pc were replaced with *pc-- ?

 f. What do the two while expressions test for?

 g. What happens if pr() is supplied with a null string as an argument?

 h. What must be done in the calling function so that pr() can be used as shown?

 6. Assume this declaration:

 char sign = '$';

 How many bytes of memory does sign use? What about '$' ? What about "$" ?

 7. What does the following program print?

 #include <stdio.h>

 #include <string.h>

 #define M1 "How are ya, sweetie? "

 char M2[40] = "Beat the clock.";

 char * M3 = "chat";

 int main(void)

 {

 char words[80];

 printf(M1);

 puts(M1);

 puts(M2);

 puts(M2 + 1);

 strcpy(words,M2);

 strcat(words, " Win a toy.");

 puts(words);

 words[4] = '\0';

 puts(words);

 while (*M3)

 puts(M3++);

 puts(--M3);

 puts(--M3);

 M3 = M1;

 puts(M3);

 return 0;

 }

 8. What does the following program print?

 #include <stdio.h>

 int main(void)

 {

 char str1[] = "gawsie"; // plump and cheerful

 char str2[] = "bletonism";

ptg11524036

508 Chapter 11 Character Strings and String Functions

 char *ps;

 int i = 0;

 for (ps = str1; *ps != '\0'; ps++) {

 if (*ps == 'a' || *ps == 'e')

 putchar(*ps);

 else

 (*ps)--;

 putchar(*ps);

 }

 putchar('\n');

 while (str2[i] != '\0') {

 printf("%c", i % 3 ? str2[i] : '*');

 ++i;

 }

 return 0;

 }

 9. The s_gets() function defined in this chapter can be written in pointer notation instead
of array notation so as to eliminate the variable i . Do so.

 10. The strlen() function takes a pointer to a string as an argument and returns the length
of the string. Write your own version of this function.

 11. The s_gets() function defined in this chapter can be written using strchr() instead of
a while loop to find the newline. Do so.

 12. Design a function that takes a string pointer as an argument and returns a pointer to the
first space character in the string on or after the pointed-to position. Have it return a null
pointer if it finds no spaces.

 13. Rewrite Listing 11.21 using ctype.h functions so that the program recognizes a correct
answer regardless of the user’s choice of uppercase or lowercase.

 Programming Exercises

 1. Design and test a function that fetches the next n characters from input (including
blanks, tabs, and newlines), storing the results in an array whose address is passed as an
argument.

 2. Modify and test the function in exercise 1 so that it stops after n characters or after the
first blank, tab, or newline, whichever comes first. (Don’t just use scanf() .)

ptg11524036

509Programming Exercises

 3. Design and test a function that reads the first word from a line of input into an array and
discards the rest of the line. It should skip over leading whitespace. Define a word as a
sequence of characters with no blanks, tabs, or newlines in it. Use getchar() , not

 4. Design and test a function like that described in Programming Exercise 3 except that it
accepts a second parameter specifying the maximum number of characters that can be
read.

 5. Design and test a function that searches the string specified by the first function
parameter for the first occurrence of a character specified by the second function
parameter. Have the function return a pointer to the character if successful, and a null
if the character is not found in the string. (This duplicates the way that the library
 strchr() function works.) Test the function in a complete program that uses a loop to
provide input values for feeding to the function.

 6. Write a function called is_within() that takes a character and a string pointer as its two
function parameters. Have the function return a nonzero value (true) if the character is
in the string and zero (false) otherwise. Test the function in a complete program that uses
a loop to provide input values for feeding to the function.

 7. The strncpy(s1,s2,n) function copies exactly n characters from s2 to s1 , truncating
 s2 or padding it with extra null characters as necessary. The target string may not be
null-terminated if the length of s2 is n or more. The function returns s1 . Write your own
version of this function; call it mystrncpy() . Test the function in a complete program
that uses a loop to provide input values for feeding to the function.

 8. Write a function called string_in() that takes two string pointers as arguments. If
the second string is contained in the first string, have the function return the address
at which the contained string begins. For instance, string_in("hats", "at") would
return the address of the a in hats . Otherwise, have the function return the null pointer.
Test the function in a complete program that uses a loop to provide input values for
feeding to the function.

 9. Write a function that replaces the contents of a string with the string reversed. Test the
function in a complete program that uses a loop to provide input values for feeding to
the function.

 10. Write a function that takes a string as an argument and removes the spaces from the
string. Test it in a program that uses a loop to read lines until you enter an empty line.
The program should apply the function to each input string and display the result.

 11. Write a program that reads in up to 10 strings or to EOF , whichever comes first. Have it
offer the user a menu with five choices: print the original list of strings, print the strings

ptg11524036

510 Chapter 11 Character Strings and String Functions

in ASCII collating sequence, print the strings in order of increasing length, print the
strings in order of the length of the first word in the string, and quit. Have the menu
recycle until the user enters the quit request. The program, of course, should actually
perform the promised tasks.

 12. Write a program that reads input up to EOF and reports the number of words, the
number of uppercase letters, the number of lowercase letters, the number of punctuation
characters, and the number of digits. Use the ctype.h family of functions.

 13. Write a program that echoes the command-line arguments in reverse word order. That
is, if the command-line arguments are see you later , the program should print later
you see .

 14. Write a power-law program that works on a command-line basis. The first command-line
argument should be the type double number to be raised to a certain power, and the
second argument should be the integer power.

 15. Use the character classification functions to prepare an implementation of atoi() ; have
this version return the value of 0 if the input string is not a pure number.

 16. Write a program that reads input until end-of-file and echoes it to the display. Have the
program recognize and implement the following command-line arguments:

 -p Print input as is

 -u Map input to all uppercase

 -l Map input to all lowercase

 Also, if there are no command-line arguments, let the program behave as if the –p
argument had been used.

ptg11524036

 12
 Storage Classes, Linkage,

and Memory Management

 You will learn about the following in this chapter:

 ■ Keywords:

 auto , extern , static , register , const , volatile , restricted , _Thread_local ,
 _Atomic

 ■ Functions:

 rand() , srand() , time() , malloc() , calloc() , free()

 ■ How C allows you to determine the scope of a variable (how widely known it is) and the
lifetime of a variable (how long it remains in existence)

 ■ Designing more complex programs

 One of C’s strengths is that it enables you to control a program’s fine points. C’s memory
management system exemplifies that control by letting you determine which functions know
which variables and for how long a variable persists in a program. Using memory storage is one
more element of program design.

 Storage Classes

 C provides several different models, or storage classes , for storing data in memory. To under-
stand the options, it’s helpful to go over a few concepts and terms first.

 Every programming example in this book stores data in memory. There is a hardware aspect
to this—each stored value occupies physical memory. C literature uses the term object for such
a chunk of memory. An object can hold one or more values. An object might not yet actually
have a stored value, but it will be of the right size to hold an appropriate value. (The phrase
 object-oriented programming uses the word object in a more developed sense to indicate class

ptg11524036

512 Chapter 12 Storage Classes, Linkage, and Memory Management

objects, whose definitions encompass both data and permissible operations on the data; C is
not an object-oriented programming language.)

 There also is a software aspect—the program needs a way to access the object. This can be
accomplished, for instance, by declaring a variable:

 int entity = 3;

 This declaration creates an identifier called entity . An identifier is a name, in this case one
that can be used to designate the contents of a particular object. Identifiers satisfy the naming
conventions for variables discussed in Chapter 2 , “Introducing C.” In this case, the identifier
 entity is how the software (the C program) designates the object that’s stored in hardware
memory. This declaration also provides a value to be stored in the object.

 A variable name isn’t the only way to designate an object. For instance, consider the following
declarations:

 int * pt = &entity;

 int ranks[10];

 In the first case, pt is an identifier. It designates an object that holds an address. Next, the
expression *pt is not an identifier because it’s not a name. However, it does designate an
object, in this case the same object that entity designates. In general, as you may recall from
 Chapter 3 , “Data and C,” an expression that designates an object is called an lvalue. So entity
is an identifier that is an lvalue, and *pt is an expression that is an lvalue. Along the same
lines, the expression ranks + 2 * entity is neither an identifier (not a name) nor an lvalue
(doesn’t designate the contents of a memory location). But the expression *(ranks + 2 *
entity) is an lvalue because it does designate the value of a particular memory location, the
seventh element of the ranks array. The declaration of ranks , by the way, creates an object
capable of holding ten ints , and each member of the array also is an object.

 If, as with all these examples, you can use the lvalue to change the value in an object, it’s a
 modifiable lvalue . Now consider this declaration:

 const char * pc = "Behold a string literal!";

 This causes the program to store the string literal contents in memory, and that array of char-
acter values is an object. Each character in the array also is an object, as it can be accessed
individually. The declaration also creates an object having the identifier pc and holding the
address of that string. The identifier pc is a modifiable lvalue because it can be reset to point to
a different string. The const prevents you from altering the contents of a pointed-to string but
not from changing which string is pointed to. So *pc , which designates the data object holding
the 'B' character, is an lvalue, but not a modifiable lvalue. Similarly, the string literal itself,
because it designates the object holding the character string, is an lvalue, but not a modifiable
one.

 You can describe an object in terms of its storage duration , which is how long it stays in
memory. You can describe an identifier used to access the object by its scope and its linkage ,
which together indicate which parts of a program can use it. The different storage classes offer

ptg11524036

513Storage Classes

different combinations of scope, linkage, and storage duration. You can have identifiers that
can be shared over several files of source code, identifiers that can be used by any function in
one particular file, identifiers that can be used only within a particular function, and even iden-
tifiers that can be used only within a subsection of a function. You can have objects that exist
for the duration of a program and objects that exist only while the function containing them is
executing. With concurrent programming, you can have objects that exist for the duration of
a particular thread. You also can store data in memory that is allocated and freed explicitly by
means of function calls.

 Next, let’s investigate the meaning of the terms scope , linkage , and storage duration . After that,
we’ll return to specific storage classes.

 Scope

 Scope describes the region or regions of a program that can access an identifier. A C variable
has one of the following scopes: block scope, function scope, function prototype scope, or file
scope . The program examples to date have used block scope almost exclusively for variables. A
 block , as you’ll recall, is a region of code contained within an opening brace and the matching
closing brace. For instance, the entire body of a function is a block. Any compound statement
within a function also is a block. A variable defined inside a block has block scope , and it is
visible from the point it is defined until the end of the block containing the definition. Also,
formal function parameters, even though they occur before the opening brace of a function,
have block scope and belong to the block containing the function body. So the local variables
we’ve used to date, including formal function parameters, have block scope. Therefore, the vari-
ables cleo and patrick in the following code both have block scope extending to the closing
brace:

 double blocky(double cleo)

 {

 double patrick = 0.0;

 ...

 return patrick;

 }

 Variables declared in an inner block have scope restricted just to that block:

 double blocky(double cleo)

 {

 double patrick = 0.0;

 int i;

 for (i = 0; i < 10; i++)

 {

 double q = cleo * i; // start of scope for q

 ...

 patrick *= q;

 } // end of scope for q

 ...

ptg11524036

514 Chapter 12 Storage Classes, Linkage, and Memory Management

 return patrick;

 }

 In this example, the scope of q is limited to the inner block, and only code within that block
can access q .

 Traditionally, variables with block scope had to be declared at the beginning of a block. C99
relaxed that rule, allowing you to declare variables anywhere in a block. One new possibility is
in the control section of a for loop. That is, you now can do this:

 for (int i = 0; i < 10; i++)

 printf("A C99 feature: i = %d", i);

 As part of this new feature, C99 expanded the concept of a block to include the code controlled
by a for loop, while loop, do while loop, or if statement, even if no brackets are used. So in
the previous for loop, the variable i is considered to be part of the for loop block. Therefore,
its scope is limited to the for loop. After execution leaves the for loop, the program will no
longer see that i .

 Function scope applies just to labels used with goto statements. This means that even if a label
first appears inside an inner block in a function, its scope extends to the whole function. It
would be confusing if you could use the same label inside two separate blocks, and function
scope for labels prevents this from happening.

 Function prototype scope applies to variable names used in function prototypes, as in the
following:

 int mighty(int mouse, double large);

 Function prototype scope runs from the point the variable is defined to the end of the proto-
type declaration. What this means is that all the compiler cares about when handling a func-
tion prototype argument is the types; the names you use, if any, normally don’t matter, and
they needn’t match the names you use in the function definition. One case in which the
names matter a little is with variable-length array parameters:

 void use_a_VLA(int n, int m, ar[n][m]);

 If you use names in the brackets, they have to be names declared earlier in the prototype.

 A variable with its definition placed outside of any function has file scope . A variable with file
scope is visible from the point it is defined to the end of the file containing the definition. Take
a look at this example:

 #include <stdio.h>

 int units = 0; /* a variable with file scope */

 void critic(void);

 int main(void)

 {

 ...

 }

ptg11524036

515Storage Classes

 void critic(void)

 {

 ...

 }

 Here, the variable units has file scope, and it can be used in both main() and critic() .
(More exactly, units has file scope with external linkage, a distinction we’ll cover in the next
section.) Because they can be used in more than one function, file scope variables are also
called global variables .

 Note Translation Units and Files

 What you view as several files may appear to the compiler as a single file. For example, sup-
pose that, as often is the case, you include one or more header files (.h extension) in a source
code file (.c sextension). A header file, in turn, may include other header files. So several
separate physical files may be involved. However, C preprocessing essentially replaces an
 #include directive with the contents of the header file. Thus the compiler sees a single file
containing information from your source code file and all the header files. This single file is
called a translation unit . When we describe a variable as having file scope, it’s actually visible
to the whole translation unit. If your program consists of several source code files, then it will
consist of several translation units, with each translation unit corresponding to a source code
file and its included files.

 Linkage

 Next, let’s look at linkage. A C variable has one of the following linkages: external linkage,
internal linkage, or no linkage . Variables with block scope, function scope, or function proto-
type scope have no linkage. That means they are private to the block, function, or prototype in
which they are defined. A variable with file scope can have either internal or external linkage.
A variable with external linkage can be used anywhere in a multifile program. A variable with
internal linkage can be used anywhere in a single translation unit.

 Note Formal and Informal Terms

 The C Standard uses “file scope with internal linkage” to describe scope limited to one transla-
tion unit (a source code file plus its included header files) and “file scope with external linkage”
to describe scope that, at least potentially, extends to other translation units. But programmers
don’t always have the time or patience to use those terms. Some common short cuts are to
use “file scope” for “file scope with internal linkage” and “global scope” or “program scope”
for “file scope with external linkage.”

 So how can you tell whether a file scope variable has internal or external linkage? You look to
see if the storage class specifier static is used in the external definition:

ptg11524036

516 Chapter 12 Storage Classes, Linkage, and Memory Management

 int giants = 5; // file scope, external linkage

 static int dodgers = 3; // file scope, internal linkage

 int main()

 {

 ...

 }

 ...

 The variable giants can be used by other files that are part of the same program. The dodgers
variable is private to this particular file, but can be used by any function in the file.

 Storage Duration

 Scope and linkage describe the visibility of identifiers. Storage duration describes the persistence
of the objects accessed by these identifiers. A C object has one of the following four storage
durations: static storage duration, thread storage duration, automatic storage duration, or allo-
cated storage duration .

 If an object has static storage duration, it exists throughout program execution. Variables with
file scope have static storage duration. Note that for file scope variables, the keyword static
indicates the linkage type, not the storage duration. A file scope variable declared using static
has internal linkage, but all file scope variables, using internal linkage or external linkage, have
static storage duration.

 Thread storage duration comes into play in concurrent programming, in which program execu-
tion can be divided into multiple threads. An object with thread storage duration exists from
when it’s declared until the thread terminates. Such an object is created when a declaration
that would otherwise create a file scope object is modified with the keyword _Thread_local .
When a variable is declared with this specifier, each thread gets its own private copy of that
variable.

 Variables with block scope normally have automatic storage duration. These variables have
memory allocated for them when the program enters the block in which they are defined, and
the memory is freed when the block is exited. The idea is that memory used for automatic vari-
ables is a workspace or scratch pad that can be reused. For example, after a function call termi-
nates, the memory it used for its variables can be used to hold variables for the next function
that is called.

 Variable-length arrays provide a slight exception in that they exist from the point of declara-
tion to the end of the block rather than from the beginning of the block to the end.

 The local variables we’ve used so far fall into the automatic category. For example, in the
following code, the variables number and index come into being each time the bore() func-
tion is called and pass away each time the function completes:

 void bore(int number)

 {

 int index;

ptg11524036

517Storage Classes

 for (index = 0; index < number; index++)

 puts("They don't make them the way they used to.\n");

 return 0;

 }

 It is possible, however, for a variable to have block scope but static storage duration. To create
such a variable, declare it inside a block and add the keyword static to the declaration:

 void more(int number)

 {

 int index;

 static int ct = 0;

 ...

 return 0;

 }

 Here the variable ct is stored in static memory; it exists from the time the program is loaded
until the program terminates. But its scope is confined to the more() function block. Only
while this function executes can the program use ct to access the object it designates.
(However, one can allow indirect access by enabling the function to provide the address of the
storage to other functions, for example, by a pointer parameter or return value.)

 C uses scope, linkage, and storage duration to define several storage schemes for variables. This
book doesn’t cover concurrent programming, so we won’t go into that aspect. And we’ll discuss
allocated storage later in this chapter. That leaves five storage classes: automatic, register, static
with block scope, static with external linkage, and static with internal linkage. Table 12.1 lists
the combinations. Now that we’ve covered scope, linkage, and storage duration, we can discuss
these storage classes in more detail.

 Table 12.1 Five Storage Classes

 Storage Class Duration Scope Linkage How Declared

 automatic Automatic Block None In a block

 register Automatic Block None In a block with the
keyword register

 static with
external linkage

 Static File External Outside of all func-
tions

 static with
internal linkage

 Static File Internal Outside of all func-
tions with the key-
word static

 static with no
linkage

 Static Block None In a block with the
keyword static

ptg11524036

518 Chapter 12 Storage Classes, Linkage, and Memory Management

 Automatic Variables

 A variable belonging to the automatic storage class has automatic storage duration, block scope,
and no linkage. By default, any variable declared in a block or function header belongs to the
automatic storage class. You can, however, make your intentions perfectly clear by explicitly
using the keyword auto , as shown here:

 int main(void)

 {

 auto int plox;

 You might do this, for example, to document that you are intentionally overriding an external
variable definition or that it is important not to change the variable to another storage class.
The keyword auto is termed a storage-class specifier . C++ has repurposed the auto keyword for
a quite different use, so simply not using auto as a storage-class specifier is better for C/C++
compatibility.

 Block scope and no linkage imply that only the block in which the variable is defined can
access that variable by name. (Of course, arguments can be used to communicate the variable’s
value and address to another function, but that is indirect knowledge.) Another function can
use a variable with the same name, but it will be an independent variable stored in a different
memory location.

 Recall that automatic storage duration means that the variable comes into existence when the
program enters the block that contains the variable declaration. When the program exits the
block, the automatic variable disappears. Its memory location now can be used for something
else, although not necessarily.

 Let’s look more closely at nested blocks. A variable is known only to the block in which it is
declared and to any block inside that block:

 int loop(int n)

 {

 int m; // m in scope

 scanf("%d", &m);

 {

 int i; // both m and i in scope

 for (i = m; i < n; i++)

 puts("i is local to a sub-block\n");

 }

 return m; // m in scope, i gone

 }

 In this code, i is visible only within the inner braces. You’d get a compiler error if you tried to
use it before or after the inner block. Normally, you wouldn’t use this feature when designing
a program. Sometimes, however, it is useful to define a variable in a sub-block if it is not used
elsewhere. In that way, you can document the meaning of a variable close to where it is used.
Also, the variable doesn’t sit unused, occupying memory when it is no longer needed. The

ptg11524036

519Storage Classes

variables n and m , being defined in the function head and in the outer block, are in scope for
the whole function and exist until the function terminates.

 What if you declare a variable in an inner block that has the same name as one in the outer
block? Then the name defined inside the block is the variable used inside the block. We say it
 hides the outer definition. However, when execution exits the inner block, the outer variable
comes back into scope. Listing 12.1 illustrates these points and more.

 Listing 12.1 The hiding.c Program

 // hiding.c -- variables in blocks

 #include <stdio.h>

 int main()

 {

 int x = 30; // original x

 printf("x in outer block: %d at %p\n", x, &x);

 {

 int x = 77; // new x, hides first x

 printf("x in inner block: %d at %p\n", x, &x);

 }

 printf("x in outer block: %d at %p\n", x, &x);

 while (x++ < 33) // original x

 {

 int x = 100; // new x, hides first x

 x++;

 printf("x in while loop: %d at %p\n", x, &x);

 }

 printf("x in outer block: %d at %p\n", x, &x);

 return 0;

 }

 Here’s the output:

 x in outer block: 30 at 0x7fff5fbff8c8

 x in inner block: 77 at 0x7fff5fbff8c4

 x in outer block: 30 at 0x7fff5fbff8c8

 x in while loop: 101 at 0x7fff5fbff8c0

 x in while loop: 101 at 0x7fff5fbff8c0

 x in while loop: 101 at 0x7fff5fbff8c0

 x in outer block: 34 at 0x7fff5fbff8c8

 First, the program creates an x variable with the value 30 , as the first printf() statement
shows. Then it defines a new x variable with the value 77 , as the second printf() statement
shows. That it is a new variable hiding the first x is shown by the address and also by the third

ptg11524036

520 Chapter 12 Storage Classes, Linkage, and Memory Management

 printf() statement. It is located after the first inner block, and it displays the original x value,
showing that the original x variable never went away and never got changed.

 Perhaps the most intriguing part of the program is the while loop. The while loop test uses
the original x :

 while(x++ < 33)

 Inside the loop, however, the program sees a third x variable, one defined just inside the while
loop block. So when the code uses x++ in the body of the loop, it is the new x that is incre-
mented to 101 and then displayed. When each loop cycle is completed, that new x disappears.
Then the loop test condition uses and increments the original x , the loop block is entered
again, and the new x is created again. In this example, that x is created and destroyed three
times. Note that, to terminate, this loop had to increment x in the test condition because incre-
menting x in the body increments a different x than the one used for the test.

 This particular compiler didn’t reuse the inner block memory location of x for the while loop
version of x , but some compilers do.

 The intent of this example is not to encourage you to write code like this. Rather, it is to illus-
trate what happens when you define variables inside a block. (Given the variety of names avail-
able via C’s naming rules, it shouldn’t be too difficult to come up with names other than x .)

 Blocks Without Braces

 A C99 feature, mentioned earlier, is that statements that are part of a loop or if statement
qualify as a block even if braces (that is, { }) aren’t used. More completely, an entire loop is a
sub-block to the block containing it, and the loop body is a sub-block to the entire loop block.
Similarly, an if statement is a block, and its associated sub-statement is a sub-block to the if
statement. These rules affect where you can declare a variable and the scope of that variable.
 Listing 12.2 shows how this works in a for loop.

 Listing 12.2 The forc99.c Program

 // forc99.c -- new C99 block rules

 #include <stdio.h>

 int main()

 {

 int n = 8;

 printf(" Initially, n = %d at %p\n", n, &n);

 for (int n = 1; n < 3; n++)

 printf(" loop 1: n = %d at %p\n", n, &n);

 printf("After loop 1, n = %d at %p\n", n, &n);

 for (int n = 1; n < 3; n++)

 {

 printf(" loop 2 index n = %d at %p\n", n, &n);

 int n = 6;

ptg11524036

521Storage Classes

 printf(" loop 2: n = %d at %p\n", n, &n);

 n++;

 }

 printf("After loop 2, n = %d at %p\n", n, &n);

 return 0;

 }

 Here is the output, assuming the compiler supports this modern C feature:

 Initially, n = 8 at 0x7fff5fbff8c8

 loop 1: n = 1 at 0x7fff5fbff8c4

 loop 1: n = 2 at 0x7fff5fbff8c4

 After loop 1, n = 8 at 0x7fff5fbff8c8

 loop 2 index n = 1 at 0x7fff5fbff8c0

 loop 2: n = 6 at 0x7fff5fbff8bc

 loop 2 index n = 2 at 0x7fff5fbff8c0

 loop 2: n = 6 at 0x7fff5fbff8bc

 After loop 2, n = 8 at 0x7fff5fbff8c8

 Note C99 and C11 Support

 Some compilers may not support these C99/C11 scope rules. (At this time Microsoft Visual
Studio 2012 is one of those compilers.) Others may provide an option for activating these
rules. For example, at the time of this writing, GCC supports many C99 features by default but
requires using the –std=c99 option to activate the features used in Listing 12.2 :
 gcc –std=c99 forc99.c

 Similarly, versions of GCC or Clang may require using the –std=c1x or -std=c11 options to
recognize C11 features.

 The n declared in the control section of the first for loop is in scope to the end of the loop and
hides the initial n . But after execution leaves the loop, the original n comes into scope.

 In the second for loop, the n declared as a loop index hides the initial n . Then, the n declared
inside the loop body hides the loop index n . When the program finishes executing the body,
the n declared in the body disappears, and the loop test uses the index n . When the entire loop
terminates, the original n comes back into scope. Again, there’s no need to keep reusing the
same variable name, but this is what happens if you do.

 Initialization of Automatic Variables

 Automatic variables are not initialized unless you do so explicitly. Consider the following
declarations:

 int main(void)

 {

ptg11524036

522 Chapter 12 Storage Classes, Linkage, and Memory Management

 int repid;

 int tents = 5;

 The tents variable is initialized to 5 , but the repid variable ends up with whatever value
happened to previously occupy the space assigned to repid . You cannot rely on this value
being 0 . You can initialize an automatic variable with a non-constant expression, provided any
variables used have been defined previously:

 int main(void)

 {

 int ruth = 1;

 int rance = 5 * ruth; // use previously defined variable

 Register Variables

 Variables are normally stored in computer memory. With luck, register variables are stored
in the CPU registers or, more generally, in the fastest memory available, where they can be
accessed and manipulated more rapidly than regular variables. Because a register variable may
be in a register rather than in memory, you can’t take the address of a register variable. In most
other respects, register variables are the same as automatic variables. That is, they have block
scope, no linkage, and automatic storage duration. A variable is declared by using the storage
class specifier register :

 int main(void)

 {

 register int quick;

 We say “with luck” because declaring a variable as a register class is more a request than
a direct order. The compiler has to weigh your demands against the number of registers or
amount of fast memory available, or it can simply ignore the request, so you might not get
your wish. In that case, the variable becomes an ordinary automatic variable; however, you still
can’t use the address operator with it.

 You can request that formal parameters be register variables. Just use the keyword in the func-
tion heading:

 void macho(register int n)

 The types that can be declared register may be restricted. For example, the registers in a
processor might not be large enough to hold type double .

 Static Variables with Block Scope

 The name static variable sounds like a contradiction, like a variable that can’t vary. Actually,
 static means that the variable stays put in memory, not necessarily in value. Variables with
file scope automatically (and necessarily) have static storage duration. As mentioned earlier,
you also can create local variables having block scope but static duration. These variables have

ptg11524036

523Storage Classes

the same scope as automatic variables, but they don’t vanish when the containing function
ends its job. That is, such variables have block scope, no linkage, but static storage duration.
The computer remembers their values from one function call to the next—such variables are
created by declaring them in a block (which provides the block scope and lack of linkage) with
the storage-class specifier static (which provides the static storage duration). The example in
 Listing 12.3 illustrates this technique.

 Listing 12.3 The loc_stat.c Program

 /* loc_stat.c -- using a local static variable */

 #include <stdio.h>

 void trystat(void);

 int main(void)

 {

 int count;

 for (count = 1; count <= 3; count++)

 {

 printf("Here comes iteration %d:\n", count);

 trystat();

 }

 return 0;

 }

 void trystat(void)

 {

 int fade = 1;

 static int stay = 1;

 printf("fade = %d and stay = %d\n", fade++, stay++);

 }

 Note that trystat() increments each variable after printing its value. Running the program
returns this output:

 Here comes iteration 1:

 fade = 1 and stay = 1

 Here comes iteration 2:

 fade = 1 and stay = 2

 Here comes iteration 3:

 fade = 1 and stay = 3

 The static variable stay remembers that its value was increased by 1, but the fade variable
starts anew each time. This points out a difference in initialization: fade is initialized each time

ptg11524036

524 Chapter 12 Storage Classes, Linkage, and Memory Management

 trystat() is called, but stay is initialized just once, when trystat() is compiled. Static vari-
ables are initialized to zero if you don’t explicitly initialize them to some other value.

 The two declarations look similar:

 int fade = 1;

 static int stay = 1;

 However, the first statement is really part of the trystat() function and is executed each
time the function is called. It is a runtime action. The second statement isn’t actually part of
the trystat() function. If you use a debugger to execute the program step-by-step, you’ll
see that the program seems to skip that step. That’s because static variables and external vari-
ables are already in place after a program is loaded into memory. Placing the statement in the
 trystat() function tells the compiler that only the trystat() function is allowed to see the
variable; it’s not a statement that’s executed during runtime.

 You can’t use static for function parameters:

 int wontwork(static int flu); // not allowed

 Another term for a static variable with block scope is a “local static variable.” Also, if you read
some of the older C literature, you’ll find this storage class referred to as the internal static
storage class . However, the word internal was used to indicate internal to a function, not inter-
nal linkage.

 Static Variables with External Linkage

 A static variable with external linkage has file scope, external linkage, and static storage dura-
tion. This class is sometimes termed the external storage class , and variables of this type are
called external variables . You create an external variable by placing a defining declaration
outside of any function. As a matter of documentation, an external variable can additionally
be declared inside a function that uses it by using the extern keyword. If a particular external
variable is defined in one source code file and is used in a second source code file, declaring the
variable in the second file with extern is mandatory. Declarations look like this:

 int Errupt; /* externally defined variable */

 double Up[100]; /* externally defined array */

 extern char Coal; /* mandatory declaration if */

 /* Coal defined in another file */

 void next(void);

 int main(void)

 {

 extern int Errupt; /* optional declaration */

 extern double Up[]; /* optional declaration */

 ...

 }

 void next(void)

ptg11524036

525Storage Classes

 {

 ...

 }

 Note that you don’t have to give the array size in the optional declaration of double Up .
That’s because the original declaration already supplied that information. The group of extern
declarations inside main() can be omitted entirely because external variables have file scope, so
they are known from the point of declaration to the end of the file. They do serve, however, to
document your intention that main() use these variables.

 If only extern is omitted from the declaration inside a function, a separate automatic variable
is set up. That is, replacing

 extern int Errupt;

 with

 int Errupt;

 in main() causes the compiler to create an automatic variable named Errupt . It would be a
separate, local variable, distinct from the original Errupt . The local variable would be in scope
while the program executes main() , but the external Errupt would be in scope for other func-
tions, such as next() , in the same file. In short, a variable in block scope “hides” a variable of
the same name in file scope while the program executes statements in the block. If, for some
improbable reason, you actually need to use a local variable with the same name as a global
variable, you might opt to use the auto storage-specifier in the local declaration to document
your choice.

 External variables have static storage duration. Therefore, the array Up maintains its existence
and values regardless of whether the program is executing main() , next() , or some other
function.

 The following three examples show four possible combinations of external and automatic
variables. Example 1 contains one external variable: Hocus . It is known to both main() and
 magic() .

 /* Example 1 */

 int Hocus;

 int magic();

 int main(void)

 {

 extern int Hocus; // Hocus declared external

 ...

 }

 int magic()

 {

 extern int Hocus; // same Hocus as above

 ...

 }

ptg11524036

526 Chapter 12 Storage Classes, Linkage, and Memory Management

 Example 2 has one external variable, Hocus , known to both functions. This time, magic()
knows it by default.

 /* Example 2 */

 int Hocus;

 int magic();

 int main(void)

 {

 extern int Hocus; // Hocus declared external

 ...

 }

 int magic()

 {

 // Hocus not declared but is known

 ...

 }

 In Example 3, four separate variables are created. The Hocus variable in main() is automatic
by default and is local to main . The Hocus variable in magic() is automatic explicitly and is
known only to magic() . The external Hocus variable is not known to main() or magic()
but would be known to any other function in the file that did not have its own local Hocus .
Finally, Pocus is an external variable known to magic() but not to main() because Pocus
follows main() .

 /* Example 3 */

 int Hocus;

 int magic();

 int main(void)

 {

 int Hocus; // Hocus declared, is auto by default

 ...

 }

 int Pocus;

 int magic()

 {

 auto int Hocus; // local Hocus declared automatic

 ...

 }

 These examples illustrate the scope of external variables: from the point of declaration to the
end of the file. They also illustrate the lifetimes of variables. The external Hocus and Pocus
variables persist as long as the program runs, and, because they aren’t confined to any one
function, they don’t fade away when a particular function returns.

ptg11524036

527Storage Classes

 Initializing External Variables

 Like automatic variables, external variables can be initialized explicitly. Unlike automatic vari-
ables, external variables are initialized automatically to zero if you don’t initialize them. This
rule applies to elements of an externally defined array, too. Unlike the case for automatic vari-
ables, you can use only constant expressions to initialize file scope variables:

 int x = 10; // ok, 10 is constant

 int y = 3 + 20; // ok, a constant expression

 size_t z = sizeof(int); // ok, a constant expression

 int x2 = 2 * x; // not ok, x is a variable

 (As long as the type is not a variable array, a sizeof expression is considered a constant
expression.)

 Using an External Variable

 Let’s look at a simple example that involves an external variable. Specifically, suppose you want
two functions, call them main() and critic() , to have access to the variable units . You can
do this by declaring units outside of and above the two functions, as shown in Listing 12.4.
(Note: The intent of this example is to show how an external variable works, not to show a
typical use.)

 Listing 12.4 The global.c Program

 /* global.c -- uses an external variable */

 #include <stdio.h>

 int units = 0; /* an external variable */

 void critic(void);

 int main(void)

 {

 extern int units; /* an optional redeclaration */

 printf("How many pounds to a firkin of butter?\n");

 scanf("%d", &units);

 while (units != 56)

 critic();

 printf("You must have looked it up!\n");

 return 0;

 }

 void critic(void)

 {

 /* optional redeclaration omitted */

 printf("No luck, my friend. Try again.\n");

 scanf("%d", &units);

 }

ptg11524036

528 Chapter 12 Storage Classes, Linkage, and Memory Management

 Here is some sample output:

 How many pounds to a firkin of butter?

 14

 No luck, my friend. Try again.

 56

 You must have looked it up!

 (We did.)

 Note how the second value for units was read by the critic() function, yet main() also
knew the new value when it finished the while loop. So both the main() function and the
 critic() function use the identifier units to access the same variable. In C terminology, we
say that units has file scope, external linkage, and static storage duration.

 We made units an external variable by defining it outside of (that is, external to) any function
definition. That’s all you need to do to make units available to all the subsequent functions in
the file.

 Let’s look at some of the details. First, declaring units where it is declared makes it available to
the functions below it without any further action taken. Therefore, critics() uses the units
variable.

 Similarly, nothing needed to be done to give main() access to units . However, main() does
have the following declaration in it:

 extern int units;

 In the example, this declaration is mainly a matter of documentation. The storage class speci-
fier extern tells the compiler that any mention of units in this particular function refers to
a variable defined outside the function, perhaps even outside the file. Again, both main() and
 critic() use the externally defined units .

 External Names

 The C99 and C11 standards require compilers to recognize the first 63 characters for local iden-
tifiers and the first 31 characters for external identifiers. This revises the previous requirement
of recognizing the first 31 characters for local identifiers and the first six characters for external
identifiers. It’s possible that you may be working with the old rules. The reason the rules for
names of external variables are more restrictive than for local variables is that external names
need to comply with the rules of the local environment, which may be more limiting.

 Definitions and Declarations

 Let’s take a longer look at the difference between defining a variable and declaring it. Consider
the following example:

 int tern = 1; /* tern defined */

 main()

 {

 external int tern; /* use a tern defined elsewhere */

ptg11524036

529Storage Classes

 Here, tern is declared twice. The first declaration causes storage to be set aside for the vari-
able. It constitutes a definition of the variable. The second declaration merely tells the compiler
to use the tern variable that has been created previously, so it is not a definition. The first
declaration is called a defining declaration , and the second is called a referencing declaration. The
keyword extern indicates that a declaration is not a definition because it instructs the compiler
to look elsewhere.

 Suppose you do this:

 extern int tern;

 int main(void)

 {

 The compiler will assume that the actual definition of tern is somewhere else in your program,
perhaps in another file. This declaration does not cause space to be allocated. Therefore, don’t
use the keyword extern to create an external definition; use it only to refer to an existing exter-
nal definition.

 An external variable can be initialized only once, and that must occur when the variable is
defined. Suppose you have this:

 // file one.c

 char permis = 'N';

 ...

 // file two.c

 extern char permis = 'Y'; /* error */

 This is an error because the defining declaration in file_one.c already has created and initial-
ized permis .

 Static Variables with Internal Linkage

 Variables of this storage class have static storage duration, file scope, and internal linkage. You
create one by defining it outside of any function (just as with an external variable) with the
storage class specifier static :

 static int svil = 1; // static variable, internal linkage

 int main(void)

 {

 Such variables were once termed external static variables, but that’s a bit confusing because they
have internal linkage. Unfortunately, no new compact term has taken the place of external
static , so we’re left with static variable with internal linkage . The ordinary external variable can
be used by functions in any file that’s part of the program, but the static variable with internal
linkage can be used only by functions in the same file. You can redeclare any file scope variable
within a function by using the storage class specifier extern . Such a declaration doesn’t change
the linkage. Consider the following code:

ptg11524036

530 Chapter 12 Storage Classes, Linkage, and Memory Management

 int traveler = 1; // external linkage

 static int stayhome = 1; // internal linkage

 int main()

 {

 extern int traveler; // use global traveler

 extern int stayhome; // use global stayhome

 ...

 Both traveler and stayhome are global for this particular translation unit, but only traveler
can be used by code in other translation units. The two declarations using extern document
that main() is using the two global variables, but stayhome continues to have internal linkage.

 Multiple Files

 The difference between internal linkage and external linkage is important only when you have
a program built from multiple translation units, so let’s take a quick look at that topic.

 Complex C programs often use several separate files of source code. Sometimes these files
might need to share an external variable. The C way to do this is to have a defining declaration
in one file and referencing declarations in the other files. That is, all but one declaration (the
defining declaration) should use the extern keyword, and only the defining declaration should
be used to initialize the variable.

 Note that an external variable defined in one file is not available to a second file unless it is
also declared (by using extern) in the second file. An external declaration by itself only makes
a variable potentially available to other files.

 Historically, however, many compilers have followed different rules in this regard. Many Unix
systems, for example, enable you to declare a variable in several files without using the extern
keyword, provided that no more than one declaration includes an initialization. If there is a
declaration with an initialization, it is taken to be the definition.

 Storage-Class Specifier Roundup

 You may have noticed that the meaning of the keywords static and extern depends on the
context. The C language has six keywords that are grouped together as storage-class specifi-
ers. They are auto , register , static , extern , _Thread_local , and typedef . The typedef
keyword doesn’t say anything about memory storage, but it is thrown in for syntax reasons. In
particular, in most cases you can use no more than one storage-class specifier in a declaration,
so that means you can’t use one of the other storage-class specifiers as part of a typedef . The
one exception is that _Thread_local may be used together with static and extern .

 The auto specifier indicates a variable with automatic storage duration. It can be used only in
declarations of variables with block scope, which already have automatic storage duration, so
its main use is documenting intent.

ptg11524036

531Storage Classes

 The register specifier also can be used only with variables of block scope. It puts a variable
into the register storage class, which amounts to a request to minimize the access time for that
variable. It also prevents you from taking the address of the variable.

 The static specifier creates an object with static duration, one that’s created when the
program is loaded and ends when the program terminates. If static is used with a file scope
declaration, scope is limited to that one file. If static is used with a block scope declara-
tion, scope is limited to that block. Thus, the object exists and retains its value as long as the
program is running, but it can be accessed by the identifier only when code within the block
is being executed. A static variable with block scope has no linkage. A static variable with file
scope has internal linkage.

 The extern specifier indicates that you are declaring a variable that has been defined else-
where. If the declaration containing extern has file scope, the variable referred to must have
external linkage. If the declaration containing extern has block scope, the referred-to variable
can have either external linkage or internal linkage, depending on the defining declaration for
that variable.

 Summary: Storage Classes

 Automatic variables have block scope, no linking, and automatic storage duration. They are
local and private to the block (typically a function) in which they are defined. Register variables
have the same properties as automatic variables, but the compiler may use faster memory or a
register to store them. You can’t take the address of a register variable.

 Variables with static storage duration can have external linkage, internal linkage, or no linkage.
When a variable is declared external to any function in a file, it’s an external variable and has
file scope, external linkage, and static storage duration. If you add the keyword static to such
a declaration, you get a variable with static storage duration, file scope, and internal linkage.
If you declare a variable inside a function and use the keyword static , the variable has static
storage duration, block scope, and no linkage.

 Memory for a variable with automatic storage duration is allocated when program execution
enters the block containing the variable declaration and is freed when the block is exited. If
uninitialized, such a variable has a garbage value. Memory for a variable with static storage
duration is allocated at compile time and lasts as long as the program runs. If uninitialized,
such a variable is set to 0.

 A variable with block scope is local to the block containing the declaration. A variable with file
scope is known to all functions in a file (or translation unit) following its declaration. If a file
scope variable has external linkage, it can be used by other translation units in the program.
If a file scope variable has internal linkage, it can be used just within the file in which it is
declared.

 Here’s a short program that uses all five storage classes. It’s spread over two files (Listing 12.5
and Listing 12.6), so you will have to do a multiple-file compile. (See Chapter 9 , “Functions,”
or your compiler manual for guidance.) Its main goal is to use all five storage types, not to offer
a design model; a better design wouldn’t need the file-scope variables.

ptg11524036

532 Chapter 12 Storage Classes, Linkage, and Memory Management

 Listing 12.5 The parta.c File

 // parta.c --- various storage classes

 // compile with partb.c

 #include <stdio.h>

 void report_count();

 void accumulate(int k);

 int count = 0; // file scope, external linkage

 int main(void)

 {

 int value; // automatic variable

 register int i; // register variable

 printf("Enter a positive integer (0 to quit): ");

 while (scanf("%d", &value) == 1 && value > 0)

 {

 ++count; // use file scope variable

 for (i = value; i >= 0; i--)

 accumulate(i);

 printf("Enter a positive integer (0 to quit): ");

 }

 report_count();

 return 0;

 }

 void report_count()

 {

 printf("Loop executed %d times\n", count);

 }

 Listing 12.6 The partb.c File

 // partb.c -- rest of the program

 // compile with parta.c

 #include <stdio.h>

 extern int count; // reference declaration, external linkage

 static int total = 0; // static definition, internal linkage

 void accumulate(int k); // prototype

 void accumulate(int k) // k has block scope, no linkage

 {

 static int subtotal = 0; // static, no linkage

ptg11524036

533Storage Classes

 if (k <= 0)

 {

 printf("loop cycle: %d\n", count);

 printf("subtotal: %d; total: %d\n", subtotal, total);

 subtotal = 0;

 }

 else

 {

 subtotal += k;

 total += k;

 }

 }

 In this program, the block scope static variable subtotal keeps a running subtotal of the
values passed to the accumulate() function, and the file scope, internal linkage variable total
keeps a running total. The accumulate() function reports total and subtotal whenever a
nonpositive value is passed to it; when the function reports, it resets subtotal to 0.
The accumulate() prototype in parta.c is mandatory because the file contains an
accumulate() function call. For partb.c , the prototype is optional because the function is
defined, but not called in that file. The function also uses the external variable count to keep
track of how many times the while loop in main() has been executed. (Incidentally, this is a
good example of how not to use an external variable, because it unnecessarily intertwines the
code of parta.c with the code of partb.c .) In parta.c , main() and report_count() share
access to count .

 Here’s a sample run:

 Enter a positive integer (0 to quit): 5

 loop cycle: 1

 subtotal: 15; total: 15

 Enter a positive integer (0 to quit): 10

 loop cycle: 2

 subtotal: 55; total: 70

 Enter a positive integer (0 to quit): 2

 loop cycle: 3

 subtotal: 3; total: 73

 Enter a positive integer (0 to quit): 0

 Loop executed 3 times

 Storage Classes and Functions

 Functions, too, have storage classes. A function can be either external (the default) or static.
(C99 adds a third possibility, the inline function, discussed in Chapter 16 , “The C Preprocessor
and the C Library.”) An external function can be accessed by functions in other files, but a
static function can be used only within the defining file. Consider, for example, a file contain-
ing these function prototypes:

ptg11524036

534 Chapter 12 Storage Classes, Linkage, and Memory Management

 double gamma(double); /* external by default */

 static double beta(int, int);

 extern double delta(double, int);

 The functions gamma() and delta() can be used by functions in other files that are part of the
program, but beta() cannot. Because this beta() is restricted to one file, you can use a differ-
ent function having the same name in the other files. One reason to use the static storage
class is to create functions that are private to a particular module, thereby avoiding the possibil-
ity of name conflicts.

 The usual practice is to use the extern keyword when declaring functions defined in other
files. This practice is mostly a matter of clarity because a function declaration is assumed to be
 extern unless the keyword static is used.

 Which Storage Class?

 The answer to the question “Which storage class?” is most often “automatic.” After all, why
else was automatic selected as the default? Yes, we know that at first glance external storage is
quite alluring. Just make all your variables external, and you never have to worry about using
arguments and pointers to communicate between functions. There is a subtle pitfall, however.
You will have to worry about function A() sneakily altering the variables used in function B() ,
despite your intentions to the contrary. The unquestionable evidence of untold years of collec-
tive computer experience is that this one subtle danger far outweighs the superficial attraction
of using external storage indiscriminately.

 One common exception are const data. Because they can’t be altered, you don’t have to worry
about inadvertent alterations:

 const int DAYS = 7;

 const char * MSGS[3] = {"Yes", "No", Maybe"};

 One of the golden rules of protective programming is the “need to know” principle. Keep the
inner workings of each function as private to that function as possible, sharing only those vari-
ables that need to be shared. The other classes are useful, and they are available. Before using
one, though, ask yourself whether it is necessary.

 A Random-Number Function and a Static Variable

 Now that you have some background on the different storage classes, let’s look at a couple
programs that use some of them. First, let’s look at a function that makes use of a static vari-
able with internal linkage: a random-number function. The ANSI C library provides the rand()
function to generate random numbers. There are a variety of algorithms for generating random
numbers, and ANSI C enables implementations to use the best algorithm for a particular
machine. However, the ANSI C standard also supplies a standard, portable algorithm that
produces the same random numbers on different systems. Actually, rand() is a “pseudorandom
number generator,” meaning that the actual sequence of numbers is predictable (computers

ptg11524036

535A Random-Number Function and a Static Variable

are not known for their spontaneity), but the numbers are spread pretty uniformly over the
possible range of values.

 Instead of using your compiler’s built-in rand() function, we’ll use the portable ANSI version
so that you can see what goes on inside. The scheme starts with a number called the “seed.”
The function uses the seed to produce a new number, which becomes the new seed. Then
the new seed can be used to produce a newer seed, and so on. For this scheme to work, the
random-number function must remember the seed it used the last time it was called. Aha! This
calls for a static variable. Listing 12.7 is version 0. (Yes, version 1 comes soon.)

 Listing 12.7 The rand0.c Function File

 /* rand0.c -- produces random numbers */

 /* uses ANSI C portable algorithm */

 static unsigned long int next = 1; /* the seed */

 int rand0(void)

 {

 /* magic formula to generate pseudorandom number */

 next = next * 1103515245 + 12345;

 return (unsigned int) (next/65536) % 32768;

 }

 In Listing 12.7 , the static variable next starts with the value 1 and is altered by the magic
formula each time the function is called. The result is a return value somewhere in the range
of 0 to 32767 . Note that next is static with internal linkage, rather than merely static with no
linkage. That’s because the example will be expanded later so that next is shared between two
functions in the same file.

 Let’s try the rand0() function with the simple driver shown in Listing 12.8.

 Listing 12.8 The r_drive0.c Driver

 /* r_drive0.c -- test the rand0() function */

 /* compile with rand0.c */

 #include <stdio.h>

 extern int rand0(void);

 int main(void)

 {

 int count;

 for (count = 0; count < 5; count++)

 printf("%d\n", rand0());

 return 0;

 }

ptg11524036

536 Chapter 12 Storage Classes, Linkage, and Memory Management

 Here’s another chance to practice using multiple files. Use one file for Listing 12.7 and one for
 Listing 12.8 . The extern keyword reminds you that rand0() is defined in a separate file, but
it’s not required.

 The output is this:

 16838

 5758

 10113

 17515

 31051

 The output looks random, but let’s run it again. This time the result is as follows:

 16838

 5758

 10113

 17515

 31051

 Hmmm, that looks familiar; this is the “pseudo” aspect. Each time the main program is run,
you start with the same seed of 1. You can get around this problem by introducing a second
function called srand1() that enables you to reset the seed. The trick is to make next a static
variable with internal linkage known only to rand1() and srand1() . (The C library equivalent
to srand1() is called srand() .) Add srand1() to the file containing rand1() . Listing 12.9 is
the modification.

 Listing 12.9 The s_and_r.c Program

 /* s_and_r.c -- file for rand1() and srand1() */

 /* uses ANSI C portable algorithm */

 static unsigned long int next = 1; /* the seed */

 int rand1(void)

 {

 /* magic formula to generate pseudorandom number */

 next = next * 1103515245 + 12345;

 return (unsigned int) (next/65536) % 32768;

 }

 void srand1(unsigned int seed)

 {

 next = seed;

 }

ptg11524036

537A Random-Number Function and a Static Variable

 Notice that next is a file-scope static variable with internal linkage. That means it can be used
by both rand1() and srand1() , but not by functions in other files. To test these functions, use
the driver in Listing 12.10 .

 Listing 12.10 The r_drive1.c Program

 /* r_drive1.c -- test rand1() and srand1() */

 /* compile with s_and_r.c */

 #include <stdio.h>

 extern void srand1(unsigned int x);

 extern int rand1(void);

 int main(void)

 {

 int count;

 unsigned seed;

 printf("Please enter your choice for seed.\n");

 while (scanf("%u", &seed) == 1)

 {

 srand1(seed); /* reset seed */

 for (count = 0; count < 5; count++)

 printf("%d\n", rand1());

 printf("Please enter next seed (q to quit):\n");

 }

 printf("Done\n");

 return 0;

 }

 Again, use two files, and run the program.

 Please enter your choice for seed.

 1

 16838

 5758

 10113

 17515

 31051

 Please enter next seed (q to quit):

 513

 20067

 23475

 8955

 20841

 15324

ptg11524036

538 Chapter 12 Storage Classes, Linkage, and Memory Management

 Please enter next seed (q to quit):

 q

 Done

 Using a value of 1 for seed yields the same values as before, but a seed value of 3 gives new
results.

 Note Automated Reseeding

 If your C implementation gives you access to some changing quantity, such as the system
clock, you can use that value (possibly truncated) to initialize the seed value. For instance,
ANSI C has a time() function that returns the system time. The time units are system depen-
dent, but what matters here is that the return value is an arithmetic type and that its value
changes with time. The exact type is system dependent and is given the label time_t , but you
can use a type cast. Here’s the basic setup:
 #include <time.h> /* ANSI prototype for time() */

 srand1((unsigned int) time(0)); /* initialize seed */

 In general, time() takes an argument that is the address of a type time_t object. In that
case, the time value is also stored at that address. However, you can pass the null pointer (0)
as an argument, in which case the value is supplied only through the return value mechanism.

 You can use the same technique with the standard ANSI C functions srand() and rand() . If
you do use these functions, include the stdlib.h header file. In fact, now that you’ve seen
how srand1() and rand1() use a static variable with internal linkage, you might as well use
the versions your compiler supplies. We’ll do that for the next example.

 Roll ’Em

 We are going to simulate that very popular random activity, dice-rolling. The most popular
form of dice-rolling uses two six-sided dice, but there are other possibilities. Many adventure-
fantasy games use all of the five geometrically possible dice: 4, 6, 8, 12, and 20 sides. Those
clever ancient Greeks proved that there are but five regular solids having all faces the same
shape and size, and these solids are the basis for the dice varieties. You could make dice with
other numbers of sides, but the faces would not all be the same, so they wouldn’t all necessarily
have equal odds of turning up.

 Computer calculations aren’t limited by these geometric considerations, so we can devise an
electronic die that has any number of sides. Let’s start with six sides and then generalize.

 We want a random number from 1 to 6. However, rand() produces an integer in the range
0 to RAND_MAX ; RAND_MAX is defined in stdlib.h . It is typically INT_MAX . Therefore, we have
some adjustments to make. Here’s one approach:

 1. Take the random number modulus 6. It produces an integer in the range 0 through 5.

ptg11524036

539Roll ’Em

 2. Add 1. The new number is in the range 1 through 6.

 3. To generalize, just replace the number 6 in step 1 by the number of sides.

 The following code implements these ideas:

 #include <stdlib.h> /* for rand() */

 int rollem(int sides)

 {

 int roll;

 roll = rand() % sides + 1;

 return roll;

 }

 Let’s get a bit more ambitious and ask for a function that lets you roll an arbitrary number of
dice and returns the total count. Listing 12.11 does this.

 Listing 12.11 The diceroll.c File

 /* diceroll.c -- dice role simulation */

 /* compile with mandydice.c */

 #include "diceroll.h"

 #include <stdio.h>

 #include <stdlib.h> /* for library rand() */

 int roll_count = 0; /* external linkage */

 static int rollem(int sides) /* private to this file */

 {

 int roll;

 roll = rand() % sides + 1;

 ++roll_count; /* count function calls */

 return roll;

 }

 int roll_n_dice(int dice, int sides)

 {

 int d;

 int total = 0;

 if (sides < 2)

 {

 printf("Need at least 2 sides.\n");

 return -2;

 }

ptg11524036

540 Chapter 12 Storage Classes, Linkage, and Memory Management

 if (dice < 1)

 {

 printf("Need at least 1 die.\n");

 return -1;

 }

 for (d = 0; d < dice; d++)

 total += rollem(sides);

 return total;

 }

 This file adds some wrinkles. First, it turns rollem() into a function private to this file. It’s
there as a helper function for roll_n_dice() . Second, to illustrate how external linkage works,
the file declares an external variable called roll_count . This variable keeps track of how many
times the rollem() function is called. The example is a little contrived, but it shows how the
external variable feature works.

 Third, the file contains the following statement:

 #include "diceroll.h"

 When you use standard library functions, such as rand() , you include the standard header file
(stdlib.h for rand()) instead of declaring the function. That’s because the header file already
contains the correct declaration. We’ll emulate that approach by providing a diceroll.h
header file to be used with the roll_n_dice() function. Enclosing the filename in double
quotation marks instead of in angle brackets instructs the compiler to look locally for the
file instead of in the standard locations the compiler uses for the standard header files. The
meaning of “look locally” depends on the implementation. Some common interpretations are
placing the header file in the same directory or folder as the source code files or in the same
directory or folder as the project file (if your compiler uses them). Listing 12.12 shows the
contents of the header file.

 Listing 12.12 The diceroll.h File

 //diceroll.h

 extern int roll_count;

 int roll_n_dice(int dice, int sides);

 This header file contains function prototypes and an extern declaration. Because the
 diceroll.c file includes this header, diceroll.c actually contains two declarations of
 roll_count :

 extern int roll_count; // from header file

 int roll_count = 0; // from source code file

ptg11524036

541Roll ’Em

 This is fine. You can have only one defining declaration of a variable. But the declaration with
 extern is a reference declaration, and you can have as many of those as you want.

 The program using roll_n_dice() should also include this header file. Not only does this
provide the prototype for roll_n_dice() , it also makes roll_count available to that program.
 Listing 12.13 illustrates these points.

 Listing 12.13 The manydice.c File

 /* manydice.c -- multiple dice rolls */

 /* compile with diceroll.c */

 #include <stdio.h>

 #include <stdlib.h> /* for library srand() */

 #include <time.h> /* for time() */

 #include "diceroll.h" /* for roll_n_dice() */

 /* and for roll_count */

 int main(void)

 {

 int dice,roll;

 int sides;

 srand((unsigned int) time(0)); /* randomize seed */

 printf("Enter the number of sides per die, 0 to stop.\n");

 while (scanf("%d", &sides) == 1 && sides > 0)

 {

 printf("How many dice?\n");

 if ((status =scanf("%d", &dice)) != 1)

 {

 if (status == EOF)

 break; /* exit loop */

 else

 {

 printf("You should have entered an integer.");

 printf(" Let's begin again.\n");

 while (getchar() != '\n')

 continue; /* dispose of bad input */

 printf("How many sides? Enter 0 to stop.\n");

 continue; /* new loop cycle */

 }

 }

 roll = roll_n_dice(dice, sides);

 printf("You have rolled a %d using %d %d-sided dice.\n",

 roll, dice, sides);

 printf("How many sides? Enter 0 to stop.\n");

 }

 printf("The rollem() function was called %d times.\n",

 roll_count); /* use extern variable */

ptg11524036

542 Chapter 12 Storage Classes, Linkage, and Memory Management

 printf("GOOD FORTUNE TO YOU!\n");

 return 0;

 }

 Compile Listing 12.13 with the file containing Listing 12.11 . To simplify matters, have Listings
 12.11 , 12.12 , and 12.13 all in the same folder or directory. Run the resulting program. The
output should look something like this:

 Enter the number of sides per die, 0 to stop.

 6

 How many dice?

 2

 You have rolled a 12 using 2 6-sided dice.

 How many sides? Enter 0 to stop.

 6

 How many dice?

 2

 You have rolled a 4 using 2 6-sided dice.

 How many sides? Enter 0 to stop.

 6

 How many dice?

 2

 You have rolled a 5 using 2 6-sided dice.

 How many sides? Enter 0 to stop.

 0

 The rollem() function was called 6 times.

 GOOD FORTUNE TO YOU!

 Because the program uses srand() to randomize the random-number seed, you most likely
won’t get the same output even with the same input. Note that main() in manydice.c does
have access to the roll_count variable defined in diceroll.c .

 The outer while loop can terminate for three reasons: sides is less than 1, there is a type
mismatch for input (scanf() return value is 0), or end-of-file is encountered (return value is
 EOF). For reading the number of dice, the program handles end-of-file differently from how it
handles a type mismatch; it exits the while loop in the former case and initiates a new loop
cycle in the latter case.

 You can use roll_n_dice() in many ways. With sides equal to 2, the program simulates a
coin toss with “heads” being 2 and “tails” being 1 (or vice versa, if you really prefer it). You
can easily modify the program to show the individual results as well as the total, or you can
construct a craps simulator. If you require a large number of rolls, as in some role-playing
games, you can easily modify the program to produce output like this:

 Enter the number of sets; enter q to stop.

 18

ptg11524036

543Allocated Memory: malloc() and free()

 How many sides and how many dice?

 6 3

 Here are 18 sets of 3 6-sided throws.

 12 10 6 9 8 14 8 15 9 14 12 17 11 7 10

 13 8 14

 How many sets? Enter q to stop.

 q

 Another use for rand1() or rand() (but not of rollem()) is creating a number-guessing
program so that the computer chooses and you guess. You can try that yourself.

 Allocated Memory: malloc() and free()

 The storage classes we discussed have one thing in common. After you decide which storage
class to use, the decisions about scope and storage duration follow automatically. Your choices
obey the prepackaged memory management rules. There is, however, one more choice, one
that gives you more flexibility. That choice is using library functions to allocate and manage
memory.

 First, let’s review some facts about memory allocation. All programs have to set aside enough
memory to store the data they use. Some of this memory allocation is done automatically. For
example, you can declare

 float x;

 char place[] = "Dancing Oxen Creek";

 and enough memory to store that float or string is set aside, or you can be more explicit
and ask for a certain amount of memory:

 int plates[100];

 This declaration sets aside 100 memory locations, each fit to store an int value. In all these
cases, the declaration also provides an identifier for the memory, so you can use x or place
to identify data. Static data, recall, is allocated when the program is loaded into memory, and
automatic data is allocated when program execution enters a block and deallocated when
execution leaves the block.

 C goes beyond this. You can allocate more memory as a program runs. The main tool is the
 malloc() function, which takes one argument: the number of bytes of memory you want.
Then malloc() finds a suitable block of free memory. The memory is anonymous; that is,
 malloc() allocates memory but it doesn’t assign a name to it. However, it does return the
address of the first byte of that block. Therefore, you can assign that address to a pointer vari-
able and use the pointer to access the memory. Because char represents a byte, malloc() has
traditionally been defined as type pointer-to- char . Since the ANSI C standard, however, C uses
a new type: pointer-to- void . This type is intended to be a “generic pointer.” The malloc()
function can be used to return pointers to arrays, structures, and so forth, so normally the
return value is typecast to the proper value. Under ANSI C, you should still typecast for clarity,

ptg11524036

544 Chapter 12 Storage Classes, Linkage, and Memory Management

but assigning a pointer-to- void value to a pointer of another type is not considered a type
clash. If malloc() fails to find the required space, it returns the null pointer.

 Let’s apply malloc() to the task of creating an array. You can use malloc() to request a block
of storage as the program is running. You also need a pointer to keep track of where the block
is in memory. For example, consider this code:

 double * ptd;

 ptd = (double *) malloc(30 * sizeof(double));

 This code requests space for 30 type double values and sets ptd to point to the location. Note
that ptd is declared as a pointer to a single double and not to a block of 30 double values.
Remember that the name of an array is the address of its first element. Therefore, if you make
 ptd point to the first element of the block, you can use it just like an array name. That is, you
can use the expression ptd[0] to access the first element of the block, ptd[1] to access the
second element, and so on. As you’ve learned earlier, you can use pointer notation with array
names, and you can use array notation with pointers.

 You now have three ways to create an array:

 ■ Declare an array using constant expressions for the array dimensions and use the array
name to access elements. Such an array can be created using either static or automatic
memory.

 ■ Declare a variable-length array using variable expressions for the array dimensions and
use the array name to access elements. (Recall that this is a C99 feature.) This feature is
available only for automatic memory.

 ■ Declare a pointer, call malloc() , assign the return value to the pointer, and use the
pointer to access elements. The pointer can be either static or automatic.

 You can use the second and third methods to do something you can’t do with an ordinary
declared array—create a dynamic array , one that’s allocated while the program runs and that
you can choose a size for while the program runs. Suppose, for example, that n is an integer
variable. Prior to C99, you couldn’t do the following:

 double item[n]; /* pre C99: not allowed if n is a variable */

 However, you can do the following, even with a pre-C99 compiler:

 ptd = (double *) malloc(n * sizeof(double)); /* okay */

 This works, and, as you’ll see, it’s a bit more flexible than the variable-length array.

 Normally, you should balance each use of malloc() with a use of free() . The free() func-
tion takes as its argument an address returned earlier by malloc() and frees up the memory
that had been allocated. Thus, the duration of allocated memory is from when malloc() is
called to allocate the memory until free() is called to free up the memory so that it can be
reused. Think of malloc() and free() as managing a pool of memory. Each call to malloc()
allocates memory for program use, and each call to free() restores memory to the pool so it

ptg11524036

545Allocated Memory: malloc() and free()

can be reused. The argument to free() should be a pointer to a block of memory allocated by
 malloc() ; you can’t use free() to free memory allocated by other means, such as declaring an
array. Both malloc() and free() have prototypes in the stdlib.h header file.

 By using malloc() , then, a program can decide what size array is needed and create it while
the program runs. Listing 12.14 illustrates this possibility. It assigns the address of the block of
memory to the pointer ptd , and then it uses ptd in the same fashion you would use an array
name. Also, the exit() function, prototyped in stdlib.h , is called to terminate the program
if memory allocation fails. The value EXIT_FAILURE also is defined in that header file. The
standard provides for two return values that are guaranteed to work with all operating systems:
 EXIT_SUCCESS (or, equivalently, the value 0) to indicate normal program termination, and
 EXIT_FAILURE to indicate abnormal termination. Some operating systems, including Unix,
Linux, and Windows, can accept additional integer values denoting particular forms of failure.

 Listing 12.14 The dyn_arr.c Program

 /* dyn_arr.c -- dynamically allocated array */

 #include <stdio.h>

 #include <stdlib.h> /* for malloc(), free() */

 int main(void)

 {

 double * ptd;

 int max = 0;

 int number;

 int i = 0;

 puts("What is the maximum number of type double entries?");

 if (scanf("%d", &max) != 1)

 {

 puts("Number not correctly entered -- bye.");

 exit(EXIT_FAILURE);

 }

 ptd = (double *) malloc(max * sizeof (double));

 if (ptd == NULL)

 {

 puts("Memory allocation failed. Goodbye.");

 exit(EXIT_FAILURE);

 }

 /* ptd now points to an array of max elements */

 puts("Enter the values (q to quit):");

 while (i < max && scanf("%lf", &ptd[i]) == 1)

 ++i;

 printf("Here are your %d entries:\n", number = i);

 for (i = 0; i < number; i++)

 {

 printf("%7.2f ", ptd[i]);

ptg11524036

546 Chapter 12 Storage Classes, Linkage, and Memory Management

 if (i % 7 == 6)

 putchar('\n');

 }

 if (i % 7 != 0)

 putchar('\n');

 puts("Done.");

 free(ptd);

 return 0;

 }

 Here’s a sample run. In it, we entered six numbers, but the program processes just five of them
because we limited the array size to 5.

 What is the maximum number of entries?

 5

 Enter the values (q to quit):

 20 30 35 25 40 80

 Here are your 5 entries:

 20.00 30.00 35.00 25.00 40.00

 Done.

 Let’s look at the code. The program finds the desired array size with the following lines:

 if (scanf("%d", &max) != 1)

 {

 puts("Number not correctly entered -- bye.");

 exit(EXIT_FAILURE);

 }

 Next, the following line allocates enough space to hold the requested number of entries and
then assigns the address of the block to the pointer ptd :

 ptd = (double *) malloc(max * sizeof (double));

 The typecast to (double *) is optional in C but required in C++, so using the typecast makes
it simpler to move a program from C to C++.

 It’s possible that malloc() can fail to procure the desired amount of memory. In that case, the
function returns the null pointer, and the program terminates:

 if (ptd == NULL)

 {

 puts("Memory allocation failed. Goodbye.");

 exit(EXIT_FAILURE);

 }

 If the program clears this hurdle, it can treat ptd as though it were the name of an array of max
elements, and so it does.

ptg11524036

547Allocated Memory: malloc() and free()

 Note the free() function near the end of the program. It frees memory allocated by malloc() .
The free() function frees only the block of memory to which its argument points. Some oper-
ating systems will free allocated memory automatically when a program finishes, but others
may not. So use free() and don’t rely on the operating system to clean up for you.

 What have you gained by using a dynamic array? In this case, you’ve gained program flex-
ibility. Suppose you know that most of the time the program will need no more than 100
elements, but sometimes it will need 10,000 elements. If you declare an array, you would have
to allow for the worst case and declare it with 10,000 elements. Most of the time, that program
would be wasting memory. Then, the one time you need 10,001 elements, the program will
fail. You can use a dynamic array to adjust the program to fit the circumstances.

 The Importance of free()

 The amount of static memory is fixed at compile time; it does not change while the program is
running. The amount of memory used for automatic variables grows and shrinks automatically
as the program executes. But the amount of memory used for allocated memory just grows
unless you remember to use free() . For example, suppose you have a function that creates a
temporary copy of an array as sketched in the following code:

 ...

 int main()

 {

 double glad[2000];

 int i;

 ...for (i = 0; i < 1000; i++)

 gobble(glad, 2000);

 ...}

 void gobble(double ar[], int n)

 {

 double * temp = (double *) malloc(n * sizeof(double));

 ... /* free(temp); // forgot to use free() */

 }

 The first time gobble() is called, it creates the pointer temp , and it uses malloc() to allocate
16,000 bytes of memory (assuming double is 8 bytes). Suppose, as indicated, we don’t use
 free() . When the function terminates, the pointer temp , being an automatic variable, disap-
pears. But the 16,000 bytes of memory it pointed to still exists. It can’t be accessed because we
no longer have the address. It can’t be reused because we didn’t call free() .

 The second time gobble() is called, it creates temp again, and again it uses malloc() to allo-
cate 16,000 bytes. The first block of 16,000 bytes is no longer available, so malloc() has to
find a second block of 16,000 bytes. When the function terminates, this block of memory also
becomes inaccessible and not reusable.

ptg11524036

548 Chapter 12 Storage Classes, Linkage, and Memory Management

 But the loop executes 1,000 times, so by the time the loop finishes, 16,000,000 bytes of
memory have been removed from the memory pool. In fact, the program may have run out of
memory before getting this far. This sort of problem is called a memory leak , and it could have
been prevented by having a call to free() at the end of the function.

 The calloc() Function

 Another option for memory allotment is to use calloc() . A typical use looks like this:

 long * newmem;

 newmem = (long *)calloc(100, sizeof (long));

 Like malloc() , calloc() returns a pointer-to- char in its pre-ANSI version and a pointer-to-
 void under ANSI. You should use the cast operator if you want to store a different type. This
new function takes two arguments, both of which should be unsigned integers (type size_t
since ANSI). The first argument is the number of memory cells you want. The second argument
is the size of each cell in bytes. In our case, long uses 4 bytes, so this instruction sets up 100
4-byte units, using 400 bytes in all for storage.

 Using sizeof (long) instead of 4 makes this coding more portable. It will work on those
systems where long is some size other than 4.

 The calloc() function throws in one more feature: It sets all the bits in the block to zero.
(Note, however, that on some hardware systems, a floating-point value of 0 is not represented
by all bits set to 0.)

 The free() function can also be used to free memory allocated by calloc() .

 Dynamic memory allocation is the key to many advanced programming techniques. We’ll
examine some in Chapter 17 , “Advanced Data Representation.” Your own C library probably
offers several other memory-management functions—some portable, some not. You might
want to take a moment to look them over.

 Dynamic Memory Allocation and Variable-Length Arrays

 There’s some overlap in functionality between variable-length arrays (VLAs) and the use of
 malloc() . Both, for example, can be used to create an array whose size is determined during
runtime:

 int vlamal()

 {

 int n;

 int * pi;

 scanf("%d", &n);

 pi = (int *) malloc (n * sizeof(int));

 int ar[n]; // vla

 pi[2] = ar[2] = -5;

ptg11524036

549Allocated Memory: malloc() and free()

 ...

 }

 One difference is that the VLA is automatic storage. One consequence of automatic storage is
that the memory space used by the VLA is freed automatically when the execution leaves the
defining block—in this case, when the vlamal() function terminates. Therefore, you don’t
have to worry about using free() . On the other hand, the array created using malloc()
needn’t have its access limited to one function. For example, one function could create an array
and return the pointer, giving the calling function access. Then the calling function could call
 free() when it is finished. It’s okay to use a different pointer variable with free() than with
 malloc() ; what must agree are the addresses stored in the pointers. However, you should not
try to free the same block of memory twice.

 VLAs are more convenient for multidimensional arrays. You can create a two-dimensional array
using malloc() , but the syntax is awkward. If a compiler doesn’t support the VLA feature, one
of the dimensions has to be fixed, just like in function calls:

 int n = 5;

 int m = 6;

 int ar2[n][m]; // n x m VLA

 int (* p2)[6]; // works pre-C99

 int (* p3)[m]; // requires VLA support

 p2 = (int (*)[6]) malloc(n * 6 * sizeof(int)); // n * 6 array

 p3 = (int (*)[m]) malloc(n * m * sizeof(int)); // n * m array

 // above expression also requires VLA support

 ar2[1][2] = p2[1][2] = 12;

 It’s worth reviewing the pointer declarations. The malloc() function returns a pointer, so p2
has to be a pointer of a suitable type. The declaration

 int (* p2)[6]; // works pre-C99

 says that p2 points to an array of six int s. This means that p2[i] would be interpreted as an
element consisting of six int s and that p2[i][j] would be a single int .

 The second pointer declaration uses a variable to specify the size of the array to which p3
points. This means that p3 is considered to be a pointer to a VLA, which is why the code won’t
work with the C90 standard.

 Storage Classes and Dynamic Memory Allocation

 You might be wondering about the connection between storage classes and dynamic memory
allocation. Let’s look at an idealized model. You can think of a program as dividing its avail-
able memory into three separate sections: one for static variables with external linkage, inter-
nal linkage, and no linkage; one for automatic variables; and one for dynamically allocated
memory.

ptg11524036

550 Chapter 12 Storage Classes, Linkage, and Memory Management

 The amount of memory needed for the static duration storage classes is known at compile time,
and the data stored in this section is available as long as the program runs. Each variable of
these classes comes into being when the program starts and expires when the program ends.

 An automatic variable, however, comes into existence when a program enters the block of code
containing the variable’s definition and expires when its block of code is exited. Therefore, as a
program calls functions and as functions terminate, the amount of memory used by automatic
variables grows and shrinks. This section of memory is typically handled as a stack. That means
new variables are added sequentially in memory as they are created and then are removed in
the opposite order as they pass away.

 Dynamically allocated memory comes into existence when malloc() or a related function is
called, and it’s freed when free() is called. Memory persistence is controlled by the program-
mer, not by a set of rigid rules, so a memory block can be created in one function and disposed
of in another function. Because of this, the section of memory used for dynamic memory
allocation can end up fragmented—that is, unused chunks could be interspersed among active
blocks of memory. Also, using dynamic memory tends to be a slower process than using stack
memory.

 Typically, a program uses different regions of memory for static objects, automatic objects, and
dynamically allocated objects. Listing 12.15 illustrates this point.

 Listing 12.15 The where.c Program

 // where.c -- where's the memory?

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 int static_store = 30;

 const char * pcg = "String Literal";

 int main()

 {

 int auto_store = 40;

 char auto_string[] = "Auto char Array";

 int * pi;

 char * pcl;

 pi = (int *) malloc(sizeof(int));

 *pi = 35;

 pcl = (char *) malloc(strlen("Dynamic String") + 1);

 strcpy(pcl, "Dynamic String");

 printf("static_store: %d at %p\n", static_store, &static_store);

 printf(" auto_store: %d at %p\n", auto_store, &auto_store);

 printf(" *pi: %d at %p\n", *pi, pi);

ptg11524036

551ANSI C Type Qualifiers

 printf(" %s at %p\n", pcg, pcg);

 printf(" %s at %p\n", auto_string, auto_string);

 printf(" %s at %p\n", pcl, pcl);

 printf(" %s at %p\n", "Quoted String", "Quoted String");

 free(pi);

 free(pcl);

 return 0;

 }

 Here is the output for one system:

 static_store: 30 at 00378000

 auto_store: 40 at 0049FB8C

 *pi: 35 at 008E9BA0

 String Literal at 00375858

 Auto char Array at 0049FB74

 Dynamic String at 008E9BD0

 Quoted String at 00375908

 As you can see, static data, including string literals occupies one region, automatic data a
second region, and dynamically allocated data a third region (often called a memory heap or free
store).

 ANSI C Type Qualifiers

 You’ve seen that a variable is characterized by both its type and its storage class. C90 added
two more properties: constancy and volatility. These properties are declared with the keywords
 const and volatile , which create qualified types . The C99 standard added a third qualifier,
 restrict , designed to facilitate compiler optimizations. And C11 adds a fourth, _Atomic . C11
provides an optional library, managed by stdatomic.h , to support concurrent programming,
and _Atomic is part of that optional support.

 C99 granted type qualifiers a new property—they now are idempotent! Although this sounds
like a powerful claim, all it really means is that you can use the same qualifier more than once
in a declaration, and the superfluous ones are ignored:

 const const const int n = 6; // same as const int n = 6;

 This makes it possible, for example, for the following sequence to be accepted:

 typedef const int zip;

 const zip q = 8;

ptg11524036

552 Chapter 12 Storage Classes, Linkage, and Memory Management

 The const Type Qualifier

 Chapter 4 , “Character Strings and Formatted Input/Output,” and Chapter 10 , “Arrays and
Pointers,” have already introduced const . To review, the const keyword in a declaration estab-
lishes a variable whose value cannot be modified by assignment or by incrementing or decre-
menting. On an ANSI-compliant compiler, the code

 const int nochange; /* qualifies m as being constant */

 nochange = 12; /* not allowed */

 should produce an error message. You can, however, initialize a const variable. Therefore, the
following code is fine:

 const int nochange = 12; /* ok */

 The preceding declaration makes nochange a read-only variable. After it is initialized, it cannot
be changed.

 You can use the const keyword to, for example, create an array of data that the program can’t
alter:

 const int days1[12] = {31,28,31,30,31,30,31,31,30,31,30,31};

 Using const with Pointers and Parameter Declarations

 Using the const keyword when declaring a simple variable and an array is pretty easy. Pointers
are more complicated because you have to distinguish between making the pointer itself const
and making the value that is pointed to const . The declaration

 const float * pf; /* pf points to a constant float value */

 establishes that pf points to a value that must remain constant. The value of pf itself can
be changed. For example, it can be set to point at another const value. In contrast, the
declaration

 float * const pt; /* pt is a const pointer */

 says that the pointer pt itself cannot have its value changed. It must always point to the same
address, but the pointed-to value can change. Finally, the declaration

 const float * const ptr;

 means both that ptr must always point to the same location and that the value stored at the
location must not change.

 There is a third location in which you can place const :

 float const * pfc; // same as const float * pfc;

 As the comment indicates, placing const after the type name and before the * means that the
pointer can’t be used to change the pointed-to value. In short, a const anywhere to the left

ptg11524036

553ANSI C Type Qualifiers

of the * makes the data constant; and a const to the right of the * makes the pointer itself
constant.

 One common use for this new keyword is declaring pointers that serve as formal function
parameters. For example, suppose you have a function called display() that displays the
contents of an array. To use it, you would pass the name of the array as an actual argument,
but the name of an array is an address. That would enable the function to alter data in the
calling function. But the following prototype prevents this from happening:

 void display(const int array[], int limit);

 In a prototype and a function header, the parameter declaration const int array[] is the
same as const int * array , so the declaration says that the data to which array points
cannot be changed.

 The ANSI C library follows this practice. If a pointer is used only to give a function access to
values, the pointer is declared as a pointer to a const -qualified type. If the pointer is used to
alter data in the calling function, the const keyword isn’t used. For example, the ANSI C decla-
ration for strcat() is this:

 char *strcat(char * restrict s1, const char * restrict s2);

 Recall that strcat() adds a copy of the second string to the end of the first string. This modi-
fies the first string, but leaves the second string unchanged. The declaration reflects this. We’ll
get back to the role of restrict in a short while.

 Using const with Global Data

 Recall that using global variables is considered a risky approach because it exposes data to being
mistakenly altered by any part of a program. That risk disappears if the data is constant, so it is
perfectly reasonable to use global variables with the const qualifier. You can have const vari-
ables, const arrays, and const structures. (Structures are a compound data type discussed in
the next chapter.)

 One area that requires care, however, is sharing const data across files. There are two strategies
you can use. The first is to follow the usual rules for external variables—use defining declara-
tions in one file and reference declarations (using the keyword extern) in the other files:

 /* file1.c -- defines some global constants */

 const double PI = 3.14159;

 const char * MONTHS[12] =

 {"January", "February", "March", "April", "May", "June", "July",

 "August", "September", "October", "November", "December"};

 /* file2.c -- use global constants defined elsewhere */

 extern const double PI;

 extern const * MONTHS[];

ptg11524036

554 Chapter 12 Storage Classes, Linkage, and Memory Management

 The second approach is to place the constants in an include file. Here, you must take the addi-
tional step of using the static external storage class:

 /* constant.h -- defines some global constants */

 static const double PI = 3.14159;

 static const char * MONTHS[12] =

 {"January", "February", "March", "April", "May", "June", "July",

 "August", "September", "October", "November", "December"};

 /* file1.c -- use global constants defined elsewhere */

 #include "constant.h"

 /* file2.c -- use global constants defined elsewhere */

 #include "constant.h"

 If you don’t use the keyword static , including constant.h in file1.c and in file2.c
would result in each file having a defining declaration of the same identifier, which is not
supported by the C standard. (Some compilers, however, do allow it.) By making each identifier
static external, you actually give each file a separate copy of the data. That wouldn’t work if the
files are supposed to use the data to communicate with one another because each file would see
only its own copy. Because the data is constant (by using the const keyword) and identical (by
having both files include the same header file), however, that’s not a problem.

 The advantage of the header file approach is that you don’t have to remember to use defining
declarations in one file and reference declarations in the next; all files simply include the same
header file. The disadvantage is that the data is duplicated. For the preceding examples, that’s
not a real problem, but it might be one if your constant data includes enormous arrays.

 The volatile Type Qualifier

 The volatile qualifier tells the compiler that a variable can have its value altered by agencies
other than the program. It is typically used for hardware addresses and for data shared with
other programs or threads running simultaneously. For example, an address might hold the
current clock time. The value at that address changes as time changes, regardless of what your
program is doing. Or an address could be used to receive information transmitted from, say,
another computer.

 The syntax is the same as for const :

 volatile int loc1; /* loc1 is a volatile location */

 volatile int * ploc; /* ploc points to a volatile location */

 These statements declare loc1 to be a volatile value and ploc to point to a volatile value.

 You may think that volatile is an interesting concept, but you might be wondering why the
ANSI committee felt it necessary to make volatile a keyword. The reason is that it facilitates
compiler optimization. Suppose, for example, you have code like this:

ptg11524036

555ANSI C Type Qualifiers

 val1 = x;

 /* some code not using x */

 val2 = x;

 A smart (optimizing) compiler might notice that you use x twice without changing its value. It
would temporarily store the x value in a register. Then, when x is needed for val2 , it can save
time by reading the value from a register instead of from the original memory location. This
procedure is called caching . Ordinarily, caching is a good optimization, but not if x is changed
between the two statements by some other agency. If there were no volatile keyword, a
compiler would have no way of knowing whether this might happen. Therefore, to be safe,
the compiler couldn’t cache. That was the pre-ANSI situation. Now, however, if the volatile
keyword is not used in the declaration, the compiler can assume that a value hasn’t changed
between uses, and it can then attempt to optimize the code.

 A value can be both const and volatile . For example, the hardware clock setting normally
should not be changed by the program, making it const , but it is changed by an agency other
than the program, making it volatile . Just use both qualifiers in the declaration, as shown
here; the order doesn’t matter:

 volatile const int loc;

 const volatile int * ploc;

 The restrict Type Qualifier

 The restrict keyword enhances computational support by giving the compiler permission
to optimize certain kinds of code. It can be applied only to pointers, and it indicates that a
pointer is the sole initial means of accessing a data object. To see why this is useful, we need to
look at a few examples. Consider the following:

 int ar[10];

 int * restrict restar = (int *) malloc(10 * sizeof(int));

 int * par = ar;

 Here, the pointer restar is the sole initial means of access to the memory allocated by
 malloc() . Therefore, it can be qualified with the keyword restrict . The pointer par ,
however, is neither the initial nor the sole means of access to the data in the ar array, so it
cannot be qualified as restrict .

 Now consider the following rather artificial example, in which n is an int :

 for (n = 0; n < 10; n++)

 {

 par[n] += 5;

 restar[n] += 5;

 ar[n] *= 2;

 par[n] += 3;

 restar[n] += 3;

 }

ptg11524036

556 Chapter 12 Storage Classes, Linkage, and Memory Management

 Knowing that restar is the sole initial means of access to the block of data it points to, the
compiler can replace the two statements involving restar with a single statement having the
same effect:

 restar[n] += 8; /* ok replacement */

 It would be a computational error, however, to condense the two statements involving par
into one:

 par[n] += 8; / * gives wrong answer */

 The reason it gives the wrong answer is that the loop uses ar to change the value of the data
between the two times par accesses the same data.

 Without the restrict keyword, the compiler has to assume the worse case; namely, that
some other identifier might have changed the data in between two uses of a pointer. With the
 restrict keyword used, the compiler is free to look for computational shortcuts.

 You can use the restrict keyword as a qualifier for function parameters that are pointers.
This means that the compiler can assume that no other identifiers modify the pointed-to data
within the body of the function and that the compiler can try optimizations it might not
otherwise use. For example, the C library has two functions for copying bytes from one loca-
tion to another. Under C99, they have these prototypes:

 void * memcpy(void * restrict s1, const void * restrict s2, size_t n);

 void * memmove(void * s1, const void * s2, size_t n);

 Each one copies n bytes from location s2 to location s1 . The memcpy() function requires that
there be no overlap between the two locations, but memmove() doesn’t have that requirement.
Declaring s1 and s2 as restrict means each pointer is a sole means of access, so they can’t
access the same block of data. This matches the requirement that there be no overlap. The
 memmove() function, which does allow overlap, has to be more careful about copying data so
that it doesn’t overwrite data before it is used.

 The keyword restrict has two audiences. One is the compiler, and it tells the compiler it is
free to make certain assumptions concerning optimization. The other audience is the user, and
it tells the user to use only arguments that satisfy the restrict requirements. In general, the
compiler can’t check whether you obey this restriction, but you flout it at your own risk.

 The _Atomic Type Qualifier (C11)

 Concurrent programming divides program execution into threads that may be executed in
parallel. This creates several programming challenges, including how to manage different
threads that access the same data. C11 provides, as an option and not a requirement, manage-
ment methods set up by the optional header files stdatomic.h and threads.h . One aspect is
the concept of an atomic type for which access is controlled by various macro functions. While
a thread performs an atomic operation on an object of atomic type, other threads won’t access
that object. For instance, something like

ptg11524036

557ANSI C Type Qualifiers

 int hogs; // regular declaration

 hogs = 12; // regular assignment

 could be replaced by the following:

 _Atomic int hogs; // hogs an atomic variable

 atomic_store(&hogs, 12); // macro from stdatomic.h

 Here, the storing of the value 12 in hogs is an atomic process during which other threads
won’t access hogs .

 At the time of this writing, compiler support for this feature is anticipated.

 New Places for Old Keywords

 C99 allows you to place the type qualifiers and the storage class qualifier static inside the
initial brackets of a formal parameter in a function prototype and function header. In the case
of the type qualifiers, this provides an alternative syntax for an existing capability. For example,
here is a declaration with the older syntax:

 void ofmouth(int * const a1, int * restrict a2, int n); // older style

 It says that a1 is a const pointer to int , which, as you’ll recall, means that the pointer is
constant, not the data to which it points. It also indicates that a2 is a restricted pointer, as
described in the preceding section. The new and equivalent syntax is

 void ofmouth(int a1[const], int a2[restrict], int n); // allowed by C99

 Basically, the new rule allows you to use these two qualifiers with either pointer or array nota-
tion in declaring function parameters.

 The case for static is different because it introduces a new and unrelated use for this keyword.
Instead of indicating the scope or linkage of a static storage variable, the new use is to tell the
compiler how a formal parameter will be used. For example, consider this prototype:

 double stick(double ar[static 20]);

 This use of static indicates that the actual argument in a function call will be a pointer to
the first element of an array having at least 20 elements. The purpose of this is to enable the
compiler to use that information to optimize its coding of the function. Why use the keyword
in such a different fashion? The C standards committee is reluctant to create a new keyword
because that would invalidate old programs that use that word as an identifier, so if they can
squeeze a new use out of an old keyword, they will.

 As with restrict , the keyword static has two audiences. One is the compiler, and it tells the
compiler it is free to make certain assumptions concerning optimization. The other audience is
the user, and it tells the user to only provide arguments that satisfy the static requirements.

ptg11524036

558 Chapter 12 Storage Classes, Linkage, and Memory Management

 Key Concepts

 C provides several models for managing memory. You should become familiar with the various
choices. You also need to develop a sense of when to choose the various types. Most of the
time, the automatic variable is the best choice. If you decide to use another type, you should
have a good reason. For communicating between functions, it’s usually better to use automatic
variables, function parameters, and return values rather than global variables. On the other
hand, global variables are particularly useful for constant data.

 You should try to understand the properties of static memory, automatic memory, and allo-
cated memory. In particular, be aware that the amount of static memory used is determined
at compile time, and that static data is loaded into memory when the program is loaded into
memory. Automatic variables are allocated and freed as the program runs, so the amount of
memory used by automatic variables changes while a program executes. You can think of auto-
matic memory as a rewriteable workspace. Allocated memory also grows and shrinks, but, in
this case, the process is controlled by function calls rather than happening automatically.

 Summary

 The memory used to store data in a program can be characterized by storage duration, scope,
and linkage. Storage duration can be static, automatic, or allocated. If static, memory is allo-
cated at the start of program execution and persists as long as the program is running. If auto-
matic, memory for a variable is allocated when program execution enters the block in which
the variable is defined and is freed when the block is exited. If allocated, memory is allocated
by calling malloc() (or a related function) and freed by calling the free() function.

 Scope determines which parts of a program can access the data. A variable defined outside of
any function has file scope and is visible to any function defined after the variable’s declara-
tion. A variable defined inside a block or as a function parameter has block scope and is visible
just in that block and any blocks nested in it.

 Linkage describes the extent to which a variable defined in one unit of a program can be linked
to elsewhere. Variables with block scope, being local, have no linkage. Variables with file scope
can have internal linkage or external linkage. Internal linkage means the variable can be used
only in the file containing the definition. External linkage means the variable also can be used
in other files.

 The following are C’s five storage classes (excluding thread concepts):

 ■ Automatic— A variable declared in a block (or as a parameter in a function header)
with no storage class modifier, or with the auto storage class modifier, belongs to the
automatic storage class. It has automatic storage duration, block scope, and no linkage.
Its value, if uninitialized, is not undetermined.

 ■ Register— A variable declared in a block (or as a parameter in a function header) with
the register storage class modifier belongs to the register storage class. It has automatic
storage duration, block scope, and no linkage, and its address cannot be taken. Declaring

ptg11524036

559Review Questions

a variable as a register variable is a hint to the compiler to provide the fastest access
possible. Its value, if uninitialized, is not undetermined.

 ■ Static, no linkage— A variable declared in a block with the static storage class modifier
belongs to the “static, no linkage” storage class. It has static storage duration, block
scope, and no linkage. It is initialized just once, at compile time. If not initialized
explicitly, its bytes are set to 0.

 ■ Static, external linkage— A variable defined external to any function and without using
the static storage class modifier belongs to the “static, external linkage” storage class.
It has static storage duration, file scope, and external linkage. It is initialized just once, at
compile time. If not initialized explicitly, its bytes are set to 0.

 ■ Static, internal linkage— A variable defined external to any function and using the
 static storage class modifier belongs to the “static, internal linkage” storage class. It
has static storage duration, file scope, and internal linkage. It is initialized just once, at
compile time. If not initialized explicitly, its bytes are set to 0.

 Allocated memory is provided by using the malloc() (or related) function, which returns a
pointer to a block of memory having the requested number of bytes. This memory can be made
available for reuse by calling the free() function, using the address as the argument.

 The type qualifiers are const , volatile , and restrict . The const specifier qualifies data as
being constant. When used with pointers, const can indicate that the pointer itself is constant
or that the data it points to is constant, depending on the placement of const in the declara-
tion. The volatile specifier indicates that data may be altered by processes other than the
program. Its purpose is to warn the compiler to avoid optimizations that assume otherwise.
The restrict specifier is also provided for reasons of optimization. A pointer qualified with
 restrict is identified as providing the only access to a block of data.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. Which storage classes create variables local to the function containing them?

 2. Which storage classes create variables that persist for the duration of the containing
program?

 3. Which storage class creates variables that can be used across several files? Restricted to
just one file?

 4. What kind of linkage do block scope variables have?

 5. What is the extern keyword used for?

ptg11524036

560 Chapter 12 Storage Classes, Linkage, and Memory Management

 6. Consider this code fragment:

 int * p1 = (int *) malloc(100 * sizeof(int));

 In terms of the final outcome, how does the following statement differ?

 int * p1 = (int *) calloc(100, sizeof(int));

 7. Which functions know each variable in the following? Are there any errors?

 /* file 1 */

 int daisy;

 int main(void)

 {

 int lily;

 ...;

 }

 int petal()

 {

 extern int daisy, lily;

 ...;

 }

 /* file 2 */

 extern int daisy;

 static int lily;

 int rose;

 int stem()

 {

 int rose;

 ...;

 }

 void root()

 {

 ...;

 }

 8. What will the following program print?

 #include <stdio.h>

 char color= 'B';

 void first(void);

 void second(void);

 int main(void)

 {

 extern char color;

 printf("color in main() is %c\n", color);

ptg11524036

561Programming Exercises

 first();

 printf("color in main() is %c\n", color);

 second();

 printf("color in main() is %c\n", color);

 return 0;

 }

 void first(void)

 {

 char color;

 color = 'R';

 printf("color in first() is %c\n", color);

 }

 void second(void)

 {

 color = 'G';

 printf("color in second() is %c\n", color);

 }

 9. A file begins with the following declarations:

 static int plink;

 int value_ct(const int arr[], int value, int n);

 a. What do these declarations tell you about the programmer’s intent?

 b. Will replacing int value and int n with const int value and const int n
enhance the protection of values in the calling program?

 Programming Exercises

 1. Rewrite the program in Listing 12.4 so that it does not use global variables.

 2. Gasoline consumption commonly is computed in miles per gallon in the U.S. and in
liters per 100 kilometers in Europe. What follows is part of a program that asks the user
to choose a mode (metric or U.S.) and then gathers data and computes fuel consumption:

 // pe12-2b.c

 // compile with pe12-2a.c

 #include <stdio.h>

 #include "pe12-2a.h"

 int main(void)

 {

ptg11524036

562 Chapter 12 Storage Classes, Linkage, and Memory Management

 int mode;

 printf("Enter 0 for metric mode, 1 for US mode: ");

 scanf("%d", &mode);

 while (mode >= 0)

 {

 set_mode(mode);

 get_info();

 show_info();

 printf("Enter 0 for metric mode, 1 for US mode");

 printf(" (-1 to quit): ");

 scanf("%d", &mode);

 }

 printf("Done.\n");

 return 0;

 }

 Here is some sample output:

 Enter 0 for metric mode, 1 for US mode: 0

 Enter distance traveled in kilometers: 600

 Enter fuel consumed in liters: 78.8

 Fuel consumption is 13.13 liters per 100 km.

 Enter 0 for metric mode, 1 for US mode (-1 to quit): 1

 Enter distance traveled in miles: 434

 Enter fuel consumed in gallons: 12.7

 Fuel consumption is 34.2 miles per gallon.

 Enter 0 for metric mode, 1 for US mode (-1 to quit): 3

 Invalid mode specified. Mode 1(US) used.

 Enter distance traveled in miles: 388

 Enter fuel consumed in gallons: 15.3

 Fuel consumption is 25.4 miles per gallon.

 Enter 0 for metric mode, 1 for US mode (-1 to quit): -1

 Done.

 If the user enters an incorrect mode, the program comments on that and uses the most
recent mode. Supply a pe12-2a.h header file and a pe12-2a.c source code file to make
this work. The source code file should define three file-scope, internal-linkage variables.
One represents the mode, one represents the distance, and one represents the fuel
consumed. The get_info() function prompts for data according to the mode setting
and stores the responses in the file-scope variables. The show_info() function calculates
and displays the fuel consumption based on the mode setting. You can assume the user
responds with numeric input.

 3. Redesign the program described in Programming Exercise 2 so that it uses only automatic
variables. Have the program offer the same user interface—that is, it should prompt the

ptg11524036

563Programming Exercises

user to enter a mode, and so on. You’ll have to come up with a different set of function
calls, however.

 4. Write and test in a loop a function that returns the number of times it has been called.

 5. Write a program that generates a list of 100 random numbers in the range 1–10
in sorted decreasing order. (You can adapt the sorting algorithm from Chapter 11 ,
“Character Strings and String Functions,” to type int . In this case, just sort the numbers
themselves.)

 6. Write a program that generates 1,000 random numbers in the range 1–10. Don’t save or
print the numbers, but do print how many times each number was produced. Have the
program do this for 10 different seed values. Do the numbers appear in equal amounts?
You can use the functions from this chapter or the ANSI C rand() and srand()
functions, which follow the same format that our functions do. This is one way to
examine the randomness of a particular random-number generator.

 7. Write a program that behaves like the modification of Listing 12.13 , which we discussed
after showing the output of Listing 12.13 . That is, have the program produce output like
the following:

 Enter the number of sets; enter q to stop : 18

 How many sides and how many dice? 6 3

 Here are 18 sets of 3 6-sided throws.

 12 10 6 9 8 14 8 15 9 14 12 17 11 7 10

 13 8 14

 How many sets? Enter q to stop: q

 8. Here’s part of a program:

 // pe12-8.c

 #include <stdio.h>

 int * make_array(int elem, int val);

 void show_array(const int ar[], int n);

 int main(void)

 {

 int * pa;

 int size;

 int value;

 printf("Enter the number of elements: ");

 while (scanf("%d", &size) == 1 && size > 0)

 {

 printf("Enter the initialization value: ");

 scanf("%d", &value);

ptg11524036

564 Chapter 12 Storage Classes, Linkage, and Memory Management

 pa = make_array(size, value);

 if (pa)

 {

 show_array(pa, size);

 free(pa);

 }

 printf("Enter the number of elements (<1 to quit): ");

 }

 printf("Done.\n");

 return 0;

 }

 Complete the program by providing function definitions for make_array() and show_
array() . The make_array() function takes two arguments. The first is the number
of elements of an int array, and the second is a value that is to be assigned to each
element. The function uses malloc() to create an array of a suitable size, sets each
element to the indicated value, and returns a pointer to the array. The show_array()
function displays the contents, eight numbers to a line.

 9. Write a program with the following behavior. First, it asks you how many words you
wish to enter. Then it has you enter the words, and then it displays the words. Use
 malloc() and the answer to the first question (the number of words) to create a dynamic
array of the corresponding number of pointers-to- char . (Note that because each element
in the array is a pointer-to- char , the pointer used to store the return value of malloc()
should be a pointer-to-a-pointer-to- char .) When reading the string, the program should
read the word into a temporary array of char , use malloc() to allocate enough storage
to hold the word, and store the address in the array of char pointers. Then it should
copy the word from the temporary array into the allocated storage. Thus, you wind up
with an array of character pointers, each pointing to an object of the precise size needed
to store the particular word. A sample run could look like this:

 How many words do you wish to enter? 5

 Enter 5 words now:

 I enjoyed doing this exerise

 Here are your words:

 I

 enjoyed

 doing

 this

 exercise

ptg11524036

 13
 File Input/Output

 You will learn about the following in this chapter:

 ■ Functions:

 fopen() , getc() , putc() , exit() , fclose()

 fprintf() , fscanf() , fgets() , fputs()

 rewind() , fseek() , ftell() , fflush()

 fgetpos() , fsetpos() , feof() , ferror()

 ungetc() , setvbuf() , fread() , fwrite()

 ■ How to process files using C’s standard I/O family of functions

 ■ Text modes and binary modes, text and binary formats, and buffered and nonbuffered
I/O

 ■ Using functions that can access files both sequentially and randomly

 Files are essential to today’s computer systems. They are used to store programs, documents,
data, correspondence, forms, graphics, photos, music, videos, and myriad other kinds of infor-
mation. As a programmer, you will have to write programs that create files, write into files, and
read from files. In this chapter, we show you how.

 Communicating with Files

 Often you need programs that can read information from files or can write results into a
file. One such form of program-file communication is file redirection, as you saw in Chapter
 8 , “Character Input/Output and Input Validation.” This method is simple but limited. For
example, suppose you want to write an interactive program that asks you for book titles and
then saves the complete listing in a file. If you use redirection, as in

 books > bklist

ptg11524036

566 Chapter 13 File Input/Output

 your interactive prompts are redirected into bklist . Not only does this put unwanted text into
 bklist , it prevents you from seeing the questions you are supposed to answer.

 C, as you might expect, offers more powerful methods of communicating with files. It enables
you to open a file from within a program and then use special I/O functions to read from or
write to that file. Before investigating these methods, however, let’s briefly review the nature of
a file.

 What Is a File?

 A file is a named section of storage, usually on a disk, or, more recently, on a solid-state device.
You think of stdio.h , for instance, as the name of a file containing some useful information.
To the operating system, however, a file is a bit more complicated. A large file, for example,
could wind up stored in several scattered fragments, or it might contain additional data that
allows the operating system to determine what kind of file it is. However, these are the operat-
ing system’s concerns, not yours (unless you are writing operating systems). Your concern is
how files appear to a C program.

 C views a file as a continuous sequence of bytes, each of which can be read individually. This
corresponds to the file structure in the Unix environment, where C grew up. Because other
environments may not correspond exactly to this model, C provides two ways to view files: the
text view and the binary view.

 The Text Mode and the Binary Mode

 First, let’s distinguish between text and binary content, text and binary file formats, and text
and binary modes for files.

 All file content is in binary form (zeros and ones). But if a file primarily uses the binary codes
for characters (for instance, ASCII or Unicode) to represent text, much as a C string does, then
it is a text file; it has text content. If, instead, the binary values in the file represent machine-
language code or numeric data (using the same internal representation as, say, used for long or
 double values) or image or music encoding, the content is binary.

 Unix uses the same file format for both kinds of content. Not surprisingly, given that C was
created as tool for developing Unix, both C and Unix use \n (the line-feed character) to indi-
cate a line break in text. Unix directories maintain a file-size count that programs can use
to determine when end-of-file is reached. However, other systems have had other ways of
handling files specifically intended to hold text. That is, they have a format for text files differ-
ent from the Unix model. For example, pre-OS X Macintosh files used \r (the carriage-return
character) to indicate a new line. Early MS-DOS files used the combination \r\n to indicate
a newline and an imbedded Ctrl+Z character to denote end-of-file, even though the actual
file would be padded with additional null characters to make the total size a multiple of 256.
(In Windows, Notepad still produces MS-DOS format text files, but newer editors may use a
more Unix-like format.) Other systems might make every line in a text file of the same length,

ptg11524036

567Communicating with Files

padding each line with null characters, if necessary, to make the length come out right. Or a
system might encode the length of each line at the beginning of each line.

 To bring some regularity to the handling of text files, C provides two ways of accessing a
file: binary mode and text mode. In the binary mode, each and every byte of the file is acces-
sible to a program. In the text mode, however, what the program sees can differ from what
is in the file. With the text view, the local environment’s representation of such things as
the end of a line or end-of-file are mapped to the C view when a file is read. Similarly, the C
view is mapped to the local representation of output. For example, a C program compiled on
an older Macintosh and using text mode would convert \r to \n when reading a file in text
mode and convert \n to \r when writing to a file. Or a C text-mode program compiled on
an MS-DOS platform would convert \r\n to \n when reading from a file and convert \n to
 \r\n when writing to a file. Text-mode programs written for other environments make similar
adjustments.

 You aren’t restricted to using only the text view for a text file. You can also use the binary view
of the same file. If you do for an old MS-DOS text file, your program sees both the \r and the
 \n characters in the file; no mapping takes place. (Figure 13.1 illustrates this with some nautical
text.) If you want to write a text-viewing program that works for, say, old Mac formats, MS-DOS
formats, and Unix/Linux formats, you would use binary mode so that the program could deter-
mine the actual file contents and act accordingly.

the way it looks to a C
program when opened in
the binary mode

the way it looks to a C program when
opened in the text mode

an MS-DOS
text file

Rebecca clutched the\r\n

jewel-encrusted scarab\r\n

to her heaving bosun.\r\n

^Z

Rebecca clutched the\r\n

jewel-encrusted scarab\r\n

to her heaving bosun.\r\n

^Z

Rebecca clutched the\n

jewel-encrusted scarab\n

to her heaving bosun.\n

 Figure 13.1 Binary view and text view.

ptg11524036

568 Chapter 13 File Input/Output

 Although C provides for both a binary view and a text view, these views can be implemented
identically. As mentioned, because Unix uses just one file structure, both views are the same for
Unix implementations. And this is true for Linux, too.

 Levels of I/O

 In addition to selecting the view of a file, you can, in most cases, choose between two levels of
I/O (that is, between two levels of handling access to files). Low-level I/O uses the fundamental
I/O services provided by the operating system. Standard high-level I/O uses a standard package
of C library functions and stdio.h header file definitions. The C standard supports only the
standard I/O package because there is no way to guarantee that all operating systems can be
represented by the same low-level I/O model. Particular implementations may also provide low-
level libraries, but, because the C standard establishes a portable I/O model, we will concentrate
on it.

 Standard Files

 C programs automatically open three files on your behalf. They are termed the standard input ,
the standard output , and the standard error output . The standard input, by default, is the normal
input device for your system, usually your keyboard. Both the standard output and the stan-
dard error output, by default, are the normal output device for your system, usually your
display screen.

 The standard input, naturally, provides input to your program. It’s the file that is read by
 getchar() and scanf() . The standard output is where normal program output goes. It is used
by putchar() , puts() , and printf() . Redirection, as you learned in Chapter 8 , causes other
files to be recognized as the standard input or standard output. The purpose of the standard
error output file is to provide a logically distinct place to send error messages. If, for example,
you use redirection to send output to a file instead of to the screen, output sent to the standard
error output still goes to the screen. This is good because if the error messages were routed to
the file, you would not see them until you viewed the file.

 Standard I/O

 The standard I/O package has two advantages, besides portability, over low-level I/O. First, it
has many specialized functions that simplify handling different I/O problems. For example,
 printf() converts various forms of data to string output suitable for terminals. Second, input
and output are buffered . That is, information is transferred in large chunks (typically 512
bytes at a time or more) instead of a byte at a time. When a program reads a file, for example,
a chunk of data is copied to a buffer—an intermediate storage area. This buffering greatly
increases the data transfer rate. The program can then examine individual bytes in the buffer.
The buffering is handled behind the scenes, so you have the illusion of character-by-character
access. (You can also buffer low-level I/O, but you have to do much of the work yourself.)
 Listing 13.1 shows how to use standard I/O to read a file and count the number of characters

ptg11524036

569Standard I/O

in the file. We’ll discuss the features of Listing 13.1 in the next several sections. (This program
uses command-line arguments. If you’re a Windows user, you might have to run the program
in a command-prompt window after compiling. If you’re a Macintosh user, the simplest
approach is to compile and run the program in command-line form using Terminal. Or, as
described in Chapter 11 , “Character Strings and String Functions,” you can use the Xcode
Product menu to provide command-line arguments for a program run in the IDE. Alternatively,
you can alter the program to use puts() and fgets() instead of command-line arguments to
get the filename.)

 Listing 13.1 The count.c Program

 /* count.c -- using standard I/O */

 #include <stdio.h>

 #include <stdlib.h> // exit() prototype

 int main(int argc, char *argv[])

 {

 int ch; // place to store each character as read

 FILE *fp; // "file pointer"

 unsigned long count = 0;

 if (argc != 2)

 {

 printf("Usage: %s filename\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 if ((fp = fopen(argv[1], "r")) == NULL)

 {

 printf("Can't open %s\n", argv[1]);

 exit(EXIT_FAILURE);

 }

 while ((ch = getc(fp)) != EOF)

 {

 putc(ch,stdout); // same as putchar(ch);

 count++;

 }

 fclose(fp);

 printf("File %s has %lu characters\n", argv[1], count);

 return 0;

 }

 Checking for Command-Line Arguments

 First, the program in Listing 13.1 checks the value of argc to see if there is a command-line
argument. If there isn’t, the program prints a usage message and exits. The string argv[0] is

ptg11524036

570 Chapter 13 File Input/Output

the name of the program. Using argv[0] instead of the program name explicitly causes the
error message to change automatically if you change the name of the executable file. This
feature is also handy in environments such as Unix that permit multiple names for a single
file. But beware—some operating systems may not recognize argv[0] , so this usage is not
completely portable.

 The exit() function causes the program to terminate, closing any open files. The argument
to exit() is passed on to some operating systems, including Unix, Linux, Windows, and
MS-DOS, where it can be used by other programs. The usual convention is to pass a value of
 0 for programs that terminate normally and to pass nonzero values for abnormal termination.
Different exit values can be used to distinguish between different causes of failure, and this is
the usual practice in Unix and DOS programming. However, not all operating systems recog-
nize the same range of possible return values. Therefore, the C standard mandates a rather
restricted minimum range. In particular, the standard requires that the value 0 or the macro
 EXIT_SUCCESS be used to indicate successful termination, and the macro EXIT_FAILURE be
used to indicate unsuccessful termination. These macros, along with the exit() prototype, are
found in the stdlib.h header file.

 Under ANSI C, using return in the initial call to main() has the same effect as calling exit() .
Therefore, in main() , the statement

 return 0;

 which you’ve been using all along, is equivalent in effect to this statement:

 exit(0);

 Note, however, the qualifying phrase “the initial call.” If you make main() into a recursive
program, exit() still terminates the program, but return passes control to the previous level
of recursion until the original level is reached. Then return terminates the program. Another
difference between return and exit() is that exit() terminates the program even if called in
a function other than main() .

 The fopen() Function

 Next, the program uses fopen() to open the file. This function is declared in stdio.h . Its
first argument is the name of the file to be opened; more exactly, it is the address of a string
containing that name. The second argument is a string identifying the mode in which the file
is to be opened. The C library provides for several possibilities, as shown in Table 13.1 .

 Table 13.1 Mode Strings for fopen()

 Mode String Meaning

 "r" Open a text file for reading.

 "w" Open a text file for writing, truncating an existing file to zero length, or creat-
ing the file if it does not exist.

ptg11524036

571Standard I/O

 Mode String Meaning

 "a" Open a text file for writing, appending to the end of an existing file, or creat-
ing the file if it does not exist.

 "r+" Open a text file for update (that is, for both reading and writing).

 "w+" Open a text file for update (reading and writing), first truncating the file to
zero length if it exists or creating the file if it does not exist.

 "a+" Open a text file for update (reading and writing), appending to the end of an
existing file, or creating the file if it does not yet exist; the whole file can be
read, but writing can only be appended.

 "rb" , "wb" , "ab" ,
 "ab+" , "a+b" ,
 "wb+" , "w+b" ,
 "ab+" , "a+b"

 Like the preceding modes, except they use binary mode instead of text
mode.

 "wx" , "wbx" ,
 "w+x" , "wb+x" or
 "w+bx"

 (C11) Like the non-x modes, except they fail if the file already exists and they
open a file in exclusive mode, if possible.

 For systems such as Unix and Linux that have just one file type, the modes with the b are
equivalent to the corresponding modes lacking the b .

 The new C11 write modes with x provide a couple of features compared to the older write
modes. First, if you try to open an existing file in one of the traditional write modes, fopen()
truncates the file to zero length, thus losing the file contents. But the modes with x cause
 fopen() to fail instead, leaving the file unharmed. Second, to the extent that the environment
allows, the exclusivity feature of the x modes keeps other programs or threads from accessing
the file until the current process closes the file.

 Caution!

 If you use any of the "w" modes without an x for an existing file, the file contents are trun-
cated so that your program can start with a clean slate. However, if you attempt to open an
existing file with one of the C11 modes with an x , the attempt fails.

 After your program successfully opens a file, fopen() returns a file pointer , which the other
I/O functions can then use to specify the file. The file pointer (fp in this example) is of type
pointer-to- FILE ; FILE is a derived type defined in stdio.h . The pointer fp doesn’t point to the
actual file. Instead, it points to a data object containing information about the file, including
information about the buffer used for the file’s I/O. Because the I/O functions in the standard
library use a buffer, they need to know where the buffer is. They also need to know how full
the buffer is and which file is being used. This enables the functions to refill or empty the
buffer when necessary. The data object pointed to by fp has all that information. (This data

ptg11524036

572 Chapter 13 File Input/Output

object is an example of a C structure, a topic we discuss in Chapter 14 , “Structures and Other
Data Forms.”)

 The fopen() function returns the null pointer (also defined in stdio.h) if it cannot open the
file. This program exits if fp is NULL . The fopen() function can fail because the disk is full,
because the file is not in the searched directory, because the name is illegal, because access is
restricted, or because of a hardware problem, to name just a few reasons, so check for trouble; a
little error-trapping can go a long way.

 The getc() and putc() Functions

 The two functions getc() and putc() work very much like getchar() and putchar() . The
difference is that you must tell these newcomers which file to use. So the following old standby
means “get a character from the standard input”:

 ch = getchar();

 However, this statement means “get a character from the file identified by fp ”:

 ch = getc(fp);

 Similarly, this statement means “put the character ch into the file identified by the FILE
pointer fpout ”:

 putc(ch, fpout);

 In the putc() argument list, the character comes first, and then the file pointer.

 Listing 13.1 uses stdout for the second argument of putc() . It is defined in stdio.h as being
the file pointer associated with the standard output, so putc(ch,stdout) is the same as
 putchar(ch) . Indeed, the latter function is normally defined as being the former. Similarly,
 getchar() is defined as being getc() using the standard input.

 You may wonder why this example uses putc() instead of putchar() . One reason is to intro-
duce the putc() function. The other is that you can easily convert this program to produce file
output by using an argument other than stdout .

 End-of-File

 A program reading data from a file needs to stop when it reaches the end of the file. How can
a program tell if it has reached the end? The getc() function returns the special value EOF if it
tries to read a character and discovers it has reached the end of the file. So a C program discov-
ers it has reached the end of a file only after it tries to read past the end of the file. (This is
unlike the behavior of some languages, which use a special function to test for end-of-file before
attempting a read.)

 To avoid problems attempting to read an empty file, you should use an entry-condition loop
(not a do while loop) for file input. Because of the design of getc() (and other C input

ptg11524036

573Standard I/O

functions), a program should attempt the first read before entering the body of the loop. So the
following design is good:

 // good design #1

 int ch; // int to hold EOF

 FILE * fp;

 fp = fopen("wacky.txt", "r");

 ch = getc(fp); // get initial input

 while (ch != EOF)

 {

 putchar(ch); // process input

 ch = getc(fp); // get next input

 }

 This can be condensed to the following design:

 // good design #2

 int ch;

 FILE * fp;

 fp = fopen("wacky.txt", "r");

 while ((ch = getc(fp)) != EOF)

 {

 putchar(ch); // process input

 }

 Because the input statement is part of the while test condition, it is executed before the
program enters the body of the loop.

 You should avoid a design of this sort:

 // bad design (two problems)

 int ch;

 FILE * fp;

 fp = fopen("wacky.txt", "r");

 while (ch != EOF) // ch undetermined value first use

 {

 ch = getc(fp); // get input

 putchar(ch); // process input

 }

 The first problem is that the first time ch is compared with EOF , it has not yet been assigned a
value. The second problem is that if getc() does return EOF , the loop tries to process EOF as
if it were a valid character. These defects are fixable. For example, you could initialize ch to a
dummy value and stick an if statement inside the loop, but why bother when good designs
are already available.

 These cautions carry over to the other input functions. They also return an error signal (either
 EOF or the NULL pointer) after running into the end of a file.

ptg11524036

574 Chapter 13 File Input/Output

 The fclose() Function

 The fclose(fp) function closes the file identified by fp , flushing buffers as needed. For a
program less casual than this one, you would check to see whether the file had been closed
successfully. The function fclose() returns a value of 0 if successful, and EOF if not:

 if (fclose(fp) != 0)

 printf("Error in closing file %s\n", argv[1]);

 The fclose() function can fail if, for example, the disk is full, a removable storage device has
been removed, or there has been an I/O error.

 Pointers to the Standard Files

 The stdio.h file associates three file pointers with the three standard files automatically
opened by C programs:

 Standard File File Pointer Normally

 Standard input stdin Your keyboard

 Standard output stdout Your screen

 Standard error stderr Your screen

 These pointers are all type pointer-to- FILE , so they can be used as arguments to the standard
I/O functions, just as fp was in the example. Let’s move on to an example that creates a new
file and writes to it.

 A Simple-Minded File-Condensing Program

 This next program copies selected data from one file to another. It opens two files simultane-
ously, using the "r" mode for one and the "w" mode for the other. The program (shown in
 Listing 13.2) condenses the contents of the first file by the brutal expedient of retaining only
every third character. Finally, it places the condensed text into the second file. The name for
the second file is the old name with .red (for reduced) appended. Using command-line argu-
ments, opening more than one file simultaneously, and filename appending are generally quite
useful techniques. This particular form of condensing is of more limited appeal, but it can have
its uses, as you will see. (Again, it is a simple matter to modify this program to use standard I/O
techniques instead of command-line arguments to provide filenames.)

 Listing 13.2 The reducto.c Program

 // reducto.c -- reduces your files by two-thirds!

 #include <stdio.h>

 #include <stdlib.h> // for exit()

ptg11524036

575A Simple-Minded File-Condensing Program

 #include <string.h>

 int main(int argc, char *argv[])

 {

 FILE *in, *out; // declare two FILE pointers

 int ch;

 char name[LEN]; // storage for output filename

 int count = 0;

 // check for command-line arguments

 if (argc < 2)

 {

 fprintf(stderr, "Usage: %s filename\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 // set up input

 if ((in = fopen(argv[1], "r")) == NULL)

 {

 fprintf(stderr, "I couldn't open the file \"%s\"\n",

 argv[1]);

 exit(EXIT_FAILURE);

 }

 // set up output

 strncpy(name,argv[1], LEN - 5); // copy filename

 name[LEN - 5] = '\0';

 strcat(name,".red"); // append .red

 if ((out = fopen(name, "w")) == NULL)

 { // open file for writing

 fprintf(stderr,"Can't create output file.\n");

 exit(3);

 }

 // copy data

 while ((ch = getc(in)) != EOF)

 if (count++ % 3 == 0)

 putc(ch, out); // print every 3rd char

 // clean up

 if (fclose(in) != 0 || fclose(out) != 0)

 fprintf(stderr,"Error in closing files\n");

 return 0;

 }

 Suppose the executable file is named reducto and that we apply it to a file called Eddy , which
contains this single line:

 So even Eddy came oven ready.

ptg11524036

576 Chapter 13 File Input/Output

 The command would be as follows:

 reducto eddy

 The output is written to a file called eddy.red . The program doesn’t produce any onscreen
output, but displaying the eddy.red file should reveal the following:

 Send money

 This example illustrates several programming techniques. Let’s examine some of them now.

 The fprintf() function is like printf() , except that it requires a file pointer as its first argu-
ment. We’ve used the stderr pointer to send error messages to the standard error; this is a
standard C practice.

 To construct the new name for the output file, the program uses strncpy() to copy the name
 eddy into the array name . The LEN - 5 argument leaves room for the .red suffix and the final
null character. No null character is copied if the argv[2] string is longer than LEN – 5 , so the
program adds a null character just in case. The first null character in name after the strncpy()
call then is overwritten by the period in .red when the strcat() function appends that
string, producing, in this case, eddy.red . We also checked to see whether the program
succeeded in opening a file by that name. This is particularly important in some environments
because a filename such as, say, strange.c.red , may be invalid. For example, you can’t add
extensions to extensions under traditional DOS. (The proper MS-DOS approach is to replace
any existing extension with .red , so the reduced version of strange.c would be strange.
red . You could use the strchr() function, for example, to locate the period, if any, in a name
and copy only the part of the string before the period.)

 This program had two files open simultaneously, so we declared two FILE pointers. Note that
each file is opened and closed independently of the other. There are limits to how many files
you can have open at one time. The limit depends on your system and implementation; the
range is often 10 to 20. You can use the same file pointer for different files, provided those files
are not open at the same time.

 File I/O: fprintf() , fscanf() , fgets() , and

 fputs()

 For each of the I/O functions in the preceding chapters, there is a similar file I/O function. The
main distinction is that you need to use a FILE pointer to tell the new functions with which
file to work. Like getc() and putc() , these functions require that you identify a file by using a
pointer-to- FILE , such as stdout , or that you use the return value of fopen() .

 The fprintf() and fscanf() Functions

 The file I/O functions fprintf() and fscanf() work just like printf() and scanf() , except
that they require an additional first argument to identify the proper file. You’ve already used

ptg11524036

577File I/O: fprintf(), fscanf(), fgets(), and fputs()

 fprintf() . Listing 13.3 illustrates both of these file I/O functions, along with the rewind()
function.

 Listing 13.3 The addaword.c Program

 /* addaword.c -- uses fprintf(), fscanf(), and rewind() */

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #define MAX 41

 int main(void)

 {

 FILE *fp;

 char words[MAX];

 if ((fp = fopen("wordy", "a+")) == NULL)

 {

 fprintf(stdout,"Can't open \"wordy\" file.\n");

 exit(EXIT_FAILURE);

 }

 puts("Enter words to add to the file; press the #");

 puts("key at the beginning of a line to terminate.");

 while ((fscanf(stdin,"%40s", words) == 1) && (words[0] != '#'))

 fprintf(fp, "%s\n", words);

 puts("File contents:");

 rewind(fp); /* go back to beginning of file */

 while (fscanf(fp,"%s",words) == 1)

 puts(words);

 puts("Done!");

 if (fclose(fp) != 0)

 fprintf(stderr,"Error closing file\n");

 return 0;

 }

 This program enables you to add words to a file. By using the "a+" mode, the program can
both read and write in the file. The first time the program is used, it creates the wordy file and
enables you to place words in it, one word per line. When you use the program subsequently,
it enables you to add (append) words to the previous contents. The append mode only enables
you to add material to the end of the file, but the "a+" mode does enable you to read the
whole file. The rewind() command takes the program to the file beginning so that the final
 while loop can print the file contents. Note that rewind() takes a file pointer argument.

ptg11524036

578 Chapter 13 File Input/Output

 Here’s a sample run from a Unix environment (the executable program has been renamed
 addaword):

 $ addaword

 Enter words to add to the file; press the Enter

 key at the beginning of a line to terminate.

 The fabulous programmer

 #

 File contents:

 The

 fabulous

 programmer

 Done!

 $ addaword

 Enter words to add to the file; press the Enter

 key at the beginning of a line to terminate.

 enchanted the

 large

 #

 File contents:

 The

 fabulous

 programmer

 enchanted

 the

 large

 Done!

 As you can see, fprintf() and fscanf() work like printf() and scanf() . Unlike putc() ,
the fprintf() and fscanf() functions take the FILE pointer as the first argument instead of
as the last argument.

 The fgets() and fputs() Functions

 You met fgets() in Chapter 11 . The first argument, as with the banished gets() , is the
address (type char *) where input should be stored. The second argument is an integer repre-
senting the maximum size of the input string. The final argument is the file pointer identifying
the file to be read. A function call, then, looks like this:

 fgets(buf, STLEN, fp);

 Here, buf is the name of a char array, STLEN is the maximum size of the string, and fp is the
pointer-to- FILE .

 As we saw earlier, the fgets() function reads input through the first newline character, until
one fewer than the upper limit of characters is read, or until the end-of-file is found; fgets()
then adds a terminating null character to form a string. Therefore, the upper limit represents

ptg11524036

579Adventures in Random Access: fseek() and ftell()

the maximum number of characters plus the null character. If fgets() reads in a whole line
before running into the character limit, it places the newline character, marking the end of the
line into the string, just before the null character. The fgets() function returns the value NULL
when it encounters EOF . You can use this to check for the end of a file. Otherwise, it returns
the address passed to it.

 The fputs() function takes two arguments: first, an address of a string and then a file pointer.
It writes the string found at the pointed-to location into the indicated file. Unlike puts() ,
 fputs() does not append a newline when it prints. A function call looks like this:

 fputs(buf, fp);

 Here, buf is the string address, and fp identifies the target file.

 Because fgets() keeps the newline and fputs() doesn’t add one, they work well in tandem.
As Listing 11.8 showed, they work well together even if STLEN is smaller than the input line
length.

 Adventures in Random Access: fseek() and ftell()

 The fseek() function enables you to treat a file like an array and move directly to any partic-
ular byte in a file opened by fopen() . To see how it works, let’s create a program (see Listing
 13.4) that displays a file in reverse order. Note that fseek() has three arguments and returns
an int value. The ftell() function returns the current position in a file as a long value.

 Listing 13.4 The reverse.c Program

 /* reverse.c -- displays a file in reverse order */

 #include <stdio.h>

 #include <stdlib.h>

 #define CNTL_Z '\032' /* eof marker in DOS text files */

 #define SLEN 81

 int main(void)

 {

 char file[SLEN];

 char ch;

 FILE *fp;

 long count, last;

 puts("Enter the name of the file to be processed:");

 scanf("%80s", file);

 if ((fp = fopen(file,"rb")) == NULL)

 { /* read-only mode */

 printf("reverse can't open %s\n", file);

 exit(EXIT_FAILURE);

 }

ptg11524036

580 Chapter 13 File Input/Output

 fseek(fp, 0L, SEEK_END); /* go to end of file */

 last = ftell(fp);

 for (count = 1L; count <= last; count++)

 {

 fseek(fp, -count, SEEK_END); /* go backward */

 ch = getc(fp);

 if (ch != CNTL_Z && ch != '\r') /* MS-DOS files */

 putchar(ch);

 }

 putchar('\n');

 fclose(fp);

 return 0;

 }

 Here is the output for a sample file:

 Enter the name of the file to be processed:

 Cluv

 .C ni eno naht ylevol erom margorp a

 ees reven llahs I taht kniht I

 This program uses the binary mode so that it can deal with both MS-DOS text and Unix files.
However, it may not work correctly in an environment that uses some other format for text
files.

 Note

 If you run the program from a command-line environment, this program expects the filename to
be in the same directory (or folder) as the executable program. If you run the program from an
IDE, where the program looks depend on the implementation. For example, by default Microsoft
Visual Studio 2012 looks in the directory containing the source code and Xcode 4.6 looks in
the directory containing the executable file.

 We now need to discuss three topics: how fseek() and ftell() work, how to use a binary
stream, and how to make the program portable.

 How fseek() and ftell() Work

 The first of the three arguments to fseek() is a FILE pointer to the file being searched. The
file should have been opened by using fopen() .

 The second argument to fseek() is called the offset . This argument tells how far to move from
the starting point (see the following list of mode starting points). The argument must be a long
value. It can be positive (move forward), negative (move backward), or zero (stay put).

ptg11524036

581Adventures in Random Access: fseek() and ftell()

 The third argument is the mode, and it identifies the starting point. Since the ANSI standard,
the stdio.h header file specifies the following manifest constants for the mode:

 Mode Measures Offset From

 SEEK_SET Beginning of file

 SEEK_CUR Current position

 SEEK_END End of file

 Older implementations may lack these definitions and, instead, use the numeric values 0L , 1L ,
and 2L , respectively, for these modes. Recall that the L suffix identifies type long values. Or the
implementation might have the constants defined in a different header file. When in doubt,
consult your usage manual or the online manual.

 Here are some sample function calls, where fp is a file pointer:

 fseek(fp, 0L, SEEK_SET); // go to the beginning of the file

 fseek(fp, 10L, SEEK_SET); // go 10 bytes into the file

 fseek(fp, 2L, SEEK_CUR); // advance 2 bytes from the current position

 fseek(fp, 0L, SEEK_END); // go to the end of the file

 fseek(fp, -10L, SEEK_END); // back up 10 bytes from the end of the file

 There are some possible restrictions on these calls; we’ll get back to that topic in a moment or
two.

 The value returned by fseek() is 0 if everything is okay, and -1 if there is an error, such as
attempting to move past the bounds of the file.

 The ftell() function is type long , and it returns the current file location. Under ANSI C, it is
declared in stdio.h . As originally implemented in Unix, ftell() specifies the file position by
returning the number of bytes from the beginning, with the first byte being byte 0, and so on.
Under ANSI C, this definition applies to files opened in the binary mode, but not necessarily to
files opened in the text mode. That is one reason Listing 13.4 uses the binary mode.

 Now we can examine the basic elements of Listing 13.4 . First, the statement

 fseek(fp, 0L, SEEK_END);

 sets the position to an offset of 0 bytes from the file end. That is, it sets the position to the end
of the file. Next, the statement

 last = ftell(fp);

 assigns to last the number of bytes from the beginning to the end of the file.

 Next is this loop:

 for (count = 1L; count <= last; count++)

 {

ptg11524036

582 Chapter 13 File Input/Output

 fseek(fp, -count, SEEK_END); /* go backward */

 ch = getc(fp);

 }

 The first cycle positions the program at the first character before the end of the file (that is, at
the file’s final character). Then the program prints that character. The next loop positions the
program at the preceding character and prints it. This process continues until the first character
is reached and printed.

 Binary Versus Text Mode

 We designed Listing 13.4 to work in both the Unix and the MS-DOS environments. Unix has
only one file format, so no special adjustments are needed. MS-DOS, however, does require
extra attention. Many MS-DOS editors mark the end of a text file with the character Ctrl+Z.
When such a file is opened in the text mode, C recognizes this character as marking the end of
the file. When the same file is opened in the binary mode, however, the Ctrl+Z character is just
another character in the file, and the actual end-of-file comes later. It might come immediately
after the Ctrl+Z, or the file could be padded with null characters to make the size a multiple of,
say, 256. Null characters don’t print under DOS, and we included code to prevent the program
from trying to print the Ctrl+Z character.

 Another difference is one we’ve mentioned before: MS-DOS represents a text file newline with
the \r\n combination. A C program opening the same file in a text mode “sees” \r\n as a
simple \n , but, when using the binary mode, the program sees both characters. Therefore, we
included coding to suppress printing \r . Because a Unix text file normally contains neither
Ctrl+Z nor \r , this extra coding does not affect most Unix text files.

 The ftell() function may work differently in the text mode than in the binary mode. Many
systems have text file formats that are different enough from the Unix model that a byte
count from the beginning of the file is not a meaningful quantity. ANSI C states that, for the
text mode, ftell() returns a value that can be used as the second argument to fseek() . For
MS-DOS, for example, ftell() can return a count that sees \r\n as a single byte.

 Portability

 Ideally, fseek() and ftell() should conform to the Unix model. However, differences in real
systems sometimes make this impossible. Therefore, ANSI provides lowered expectations for
these functions. Here are some limitations:

 ■ In the binary mode, implementations need not support the SEEK_END mode. Listing
 13.4 , then, is not guaranteed to be portable. A more portable approach is to read the
whole file byte-by-byte until the end. But reading the file sequentially to find the end
is slower than simply jumping to the end. The C preprocessor conditional compilation
directives, discussed in Chapter 16 , “The C Preprocessor and the C Library,” provide a
systematic way to handle alternative code choices.

ptg11524036

583Behind the Scenes with Standard I/O

 ■ In the text mode, the only calls to fseek() that are guaranteed to work are these:

 Function Call Effect

 fseek(file, 0L, SEEK_SET) Go to the beginning of the file.

 fseek(file, 0L, SEEK_CUR) Stay at the current position.

 fseek(file, 0L, SEEK_END) Go to the file’s end.

 fseek(file,ftell-pos, SEEK_SET) Go to position ftell-pos from the beginning; ftell-
pos is a value returned by ftell() .

 Fortunately, many common environments allow stronger implementations of these functions.

 The fgetpos() and fsetpos() Functions

 One potential problem with fseek() and ftell() is that they limit file sizes to values that can
be represented by type long . Perhaps two-billion bytes seem more than adequate, but the ever-
increasing capacities of storage devices makes larger files possible. ANSI C introduced two new
positioning functions designed to work with larger file sizes. Instead of using a long value to
represent a position, it uses a new type, called fpos_t (for file position type) for that purpose.
The fpos_t type is not a fundamental type; rather, it is defined in terms of other types. A vari-
able or data object of fpos_t type can specify a location within a file, and it cannot be an array
type, but its nature is not specified beyond that. Implementations can then provide a type
to meet the needs of a particular platform; the type could, for example, be implemented as a
structure.

 ANSI C does define how fpos_t is used. The fgetpos() function has this prototype:

 int fgetpos(FILE * restrict stream, fpos_t * restrict pos);

 When called, it places an fpos_t value in the location pointed to by pos ; the value describes a
location in the file. The function returns zero if successful and a nonzero value for failure.

 The fsetpos() function has this prototype:

 int fsetpos(FILE *stream, const fpos_t *pos);

 When called, it uses the fpos_t value in the location pointed to by pos to set the file pointer
to the location indicated by that value. The function returns zero if successful and a nonzero
value for failure. The fpos_t value should have been obtained by a previous call to fgetpos() .

 Behind the Scenes with Standard I/O

 Now that you’ve seen some of the features of the standard I/O package, let’s examine a repre-
sentative conceptual model to see how standard I/O works.

ptg11524036

584 Chapter 13 File Input/Output

 Normally, the first step in using standard I/O is to use fopen() to open a file. (Recall, however,
that the stdin , stdout , and stderr files are opened automatically.) The fopen() function
not only opens a file but sets up a buffer (two buffers for read-write modes), and it sets up a
data structure containing data about the file and about the buffer. Also, fopen() returns a
pointer to this structure so that other functions know where to find it. Assume that this value
is assigned to a pointer variable named fp . The fopen() function is said to “open a stream.” If
the file is opened in the text mode, you get a text stream, and if the file is opened in the binary
mode, you get a binary stream.

 The data structure typically includes a file position indicator to specify the current position in
the stream. It also has indicators for errors and end-of-file, a pointer to the beginning of the
buffer, a file identifier, and a count for the number of bytes actually copied into the buffer.

 Let’s concentrate on file input. Usually, the next step is to call on one of the input functions
declared in stdio.h , such as fscanf() , getc() , or fgets() . Calling any one of these func-
tions causes a chunk of data to be copied from the file to the buffer. The buffer size is imple-
mentation dependent, but it typically is 512 bytes or some multiple thereof, such as 4,096 or
16,384. (As hard drives and computer memories get larger, the choice of buffer size tends to get
larger, too.) In addition to filling the buffer, the initial function call sets values in the structure
pointed to by fp . In particular, the current position in the stream and the number of bytes
copied into the buffer are set. Usually the current position starts at byte 0.

 After the data structure and buffer are initialized, the input function reads the requested data
from the buffer. As it does so, the file position indicator is set to point to the character follow-
ing the last character read. Because all the input functions from the stdio.h family use the
same buffer, a call to any one function resumes where the previous call to any of the functions
stopped.

 When an input function finds that it has read all the characters in the buffer, it requests that
the next buffer-sized chunk of data be copied from the file into the buffer. In this manner, the
input functions can read all the file contents up to the end of the file. After a function reads
the last character of the final buffer’s worth of data, it sets the end-of-file indicator to true. The
next call to an input function then returns EOF .

 In a similar manner, output functions write to a buffer. When the buffer is filled, the data is
copied to the file.

 Other Standard I/O Functions

 The ANSI standard library contains over three dozen functions in the standard I/O family.
Although we don’t cover them all here, we will briefly describe a few more to give you a better
idea of what is available. We’ll list each function by its C prototype to indicate its arguments
and return values. Of those functions we discuss here, all but setvbuf() are also available
in pre-ANSI implementations. Reference Section V, “The Standard ANSI C Library with C99
Additions,” lists the full ANSI C standard I/O package.

ptg11524036

585Other Standard I/O Functions

 The int ungetc(int c, FILE *fp) Function

 The int ungetc() function pushes the character specified by c back onto the input stream.
If you push a character onto the input stream, the next call to a standard input function reads
that character (see Figure 13.2). Suppose, for example, that you want a function to read charac-
ters up to, but not including, the next colon. You can use getchar() or getc() to read char-
acters until a colon is read and then use ungetc() to place the colon back in the input stream.
The ANSI C standard guarantees only one pushback at a time. If an implementation permits
you to push back several characters in a row, the input functions read them in the reversed
order of pushing.

command input queue

w(initial state) h a l e s o n g s

ch = getchar(); h a l e s o n g s

ungetc(ch, stdin); h a l e s o n g sw

 Figure 13.2 The ungetc() function.

 The int fflush() Function

 The prototype for fflush() is this:

 int fflush(FILE *fp);

 Calling the fflush() function causes any unwritten data in the output buffer to be sent to the
output file identified by fp . This process is called flushing a buffer . If fp is the null pointer, all
output buffers are flushed. The effect of using fflush() on an input stream is undefined. You
can use it with an update stream (any of the read-write modes), provided that the most recent
operation using the stream was not input.

 The int setvbuf() Function

 The prototype for setvbuf() is this:

 int setvbuf(FILE * restrict fp, char * restrict buf, int mode, size_t size);

ptg11524036

586 Chapter 13 File Input/Output

 The setvbuf() function sets up an alternative buffer to be used by the standard I/O functions.
It is called after the file has been opened and before any other operations have been performed
on the stream. The pointer fp identifies the stream, and buf points to the storage to be used.
If the value of buf is not NULL , you must create the buffer. For instance, you could declare an
array of 1,024 char s and pass the address of that array. However, if you use NULL for the value
of buf , the function allocates a buffer itself. The size variable tells setvbuf() how big the
array is. (The size_t type is a derived integer type; see Chapter 5 , “Operators, Expressions, and
Statements.”) The mode is selected from the following choices: _IOFBF means fully buffered
(buffer flushed when full), _IOLBF means line-buffered (buffer flushed when full or when a
newline is written), and _IONBF means nonbuffered. The function returns zero if successful,
nonzero otherwise.

 Suppose you have a program that works with stored data objects having, say, a size of 3,000
bytes each. You could use setvbuf() to create a buffer whose size is a multiple of the data
object’s size.

 Binary I/O: fread() and fwrite()

 The fread() and fwrite() functions are next on the list, but first some background. The
standard I/O functions you’ve used to this point are text oriented, dealing with characters and
strings. What if you want to save numeric data in a file? True, you can use fprintf() and the
 %f format to save a floating-point value, but then you are saving it as a sequence of characters.
For example, the code

 double num = 1./3.;

 fprintf(fp,"%f", num);

 saves num as a sequence of eight characters: 0.333333 . Using a %.2f specifier saves it as four
characters: 0.33 . Using a %.12f specifier saves it as 14 characters: 0.333333333333 . Changing
the specifier alters the amount of space needed to store the value; it can also result in different
values being stored. After the value of num is stored as 0.33 , there is no way to get back the
full precision when the file is read. In general, fprintf() converts numeric values to character
data, possibly altering the value.

 The most accurate and consistent way to store a number is to use the same pattern of bits that
the computer does. Therefore, a double value should be stored in a size double unit. When
data is stored in a file using the same representation that the program uses, we say that the data
is stored in binary form . There is no conversion from numeric forms to character sequences. For
standard I/O, the fread() and fwrite() functions provide this binary service (see
Figure 13.3).

 Actually, as you probably recall, all data is stored in binary form. Even characters are stored
using the binary representation of the character code. However, if all data in the file is inter-
preted as character codes, we say that the file contains text data. If some or all of the data is
interpreted as numeric data in binary form, we say that the file contains binary data. (Also, files
in which the data represents machine-language instructions are binary files.)

ptg11524036

587Other Standard I/O Functions

int num = 12345;

fprintf(fp,"%d", num);

fwrite(&num, sizeof (int), 1, fp);

00110000 00111001

00110000 00111001

001101000110001 001101010011010000110011

stores 12345 as binary number in num

writes the binary codes for the characters
'1','2','3','4','5', to the file

writes the binary codes for the value 12345 to the file

(this figure assumes an integer size of 16 bits)

 Figure 13.3 Binary and text output.

 The uses of the terms binary and text can get confusing. ANSI C recognizes two modes for
opening files: binary and text. Many operating systems recognize two file formats: binary and
text. Information can be stored or read as binary data or as text data. These are all related,
but not identical. You can open a text format file in the binary mode. You can store text in
a binary format file. You can use getc() to copy files containing binary data. In general,
however, you use the binary mode to store binary data in a binary format file. Similarly, you
most often use text data in text files opened in the text format. (Files produced by word proces-
sors typically are binary files because they contain a lot of nontext information describing fonts
and formatting.)

ptg11524036

588 Chapter 13 File Input/Output

 The size_t fwrite() Function

 The prototype for fwrite() is this:

 size_t fwrite(const void * restrict ptr, size_t size, size_t nmemb,

 FILE * restrict fp);

 The fwrite() function writes binary data to a file. The size_t type is defined in terms of the
standard C types. It is the type returned by the sizeof operator. Typically, it is unsigned int ,
but an implementation can choose another type. The pointer ptr is the address of the chunk
of data to be written. Also, size represents the size, in bytes, of the chunks to be written, and
 nmemb represents the number of chunks to be written. As usual, fp identifies the file to be
written to. For instance, to save a data object (such as an array) that is 256 bytes in size, you
can do this:

 char buffer[256];

 fwrite(buffer, 256, 1, fp);

 This call writes one chunk of 256 bytes from buffer to the file. Or, to save an array of 10
 double values, you can do this:

 double earnings[10];

 fwrite(earnings, sizeof (double), 10, fp);

 This call writes data from the earnings array to the file in 10 chunks, each of size double .

 You probably noticed the odd declaration of const void * restrict ptr in the fwrite()
prototype. One problem with fwrite() is that its first argument is not a fixed type. For
instance, the first example used buffer , which is type pointer-to- char , and the second
example used earnings , which is type pointer-to- double . Under ANSI C function prototyping,
these actual arguments are converted to the pointer-to- void type, which acts as a sort of catch-
all type for pointers. (Pre-ANSI C uses type char * for this argument, requiring you to typecast
actual arguments to that type.)

 The fwrite() function returns the number of items successfully written. Normally, this equals
 nmemb , but it can be less if there is a write error.

 The size_t fread() Function

 The prototype for fread() is this:

 size_t fread(void * restrict ptr, size_t size, size_t nmemb,

 FILE * restrict fp);

 The fread() function takes the same set of arguments that fwrite() does. This time ptr is
the address of the memory storage into which file data is read, and fp identifies the file to be
read. Use this function to read data that was written to a file using fwrite() . For example, to
recover the array of 10 doubles saved in the previous example, use this call:

ptg11524036

589Other Standard I/O Functions

 double earnings[10];

 fread(earnings, sizeof (double), 10, fp);

 This call copies 10 size double values into the earnings array.

 The fread() function returns the number of items successfully read. Normally, this equals
 nmemb , but it can be less if there is a read error or if the end-of-file is reached.

 The int feof(FILE *fp) and int ferror(FILE *fp)

Functions

 When the standard input functions return EOF , this usually means they have reached the end
of a file. However, it can also indicate that a read error has occurred. The feof() and ferror()
functions enable you to distinguish between the two possibilities. The feof() function returns
a nonzero value if the last input call detected the end-of-file, and it returns zero otherwise. The
 ferror() function returns a nonzero value if a read or write error has occurred, and it returns
zero otherwise.

 An fread() and fwrite() Example

 Let’s use some of these functions in a program that appends the contents from a list of files
to the end of another file. One problem is passing the file information to the program. This
can be done interactively or by using command-line arguments. We’ll take the first approach,
which suggests a plan along the following lines:

 ■ Request a name for the destination file and open it.

 ■ Use a loop to request source files.

 ■ Open each source file in turn in the read mode and add it to the append file.

 To illustrate setvbuf() , we’ll use it to specify a different buffer size. The next stage of refine-
ment examines opening the append file. We will use the following steps:

 1. Open the destination file in the append mode.

 2. If this cannot be done, quit.

 3. Establish a 4,096-byte buffer for this file.

 4. If this cannot be done, quit.

 Similarly, we can refine the copying portion by doing the following for each file:

 ■ If it is the same as the append file, skip to the next file.

 ■ If it cannot be opened in the read mode, skip to the next file.

 ■ Add the contents of the file to the append file.

ptg11524036

590 Chapter 13 File Input/Output

 For a grand finale, the program rewinds the append file to the beginning and displays the
contents.

 For practice, we’ll use fread() and fwrite() for the copying. Listing 13.5 shows the result.

 Listing 13.5 The append.c Program

 /* append.c -- appends files to a file */

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #define BUFSIZE 4096

 #define SLEN 81

 void append(FILE *source, FILE *dest);

 char * s_gets(char * st, int n);

 int main(void)

 {

 FILE *fa, *fs; // fa for append file, fs for source file

 int files = 0; // number of files appended

 char file_app[SLEN]; // name of append file

 char file_src[SLEN]; // name of source file

 int ch;

 puts("Enter name of destination file:");

 s_gets(file_app, SLEN);

 if ((fa = fopen(file_app, "a+")) == NULL)

 {

 fprintf(stderr, "Can't open %s\n", file_app);

 exit(EXIT_FAILURE);

 }

 if (setvbuf(fa, NULL, _IOFBF, BUFSIZE) != 0)

 {

 fputs("Can't create output buffer\n", stderr);

 exit(EXIT_FAILURE);

 }

 puts("Enter name of first source file (empty line to quit):");

 while (s_gets(file_src, SLEN) && file_src[0] != '\0')

 {

 if (strcmp(file_src, file_app) == 0)

 fputs("Can't append file to itself\n",stderr);

 else if ((fs = fopen(file_src, "r")) == NULL)

 fprintf(stderr, "Can't open %s\n", file_src);

 else

 {

 if (setvbuf(fs, NULL, _IOFBF, BUFSIZE) != 0)

 {

ptg11524036

591Other Standard I/O Functions

 fputs("Can't create input buffer\n",stderr);

 continue;

 }

 append(fs, fa);

 if (ferror(fs) != 0)

 fprintf(stderr,"Error in reading file %s.\n",

 file_src);

 if (ferror(fa) != 0)

 fprintf(stderr,"Error in writing file %s.\n",

 file_app);

 fclose(fs);

 files++;

 printf("File %s appended.\n", file_src);

 puts("Next file (empty line to quit):");

 }

 }

 printf("Done appending. %d files appended.\n", files);

 rewind(fa);

 printf("%s contents:\n", file_app);

 while ((ch = getc(fa)) != EOF)

 putchar(ch);

 puts("Done displaying.");

 fclose(fa);

 return 0;

 }

 void append(FILE *source, FILE *dest)

 {

 size_t bytes;

 static char temp[BUFSIZE]; // allocate once

 while ((bytes = fread(temp,sizeof(char),BUFSIZE,source)) > 0)

 fwrite(temp, sizeof (char), bytes, dest);

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

ptg11524036

592 Chapter 13 File Input/Output

 else

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 If setvbuf() is unable to create the buffer, it returns a nonzero value, and the code then
terminates the program. Similar coding establishes a 4,096-byte buffer for the file currently
being copied. By using NULL as the second argument to setvbuf() , we let that function allo-
cate storage for the buffer.

 The program uses s_gets() instead of scanf() to get the file name because scanf() skips
over whitespace and thus doesn’t detect an empty line. It uses s_gets() instead of a simple
 fgets() because the latter keeps the newline in the string.

 This code prevents the program from trying to append a file to itself:

 if (strcmp(file_src, file_app) == 0)

 fputs("Can't append file to itself\n",stderr);

 The argument file_app represents the name of the destination file, and file_src represents
the name of the file currently being processed.

 The append() function does the copying. Instead of copying a byte at a time, it uses fread()
and fwrite() to copy 4,096 bytes at a time:

 void append(FILE *source, FILE *dest)

 {

 size_t bytes;

 static char temp[BUFSIZE]; // allocate once

 while ((bytes = fread(temp,sizeof(char),BUFSIZE,source)) > 0)

 fwrite(temp, sizeof (char), bytes, dest);

 }

 Because the file specified by dest is opened in the append mode, each source file is added to
the end of the destination file, one after the other. Note that the temp array is static duration
(meaning it’s allocated at compile time, not each time the append() function is called) and
block scope (meaning that it is private to the function).

 The example uses text-mode files; by using the "ab+" and "rb" modes, it could handle binary
files.

ptg11524036

593Other Standard I/O Functions

 Random Access with Binary I/O

 Random access is most often used with binary files written using binary I/O, so let’s look at a
short example. The program in Listing 13.6 creates a file of double numbers and then lets you
access the contents.

 Listing 13.6 The randbin.c Program

 /* randbin.c -- random access, binary i/o */

 #include <stdio.h>

 #include <stdlib.h>

 #define ARSIZE 1000

 int main()

 {

 double numbers[ARSIZE];

 double value;

 const char * file = "numbers.dat";

 int i;

 long pos;

 FILE *iofile;

 // create a set of double values

 for(i = 0; i < ARSIZE; i++)

 numbers[i] = 100.0 * i + 1.0 / (i + 1);

 // attempt to open file

 if ((iofile = fopen(file, "wb")) == NULL)

 {

 fprintf(stderr, "Could not open %s for output.\n", file);

 exit(EXIT_FAILURE);

 }

 // write array in binary format to file

 fwrite(numbers, sizeof (double), ARSIZE, iofile);

 fclose(iofile);

 if ((iofile = fopen(file, "rb")) == NULL)

 {

 fprintf(stderr,

 "Could not open %s for random access.\n", file);

 exit(EXIT_FAILURE);

 }

 // read selected items from file

 printf("Enter an index in the range 0-%d.\n", ARSIZE - 1);

 while (scanf("%d", &i) == 1 && i >= 0 && i < ARSIZE)

 {

 pos = (long) i * sizeof(double); // calculate offset

 fseek(iofile, pos, SEEK_SET); // go there

 fread(&value, sizeof (double), 1, iofile);

ptg11524036

594 Chapter 13 File Input/Output

 printf("The value there is %f.\n", value);

 printf("Next index (out of range to quit):\n");

 }

 // finish up

 fclose(iofile);

 puts("Bye!");

 return 0;

 }

 First, the program creates an array and places some values into it. Then it creates a file called
numbers.dat in binary mode and uses fwrite() to copy the array contents to the file. The
64-bit pattern for each double value is copied from memory to the file. You can’t read the
resulting binary file with a text editor because the values are not translated to strings. However,
each value is stored in the file precisely as it was stored in memory, so there is no loss of preci-
sion. Furthermore, each value occupies exactly 64 bits of storage in the file, so it is a simple
matter to calculate the location of each value.

 The second part of the program opens the file for reading and asks the user to enter the index
for a value. Multiplying the index times the number of bytes per double yields the location in
the file. The program then uses fseek() to go to that location and fread() to read the value
there. Note that there are no format specifiers. Instead, fread() copies the 8 bytes, starting
at that location, into the memory location indicated by &value . Then the program can use
 printf() to display value . Here is a sample run:

 Enter an index in the range 0-999.

 500

 The value there is 50000.001996.

 Next index (out of range to quit):

 900

 The value there is 90000.001110.

 Next index (out of range to quit):

 0

 The value there is 1.000000.

 Next index (out of range to quit):

 -1

 Bye!

 Key Concepts

 A C program views input as a stream of bytes; the source of this stream could be a file, an input
device (such as a keyboard), or even the output of another program. Similarly, a C program
views output as a stream of bytes; the destination could be a file, a video display, and so on.

ptg11524036

595Summary

 How C interprets an input stream or output stream of bytes depends on which input/output
functions you use. A program can read and store the bytes unaltered, or it can interpret the
bytes as characters, which, in turn, can be interpreted as ordinary text or as the text representa-
tion of numbers. Similarly, on output, the functions you use determine whether binary values
are transferred unaltered or converted to text or textual representations of numbers. If you have
numeric data that you want to save and recover with no loss of precision, use the binary mode
and the fread() and fwrite() functions. If you’re saving text information and want to create
files that can be viewed with ordinary text editors, use the text mode and functions such as
 getc() and fprintf() .

 To access a file, you need to create a file pointer (type FILE *) and associate the pointer with
a particular filename. Subsequent code then uses the pointer, not the filename, when dealing
with the file.

 It’s important to understand how C handles the end-of-file concept. Typically, a file-reading
program uses a loop to read input until reaching the end of file. The C input functions don’t
detect end-of-file until they attempt to read past the end. This means that testing for end-of-
file should occur immediately after an attempted read. You can use the two-file-input models
labeled “good design” in the “End-of-File” section of this chapter as a guide.

 Summary

 Writing to and reading from files is essential for most C programs. Most C implementations
offer both low-level I/O services and standard high-level I/O services for these purposes. Because
the ANSI C library includes the standard I/O services but not the low-level services, the stan-
dard package is more portable.

 The standard I/O package automatically creates input and output buffers to speed up data trans-
fer. The fopen() function opens a file for standard I/O and creates a data structure designed to
hold information about the file and the buffer. The fopen() function returns a pointer to that
data structure, and this pointer is used by other functions to identify the file to be processed.
The feof() and ferror() functions report the reason an I/O operation failed.

 C views input as a stream of bytes. If you use fread() , C views the input as binary values to be
placed into whichever storage location you indicate. If you use fscanf() , getc() , fgets() , or
any of the related functions, C views each byte as being a character code. The fscanf() and
 scanf() functions then attempt to translate the character code into other types, as indicated
by the format specifiers. For example, the %f specifier would translate an input of 23 into a
floating-point value, the %d specifier would translate the same input into an integer value, and
the %s specifier would save the character input as a string. The getc() and fgets() family of
functions leave the input as character code and store it either in char variables as individual
characters or in char arrays as strings. Similarly, fwrite() places binary data directly into
the output stream, whereas the other output functions convert noncharacter data to character
representations before placing it in the output stream.

ptg11524036

596 Chapter 13 File Input/Output

 ANSI C provides two file-opening modes: binary and text. When a file is opened in binary
mode, it can be read byte-for-byte. When a file is opened in text mode, its contents may be
mapped from the system representation of text to the C representation. For Unix and Linux
systems, the two modes are identical.

 The input functions getc() , fgets() , fscanf() , and fread() normally read a file sequen-
tially, starting at the beginning of the file. However, the fseek() and ftell() functions let a
program move to an arbitrary position in a file, enabling random access. Both fgetpos() and
 fsetpos() extend similar capabilities to larger files. Random access works better in the binary
mode than in the text mode.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. What’s wrong with this program?

 int main(void)

 {

 int * fp;

 int k;

 fp = fopen("gelatin");

 for (k = 0; k < 30; k++)

 fputs(fp, "Nanette eats gelatin.");

 fclose("gelatin");

 return 0;

 }

 2. What would the following program do? (Assume it’s run in a command-line
environment.)

 #include <stdio.h>

 #include <stdlib.h>

 #include <ctype.h>

 int main(int argc, char *argv[])

 {

 int ch;

 FILE *fp;

 if (argc < 2)

 exit(EXIT_FAILURE);

 if ((fp = fopen(argv[1], "r")) == NULL)

 exit(EXIT_FAILURE);

 while ((ch= getc(fp)) != EOF)

 if(isdigit(ch))

ptg11524036

597Review Questions

 putchar(ch);

 fclose (fp);

 return 0;

 }

 3. Suppose you have these statements in a program:

 #include <stdio.h>

 FILE * fp1,* fp2;

 char ch;

 fp1 = fopen("terky", "r");

 fp2 = fopen("jerky", "w");

 Also, suppose that both files were opened successfully. Supply the missing arguments in
the following function calls:

 a. ch = getc();

 b. fprintf(,"%c\n",);

 c. putc(,);

 d. fclose(); /* close the terky file */

 4. Write a program that takes zero command-line arguments or one command-line
argument. If there is one argument, it is interpreted as the name of a file. If there is no
argument, the standard input (stdin) is to be used for input. Assume that the input
consists entirely of floating-point numbers. Have the program calculate and report the
arithmetic mean (the average) of the input numbers.

 5. Write a program that takes two command-line arguments. The first is a character, and
the second is a filename. The program should print only those lines in the file containing
the given character.

 Note

 Lines in a file are identified by a terminating '\n' . Assume that no line is more than 256 char-
acters long. You might want to use fgets() .

 6. What’s the difference between binary files and text files on the one hand versus binary
streams and text streams on the other?

 7. a. What is the difference between saving 8238201 by using
 fprintf() and saving it by using fwrite() ?

ptg11524036

598 Chapter 13 File Input/Output

 b. What is the difference between saving the character S by using putc() and saving
it by using fwrite() ?

 8. What’s the difference among the following?

 printf("Hello, %s\n", name);

 fprintf(stdout, "Hello, %s\n", name);

 fprintf(stderr, "Hello, %s\n", name);

 9. The "a+" , "r+" , and "w+" modes all open files for both reading and writing. Which one
is best suited for altering material already present in a file?

 Programming Exercises

 1. Modify Listing 13.1 so that it solicits the user to enter the filename and reads the user’s
response instead of using command-line arguments.

 2. Write a file-copy program that takes the original filename and the copy file from the
command line. Use standard I/O and the binary mode, if possible.

 3. Write a file copy program that prompts the user to enter the name of a text file to act as
the source file and the name of an output file. The program should use the toupper()
function from ctype.h to convert all text to uppercase as it’s written to the output file.
Use standard I/O and the text mode.

 4. Write a program that sequentially displays onscreen all the files listed in the command
line. Use argc to control a loop.

 5. Modify the program in Listing 13.5 so that it uses a command-line interface instead of an
interactive interface.

 6. Programs using command-line arguments rely on the user’s memory of how to use them
correctly. Rewrite the program in Listing 13.2 so that, instead of using command-line
arguments, it prompts the user for the required information.

 7. Write a program that opens two files. You can obtain the filenames either by using
command-line arguments or by soliciting the user to enter them.

 a. Have the program print line 1 of the first file, line 1 of the second file, line 2 of the
first file, line 2 of the second file, and so on, until the last line of the longer file (in
terms of lines) is printed.

 b. Modify the program so that lines with the same line number are printed on the
same line.

ptg11524036

599Programming Exercises

 8. Write a program that takes as command-line arguments a character and zero or more
filenames. If no arguments follow the character, have the program read the standard
input. Otherwise, have it open each file in turn and report how many times the character
appears in each file. The filename and the character itself should be reported along with
the count. Include error-checking to see whether the number of arguments is correct and
whether the files can be opened. If a file can’t be opened, have the program report that
fact and go on to the next file.

 9. Modify the program in Listing 13.3 so that each word is numbered according to the order
in which it was added to the list, starting with 1. Make sure that, when the program is
run a second time, new word numbering resumes where the previous numbering left off.

 10. Write a program that opens a text file whose name is obtained interactively. Set up a
loop that asks the user to enter a file position. The program then should print the part of
the file starting at that position and proceed to the next newline character. Let negative
or nonnumeric input terminate the user-input loop.

 11. Write a program that takes two command-line arguments. The first is a string; the
second is the name of a file. The program should then search the file, printing all lines
containing the string. Because this task is line oriented rather than character oriented,
use fgets() instead of getc() . Use the standard C library function strstr() (briefly
described in exercise 7 of Chapter 11) to search each line for the string. Assume no lines
are longer than 255 characters.

 12. Create a text file consisting of 20 rows of 30 integers. The integers should be in the range
0–9 and be separated by spaces. The file is a digital representation of a picture, with
the values 0 through 9 representing increasing levels of darkness. Write a program that
reads the contents of the file into a 20-by-30 array of int s. In a crude approach toward
converting this digital representation to a picture, have the program use the values
in this array to initialize a 20-by-31 array of char s, with a 0 value corresponding to a
space character, a 1 value to the period character, and so on, with each larger number
represented by a character that occupies more space. For example, you might use # to
represent 9. The last character (the 31st) in each row should be a null character, making
it an array of 20 strings. Have the program display the resulting picture (that is, print the
strings) and also store the result in a text file. For example, suppose you start with this
data:

 0 0 9 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 2 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 9 0 0 0 0 0 0 0 5 8 9 9 8 5 5 2 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 5 8 1 9 8 5 4 5 2 0 0 0 0 0 0 0 0 0

 0 0 0 0 9 0 0 0 0 0 0 0 5 8 9 9 8 5 0 4 5 2 0 0 0 0 0 0 0 0

 0 0 9 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 4 5 2 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 1 8 5 0 0 0 4 5 2 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 4 5 2 0 0 0 0 0

 5 5 5 5 5 5 5 5 5 5 5 5 5 8 9 9 8 5 5 5 5 5 5 5 5 5 5 5 5 5

ptg11524036

600 Chapter 13 File Input/Output

 8 8 8 8 8 8 8 8 8 8 8 8 5 8 9 9 8 5 8 8 8 8 8 8 8 8 8 8 8 8

 9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3 9 9 9 9 9 9 9

 8 8 8 8 8 8 8 8 8 8 8 8 5 8 9 9 8 5 8 8 8 8 8 8 8 8 8 8 8 8

 5 5 5 5 5 5 5 5 5 5 5 5 5 8 9 9 8 5 5 5 5 5 5 5 5 5 5 5 5 5

 0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 6 6 0 0 0 0 0 0

 0 0 0 0 2 2 0 0 0 0 0 0 5 8 9 9 8 5 0 0 5 6 0 0 6 5 0 0 0 0

 0 0 0 0 3 3 0 0 0 0 0 0 5 8 9 9 8 5 0 5 6 1 1 1 1 6 5 0 0 0

 0 0 0 0 4 4 0 0 0 0 0 0 5 8 9 9 8 5 0 0 5 6 0 0 6 5 0 0 0 0

 0 0 0 0 5 5 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 6 6 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 0 0 0 0 0 0 0 0

 0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 0 0 0 0 0 0 0 0

 For one particular choice of output characters, the output looks like this:

 # *%##%*'

 # *%##%**'

 %.#%~*'

 # *%##%* ~*'

 # *%##%* ~*'

 %#.% ~*'

 %##% ~*'

 *************%##%*************

 %%%%%%%%%%%%*%##%*%%%%%%%%%%%%

 #### #################:#######

 %%%%%%%%%%%%*%##%*%%%%%%%%%%%%

 *************%##%*************

 %##%

 %##% ==

 '' *%##%* *= =*

 :: *%##%* *=....=*

 ~~ *%##%* *= =*

 ** *%##%* ==

 %##%

 %##%

 13. Do Programming Exercise 12, but use variable-length arrays (VLAs) instead of standard
arrays.

 14. Digital images, particularly those radioed back from spacecraft, may have glitches. Add
a de-glitching function to programming exercise 12. It should compare each value to its
immediate neighbors to the left and right, above and below. If the value differs by more
than 1 from each of its neighbors, replace the value with the average of the neighboring
values. You should round the average to the nearest integer value. Note that the points
along the boundaries have fewer than four neighbors, so they require special handling.

ptg11524036

 14
 Structures and Other Data

Forms

 You will learn about the following in this chapter:

 ■ Keywords:

 struct , union , typedef

 ■ Operators:

 . ->

 ■ What C structures are and how to create structure templates and variables

 ■ How to access the members of a structure and how to write functions to handle
structures

 ■ C’s typedef facility

 ■ Unions and pointers to functions

 One of the most important steps in designing a program is choosing a good way to represent
the data. In many cases, a simple variable or even an array is not enough. C takes your ability
to represent data a step further with the C structure variables . The C structure is flexible enough
in its basic form to represent a diversity of data, and it enables you to invent new forms. If you
are familiar with Pascal records, you should be comfortable with structures. If not, this chapter
will introduce you to C structures. Let’s study a concrete example to see why a C structure
might be needed and how to create and use one.

 Sample Problem: Creating an Inventory of Books

 Gwen Glenn wants to print an inventory of her books. She would like to print a variety of
information for each book: title, author, publisher, copyright date, the number of pages, the
number of copies, and the dollar value. Some of these items, such as the titles, can be stored
in an array of strings. Other items require an array of int s or an array of float s. With seven

ptg11524036

602 Chapter 14 Structures and Other Data Forms

different arrays, keeping track of everything can get complicated, especially if Gwen wants to
generate several complete lists—one sorted by title, one sorted by author, one sorted by value,
and so on. A better solution is to use one array, in which each member contains all the infor-
mation about one book.

 Gwen needs a data form, then, that can contain both strings and numbers and somehow keep
the information separate. The C structure meets this need. To see how a structure is set up and
how it works, we’ll start with a limited example. To simplify the problem, we will impose two
restrictions. First, we’ll include only title, author, and current market value. Second, we’ll limit
the inventory to one book. Don’t worry about this limitation, however, because we’ll extend
the program soon.

 Look at the program in Listing 14.1 and its output. Then read the explanation of the main
points.

 Listing 14.1 The book.c Program

 //* book.c -- one-book inventory */

 #include <stdio.h>

 #include <string.h>

 char * s_gets(char * st, int n);

 #define MAXTITL 41 /* maximum length of title + 1 */

 #define MAXAUTL 31 /* maximum length of author's name + 1 */

 struct book { /* structure template: tag is book */

 char title[MAXTITL];

 char author[MAXAUTL];

 float value;

 }; /* end of structure template */

 int main(void)

 {

 struct book library; /* declare library as a book variable */

 printf("Please enter the book title.\n");

 s_gets(library.title, MAXTITL); /* access to the title portion */

 printf("Now enter the author.\n");

 s_gets(library.author, MAXAUTL);

 printf("Now enter the value.\n");

 scanf("%f", &library.value);

 printf("%s by %s: $%.2f\n",library.title,

 library.author, library.value);

 printf("%s: \"%s\" ($%.2f)\n", library.author,

 library.title, library.value);

 printf("Done.\n");

ptg11524036

603Sample Problem: Creating an Inventory of Books

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 As in earlier chapters, we use s_gets() to strip the newline character that fgets() usually
stores in a string. Here is a sample run:

 Please enter the book title.

 Chicken of the Andes

 Now enter the author.

 Disma Lapoult

 Now enter the value.

 29.99

 Chicken of the Andes by Disma Lapoult: $29.99

 Disma Lapoult: "Chicken of the Andes" ($29.99)

 Done.

 The structure created in Listing 14.1 has three parts (called members or fields)—one to store the
title, one to store the author, and one to store the value. These are the three main skills you
must acquire:

 ■ Setting up a format or layout for a structure

 ■ Declaring a variable to fit that layout

 ■ Gaining access to the individual components of a structure variable

ptg11524036

604 Chapter 14 Structures and Other Data Forms

 Setting Up the Structure Declaration

 A structure declaration is the master plan that describes how a structure is put together. The
declaration looks like this:

 struct book {

 char title[MAXTITL];

 char author[MAXAUTL];

 float value;

 };

 This declaration describes a structure made up of two character arrays and one float vari-
able. It does not create an actual data object, but it describes what constitutes such an object.
(Occasionally, we’ll refer to a structure declaration as a template because it outlines how data
will be stored. If you’ve heard of templates in C++, that’s a different, more ambitious use of the
word.) Let’s look at the details. First comes the keyword struct . It identifies what comes next
as a structure. Next comes an optional tag —the word book —that is a shorthand label you can
use to refer to this structure. Therefore, later we have this declaration:

 struct book library;

 It declares library to be a structure variable using the book structure design.

 Next in the structure declaration, the list of structure members are enclosed in a pair of braces.
Each member is described by its own declaration, complete with a terminating semicolon. For
example, the title portion is a char array with MAXTITL elements. A member can be any C
data type—and that includes other structures!

 A semicolon after the closing brace ends the definition of the structure design. You can place
this declaration outside any function (externally), as we have done, or inside a function defini-
tion. If the declaration is placed inside a function, its tag can be used only inside that function.
If the declaration is external, it is available to all the functions following the declaration in the
file. For example, in a second function, you could define

 struct book dickens;

 and that function would have a variable, dickens , that follows the form of the book design.

 The tag name is optional, but you must use one when you set up structures as we did, with the
structure design defined one place and the actual variables defined elsewhere. We will return to
this point soon, after we look at defining structure variables.

 Defining a Structure Variable

 The word structure is used in two senses. One is the sense “structure plan,” which is what we
just discussed. The structure plan tells the compiler how to represent the data, but it doesn’t
make the computer allocate space for the data. The next step is to create a structure variable , the

ptg11524036

605Defining a Structure Variable

second sense of the word. The line in the program that causes a structure variable to be created
is this:

 struct book library;

 Seeing this instruction, the compiler creates the variable library . Using the book template,
the compiler allots space for a char array of MAXTITL elements, for a char array of MAXAUTL
elements, and for a float variable. This storage is lumped together under the single name
 library (see Figure 14.1). (The next section explains how to unlump it as needed.)

 In declaring a structure variable, struct book plays the same role that int or float does in
simpler declarations. For example, you could declare two variables of the struct book type or
even a pointer to that kind of structure:

 struct book doyle, panshin, * ptbook;

 The structure variables doyle and panshin would each have the parts title , author , and
 value . The pointer ptbook could point to doyle , panshin , or any other book structure. In
essence, the book structure declaration creates a new type called struct book .

 number

code[0] – – – – – – – – code[3]

struct stuff {

int number;

char code[4];

float cost;

};

costcode[4]

 Figure 14.1 Memory allocation for a structure.

 As far as the computer is concerned, the declaration

 struct book library;

 is short for

 struct book {

 char title[MAXTITL];

 char author[AXAUTL];

 float value;

 } library; /* follow declaration with variable name */

ptg11524036

606 Chapter 14 Structures and Other Data Forms

 In other words, the process of declaring a structure and the process of defining a structure vari-
able can be combined into one step. Combining the declaration and the variable definitions, as
shown here, is the one circumstance in which a tag need not be used:

 struct { /* no tag */

 char title[MAXTITL];

 char author[MAXAUTL];

 float value;

 } library;

 Use the tag form, however, if you plan to use a structure template more than once, or you can
use the typedef alternative coming up later in this chapter.

 There is one aspect of defining a structure variable that did not come up in this example:
initialization. We’ll look at that now.

 Initializing a Structure

 You’ve seen how to initialize variables and arrays:

 int count = 0;

 int fibo[7] = {0,1,1,2,3,5,8};

 Can a structure variable be initialized, too? Yes, it can. To initialize a structure (any storage
class for ANSI C and later, but excluding automatic variables for pre-ANSI C), you use a syntax
similar to that used for arrays:

 struct book library = {

 "The Pious Pirate and the Devious Damsel",

 "Renee Vivotte",

 1.95

 };

 In short, you use a comma-separated list of initializers enclosed in braces. Each initializer
should match the type of the structure member being initialized. Therefore, you can initialize
the title member to a string and the value member to a number. To make the associations
more obvious, we gave each member its own line of initialization, but all the compiler needs
are commas to separate one member’s initialization from the next.

 Note Structure Initialization and Storage Class Duration

 Chapter 12 , “Storage Classes, Linkage, and Memory Management,” mentioned that if you
initialize a variable with static storage duration (such as static external linkage, static internal
linkage, or static with no linkage), you have to use constant values. This applies to structures,
too. If you are initializing a structure with static storage duration, the values in the initializer list
must be constant expressions. If the storage duration is automatic, the values in the list need
not be constants.

ptg11524036

607Defining a Structure Variable

 Gaining Access to Structure Members

 A structure is like a “superarray,” in which one element can be char , the next element float ,
and the next an int array. You can access the individual elements of an array by using a
subscript. How do you access individual members of a structure? Use a dot (.), the structure
member operator. For example, library.value is the value portion of library . You can
use library.value exactly as you would use any other float variable. Similarly, you can use
 library.title exactly as you would use a char array. Therefore, the program uses expressions
such as

 s_gets(library.title, MAXTITL);

 and

 scanf("%f", &library.value);

 In essence, .title , .author , and .value play the role of subscripts for a book structure.

 Note that although library is a structure, library.value is a float type and is used like any
other float type. For example, scanf("%f",...) requires the address of a float location,
and that is what &library.float is. The dot has higher precedence than the & here, so the
expression is the same as &(library.float) .

 If you had a second structure variable of the same type, you would use the same method:

 struct book bill, newt;

 s_gets(bill.title, MAXTITL);

 s_gets(newt.title, MAXTITL);

 The .title refers to the first member of the book structure. Notice how the initial program
prints the contents of the structure library in two different formats. This illustrates the
freedom you have in using the members of a structure.

 Initializers for Structures

 C99 and C11 provide designated initializers for structures. The syntax is similar to that for
designated initializers for arrays. However, designated initializers for structures use the dot
operator and member names instead of brackets and indices to identify particular elements. For
example, to initialize just the value member of a book structure, you would do this:

 struct book surprise = { .value = 10.99};

 You can use designated initializers in any order:

 struct book gift = { .value = 25.99,

 .author = "James Broadfool",

 .title = "Rue for the Toad"};

ptg11524036

608 Chapter 14 Structures and Other Data Forms

 Just as with arrays, a regular initializer following a designated initializer provides a value for the
member following the designated member. Also, the last value supplied for a particular member
is the value it gets. For example, consider this declaration:

 struct book gift= { .value = 18.90,

 .author = "Philionna Pestle",

 0.25};

 The value 0.25 is assigned to the value member because it is the one immediately listed after
the author member in the structure declaration. The new value of 0.25 supersedes the value of
 18.90 provided earlier. Now that you have these basics in hand, you’re ready to expand your
horizons and look at several ramifications of structures. You’ll see arrays of structures, structures
of structures, pointers to structures, and functions that process structures.

 Arrays of Structures

 Let’s extend our book program to handle more books. Clearly, each book can be described by
one structure variable of the book type. To describe two books, you need to use two such vari-
ables, and so on. To handle several books, you can use an array of such structures, and that is
what we have created in the next program, shown in Listing 14.2 . (If you’re using Borland
C/C++, see section “Borland C and Floating Point” later in the chapter.)

 Structures and Memory

 The manybook.c program uses an array of 100 structures. Because the array is an auto-
matic storage class object, the information is typically placed on the stack. Such a large array
requires a good-sized chunk of memory, which can cause problems. If you get a runtime error,
perhaps complaining about the stack size or stack overflow, your compiler probably uses a
default size for the stack that is too small for this example. To fix things, you can use the com-
piler options to set the stack size to 10,000 to accommodate the array of structures, or you
can make the array static or external (so that it isn’t placed in the stack), or you can reduce
the array size to 16. Why didn’t we just make the stack small to begin with? Because you
should know about the potential stack size problem so that you can cope with it if you run into
it on your own.

 Listing 14.2 The manybook.c Program

 /* manybook.c -- multiple book inventory */

 #include <stdio.h>

 #include <string.h>

 char * s_gets(char * st, int n);

 #define MAXTITL 40

 #define MAXAUTL 40

 #define MAXBKS 100 /* maximum number of books */

ptg11524036

609Arrays of Structures

 struct book { /* set up book template */

 char title[MAXTITL];

 char author[MAXAUTL];

 float value;

 };

 int main(void)

 {

 struct book library[MAXBKS]; /* array of book structures */

 int count = 0;

 int index;

 printf("Please enter the book title.\n");

 printf("Press [enter] at the start of a line to stop.\n");

 while (count < MAXBKS && s_gets(library[count].title, MAXTITL) != NULL

 && library[count].title[0] != '\0')

 {

 printf("Now enter the author.\n");

 s_gets(library[count].author, MAXAUTL);

 printf("Now enter the value.\n");

 scanf("%f", &library[count++].value);

 while (getchar() != '\n')

 continue; /* clear input line */

 if (count < MAXBKS)

 printf("Enter the next title.\n");

 }

 if (count > 0)

 {

 printf("Here is the list of your books:\n");

 for (index = 0; index < count; index++)

 printf("%s by %s: $%.2f\n", library[index].title,

 library[index].author, library[index].value);

 }

 else

 printf("No books? Too bad.\n");

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

ptg11524036

610 Chapter 14 Structures and Other Data Forms

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 Borland C and Floating Point

 Older Borland C compilers attempt to make programs more compact by using a small version
of scanf() if the program doesn’t use floating-point values. However, the compilers (through
Borland C/C++ 3.1 for DOS, but not Borland C/C++ 4.0) are fooled if the only floating-point
values are in an array of structures, as in the case for Listing 14.2 . As a result, you get a mes-
sage like this:

 scanf : floating point formats not linked

 Abnormal program termination

 One workaround is adding this code to your program:

 #include <math.h>

 double dummy = sin(0.0);

 This code forces the compiler to load the floating-point version of scanf() .

 Here is a sample program run:

 Please enter the book title.

 Press [enter] at the start of a line to stop.

 My Life as a Budgie

 Now enter the author.

 Mack Zackles

 Now enter the value.

 12.95

 Enter the next title.

 ...more entries...

 Here is the list of your books:

 My Life as a Budgie by Mack Zackles: $12.95

 Thought and Unthought Rethought by Kindra Schlagmeyer: $43.50

 Concerto for Financial Instruments by Filmore Walletz: $49.99

 The CEO Power Diet by Buster Downsize: $19.25

 C++ Primer Plus by Stephen Prata: $59.99

 Fact Avoidance: Perception as Reality by Polly Bull: $19.97

 Coping with Coping by Dr. Rubin Thonkwacker: $0.02

ptg11524036

611Arrays of Structures

 Diaphanous Frivolity by Neda McFey: $29.99

 Murder Wore a Bikini by Mickey Splats: $18.95

 A History of Buvania, Volume 8, by Prince Nikoli Buvan: $50.04

 Mastering Your Digital Watch, 5nd Edition, by Miklos Mysz: $28.95

 A Foregone Confusion by Phalty Reasoner: $5.99

 Outsourcing Government: Selection vs. Election by Ima Pundit: $33.33

 First, we’ll describe how to declare arrays of structures and how to access individual members.
Then we will highlight two aspects of the program.

 Declaring an Array of Structures

 Declaring an array of structures is like declaring any other kind of array. Here’s an example:

 struct book library[MAXBKS];

 This declares library to be an array with MAXBKS elements. Each element of this array is a
structure of book type. Thus, library[0] is one book structure, library[1] is a second book
structure, and so on. Figure 14.2 may help you visualize this. The name library itself is not a
structure name; it is the name of the array whose elements are type struct book structures.

libry[0]

libry[1]

libry[2]

dot operator

libry[99]

value

libry[0].value

author

libry[0].author

title

libry[0].title

libry[1].valuelibry[1].authorlibry[1].title

libry[2].authorlibry[2].title

libry[99].title

char array[40]

declaration: struct book libry[MAXBKS]

char array[40] float type

libry[2].value

libry[99].author libry[99].value

 Figure 14.2 An array of structures.

ptg11524036

612 Chapter 14 Structures and Other Data Forms

 Identifying Members of an Array of Structures

 To identify members of an array of structures, you apply the same rule used for individual
structures: Follow the structure name with the dot operator and then with the member name.
Here’s an example:

 library[0].value /* the value associated with the first array element */

 library[4].title /* the title associated with the fifth array element */

 Note that the array subscript is attached to library , not to the end of the name:

 library.value[2] // WRONG

 library[2].value // RIGHT

 The reason library[2].value is used is that library[2] is the structure variable name, just
as library[1] is another structure variable name.

 By the way, what do you suppose the following represents?

 library[2].title[4]

 It’s the fifth character in the title (the title[4] part) of the book described by the third struc-
ture (the library[2] part). In the example, it would be the character B . This example points
out that subscripts found to the right of the dot operator apply to individual members, but
subscripts to the left of the dot operator apply to arrays of structures.

 In summary, we have this sequence:

 library // an array of book structures

 library[2] // an array element, hence a book structure

 library[2].title // a char array (the title member of library[2])

 library[2].title[4] // a char in the title member array

 Let’s finish the program now.

 Program Discussion

 The main change from the first program is that we inserted a loop to read multiple entries. The
loop begins with this while condition:

 while (count < MAXBKS && s_gets(library[count].title, MAXTITL) != NULL

 && library[count].title[0] != '\0')

 The expression s_gets(library[count].title, MAXTITL) reads a string for the title of a
book; the expression evaluates to NULL if s_gets() attempts to read past the end-of-file. The
expression library[count].title[0] != '\0' tests whether the first character in the string
is the null character (that is, if the string is empty). If the user presses the Enter key at the
beginning of a line, the empty string is transmitted, and the loop ends. We also have a check
to keep the number of books entered from exceeding the array’s size limit.

ptg11524036

613Nested Structures

 Then the program has these lines:

 while (getchar() != '\n')

 continue; /* clear input line */

 As you might recall from earlier chapters, this code compensates for the scanf() function
ignoring spaces and newlines. When you respond to the request for the book’s value, you type
something like this:

 12.50[enter]

 This statement transmits the following sequence of characters:

 12.50\n

 The scanf() function collects the 1 , the 2 , the . , the 5 , and the 0 , but it leaves the \n sitting
there, awaiting whatever read statement comes next. If the precautionary code were missing,
the next read statement, s_gets(library[count].title, MAXTITL) , would read the left-
over newline character as an empty line, and the program would think you had sent a stop
signal. The code we inserted will eat up characters until it finds and disposes of the newline. It
doesn’t do anything with the characters except remove them from the input queue. This gives
 s_gets() a fresh start for the next input.

 Now let’s return to exploring structures.

 Nested Structures

 Sometimes it is convenient for one structure to contain, or nest , another. For example, Shalala
Pirosky is building a structure of information about her friends. One member of the structure,
naturally enough, is the friend’s name. The name, however, can be represented by a struc-
ture itself, with separate entries for first and last name members. Listing 14.3 is a condensed
example of Shalala’s work.

 Listing 14.3 The friend.c Program

 // friend.c -- example of a nested structure

 #include <stdio.h>

 #define LEN 20

 const char * msgs[5] =

 {

 " Thank you for the wonderful evening, ",

 "You certainly prove that a ",

 "is a special kind of guy. We must get together",

 "over a delicious ",

 " and have a few laughs"

 };

 struct names { // first structure

ptg11524036

614 Chapter 14 Structures and Other Data Forms

 char first[LEN];

 char last[LEN];

 };

 struct guy { // second structure

 struct names handle; // nested structure

 char favfood[LEN];

 char job[LEN];

 float income;

 };

 int main(void)

 {

 struct guy fellow = { // initialize a variable

 { "Ewen", "Villard" },

 "grilled salmon",

 "personality coach",

 68112.00

 };

 printf("Dear %s, \n\n", fellow.handle.first);

 printf("%s%s.\n", msgs[0], fellow.handle.first);

 printf("%s%s\n", msgs[1], fellow.job);

 printf("%s\n", msgs[2]);

 printf("%s%s%s", msgs[3], fellow.favfood, msgs[4]);

 if (fellow.income > 150000.0)

 puts("!!");

 else if (fellow.income > 75000.0)

 puts("!");

 else

 puts(".");

 printf("\n%40s%s\n", " ", "See you soon,");

 printf("%40s%s\n", " ", "Shalala");

 return 0;

 }

 Here is the output:

 Dear Ewen,

 Thank you for the wonderful evening, Ewen.

 You certainly prove that a personality coach

 is a special kind of guy. We must get together

 over a delicious grilled salmon and have a few laughs.

 See you soon,

 Shalala

ptg11524036

615Pointers to Structures

 First, note how the nested structure is set up in the structure declaration. It is simply declared,
just as an int variable would be:

 struct names handle;

 This declaration says that handle is a variable of the struct names type. Of course, the file
should also include the declaration for the names structure.

 Second, note how you gain access to a member of a nested structure; you merely use the dot
operator twice:

 printf("Hello, %s!\n", fellow.handle.first);

 The construction is interpreted this way, going from left to right:

 (fellow.handle).first

 That is, find fellow , then find the handle member of fellow , and then find the first
member of that.

 Pointers to Structures

 Pointer lovers will be glad to know that you can have pointers to structures. There are at least
four reasons why having pointers to structures is a good idea. First, just as pointers to arrays
are easier to manipulate (in a sorting problem, say) than the arrays themselves, pointers to
structures are often easier to manipulate than structures themselves. Second, in some older
implementations, a structure can’t be passed as an argument to a function, but a pointer to a
structure can. Third, even if you can pass a structure as an argument, passing a pointer often is
more efficient. Fourth, many wondrous data representations use structures containing pointers
to other structures.

 The next short example (see Listing 14.4) shows how to define a pointer to a structure and how
to use it to access the members of a structure.

 Listing 14.4 The friends.c Program

 /* friends.c -- uses pointer to a structure */

 #include <stdio.h>

 #define LEN 20

 struct names {

 char first[LEN];

 char last[LEN];

 };

ptg11524036

616 Chapter 14 Structures and Other Data Forms

 struct guy {

 struct names handle;

 char favfood[LEN];

 char job[LEN];

 float income;

 };

 int main(void)

 {

 struct guy fellow[2] = {

 {{ "Ewen", "Villard"},

 "grilled salmon",

 "personality coach",

 68112.00

 },

 {{"Rodney", "Swillbelly"},

 "tripe",

 "tabloid editor",

 232400.00

 }

 };

 struct guy * him; /* here is a pointer to a structure */

 printf("address #1: %p #2: %p\n", &fellow[0], &fellow[1]);

 him = &fellow[0]; /* tell the pointer where to point */

 printf("pointer #1: %p #2: %p\n", him, him + 1);

 printf("him->income is $%.2f: (*him).income is $%.2f\n",

 him->income, (*him).income);

 him++; /* point to the next structure */

 printf("him->favfood is %s: him->handle.last is %s\n",

 him->favfood, him->handle.last);

 return 0;

 }

 The output, please:

 address #1: 0x7fff5fbff820 #2: 0x7fff5fbff874

 pointer #1: 0x7fff5fbff820 #2: 0x7fff5fbff874

 him->income is $68112.00: (*him).income is $68112.00

 him->favfood is tripe: him->handle.last is Swillbelly

 Let’s look first at how we created a pointer to a guy structure. Then we’ll explain how to specify
individual structure members by using the pointer.

ptg11524036

617Pointers to Structures

 Declaring and Initializing a Structure Pointer

 Declaration is as easy as can be:

 struct guy * him;

 First is the keyword struct , then the structure tag guy , and then an asterisk (*) followed by
the pointer name. The syntax is the same as for the other pointer declarations you have seen.

 This declaration does not create a new structure, but the pointer him can now be made to point
to any existing structure of the guy type. For instance, if barney is a structure of the guy type,
you could do this:

 him = &barney;

 Unlike the case for arrays, the name of a structure is not the address of the structure; you need
to use the & operator.

 In the example, fellow is an array of structures, which means that fellow[0] is a structure, so
the code initializes him by making it point to fellow[0] :

 him = &fellow[0];

 The first two output lines show the success of this assignment. Comparing the two lines, you
see that him points to fellow[0] , and him + 1 points to fellow[1] . Note that adding 1 to
 him adds 84 to the address. In hexadecimal, 874 − 820 = 54 (hex) = 84 (base 10) because each
 guy structure occupies 84 bytes of memory: names.first is 20, names.last is 20, favfood is
20, job is 20, and income is 4, the size of float on our system. Incidentally, on some systems,
the size of a structure may be greater than the sum of its parts. That’s because a system’s align-
ment requirements for data may cause gaps. For example, a system may have to place each
member at an even address or at an address that is a multiple of four. Such structures might
end up with unused “holes” in them.

 Member Access by Pointer

 The pointer him is pointing to the structure fellow[0] . How can you use him to get a value of
a member of fellow[0] ? The third output line shows two methods.

 The first method, and the most common, uses a new operator, -> . This operator is formed by
typing a hyphen (-) followed by the greater-than symbol (>). We have these relationships:

 him->income is barney.income if him == &barney

 him->income is fellow[0].income if him == &fellow[0]

 In other words, a structure pointer followed by the -> operator works the same way as a struc-
ture name followed by the . (dot) operator. (You can’t properly say him.income because him is
not a structure name.)

 It is important to note that him is a pointer, but him->income is a member of the pointed-to
structure. So in this case, him->income is a float variable.

ptg11524036

618 Chapter 14 Structures and Other Data Forms

 The second method for specifying the value of a structure member follows from this sequence:
If him == &fellow[0] , then *him == fellow[0] because & and * are reciprocal operators.
Hence, by substitution, you have the following:

 fellow[0].income == (*him).income

 The parentheses are required because the . operator has higher precedence than * .

 In summary, if him is a pointer to a type guy structure named barney , the following are all
equivalent:

 barney.income == (*him).income == him->income // assuming him == &barney

 Now let’s look at the interaction between structures and functions.

 Telling Functions About Structures

 Recall that function arguments pass values to the function. Each value is a number—perhaps
 int , perhaps float , perhaps ASCII character code, or perhaps an address. A structure is a bit
more complicated than a single value, so it is not surprising that ancient C implementations
do not allow a structure to be used as an argument for a function. This limitation was removed
in newer implementations, and ANSI C allows structures to be used as arguments. Therefore,
modern implementations give you a choice between passing structures as arguments and
passing pointers to structures as arguments—or if you are concerned with just part of a struc-
ture, you can pass structure members as arguments. We’ll examine all three methods, begin-
ning with passing structure members as arguments.

 Passing Structure Members

 As long as a structure member is a data type with a single value (that is, an int or one of its
relatives, a char , a float , a double , or a pointer), it can be passed as a function argument to
a function that accepts that particular type. The fledgling financial analysis program in Listing
 14.5 , which adds the client’s bank account to his or her savings and loan account, illustrates
this point.

 Listing 14.5 The funds1.c Program

 /* funds1.c -- passing structure members as arguments */

 #include <stdio.h>

 #define FUNDLEN 50

 struct funds {

 char bank[FUNDLEN];

 double bankfund;

 char save[FUNDLEN];

 double savefund;

 };

ptg11524036

619Telling Functions About Structures

 double sum(double, double);

 int main(void)

 {

 struct funds stan = {

 "Garlic-Melon Bank",

 4032.27,

 "Lucky's Savings and Loan",

 8543.94

 };

 printf("Stan has a total of $%.2f.\n",

 sum(stan.bankfund, stan.savefund));

 return 0;

 }

 /* adds two double numbers */

 double sum(double x, double y)

 {

 return(x + y);

 }

 Here is the result of running this program:

 Stan has a total of $12576.21.

 Ah, it works. Notice that the function sum() neither knows nor cares whether the actual argu-
ments are members of a structure; it requires only that they be type double .

 Of course, if you want a called function to affect the value of a member in the calling function,
you can transmit the address of the member:

 modify(&stan.bankfund);

 This would be a function that alters Stan’s bank account.

 The next approach to telling a function about a structure involves letting the called function
know that it is dealing with a structure.

 Using the Structure Address

 We will solve the same problem as before, but this time we will use the address of the structure
as an argument. Because the function has to work with the funds structure, it, too, has to make
use of the funds declaration. See Listing 14.6 for the program.

ptg11524036

620 Chapter 14 Structures and Other Data Forms

 Listing 14.6 The funds2.c Program

 /* funds2.c -- passing a pointer to a structure */

 #include <stdio.h>

 #define FUNDLEN 50

 struct funds {

 char bank[FUNDLEN];

 double bankfund;

 char save[FUNDLEN];

 double savefund;

 };

 double sum(const struct funds *); /* argument is a pointer */

 int main(void)

 {

 struct funds stan = {

 "Garlic-Melon Bank",

 4032.27,

 "Lucky's Savings and Loan",

 8543.94

 };

 printf("Stan has a total of $%.2f.\n", sum(&stan));

 return 0;

 }

 double sum(const struct funds * money)

 {

 return(money->bankfund + money->savefund);

 }

 This, too, produces the following output:

 Stan has a total of $12576.21.

 The sum() function uses a pointer (money) to a funds structure for its single argument. Passing
the address &stan to the function causes the pointer money to point to the structure stan .
Then the -> operator is used to gain the values of stan.bankfund and stan.savefund .
Because the function does not alter the contents of the pointed-to value, it declares money as a
pointer-to- const .

 This function also has access to the institution names, although it doesn’t use them. Note that
you must use the & operator to get the structure’s address. Unlike the array name, the structure
name alone is not a synonym for its address.

ptg11524036

621Telling Functions About Structures

 Passing a Structure as an Argument

 For compilers that permit passing structures as arguments, the last example can be rewritten as
shown in Listing 14.7 .

 Listing 14.7 The funds3.c Program

 /* funds3.c -- passing a structure */

 #include <stdio.h>

 #define FUNDLEN 50

 struct funds {

 char bank[FUNDLEN];

 double bankfund;

 char save[FUNDLEN];

 double savefund;

 };

 double sum(struct funds moolah); /* argument is a structure */

 int main(void)

 {

 struct funds stan = {

 "Garlic-Melon Bank",

 4032.27,

 "Lucky's Savings and Loan",

 8543.94

 };

 printf("Stan has a total of $%.2f.\n", sum(stan));

 return 0;

 }

 double sum(struct funds moolah)

 {

 return(moolah.bankfund + moolah.savefund);

 }

 Again, the output is this:

 Stan has a total of $12576.21.

 We replaced money , which was a pointer to struct funds , with moolah , which is a struct
funds variable. When sum() is called, an automatic variable called moolah is created according
to the funds template. The members of this structure are then initialized to be copies of the
values held in the corresponding members of the structure stan . Therefore, the computations

ptg11524036

622 Chapter 14 Structures and Other Data Forms

are done by using a copy of the original structure; whereas, the preceding program (the one
using a pointer) used the original structure. Because moolah is a structure, the program uses
 moolah.bankfund , not moolah->bankfund . On the other hand, Listing 14.6 used
money->bankfund because money is a pointer, not a structure.

 More on Structure Features

 Modern C allows you to assign one structure to another, something you can’t do with arrays.
That is, if n_data and o_data are both structures of the same type, you can do the following:

 o_data = n_data; // assigning one structure to another

 This causes each member of n_data to be assigned the value of the corresponding member of
 o_data . This works even if a member happens to be an array. Also, you can initialize one struc-
ture to another of the same type:

 struct names right_field = {"Ruthie", "George"};

 struct names captain = right_field; // initialize a structure to another

 Under modern C, including ANSI C, not only can structures be passed as function arguments,
they can be returned as function return values. Using structures as function arguments enables
you to convey structure information to a function; using functions to return structures enables
you to convey structure information from a called function to the calling function. Structure
pointers also allow two-way communication, so you can often use either approach to solve
programming problems. Let’s look at another set of examples illustrating these two approaches.

 To contrast the two approaches, we’ll write a simple program that handles structures by using
pointers; then we’ll rewrite it by using structure passing and structure returns. The program
itself asks for your first and last names and reports the total number of letters in them. This
project hardly requires structures, but it offers a simple framework for seeing how they work.
 Listing 14.8 presents the pointer form.

 Listing 14.8 The names1.c Program

 /* names1.c -- uses pointers to a structure */

 #include <stdio.h>

 #include <string.h>

 #define NLEN 30

 struct namect {

 char fname[NLEN];

 char lname[NLEN];

 int letters;

 };

 void getinfo(struct namect *);

 void makeinfo(struct namect *);

ptg11524036

623Telling Functions About Structures

 void showinfo(const struct namect *);

 char * s_gets(char * st, int n);

 int main(void)

 {

 struct namect person;

 getinfo(&person);

 makeinfo(&person);

 showinfo(&person);

 return 0;

 }

 void getinfo (struct namect * pst)

 {

 printf("Please enter your first name.\n");

 s_gets(pst->fname, NLEN);

 printf("Please enter your last name.\n");

 s_gets(pst->lname, NLEN);

 }

 void makeinfo (struct namect * pst)

 {

 pst->letters = strlen(pst->fname) +

 strlen(pst->lname);

 }

 void showinfo (const struct namect * pst)

 {

 printf("%s %s, your name contains %d letters.\n",

 pst->fname, pst->lname, pst->letters);

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

ptg11524036

624 Chapter 14 Structures and Other Data Forms

 }

 return ret_val;

 }

 Compiling and running the program produces results like the following:

 Please enter your first name.

 Viola

 Please enter your last name.

 Plunderfest

 Viola Plunderfest, your name contains 16 letters.

 The work of the program is allocated to three functions called from main() . In each case, the
address of the person structure is passed to the function.

 The getinfo() function transfers information from itself to main() . In particular, it gets
names from the user and places them in the person structure, using the pst pointer to locate
it. Recall that pst->lname means the lname member of the structure pointed to by pst . This
makes pst->lname equivalent to the name of a char array, hence a suitable argument for
 gets() . Note that although getinfo() feeds information to the main program, it does not use
the return mechanism, so it is type void .

 The makeinfo() function performs a two-way transfer of information. By using a pointer
to person , it locates the two names stored in the structure. It uses the C library function
 strlen() to calculate the total number of letters in each name and then uses the address of
 person to stow away the sum. Again, the type is void . Finally, the showinfo() function uses
a pointer to locate the information to be printed. Because this function does not alter the
contents of an array, it declares the pointer as const .

 In all these operations, there has been but one structure variable, person , and each of the func-
tions have used the structure address to access it. One function transferred information from
itself to the calling program, one transferred information from the calling program to itself, and
one did both.

 Now let’s see how you can program the same task using structure arguments and return values.
First, to pass the structure itself, use the argument person rather than &person . The corre-
sponding formal argument, then, is declared type struct namect instead of being a pointer
to that type. Second, to provide structure values to main() , you can return a structure. Listing
 14.9 presents the nonpointer version.

 Listing 14.9 The names2.c Program

 /* names2.c -- passes and returns structures */

 #include <stdio.h>

 #include <string.h>

 #define NLEN 30

 struct namect {

ptg11524036

625Telling Functions About Structures

 char fname[NLEN];

 char lname[NLEN];

 int letters;

 };

 struct namect getinfo(void);

 struct namect makeinfo(struct namect);

 void showinfo(struct namect);

 char * s_gets(char * st, int n);

 int main(void)

 {

 struct namect person;

 person = getinfo();

 person = makeinfo(person);

 showinfo(person);

 return 0;

 }

 struct namect getinfo(void)

 {

 struct namect temp;

 printf("Please enter your first name.\n");

 s_gets(temp.fname, NLEN);

 printf("Please enter your last name.\n");

 s_gets(temp.lname, NLEN);

 return temp;

 }

 struct namect makeinfo(struct namect info)

 {

 info.letters = strlen(info.fname) + strlen(info.lname);

 return info;

 }

 void showinfo(struct namect info)

 {

 printf("%s %s, your name contains %d letters.\n",

 info.fname, info.lname, info.letters);

 }

 char * s_gets(char * st, int n)

 {

ptg11524036

626 Chapter 14 Structures and Other Data Forms

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 This version produces the same final result as the preceding one, but it proceeds in a different
manner. Each of the three functions creates its own copy of person , so this program uses four
distinct structures instead of just one.

 Consider the makeinfo() function, for example. In the first program, the address of person
was passed, and the function fiddled with the actual person values. In this second version, a
new structure called info is created. The values stored in person are copied to info , and the
function works with the copy. Therefore, when the number of letters is calculated, it is stored
in info , but not in person . The return mechanism, however, fixes that. The makeinfo() line

 return info;

 combines with the main() line

 person = makeinfo(person);

 to copy the values stored in info into person . Note that the makeinfo() function had to be
declared type struct namect because it returns a structure.

 Structures or Pointer to Structures?

 Suppose you have to write a structure-related function. Should you use structure pointers as
arguments, or should you use structure arguments and return values? Each approach has its
strengths and weaknesses.

 The two advantages of the pointer argument method are that it works on older as well as newer
C implementations and that it is quick; you just pass a single address. The disadvantage is that
you have less protection for your data. Some operations in the called function could inadver-
tently affect data in the original structure. However, the ANSI C addition of the const qualifier
solves that problem. For example, if you put code into the showinfo() function of Listing 11.8
that changes any member of the structure, the compiler will catch it as an error.

ptg11524036

627Telling Functions About Structures

 One advantage of passing structures as arguments is that the function works with copies of the
original data, which is safer than working with the original data. Also, the programming style
tends to be clearer. Suppose you define the following structure type:

 struct vector {double x; double y;};

 You want to set the vector ans to the sum of the vectors a and b . You could write a structure-
passing and returning function that would make the program look like this:

 struct vector ans, a, b;

 struct vector sum_vect(struct vector, struct vector);

 ...

 ans = sum_vect(a,b);

 The preceding version is more natural looking to an engineer than a pointer version, which
might look like this:

 struct vector ans, a, b;

 void sum_vect(const struct vector *, const struct vector *, struct vector *);

 ...

 sum_vect(&a, &b, &ans);

 Also, in the pointer version, the user has to remember whether the address for the sum should
be the first or the last argument.

 The two main disadvantages to passing structures are that older implementations might not
handle the code and that it wastes time and space. It’s especially wasteful to pass large struc-
tures to a function that uses only one or two members of the structure. In that case, passing a
pointer or passing just the required members as individual arguments makes more sense.

 Typically, programmers use structure pointers as function arguments for reasons of efficiency,
using const when needed to protect data from unintended changes. Passing structures by value
is most often done for structures that are small to begin with.

 Character Arrays or Character Pointers in a Structure

 The examples so far have used character arrays to store strings in a structure. You might
have wondered if you can use pointers-to- char instead. For example, Listing 14.3 had this
declaration:

 #define LEN 20

 struct names {

 char first[LEN];

 char last[LEN];

 };

 Can you do this instead?

 struct pnames {

 char * first;

ptg11524036

628 Chapter 14 Structures and Other Data Forms

 char * last;

 };

 The answer is that you can, but you might get into trouble unless you understand the implica-
tions. Consider the following code:

 struct names veep = {"Talia", "Summers"};

 struct pnames treas = {"Brad", "Fallingjaw"};

 printf("%s and %s\n", veep.first, treas.first);

 This is valid code, and it works, but consider where the strings are stored. For the struct
names variable veep , the strings are stored inside the structure; the structure has allocated a
total of 40 bytes to hold the two names. For the struct pnames variable treas , however, the
strings are stored wherever the compiler stores string constants. All the structure holds are the
two addresses, which takes a total of 16 bytes on our system. In particular, the struct pnames
structure allocates no space to store strings. It can be used only with strings that have had space
allocated for them elsewhere, such as string constants or strings in arrays. In short, the pointers
in a pnames structure should be used only to manage strings that were created and allocated
elsewhere in the program.

 Let’s see where this restriction is a problem. Consider the following code:

 struct names accountant;

 struct pnames attorney;

 puts("Enter the last name of your accountant:");

 scanf("%s", accountant.last);

 puts("Enter the last name of your attorney:");

 scanf("%s", attorney.last); /* here lies the danger */

 As far as syntax goes, this code is fine. But where does the input get stored? For the accountant,
the name is stored in the last member of the accountant variable; this structure has an array
to hold the string. For the attorney, scanf() is told to place the string at the address given by
 attorney.last . Because this is an uninitialized variable, the address could have any value, and
the program could try to put the name anywhere. If you are lucky, the program might work, at
least some of the time—or an attempt could bring your program to a crashing halt. Actually, if
the program works, you’re unlucky, because the program will have a dangerous programming
error of which you are unaware.

 So if you want a structure to store the strings, it’s simpler to use character array members.
Storing pointers-to- char has its uses, but it also has the potential for serious misuse.

 Structure, Pointers, and malloc()

 One instance in which it does make sense to use a pointer in a structure to handle a string is if
you use malloc() to allocate memory and use a pointer to store the address. This approach has
the advantage that you can ask malloc() to allocate just the amount of space that’s needed
for a string. You can ask for 4 bytes to store "Joe" and 18 bytes for the Madagascan name

ptg11524036

629Telling Functions About Structures

 "Rasolofomasoandro" . It doesn’t take much to adapt Listing 14.9 to this approach. The two
main changes are changing the structure definition to use pointers instead of arrays and then
providing a new version of the getinfo() function.

 The new structure definition will look like this:

 struct namect {

 char * fname; // using pointers instead of arrays

 char * lname;

 int letters;

 };

 The new version of getinfo() will read the input into a temporary array, use malloc() to
allocate storage space, and copy the string to the newly allocated space. It will do so for each
name:

 void getinfo (struct namect * pst)

 {

 char temp[SLEN];

 printf("Please enter your first name.\n");

 s_gets(temp, SLEN);

 // allocate memory to hold name

 pst->fname = (char *) malloc(strlen(temp) + 1);

 // copy name to allocated memory

 strcpy(pst->fname, temp);

 printf("Please enter your last name.\n");

 s_gets(temp, SLEN);

 pst->lname = (char *) malloc(strlen(temp) + 1);

 strcpy(pst->lname, temp);

 }

 Make sure you understand that the two strings are not stored in the structure. They are stored
in the chunk of memory managed by malloc() . However, the addresses of the two strings are
stored in the structure, and the addresses are what string-handling functions typically work
with. Therefore, the remaining functions in the program need not be changed at all.

 However, as Chapter 12 suggests, you should balance calls to malloc() with calls to free() ,
so the program adds a new function called cleanup() to free the memory once the program is
done using it. You’ll find this new function and the rest of the program in Listing 14.10 .

 Listing 14.10 The names3.c Program

 // names3.c -- use pointers and malloc()

 #include <stdio.h>

 #include <string.h> // for strcpy(), strlen()

 #include <stdlib.h> // for malloc(), free()

 #define SLEN 81

 struct namect {

ptg11524036

630 Chapter 14 Structures and Other Data Forms

 char * fname; // using pointers

 char * lname;

 int letters;

 };

 void getinfo(struct namect *); // allocates memory

 void makeinfo(struct namect *);

 void showinfo(const struct namect *);

 void cleanup(struct namect *); // free memory when done

 char * s_gets(char * st, int n);

 int main(void)

 {

 struct namect person;

 getinfo(&person);

 makeinfo(&person);

 showinfo(&person);

 cleanup(&person);

 return 0;

 }

 void getinfo (struct namect * pst)

 {

 char temp[SLEN];

 printf("Please enter your first name.\n");

 s_gets(temp, SLEN);

 // allocate memory to hold name

 pst->fname = (char *) malloc(strlen(temp) + 1);

 // copy name to allocated memory

 strcpy(pst->fname, temp);

 printf("Please enter your last name.\n");

 s_gets(temp, SLEN);

 pst->lname = (char *) malloc(strlen(temp) + 1);

 strcpy(pst->lname, temp);

 }

 void makeinfo (struct namect * pst)

 {

 pst->letters = strlen(pst->fname) +

 strlen(pst->lname);

 }

 void showinfo (const struct namect * pst)

 {

 printf("%s %s, your name contains %d letters.\n",

ptg11524036

631Telling Functions About Structures

 pst->fname, pst->lname, pst->letters);

 }

 void cleanup(struct namect * pst)

 {

 free(pst->fname);

 free(pst->lname);

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 Here is some sample output:

 Please enter your first name.

 Floresiensis

 Please enter your last name.

 Mann

 Floresiensis Mann, your name contains 16 letters.

 Compound Literals and Structures (C99)

 C99’s compound literal feature is available for structures as well as for arrays. It’s handy if you
just need a temporary structure value. For instance, you can use compound literals to create a
structure to be used as a function argument or to be assigned to another structure. The syntax
is to preface a brace-enclosed initializer list with the type name in parentheses. For example,
the following is a compound literal of the struct book type:

 (struct book) {"The Idiot", "Fyodor Dostoyevsky", 6.99}

ptg11524036

632 Chapter 14 Structures and Other Data Forms

 Listing 14.11 shows an example using compound literals to provide two alternative values for
a structure variable. (At the time of writing, several, but not all, compilers support this feature,
but time should remedy this problem.)

 Listing 14.11 The complit.c Program

 /* complit.c -- compound literals */

 #include <stdio.h>

 #define MAXTITL 41

 #define MAXAUTL 31

 struct book { // structure template: tag is book

 char title[MAXTITL];

 char author[MAXAUTL];

 float value;

 };

 int main(void)

 {

 struct book readfirst;

 int score;

 printf("Enter test score: ");

 scanf("%d",&score);

 if(score >= 84)

 readfirst = (struct book) {"Crime and Punishment",

 "Fyodor Dostoyevsky",

 11.25};

 else

 readfirst = (struct book) {"Mr. Bouncy's Nice Hat",

 "Fred Winsome",

 5.99};

 printf("Your assigned reading:\n");

 printf("%s by %s: $%.2f\n",readfirst.title,

 readfirst.author, readfirst.value);

 return 0;

 }

 You also can use compound literals as arguments to functions. If the function expects a struc-
ture, you can pass the compound literal as the actual argument:

 struct rect {double x; double y;};

 double rect_area(struct rect r){return r.x * r.y;}

 ...

ptg11524036

633Telling Functions About Structures

 double area;

 area = rect_area((struct rect) {10.5, 20.0});

 This causes area to be assigned the value 210.0 .

 If a function expects an address, you can pass the address of a compound literal:

 struct rect {double x; double y;};

 double rect_areap(struct rect * rp){return rp->x * rp->y;}

 ...

 double area;

 area = rect_areap(&(struct rect) {10.5, 20.0});

 This causes area to be assigned the value 210.0 .

 Compound literals occurring outside of any function have static storage duration, and those
occurring inside a block have automatic storage duration. The same syntax rules hold for
compound literals as hold for regular initializer lists. This means, for example, that you can use
designated initializers in a compound literal.

 Flexible Array Members (C99)

 C99 has a feature called the flexible array member . It lets you declare a structure for which the
last member is an array with special properties. One special property is that the array doesn’t
exist—at least, not immediately. The second special property is that, with the right code, you
can use the flexible array member as if it did exist and has whatever number of elements you
need. This probably sounds a little peculiar, so let’s go through the steps of creating and using a
structure with a flexible array member.

 First, here are the rules for declaring a flexible array member:

 ■ The flexible array member must be the last member of the structure.

 ■ There must be at least one other member.

 ■ The flexible array is declared like an ordinary array, except that the brackets are empty.

 Here’s an example illustrating these rules:

 struct flex

 {

 int count;

 double average;

 double scores[]; // flexible array member

 };

 If you declare a variable of type struct flex , you can’t use scores for anything, because no
memory space is set-aside for it. In fact, it’s not intended that you ever declare variables of the
 struct flex type. Instead, you are supposed to declare a pointer to the struct flex type and

ptg11524036

634 Chapter 14 Structures and Other Data Forms

then use malloc() to allocate enough space for the ordinary contents of struct flex plus any
extra space you want for the flexible array member. For example, suppose you want scores to
represent an array of five double values. Then you would do this:

 struct flex * pf; // declare a pointer

 // ask for space for a structure and an array

 pf = malloc(sizeof(struct flex) + 5 * sizeof(double));

 Now you have a chunk of memory large enough to store count , average , and an array of five
 double values. You can use the pointer pf to access these members:

 pf->count = 5; // set count member

 pf->scores[2] = 18.5; // access an element of the array member

 Listing 14.12 carries this example a little further, letting the flexible array member represent
five values in one case and nine values in a second case. It also illustrates writing a function for
processing a structure with a flexible array element.

 Listing 14.12 The flexmemb.c Program

 // flexmemb.c -- flexible array member (C99 feature)

 #include <stdio.h>

 #include <stdlib.h>

 struct flex

 {

 size_t count;

 double average;

 double scores[]; // flexible array member

 };

 void showFlex(const struct flex * p);

 int main(void)

 {

 struct flex * pf1, *pf2;

 int n = 5;

 int i;

 int tot = 0;

 // allocate space for structure plus array

 pf1 = malloc(sizeof(struct flex) + n * sizeof(double));

 pf1->count = n;

 for (i = 0; i < n; i++)

 {

 pf1->scores[i] = 20.0 - i;

 tot += pf1->scores[i];

 }

ptg11524036

635Telling Functions About Structures

 pf1->average = tot / n;

 showFlex(pf1);

 n = 9;

 tot = 0;

 pf2 = malloc(sizeof(struct flex) + n * sizeof(double));

 pf2->count = n;

 for (i = 0; i < n; i++)

 {

 pf2->scores[i] = 20.0 - i/2.0;

 tot += pf2->scores[i];

 }

 pf2->average = tot / n;

 showFlex(pf2);

 free(pf1);

 free(pf2);

 return 0;

 }

 void showFlex(const struct flex * p)

 {

 int i;

 printf("Scores : ");

 for (i = 0; i < p->count; i++)

 printf("%g ", p->scores[i]);

 printf("\nAverage: %g\n", p->average);

 }

 Here is the output:

 Scores : 20 19 18 17 16

 Average: 18

 Scores : 20 19.5 19 18.5 18 17.5 17 16.5 16

 Average: 17

 Structures with flexible array members do have some special handling requirements. First, don’t
use structure assignment for copying:

 struct flex * pf1, *pf2; // *pf1 and *pf2 are structures

 ...

 *pf2 = *pf1; // don't do this

 This would just copy the nonflexible members of the structure. Instead, use the memcpy()
function described in Chapter 16 , “The C Preprocessor and the C Library.”

ptg11524036

636 Chapter 14 Structures and Other Data Forms

 Second, don’t use this sort of structure with functions that pass structures by value. The reason
is the same; passing an argument by value is like assignment. Instead, use functions that pass
the address of the structure.

 Third, don’t use a structure with a flexible array member as an element of an array or a member
of another structure.

 Some of you may have heard of something similar to the flexible array member called the struct
hack . Instead of using empty brackets to declare the flexible member, the struct hack specifies a
0 array size. However, the struct hack is something that worked for a particular compiler (GCC);
it wasn’t standard C. The flexible member approach provides a standard-sanctioned version of
the technique.

 Anonymous Structures (C11)

 An anonymous structure is a structure member that is an unnamed structure. To see how this
works, first consider the following setup for a nested structure:

 struct names

 {

 char first[20];

 char last[20];

 };

 struct person

 {

 int id;

 struct names name; // nested structure member

 };

 struct person ted = {8483, {"Ted", "Grass"}};

 Here the name member is a nested structure, and you could use an expression like ted.name.
first to access "Ted" :

 puts(ted.name.first);

 With C11, you can define person using a nested unnamed member structure:

 struct person

 {

 int id;

 struct {char first[20]; char last[20];}; // anonymous structure

 };

 You could initialize this structure in the same fashion:

 struct person ted = {8483, {"Ted", "Grass"}};

 But access is simplified as you use member names such as first as if they were person members:

 puts(ted.first);

ptg11524036

637Telling Functions About Structures

 Of course, you could simply have made first and last direct members of person and elimi-
nated nested structures. The anonymous feature becomes more useful with nested unions,
which we will discuss later in this chapter.

 Functions Using an Array of Structures

 Suppose you have an array of structures that you want to process with a function. The name
of an array is a synonym for its address, so it can be passed to a function. Again, the function
needs access to the structure template. To show how this works, Listing 14.13 expands our
monetary program to two people so that it has an array of two funds structures.

 Listing 14.13 The funds4.c Program

 /* funds4.c -- passing an array of structures to a function */

 #include <stdio.h>

 #define FUNDLEN 50

 #define N 2

 struct funds {

 char bank[FUNDLEN];

 double bankfund;

 char save[FUNDLEN];

 double savefund;

 };

 double sum(const struct funds money[], int n);

 int main(void)

 {

 struct funds jones[N] = {

 {

 "Garlic-Melon Bank",

 4032.27,

 "Lucky's Savings and Loan",

 8543.94

 },

 {

 "Honest Jack's Bank",

 3620.88,

 "Party Time Savings",

 3802.91

 }

 };

 printf("The Joneses have a total of $%.2f.\n",

ptg11524036

638 Chapter 14 Structures and Other Data Forms

 sum(jones,N));

 return 0;

 }

 double sum(const struct funds money[], int n)

 {

 double total;

 int i;

 for (i = 0, total = 0; i < n; i++)

 total += money[i].bankfund + money[i].savefund;

 return(total);

 }

 The output is this:

 The Joneses have a total of $20000.00.

 (What an even sum! One would almost think the figures were contrived.)

 The array name jones is the address of the array. In particular, it is the address of the first
element of the array, which is the structure jones[0] . Therefore, initially the pointer money is
given by this expression:

 money = &jones[0];

 Because money points to the first element of the jones array, money[0] is another name for
the first element of that array. Similarly, money[1] is the second element. Each element is a
funds structure, so each can use the dot (.) operator to access the structure members.

 These are the main points:

 ■ You can use the array name to pass the address of the first structure in the array to a
function.

 ■ You can then use array bracket notation to access the successive structures in the array.
Note that the function call

 sum(&jones[0], N)

 would have the same effect as using the array name because both jones and &jones[0]
are the same address. Using the array name is just an indirect way of passing the
structure address.

 ■ Because the sum() function ought not alter the original data, the function uses the ANSI
C const qualifier.

ptg11524036

639Saving the Structure Contents in a File

 Saving the Structure Contents in a File

 Because structures can hold a wide variety of information, they are important tools for
constructing databases. For example, you could use a structure to hold all the pertinent infor-
mation about an employee or an auto part. Ultimately, you would want to be able to save this
information in, and retrieve it from, a file. A database file could contain an arbitrary number of
such data objects. The entire set of information held in a structure is termed a record , and the
individual items are fields . Let’s investigate these topics.

 What is perhaps the most obvious way to save a record is the least efficient way, and that is to
use fprintf() . For example, recall the book structure introduced in Listing 14.1 :

 #define MAXTITL 40

 #define MAXAUTL 40

 struct book {

 char title[MAXTITL];

 char author[MAXAUTL];

 float value;

 };

 If pbooks identified a file stream, you could save the information in a struct book variable
called primer with the following statement:

 fprintf(pbooks, "%s %s %.2f\n", primer.title,

 primer.author, primer.value);

 This setup becomes unwieldy for structures with, say, 30 members. Also, it poses a retrieval
problem because the program would need some way of telling where one field ends and
another begins. This problem can be fixed by using a format with fixed-size fields (for example,
 "%39s%39s%8.2f"), but the awkwardness remains.

 A better solution is to use fread() and fwrite() to read and write structure-sized units. Recall
that these functions read and write using the same binary representation that the program uses.
For example,

 fwrite(&primer, sizeof (struct book), 1, pbooks);

 goes to the beginning address of the primer structure and copies all the bytes of the structure
to the file associated with pbooks . The sizeof (struct book) term tells the function how
large a block to copy, and the 1 indicates that it should copy just one block. The fread()
function with the same arguments copies a structure-sized chunk of data from the file to the
location pointed to by &primer . In short, these functions read and write one whole record at a
time instead of a field at a time.

 One drawback to saving data in binary representation is that different systems might use differ-
ent binary representations, so the data file might not be portable. Even on the same system,
different compiler settings could result in different binary layouts.

ptg11524036

640 Chapter 14 Structures and Other Data Forms

 A Structure-Saving Example

 To show how these functions can be used in a program, we’ve modified the program in Listing
 14.2 so that the book titles are saved in a file called book.dat . If the file already exists, the
program shows you its current contents and then enables you to add to the file. Listing 14.14
presents the new version. (If you’re using an older Borland compiler, review the “Borland C and
Floating Point” discussion in the sidebar near Listing 14.2 .)

 Listing 14.14 The booksave.c Program

 /* booksave.c -- saves structure contents in a file */

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 #define MAXTITL 40

 #define MAXAUTL 40

 #define MAXBKS 10 /* maximum number of books */

 char * s_gets(char * st, int n);

 struct book { /* set up book template */

 char title[MAXTITL];

 char author[MAXAUTL];

 float value;

 };

 int main(void)

 {

 struct book library[MAXBKS]; /* array of structures */

 int count = 0;

 int index, filecount;

 FILE * pbooks;

 int size = sizeof (struct book);

 if ((pbooks = fopen("book.dat", "a+b")) == NULL)

 {

 fputs("Can't open book.dat file\n",stderr);

 exit(1);

 }

 rewind(pbooks); /* go to start of file */

 while (count < MAXBKS && fread(&library[count], size,

 1, pbooks) == 1)

 {

 if (count == 0)

 puts("Current contents of book.dat:");

 printf("%s by %s: $%.2f\n",library[count].title,

 library[count].author, library[count].value);

 count++;

ptg11524036

641Saving the Structure Contents in a File

 }

 filecount = count;

 if (count == MAXBKS)

 {

 fputs("The book.dat file is full.", stderr);

 exit(2);

 }

 puts("Please add new book titles.");

 puts("Press [enter] at the start of a line to stop.");

 while (count < MAXBKS && s_gets(library[count].title, MAXTITL) != NULL

 && library[count].title[0] != '\0')

 {

 puts("Now enter the author.");

 s_gets(library[count].author, MAXAUTL);

 puts("Now enter the value.");

 scanf("%f", &library[count++].value);

 while (getchar() != '\n')

 continue; /* clear input line */

 if (count < MAXBKS)

 puts("Enter the next title.");

 }

 if (count > 0)

 {

 puts("Here is the list of your books:");

 for (index = 0; index < count; index++)

 printf("%s by %s: $%.2f\n",library[index].title,

 library[index].author, library[index].value);

 fwrite(&library[filecount], size, count - filecount,

 pbooks);

 }

 else

 puts("No books? Too bad.\n");

 puts("Bye.\n");

 fclose(pbooks);

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

ptg11524036

642 Chapter 14 Structures and Other Data Forms

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 We’ll look at a couple of sample runs and then discuss the main programming points.

 $ booksave

 Please add new book titles.

 Press [enter] at the start of a line to stop.

 Metric Merriment

 Now enter the author.

 Polly Poetica

 Now enter the value.

 18.99

 Enter the next title.

 Deadly Farce

 Now enter the author.

 Dudley Forse

 Now enter the value.

 15.99

 Enter the next title.

 [enter]

 Here is the list of your books:

 Metric Merriment by Polly Poetica: $18.99

 Deadly Farce by Dudley Forse: $15.99

 Bye.

 $ booksave

 Current contents of book.dat:

 Metric Merriment by Polly Poetica: $18.99

 Deadly Farce by Dudley Forse: $15.99

 Please add new book titles.

 The Third Jar

 Now enter the author.

 Nellie Nostrum

 Now enter the value.

 22.99

 Enter the next title.

 [enter]

 Here is the list of your books:

ptg11524036

643Saving the Structure Contents in a File

 Metric Merriment by Polly Poetica: $18.99

 Deadly Farce by Dudley Forse: $15.99

 The Third Jar by Nellie Nostrum: $22.99

 Bye.

 $

 Running the booksave.c program again would show all three books as current file records.

 Program Points

 First, the "a+b" mode is used for opening the file. The a+ part lets the program read the
whole file and append data to the end of the file. The b is the ANSI way of signifying that the
program will use the binary file format. For Unix systems that don’t accept the b , you can omit
it because Unix has only one file form anyway. For other pre-ANSI implementations, you might
need to find the local equivalent to using b .

 We chose the binary mode because fread() and fwrite() are intended for binary files. True,
some of the structure contents are text, but the value member is not. If you use a text editor to
look at book.dat , the text part will show up okay, but the numeric part will be unreadable and
could even cause your text editor to barf.

 The rewind() command ensures that the file position pointer is situated at the start of the file,
ready for the first read.

 The initial while loop reads one structure at a time into the array of structures, stopping when
the array is full or when the file is exhausted. The variable filecount keeps track of how many
structures were read.

 The next while loop prompts for, and takes, user input. As in Listing 14.2 , this loop quits
when the array is full or when the user presses the Enter key at the beginning of a line. Notice
that the count variable starts with the value it had after the preceding loop. This causes the
new entries to be added to the end of the array.

 The for loop then prints the data both from the file and from the user. Because the file was
opened in the append mode, new writes to the file are appended to the existing contents.

 We could have used a loop to add one structure at a time to the end of the file. However,
we decided to use the ability of fwrite() to write more than one block at a time. The
expression count - filecount yields the number of new book titles to be added, and the
call to fwrite() writes that number of structure-sized blocks to the file. The expression
 &library[filecount] is the address of the first new structure in the array, so copying begins
from that point.

 This example is, perhaps, the simplest way to write structures to a file and to retrieve them, but
it can waste space because the unused parts of a structure are saved, too. The size of this struc-
ture is 2 x 40 x sizeof (char) + sizeof (float) , which totals 84 bytes on our system.
None of the entries actually need all that space. However, each data chunk being the same size
makes retrieving the data easy.

ptg11524036

644 Chapter 14 Structures and Other Data Forms

 Another approach is to use variably sized records. To facilitate reading such records from a
file, each record can begin with a numerical field specifying the record size. This is a bit more
complex than what we have done. Normally, this method involves “linked structures,” which
we describe next, and dynamic memory allocation, which we discuss in Chapter 16 .

 Structures: What Next?

 Before ending our exploration of structures, we would like to mention one of the more impor-
tant uses of structures: creating new data forms. Computer users have developed data forms
much more efficiently for certain problems than the arrays and simple structures we have
presented. These forms have names such as queues, binary trees, heaps, hash tables, and
graphs. Many such forms are built from linked structures. Typically, each structure contains
one or two items of data plus one or two pointers to other structures of the same type. Those
pointers link one structure to another and furnish a path to enable you to search through the
overall assemblage of structures. For example, Figure 14.3 shows a binary tree structure, with
each individual structure (or node) connected to the two below it.

level 1

level 2

level 3

level 4

 Figure 14.3 A binary tree structure.

 Is the hierarchical, or tree , structure shown in Figure 14.3 more efficient than an array?
Consider the case of a tree with 10 levels of nodes. It has 2 10 −1, or 1,023, nodes in which you
could store up to 1,023 words. If the words were arranged according to some sensible plan,
you could start at the top level and find any word in at most nine moves as your search moves
down one level to the next. If you have the words in an array, you might have to search all
1,023 elements before finding the word you seek.

 If you are interested in more advanced concepts such as this, you can consult any number of
computer science texts on data structures. With the C structures, you can create and use virtu-
ally every form presented in these texts. Also, Chapter 17 , “Advanced Data Representation,”
investigates some of these advanced forms.

ptg11524036

645Unions: A Quick Look

 That’s our final word on structures for this chapter, but we will present examples of linked
structures in Chapter 17 . Next, we’ll look at three other C features for dealing with data:
unions, enumerations, and typedef .

 Unions: A Quick Look

 A union is a type that enables you to store different data types in the same memory space (but
not simultaneously). A typical use is a table designed to hold a mixture of types in some order
that is neither regular nor known in advance. By using an array of unions, you can create an
array of equal-sized units, each of which can hold a variety of data types.

 Unions are set up in much the same way as structures. There is a union template and a union
variable. They can be defined in one step or, by using a union tag, in two. Here is an example
of a union template with a tag:

 union hold {

 int digit;

 double bigfl;

 char letter;

 };

 A structure with a similar declaration would be able to hold an int value and a double value
 and a char value. This union, however, can hold an int value or a double value or a char
value.

 Here is an example of defining three union variables of the hold type:

 union hold fit; // union variable of hold type

 union hold save[10]; // array of 10 union variables

 union hold * pu; // pointer to a variable of hold type

 The first declaration creates a single variable, fit . The compiler allots enough space so that it
can hold the largest of the described possibilities. In this case, the biggest possibility listed is
 double , which requires 64 bits, or 8 bytes, on our system. The second declaration creates an
array called save with 10 elements, each 8 bytes in size. The third declaration creates a pointer
that can hold the address of a hold union.

 You can initialize a union. Because the union holds only one value, the rules are different from
those in a structure. In particular, you have three choices: You can initialize a union to another
union of the same type, you can initialize the first element of a union, or, with C99, you can
use a designated initializer:

 union hold valA;

 valA.letter = 'R';

 union hold valB = valA; // initialize one union to another

 union hold valC = {88}; // initialize digit member of union

 union hold valD = {.bigfl = 118.2}; // designated initializer

ptg11524036

646 Chapter 14 Structures and Other Data Forms

 Using Unions

 Here is how you can use a union:

 fit.digit = 23; // 23 is stored in fit; 2 bytes used

 fit.bigfl = 2.0; // 23 cleared, 2.0 stored; 8 bytes used

 fit.letter = 'h'; // 2.0 cleared, h stored; 1 byte used

 The dot operator shows which data type is being used. Only one value is stored at a time. You
can’t store a char and an int at the same time, even though there is enough space to do so. It
is your responsibility to write the program so that it keeps track of the data type currently being
stored in a union.

 You can use the -> operator with pointers to unions in the same fashion that you use the oper-
ator with pointers to structures:

 pu = &fit;

 x = pu->digit; // same as x = fit.digit

 The next sequence shows what not to do:

 fit.letter = 'A';

 flnum = 3.02*fit.bigfl; // ERROR ERROR ERROR

 This sequence is wrong because a char type is stored, but the next line assumes that the
content of fit is a double type.

 However, sometimes it can be useful to use one member to place values into a union and to
then use a different member for viewing the contents. Listing 15.4 in the next chapter shows
an example.

 Another place you might use a union is in a structure for which the stored information
depends on one of the members. For example, suppose you have a structure representing an
automobile. If the automobile is owned by the user, you want a structure member describing
the owner. If the automobile is leased, you want the member to describe the leasing company.
Then you can do something along the following lines:

 struct owner {

 char socsecurity[12];

 ...

 };

 struct leasecompany {

 char name[40];

 char headquarters[40];

 ...

 };

 union data {

 struct owner owncar;

ptg11524036

647Unions: A Quick Look

 struct leasecompany leasecar;

 };

 struct car_data {

 char make[15];

 int status; /* 0 = owned, 1 = leased */

 union data ownerinfo;

 ...

 };

 Suppose flits is a car_data structure. Then if flits.status were 0, the program could use
 flits.ownerinfo.owncar.socsecurity , and if flits.status were 1, the program could use
 flits.ownerinfo.leasecar.name .

 Anonymous Unions (C11)

 Anonymous unions work much the same as anonymous structures. That is, an anonymous
union is an unnamed member union of a structure or union. For instance, we can redefine the
 car_data structure as follows:

 struct owner {

 char socsecurity[12];

 ...

 };

 struct leasecompany {

 char name[40];

 char headquarters[40];

 ...

 };

 struct car_data {

 char make[15];

 int status; /* 0 = owned, 1 = leased */

 union {

 struct owner owncar;

 struct leasecompany leasecar;

 };

 ...

 };

 Now, if flits is a car_data structure, we can use flits.owncar.socsecurity instead of
 flits.ownerinfo.owncar.socsecurity .

ptg11524036

648 Chapter 14 Structures and Other Data Forms

 Summary: Structure and Union Operators

 The Membership Operator: .

 General Comments:

 This operator is used with a structure or union name to specify a member of that structure or
union. If name is the name of a structure and member is a member specified by the structure
template, the following identifies that member of the structure:

 name.member

 The type of name.member is the type specified for member . The membership operator can also
be used in the same fashion with unions.

 Example:

 struct {

 int code;

 float cost;

 } item;

 item.code = 1265;

 The last statement assigns a value to the code member of the structure item .

 The Indirect Membership Operator: ->

 General Comments:

 This operator is used with a pointer to a structure or union to identify a member of that struc-
ture or union. Suppose that ptrstr is a pointer to a structure and that member is a member
specified by the structure template. Then the statement

 ptrstr->member

 identifies that member of the pointed-to structure. The indirect membership operator can be
used in the same fashion with unions.

 Example:

 struct {

 int code;

 float cost;

 } item, * ptrst;

 ptrst = &item;

 ptrst->code = 3451;

 The last statement assigns an int value to the code member of item . The following three
expressions are equivalent:

 ptrst->code item.code (*ptrst).code

ptg11524036

649Enumerated Types

 Enumerated Types

 You can use the enumerated type to declare symbolic names to represent integer constants.
By using the enum keyword, you can create a new “type” and specify the values it may have.
(Actually, enum constants are type int ; therefore, they can be used wherever you would use an
 int .) The purpose of enumerated types is to enhance the readability of a program. The syntax
is similar to that used for structures. For example, you can make these declarations:

 enum spectrum {red, orange, yellow, green, blue, violet};

 enum spectrum color;

 The first declaration establishes spectrum as a tag name, which allows you to use enum
spectrum as a type name. The second declaration makes color a variable of that type. The
identifiers within the braces enumerate the possible values that a spectrum variable can have.
Therefore, the possible values for color are red , orange , yellow , and so on. These symbolic
constants are termed enumerators . Then, you can use statements such as the following:

 int c;

 color = blue;

 if (color == yellow)

 ...;

 for (color = red; color <= violet; color++)

 ...;

 Although enumerators such as red and blue are type int , enumerated variables are more
loosely constrained to be an integral type as long as the type can hold the enumerated
constants. For example, the enumerated constants for spectrum have the range 0–5, so a
compiler could choose to use unsigned char to represent the color variable.

 Incidentally, some C enumeration properties don’t carry over to C++. For example, C allows
you to apply the ++ operator to an enumeration variable, and the C++ standard doesn’t. So if
you think your code might be incorporated into a C++ program some day, you should declare
 color as type int in the previous example. Then the code will work with either C or C++.

 enum Constants

 Just what are blue and red ? Technically, they are type int constants. For example, given the
preceding enumeration declaration, you can try this:

 printf("red = %d, orange = %d\n", red, orange);

 Here is the output:

 red = 0, orange = 1

 What has happened is that red has become a named constant representing the integer 0.
Similarly, the other identifiers are named constants representing the integers 1 through 5.
You can use an enumerated constant anywhere you can use an integer constant. For example,

ptg11524036

650 Chapter 14 Structures and Other Data Forms

you can use them as sizes in array declarations, and you can use them as labels in a switch
statement.

 Default Values

 By default, the constants in the enumeration list are assigned the integer values 0, 1, 2, and so
on. Therefore, the declaration

 enum kids {nippy, slats, skippy, nina, liz};

 results in nina having the value 3 .

 Assigned Values

 You can choose the integer values that you want the constants to have. Just include the
desired values in the declaration:

 enum levels {low = 100, medium = 500, high = 2000};

 If you assign a value to one constant but not to the following constants, the following
constants will be numbered sequentially. For example, suppose you have this declaration:

 enum feline {cat, lynx = 10, puma, tiger};

 Then cat is 0 , by default, and lynx , puma , and tiger are 10 , 11 , and 12 , respectively.

 enum Usage

 Recall that the purpose of enumerated types is to enhance a program’s readability and make it
easier to maintain. If you are dealing with colors, using red and blue is much more obvious
than using 0 and 1 . Note that the enumerated types are for internal use. If you want to enter a
value of orange for color , you have to enter a 1 , not the word orange , or you can read in the
string "orange" and have the program convert it to the value orange .

 Because the enumerated type is an integer type, enum variables can be used in expressions in
the same manner as integer variables. They make convenient labels for a case statement.

 Listing 14.15 shows a short example using enum . The example relies on the default value-
assignment scheme. This gives red the value 0 , which makes it the index for the pointer to the
string "red" .

 Listing 14.15 The enum.c Program

 /* enum.c -- uses enumerated values */

 #include <stdio.h>

 #include <string.h> // for strcmp(), strchr()

 #include <stdbool.h> // C99 feature

 char * s_gets(char * st, int n);

ptg11524036

651Enumerated Types

 enum spectrum {red, orange, yellow, green, blue, violet};

 const char * colors[] = {"red", "orange", "yellow",

 "green", "blue", "violet"};

 #define LEN 30

 int main(void)

 {

 char choice[LEN];

 enum spectrum color;

 bool color_is_found = false;

 puts("Enter a color (empty line to quit):");

 while (s_gets(choice, LEN) != NULL && choice[0] != '\0')

 {

 for (color = red; color <= violet; color++)

 {

 if (strcmp(choice, colors[color]) == 0)

 {

 color_is_found = true;

 break;

 }

 }

 if (color_is_found)

 switch(color)

 {

 case red : puts("Roses are red.");

 break;

 case orange : puts("Poppies are orange.");

 break;

 case yellow : puts("Sunflowers are yellow.");

 break;

 case green : puts("Grass is green.");

 break;

 case blue : puts("Bluebells are blue.");

 break;

 case violet : puts("Violets are violet.");

 break;

 }

 else

 printf("I don't know about the color %s.\n", choice);

 color_is_found = false;

 puts("Next color, please (empty line to quit):");

 }

 puts("Goodbye!");

 return 0;

ptg11524036

652 Chapter 14 Structures and Other Data Forms

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 The code breaks out of the for loop if the input string matches one of the strings pointed to
by the members of the colors array. If the loop finds a matching color, the program then uses
the value of the enumeration variable to match an enumeration constant used as a case label.
Here is a sample run:

 Enter a color (empty line to quit):

 blue

 Bluebells are blue.

 Next color, please (empty line to quit):

 orange

 Poppies are orange.

 Next color, please (empty line to quit):

 purple

 I don't know about the color purple.

 Next color, please (empty line to quit):

 Goodbye!

 Shared Namespaces

 C uses the term namespace to identify parts of a program in which a name is recognized. Scope
is part of the concept: Two variables having the same name but in different scopes don’t
conflict; two variables having the same name in the same scope do conflict. There also is a
category aspect to namespaces. Structure tags, union tags, and enumeration tags in a particu-
lar scope all share the same namespace, and that namespace is different from the one used by
ordinary variables. What this means is that you can use the same name for one variable and

ptg11524036

653typedef: A Quick Look

one tag in the same scope without causing an error, but you can’t declare two tags of the same
name or two variables of the same name in the same scope. For example, the following doesn’t
cause a conflict in C:

 struct rect { double x; double y; };

 int rect; // not a conflict in C

 However, it can be confusing to use the same identifier in two different ways; also, C++ doesn’t
allow this because it puts tags and variable names into the same namespace.

 typedef : A Quick Look

 The typedef facility is an advanced data feature that enables you to create your own name for
a type. It is similar to #define in that respect, but with three differences:

 ■ Unlike #define , typedef is limited to giving symbolic names to types only and not to
values.

 ■ The typedef interpretation is performed by the compiler, not the preprocessor.

 ■ Within its limits, typedef is more flexible than #define .

 Let’s see how typedef works. Suppose you want to use the term BYTE for one-byte numbers.
You simply define BYTE as if it were a char variable and precede the definition by the keyword
 typedef , like so:

 typedef unsigned char BYTE;

 From then on, you can use BYTE to define variables:

 BYTE x, y[10], * z;

 The scope of this definition depends on the location of the typedef statement. If the defi-
nition is inside a function, the scope is local, confined to that function. If the definition is
outside a function, the scope is global.

 Often, uppercase letters are used for these definitions to remind the user that the type name is
really a symbolic abbreviation, but you can use lowercase, too:

 typedef unsigned char byte;

 The same rules that govern the valid names of variables govern the name used for a typedef .

 Creating a name for an existing type might seem a bit frivolous, but it can be useful. With
the preceding example, using BYTE instead of unsigned char helps document that you plan
to use BYTE variables to represent numbers rather than character codes. Using typedef also
helps increase portability. For example, we’ve mentioned the size_t type, which represents
the type returned by the sizeof operator, and the time_t type, which represents the type of
value returned by the time() function. The C standard says sizeof and time() return integer
types but leaves it up to the implementation to determine which type. The reason for this lack

ptg11524036

654 Chapter 14 Structures and Other Data Forms

of specificity is that the C standards committee feels that no one choice is likely to be the best
choice for every computer platform. So they make up a new type name, such as time_t , and
let the implementation use a typedef to set that name to some specific type. That way, they
can provide a general prototype such as the following:

 time_t time(time_t *);

 On one system, time_t can be unsigned long ; on another, it can be unsigned long long .
As long as you include the time.h header file, your program can access the appropriate defini-
tion, and you can declare time_t variables in your code.

 Some features of typedef can be duplicated with a #define . For example,

 #define BYTE unsigned char

 causes the preprocessor to replace BYTE with unsigned char . Here is one that can’t be dupli-
cated with a #define :

 typedef char * STRING;

 Without the keyword typedef , this example would identify STRING itself as a pointer-to- char .
With the keyword, it makes STRING an identifier for pointers-to- char . Therefore,

 STRING name, sign;

 means

 char * name, * sign;

 Suppose, instead, you did this:

 #define STRING char *

 Then

 STRING name, sign;

 would translate to the following:

 char * name, sign;

 In this case, only name would be a pointer.

 You can use typedef with structures, too:

 typedef struct complex {

 float real;

 float imag;

 } COMPLEX;

 You can then use the type COMPLEX instead of the struct called complex to represent complex
numbers. One reason to use typedef is to create convenient, recognizable names for types that
turn up often. For instance, many people prefer to use STRING or its equivalent, as in the earlier
example.

ptg11524036

655Fancy Declarations

 You can omit a tag when using typedef to name a structure type:

 typedef struct {double x; double y;} rect;

 Suppose you use the typedef like this:

 rect r1 = {3.0, 6.0};

 rect r2;

 This is translated to

 struct {double x; double y;} r1= {3.0, 6.0};

 struct {double x; double y;} r2;

 r2 = r1;

 If two structures are declared without a tag but with identical members (with both member
names and types matching), C considers the two structures to be of the same type, so assigning
 r1 to r2 is a valid operation.

 A second reason for using typedef is that typedef names are often used for complicated types.
For example, the declaration

 typedef char (* FRPTC ()) [5];

 makes FRPTC announce a type that is a function that returns a pointer to a five-element array
of char . (See the upcoming discussion on fancy declarations in the next section.)

 When using typedef , bear in mind that it does not create new types; instead, it just creates
convenient labels. This means, for example, that variables using the STRING type we created
can be used as arguments for functions expecting type pointer-to- char .

 With structures, unions, and typedef , C gives you the tools for efficient and portable data
handling.

 Fancy Declarations

 C enables you to create elaborate data forms. Although we are sticking to simpler forms, we feel
it is our duty to point out some of the potentialities. When you make a declaration, the name
(or identifier) can be modified by tacking on a modifier.

 Modifier Significance

 * Indicates a pointer

 () Indicates a function

 [] Indicates an array

ptg11524036

656 Chapter 14 Structures and Other Data Forms

 C enables you to use more than one modifier at a time, and that enables you to create a variety
of types, as shown in the following examples:

 int board[8][8]; // an array of arrays of int

 int ** ptr; // a pointer to a pointer to int

 int * risks[10]; // a 10-element array of pointers to int

 int (* rusks)[10]; // a pointer to an array of 10 ints

 int * oof[3][4]; // a 3 x 4 array of pointers to int

 int (* uuf)[3][4]; // a pointer to a 3 x 4 array of ints

 int (* uof[3])[4]; // a 3-element array of pointers to

 4-element arrays of int

 The trick to unraveling these declarations is figuring out the order in which to apply the modi-
fiers. These rules should get you through:

 1. The [] , which indicates an array, and the () , which indicates a function, have the same
precedence. This precedence is higher than that of the * indirection operator, which
means that the following declaration makes risks an array of pointers rather than a
pointer to an array:

 int * risks[10];

 2. The [] and () associate from left to right. Thus, the next declaration makes goods an
array of 12 arrays of 50 int s, not an array of 50 arrays of 12 int s:

 int goods[12][50];

 3. Both [] and () have the same precedence, but because they associate from left to right,
the following declaration groups * and rusks together before applying the brackets. This
means that the following declaration makes rusks a pointer to an array of 10 int s:

 int (* rusks)[10];

 Let’s apply these rules to this declaration:

 int * oof[3][4];

 The [3] has higher precedence than the * , and, because of the left-to-right rule, it is applied
before the [4] . Hence, oof is an array with three elements. Next in order is [4] , so the
elements of oof are arrays of four elements. The * tells us that these elements are pointers. The
 int completes the picture: oof is a three-element array of four-element arrays of pointers to
 int , or, for short, a 3×4 array of pointers to int . Storage is set aside for 12 pointers.

 Now look at this declaration:

 int (* uuf)[3][4];

 The parentheses cause the * modifier to have first priority, making uuf a pointer to a 3×4 array
of int s. Storage is set aside for a single pointer.

 These rules also yield the following types:

ptg11524036

657Functions and Pointers

 char * fump(int); // function returning pointer to char

 char (* frump)(int); // pointer to a function that returns type char

 char (* flump[3])(int);// array of 3 pointers to functions that

 // return type char

 All three functions take an int argument.

 You can use typedef to build a sequence of related types:

 typdef int arr5[5];

 typedef arr5 * p_arr5;

 typedef p_arr5 arrp10[10];

 arr5 togs; // togs an array of 5 int

 p_arr5 p2; // p2 a pointer to an array of 5 int

 arrp10 ap; // ap an array of 10 pointers to array-of-5-int

 When you bring structures into the picture, the possibilities for declarations truly grow
baroque. And the applications... well, we’ll leave that for more advanced texts.

 Functions and Pointers

 As the discussion on declarations illustrated, it’s possible to declare pointers to functions. You
might wonder whether such a beast has any usefulness. Typically, a function pointer is used
as an argument to another function, telling the second function which function to use. For
instance, sorting an array involves comparing two elements to see which comes first. If the
elements are numbers, you can use the > operator. More generally, the elements may be a
string or a structure, requiring a function call to do the comparison. The qsort() function
from the C library is designed to work with arrays of any kind as long as you tell it what func-
tion to use to compare elements. For that purpose, it takes a pointer to a function as one of
its arguments. The qsort() function then uses that function to sort the type—whether it be
integer, string, or structure.

 Let’s take a closer look at function pointers. First, what does it mean? A pointer to, say, an int
holds the address of a location in memory at which an int can be stored. Functions, too, have
addresses, because the machine-language implementation of a function consists of code loaded
into memory. A pointer to a function can hold the address marking the start of the function
code.

 Next, when you declare a data pointer, you have to declare the type of data to which it points.
When declaring a function pointer, you have to declare the type of function pointed to. To
specify the function type, you specify the function signature, that is, the return type for the
function and the parameter types for a function. For example, consider this prototype:

 void ToUpper(char *); // convert string to uppercase

ptg11524036

658 Chapter 14 Structures and Other Data Forms

 The type for the ToUpper() function is “function with char * parameter and return type
 void .” To declare a pointer called pf to this function type, do this:

 void (*pf)(char *); // pf a pointer-to-function

 Reading this declaration, you see the first parentheses pair associates the * operator with pf ,
meaning that pf is a pointer to a function. This makes (*pf) a function, which makes
(char *) the parameter list for the function and void the return type. Probably the simplest
way to create this declaration is to note that it replaces the function name ToUpper with the
expression (*pf). So if you want to declare a pointer to a specific type of function, you can
declare a function of that type and then replace the function name with an expression of the
form (*pf) to create a function pointer declaration. As mentioned earlier, the first parenthe-
ses are needed because of operator precedence rules. Omitting them leads to something quite
different:

 void *pf(char *); // pf a function that returns a pointer

 Tip

 To declare a pointer to a particular type of function, first declare a function of the desired type
and then replace the function name with an expression of the form (*pf) ; pf then becomes a
pointer to a function of that type.

 After you have a function pointer, you can assign to it the addresses of functions of the proper
type. In this context, the name of a function can be used to represent the address of the
function:

 void ToUpper(char *);

 void ToLower(char *);

 int round(double);

 void (*pf)(char *);

 pf = ToUpper; // valid, ToUpper is address of the function

 pf = ToLower; // valid, ToLower is address of the function

 pf = round; // invalid, round is the wrong type of function

 pf = ToLower(); // invalid, ToLower() is not an address

 The last assignment is also invalid because you can’t use a void function in an assignment
statement. Note that the pointer pf can point to any function that takes a char * argument
and has a return type of void , but not to functions with other characteristics.

 Just as you can use a data pointer to access data, you can use a function pointer to access a
function. Strangely, there are two logically inconsistent syntax rules for doing so, as the follow-
ing illustrates:

 void ToUpper(char *);

 void ToLower(char *);

 void (*pf)(char *);

 char mis[] = "Nina Metier";

 pf = ToUpper;

ptg11524036

659Functions and Pointers

 (*pf)(mis); // apply ToUpper to mis (syntax 1)

 pf = ToLower;

 pf(mis); // apply ToLower to mis (syntax 2)

 Each approach sounds sensible. Here is the first approach: Because pf points to the ToUpper
function, *pf is the ToUpper function, so the expression (*pf)(mis) is the same as
 ToUpper(mis) . Just look at the declarations of ToUpper and of pf to see that ToUpper and
 (*pf) are equivalent. Here is the second approach: Because the name of a function is a pointer,
you can use a pointer and a function name interchangeably, hence pf(mis) is the same as
 ToLower(mis) . Just look at the assignment statement for pf to see that pf and ToLower are
equivalent. Historically, the developers of C and Unix at Bell Labs took the first view and the
extenders of Unix at Berkeley took the second view. K&R C did not allow the second form, but
to maintain compatibility with existing code, ANSI C accepted both forms ((*pf)(mis) and
 pf(mis)) as equivalent. Subsequent standards have continued with this lofty ambivalence.

 Just as one of the most common uses of a data pointer is an argument to a function, one of the
most common uses of a function pointer is an argument to a function. For example, consider
this function prototype:

 void show(void (* fp)(char *), char * str);

 It looks messy, but it declares two parameters, fp and str . The fp parameter is a function
pointer, and the str is a data pointer. More specifically, fp points to a function that takes a
 char * parameter and has a void return type, and str points to a char . So, given the declara-
tions we had earlier, you can make function calls such as the following:

 show(ToLower, mis); /* show() uses ToLower() function: fp = ToLower */

 show(pf, mis); /* show() uses function pointed to by pf: fp = pf */

 And how does show() use the function pointer passed to it? It uses either the fp() or the
 (*fp)() syntax to invoke the function:

 void show(void (* fp)(char *), char * str)

 {

 (*fp)(str); /* apply chosen function to str */

 puts(str); /* display result */

 }

 Here, for example, show() first transforms the string str by applying to it the function pointed
to by fp , and then it displays the transformed string.

 By the way, functions with return values can be used two different ways as arguments to other
functions. For example, consider the following:

 function1(sqrt); /* passes address of sqrt function */

 function2(sqrt(4.0)); /* passes return value of sqrt function */

ptg11524036

660 Chapter 14 Structures and Other Data Forms

 The first passes the address of the sqrt() function, and presumably function1() will use that
function in its code. The second statement initially calls the sqrt() function, evaluates it, and
then passes the return value (2.0, in this case) to function2() .

 To show the essential ideas, the program in Listing 14.16 uses show() with a variety of trans-
forming functions as arguments. The listing also shows some useful techniques for handling a
menu.

 Listing 14.16 The func_ptr.c Program

 // func_ptr.c -- uses function pointers

 #include <stdio.h>

 #include <string.h>

 #include <ctype.h>

 #define LEN 81

 char * s_gets(char * st, int n);

 char showmenu(void);

 void eatline(void); // read through end of line

 void show(void (* fp)(char *), char * str);

 void ToUpper(char *); // convert string to uppercase

 void ToLower(char *); // convert string to uppercase

 void Transpose(char *); // transpose cases

 void Dummy(char *); // leave string unaltered

 int main(void)

 {

 char line[LEN];

 char copy[LEN];

 char choice;

 void (*pfun)(char *); // points a function having a

 // char * argument and no

 // return value

 puts("Enter a string (empty line to quit):");

 while (s_gets(line, LEN) != NULL && line[0] != '\0')

 {

 while ((choice = showmenu()) != 'n')

 {

 switch (choice) // switch sets pointer

 {

 case 'u' : pfun = ToUpper; break;

 case 'l' : pfun = ToLower; break;

 case 't' : pfun = Transpose; break;

 case 'o' : pfun = Dummy; break;

 }

 strcpy(copy, line);// make copy for show()

 show(pfun, copy); // use selected function

 }

ptg11524036

661Functions and Pointers

 puts("Enter a string (empty line to quit):");

 }

 puts("Bye!");

 return 0;

 }

 char showmenu(void)

 {

 char ans;

 puts("Enter menu choice:");

 puts("u) uppercase l) lowercase");

 puts("t) transposed case o) original case");

 puts("n) next string");

 ans = getchar(); // get response

 ans = tolower(ans); // convert to lowercase

 eatline(); // dispose of rest of line

 while (strchr("ulton", ans) == NULL)

 {

 puts("Please enter a u, l, t, o, or n:");

 ans = tolower(getchar());

 eatline();

 }

 return ans;

 }

 void eatline(void)

 {

 while (getchar() != '\n')

 continue;

 }

 void ToUpper(char * str)

 {

 while (*str)

 {

 *str = toupper(*str);

 str++;

 }

 }

 void ToLower(char * str)

 {

 while (*str)

 {

 *str = tolower(*str);

ptg11524036

662 Chapter 14 Structures and Other Data Forms

 str++;

 }

 }

 void Transpose(char * str)

 {

 while (*str)

 {

 if (islower(*str))

 *str = toupper(*str);

 else if (isupper(*str))

 *str = tolower(*str);

 str++;

 }

 }

 void Dummy(char * str)

 {

 // leaves string unchanged

 }

 void show(void (* fp)(char *), char * str)

 {

 (*fp)(str); // apply chosen function to str

 puts(str); // display result

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 Here is a sample run:

 Enter a string (empty line to quit):

 Does C make you feel loopy?

ptg11524036

663Functions and Pointers

 Enter menu choice:

 u) uppercase l) lowercase

 t) transposed case o) original case

 n) next string

 t

 dOES c MAKE YOU FEEL LOOPY?

 Enter menu choice:

 u) uppercase l) lowercase

 t) transposed case o) original case

 n) next string

 l

 does c make you feel loopy?

 Enter menu choice:

 u) uppercase l) lowercase

 t) transposed case o) original case

 n) next string

 n

 Enter a string (empty line to quit):

 Bye!

 Note that the ToUpper() , ToLower(), Transpose(), and Dummy() functions all have the same
type, so all four can be assigned to the pfun pointer. This program uses pfun as the argument
to show() , but you can also use any of the four function names directly as arguments, as in
 show(Transpose, copy).

 You can use typedef in situations like these. For example, the program could have done this:

 typedef void (*V_FP_CHARP)(char *);

 void show (V_FP_CHARP fp, char *);

 V_FP_CHARP pfun;

 If you’re feeling adventurous, you can declare and initialize an array of such pointers:

 V_FP_CHARP arpf[4] = {ToUpper, ToLower, Transpose, Dummy};

 If you then modify the showmenu() function so that it is type int and returns 0 if the user
enters u , 1 if the user enters l , 2 if the user enters t , and so on, you could replace the loop
holding the switch statement with the following:

 index = showmenu();

 while (index >= 0 && index <= 3)

 {

 strcpy(copy, line); /* make copy for show() */

 show(arpf[index], copy); /* use selected function */

 index = showmenu();

 }

ptg11524036

664 Chapter 14 Structures and Other Data Forms

 You can’t have an array of functions, but you can have an array of function pointers.

 You’ve now seen all four ways in which a function name can be used: in defining a function,
in declaring a function, in calling a function, and as a pointer. Figure 14.4 sums up the uses.

function name used in a prototype declaration: int comp(int x, int y);

function name used in a function call: status = comp(q,r);

function name used in a function definition: int comp(intx, inty)
{ ...

function name used as a pointer in assignment: pfunct = comp;

function name used as pointer argument: slowsort(arr,n,comp);

 Figure 14.4 Uses for a function name.

 As far as menu handling goes, the showmenu() function shows several techniques. First, the
code

 ans = getchar(); // get response

 ans = tolower(ans); // convert to lowercase

 and

 ans = tolower(getchar());

 show two ways to convert user input to one case so that you don’t have to test for both 'u'
and 'U' , and so on.

 The eatline() function disposes of the rest of the entry line. This is useful on two accounts.
First, to enter a choice, the user types a letter and then presses the Enter key, which generates
a newline character. That newline character will be read as the next response unless you get rid
of it first. Second, suppose the user responds by typing the entire word uppercase instead of the
letter u . Without the eatline() function, the program would treat each character in the word
 uppercase as a separate response. With eatline() , the program processes the u and discards the
rest of the line.

 Next, the showmenu() function is designed to return only valid choices to the program.
To help with that task, the program uses the standard library function strchr() from the
 string.h header file:

 while (strchr("ulton", ans) == NULL)

 This function looks for the location of the first occurrence of the character ans in the string
 "ulton" and returns a pointer to it. If it doesn’t find the character, it returns the null pointer.
Therefore, this while loop test is a more convenient replacement for the following:

 while (ans != 'u' && ans != 'l' && ans != 't' && ans != 'o' && ans != 'n')

 The more choices you have to check, the more convenient using strchr() becomes.

ptg11524036

665Summary

 Key Concepts

 The information we need to represent a programming problem often is more involved than a
single number or a list of numbers. A program may deal with an entity or collection of enti-
ties having several properties. For example, you might represent a client by his or her name,
address, phone number, and other information. Or you might describe a movie DVD by its
title, distributor, playing time, cost, and so on. A C structure lets you collect all this informa-
tion in a single unit. This is very helpful in organizing a program. Rather than storing informa-
tion in a scattered collection of variables, you can store all the related information in one place.

 When you design a structure, it’s often useful to develop a package of functions to go along
with it. For example, rather than write a bunch of printf() statements every time you want to
display the contents of a structure, you can write a display function that takes the structure (or
its address) as an argument. Because all the information is in the structure, you need just one
argument. If you had put the information into separate variables, you would have had to use
a separate argument for each individual part. Also, if you, say, add a member to the structure,
you have to rewrite the functions, but you don’t have to change the function calls, which is a
great convenience if you modify the design.

 A union declaration looks much like a structure declaration. However, the union members
share the same memory space and only one member can inhabit the union at a time. In
essence, a union allows you to create a variable that can hold one value, but more than one
type.

 The enum facility offers a means of defining symbolic constants, and the typedef facility offers
a means to create a new identifier for a basic or derived type.

 Pointers to functions provide a means to tell one function which function it should use.

 Summary

 A C structure provides the means to store several data items, usually of different types, in the
same data object. You can use a tag to identify a specific structure template and to declare
variables of that type. The membership dot operator (.) enables you to access the individual
members of a structure by using labels from the structure template.

 If you have a pointer to a structure, you can use the pointer and the indirect membership
operator (->) instead of a name and the dot operator to access individual members. To find the
address of a structure, use the & operator. Unlike arrays, the name of a structure does not serve
as the address of the structure.

 Traditionally, structure-related functions have used pointers to structures as arguments. Modern
C permits structures to be passed as arguments, used as return values, and assigned to structures
of the same type. However, passing an address usually is more efficient.

 Unions use the same syntax as structures. However, with unions, the members share a common
storage space. Instead of storing several data types simultaneously in the manner of a structure,

ptg11524036

666 Chapter 14 Structures and Other Data Forms

the union stores a single data item type from a list of choices. That is, a structure can hold, say,
an int and a double and a char , and the corresponding union can hold an int or a double
or a char .

 Enumerations allow you to create a group of symbolic integer constants (enumeration
constants) and to define an associated enumeration type.

 The typedef facility enables you to establish aliases or shorthand representations of standard C
types.

 The name of a function yields the address of that function. Such addresses can be passed as
arguments to functions, which then use the pointed-to function. If pf is a function pointer
that has been assigned the address of a particular function, you can invoke that function in
two ways:

 #include <math.h> /* declares double sin(double) function */

 ...

 double (*pdf)(double);

 double x;

 pdf = sin;

 x = (*pdf)(1.2); // invokes sin(1.2)

 x = pdf(1.2); // also invokes sin(1.2)

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. What’s wrong with this template?

 structure {

 char itable;

 int num[20];

 char * togs

 }

 2. Here is a portion of a program. What will it print?

 #include <stdio.h>

 struct house {

 float sqft;

 int rooms;

 int stories;

 char address[40];

 };

 int main(void)

 {

 struct house fruzt = {1560.0, 6, 1, "22 Spiffo Road"};

ptg11524036

667Review Questions

 struct house *sign;

 sign = &fruzt;

 printf("%d %d\n", fruzt.rooms, sign->stories);

 printf("%s \n", fruzt.address);

 printf("%c %c\n", sign->address[3], fruzt.address[4]);

 return 0;

 }

 3. Devise a structure template that will hold the name of a month, a three-letter
abbreviation for the month, the number of days in the month, and the month number.

 4. Define an array of 12 structures of the sort in question 3 and initialize it for a non-leap
year.

 5. Write a function that, when given the month number, returns the total days in the year
up to and including that month. Assume that the structure template of question 3 and
an appropriate array of such structures are declared externally.

 6. a. Given the following typedef , declare a 10-element array of the indicated
structure. Then, using individual member assignment (or the string equivalent), let
the third element describe a Remarkatar lens with a focal length of 500 mm and an
aperture of f/2.0.

 typedef struct lens { /* lens descriptor */
 float foclen; /* focal length,mm */

 float fstop; /* aperture */

 char brand[30]; /* brand name */

 } LENS;

 b. Repeat part a., but use an initialization list with a designated initializer in the
declaration rather than using separate assignment statements for each member.

 7. Consider the following programming fragment:

 struct name {

 char first[20];

 char last[20];

 };

 struct bem {

 int limbs;

 struct name title;

 char type[30];

 };

 struct bem * pb;

 struct bem deb = {

ptg11524036

668 Chapter 14 Structures and Other Data Forms

 6,

 {"Berbnazel", "Gwolkapwolk"},

 "Arcturan"

 };

 pb = &deb;

 a. What would each of the following statements print?

 printf("%d\n", deb.limbs);
 printf("%s\n", pb->type);

 printf("%s\n", pb->type + 2);

 b. How could you represent "Gwolkapwolk" in structure notation (two ways)?

 c. Write a function that takes the address of a bem structure as its argument and
prints the contents of that structure in the form shown here (assume that the
structure template is in a file called starfolk.h):

 Berbnazel Gwolkapwolk is a 6-limbed Arcturan.

 8. Consider the following declarations:

 struct fullname {

 char fname[20];

 char lname[20];

 };

 struct bard {

 struct fullname name;

 int born;

 int died;

 };

 struct bard willie;

 struct bard *pt = &willie;

 a. Identify the born member of the willie structure using the willie identifier.

 b. Identify the born member of the willie structure using the pt identifier.

 c. Use a scanf() call to read in a value for the born member using the willie
identifier.

 d. Use a scanf() call to read in a value for the born member using the pt identifier.

 e. Use a scanf() call to read in a value for the lname member of the name member
using the willie identifier.

 f. Use a scanf() call to read in a value for the lname member of the name member
using the pt identifier.

ptg11524036

669Programming Exercises

 g. Construct an identifier for the third letter of the first name of someone described
by the willie variable.

 h. Construct an expression representing the total number of letters in the first and
last names of someone described by the willie variable.

 9. Define a structure template suitable for holding the following items: the name of an
automobile, its horsepower, its EPA city-driving MPG rating, its wheelbase, and its year.
Use car as the template tag.

 10. Suppose you have this structure:

 struct gas {

 float distance;

 float gals;

 float mpg;

 };

 a. Devise a function that takes a struct gas argument. Assume that the passed
structure contains the distance and gals information. Have the function
calculate the correct value for the mpg member and return the now completed
structure.

 b. Devise a function that takes the address of a struct gas argument. Assume
that the passed structure contains the distance and gals information. Have
the function calculate the correct value for the mpg member and assign it to the
appropriate member.

 11. Declare an enumeration with the tag choices that sets the enumeration constants no ,
 yes , and maybe to 0, 1, and 2, respectively.

 12. Declare a pointer to a function that returns a pointer-to- char and that takes a pointer-to-
 char and a char as arguments.

 13. Declare four functions and initialize an array of pointers to point to them. Each function
should take two double arguments and return a double . Also, show two ways using the
array to invoke the second function with arguments of 10.0 and 2.5.

 Programming Exercises

 1. Redo Review Question 5, but make the argument the spelled-out name of the month
instead of the month number. (Don’t forget about strcmp() .) Test the function in a
simple program.

ptg11524036

670 Chapter 14 Structures and Other Data Forms

 2. Write a program that prompts the user to enter the day, month, and year. The month
can be a month number, a month name, or a month abbreviation. The program then
should return the total number of days in the year up through the given day. (Do take
leap years into account.)

 3. Revise the book-listing program in Listing 14.2 so that it prints the book descriptions in
the order entered, then alphabetized by title, and then in order of increased value.

 4. Write a program that creates a structure template with two members according to the
following criteria:

 a. The first member is a social security number. The second member is a structure
with three members. Its first member contains a first name, its second member
contains a middle name, and its final member contains a last name. Create and
initialize an array of five such structures. Have the program print the data in this
format:

 Dribble, Flossie M. –– 302039823

 Only the initial letter of the middle name is printed, and a period is added. Neither the
initial (of course) nor the period should be printed if the middle name member is empty.
Write a function to do the printing; pass the structure array to the function.

 b. Modify part a. by passing the structure value instead of the address.

 5. Write a program that fits the following recipe:

 a. Externally define a name structure template with two members: a string to hold the
first name and a string to hold the second name.

 b. Externally define a student structure template with three members: a name
structure, a grade array to hold three floating-point scores, and a variable to hold
the average of those three scores.

 c. Have the main() function declare an array of CSIZE (with CSIZE = 4) student
structures and initialize the name portions to names of your choice. Use functions
to perform the tasks described in parts d., e., f., and g.

 d. Interactively acquire scores for each student by prompting the user with a student
name and a request for scores. Place the scores in the grade array portion of the
appropriate structure. The required looping can be done in main() or in the
function, as you prefer.

 e. Calculate the average score value for each structure and assign it to the proper
member.

 f. Print the information in each structure.

 g. Print the class average for each of the numeric structure members.

ptg11524036

671Key Concepts

 6. A text file holds information about a softball team. Each line has data arranged as
follows:

 4 Jessie Joybat 5 2 1 1

 The first item is the player’s number, conveniently in the range 0–18. The second item
is the player’s first name, and the third is the player’s last name. Each name is a single
word. The next item is the player’s official times at bat, followed by the number of hits,
walks, and runs batted in (RBIs). The file may contain data for more than one game,
so the same player may have more than one line of data, and there may be data for
other players between those lines. Write a program that stores the data into an array of
structures. The structure should have members to represent the first and last names, the
at bats, hits, walks, and RBIs (runs batted in), and the batting average (to be calculated
later). You can use the player number as an array index. The program should read to end-
of-file, and it should keep cumulative totals for each player.

 The world of baseball statistics is an involved one. For example, a walk or reaching base
on an error doesn’t count as an at-bat but could possibly produce an RBI. But all this
program has to do is read and process the data file, as described next, without worrying
about how realistic the data is.

 The simplest way for the program to proceed is to initialize the structure contents to
zeros, read the file data into temporary variables, and then add them to the contents of
the corresponding structure. After the program has finished reading the file, it should
then calculate the batting average for each player and store it in the corresponding
structure member. The batting average is calculated by dividing the cumulative number
of hits for a player by the cumulative number of at-bats; it should be a floating-point
calculation. The program should then display the cumulative data for each player along
with a line showing the combined statistics for the entire team.

 7. Modify Listing 14.14 so that as each record is read from the file and shown to you, you
are given the chance to delete the record or to modify its contents. If you delete the
record, use the vacated array position for the next record to be read. To allow changing
the existing contents, you’ll need to use the "r+b" mode instead of the "a+b" mode, and
you’ll have to pay more attention to positioning the file pointer so that appended records
don’t overwrite existing records. It’s simplest to make all changes in the data stored in
program memory and then write the final set of information to the file. One approach to
keeping track is to add a member to the book structure that indicates whether it is to be
deleted.

 8. The Colossus Airlines fleet consists of one plane with a seating capacity of 12. It makes
one flight daily. Write a seating reservation program with the following features:

 a. The program uses an array of 12 structures. Each structure should hold a seat
identification number, a marker that indicates whether the seat is assigned, the last
name of the seat holder, and the first name of the seat holder.

ptg11524036

672 Chapter 14 Structures and Other Data Forms

 b. The program displays the following menu:

 To choose a function, enter its letter label:
 a) Show number of empty seats

 b) Show list of empty seats

 c) Show alphabetical list of seats

 d) Assign a customer to a seat assignment

 e) Delete a seat assignment

 f) Quit

 c. The program successfully executes the promises of its menu. Choices d) and e)
require additional input, and each should enable the user to abort an entry.

 d. After executing a particular function, the program shows the menu again, except
for choice f) .

 e. Data is saved in a file between runs. When the program is restarted, it first loads in
the data, if any, from the file.

 9. Colossus Airlines (from exercise 8) acquires a second plane (same capacity) and expands
its service to four flights daily (Flights 102, 311, 444, and 519). Expand the program to
handle four flights. Have a top-level menu that offers a choice of flights and the option
to quit. Selecting a particular flight should then bring up a menu similar to that of
exercise 8. However, one new item should be added: confirming a seat assignment. Also,
the quit choice should be replaced with the choice of exiting to the top-level menu. Each
display should indicate which flight is currently being handled. Also, the seat assignment
display should indicate the confirmation status.

 10. Write a program that implements a menu by using an array of pointers to functions. For
instance, choosing a from the menu would activate the function pointed to by the first
element of the array.

 11. Write a function called transform() that takes four arguments: the name of a source
array containing type double data, the name of a target array of type double , an int
representing the number of array elements, and the name of a function (or, equivalently,
a pointer to a function). The transform() function should apply the indicated function
to each element in the source array, placing the return value in the target array. For
example, the call

 transform(source, target, 100, sin);

 would set target[0] to sin(source[0]) , and so on, for 100 elements. Test the function
in a program that calls transform() four times, using two functions from the math.h
library and two suitable functions of your own devising as arguments to successive calls
of the transform() function.

ptg11524036

 15
 Bit Fiddling

 You will learn about the following in this chapter:

 ■ Operators:

 ~ & |^

 >> <<

 &= |= ^= >>= <<=

 ■ Binary, octal, and hexadecimal number notations (a review)

 ■ Two C facilities for handling the individual bits in a value: bitwise operators and bit
fields

 ■ Keywords:

 _Alignas, _Alignof

 With C, you can manipulate the individual bits in a variable. Perhaps you are wondering why
anyone would want to. Be assured that sometimes this ability is necessary, or at least useful.
For example, a hardware device is often controlled by sending it a byte or two in which each
bit has a particular meaning. Also, operating system information about files often is stored by
using particular bits to indicate particular items. Many compression and encryption operations
manipulate individual bits. High-level languages generally don’t deal with this level of detail;
C’s ability to provide high-level language facilities while also being able to work at a level typi-
cally reserved for assembly language makes it a preferred language for writing device drivers
and embedded code.

 We’ll investigate C’s bit powers in this chapter after we supply you with some background
about bits, bytes, binary notation, and other number bases.

ptg11524036

674 Chapter 15 Bit Fiddling

 Binary Numbers, Bits, and Bytes

 The usual way to write numbers is based on the number 10. For example, 2157 has a 2 in the
thousands place, a 1 in the hundreds place, a 5 in the tens place, and a 7 in the ones place.
This means you can think of 2157 as being the following:

 2 x 1000 + 1 x 100 + 5 x 10 + 7 x 1

 However, 1000 is 10 cubed, 100 is 10 squared, 10 is 10 to the first power, and, by convention, 1
is 10 (or any positive number) to the zero power. Therefore, you can also write 2157 as this:

 2 x 10 3 + 1 x 10 2 + 5 x 10 1 + 7 x 10 0

 Because our system of writing numbers is based on powers of 10, we say that 2157 is written in
 base 10.

 Presumably, the decimal system evolved because we have 10 fingers. A computer bit, in a sense,
has only two fingers because it can be set only to 0 or 1, off or on. Therefore, a base 2 system
is natural for a computer. It uses powers of two instead of powers of 10. Numbers expressed in
base 2 are termed binary numbers. The number 2 plays the same role for binary numbers that
the number 10 does for base 10 numbers. For example, a binary number such as 1101 mean
this:

 1 x 2 3 + 1 x 2 2 + 0 x 2 1 + 1 x 2 0

 In decimal numbers, it becomes this:

 1 x 8 + 1 x 4 + 0 x 2 + 1 x 1 = 13

 You can use the binary system to express any integer (if you have enough bits) as a combina-
tion of 1s and 0s. This system is very convenient for digital computers, which express informa-
tion in combinations of on and off states that can be interpreted as 1s and 0s. Let’s see how the
binary system works for a 1-byte integer.

 Binary Integers

 Usually, a byte contains 8 bits. C, remember, uses the term byte to denote the size used to
hold a system’s character set, so a C byte could be 8 bits, 9 bits, 16 bits, or some other value.
However, the 8-bit byte is the byte used to describe memory chips and the byte used to describe
data transfer rates. To keep matters simple, this chapter assumes an 8-bit byte. (For clarity, the
computing world often uses the term octet for an 8-bit byte.) You can think of these 8 bits as
being numbered from 7 to 0, left to right. Bit 7 is called the high-order bit, and bit 0 is the low-
order bit in the byte. Each bit number corresponds to a particular exponent of 2. Imagine the
byte as looking like Figure 15.1 .

ptg11524036

675Binary Numbers, Bits, and Bytes

0 1 0 0 1 0 0 1

bit number 7 6 5 4 3 2 1 0

bit value 128 64 32

This example shows bits 6, 3, and 0 set to 1.
The value of this byte is 64 + 8 + 1 or 73.

16 8 4 2 1

 Figure 15.1 Bit numbers and bit values.

 Here, 128 is 2 to the 7th power, and so on. The largest number this byte can hold is 1, with all
bits set to 1: 11111111. The value of this binary number is as follows:

 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255

 The smallest binary number would be 00000000, or a simple 0. A byte can store numbers from
0 to 255, for a total of 256 possible values. Or, by interpreting the bit pattern differently, a
program can use a byte to store numbers from –128 to +127, again a total of 256 values. For
example, unsigned char typically uses a byte to represent the 0-to-255 range, whereas signed
char typically uses a byte to represent the –128 to +127 range.

 Signed Integers

 The representation of signed numbers is determined by the hardware, not by C. Probably the
simplest way to represent signed numbers is to reserve 1 bit, such as the high-order bit, to
represent the sign. In a 1-byte value, this leaves 7 bits for the number itself. In such a sign-
magnitude representation, 10000001 is –1 and 00000001 is 1. The total range, then, is –127 to
+127.

 One disadvantage of this approach is that it has two zeros: +0 and –0. This is confusing, and it
also uses up two bit patterns for just one value.

 The two’s-complement method avoids that problem and is the most common system used
today. We’ll discuss this method as it applies to a 1-byte value. In that context, the values 0
through 127 are represented by the last 7 bits, with the high-order bit set to 0. So far, that’s the
same as the sign-magnitude method. Also, if the high-order bit is 1, the value is negative. The
difference comes in determining the value of that negative number. Subtract the bit-pattern
for a negative number from the 9-bit pattern 100000000 (256 as expressed in binary), and
the result is the magnitude of the value. For example, suppose the pattern is 10000000. As an
unsigned byte, it would be 128. As a signed value, it is negative (bit 7 is 1) and has a value
of 100000000−10000000, or 10000000 (128). Therefore, the number is –128. (It would have
been –0 in the sign-magnitude system.) Similarly, 10000001 is –127, and 11111111 is –1. The
method represents numbers in the range –128 to +127.

ptg11524036

676 Chapter 15 Bit Fiddling

 The simplest method for reversing the sign of a two’s-complement binary number is to invert
each bit (convert 0s to 1s and 1s to 0s) and then add 1. Because 1 is 00000001, –1 is 11111110
+ 1, or 11111111, just as you saw earlier.

 The one’s-complement method forms the negative of a number by inverting each bit in the
pattern. For instance, 00000001 is 1 and 11111110 is –1. This method also has a –0: 11111111.
Its range (for a 1-byte value) is –127 to +127.

 Binary Floating Point

 Floating-point numbers are stored in two parts: a binary fraction and a binary exponent. Let’s
see how this is done.

 Binary Fractions

 The ordinary fraction 0.527 represents

 5/10 + 2/100 + 7/1000

 with the denominators representing increasing powers of 10. In a binary fraction, you use
powers of two for denominators, so the binary fraction .101 represents

 1/2 + 0/4 + 1/8

 which in decimal notation is

 0.50 + 0.00 + 0.125

 or 0.625.

 Many fractions, such as 1/3, cannot be represented exactly in decimal notation. Similarly,
many fractions cannot be represented exactly in binary notation. Indeed, the only fractions
that can be represented exactly are combinations of multiples of powers of 1/2. Therefore, 3/4
and 7/8 can be represented exactly as binary fractions, but 1/3 and 2/5 cannot be.

 Floating-Point Representation

 To represent a floating-point number in a computer, a certain number of bits (depending
on the system) are set aside to hold a binary fraction. Additional bits hold an exponent. In
general terms, the actual value of the number consists of the binary fraction times 2 to the
indicated exponent. Multiplying a floating-point number by, say, 4, increases the exponent by
2 and leaves the binary fraction unchanged. Multiplying by a number that is not a power of 2
changes the binary fraction and, if necessary, the exponent.

 Other Number Bases

 Computer workers often use number systems based on 8 and on 16. Because 8 and 16 are
powers of 2, these systems are more closely related to a computer’s binary system than the
decimal system is.

ptg11524036

677Other Number Bases

 Octal

 Octal refers to a base 8 system. In this system, the different places in a number represent powers
of 8. You use the digits 0 to 7. For example, the octal number 451 (written 0451 in C) repre-
sents this:

 4 x 8 2 + 5 x 8 1 + 1 x 8 0 = 297 (base 10)

 A handy thing to know about octal is that each octal digit corresponds to three binary digits.
 Table 15.1 shows the correspondence. This correspondence makes it simple to translate
between the two systems. For example, the octal number 0377 is 11111111 in binary. We
replaced the 3 with 011, dropped the leading 0, and then replaced each 7 with 111. The only
awkward part is that a 3-digit octal number might take up to 9 bits in binary form, so an octal
value larger than 0377 requires more than a byte. Note that internal 0s are not dropped: 0173
is 01 111 011, not 01 111 11.

 Table 15.1 Binary Equivalents for Octal Digits

 Octal Digit Binary Equivalent

 0 000

 1 001

 2 010

 3 011

 4 100

 5 101

 6 110

 7 111

 Hexadecimal

 Hexadecimal (or hex) refers to a base 16 system. It uses powers of 16 and the digits 0 to 15, but
because base 10 doesn’t have single digits to represent the values 10 to 15, hexadecimal uses
the letters A to F for that purpose. For instance, the hex number A3F (written 0xA3F in C)
represents

 10 x 16 2 + 3 x 16 1 + 15 x 16 0 = 2623 (base 10)

 because A represents 10 and F represents 15. In C, you can use either lowercase or uppercase
letters for the additional hex digits. Therefore, you can also write 2623 as 0xa3f .

 Each hexadecimal digit corresponds to a 4-digit binary number, so two hexadecimal digits
correspond exactly to an 8-bit byte. The first digit represents the upper 4 bits, and the second
digit the last 4 bits. This makes hexadecimal a natural choice for representing byte values.

ptg11524036

678 Chapter 15 Bit Fiddling

 Table 15.2 shows the correspondence. For example, the hex value 0xC2 translates to 11000010.
Going the other direction, the binary value 11010101 can be viewed as 1101 0101, which trans-
lates to 0xD5.

 Table 15.2 Decimal, Hexadecimal, and Binary Equivalents

 Decimal Digit Hexadecimal

Digit

 Binary

Equivalent

 Decimal Digit Hexadecimal

Digit

 Binary

Equivalent

 0 0 0000 8 8 1000

 1 1 0001 9 9 1001

 2 2 0010 10 A 1010

 3 3 0011 11 B 1011

 4 4 0100 12 C 1100

 5 5 0101 13 D 1101

 6 6 0110 14 E 1110

 7 7 0111 15 F 1111

 Now that you’ve seen what bits and bytes are, let’s examine what C can do with them. C has
two facilities to help you manipulate bits. The first is a set of six bitwise operators that act on
bits. The second is the field data form, which gives you access to bits within an int . The follow-
ing discussion outlines these C features.

 C’s Bitwise Operators

 C offers bitwise logical operators and shift operators. In the following examples, we will write
out values in binary notation so that you can see what happens to the bits. In an actual
program, you would use integer variables or constants written in the usual forms. For example,
instead of 00011001 , you would use 25 or 031 or 0x19 . For our examples, we will use 8-bit
numbers, with the bits numbered 7 to 0, left to right.

 Bitwise Logical Operators

 The four bitwise logical operators work on integer-type data, including char . They are called
 bitwise because they operate on each bit independently of the bit to the left or right. Don’t
confuse them with the regular logical operators (&& , || , and !), which operate on values as a
whole.

ptg11524036

679C’s Bitwise Operators

 One’s Complement, or Bitwise Negation: ~

 The unary operator ~ changes each 1 to a 0 and each 0 to a 1, as in the following example:

 ~(10011010) // expression

 (01100101) // resulting value

 Suppose that val is an unsigned char assigned the value 2 . In binary, 2 is 00000010 . Then
 ~val has the value 11111101 , or 253 . Note that the operator does not change the value of val ,
just as 3 * val does not change the value of val ; val is still 2 , but it does create a new value
that can be used or assigned elsewhere:

 newval = ~val;

 printf("%d", ~val);

 If you want to change the value of val to ~val , use this simple assignment:

 val = ~val;

 Bitwise AND: &

 The binary operator & produces a new value by making a bit-by-bit comparison between two
operands. For each bit position, the resulting bit is 1 only if both corresponding bits in the
operands are 1. (In terms of true/false, the result is true only if each of the two bit operands is
true.) Therefore, the expression

 (10010011) & (00111101) // expression

 evaluates to the following value:

 (00010001) // resulting value

 The reason is that only bits 4 and 0 are 1 in both operands.

 C also has a combined bitwise AND-assignment operator: &= . The statement

 val &= 0377;

 produces the same final result as the following:

 val = val & 0377;

 Bitwise OR: |

 The binary operator | produces a new value by making a bit-by-bit comparison between two
operands. For each bit position, the resulting bit is 1 if either of the corresponding bits in the
operands is 1. (In terms of true/false, the result is true if one or the other bit operands are true
or if both are true.) Therefore, the expression

 (10010011) | (00111101) // expression

 evaluates to the following value:

 (10111111) // resulting value

ptg11524036

680 Chapter 15 Bit Fiddling

 The reason is that all bit positions but bit 6 have the value 1 in one or the other operand (or
both).

 C also has a combined bitwise OR-assignment operator: |= . The statement

 val |= 0377;

 produces the same final result as this:

 val = val | 0377;

 Bitwise EXCLUSIVE OR: ̂

 The binary operator ̂ makes a bit-by-bit comparison between two operands. For each bit posi-
tion, the resulting bit is 1 if one or the other (but not both) of the corresponding bits in the
operands is 1. (In terms of true/false, the result is true if one or the other bit operands—but not
both— is true.) Therefore, the expression

 (10010011) ^ (00111101) // expression

 evaluates to the following:

 (10101110) // resulting value

 Note that because bit position 0 has the value 1 in both operands, the resulting 0 bit has value
 0 .

 C also has a combined bitwise OR-assignment operator: ̂ = . The statement

 val ^= 0377;

 produces the same final result as this:

 val = val ^ 0377;

 Usage: Masks

 The bitwise AND operator is often used with a mask. A mask is a bit pattern with some bits set
to on (1) and some bits to off (0). To see why a mask is called a mask, let’s see what happens
when a quantity is combined with a mask by using & . For example, suppose you define the
symbolic constant MASK as 2 (that is, binary 00000010), with only bit number 1 being nonzero.
Then the statement

 flags = flags & MASK;

 would cause all the bits of flags (except bit 1) to be set to 0 because any bit combined with 0
using the & operator yields 0. Bit number 1 will be left unchanged. (If the bit is 1, 1 & 1 is 1;
if the bit is 0, 0 & 1 is 0.) This process is called “using a mask” because the zeros in the mask
hide the corresponding bits in flags .

ptg11524036

681C’s Bitwise Operators

 Extending the analogy, you can think of the 0s in the mask as being opaque and the 1s as
being transparent. The expression flags & MASK is like covering the flags bit pattern with
the mask; only the bits under MASK ’s 1s are visible (see Figure 15.2).

0 0 0 0 0 0 1

1 0 0 1 0 1 1 0

MASK

flag

AND

EQUALS

1

1

 Figure 15.2 A mask.

 You can shorten the code by using the AND-assignment operator, as shown here:

 flags &= MASK;

 One common C usage is this statement:

 ch &= 0xff; /* or ch &= 0377; */

 The value 0xff , recall, is 11111111 in binary, as is the value 0377 . This mask leaves the final 8
bits of ch alone and sets the rest to 0. Regardless of whether the original ch is 8 bits, 16 bits, or
more, the final value is trimmed to something that fits into a single 8-bit byte. In this case, the
mask is 8 bits wide.

 Usage: Turning Bits On (Setting Bits)

 Sometimes you might need to turn on particular bits in a value while leaving the remaining
bits unchanged. For instance, an IBM PC controls hardware through values sent to ports. To
turn on, say, the internal speaker, you might have to turn on the 1 bit while leaving the others
unchanged. You can do this with the bitwise OR operator.

 For example, consider the MASK , which has bit 1 set to 1. The statement

 flags = flags | MASK;

ptg11524036

682 Chapter 15 Bit Fiddling

 sets bit number 1 in flags to 1 and leaves all the other bits unchanged. This follows because
any bit combined with 0 by using the | operator is itself, and any bit combined with 1 by
using the | operator is 1.

 For example, suppose flags is 00001111 and MASK is 10110110 . The expression

 flags | MASK

 becomes

 (00001111) | (10110110) // expression

 and evaluates to the following:

 (10111111) // resulting value

 All the bits that are set to 1 in MASK are also set to 1 in the result. All the bits in flags that
corresponded to 0 bits in MASK are left unchanged.

 For short, you can use the bitwise OR-assignment operator:

 flags |= MASK;

 This, too, sets to 1 those bits in flags that are also on in MASK , leaving the other bits
unchanged.

 Usage: Turning Bits Off (Clearing Bits)

 Just as it’s useful to be able to turn on particular bits without disturbing the other bits, it’s
useful to be able to turn them off. Suppose you want to turn off bit 1 in the variable flags .
Once again, MASK has only the 1 bit turned on. You can do this:

 flags = flags & ~MASK;

 Because MASK is all 0s except for bit 1, ~MASK is all 1s except for bit 1. A 1 combined with any
bit using & is that bit, so the statement leaves all the bits other than bit 1 unchanged. Also, a 0
combined with any bit using & is 0, so bit 1 is set to 0 regardless of its original value.

 For example, suppose flags is 00001111 and MASK is 10110110 . The expression

 flags & ~MASK

 becomes

 (00001111) &^ (10110110) // expression

 and evaluates to the following:

 (00001001) // resulting value

 All the bits that are set to 1 in MASK are set to 0 (cleared) in the result. All the bits in flags that
corresponded to 0 bits in MASK are left unchanged.

ptg11524036

683C’s Bitwise Operators

 You can use this short form instead:

 flags &= ~MASK;

 Usage: Toggling Bits

 Toggling a bit means turning it off if it is on, and turning it on if it is off. You can use the
bitwise EXCLUSIVE OR operator to toggle a bit. The idea is that if b is a bit setting (1 or 0),
then 1 ^ b is 0 if b is 1 and is 1 if b is 0 . Also 0 ^ b is b , regardless of its value. Therefore,
if you combine a value with a mask by using ̂ , values corresponding to 1s in the mask are
toggled, and values corresponding to 0s in the mask are unaltered. To toggle bit 1 in flags ,
you can do either of the following:

 flags = flags ^ MASK;

 flags ^= MASK;

 For example, suppose flags is 00001111 and MASK is 10110110 . The expression

 flags ^ MASK

 becomes

 (00001111) ^ (10110110) // expression

 and evaluates to the following:

 (10111001) // resulting value

 All the bits that are set to 1 in MASK result in the corresponding bits of flags being toggled. All
the bits in flags that corresponded to 0 bits in MASK are left unchanged.

 Usage: Checking the Value of a Bit

 You’ve seen how to change the values of bits. Suppose, instead, that you want to check the
value of a bit. For example, does flags have bit 1 set to 1? You shouldn’t simply compare
 flags to MASK :

 if (flags == MASK)

 puts("Wow!"); /* doesn't work right */

 Even if bit 1 in flags is set to 1, the other bit setting in flags can make the comparison
untrue. Instead, you must first mask the other bits in flags so that you compare only bit 1 of
 flags with MASK :

 if ((flags & MASK) == MASK)

 puts("Wow!");

 The bitwise operators have lower precedence than == , so the parentheses around flags &
MASK are needed.

ptg11524036

684 Chapter 15 Bit Fiddling

 To avoid information peeking around the edges, a bit mask should be at least as wide as the
value it’s masking.

 Bitwise Shift Operators

 Now let’s look at C’s shift operators. The bitwise shift operators shift bits to the left or right.
Again, we will write binary numbers explicitly to show the mechanics.

 Left Shift: <<

 The left shift operator (<<) shifts the bits of the value of the left operand to the left by the
number of places given by the right operand. The vacated positions are filled with 0s, and bits
moved past the end of the left operand are lost. In the following example, then, each bit is
moved two places to the left:

 (10001010) << 2 // expression

 (00101000) // resulting value

 This operation produces a new bit value, but it doesn’t change its operands. For example,
suppose stonk is 1 . Then stonk<<2 is 4 , but stonk is still 1 . You can use the left-shift assign-
ment operator (<<=) to actually change a variable’s value. This operator shifts the bit in the
variable to its left by the number of places given by the right-hand value. Here’s an example:

 int stonk = 1;

 int onkoo;

 onkoo = stonk << 2; /* assigns 4 to onkoo */

 stonk <<= 2; /* changes stonk to 4 */

 Right Shift: >>

 The right-shift operator (>>) shifts the bits of the value of the left operand to the right by the
number of places given by the right operand. Bits moved past the right end of the left operand
are lost. For unsigned types, the places vacated at the left end are replaced by 0s. For signed
types, the result is machine dependent. The vacated places may be filled with 0s, or they may
be filled with copies of the sign (leftmost) bit:

 (10001010) >> 2 // expression, signed value

 (00100010) // resulting value, some systems

 (10001010) >> 2 // expression, signed value

 (11100010) // resulting value, other systems

 For an unsigned value, you have the following:

 (10001010) >> 2 // expression, unsigned value

 (00100010) // resulting value, all system

 Each bit is moved two places to the right, and the vacated places are filled with 0s.

ptg11524036

685C’s Bitwise Operators

 The right-shift assignment operator (>>=) shifts the bits in the left-hand variable to the right by
the indicated number of places, as shown here:

 int sweet = 16;

 int ooosw;

 ooosw = sweet >> 3; // ooosw = 2, sweet still 16

 sweet >>=3; // sweet changed to 2

 Usage: Bitwise Shift Operators

 The bitwise shift operators can provide swift, efficient (depending on the hardware) multiplica-
tion and division by powers of 2:

 number << n Multiplies number by 2 to the n th power

 number >> n Divides number by 2 to the n th power if number is not negative

 These shift operations are analogous to the decimal system procedure of shifting the decimal
point to multiply or divide by 10.

 The shift operators can also be used to extract groups of bits from larger units. Suppose, for
example, you use an unsigned long value to represent color values, with the low-order byte
holding the red intensity, the next byte holding the green intensity, and the third byte holding
the blue intensity. Supposed you then wanted to store the intensity of each color in its own
 unsigned char variable. Then you could do something like this:

 #define BYTE_MASK 0xff

 unsigned long color = 0x002a162f;

 unsigned char blue, green, red;

 red = color & BYTE_MASK;

 green = (color >> 8) & BYTE_MASK;

 blue = (color >> 16) & BYTE_MASK;

 The code uses the right-shift operator to move the 8-bit color value to the low-order byte, and
then uses the mask technique to assign the low-order byte to the desired variable.

 Programming Example

 In Chapter 9, “Functions,” we used recursion to write a program to convert numbers to a
binary representation. Now we’ll solve the same problem by using the bitwise operators. The
program in Listing 15.1 reads an integer from the keyboard and passes it and a string address
to a function called itobs() (for integer-to-binary string , of course). This function then uses the
bitwise operators to figure out the correct pattern of 1s and 0s to put into the string.

ptg11524036

686 Chapter 15 Bit Fiddling

 Listing 15.1 The binbit.c Program

 /* binbit.c -- using bit operations to display binary */

 #include <stdio.h>

 #include <limits.h> // for CHAR_BIT, # of bits per char

 char * itobs(int, char *);

 void show_bstr(const char *);

 int main(void)

 {

 char bin_str[CHAR_BIT * sizeof(int) + 1];

 int number;

 puts("Enter integers and see them in binary.");

 puts("Non-numeric input terminates program.");

 while (scanf("%d", &number) == 1)

 {

 itobs(number,bin_str);

 printf("%d is ", number);

 show_bstr(bin_str);

 putchar('\n');

 }

 puts("Bye!");

 return 0;

 }

 char * itobs(int n, char * ps)

 {

 int i;

 const static int size = CHAR_BIT * sizeof(int);

 for (i = size - 1; i >= 0; i--, n >>= 1)

 ps[i] = (01 & n) + '0'; // assume ASCII or similar

 ps[size] = '\0';

 return ps;

 }

 /* show binary string in blocks of 4 */

 void show_bstr(const char * str)

 {

 int i = 0;

 while (str[i]) /* not the null character */

 {

 putchar(str[i]);

ptg11524036

687C’s Bitwise Operators

 if(++i % 4 == 0 && str[i])

 putchar(' ');

 }

 }

 Listing 15.1 uses the CHAR_BIT macro from limits.h . This macro represents the number
of bits in char . The sizeof operator returns the size in terms of char , so the expression
 CHAR_BIT * sizeof(int) is the number of bits in an int . The bin_str array has that many
elements plus 1 to allow for the terminating null character.

 The itobs() function returns the same address passed to it, so you can use the function as,
say, an argument to printf() . The first time through the for loop, the function evaluates
the quantity 01 & n . The term 01 is the octal representation of a mask with all but the zero
bit set to 0. Therefore, 01 & n is just the value of the final bit in n . This value is 0 or 1 , but
for the array, you need the character '0' or the character '1' . Adding the code for '0' accom-
plishes that conversion. (This assumes the digits are coded sequentially, as in ASCII.) The result
is placed in the next-to-last element of the array. (The last element is reserved for the null
character.)

 By the way, you can just as well use 1 & n as 01 & n . Using octal 1 instead of decimal 1
just makes the mood a bit more computeresque. Perhaps 0x1 & n is even better from that
perspective.

 Then the loop executes the statements i-- and n >>= 1 . The first statement moves to one
element earlier in the array, and the second shifts the bits in n over one position to the right.
The next time through the loop, then, the code finds the value of the new rightmost bit. The
corresponding digit character is then placed in the element preceding the final digit. In this
fashion, the function fills the array from right to left.

 You can use printf() or puts() to display the resulting string, but Listing 15.1 defines the
 show_bstr() function, which breaks up the bits into groups of four to make the string easier
to read.

 Here is a sample run:

 Enter integers and see them in binary.

 Non-numeric input terminates program.

 7

 7 is 0000 0000 0000 0000 0000 0000 0000 0111

 2013

 2013 is 0000 0000 0000 0000 0000 0111 1101 1101

 -1

 -1 is 1111 1111 1111 1111 1111 1111 1111 1111

 32123

 32123 is 0000 0000 0000 0000 0111 1101 0111 1011

 q

 Bye!

ptg11524036

688 Chapter 15 Bit Fiddling

 Another Example

 Let’s work through one more example. The goal this time is to write a function that inverts the
last n bits in a value, with both n and the value being function arguments.

 The ~ operator inverts bits, but it inverts all the bits in a byte, not just a select few. However,
the ̂ operator (EXCLUSIVE OR), as you have seen, can be used to toggle individual bits.
Suppose you create a mask with the last n bits set to 1 and the remaining bits set to 0. Then
applying ̂ to that mask and a value toggles, or inverts , the last n bits, leaving the other bits
unchanged. That’s the approach used here:

 int invert_end(int num, int bits)

 {

 int mask = 0;

 int bitval = 1;

 while (bits–– > 0)

 {

 mask |= bitval;

 bitval <<= 1;

 }

 return num ^ mask;

 }

 The while loop creates the mask. Initially, mask has all its bits set to 0 . The first pass through
the loop sets bit 0 to 1 and then increases the value of bitval to 2 ; that is, it sets bit 0 to 0
and bit 1 to 1 . The next pass through then sets bit 1 of mask to 1 , and so on. Finally, the
num ^ mask operation produces the desired result.

 To test the function, you can slip it into the preceding program, as shown in Listing 15.2 .

 Listing 15.2 The invert4.c Program

 /* invert4.c -- using bit operations to display binary */

 #include <stdio.h>

 #include <limits.h>

 char * itobs(int, char *);

 void show_bstr(const char *);

 int invert_end(int num, int bits);

 int main(void)

 {

 char bin_str[CHAR_BIT * sizeof(int) + 1];

 int number;

 puts("Enter integers and see them in binary.");

 puts("Non-numeric input terminates program.");

ptg11524036

689C’s Bitwise Operators

 while (scanf("%d", &number) == 1)

 {

 itobs(number,bin_str);

 printf("%d is\n", number);

 show_bstr(bin_str);

 putchar('\n');

 number = invert_end(number, 4);

 printf("Inverting the last 4 bits gives\n");

 show_bstr(itobs(number,bin_str));

 putchar('\n');

 }

 puts("Bye!");

 return 0;

 }

 char * itobs(int n, char * ps)

 {

 int i;

 const static int size = CHAR_BIT * sizeof(int);

 for (i = size - 1; i >= 0; i--, n >>= 1)

 ps[i] = (01 & n) + '0';

 ps[size] = '\0';

 return ps;

 }

 /* show binary string in blocks of 4 */

 void show_bstr(const char * str)

 {

 int i = 0;

 while (str[i]) /* not the null character */

 {

 putchar(str[i]);

 if(++i % 4 == 0 && str[i])

 putchar(' ');

 }

 }

 int invert_end(int num, int bits)

 {

 int mask = 0;

 int bitval = 1;

 while (bits-- > 0)

ptg11524036

690 Chapter 15 Bit Fiddling

 {

 mask |= bitval;

 bitval <<= 1;

 }

 return num ^ mask;

 }

 Here’s a sample run:

 Enter integers and see them in binary.

 Non-numeric input terminates program.

 7

 7 is

 0000 0000 0000 0000 0000 0000 0000 0111

 Inverting the last 4 bits gives

 0000 0000 0000 0000 0000 0000 0000 1000

 12541

 12541 is

 0000 0000 0000 0000 0011 0000 1111 1101

 Inverting the last 4 bits gives

 0000 0000 0000 0000 0011 0000 1111 0010

 q

 Bye!

 Bit Fields

 The second method of manipulating bits is to use a bit field , which is just a set of neighboring
bits within a signed int or an unsigned int . (C99 and C11 additionally allow type _Bool
bit fields.) A bit field is set up with a structure declaration that labels each field and determines
its width. For example, the following declaration sets up four 1-bit fields:

 struct {

 unsigned int autfd : 1;

 unsigned int bldfc : 1;

 unsigned int undln : 1;

 unsigned int itals : 1;

 } prnt;

 This definition causes prnt to contain four 1-bit fields. Now you can use the usual structure
membership operator to assign values to individual fields:

 prnt.itals = 0;

 prnt.undln = 1;

ptg11524036

691Bit Fields

 Because each of these particular fields is just 1 bit, 1 and 0 are the only values you can use for
assignment. The variable prnt is stored in an int -sized memory cell, but only 4 bits are used in
this example.

 Structures with bit fields provide a handy way to keep track of settings. Many settings, such as
boldface and italics for fonts, are simply a matter specifying one of two choices, such as on or
off, yes or no, or true or false. There’s no need to use a whole variable when all you need is a
single bit. A structure with bit fields allows you to store several settings in a single unit.

 Sometimes there are more than two choices for a setting, so you need more than a single bit to
represent all the choices. That’s not a problem because fields aren’t limited to 1-bit sizes. You
can also do this:

 struct {

 unsigned int code1 : 2;

 unsigned int code2 : 2;

 unsigned int code3 : 8;

 } prcode;

 This code creates two 2-bit fields and one 8-bit field. You can now make assignments such as
the following:

 prcode.code1 = 0;

 prcode.code2 = 3;

 prcode.code3 = 102;

 Just make sure the value doesn’t exceed the capacity of the field.

 What if the total number of bits you declare exceeds the size of an unsigned int ? Then the
next unsigned int storage location is used. A single field is not allowed to overlap the bound-
ary between two unsigned int s. The compiler automatically shifts an overlapping field defini-
tion so that the field is aligned with the unsigned int boundary. When this occurs, it leaves
an unnamed hole in the first unsigned int .

 You can “pad” a field structure with unnamed holes by using unnamed field widths. Using an
unnamed field width of 0 forces the next field to align with the next integer:

 struct {

 unsigned int field1 : 1;

 unsigned int : 2;

 unsigned int field2 : 1;

 unsigned int : 0;

 unsigned int field3 : 1;

 } stuff;

 Here, there is a 2-bit gap between stuff.field1 and stuff.field2 , and stuff.field3 is
stored in the next int .

ptg11524036

692 Chapter 15 Bit Fiddling

 One important machine dependency is the order in which fields are placed into an int . On
some machines, the order is left to right; on others, it is right to left. Also, machines differ
in the location of boundaries between fields. For these reasons, bit fields tend not to be very
portable. Typically, however, they are used for nonportable purposes, such as putting data in
the exact form used by a particular hardware device.

 Bit-Field Example

 Often bit fields are used as a more compact way of storing data. Suppose, for example, you
decided to represent the properties of an onscreen box. Let’s keep the graphics simple and
suppose the box has the following properties:

 ■ The box is opaque or transparent.

 ■ The fill color is selected from the following palette of colors: black, red, green, yellow,
blue, magenta, cyan, or white.

 ■ The border can be shown or hidden.

 ■ The border color is selected from the same palette used for the fill color.

 ■ The border can use one of three line styles—solid, dotted, or dashed.

 You could use a separate variable or a full-sized structure member for each property, but that
is a bit wasteful of bits. For example, you need only a single bit to indicate whether the box
is opaque or transparent, and you need only a single bit to indicate if the border is shown or
hidden. The eight possible color values can be represented by the eight possible values of a
3-bit unit, and a 2-bit unit is more than enough to represent the three possible border styles. A
total of 10 bits, then, is enough to represent the possible settings for all five properties.

 One possible representation of the information is to use padding to place the fill-related infor-
mation in one byte and the border-related information in a second byte. The struct box_
props declaration does this:

 struct box_props {

 bool opaque : 1;

 unsigned int fill_color : 3;

 unsigned int : 4;

 bool show_border : 1;

 unsigned int border_color : 3;

 unsigned int border_style : 2;

 unsigned int : 2;

 };

 The padding brings the structure up to 16 bits. Without padding, the structure would be 10
bits. Keep in mind, however, that C uses unsigned int as the basic layout unit for structures
with bit fields. So even if the sole member of a structure is a single 1-bit field, the structure
will have the same size as an unsigned int , which is 32 bits on our system. Also, this coding
assumes that the C99 _Bool type is available and is aliased as bool in stdbool.h .

ptg11524036

693Bit Fields

 You can use a value of 1 for the opaque member to indicate that the box is opaque and a 0
value to indicate transparency. You can do the same for the show_border member. For colors,
you can use a simple RGB (red-green-blue) representation. These are the primary colors for
mixing light. A monitor blends red, green, and blue pixels to reproduce different colors. In the
early days of computer color, each pixel could be either on or off, so you could use one bit to
represent the intensity of each of the three binary colors. The usual order is for the left bit to
represent blue intensity, the middle bit green intensity, and the right bit red intensity. Table
 15.3 shows the eight possible combinations. They can be used as values for the fill_color
and border_color members. Finally, you can choose to let 0, 1, and 2 represent the solid,
dotted, and dashed styles; they can be used as values for the border_style member.

 Table 15.3 Simple Color Representation

 Bit Pattern Decimal Color

 000 0 Black

 001 1 Red

 010 2 Green

 011 3 Yellow

 100 4 Blue

 101 5 Magenta

 110 6 Cyan

 111 7 White

 Listing 15.3 uses the box_props structure in a simple example. It uses #define to create
symbolic constants for the possible member values. Note that the primary colors are repre-
sented by a single bit being on. The other colors can be represented by combinations of the
primary colors. For example, magenta consists of the blue bit and the red bit being on, so it can
be represented by the combination BLUE | RED .

 Listing 15.3 The fields.c Program

 /* fields.c -- define and use fields */

 #include <stdio.h>

 #include <stdbool.h> //C99, defines bool, true, false

 /* line styles */

 #define SOLID 0

 #define DOTTED 1

 #define DASHED 2

 /* primary colors */

 #define BLUE 4

ptg11524036

694 Chapter 15 Bit Fiddling

 #define GREEN 2

 #define RED 1

 /* mixed colors */

 #define BLACK 0

 #define YELLOW (RED | GREEN)

 #define MAGENTA (RED | BLUE)

 #define CYAN (GREEN | BLUE)

 #define WHITE (RED | GREEN | BLUE)

 const char * colors[8] = {"black", "red", "green", "yellow",

 "blue", "magenta", "cyan", "white"};

 struct box_props {

 bool opaque : 1; // or unsigned int (pre C99)

 unsigned int fill_color : 3;

 unsigned int : 4;

 bool show_border : 1; // or unsigned int (pre C99)

 unsigned int border_color : 3;

 unsigned int border_style : 2;

 unsigned int : 2;

 };

 void show_settings(const struct box_props * pb);

 int main(void)

 {

 /* create and initialize box_props structure */

 struct box_props box = {true, YELLOW , true, GREEN, DASHED};

 printf("Original box settings:\n");

 show_settings(&box);

 box.opaque = false;

 box.fill_color = WHITE;

 box.border_color = MAGENTA;

 box.border_style = SOLID;

 printf("\nModified box settings:\n");

 show_settings(&box);

 return 0;

 }

 void show_settings(const struct box_props * pb)

 {

 printf("Box is %s.\n",

 pb->opaque == true ? "opaque": "transparent");

 printf("The fill color is %s.\n", colors[pb->fill_color]);

ptg11524036

695Bit Fields

 printf("Border %s.\n",

 pb->show_border == true ? "shown" : "not shown");

 printf("The border color is %s.\n", colors[pb->border_color]);

 printf ("The border style is ");

 switch(pb->border_style)

 {

 case SOLID : printf("solid.\n"); break;

 case DOTTED : printf("dotted.\n"); break;

 case DASHED : printf("dashed.\n"); break;

 default : printf("unknown type.\n");

 }

 }

 Here is the output:

 Original box settings:

 Box is opaque.

 The fill color is yellow.

 Border shown.

 The border color is green.

 The border style is dashed.

 Modified box settings:

 Box is transparent.

 The fill color is white.

 Border shown.

 The border color is magenta.

 The border style is solid.

 There are some points to note. First, you can initialize a bit-field structure by using the same
syntax regular structures use:

 struct box_props box = {YES, YELLOW , YES, GREEN, DASHED};

 Similarly, you can assign to bit-field members:

 box.fill_color = WHITE;

 Also, you can use a bit-field member as the value expression for a switch statement. You can
even use a bit-field member as an array index:

 printf("The fill color is %s.\n", colors[pb->fill_color]);

 Notice that the colors array was defined so that each index value corresponds to a string
representing the name of the color having the index value as its numeric color value. For
example, an index of 1 corresponds to the string "red" , and the enumeration constant red has
the value of 1 .

ptg11524036

696 Chapter 15 Bit Fiddling

 Bit Fields and Bitwise Operators

 Bit fields and bitwise operators are two alternative approaches to the same type of program-
ming problem. That is, often you could use either approach. For instance, the previous example
used a structure the same size as unsigned int to hold information about a graphics box.
Instead, you could use an unsigned int variable to hold the same information. Then, instead
of using structure member notation to access different parts, you could use the bitwise opera-
tors for that purpose. Typically, this is a bit more awkward to do. Let’s look at an example that
takes both approaches. (The reason for taking both approaches is to illustrate the differences,
not to suggest that taking both approaches simultaneously is a good idea!)

 You can use a union as a means of combining the structure approach with the bitwise
approach. Given the existing declaration of the struct box_props type, you can declare the
following union:

 union Views /* look at data as struct or as unsigned short */

 {

 struct box_props st_view;

 unsigned short us_view;

 };

 On some systems, an unsigned int and a box_props structure both occupy 16 bits of
memory. On others, such as ours, unsigned int and box_props are 32 bits. In either case,
with this union, you can use the st_view member to look at that memory as a structure or use
the us_view member to look at the same block of memory as an unsigned short . Which bit
fields of the structure correspond to which bits in the unsigned short ? That depends on the
implementation and the hardware. The following example assumes that structures are loaded
into memory from the low-bit end to the high-bit end of a byte. That is, the first bit field in
the structure goes into bit 0 of the word. (For simplicity, Figure 15.3 illustrates this idea with a
16-bit unit.)

 Listing 15.4 uses the Views union to let you compare the bit field and bitwise approaches. In
it, box is a Views union, so box.st_view is a box_props structure using bit fields, and box.
us_view is the same data viewed as an unsigned short . Recall that a union can have its first
member initialized, so the initialization values match the structure view. The program displays
box properties using a function based on the structure view and also with a function based on
the unsigned short view. Either approach lets you access the data, but the techniques differ.
The program also uses the itobs() function defined earlier in this chapter to display the data
as a binary string so that you can see which bits are on and which are off.

ptg11524036

697Bit Fields

 Listing 15.4 The dualview.c Program

 /* dualview.c -- bit fields and bitwise operators */

 #include <stdio.h>

 #include <stdbool.h>

 #include <limits.h>

 /* BIT-FIELD CONSTANTS */

 /* line styles */

 #define SOLID 0

 #define DOTTED 1

 #define DASHED 2

 /* primary colors */

 #define BLUE 4

 #define GREEN 2

 #define RED 1

 /* mixed colors */

 #define BLACK 0

 #define YELLOW (RED | GREEN)

 #define MAGENTA (RED | BLUE)

 #define CYAN (GREEN | BLUE)

 #define WHITE (RED | GREEN | BLUE)

 /* BITWISE CONSTANTS */

 #define OPAQUE 0x1

 #define FILL_BLUE 0x8

 #define FILL_GREEN 0x4

 #define FILL_RED 0x2

the box union

seen as an integer

bit
15

bit
0

0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1

box.us_view

box. st_view
the box union

seen as a structure

num_prtrs

gameio

num_comcds

num_drives

vid_setup

mother_bd

has_drive

0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1

 Figure 15.3 A union as an integer and as a structure.

ptg11524036

698 Chapter 15 Bit Fiddling

 #define FILL_MASK 0xE

 #define BORDER 0x100

 #define BORDER_BLUE 0x800

 #define BORDER_GREEN 0x400

 #define BORDER_RED 0x200

 #define BORDER_MASK 0xE00

 #define B_SOLID 0

 #define B_DOTTED 0x1000

 #define B_DASHED 0x2000

 #define STYLE_MASK 0x3000

 const char * colors[8] = {"black", "red", "green", "yellow",

 "blue", "magenta", "cyan", "white"};

 struct box_props {

 bool opaque : 1;

 unsigned int fill_color : 3;

 unsigned int : 4;

 bool show_border : 1;

 unsigned int border_color : 3;

 unsigned int border_style : 2;

 unsigned int : 2;

 };

 union Views /* look at data as struct or as unsigned short */

 {

 struct box_props st_view;

 unsigned short us_view;

 };

 void show_settings(const struct box_props * pb);

 void show_settings1(unsigned short);

 char * itobs(int n, char * ps);

 int main(void)

 {

 /* create Views object, initialize struct box view */

 union Views box = {{true, YELLOW , true, GREEN, DASHED}};

 char bin_str[8 * sizeof(unsigned int) + 1];

 printf("Original box settings:\n");

 show_settings(&box.st_view);

 printf("\nBox settings using unsigned int view:\n");

 show_settings1(box.us_view);

 printf("bits are %s\n",

 itobs(box.us_view,bin_str));

 box.us_view &= ~FILL_MASK; /* clear fill bits */

ptg11524036

699Bit Fields

 box.us_view |= (FILL_BLUE | FILL_GREEN); /* reset fill */

 box.us_view ^= OPAQUE; /* toggle opacity */

 box.us_view |= BORDER_RED; /* wrong approach */

 box.us_view &= ~STYLE_MASK; /* clear style bits */

 box.us_view |= B_DOTTED; /* set style to dotted */

 printf("\nModified box settings:\n");

 show_settings(&box.st_view);

 printf("\nBox settings using unsigned int view:\n");

 show_settings1(box.us_view);

 printf("bits are %s\n",

 itobs(box.us_view,bin_str));

 return 0;

 }

 void show_settings(const struct box_props * pb)

 {

 printf("Box is %s.\n",

 pb->opaque == true ? "opaque": "transparent");

 printf("The fill color is %s.\n", colors[pb->fill_color]);

 printf("Border %s.\n",

 pb->show_border == true ? "shown" : "not shown");

 printf("The border color is %s.\n", colors[pb->border_color]);

 printf ("The border style is ");

 switch(pb->border_style)

 {

 case SOLID : printf("solid.\n"); break;

 case DOTTED : printf("dotted.\n"); break;

 case DASHED : printf("dashed.\n"); break;

 default : printf("unknown type.\n");

 }

 }

 void show_settings1(unsigned short us)

 {

 printf("box is %s.\n",

 (us & OPAQUE) == OPAQUE? "opaque": "transparent");

 printf("The fill color is %s.\n",

 colors[(us >> 1) & 07]);

 printf("Border %s.\n",

 (us & BORDER) == BORDER? "shown" : "not shown");

 printf ("The border style is ");

 switch(us & STYLE_MASK)

 {

 case B_SOLID : printf("solid.\n"); break;

 case B_DOTTED : printf("dotted.\n"); break;

 case B_DASHED : printf("dashed.\n"); break;

ptg11524036

700 Chapter 15 Bit Fiddling

 default : printf("unknown type.\n");

 }

 printf("The border color is %s.\n",

 colors[(us >> 9) & 07]);

 }

 char * itobs(int n, char * ps)

 {

 int i;

 const static int size = CHAR_BIT * sizeof(int);

 for (i = size - 1; i >= 0; i--, n >>= 1)

 ps[i] = (01 & n) + '0';

 ps[size] = '\0';

 return ps;

 }

 Here is the output:

 Original box settings:

 Box is opaque.

 The fill color is yellow.

 Border shown.

 The border color is green.

 The border style is dashed.

 Box settings using unsigned int view:

 box is opaque.

 The fill color is yellow.

 Border shown.

 The border style is dashed.

 The border color is green.

 bits are 00000000000000000010010100000111

 Modified box settings:

 Box is transparent.

 The fill color is cyan.

 Border shown.

 The border color is yellow.

 The border style is dotted.

 Box settings using unsigned int view:

 box is transparent.

 The fill color is cyan.

 Border not shown.

ptg11524036

701Bit Fields

 The border style is dotted.

 The border color is yellow.

 bits are 00000000000000000001011100001100

 There are several points to discuss. One difference between the bit-field and bitwise views is
that the bitwise view needs positional information. For example, we’ve used BLUE to represent
the color blue. This constant has the numerical value of 4 . But, because of the way the data
is arranged in the structure, the actual bit holding the blue setting for the fill color is bit 3
(remember, numbering starts at 0—refer to Figure 15.1), and the bit holding the blue setting for
the border color is bit 11. Therefore, the program defines some new constants:

 #define FILL_BLUE 0x8

 #define BORDER_BLUE 0x800

 Here, 0x8 is the value if just bit 3 is set to 1, and 0x800 is the value if just bit 11 is set to 1. You
can use the first constant to set the blue bit for the fill color and the second constant to set
the blue bit for the border color. Using hexadecimal notation makes it easier to see which bits
are involved. Recall that each hexadecimal digit represents four bits. Thus, 0x800 is the same
bit pattern as 0x8 , but with eight 0-bits tagged on. This relationship is much less obvious with
2048 and 8, the base 10 equivalents.

 If the values are powers of two, you can use the left-shift operator to supply values. For
example, you could replace the last #define statements with these:

 #define FILL_BLUE 1<<3

 #define BORDER_BLUE 1<<11

 Here, the second operand is the power to be used with 2. That is, 0x8 is 2 3 and 0x800 is 2 11 .
Equivalently, the expression 1<<n is the value of an integer with just the n th bit set to 1 .
Expressions such as 1<<11 are constant expressions and are evaluated at compile time.

 You can use an enumeration instead of #define to create symbolic constants. For example,
you can do this:

 enum { OPAQUE = 0x1, FILL_BLUE = 0x8, FILL_GREEN = 0x4, FILL_RED = 0x2,

 FILL_MASK = 0xE, BORDER = 0x100, BORDER_BLUE = 0x800,

 BORDER_GREEN = 0x400, BORDER_RED = 0x200, BORDER_MASK = 0xE00,

 B_DOTTED = 0x1000, B_DASHED = 0x2000, STYLE_MASK = 0x3000};

 If you don’t intend to create enumerated variables, you don’t need to use a tag in the
declaration.

 Note that using bitwise operators to change settings is more complicated. For example, consider
setting the fill color to cyan. It is not enough just to turn the blue bit and the green bit on:

 box.us_view |= (FILL_BLUE | FILL_GREEN); /* reset fill */

 The problem is that the color also depends on the red bit setting. If that bit is already set (as
it is for the color yellow), this code leaves the red bit set and sets the blue and green bits,

ptg11524036

702 Chapter 15 Bit Fiddling

resulting in the color white. The simplest way around this problem is to turn all the color bits
off first, before setting the new values. That is why the program uses the following code:

 box.us_view &= ~FILL_MASK; /* clear fill bits */

 box.us_view |= (FILL_BLUE | FILL_GREEN); /* reset fill */

 To show what can happen if you don’t first clear the relevant bits, the program also does this:

 box.us_view |= BORDER_RED; /* wrong approach */

 Because the BORDER_GREEN bit already was set, the resulting color is BORDER_GREEN | BORDER_
RED , which translates to yellow.

 In cases like this, the bit-field versions are simpler:

 box.st_view.fill_color = CYAN; /*bit-field equivalent */

 You don’t need to clear the bits first. Also, with the bit-field members, you can use the same
color values for the border as for the fill, but you need to use different values (values reflecting
the actual bit positions) for the bitwise operator approach.

 Next, compare the following two print statements:

 printf("The border color is %s.\n", colors[pb->border_color]);

 printf("The border color is %s.\n", colors[(us >> 9) & 07]);

 In the first statement, the expression pb->border_color has a value in the range 0–7, so it can
be used as an index for the colors array. Getting the same information with bitwise operators
is more complex. One approach is to use ui >> 9 to right-shift the border-color bits to the
rightmost position in the value (bits 0–2) and then combine this value with a mask of 07 so
that all bits but the rightmost three are turned off. Then what is left is in the range 0–7 and can
be used as an index for the colors array.

 Caution

 The correspondence between bit fields and bit positions is implementation dependent. For
example, running Listing 15.4 on an old Macintosh PowerPC produced the following output:
 Original box settings:

 Box is opaque.

 The fill color is yellow.

 Border shown.

 The border color is green.

 The border style is dashed.

 Box settings using unsigned int view:

 box is transparent.

 The fill color is black.

 Border not shown.

 The border style is solid.

 The border color is black.

ptg11524036

703Alignment Features (C11)

 bits are 10110000101010000000000000000000

 Modified box settings:

 Box is opaque.

 The fill color is yellow.

 Border shown.

 The border color is green.

 The border style is dashed.

 Box settings using unsigned int view:

 box is opaque.

 The fill color is cyan.

 Border shown.

 The border style is dotted.

 The border color is red.

 bits are 10110000101010000001001000001101

 The code changed the same bits as before, but the Macintosh PowerPC loads the structure into
memory differently. In particular, it loads the first bit field into the highest-order bit instead of
the lowest-order bit. So the structure representation winds up in the first 16 bits (and in differ-
ent order from the PC version) whereas the unsigned int representation winds up in the last
16 bits. Therefore, the assumptions that Listing 15.4 makes about the location of bits is incor-
rect for the Macintosh, and using bitwise operators to change the opacity and fill color settings
alters the wrong bits.

 Alignment Features (C11)

 C11’s alignment features are more in the nature of byte fiddling than bit fiddling, but they
also represent C’s capability to relate to hardware matters. Alignment, in this context, refers to
how objects are positioned in memory. For example, for maximum efficiency, a system might
require a type double value to be stored at a memory address divisible by four but allow a char
to stored at any address. For most programmers most of the time, alignment isn’t a concern.
But some situations may benefit from alignment control, for example, transferring data from
one hardware location to another or invoking instructions that operate upon multiple data
items simultaneously.

 The _Alignof operator yields the alignment requirement of a type. It’s used by following the
keyword _Alignof with the parenthesized type:

 size_t d_align = _Alignof(float);

 A value of, say, 4 for d_align means float objects have an alignment requirement of 4.
That means that 4 is the number of bytes between consecutive addresses for storing values of
that type. In general, alignment values should be a non-negative integer power of two. Bigger

ptg11524036

704 Chapter 15 Bit Fiddling

alignment values are termed stricter or stronger than smaller ones, while smaller ones are termed
 weaker .

 You can use the _Alignas specifier to request a specific alignment for a variable or type. But
you shouldn’t request an alignment weaker than the fundamental alignment for the type. For
instance, if the alignment requirement for float is 4, don’t ask for an alignment value of 1
or 2. This specifier is used as part of a declaration, and it’s followed by parentheses containing
either an alignment value or a type:

 _Alignas(double) char c1;

 _Alignas(8) char c2;

 unsigned char _Alignas(long double) c_arr[sizeof(long double)];

 Note

 At the time of writing, Clang (version 3.2) required the _Alignas(type) specifier to follow the
type specifier, as in the third line in the preceding example. But GCC 4.7.3 recognizes both
orderings, as does the subsequent version (3.3) of Clang.

 Listing 15.5 provides a short example of _Alignas and _Alignof .

 Listing 15.5 The align.c Program

 // align.c -- using _Alignof and _Alignas (C11)

 #include <stdio.h>

 int main(void)

 {

 double dx;

 char ca;

 char cx;

 double dz;

 char cb;

 char _Alignas(double) cz;

 printf("char alignment: %zd\n", _Alignof(char));

 printf("double alignment: %zd\n", _Alignof(double));

 printf("&dx: %p\n", &dx);

 printf("&ca: %p\n", &ca);

 printf("&cx: %p\n", &cx);

 printf("&dz: %p\n", &dz);

 printf("&cb: %p\n", &cb);

 printf("&cz: %p\n", &cz);

 return 0;

 }

ptg11524036

705Key Concepts

 Here is a sample output:

 char alignment: 1

 double alignment: 8

 &dx: 0x7fff5fbff660

 &ca: 0x7fff5fbff65f

 &cx: 0x7fff5fbff65e

 &dz: 0x7fff5fbff650

 &cb: 0x7fff5fbff64f

 &cz: 0x7fff5fbff648

 On our system, the alignment value of 8 for double implies that type aligns with addresses
divisible by 8. Hexadecimal addresses ending in 0 or 8 are divisible by 8, and those were the
sort of addresses used for the two double variables and the char variable cz , which was given
the double alignment value. Because the alignment value for char was 1, the compiler could
use any address for the regular char variables.

 Including the stdalign.h header file allows you to use alignas and alignof for _Alignas
and _Alignof . This matches the C++ keywords.

 C11 also brings alignment capability for allocated memory by adding a new memory allocation
function to the stdlib.h library. It has this prototype:

 void *aligned_alloc(size_t alignment, size_t size);

 The first parameter specifies the alignment required, and the second parameter requests the
number of bytes required; it should be a multiple of the first parameter. As with the other
memory allocation functions, use free() to release the memory once you are done with it.

 Key Concepts

 One of the features that sets C apart from most high-level languages is its ability to access indi-
vidual bits in an integer. This often is the key to interfacing with hardware devices and with
operating systems.

 C has two main facilities for accessing bits. One is the family of bitwise operators, and the other
is the ability to create bit fields in a structure.

 C11 adds the capability to inspect the memory alignment requirement and to request stricter
requirements.

 Typically, but not always, programs using these features are tied to particular hardware plat-
forms or operating systems and aren’t intended to be portable.

ptg11524036

706 Chapter 15 Bit Fiddling

 Summary

 Computing hardware is closely tied to the binary number system because the 1s and 0s of
binary numbers can be used to represent the on and off states of bits in computer memory and
registers. Although C does not allow you to write integers in binary form, it does recognize the
related octal and hexadecimal notations. Just as each binary digit represents 1 bit, each octal
digit represents 3 bits, and each hexadecimal digit represents 4 bits. This relationship makes it
relatively simple to convert binary numbers to octal or hexadecimal form.

 C features several bitwise operators, so called because they operate independently on each bit
within a value. The bitwise negation operator (~) inverts each bit in its operand, converting 1s
to 0s, and vice versa. The bitwise AND operator (&) forms a value from two operands. Each bit
in the value is set to 1 if both corresponding bits in the operands are 1. Otherwise, the bit is set
to 0. The bitwise OR operator (|) also forms a value from two operands. Each bit in the value is
set to 1 if either or both corresponding bits in the operands are 1; otherwise, the bit is set to 0.
The bitwise EXCLUSIVE OR operator (̂) acts similarly, except that the resulting bit is set to 1
only if one or the other, but not both, of the corresponding bits in the operands is 1.

 C also has left-shift (<<) and right-shift (>>) operators. Each produces a value formed by shift-
ing the bits in a pattern the indicated number of bits to the left or right. For the left-shift
operator, the vacated bits are set to 0. For the right-shift operator, the vacated bits are set to 0
if the value is unsigned . The behavior of the right-shift operator is implementation dependent
for signed values.

 You can use bit fields in a structure to address individual bits or groups of bits in a value. The
details are implementation independent.

 You can use _Alignas to impose alignment requirements on data storage.

 These bit tools help C programs deal with hardware matters, so they most often appear in
implementation-dependent contexts.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. Convert the following decimal values to binary:

 a. 3

 b. 13

 c. 59

 d. 119

ptg11524036

707Review Questions

 2. Convert the following binary values to decimal, octal, and hexadecimal:

 a. 00010101

 b. 01010101

 c. 01001100

 d. 10011101

 3. Evaluate the following expressions; assume each value is 8 bits:

 a. ~3

 b. 3 & 6

 c. 3 | 6

 d. 1 | 6

 e. 3 ^ 6

 f. 7 >> 1

 g. 7 << 2

 4. Evaluate the following expressions; assume each value is 8 bits:

 a. ~0

 b. !0

 c. 2 & 4

 d. 2 && 4

 e. 2 | 4

 f. 2 || 4

 g. 5 << 3

 5. Because the ASCII code uses only the final 7 bits, sometimes it is desirable to mask off the
other bits. What’s the appropriate mask in binary? In decimal? In octal? In hexadecimal?

 6. In Listing 15.2 , you can replace

 while (bits-- > 0)

 {

 mask |= bitval;

 bitval <<= 1;

 }

ptg11524036

708 Chapter 15 Bit Fiddling

 with

 while (bits-- > 0)

 {

 mask += bitval;

 bitval *= 2;

 }

 and the program still works. Does this mean the operation *= 2 is equivalent to <<= 1 ?
What about |= and += ?

 7. a. The Tinkerbell computer has a hardware byte that can be read into a program. This
byte contains the following information:

 Bit(s) Meaning

 0–1 Number of 1.4MB floppy drives

 2 Not used

 3–4 Number of CD-ROM drives

 5 Not used

 6–7 Number of hard drives

 Like the IBM PC, the Tinkerbell fills in structure bit fields from right to left. Create a bit-
field template suitable for holding the information.

 b. The Klinkerbell, a near Tinkerbell clone, fills in structures from left to right. Create the
corresponding bit-field template for the Klinkerbell.

 Programming Exercises

 1. Write a function that converts a binary string to a numeric value. That is, if you have

 char * pbin = "01001001";

 you can pass pbin as an argument to the function and have the function return an int
value of 25 .

 2. Write a program that reads two binary strings as command-line arguments and prints
the results of applying the ~ operator to each number and the results of applying the
 & , | , and ̂ operators to the pair. Show the results as binary strings. (If you don’t have a
command-line environment available, have the program read the strings interactively.)

 3. Write a function that takes an int argument and returns the number of “on” bits in the
argument. Test the function in a program.

ptg11524036

709Programming Exercises

 4. Write a function that takes two int arguments: a value and a bit position. Have the
function return 1 if that particular bit position is 1, and have it return 0 otherwise. Test
the function in a program.

 5. Write a function that rotates the bits of an unsigned int by a specified number of bits
to the left. For instance, rotate_l(x,4) would move the bits in x four places to the left,
and the bits lost from the left end would reappear at the right end. That is, the bit moved
out of the high-order position is placed in the low-order position. Test the function in a
program.

 6. Design a bit-field structure that holds the following information:

 Font ID: A number in the range 0–255

 Font Size: A number in the range 0–127

 Alignment: A number in the range 0–2 represented the choices Left, Center, and Right

 Bold: Off (0) or on (1)

 Italic: Off (0) or on (1)

 Underline: Off (0) or on (1)

 Use this structure in a program that displays the font parameters and uses a looped menu
to let the user change parameters. For example, a sample run might look like this:

 ID SIZE ALIGNMENT B I U

 1 12 left off off off

 f)change font s)change size a)change alignment

 b)toggle bold i)toggle italic u)toggle underline

 q)quit

 s

 Enter font size (0-127): 36

 ID SIZE ALIGNMENT B I U

 1 36 left off off off

 f)change font s)change size a)change alignment

 b)toggle bold i)toggle italic u)toggle underline

 q)quit

 a

 Select alignment:

 l)left c)center r)right

 r

 ID SIZE ALIGNMENT B I U

 1 36 right off off off

ptg11524036

710 Chapter 15 Bit Fiddling

 f)change font s)change size a)change alignment

 b)toggle bold i)toggle italic u)toggle underline

 q)quit

 i

 ID SIZE ALIGNMENT B I U

 1 36 right off on off

 f)change font s)change size a)change alignment

 b)toggle bold i)toggle italic u)toggle underline

 q)quit

 q

 Bye!

 The program should use the & operator and suitable masks to ensure that the ID and size
entries are converted to the specified range.

 7. Write a program with the same behavior as described in exercise 6, but use an unsigned
long variable to hold the font information and use the bitwise operators instead of bit
members to manage the information.

ptg11524036

 16
 The C Preprocessor and the

C Library

 You will learn about the following in this chapter:

 ■ Preprocessor directives:

 #define , #include , #ifdef

 #else , #endif , #ifndef

 #if , #elif , #line , #error , #pragma

 ■ Keywords:

 _Generic , _Noreturn , _Static_assert

 ■ Functions/Macros:

 sqrt() , atan() , atan2()

 exit() , atexit()

 assert()

 memcpy() , memmove()

 va_start() , va_arg() , va_copy() , va_end()

 ■ More capabilities of the C preprocessor

 ■ Function-like macros and conditional compilation

 ■ The generic selection expression

 ■ Inline functions

 ■ The C library in general and some of its handy functions in particular

 The C language proper is built on the C keywords, expressions, and statements as well as the
rules for using them. The C standard, however, goes beyond describing just the C language. It
also describes how the C preprocessor should perform, establishes which functions form the

ptg11524036

712 Chapter 16 The C Preprocessor and the C Library

standard C library, and details how these functions work. We’ll explore the C preprocessor and
the C library in this chapter, beginning with the preprocessor.

 The preprocessor looks at your program before it is compiled (hence the term pre processor).
Following your preprocessor directives, the preprocessor replaces the symbolic abbreviations
in your program with the directions they represent. The preprocessor can include other files at
your request, and it can select which code the compiler sees. The preprocessor doesn’t know
about C. Basically, it takes some text and converts it to other text. This description does not do
justice to its true utility and value, so let’s turn to examples. You’ve encountered examples of
 #define and #include all along. Now we can gather what you have learned in one place and
add to it.

 First Steps in Translating a Program

 The compiler has to put a program through some translation phases before jumping into
preprocessing. The compiler starts its work by mapping characters appearing in the source code
to the source character set. This takes care of multibyte characters and trigraphs—character
extensions that make the outer face of C more international. (Appendix B “Reference Section
VII, Expanded Character Support,” gives an overview of these extensions.)

 Second, the compiler locates each instance of a backslash followed by a newline character and
deletes them. That is, two physical lines such as

 printf("That's wond\

 erful!\n");

 are converted to a single logical line :

 printf("That's wonderful\n!");

 Note that in this context, “newline character” means the character produced by pressing the
Enter key to start a new line in your source code file; it doesn’t mean the symbolic representa-
tion \n .

 This feature is useful as a preparation for preprocessing because preprocessing expressions are
required to be one logical line long, but that one logical line can be more than one physical
line.

 Next, the compiler breaks the text into a sequence of preprocessing tokens and sequences of
whitespace and comments. (In basic terms, tokens are groups separated from each other by
spaces, tabs, or line breaks; this chapter will look at tokens in more detail later.) One point of
interest now is that each comment is replaced by one space character. So something such as

 int/* this doesn't look like a space*/fox;

 becomes

 int fox;

ptg11524036

713Manifest Constants: #define

 Also, an implementation may choose to replace each sequence of whitespace characters (other
than a newline) with a single space. Finally, the program is ready for the preprocessing phase,
and the preprocessor looks for potential preprocessing directives, indicated by a # symbol at the
beginning of a line.

 Manifest Constants: #define

 The #define preprocessor directive, like all preprocessor directives, begins with the # symbol
at the beginning of a line. The ANSI and subsequent standards permit the # symbol to be
preceded by spaces or tabs, and it allows for space between the # and the remainder of the
directive. However, older versions of C typically require that the directive begin in the leftmost
column and that there be no spaces between the # and the remainder of the directive. A direc-
tive can appear anywhere in the source file, and the definition holds from its place of appear-
ance to the end of the file. We have used directives heavily to define symbolic, or manifest ,
constants in our programs, but they have more range than that, as we will show. Listing 16.1
illustrates some of the possibilities and properties of the #define directive.

 Preprocessor directives run until the first newline following the # . That is, a directive is limited
to one line in length. However, as mentioned earlier, the combination backslash/newline is
deleted before preprocessing begins, so you can spread the directive over several physical lines.
These lines, however, constitute a single logical line.

 Listing 16.1 The preproc.c Program

 /* preproc.c -- simple preprocessor examples */

 #include <stdio.h>

 #define TWO 2 /* you can use comments if you like */

 #define OW "Consistency is the last refuge of the unimagina\

 tive. - Oscar Wilde" /* a backslash continues a definition */

 /* to the next line */

 #define FOUR TWO*TWO

 #define PX printf("X is %d.\

 int main(void)

 {

 int x = TWO;

 PX;

 x = FOUR;

 printf(FMT, x);

 printf("%s\n", OW);

 printf("TWO: OW\n");

 return 0;

 }

ptg11524036

714 Chapter 16 The C Preprocessor and the C Library

 Each #define line (logical line, that is) has three parts. The first part is the #define directive
itself. The second part is your chosen abbreviation, known as a macro . Some macros, like these
examples, represent values; they are called object-like macros . (C also has function-like macros ,
and we’ll get to them later.) The macro name must have no spaces in it, and it must conform
to the same naming rules that C variables follow: Only letters, digits, and the underscore (_)
character can be used, and the first character cannot be a digit. The third part (the remainder
of the line) is termed the replacement list or body (see Figure 16.1). When the preprocessor finds
an example of one of your macros within your program, it almost always replaces it with the
body. (There is one exception, as we will show you in just a moment.) This process of going
from a macro to a final replacement is called macro expansion . Note that you can use standard
C comments on a #define line; as mentioned earlier, each is replaced by a space before the
preprocessor sees it.

#define PX printf("x is %d.\n",x)

preprocessor
directive

macro body

 Figure 16.1 Parts of an object-like macro definition.

 Let’s run the example and see how it works:

 X is 2.

 X is 4.

 Consistency is the last refuge of the unimaginative. - Oscar Wilde

 TWO: OW

 Here’s what happened. The statement

 int x = TWO;

 becomes

 int x = 2;

 as 2 is substituted for TWO . Then the statement

 PX;

 becomes

 printf("X is %d.\n", x);

 as that wholesale substitution is made. This is a new wrinkle, because up to now we’ve used
macros only to represent constants. Here you see that a macro can express any string, even a

ptg11524036

715Manifest Constants: #define

whole C expression. Note, though, that this is a constant string; PX will print only a variable
named x .

 The next line also represents something new. You might think that FOUR is replaced by 4 , but
the actual process is this:

 x = FOUR;

 becomes

 x = TWO*TWO;

 which then becomes

 x = 2*2;

 The macro expansion process ends there. The actual multiplication takes place not while the
preprocessor works, but during compilation, because the C compiler evaluates all constant
expressions (expressions with just constants) at compile time. The preprocessor does no calcula-
tion; it just makes the suggested substitutions very literally.

 Note that a macro definition can include other macros. (Some compilers do not support this
nesting feature.)

 In the next line

 printf (FMT, x);

 becomes

 printf("X is %d.\n",x);

 as FMT is replaced by the corresponding string. This approach could be handy if you had
a lengthy control string that you had to use several times. Alternatively, you can do the
following:

 const char * fmt = "X is %d.\n";

 Then you can use fmt as the printf() control string.

 In the next line, OW is replaced by the corresponding string. The double quotation marks make
the replacement string a character string constant. The compiler will store it in an array termi-
nated with a null character. Therefore,

 #define HAL 'Z'

 defines a character constant, but

 #define HAP "Z"

 defines a character string: Z\O .

 In the example, we used a backslash immediately before the end of the line to extend the string
to the next line:

ptg11524036

716 Chapter 16 The C Preprocessor and the C Library

 #define OW "Consistency is the last refuge of the unimagina\

 tive. - Oscar Wilde"

 Note that the second line is flush left. Suppose, instead, we did this:

 #define OW "Consistency is the last refuge of the unimagina\

 tive. - Oscar Wilde"

 Then the output would be this:

 Consistency is the last refuge of the unimagina tive. - Oscar Wilde

 The space between the beginning of the line and tive counts as part of the string.

 In general, wherever the preprocessor finds one of your macros in your program, it replaces it
literally with the equivalent replacement text. If that string also contains macros, they, too, are
replaced. The one exception to replacement is a macro found within double quotation marks.
Therefore,

 printf("TWO: OW");

 prints TWO: OW literally instead of printing

 2: Consistency is the last refuge of the unimaginative. - Oscar Wilde

 To print this last line, you would use this:

 printf("%d: %s\n", TWO, OW);

 Here, the macros are outside the double quotation marks.

 When should you use symbolic constants? You should use them for most numeric constants. If
the number is some constant used in a calculation, a symbolic name makes its meaning clearer.
If the number is an array size, a symbolic name makes it simpler to change the array size and
loop limits later. If the number is a system code for, say, EOF , a symbolic representation makes
your program much more portable; just change one EOF definition. Mnemonic value, easy
alterability, portability—these features all make symbolic constants worthwhile.

 It is true that the const keyword now supported by C allows for a more flexible way of creating
constants. With const you can create global constants and local constants, numeric constants,
array constants, and structure constants. On the other hand, macro constants can be used to
specify the sizes of standard arrays and as initialization values for const values:

 #define LIMIT 20

 const int LIM = 50;

 static int data1[LIMIT]; // valid

 static int data2[LIM]; // not required to be valid

 const int LIM2 = 2 * LIMIT; // valid

 const int LIM3 = 2 * LIM; // not required to be valid

ptg11524036

717Manifest Constants: #define

 Let’s look at the “not required to be valid” comments. In C, the array size for nonautomatic
arrays is supposed to be an integer constant expression, meaning that it’s a combination of
integer constants, such as 5 , enumeration constants, and sizeof expressions. This doesn’t
include values declared using const . (This is one respect in which C++ differs from C; in C++
you can use const values as part of constant expressions.) However, an implementation may
accept other forms of constant expressions. So, for example, GCC 4.7.3 doesn’t accept the
declaration for data2 , but Clang 4.6 does.

 Tokens

 Technically, the body of a macro is considered to be a string of tokens rather than a string of
characters. C preprocessor tokens are the separate “words” in the body of a macro definition.
They are separated from one another by whitespace. For example, the definition

 #define FOUR 2*2

 has one token—the sequence 2*2 —but the definition

 #define SIX 2 * 3

 has three tokens in it: 2 , * , and 3 .

 Character strings and token strings differ in how multiple spaces in a body are treated.
Consider this definition:

 #define EIGHT 4 * 8

 A preprocessor that interprets the body as a character string would replace EIGHT with 4 * 8 .
That is, the extra spaces would be part of the replacement, but a preprocessor that interprets
the body as tokens will replace EIGHT with three tokens separated by single spaces: 4 * 8 . In
other words, the character string interpretation views the spaces as part of the body, but the
token interpretation views the spaces as separators between the tokens of the body. In practice,
some C compilers have viewed macro bodies as strings rather than as tokens. The difference is
of practical importance only for usages more intricate than what we’re attempting here.

 Incidentally, the C compiler takes a more complex view of tokens than the preprocessor does.
The compiler understands the rules of C and doesn’t necessarily require spaces to separate
tokens. For example, the C compiler would view 2*2 as three tokens because it recognizes that
each 2 is a constant and that * is an operator.

 Redefining Constants

 Suppose you define LIMIT to be 20, and then later in the same file you define it again as 25.
This process is called redefining a constant . Implementations differ on redefinition policy. Some
consider it an error unless the new definition is the same as the old. Others allow redefinition,
perhaps issuing a warning. The ANSI standard takes the first view, allowing redefinition only if
the new definition duplicates the old.

ptg11524036

718 Chapter 16 The C Preprocessor and the C Library

 Having the same definition means the bodies must have the same tokens in the same order.
Therefore, these two definitions agree:

 #define SIX 2 * 3

 #define SIX 2 * 3

 Both have the same three tokens, and the extra spaces are not part of the body. The next defi-
nition is considered different:

 #define SIX 2*3

 It has just one token, not three, so it doesn’t match. If you want to redefine a macro, use the
 #undef directive, which we discuss later.

 If you do have constants that you need to redefine, it might be easier to use the const keyword
and scope rules to accomplish that end.

 Using Arguments with #define

 By using arguments, you can create function-like macros that look and act much like functions.
A macro with arguments looks very similar to a function because the arguments are enclosed
within parentheses. Function-like macro definitions have one or more arguments in parenthe-
ses, and these arguments then appear in the replacement portion, as shown in Figure 16.2 .

#define MEAN(X,Y)

macro

macro arguments

(((X)+(Y))/2)

replacement body

 Figure 16.2 Parts of a function-like macro definition.

 Here’s a sample definition:

 #define SQUARE(X) X*X

 It can be used in program like this:

 z = SQUARE(2);

 This looks like a function call, but it doesn’t necessarily behave identically. Listing 16.2 illus-
trates using this and a second macro. Some of the examples also point out possible pitfalls, so
read them carefully.

ptg11524036

719Using Arguments with #define

 Listing 16.2 The mac_arg.c Program

 /* mac_arg.c -- macros with arguments */

 #include <stdio.h>

 #define SQUARE(X) X*X

 #define PR(X) printf("The result is %d.\n", X)

 int main(void)

 {

 int x = 5;

 int z;

 printf("x = %d\n", x);

 z = SQUARE(x);

 printf("Evaluating SQUARE(x): ");

 PR(z);

 z = SQUARE(2);

 printf("Evaluating SQUARE(2): ");

 PR(z);

 printf("Evaluating SQUARE(x+2): ");

 PR(SQUARE(x+2));

 printf("Evaluating 100/SQUARE(2): ");

 PR(100/SQUARE(2));

 printf("x is %d.\n", x);

 printf("Evaluating SQUARE(++x): ");

 PR(SQUARE(++x));

 printf("After incrementing, x is %x.\n", x);

 return 0;

 }

 The SQUARE macro has this definition:

 #define SQUARE(X) X*X

 Here, SQUARE is the macro identifier, the X in SQUARE(X) is the macro argument, and X*X is the
replacement list. Wherever SQUARE(x) appears in Listing 16.2 , it is replaced by x*x . This differs
from the earlier examples in that you are free to use symbols other than x when you use this
macro. The x in the macro definition is replaced by the symbol used in the macro call in the
program. Therefore, SQUARE(2) is replaced by 2*2 , so the x really does act as an argument.

 However, as you will soon see, a macro argument does not work exactly like a function argu-
ment. Here are the results of running the program. Note that some of the answers are different
from what you might expect. Indeed, your compiler might not even give the same answer as
what’s shown here for the next-to-last line:

 x = 5

 Evaluating SQUARE(x): The result is 25.

 Evaluating SQUARE(2): The result is 4.

ptg11524036

720 Chapter 16 The C Preprocessor and the C Library

 Evaluating SQUARE(x+2): The result is 17.

 Evaluating 100/SQUARE(2): The result is 100.

 x is 5.

 Evaluating SQUARE(++x): The result is 42.

 After incrementing, x is 7.

 The first two lines are predictable, but then you come to some peculiar results. Recall that x
has the value 5 . This might lead you to expect that SQUARE(x+2) would be 7*7 , or 49 , but the
printout says it is 17 , a prime number and certainly not a square! The simple reason for this
misleading output is the one we have already stated—the preprocessor doesn’t make calcula-
tions; it just substitutes character sequences. Wherever the definition shows an x , the prepro-
cessor substitutes the characters x+2 . Therefore,

 x*x

 becomes

 x+2*x+2

 The only multiplication is 2*x . If x is 5 , this is the value of this expression:

 5+2*5+2 = 5 + 10 + 2 = 17

 This example pinpoints an important difference between a function call and a macro call. A
function call passes the value of the argument to the function while the program is running. A
macro call passes the argument token to the program before compilation; it’s a different process
at a different time. Can the definition be fixed to make SQUARE(x+2) yield 36? Sure. You
simply need more parentheses:

 #define SQUARE(x) (x)*(x)

 Now SQUARE(x+2) becomes (x+2)*(x+2) , and you get the desired multiplication as the paren-
theses carry over in the replacement string.

 This doesn’t solve all the problems, however. Consider the events leading to the next output
line:

 100/SQUARE(2)

 becomes

 100/2*2

 By the laws of precedence, the expression is evaluated from left to right: (100/2)*2 or 50*2 or
 100 . This mix-up can be cured by defining SQUARE(x) as follows:

 #define SQUARE(x) (x*x)

 This produces 100/(2*2) , which eventually evaluates to 100/4 , or 25 .

 To handle both of the previous two examples, you need this definition:

 #define SQUARE(x) ((x)*(x))

ptg11524036

721Using Arguments with #define

 The lesson here is to use as many parentheses as necessary to ensure that operations and asso-
ciations are done in the right order.

 Even these precautions fail to save the final example from grief:

 SQUARE(++x)

 becomes

 ++x*++x

 and x gets incremented twice, once before the multiplication and once afterward:

 ++x*++x = 6*7 = 42

 Because the order of operations is left open, some compilers render the product 7*6 . Yet other
compilers might increment both terms before multiplication, yielding 7*7 ,or 49. Indeed, evalu-
ating this expression results in what the standard calls undefined behavior. In all these cases,
however, x starts with the value 5 and ends up with the value 7 , even though the code looks as
though x was incremented just once.

 The simplest remedy for this problem is to avoid using ++x as a macro argument. In general,
don’t use increment or decrement operators with macros. Note that ++x would work as a func-
tion argument because it would be evaluated to 6 , and then the value 6 would be sent to the
function.

 Creating Strings from Macro Arguments: The # Operator

 Here’s a function-like macro:

 #define PSQR(X) printf("The square of X is %d.\n", ((X)*(X)));

 Suppose you used the macro like this:

 PSQR(8);

 Here’s the output:

 The square of X is 64.

 Note that the X in the quoted string is treated as ordinary text, not as a token that can be
replaced.

 Suppose you do want to include the macro argument in a string. C enables you to do that.
Within the replacement part of a function-like macro, the # symbol becomes a preprocessing
operator that converts tokens into strings. For example, say that x is a macro parameter, and
then #x is that parameter name converted to the string "x" . This process is called stringizing .
 Listing 16.3 illustrates how this process works.

ptg11524036

722 Chapter 16 The C Preprocessor and the C Library

 Listing 16.3 The subst.c Program

 /* subst.c -- substitute in string */

 #include <stdio.h>

 #define PSQR(x) printf("The square of " #x " is %d.\n",((x)*(x)))

 int main(void)

 {

 int y = 5;

 PSQR(y);

 PSQR(2 + 4);

 return 0;

 }

 Here’s the output:

 The square of y is 25.

 The square of 2 + 4 is 36.

 In the first call to the macro, #x was replaced by "y" , and in the second call #x was replaced by
 "2 + 4" . ANSI C string concatenation then combined these strings with the other strings in
the printf() statement to produce the final strings that were used. For example, the first invo-
cation becomes this:

 printf("The square of " "y" " is %d.\n",((y)*(y)));

 Then string concatenation converts the three adjacent strings to one string:

 "The square of y is %d.\n"

 Preprocessor Glue: The ## Operator

 Like the # operator, the ## operator can be used in the replacement section of a function-like
macro. Additionally, it can be used in the replacement section of an object-like macro. The ##
operator combines two tokens into a single token. For example, you could do this:

 #define XNAME(n) x ## n

 Then the macro

 XNAME(4)

 would expand to the following:

 x4

 Listing 16.4 uses this and another macro using ## to do a bit of token gluing.

ptg11524036

723Using Arguments with #define

 Listing 16.4 The glue.c Program

 // glue.c -- use the ## operator

 #include <stdio.h>

 #define XNAME(n) x ## n

 #define PRINT_XN(n) printf("x" #n " = %d\n", x ## n);

 int main(void)

 {

 int XNAME(1) = 14; // becomes int x1 = 14;

 int XNAME(2) = 20; // becomes int x2 = 20;

 int x3 = 30;

 PRINT_XN(1); // becomes printf("x1 = %d\n", x1);

 PRINT_XN(2); // becomes printf("x2 = %d\n", x2);

 PRINT_XN(3); // becomes printf("x3 = %d\n", x3);

 return 0;

 }

 Here’s the output:

 x1 = 14

 x2 = 20

 x3 = 30

 Note how the PRINT_XN() macro uses the # operator to combine strings and the ## operator to
combine tokens into a new identifier.

 Variadic Macros: ... and _ _VA_ARGS_ _

 Some functions, such as printf() , accept a variable number of arguments. The stdvar.h
header file, discussed later in this chapter, provides tools for creating user-defined functions
with a variable number of arguments. And C99/C11 does the same thing for macros. Although
not used in the standard, the word variadic has come into currency to label this facility.
(However, the process that has added stringizing and variadic to the C vocabulary has not yet
led to labeling functions or macros with a fixed number of arguments as fixadic functions and
normadic macros.)

 The idea is that the final argument in an argument list for a macro definition can be ellipses
(that is, three periods). If so, the predefined macro _ _VA_ARGS_ _ can be used in the substi-
tution part to indicate what will be substituted for the ellipses. For example, consider this
definition:

 #define PR(...) printf(_ _VA_ARGS_ _)

 Suppose you later invoke the macro like this:

 PR("Howdy");

 PR("weight = %d, shipping = $%.2f\n", wt, sp);

ptg11524036

724 Chapter 16 The C Preprocessor and the C Library

 For the first invocation, _ _VA_ARGS_ _ expands to one argument:

 "Howdy"

 For the second invocation, it expands to three arguments:

 "weight = %d, shipping = $%.2f\n", wt, sp

 Thus, the resulting code is this:

 printf("Howdy");

 printf("weight = %d, shipping = $%.2f\n", wt, sp);

 Listing 16.5 shows a slightly more ambitious example that uses string concatenation and the #
operator:

 Listing 16.5 The variadic.c Program

 // variadic.c -- variadic macros

 #include <stdio.h>

 #include <math.h>

 #define PR(X, ...) printf("Message " #X ": " _ _VA_ARGS_ _)

 int main(void)

 {

 double x = 48;

 double y;

 y = sqrt(x);

 PR(1, "x = %g\n", x);

 PR(2, "x = %.2f, y = %.4f\n", x, y);

 return 0;

 }

 In the first macro call, X has the value 1 , so #X becomes "1" . That makes the expansion look
like this:

 print("Message " "1" ": " "x = %g\n", x);

 Then the four strings are concatenated, reducing the call to this:

 print("Message 1: x = %g\n", x);

 Here’s the output:

 Message 1: x = 48

 Message 2: x = 48.00, y = 6.9282

 Don’t forget, the ellipses have to be the last macro argument:

 #define WRONG(X, ..., Y) #X #_ _VA_ARGS_ _ #y // won't work

ptg11524036

725Macro or Function?

 Macro or Function?

 Many tasks can be done by using a macro with arguments or by using a function. Which one
should you use? There is no hard-and-fast rule, but here are some considerations.

 Macros are somewhat trickier to use than regular functions because they can have odd side
effects if you are unwary. Some compilers limit the macro definition to one line, and it is prob-
ably best to observe that limit, even if your compiler does not.

 The macro-versus-function choice represents a trade-off between time and space. A macro
produces inline code; that is, you get a statement in your program. If you use the macro 20
times, you get 20 lines of code inserted into your program. If you use a function 20 times, you
have just one copy of the function statements in your program, so less space is used. On the
other hand, program control must shift to where the function is and then return to the calling
program, and this takes longer than inline code.

 Macros have an advantage in that they don’t worry about variable types. (This is because they
deal with character strings, not with actual values.) Therefore, the SQUARE(x) macro can be
used equally well with int or float .

 C99 provides a third alternative—inline functions. We’ll look at them later in this chapter.

 Programmers typically use macros for simple functions such as the following:

 #define MAX(X,Y) ((X) > (Y) ? (X) : (Y))

 #define ABS(X) ((X) < 0 ? -(X) : (X))

 #define ISSIGN(X) ((X) == '+' || (X) == '-' ? 1 : 0)

 (The last macro has the value 1 , or true, if x is an algebraic sign character.)

 Here are some points to note:

 ■ Remember that there are no spaces in the macro name, but that spaces can appear in the
replacement string. ANSI C permits spaces in the argument list.

 ■ Use parentheses around each argument and around the definition as a whole. This
ensures that the enclosed terms are grouped properly in an expression such as

 forks = 2 * MAX(guests + 3, last);

 ■ Use capital letters for macro function names. This convention is not as widespread as
that of using capitals for macro constants. However, one good reason for using capitals is
to remind yourself to be alert to possible macro side effects.

 ■ If you intend to use a macro instead of a function primarily to speed up a program, first
try to determine whether it is likely to make a significant difference. A macro that is used
once in a program probably won’t make any noticeable improvement in running time.
A macro inside a nested loop is a much better candidate for speed improvements. Many
systems offer program profilers to help you pin down where a program spends the most
time.

ptg11524036

726 Chapter 16 The C Preprocessor and the C Library

 Suppose you have developed some macro functions you like. Do you have to retype them each
time you write a new program? Not if you remember the #include directive, reviewed in the
following section.

 File Inclusion: #include

 When the preprocessor spots an #include directive, it looks for the following filename and
includes the contents of that file within the current file. The #include directive in your source
code file is replaced with the text from the included file. It’s as though you sat down and typed
in the entire contents of the included file at that particular location in your source file. The
 #include directive comes in two varieties:

 #include <stdio.h> Filename directive> > in (angle brackets)>)>
(angle)>angle brackets

 #include "mystuff.h" Filename in double quotation marks

 On a Unix system, the angle brackets tell the preprocessor to look for the file in one or more
standard system directories. The double quotation marks tell it to first look in your current
directory (or some other directory that you have specified in the filename) and then look in the
standard places:

 #include <stdio.h> Searches directive>> system directories

 #include "hot.h" Searches your current working directory

 #include "/usr/biff/p.h" Searches the /usr/biff directory

 Integrated development environments (IDEs) also have a standard location or locations for
the system header files. Many provide menu choices for specifying additional locations to be
searched when angle brackets are used. As with Unix, using double quotes means to search a
local directory first, but the exact directory searched depends on the compiler. Some search the
same directory as that holding the source code; some search the current working directory; and
some search the same directory as that holding the project file.

 ANSI C doesn’t demand adherence to the directory model for files because not all computer
systems are organized similarly. In general, the method used to name files is system dependent,
but the use of the angle brackets and double quotation marks is not.

 Why include files? Because they have information the compiler needs. The stdio.h file, for
example, typically includes definitions of EOF , NULL , getchar() , and putchar() . The last two
are defined as macro functions. It also contains function prototypes for the C I/O functions.

 The .h suffix is conventionally used for header files —files with information that are placed at
the head of your program. Header files often contain preprocessor statements. Some, such as
 stdio.h , come with the system, but you are free to create your own.

ptg11524036

727File Inclusion: #include

 Including a large header file doesn’t necessarily add much to the size of your program. The
content of header files, for the most part, is information used by the compiler to generate the
final code, not material to be added to the final code.

 Header Files: An Example

 Suppose you developed a structure for holding a person’s name and also wrote some functions
for using the structure. You could gather together the various declarations in a header file.
 Listing 16.6 shows an example of this.

 Listing 16.6 The names_st.h Header File

 // names_st.h -- names_st structure header file

 // constants

 #include <string.h>

 #define SLEN 32

 // structure declarations

 struct names_st

 {

 char first[SLEN];

 char last[SLEN];

 };

 // typedefs

 typedef struct names_st names;

 // function prototypes

 void get_names(names *);

 void show_names(const names *);

 char * s_gets(char * st, int n);

 This header file includes many of the kinds of things commonly found in header files: #define
directives, structure declarations, typedef statements, and function prototypes. Note that none
of these things are executable code; rather, they are information that the compiler uses when it
creates executable code.

 This particular header file is a bit naïve. Normally, you should use #ifndef and #define to
protect against multiple inclusions of a header file. We’ll return to that technique later.

 Executable code normally goes into a source code file, not a header file. For example, Listing
 16.7 shows the function definitions for those functions prototyped in the header file. It
includes the header file so that the compiler will know about names type.

ptg11524036

728 Chapter 16 The C Preprocessor and the C Library

 Listing 16.7 The name_st.c Source File

 // names_st.c -- define names_st functions

 #include <stdio.h>

 #include "names_st.h" // include the header file

 // function definitions

 void get_names(names * pn)

 {

 printf("Please enter your first name: ");

 s_gets(pn->first, SLEN);

 printf("Please enter your last name: ");

 s_gets(pn->last, SLEN);

 }

 void show_names(const names * pn)

 {

 printf("%s %s", pn->first, pn->last);

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 The get_names() function uses fgets() (via s_gets()) so as not to overflow the destination
arrays. Listing 16.8 is an example of a program that uses this header and source code file.

 Listing 16.8 The useheader.c Program

 // useheader.c -- use the names_st structure

 #include <stdio.h>

 #include "names_st.h"

ptg11524036

729File Inclusion: #include

 // remember to link with names_st.c

 int main(void)

 {

 names candidate;

 get_names(&candidate);

 printf("Let's welcome ");

 show_names(&candidate);

 printf(" to this program!\n");

 return 0;

 }

 Here is a sample run:

 Please enter your first name: Ian

 Please enter your last name: Smersh

 Let's welcome Ian Smersh to this program!

 Note the following points about this program:

 ■ Both source code files use the names_st structure, so both have to include the names_
st.h header file.

 ■ You need to compile and link the names_st.c and the useheader.c source code files.

 ■ Declarations and the like go into the names_st.h header file; function definitions go
into the names_st.c source code file.

 Uses for Header Files

 A look through any of the standard header files can give you a good idea of the sort of informa-
tion found in them. The most common forms of header contents include the following:

 ■ Manifest constants— A typical stdio.h file, for instance, defines EOF , NULL , and BUFSIZ
(the size of the standard I/O buffer).

 ■ Macro functions— For example, getchar() is usually defined as getc(stdin) , getc()
is usually defined as a rather complex macro, and the ctype.h header typically contains
macro definitions for the ctype functions.

 ■ Function declarations— The string.h header (strings.h on some older systems), for
example, contains function declarations for the family of string functions. Under ANSI C
and later, the declarations are in function prototype form.

 ■ Structure template definitions— The standard I/O functions make use of a FILE
structure containing information about a file and its associated buffer. The stdio.h file
holds the declaration for this structure.

ptg11524036

730 Chapter 16 The C Preprocessor and the C Library

 ■ Type definitions— You might recall that the standard I/O functions use a pointer-to-
 FILE argument. Typically, stdio.h uses a #define or a typedef to make FILE represent
a pointer to a structure. Similarly, the size_t and time_t types are defined in header
files.

 Many programmers develop their own standard header files to use with their programs. This is
particularly valuable if you develop a family of related functions and/or structures.

 Also, you can use header files to declare external variables to be shared by several files. This
makes sense, for example, if you’ve developed a family of functions that share a variable for
reporting a status of some kind, such as an error condition. In that case, you could define a file-
scope, external-linkage variable in the source code file containing the function declarations:

 int status = 0; // file scope, source code file

 Then, in the header file associated with the source code file, you could place a reference
declaration:

 extern int status; // in header file

 This code would then appear in any file in which you included the header file, making the
variable available to those files that use that family of functions. This declaration also would
appear, through inclusion, in the function source code file, but it’s okay to have both a defin-
ing declaration and a reference declaration in the same file, as long as the declarations agree in
type.

 Another candidate for inclusion in a header file is a variable or array with file scope, internal
linkage, and const qualification. The const part protects against accidental changes, and the
 static part means that each file including the header gets its own copy of the constants so
that there isn’t the problem of needing one file with a defining declaration and the rest with
reference declarations.

 The #include and #define directives are the most heavily used C preprocessor features. We’ll
look at the other directives in less detail.

 Other Directives

 Programmers may have to prepare C programs or C library packages that have to work in
a variety of environments. The choices of types of code can vary from one environment to
another. The preprocessor provides several directives that help the programmer produce code
that can be moved from one system to another by changing the values of some #define
macros. The #undef directive cancels an earlier #define definition. The #if , #ifdef , #ifndef ,
 #else , #elif , and #endif directives allow you to specify different alternatives for which code
is compiled. The #line directive lets you reset line and file information, the #error direc-
tive lets you issue error messages, and the #pragma directive lets you give instructions to the
compiler.

ptg11524036

731Other Directives

 The #undef Directive

 The #undef directive “undefines” a given #define . That is, suppose you have this definition:

 #define LIMIT 400

 Then the directive

 #undef LIMIT

 removes that definition. Now, if you like, you can redefine LIMIT so that it has a new value.
Even if LIMIT is not defined in the first place, it is still valid to undefine it. If you want to use a
particular name and you are unsure whether it has been used previously, you can undefine it to
be on the safe side.

 Being Defined—The C Preprocessor Perspective

 The preprocessor follows the same rules as C about what constitutes an identifier: An identifier
can consist only of uppercase letters, lowercase letters, digits, and underscore characters, and a
digit cannot be the first character. When the preprocessor encounters an identifier in a prepro-
cessor directive, it considers it to be either defined or undefined. Here, defined means defined
by the preprocessor. If the identifier is a macro name created by a prior #define directive in
the same file and it hasn’t been turned off by an #undef directive, it’s defined. If the identifier
is not a macro but is, say, a file-scope C variable, it’s not defined as far as the preprocessor is
concerned.

 A defined macro can be an object-like macro, including an empty macro, or a function-like
macro:

 #define LIMIT 1000 // LIMIT is defined

 #define GOOD // GOOD is defined

 #define A(X) ((-(X))*(X)) // A is defined

 int q; // q not a macro, hence not defined

 #undef GOOD // GOOD not defined

 Note that the scope of a #define macro extends from the point it is declared in a file until it is
the subject of an #undef directive or until the end of the file, whichever comes first. Also note
that the position of the #define in a file will depend on the position of an #include directive
if the macro is brought in via a header file.

 A few predefined macros, such as _ _DATE_ _ and _ _FILE_ _ (discussed later this chapter), are
always considered defined and cannot be undefined.

 Conditional Compilation

 You can use the other directives mentioned to set up conditional compilations. That is, you
can use them to tell the compiler to accept or ignore blocks of information or code according
to conditions at the time of compilation.

ptg11524036

732 Chapter 16 The C Preprocessor and the C Library

 The #ifdef , #else , and #endif Directives

 A short example will clarify what conditional compilation does. Consider the following:

 #ifdef MAVIS

 #include "horse.h" // gets done if MAVIS is #defined

 #define STABLES 5

 #else

 #include "cow.h" // gets done if MAVIS isn't #defined

 #define STABLES 15

 #endif

 Here we’ve used the indentation allowed by newer implementations and by the ANSI standard.
If you have an older implementation, you might have to move all the directives, or at least the
 # symbols (see the next example), to flush left:

 #ifdef MAVIS

 # include "horse.h" /* gets done if MAVIS is #defined */

 # define STABLES 5

 #else

 # include "cow.h" /* gets done if MAVIS isn't #defined */

 # define STABLES 15

 #endif

 The #ifdef directive says that if the following identifier (MAVIS) has been defined by the
preprocessor, follow all the directives and compile all the C code up to the next #else or
 #endif , whichever comes first. If there is an #else , everything from the #else to the #endif
is done if the identifier isn’t defined.

 The form #ifdef #else is much like that of the C if else . The main difference is that the
preprocessor doesn’t recognize the braces ({}) method of marking a block, so it uses the #else
(if any) and the #endif (which must be present) to mark blocks of directives. These conditional
structures can be nested. You can use these directives to mark blocks of C statements, too, as
 Listing 16.9 illustrates.

 Listing 16.9 The ifdef.c Program

 /* ifdef.c -- uses conditional compilation */

 #include <stdio.h>

 #define JUST_CHECKING

 #define LIMIT 4

 int main(void)

 {

 int i;

 int total = 0;

 for (i = 1; i <= LIMIT; i++)

ptg11524036

733Other Directives

 {

 total += 2*i*i + 1;

 #ifdef JUST_CHECKING

 printf("i=%d, running total = %d\n", i, total);

 #endif

 }

 printf("Grand total = %d\n", total);

 return 0;

 }

 Compiling and running the program as shown produces this output:

 i=1, running total = 3

 i=2, running total = 12

 i=3, running total = 31

 i=4, running total = 64

 Grand total = 64

 If you omit the JUST_CHECKING definition (or enclose it inside a C comment, or use #undef
to undefine it) and recompile the program, only the final line is displayed. You can use this
approach, for example, to help in program debugging. Define JUST_CHECKING and use a judi-
cious selection of #ifdef s, and the compiler will include program code for printing interme-
diate values for debugging. After everything is working, you can remove the definition and
recompile. If, later, you find that you need the information again, you can reinsert the defi-
nition and avoid having to retype all the extra print statements. Another possibility is using
 #ifdef to select among alternative chunks of codes suited for different C implementations.

 The #ifndef Directive

 The #ifndef directive can be used with #else and #endif in the same way that #ifdef is.
The #ifndef asks whether the following identifier is not defined; #ifndef is the negative of
 #ifdef . This directive is often used to define a constant if it is not already defined. Here’s an
example:

 /* arrays.h */

 #ifndef SIZE

 #define SIZE 100

 #endif

 (Older implementations might not permit indenting the #define directive.)

 Typically, this idiom is used to prevent multiple definitions of the same macro when you
include several header files, each of which may contain a definition. In this case, the definition
in the first header file included becomes the active definition and subsequent definitions in
other header files are ignored.

ptg11524036

734 Chapter 16 The C Preprocessor and the C Library

 Here’s another use. Suppose we place the line

 #include "arrays.h"

 at the head of a file. This results in SIZE being defined as 100. But placing

 #define SIZE 10

 #include "arrays.h"

 at the head sets SIZE to 10. Here, SIZE is defined by the time the lines in arrays.h are
processed, so the #define SIZE 100 line is skipped. You might do this, for example, to test
a program using a smaller array size. When it works to your satisfaction, you can remove the
 #define SIZE 10 statement and recompile. That way, you never have to worry about modify-
ing the header array itself.

 The #ifndef directive is commonly used to prevent multiple inclusions of a file. That is,
header files usually are set up along the following lines:

 /* things.h */

 #ifndef THINGS_H_

 #define THINGS_H_

 /* rest of include file */

 #endif

 Suppose this file somehow got included several times. The first time the preprocessor encoun-
ters this include file, THINGS_H_ is undefined, so the program proceeds to define THINGS_H_
and to process the rest of the file. The next time the preprocessor encounters this file,
 THINGS_H_ is defined, so the preprocessor skips the rest of the file.

 Why would you include a file more than once? The most common reason is that many include
files include other files, so you may include a file explicitly that another include file has already
included. Why is this a problem? Some items that appear in include files, such as declarations
of structure types, can appear only once in a file. The standard C header files use the #ifndef
technique to avoid multiple inclusions. One problem is to make sure the identifier you are
testing hasn’t been defined elsewhere. Vendors typically solve this by using the filename as the
identifier, using uppercase, replacing periods with an underscore, and using an underscore (or,
perhaps, two underscores) as a prefix and a suffix. If you check your stdio.h header file, for
example, you’ll probably find something similar to this:

 #ifndef _STDIO_H

 #define _STDIO_H

 // contents of file

 #endif

 You can do something similar. However, you should avoid using the underscore as a prefix
because the standard says such usage is reserved. You wouldn’t want to accidentally define a
macro that conflicts with something in the standard header files. Listing 16.10 uses #ifndef to
provide multiple-inclusion protection for the header file from Listing 16.6 .

ptg11524036

735Other Directives

 Listing 16.10 The names.h Header File

 // names.h --revised with include protection

 #ifndef NAMES_H_

 #define NAMES_H_

 // constants

 #define SLEN 32

 // structure declarations

 struct names_st

 {

 char first[SLEN];

 char last[SLEN];

 };

 // typedefs

 typedef struct names_st names;

 // function prototypes

 void get_names(names *);

 void show_names(const names *);

 char * s_gets(char * st, int n);

 #endif

 You can test this header file with the program shown in Listing 16.11 . This program should
work correctly when using the header file shown in Listing 16.10 , and it should fail to compile
if you remove the #ifndef protection from Listing 16.10 .

 Listing 16.11 The doubincl.c Program

 // doubincl.c -- include header twice

 #include <stdio.h>

 #include "names.h"

 #include "names.h" // accidental second inclusion

 int main()

 {

 names winner = {"Less", "Ismoor"};

 printf("The winner is %s %s.\n", winner.first,

 winner.last);

 return 0;

 }

ptg11524036

736 Chapter 16 The C Preprocessor and the C Library

 The #if and #elif Directives

 The #if directive is more like the regular C if . It is followed by a constant integer expression
that is considered true if nonzero, and you can use C’s relational and logical operators with it:

 #if SYS == 1

 #include "ibm.h"

 #endif

 You can use the #elif directive (not available in some older implementations) to extend an
 if-else sequence. For example, you could do this:

 #if SYS == 1

 #include "ibmpc.h"

 #elif SYS == 2

 #include "vax.h"

 #elif SYS == 3

 #include "mac.h"

 #else

 #include "general.h"

 #endif

 Newer implementations offer a second way to test whether a name is defined. Instead of using

 #ifdef VAX

 you can use this form:

 #if defined (VAX)

 Here, defined is a preprocessor operator that returns 1 if its argument is #defined and 0
otherwise. The advantage of this newer form is that it can be used with #elif . Using it, you
can rewrite the previous example this way:

 #if defined (IBMPC)

 #include "ibmpc.h"

 #elif defined (VAX)

 #include "vax.h"

 #elif defined (MAC)

 #include "mac.h"

 #else

 #include "general.h"

 #endif

 If you were using these lines on, say, a VAX, you would have defined VAX somewhere earlier in
the file with this line:

 #define VAX

ptg11524036

737Other Directives

 One use for these conditional compilation features is to make a program more portable. By
changing a few key definitions at the beginning of a file, you can set up different values and
include different files for different systems.

 Predefined Macros

 The C standard specifies several predefined macros, which Table 16.1 lists.

 Table 16.1 Predefined Macros

 Macro Meaning

 _ _DATE_ _ A character string literal in the form “Mmm dd yyyy” representing the date
of preprocessing, as in Nov 23 2013

 _ _FILE_ _ A character string literal representing the name of the current source
code file

 _ _LINE_ _ An integer constant representing the line number in the current source
code file

 _ _STDC_ _ Set to 1 to indicate the implementation conforms to the C Standard

 _ _STDC_HOSTED_ _ Set to 1 for a hosted environment; 0 otherwise

 _ _STDC_VERSION_ _ For C99, set to 199901L; for C11, set to 201112L

 _ _TIME_ _ The time of translation in the form “hh:mm:ss”

 While we’re discussing predefined identifiers, the C99 standard provides for one called
 _ _func_ _ . It expands to a string representing the name of the function containing the identi-
fier. For this reason, the identifier has to have function scope, whereas macros essentially have
file scope. Therefore, _ _func_ _ is a C language predefined identifier rather than a predefined
macro.

 Listing 16.12 shows several of these predefined identifiers in use. Note that some of them are
C99 additions, so a pre-C99 compiler might not accept them. For GCC you may have to use
the -std=c99 or the -std=c11 flag.

 Listing 16.12 The predef.c Program

 // predef.c -- predefined identifiers

 #include <stdio.h>

 void why_me();

 int main()

 {

 printf("The file is %s.\n", _ _FILE_ _);

ptg11524036

738 Chapter 16 The C Preprocessor and the C Library

 printf("The date is %s.\n", _ _DATE_ _);

 printf("The time is %s.\n", _ _TIME_ _);

 printf("The version is %ld.\n", 3TDC_VERSION_ _);

 printf("This is line %d.\n", _ _LINE_ _);

 printf("This function is %s\n", _ _func_ _);

 why_me();

 return 0;

 }

 void why_me()

 {

 printf("This function is %s\n", _ _func_ _);

 printf("This is line %d.\n", _ _LINE_ _);

 }

 Here’s a sample run:

 The file is predef.c.

 The date is Sep 23 2013.

 The time is 22:01:09.

 The version is 201112.

 This is line 11.

 This function is main

 This function is why_me

 This is line 21.

 #line and #error

 The #line directive lets you reset the line numbering and the filename as reported by the
 _ _LINE_ _ and _ _FILE_ _ macros. You can use #line like this:

 #line 1000 // reset current line number to 1000

 #line 10 "cool.c" // reset line number to 10, file name to cool.c

 The #error directive causes the preprocessor to issue an error message that includes any text in
the directive. If possible, the compilation process should halt. You could use the directive like
this:

 #if _ _STDC_VERSION_ _ != 201112L

 #error Not C11

 #endif

 Attempting to compile the program could then produce results like this:

ptg11524036

739Other Directives

 $ gcc newish.c

 newish.c:14:2: error: #error Not C11

 $ gcc -std=c11 newish.c

 $

 The compilation process failed when the compiler used an older standard and succeeded when
it used the C11 standard.

 #pragma

 Modern compilers have several settings that can be modified by command-line arguments or
by using an IDE menu. The #pragma lets you place compiler instructions in the source code.
For example, while C99 was being developed, it was referred to as C9X, and one compiler used
the following pragma to turn on C9X support:

 #pragma c9x on

 Generally, each compiler has its own set of pragmas. They might be used, for example, to
control the amount of memory set aside for automatic variables or to set the strictness of error
checking or to enable nonstandard language features. The C99 standard does provide for three
standard pragmas of rather technical nature that we won’t discuss here.

 C99 also provides the _Pragma preprocessor operator. It converts a string into a regular pragma.
For example,

 _Pragma("nonstandardtreatmenttypeB on")

 is equivalent to the following:

 #pragma nonstandardtreatmenttypeB on

 Because the operator doesn’t use the # symbol, you can use it as part of a macro expansion:

 #define PRAGMA(X) _Pragma(#X)

 #define LIMRG(X) PRAGMA(STDC CX_LIMITED_RANGE X)

 Then you can use code like this:

 LIMRG (ON)

 Incidentally, the following definition doesn’t work, although it looks as if it might:

 #define LIMRG(X) _Pragma(STDC CX_LIMITED_RANGE #X)

 The problem is that it relies on string concatenation, but the compiler doesn’t concatenate
strings until after preprocessing is complete.

 The _Pragma operator does a complete job of “destringizing”; that is, escape sequences in a
string are converted to the character represented. Thus,

 _Pragma("use_bool \"true \"false")

ptg11524036

740 Chapter 16 The C Preprocessor and the C Library

 becomes

 #pragma use_bool "true "false

 Generic Selection (C11)

 In programming, the term generic programming indicates code that is not specific to a particu-
lar type but which, once a type is specified, can be translated into code for that type. C++, for
example, lets you create generic algorithms in the form of templates that the compiler can
then use to instantiate code automatically for a specified type. C doesn’t have anything quite
like that. However, C11 adds a new sort of expression, called a generic selection expression , that
can be used to select a value on the basis of the type of an expression, that is, on whether the
expression type is int , double , or some other type. The generic selection expression is not a
preprocessor statement, but its usual use is a part of a #define macro definition that has some
aspects of generic programming.

 A generic selection expression looks like this:

 _Generic(x, int: 0, float: 1, double: 2, default: 3)

 Here _Generic is a new C11 keyword. The parentheses following _Generic contain several
comma-separated terms. The first term is an expression, and each remaining item is a type
followed by a colon followed by a value, such as float: 1 . The type of the first term is
matched to one of the labels, and the value of the whole expression is the value following
the matched label. For example, suppose x in the preceding expression is a type int variable.
Then the type of x matches the int: label, making 0 the value of the whole expression. If the
type doesn’t match a label, the value associated with the default: label is used for the whole
expression. A generic selection statement is a little like a switch statement, except that the
type of an expression rather than the value of an expression is matched to a label.

 Let’s look at an example combining a generic selection statement with a macro definition:

 #define MYTYPE(X) _Generic((X),\

 int: "int",\

 float : "float",\

 double: "double",\

 default: "other"\

)

 Recall that a macro has to be defined on one logical line, but you can use a \ to break the one
logical line into multiple physical lines. In this case, the generic selection expression evalu-
ates to a string. For example, the macro invocation MYTYPE(5) evaluates to the string "int"
because the type for the value 5 matches the int: label. Listing 16.13 illustrates this macro
further.

ptg11524036

741Inline Functions (C99)

 Listing 16.13 The predef.c Program

 // mytype.c

 #include <stdio.h>

 #define MYTYPE(X) _Generic((X),\

 int: "int",\

 float : "float",\

 double: "double",\

 default: "other"\

)

 int main(void)

 {

 int d = 5;

 printf("%s\n", MYTYPE(d)); // d is type int

 printf("%s\n", MYTYPE(2.0*d)); // 2.0* d is type double

 printf("%s\n", MYTYPE(3L)); // 3L is type long

 printf("%s\n", MYTYPE(&d)); // &d is type int *

 return 0;

 }

 Here is the output:

 int

 double

 other

 other

 The final two instances of MYTYPE() use types without matching labels, so the default string
is used. We could have used more type labels to extend the capabilities of the macro, but the
example serves to illustrate how _Generic -based macros work.

 When evaluating a generic selection expression, the program does not evaluate the first term; it
only determines the type. And the only expression it does evaluate is the one with the match-
ing label.

 You can use _Generic to define macros that act like type-independent (“generic”) functions.
The section later in this chapter about the math library provides an example.

 Inline Functions (C99)

 Normally, a function call has overhead. That means it takes execution time to set up the call,
pass arguments, jump to the function code, and return. As you’ve seen, you can use a macro
to place code inline, thus avoiding that overhead. C99, borrowing from C++ (but not always

ptg11524036

742 Chapter 16 The C Preprocessor and the C Library

exactly), added another approach, inline functions . From the name, you might expect that an
inline function replaces a function call with inline code, but you would be misled. What the
C99 and C11 standards actually say is this: “Making a function an inline function suggests that
calls to the function be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.” So making a function an inline function may cause the compiler to
replace the function call with inline code and/or perform some other sorts of optimizations, or
it may have no effect.

 There are different ways to create inline function definitions. The standard says that a function
with internal linkage can be made inline and that the definition for the inline function must
be in the same file in which the function is used. So a simple approach is to use the inline
function specifier along with the static storage-class specifier. Usually, inline functions are
defined before the first use in a file, so the definition also acts as a prototype. That is, the code
would look like this:

 #include <stdio.h>

 inline static void eatline() // inline definition/prototype

 {

 while (getchar() != '\n')

 continue;

 }

 int main()

 {

 ...

 eatline(); // function call

 ...

 }

 Seeing the inline declaration, the compiler could choose, for example, to replace the
 eatline() function call with the function body. That is, the effect could end up the same as if
you had written this code instead:

 #include <stdio.h>

 inline static void eatline() // inline definition/prototype

 {

 while (getchar() != '\n')

 continue;

 }

 int main()

 {

 ...

 while (getchar() != '\n') // function call replaced

 continue;

 ...

 }

ptg11524036

743Inline Functions (C99)

 Because an inline function doesn’t have a separate block of code set aside for it, you can’t take
its address. (Actually, you can take the address, but then the compiler will generate a non-inline
function.) Also, an inline function may not show up in a debugger.

 An inline function should be short. For a long function, the time consumed in calling the func-
tion is short compared to the time spent executing the body of the function, so there is no
great savings in time using an inline version.

 For the compiler to make inline optimizations, it has to know the contents of the function
definition. This means the inline function definition has to be in the same file as the func-
tion call. For this reason, an inline function ordinarily has internal linkage. Therefore, if you
have a multifile program, you need an inline definition in each file that calls the function. The
simplest way to accomplish this is to put the inline function definition in a header file and
then include the header file in those files that use the function.

 // eatline.h

 #ifndef EATLINE_H_

 #define EATLINE_H_

 inline static void eatline()

 {

 while (getchar() != '\n')

 continue;

 }

 #endif

 An inline function is an exception to the rule of not placing executable code in a header file.
Because the inline function has internal linkage, defining one in several files doesn’t cause
problems.

 C, unlike C++, also allows a mixture of inline definitions with external definitions (function
definitions with external linkage). For example, a program has the following three files:

 //file1.c

 ...

 inline static double square(double);

 double square(double x) { return x * x; }

 int main()

 {

 double q = square(1.3);

 ...

 //file2.c

 ...

 double square(double x) { return (int) (x*x); }

 void spam(double v)

 {

 double kv = square(v);

ptg11524036

744 Chapter 16 The C Preprocessor and the C Library

 ...

 //file3.c

 ...

 inline double square(double x) { return (int) (x * x + 0.5); }

 void masp(double w)

 {

 double kw = square(w);

 ...

 One has an inline static definition, as before. One has an ordinary function definition,
hence having external linkage. And one has an inline definition that omits the static
qualifier.

 What happens? The spam() function in file2.c uses the square() definition in that file.
That definition, having external linkage, is visible to the other files, but main() in file1.c
uses the local static definition of square() . Because this definition also is inline , the
compiler may (or may not) optimize the coding, perhaps inlining it. Finally, for file3.c , the
compiler is free to use either (or both!) the inline definition of file3.c or the external linkage
definition from file2.c . If you omit static from an inline definition, as in file3 .c, the
 inline definition is considered as an alternative that could be used instead of the external
definition.

 Note that GCC implemented inline functions prior to C99 using somewhat different rules, so
the GCC interpretation of inline can depend on which compiler flags you use.

 _Noreturn Functions (C11)

 When C99 added the inline keyword, that keyword became the sole example of a func-
tion specifier. (The keywords extern and static are termed storage-class specifiers and
can be applied to data objects as well as to functions.) C11 adds a second function specifier,
 _Noreturn , to indicate a function that, upon completion, does not return to the calling func-
tion. The exit() function is an example of a _Noreturn function, for once exit() is called,
the calling function never resumes. Note that this is different from the void return type. A
typical void function does return to the calling function; it just doesn’t provide an assignable
value.

 The purpose of _Noreturn is to inform the user and the compiler that a particular function
won’t return control to the calling program. Informing the user helps to prevent misuse of the
function, and informing the compiler may enable it to make some code optimizations.

 The C Library

 Originally, there was no official C library. Later, a de facto standard emerged based on the Unix
implementation of C. The ANSI C committee, in turn, developed an official standard library,

ptg11524036

745The C Library

largely based on the de facto standard. Recognizing the expanded C universe, the commit-
tee then sought to redefine the library so that it could be implemented on a wide variety of
systems.

 We’ve already discussed some I/O functions, character functions, and string functions from the
library. In this chapter, we’ll browse through several more. First, however, let’s talk about how
to use a library.

 Gaining Access to the C Library

 How you gain access to the C library depends on your implementation, so you need to see how
the more general statements apply to your system. First, there are often several different places
to find library functions. For example, getchar() is usually defined as a macro in the file
 stdio.h , but strlen() is usually kept in a library file. Second, different systems have different
ways to reach these functions. The following sections outline three possibilities.

 Automatic Access

 On many systems, you just compile the program and the more common library functions are
made available automatically.

 Keep in mind that you should declare the function type for functions you use. Usually you can
do that by including the appropriate header file. User manuals describing library functions tell
you which files to include. On some older systems, however, you might have to enter the func-
tion declarations yourself. Again, the user manual indicates the function type. Also, Appendix
 B , “Reference Section,” summarizes the ANSI C library, grouping functions by header file.

 In the past, header filenames have not been consistent among different implementations. The
ANSI C standard groups the library functions into families, with each family having a specific
header file for its function prototypes.

 File Inclusion

 If a function is defined as a macro, you can include the file containing its definition by using
the #include directive. Often, similar macros are collected in an appropriately named header
file. For example, since the introduction of ANSI C, C compilers come with a ctype.h file
containing several macros that determine the nature of a character: uppercase, digit, and so
forth.

 Library Inclusion

 At some stage in compiling or linking a program, you might have to specify a library option.
Even a system that automatically checks its standard library can have other libraries of func-
tions less frequently used. These libraries have to be requested explicitly by using a compile-
time option. Note that this process is distinct from including a header file. A header file
provides a function declaration or prototype. The library option tells the system where to

ptg11524036

746 Chapter 16 The C Preprocessor and the C Library

find the function code. Clearly, we can’t go through all the specifics for all systems, but these
discussions should alert you to what you should look for.

 Using the Library Descriptions

 We haven’t the space to discuss the complete library, but we will look at some representative
examples. First, though, let’s take a look at documentation.

 You can find function documentation in several places. Your system might have an online
manual, and integrated environments often have online help. C vendors may supply printed
user’s guides describing library functions, or they might place equivalent material on a refer-
ence CD-ROM or online. Several publishers have issued reference manuals for C library func-
tions. Some are generic in nature, and some are targeted toward specific implementations. And,
as mentioned earlier, Appendix B in this book provides a summary.

 The key skill you need in reading the documentation is interpreting function headings. The
idiom has changed with time. Here, for instance, is how fread() is listed in older Unix
documentation:

 #include <stdio.h>

 fread(ptr, sizeof(*ptr), nitems, stream)

 FILE *stream;

 First, the proper include file is given. No type is given for fread() , ptr , sizeof(*ptr) , or
 nitems . By default, in the old days, they were taken to be type int , but the context makes it
clear that ptr is a pointer. (In C’s early days, pointers were handled as integers.) The stream
argument is declared as a pointer to FILE . The declaration makes it look as though you are
supposed to use the sizeof operator as the second argument. Actually, it’s saying that the
value of this argument should be the size of the object pointed to by ptr . Often, you would use
 sizeof as illustrated, but any type int value satisfies the syntax.

 Later, the form changed to this:

 #include <stdio.h>

 int fread(ptr, size, nitems, stream;)

 char *ptr;

 int size, nitems;

 FILE *stream;

 Now all types are given explicitly, and ptr is treated as a pointer-to- char .

 The ANSI C90 standard provides the following description:

 #include <stdio.h>

 size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);

ptg11524036

747The Math Library

 First, it uses the new prototype format. Second, it changes some types. The size_t type is
defined as the unsigned integer type that the sizeof operator returns. Usually, it is either
 unsigned int or unsigned long . The stddef.h file contains a typedef or a #define for
 size_t , as do several other files, including stdio.h , typically by including stddef.h . Many
functions, including fread() , often incorporate the sizeof operator as part of an actual argu-
ment. The size_t type makes that formal argument match this common usage.

 Also, ANSI C uses pointer-to- void as a kind of generic pointer for situations in which point-
ers to different types may be used. For example, the actual first argument to fread() may be
a pointer to an array of double or to a structure of some sort. If the actual argument is, say, a
pointer-to-array-of-20- double and the formal argument is pointer-to- void , the compiler makes
the appropriate type version without complaining about type clashes.

 More recently, the C99/C11 standards incorporate the new keyword restrict into the
description:

 #include <stdio.h>

 size_t fread(void * restrict ptr, size_t size,

 size_t nmemb, FILE * restrict stream);

 Now let’s turn to some specific functions.

 The Math Library

 The math library contains many useful mathematical functions. The math.h header file
provides the function declarations or prototypes for these functions. Table 16.2 lists several
functions declared in math.h . Note that all angles are measured in radians (one radian = 180/π
= 57.296 degrees). Reference Section V, “The Standard ANSI C Library with C99 Additions,”
supplies a complete list of the functions specified by the C99 standard.

 Table 16.2 Some ANSI C Standard Math Functions

 Prototype Description

 double acos(double x) Returns the angle (0 to π radians) whose cosine is x

 double asin(double x) Returns the angle (—π/2 to π/2 radians) whose sine is x

 double atan(double x) Returns the angle (−π/2 to π/2 radians) whose tangent is x

 double atan2(double y,
double x)

 Returns the angle (−π to π radians) whose tangent is y / x

 double cos(double x) Returns the cosine of x (x in radians)

 double sin(double x) Returns the sine of x (x in radians)

 double tan(double x) Returns the tangent of x (x in radians)

 double exp(double x) Returns the exponential function of x (e x)

ptg11524036

748 Chapter 16 The C Preprocessor and the C Library

 Prototype Description

 double log(double x) Returns the natural logarithm of x

 double log10(double x) Returns the base 10 logarithm of x

 double pow(double x, dou-
ble y)

 Returns x to the y power

 double sqrt(double x) Returns the square root of x

 double cbrt(double x) Returns the cube root of x

 double ceil(double x) Returns the smallest integral value not less than x

 double fabs(double x) Returns the absolute value of x

 double floor(double x) Returns the largest integral value not greater than x

 A Little Trigonometry

 Let’s use the math library to solve a common problem: converting from x/y coordinates to
magnitudes and angles. For example, suppose you draw, on a grid work, a line that trans-
verses 4 units horizontally (the x value) and 3 units vertically (the y value). What is the length
(magnitude) of the line and what is its direction? Trigonometry tells us the following:

 magnitude = square root (x 2 + y 2)

 and

 angle = arctangent (y/x)

 The math library provides a square root function and a couple arctangent functions, so you can
express this solution in a C program. The square root function, called sqrt() , takes a double
argument and returns the argument’s square root, also as a type double value.

 The atan() function takes a double argument—the tangent—and returns the angle having that
value as its tangent. Unfortunately, the atan() function is confused by, say, a line with x and
 y values of –5 and –5 . Because (–5)/(–5) is 1, atan() would report 45°, the same as it does for a
line with x and y values of 5 and 5 . In other words, atan() doesn’t distinguish between a line
of a given angle and one 180° in the opposite direction. (Actually, atan() reports in radians,
not degrees; we’ll discuss that conversion soon.)

 Fortunately, the C library also provides the atan2() function. It takes two arguments: the x
value and the y value. That way, the function can examine the signs of x and y and figure out
the correct angle. Like atan() , atan2() returns the angle in radians. To convert to degrees,
multiply the resulting angle by 180 and divide by pi. You can have the computer calculate pi
by using the expression 4 * atan(1) . Listing 16.14 illustrates these steps. It also gives you a
chance to review structures and the typedef facility.

ptg11524036

749The Math Library

 Listing 16.14 The rect_pol.c Program

 /* rect_pol.c -- converts rectangular coordinates to polar */

 #include <stdio.h>

 #include <math.h>

 #define RAD_TO_DEG (180/(4 * atan(1)))

 typedef struct polar_v {

 double magnitude;

 double angle;

 } Polar_V;

 typedef struct rect_v {

 double x;

 double y;

 } Rect_V;

 Polar_V rect_to_polar(Rect_V);

 int main(void)

 {

 Rect_V input;

 Polar_V result;

 puts("Enter x and y coordinates; enter q to quit:");

 while (scanf("%lf %lf", &input.x, &input.y) == 2)

 {

 result = rect_to_polar(input);

 printf("magnitude = %0.2f, angle = %0.2f\n",

 result.magnitude, result.angle);

 }

 puts("Bye.");

 return 0;

 }

 Polar_V rect_to_polar(Rect_V rv)

 {

 Polar_V pv;

 pv.magnitude = sqrt(rv.x * rv.x + rv.y * rv.y);

 if (pv.magnitude == 0)

 pv.angle = 0.0;

 else

 pv.angle = RAD_TO_DEG * atan2(rv.y, rv.x);

 return pv;

 }

ptg11524036

750 Chapter 16 The C Preprocessor and the C Library

 Here’s a sample run:

 Enter x and y coordinates; enter q to quit:

 10 10

 magnitude = 14.14, angle = 45.00

 -12 -5

 magnitude = 13.00, angle = -157.38

 q

 Bye.

 If, when you compile, you get a message such as

 Undefined: _sqrt

 or

 'sqrt': unresolved external

 or something similar, your compiler-linker is not finding the math library. Unix systems may
require that you instruct the linker to search the math library by using the -lm flag:

 cc rect_pol.c –lm

 Note that the –lm flag comes at the end of the command. That’s because the linker comes into
play after the compiler compiles the C file. The GCC compiler on Linux may behave in the
same fashion:

 gcc rect_pol.c -lm

 Type Variants

 The basic floating-point math functions take type double arguments and return a type double
value. You can pass them type float or type long double arguments, and the functions still
work because the arguments are converted to type double . That’s convenient but not neces-
sarily optimal. If double precision isn’t needed, the computations might be faster if done using
single precision float values. And type long double value will lose precision when passed
to a type double parameter; the value might not even be representable. To deal with these
potential problems, the C standard provides type float and type long double versions of the
standard functions, using an f or an l (“ell”) suffix on the function name. So sqrtf() is a type
 float version of sqrt() , and sqrtl() is a type long double version.

 The C11 addition of the generic selection expression lets us define a generic macro that chooses
the most appropriate version of a math function based on the argument type. Listing 16.15
shows two approaches.

 Listing 16.15 The generic.c Program

 // generic.c -- defining generic macros

 #include <stdio.h>

ptg11524036

751The Math Library

 #include <math.h>

 #define RAD_TO_DEG (180/(4 * atanl(1)))

 // generic square root function

 #define SQRT(X) _Generic((X),\

 long double: sqrtl, \

 default: sqrt, \

 float: sqrtf)(X)

 // generic sine function, angle in degrees

 #define SIN(X) _Generic((X),\

 long double: sinl((X)/RAD_TO_DEG),\

 default: sin((X)/RAD_TO_DEG),\

 float: sinf((X)/RAD_TO_DEG)\

)

 int main(void)

 {

 float x = 45.0f;

 double xx = 45.0;

 long double xxx =45.0L;

 long double y = SQRT(x);

 long double yy= SQRT(xx);

 long double yyy = SQRT(xxx);

 printf("%.17Lf\n", y); // matches float

 printf("%.17Lf\n", yy); // matches default

 printf("%.17Lf\n", yyy); // matches long double

 int i = 45;

 yy = SQRT(i); // matches default

 printf("%.17Lf\n", yy);

 yyy= SIN(xxx); // matches long double

 printf("%.17Lf\n", yyy);

 return 0;

 }

 Here is the output:

 6.70820379257202148

 6.70820393249936942

 6.70820393249936909

 6.70820393249936942

 0.70710678118654752

 As you can see, SQRT(i) has the same return value as SQRT(xx) , as both argument types (int
and double) correspond to the default label.

ptg11524036

752 Chapter 16 The C Preprocessor and the C Library

 A point of interest is how to get a macro using _Generic to act like a function. The definition
for SIN() takes perhaps the more obvious approach: Each labeled value is a function call, so
the value of the _Generic expression is a particular function call, such as sinf((X)/RAD_TO_
DEG) , with the argument to SIN() replacing the X .

 The SQRT() definition is perhaps more elegant. In this case the value of the _Generic expres-
sion is the name of a function, such as sinf . The name of a function is replaced by the
address of the function, so the value of the _Generic expression is a pointer to a function.
However, the entire _Generic expression is followed by (X) , and the combination of function-
pointer(argument) calls the pointed-to function with the indicated argument.

 In short, for SIN() , the function call is inside the generic selection expression, while for
 SQRT() the generic selection expression evaluates to a pointer, which is then used to invoke a
function.

 The tgmath.h Library (C99)

 The C99 standard provides a tgmath.h header file that defines type-generic macros similar
in effect to those in Listing 16.15 . If a math.h function is defined for each of the three types
 float , double , and long double , the tgmath.h file creates a type-generic macro with the
same name as the double version. For instance, it defines a sqrt() macro that expands to the
 sqrtf() , sqrt() , or sqrtl() function, depending on the type of argument provided. In other
words, the sqrt() macro behaves like the SQRT() macro in Listing 16.15 .

 If the compiler supports complex arithmetic, it supports the complex.h header file, which
declares complex analogs to math functions. For example, it declares csqrtf() , csqrt() , and
 csqrtl() , which return the complex square roots of type float complex , double complex ,
and long double complex , respectively. When such support is provided, the tgmath.h
sqrt() macro also can expand to the corresponding complex square root function.

 If you want to, say, invoke the sqrt() function instead of the sqrt() macro even though
 tgmath.h is included, you can enclose the function name in parentheses:

 #include <tgmath.h>

 ...

 float x = 44.0;

 double y;

 y = sqrt(x); // invoke macro, hence sqrtf(x)

 y = (sqrt)(x); // invoke function sqrt()

 This works because a function-like macro name has to be followed by an opening parenthesis,
which using enclosing parentheses circumvents. Otherwise, aside from order of operations,
parentheses don’t affect enclosed expressions, so enclosing a function name in parentheses still
results in a function call. Indeed, because of C’s strangely contradictory rules about function
pointers, you also can also use (*sqrt)() to invoke the sqrt() function.

 What C11 adds with _Generic expressions is a simple way to implement the macros of
 tgmath.h without resorting to mechanisms outside the C standard.

ptg11524036

753The General Utilities Library

 The General Utilities Library

 The general utilities library contains a grab bag of functions, including a random-number
generator, searching and sorting functions, conversion functions, and memory-management
functions. You’ve already seen rand() , srand() , malloc() , and free() in Chapter 12 ,
“Storage Classes, Linkage, and Memory Management.” Under ANSI C, prototypes for these
functions exist in the stdlib.h header file. Appendix B , Reference Section V lists all the func-
tions in this family; we’ll take a closer look at a few of them now.

 The exit() and atexit() Functions

 We’ve already used exit() explicitly in several examples. In addition, the exit() function
is invoked automatically upon return from main() . The ANSI standard has added a couple
nice features that we haven’t used yet. The most important addition is that you can specify
particular functions to be called when exit() executes. The atexit() function provides this
feature by registering the functions to be called on exit; the atexit() function takes a function
pointer as its argument. Listing 16.16 shows how this works.

 Listing 16.16 The byebye.c Program

 /* byebye.c -- atexit() example */

 #include <stdio.h>

 #include <stdlib.h>

 void sign_off(void);

 void too_bad(void);

 int main(void)

 {

 int n;

 atexit(sign_off); /* register the sign_off() function */

 puts("Enter an integer:");

 if (scanf("%d",&n) != 1)

 {

 puts("That's no integer!");

 atexit(too_bad); /* register the too_bad() function */

 exit(EXIT_FAILURE);

 }

 printf("%d is %s.\n", n, (n % 2 == 0)? "even" : "odd");

 return 0;

 }

 void sign_off(void)

 {

 puts("Thus terminates another magnificent program from");

ptg11524036

754 Chapter 16 The C Preprocessor and the C Library

 puts("SeeSaw Software!");

 }

 void too_bad(void)

 {

 puts("SeeSaw Software extends its heartfelt condolences");

 puts("to you upon the failure of your program.");

 }

 Here’s one sample run:

 Enter an integer:

 212

 212 is even.

 Thus terminates another magnificent program from

 SeeSaw Software!

 You might not see the final two lines if you are running in an IDE.

 Here’s a second run:

 Enter an integer:

 what?

 That's no integer!

 SeeSaw Software extends its heartfelt condolences

 to you upon the failure of your program.

 Thus terminates another magnificent program from

 SeeSaw Software!

 You might not see the final four lines if you are running in an IDE.

 Let’s look at two main areas: the use of the atexit() and exit() arguments.

 Using atexit()

 Here’s a function that uses function pointers! To use the atexit() function, simply pass it
the address of the function you want called on exit. Because the name of a function acts as an
address when used as a function argument, use sign_off or too_bad as the argument. Then
 atexit() registers that function in a list of functions to be executed when exit() is called.
ANSI guarantees that you can place at least 32 functions on the list. Each function is added
with a separate call to atexit() . When the exit() function is finally called, it executes these
functions, with the last function added being executed first.

 Notice that both sign_off() and too_bad() were called when input failed, but only sign_
off() was called when input worked. That’s because the if statement registers too_bad()
only if input fails. Also note that the last function registered was the first called.

ptg11524036

755The General Utilities Library

 The functions registered by atexit() should, like sign_off() and too_bad() , be type void
functions taking no arguments. Typically, they would perform housekeeping tasks, such as
updating a program-monitoring file or resetting environmental variables.

 Note that sign_off() is called even when exit() is not called explicitly; that’s because
 exit() is called implicitly when main() terminates.

 Using exit()

 After exit() executes the functions specified by atexit() , it does some tidying of its own. It
flushes all output streams, closes all open streams, and closes temporary files created by calls to
the standard I/O function tmpfile() . Then exit() returns control to the host environment
and, if possible, reports a termination status to the environment. Traditionally, Unix programs
have used 0 to indicate successful termination and nonzero to report failure. Unix return codes
don’t necessarily work with all systems, so ANSI C defined a macro called EXIT_FAILURE that
can be used portably to indicate failure. Similarly, it defined EXIT_SUCCESS to indicate success,
but exit() also accepts 0 for that purpose. Under ANSI C, using the exit() function in a
nonrecursive main() function is equivalent to using the keyword return . However, exit()
also terminates programs when used in functions other than main() .

 The qsort() Function

 The “quick sort” method is one of the most effective sorting algorithms, particularly for larger
arrays. Developed by C.A.R. Hoare in 1962, it partitions arrays into ever smaller sizes until the
element level is reached. First, the array is divided into two parts, with every value in one parti-
tion being less than every value in the other partition. This process continues until the array is
fully sorted.

 The name for the C implementation of the quick sort algorithm is qsort() . The qsort() func-
tion sorts an array of data objects. It has the following ANSI prototype:

 void qsort (void *base, size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));

 The first argument is a pointer to the beginning of the array to be sorted. ANSI C permits any
data pointer type to be typecast to a pointer-to- void , thus permitting the first actual argument
to qsort() to refer to any kind of array.

 The second argument is the number of items to be sorted. The prototype converts this value
to type size_t . As you may recall from several previous mentions, size_t is the integer type
returned by the sizeof operator and is defined in the standard header files.

 Because qsort() converts its first argument to a void pointer, qsort() loses track of how big
each array element is. To compensate, you must tell qsort() explicitly the size of the data
object. That’s what the third argument is for. For example, if you are sorting an array of type
 double , you would use sizeof(double) for this argument.

ptg11524036

756 Chapter 16 The C Preprocessor and the C Library

 Finally, qsort() requires a pointer to the function to be used to determine the sorting
order. The comparison function should take two arguments: pointers to the two items being
compared. It should return a positive integer if the first item should follow the second value,
zero if the two items are the same, and a negative integer if the second item should follow the
first. The qsort() will use this function, passing it pointer values that it calculates from the
other information given to it.

 The form the comparison function must take is set forth in the qsort() prototype for the final
argument:

 int (*compar)(const void *, const void *)

 This states that the final argument is a pointer to a function that returns an int and that takes
two arguments, each of which is a pointer to type const void . These two pointers point to the
items being compared.

 Listing 16.17 and the discussion following it illustrate how to define a comparison function
and how to use qsort() . The program creates an array of random floating-point values and
sorts the array.

 Listing 16.17 The qsorter.c Program

 /* qsorter.c -- using qsort to sort groups of numbers */

 #include <stdio.h>

 #include <stdlib.h>

 #define NUM 40

 void fillarray(double ar[], int n);

 void showarray(const double ar[], int n);

 int mycomp(const void * p1, const void * p2);

 int main(void)

 {

 double vals[NUM];

 fillarray(vals, NUM);

 puts("Random list:");

 showarray(vals, NUM);

 qsort(vals, NUM, sizeof(double), mycomp);

 puts("\nSorted list:");

 showarray(vals, NUM);

 return 0;

 }

 void fillarray(double ar[], int n)

 {

 int index;

 for(index = 0; index < n; index++)

ptg11524036

757The General Utilities Library

 ar[index] = (double)rand()/((double) rand() + 0.1);

 }

 void showarray(const double ar[], int n)

 {

 int index;

 for(index = 0; index < n; index++)

 {

 printf("%9.4f ", ar[index]);

 if (index % 6 == 5)

 putchar('\n');

 }

 if (index % 6 != 0)

 putchar('\n');

 }

 /* sort by increasing value */

 int mycomp(const void * p1, const void * p2)

 {

 /* need to use pointers to double to access values */

 const double * a1 = (const double *) p1;

 const double * a2 = (const double *) p2;

 if (*a1 < *a2)

 return -1;

 else if (*a1 == *a2)

 return 0;

 else

 return 1;

 }

 Here is a sample run:

 Random list:

 0.0001 1.6475 2.4332 0.0693 0.7268 0.7383

 24.0357 0.1009 87.1828 5.7361 0.6079 0.6330

 1.6058 0.1406 0.5933 1.1943 5.5295 2.2426

 0.8364 2.7127 0.2514 0.9593 8.9635 0.7139

 0.6249 1.6044 0.8649 2.1577 0.5420 15.0123

 1.7931 1.6183 1.9973 2.9333 12.8512 1.3034

 0.3032 1.1406 18.7880 0.9887

 Sorted list:

 0.0001 0.0693 0.1009 0.1406 0.2514 0.3032

 0.5420 0.5933 0.6079 0.6249 0.6330 0.7139

 0.7268 0.7383 0.8364 0.8649 0.9593 0.9887

ptg11524036

758 Chapter 16 The C Preprocessor and the C Library

 1.1406 1.1943 1.3034 1.6044 1.6058 1.6183

 1.6475 1.7931 1.9973 2.1577 2.2426 2.4332

 2.7127 2.9333 5.5295 5.7361 8.9635 12.8512

 15.0123 18.7880 24.0357 87.1828

 Let’s look at two main areas: the use of qsort() and the definition of mycomp() .

 Using qsort()

 The qsort() function sorts an array of data objects. The ANSI prototype, again, is this:

 void qsort (void *base, size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));

 The first argument is a pointer to the beginning of the array to be sorted. In this program, the
actual argument is vals , the name of an array of double , hence a pointer to the first element
of the array. The ANSI prototype causes the vals argument to be typecast to type pointer-to-
 void . That’s because ANSI C permits any data pointer type to be typecast to a pointer-to- void ,
thus permitting the first actual argument to qsort() to refer to any kind of array.

 The second argument is the number of items to be sorted. In Listing 16.17 , it is N , the number
of array elements. The prototype converts this value to type size_t .

 The third argument is the size of each element— sizeof(double) , in this case.

 The final argument is mycomp , the address of the function to be used for comparing elements.

 Defining mycomp()

 As mentioned before, the qsort() prototype mandates the form of the comparison function:

 int (*compar)(const void *, const void *)

 This states that the final argument is a pointer to a function that returns an int and that takes
two arguments, each of which is a pointer to type const void . We made the prototype for the
 mycomp() function agree with this prototype:

 int mycomp(const void * p1, const void * p2);

 Remember that the name of the function is a pointer to the function when used as argument,
so mycomp matches the compar prototype.

 The qsort() function passes the addresses of the two elements to be compared to the compari-
son function. In this program, then, p1 and p2 are assigned the addresses of two type double
values to be compared. Note that the first argument to qsort() refers to the whole array, and
the two arguments in the comparison function refer to two elements in the array. There is a
problem. To compare the pointed-to values, you need to dereference a pointer. Because the
values are type double , you need to dereference a pointer to type double . However, qsort()
requires pointers to type void . The way to get around this problem is to declare pointers of the
proper type inside the function and initialize them to the values passed as arguments:

ptg11524036

759The General Utilities Library

 /* sort by increasing value */

 int mycomp(const void * p1, const void * p2)

 {

 /* need to use pointers to double to access values */

 const double * a1 = (const double *) p1;

 const double * a2 = (const double *) p2;

 if (*a1 < *a2)

 return -1;

 else if (*a1 == *a2)

 return 0;

 else

 return 1;

 }

 In short, qsort() and the comparison function use void pointers for generality. As a conse-
quence, you have to tell qsort() explicitly how large each element of the array is, and within
the definition of the comparison function, you have to convert its pointer arguments to point-
ers of the proper type for your application.

 Note void * in C and in C++

 C and C++ treat pointer-to- void differently. In both languages, you can assign a pointer of any
type to type void * . The function call to qsort() in Listing 16.17 , for example, assigns type
 double * to a type void * pointer. But C++ requires a type cast when assigning a void *
pointer to a pointer of another type, whereas C doesn’t have that requirement. For instance,
the mycomp() function in Listing 16.17 has this type cast for the type void * pointer p1 :
 const double * a1 = (const double *) p1;

 In C, this type cast is optional; in C++ it is mandatory. Because the type cast version works in
both languages, it makes sense to use it. Then, if you convert the program to C++, you won’t
have to remember to change that part.

 Let’s look at one more example of a comparison function. Suppose you have these declarations:

 struct names {

 char first[40];

 char last[40];

 };

 struct names staff[100];

 What should a call to qsort() look like? Following the model in Listing 16.17 , a call could
look like this:

 qsort(staff, 100, sizeof(struct names), comp);

ptg11524036

760 Chapter 16 The C Preprocessor and the C Library

 Here, comp is the name of the comparison function. What should this function look like?
Suppose you want to sort by last name, then by first name. You could write the function this
way:

 #include <string.h>

 int comp(const void * p1, const void * p2) /* mandatory form */

 {

 /* get right type of pointer */

 const struct names *ps1 = (const struct names *) p1;

 const struct names *ps2 = (const struct names *) p2;

 int res;

 res = strcmp(ps1->last, ps2->last); /* compare last names */

 if (res != 0)

 return res;

 else /* last names identical, so compare first names */

 return strcmp(ps1->first, ps2->first);

 }

 This function uses the strcmp() function to do the comparison; its possible return values
match the requirements for the comparison function. Note that you need a pointer to a struc-
ture to use the -> operator.

 The Assert Library

 The assert library, supported by the assert.h header file, is a small one designed to help
with debugging programs. It consists of a macro named assert() . It takes as its argument an
integer expression. If the expression evaluates as false (nonzero), the assert() macro writes
an error message to the standard error stream (stderr) and calls the abort() function, which
terminates the program. (The abort() function is prototyped in the stdlib.h header file.) The
idea is to identify critical locations in a program where certain conditions should be true and to
use the assert() statement to terminate the program if one of the specified conditions is not
true. Typically, the argument is a relational or logical expression. If assert() does abort the
program, it first displays the test that failed, the name of the file containing the test, and a line
number.

 Using assert

 Listing 16.18 shows a short example using assert . It asserts that z is greater than or equal to 0
before attempting to take its square root. It also mistakenly subtracts a value instead of adding
it, making it possible for z to obtain forbidden values.

ptg11524036

761The Assert Library

 Listing 16.18 The assert.c Program

 /* assert.c -- use assert() */

 #include <stdio.h>

 #include <math.h>

 #include <assert.h>

 int main()

 {

 double x, y, z;

 puts("Enter a pair of numbers (0 0 to quit): ");

 while (scanf("%lf%lf", &x, &y) == 2

 && (x != 0 || y != 0))

 {

 z = x * x - y * y; /* should be + */

 assert(z >= 0);

 printf("answer is %f\n", sqrt(z));

 puts("Next pair of numbers: ");

 }

 puts("Done");

 return 0;

 }

 Here is a sample run:

 Enter a pair of numbers (0 0 to quit):

 4 3

 answer is 2.645751

 Next pair of numbers:

 5 3

 answer is 4.000000

 Next pair of numbers:

 3 5

 Assertion failed: (z >= 0), function main, file /Users/assert.c, line 14.

 The exact wording will depend on the compiler. One potentially confusing point to note is that
the message is not saying that z >= 0 ; instead, it’s saying that the claim z >= 0 failed.

 You could accomplish something similar with an if statement:

 if (z < 0)

 {

 puts("z less than 0");

 abort();

 }

ptg11524036

762 Chapter 16 The C Preprocessor and the C Library

 The assert() approach has several advantages, however. It identifies the file automatically. It
identifies the line number where the problem occurs automatically. Finally, there’s a mecha-
nism for turning the assert() macro on and off without changing code. If you think you’ve
eliminated the program bugs, place the macro definition

 #define NDEBUG

 before the location where assert.h is included and then recompile the program, and the
compiler will deactivate all assert() statements in the file. If problems pop up again, you can
remove the #define directive (or comment it out) and then recompile, thus reactivating all the
 assert() statements.

 _Static_assert (C11)

 The assert() expression is a run-time check. C11 adds a feature, the _Static_assert decla-
ration, that does a compile-time check. So, assert() can cause a running program to abort,
while _Static_assert() can cause a program not to compile. The latter takes two arguments.
The first is a constant integer expression, and the second is a string. If the first expression
evaluates to 0 (or _False), the compiler displays the string and does not compile the program.
Let’s look at the short example of Listing 16.19 , and then look at the differences between
 assert() and _Static_assert() .

 Listing 16.19 The statasrt.c Program

 // statasrt.c

 #include <stdio.h>

 #include <limits.h>

 _Static_assert(CHAR_BIT == 16, "16-bit char falsely assumed");

 int main(void)

 {

 puts("char is 16 bits.");

 return 0;

 }

 Here is a sample attempt at command-line compilation:

 $ clang statasrt.c

 statasrt.c:4:1: error: static_assert failed "16-bit char falsely assumed"

 _Static_assert(CHAR_BIT == 16, "16-bit char falsely assumed");

 ̂ ~~~~~~~~~~~~~~

 1 error generated.

 $

 In terms of syntax, _Static_assert is treated as a declaration statement. Thus, unlike most
kinds of C statements, it can appear either in a function or, as in this case, external to a
function.

ptg11524036

763memcpy() and memmove() from the string.h Library

 The requirement that the first argument to _Static_assert be an integer constant expression
guarantees that it can be evaluated during compilation. (Recall that sizeof expressions count
as integer constants.) So you can’t substitute _Static_assert for assert in Listing 16.18 ,
because that program used z > 0 for a test expression, and that’s a nonconstant expression
that can be evaluated only while the program is running. You could use assert(CHAR_BIT ==
16) in the body of main() in Listing 16.19 , but that would alert you to an error only after you
compiled and ran the program, which is more inefficient.

 The assert.h header makes static_assert an alias for the C keyword _Static_assert .
That’s to make C more compatible with C++, which uses static_assert as its keyword for
this feature.

 memcpy() and memmove() from the string.h

Library

 You can’t assign one array to another, so we’ve been using loops to copy one array to another,
element by element. The one exception is that we’ve used the strcpy() and strncpy() func-
tions for character arrays. The memcpy() and memmove() functions offer you almost the same
convenience for other kinds of arrays. Here are the prototypes for these two functions:

 void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

 void *memmove(void *s1, const void *s2, size_t n);

 Both of these functions copy n bytes from the location pointed to by s2 to the location pointed
to by s1 , and both return the value of s1 . The difference between the two, as indicated by the
keyword restrict , is that memcpy() is free to assume that there is no overlap between the two
memory ranges. The memmove() function doesn’t make that assumption, so copying takes place
as if all the bytes are first copied to a temporary buffer before being copied to the final destina-
tion. What if you use memcpy() when there are overlapping ranges? The behavior is undefined,
meaning it might work or it might not. The compiler won’t stop you from using the memcpy()
function when you shouldn’t, so it’s your responsibility to make sure the ranges aren’t overlap-
ping when you use it. It’s just another part of the programmer’s burden.

 Because these functions are designed to work with any data type, the two pointer arguments
are type pointer-to- void . C allows you to assign any pointer type to pointers of the void *
type. The other side of this tolerant acceptance is that these functions have no way of knowing
what type of data is being copied. Therefore, they use the third argument to indicate the
number of bytes to be copied. Note that for an array, the number of bytes is not, in general,
the number of elements. So if you were copying an array of 10 double values, you would use
 10*sizeof(double) , not 10 , as the third argument.

 Listing 16.20 shows some examples using these two functions. It assumes that double is twice
the size of int , and it uses the C11 _Static_assert feature to test that assumption.

ptg11524036

764 Chapter 16 The C Preprocessor and the C Library

 Listing 16.20 The mems.c Program

 // mems.c -- using memcpy() and memmove()

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #define SIZE 10

 void show_array(const int ar[], int n);

 // remove following if C11 _Static_assert not supported

 _Static_assert(sizeof(double) == 2 * sizeof(int), "double not twice int size");

 int main()

 {

 int values[SIZE] = {1,2,3,4,5,6,7,8,9,10};

 int target[SIZE];

 double curious[SIZE / 2] = {2.0, 2.0e5, 2.0e10, 2.0e20, 5.0e30};

 puts("memcpy() used:");

 puts("values (original data): ");

 show_array(values, SIZE);

 memcpy(target, values, SIZE * sizeof(int));

 puts("target (copy of values):");

 show_array(target, SIZE);

 puts("\nUsing memmove() with overlapping ranges:");

 memmove(values + 2, values, 5 * sizeof(int));

 puts("values -- elements 0-5 copied to 2-7:");

 show_array(values, SIZE);

 puts("\nUsing memcpy() to copy double to int:");

 memcpy(target, curious, (SIZE / 2) * sizeof(double));

 puts("target -- 5 doubles into 10 int positions:");

 show_array(target, SIZE/2);

 show_array(target + 5, SIZE/2);

 return 0;

 }

 void show_array(const int ar[], int n)

 {

 int i;

 for (i = 0; i < n; i++)

 printf("%d ", ar[i]);

 putchar('\n');

 }

ptg11524036

765Variable Arguments: stdarg.h

 Here is the output:

 memcpy() used:

 values (original data):

 1 2 3 4 5 6 7 8 9 10

 target (copy of values):

 1 2 3 4 5 6 7 8 9 10

 Using memmove() with overlapping ranges:

 values -- elements 0-5 copied to 2-7:

 1 2 1 2 3 4 5 8 9 10

 Using memcpy() to copy double to int:

 target -- 5 doubles into 10 int positions:

 0 1073741824 0 1091070464 536870912

 1108516959 2025163840 1143320349 -2012696540 1179618799

 The last call to memcpy() copies data from a type double array to a type int array. This shows
that memcpy() doesn’t know or care about data types; it just copies bytes from one location
to another. (You could, for example, copy bytes from a structure to a character array.) Also,
there is no data conversion. If you had a loop doing element-by-element assignment, the type
 double values would be converted to type int during assignment. In this case, the bytes are
copied over “as is,” and the program then interprets the bit patterns as if they were type int .

 Variable Arguments: stdarg.h

 Earlier, this chapter discussed variadic macros—macros that can accept a variable number of
arguments. The stdarg.h header file provides a similar capability for functions. But the usage
is a bit more involved. You have to do the following:

 1. Provide a function prototype using an ellipsis.

 2. Create a va_list type variable in the function definition.

 3. Use a macro to initialize the variable to an argument list.

 4. Use a macro to access the argument list.

 5. Use a macro to clean up.

 Let’s look at these steps in more detail. The prototype for such a function should have a param-
eter list with at least one parameter followed by an ellipsis:

 void f1(int n, ...); // valid

 int f2(const char * s, int k, ...); // valid

 char f3(char c1, ..., char c2); // invalid, ellipsis not last

 double f3(...); // invalid, no parameter

ptg11524036

766 Chapter 16 The C Preprocessor and the C Library

 The rightmost parameter (the one just before the ellipses) plays a special role; the standard uses
the term parmN as a name to use in discussion. In the preceding examples, parmN would be n
for the first case and k for the second case. The actual argument passed to this parameter will
be the number of arguments represented by the ellipses section. For example, the f1() func-
tion prototyped earlier could be used this way:

 f1(2, 200, 400); // 2 additional arguments

 f1(4, 13, 117, 18, 23); // 4 additional arguments

 Next, the va_list type, which is declared in the stdargs.h header file, represents a data
object used to hold the parameters corresponding to the ellipsis part of the parameter list. The
beginning of a definition of a variadic function would look something like this:

 double sum(int lim,...)

 {

 va_list ap; // declare object to hold arguments

 In this example, lim is the parmN parameter, and it will indicate the number of arguments in
the variable-argument list.

 After this, the function will use the va_start() macro, also defined in stdargs.h , to copy the
argument list to the va_list variable. The macro has two arguments: the va_list variable and
the parmN parameter. Continuing with the previous example, the va_list variable is called ap
and the parmN parameter is call lim , so the call would look like this:

 va_start(ap, lim); // initialize ap to argument list

 The next step is gaining access to the contents of the argument list. This involves using va_
arg() , another macro. It takes two arguments: a type va_list variable and a type name. The
first time it’s called, it returns the first item in the list; the next time it’s called, it returns the
next item, and so on. The type argument specifies the type of value returned. For example, if
the first argument in the list were a double and the second were an int , you could do this:

 double tic;

 int toc;

 ...

 tic = va_arg(ap, double); // retrieve first argument

 toc = va_arg(ap, int); // retrieve second argument

 Be careful. The argument type really has to match the specification. If the first argument is
10.0, the previous code for tic works fine. But if the argument is 10, the code may not work;
the automatic conversion of double to int that works for assignment doesn’t take place here.

 Finally, you should clean up by using the va_end() macro. It may, for example, free memory
dynamically allocated to hold the arguments. This macro takes a va_list variable as its
argument:

 va_end(ap); // clean up

 After you do this, the variable ap may not be usable unless you use va_start to reinitialize it.

ptg11524036

767Variable Arguments: stdarg.h

 Because va_arg() doesn’t provide a way to back up to previous arguments, it may be useful
to preserve a copy of the va_list type variable. C99 has added a macro for that purpose. It’s
called va_copy() . Its two arguments are both type va_list variables, and it copies the second
argument to the first:

 va_list ap;

 va_list apcopy;

 double

 double tic;

 int toc;

 ...

 va_start(ap, lim); // initialize ap to argument list

 va_copy(apcopy, ap); // make apcopy a copy of ap

 tic = va_arg(ap, double); // retrieve first argument

 toc = va_arg(ap, int); // retrieve second argument

 At this point, you could still retrieve the first two items from apcopy , even though they have
been removed from ap .

 Listing 16.21 is a short example of how the facilities can be used to create a function that sums
a variable number of arguments; here, the first argument to sum() is the number of items to be
summed.

 Listing 16.21 The varargs.c Program

 //varargs.c -- use variable number of arguments

 #include <stdio.h>

 #include <stdarg.h>

 double sum(int, ...);

 int main(void)

 {

 double s,t;

 s = sum(3, 1.1, 2.5, 13.3);

 t = sum(6, 1.1, 2.1, 13.1, 4.1, 5.1, 6.1);

 printf("return value for "

 "sum(3, 1.1, 2.5, 13.3): %g\n", s);

 printf("return value for "

 "sum(6, 1.1, 2.1, 13.1, 4.1, 5.1, 6.1): %g\n", t);

 return 0;

 }

 double sum(int lim,...)

 {

 va_list ap; // declare object to hold arguments

ptg11524036

768 Chapter 16 The C Preprocessor and the C Library

 double tot = 0;

 int i;

 va_start(ap, lim); // initialize ap to argument list

 for (i = 0; i < lim; i++)

 tot += va_arg(ap, double); // access each item in argument list

 va_end(ap); // clean up

 return tot;

 }

 Here is the output:

 return value for sum(3, 1.1, 2.5, 13.3): 16.9

 return value for sum(6, 1.1, 2.1, 13.1, 4.1, 5.1, 6.1): 31.6

 If you check the arithmetic, you’ll find that sum() did add three numbers to the first function
call and six numbers to the second.

 All in all, using variadic functions is more involved than using variadic macros, but the func-
tions have a greater range of application.

 Key Concepts

 The C standard doesn’t just describe the C language; it describes a package consisting of the
C language, the C preprocessor, and the standard C library. The preprocessor lets you shape
the compiling process, listing substitutions to be made, indicating which lines of code should
be compiled, and other aspects of compiler behavior. The C library extends the reach of the
language and provides prepackaged solutions to many programming problems.

 Summary

 The C preprocessor and the C library are two important adjuncts to the C language. The C
preprocessor, following preprocessor directives, adjusts your source code before it is compiled.
The C library provides many functions designed to help with tasks such as input, output, file
handling, memory management, sorting and searching, mathematical calculations, and string
processing, to name a few. Appendix B , Reference Section V lists the complete ANSI C library.

 Review Questions

 1. Here are groups of one or more macros followed by a source code line that uses them.
What code results in each case? Is it valid code? (Assume C variables have been declared.)

ptg11524036

769Review Questions

 a.

 #define FPM 5280 /* feet per mile */
 dist = FPM * miles;

 b.

 #define FEET 4
 #define POD FEET + FEET

 plort = FEET * POD;

 c.

 #define SIX = 6;
 nex = SIX;

 d.

 #define NEW(X) X + 5
 y = NEW(y);

 berg = NEW(berg) * lob;

 est = NEW(berg) / NEW(y);

 nilp = lob * NEW(-berg);

 2. Fix the definition in part d of question 1 to make it more reliable.

 3. Define a macro function that returns the minimum of two values.

 4. Define the EVEN_GT(X,Y) macro, which returns 1 if X is even and also greater than Y .

 5. Define a macro function that prints the representations and the values of two integer
expressions. For example, it might print

 3+4 is 7 and 4*12 is 48

 if its arguments are 3+4 and 4*12 .

 6. Create #define statements to accomplish the following goals:

 a. Create a named constant of value 25 .

 b. Have SPACE represent the space character.

 c. Have PS() represent printing the space character.

 d. Have BIG(X) represent adding 3 to X .

 e. Have SUMSQ(X,Y) represent the sums of the squares of X and Y .

ptg11524036

770 Chapter 16 The C Preprocessor and the C Library

 7. Define a macro that prints the name, value, and address of an int variable in the
following format:

 name: fop; value: 23; address: ff464016

 8. Suppose you have a block of code you want to skip over temporarily while testing a
program. How can you do so without actually removing the code from the file?

 9. Show a code fragment that prints out the date of preprocessing if the macro PR_DATE is
defined.

 10. The discussion of inline functions shows three different versions of a square() function.
How do the three differ from one another in terms of behavior?

 11. Create a macro using a generic selection expression that evaluates to the string
 "boolean" if the macro argument is type _Bool , and evaluates to "not boolean"
otherwise.

 12. What’s wrong with this program?

 #include <stdio.h>

 int main(int argc, char argv[])

 {

 printf("The square root of %f is %f\n", argv[1],

 sqrt(argv[1]));

 }

 13. Suppose scores is an array of 1000 int values that you want to sort into descending
order. And suppose you are using qsort() and a comparison function called comp() .

 a. What is a suitable call to qsort() ?

 b. What is a suitable definition for comp() ?

 14. Suppose data1 is an array of 100 double values and data2 is an array of 300 double
values.

 a. Write a memcpy() function call that copies the first 100 elements of data2 to
 data1 .

 b. Write a memcpy() function call that copies the last 100 elements of data2 to
 data1 .

 Programming Exercises

 1. Start developing a header file of preprocessor definitions that you want to use.

ptg11524036

771Programming Exercises

 2. The harmonic mean of two numbers is obtained by taking the inverses of the two
numbers, averaging them, and taking the inverse of the result. Use a #define directive
to define a macro “function” that performs this operation. Write a simple program that
tests the macro.

 3. Polar coordinates describe a vector in terms of magnitude and the counterclockwise angle
from the x-axis to the vector. Rectangular coordinates describe the same vector in terms
of x and y components (see Figure 16.3). Write a program that reads the magnitude and
angle (in degrees) of a vector and then displays the x and y components. The relevant
equations are these:

 x = r cos A y = r sin A

 To do the conversion, use a function that takes a structure containing the polar
coordinates and returns a structure containing the rectangular coordinates (or use
pointers to such structures, if you prefer).

 x

A

y

r

 Figure 16.3 Rectangular and polar coordinates.

 4. The ANSI library features a clock() function with this description:

 #include <time.h>

 clock_t clock (void);

 Here, clock_t is a type defined in time.h . The function returns the processor time,
which is given in some implementation-dependent units. (If the processor time is
unavailable or cannot be represented, the function returns a value of -1 .) However,
 CLOCKS_PER_SEC , also defined in time.h , is the number of processor time units per
second. Therefore, dividing the difference between two return values of clock() by
 CLOCKS_PER_SEC gives you the number of seconds elapsed between the two calls.
Typecasting the values to double before division enables you to get fractions of a second.
Write a function that takes a double argument representing a desired time delay and

ptg11524036

772 Chapter 16 The C Preprocessor and the C Library

then runs a loop until that amount of time has passed. Write a simple program that tests
the function.

 5. Write a function that takes as arguments the name of an array of type int elements, the
size of an array, and a value representing the number of picks. The function then should
select the indicated number of items at random from the array and prints them. No
array element is to be picked more than once. (This simulates picking lottery numbers or
jury members.) Also, if your implementation has time() (discussed in Chapter 12) or a
similar function available, use its output with srand() to initialize the rand() random-
number generator. Write a simple program that tests the function.

 6. Modify Listing 16.17 so that it uses an array of struct names elements (as defined after
the listing) instead of an array of double . Use fewer elements, and initialize the array
explicitly to a suitable selection of names.

 7. Here’s a partial program using a variadic function:

 #include <stdio.h>

 #include <stdlib.h>

 #include <stdarg.h>

 void show_array(const double ar[], int n);

 double * new_d_array(int n, ...);

 int main()

 {

 double * p1;

 double * p2;

 p1 = new_d_array(5, 1.2, 2.3, 3.4, 4.5, 5.6);

 p2 = new_d_array(4, 100.0, 20.00, 8.08, -1890.0);

 show_array(p1, 5);

 show_array(p2, 4);

 free(p1);

 free(p2);

 return 0;

 }

 The new_d_array() function takes an int argument and a variable number of double
arguments. The function returns a pointer to a block of memory allocated by malloc() .
The int argument indicates the number of elements to be in the dynamic array, and
the double values are used to initialize the elements, with the first value being assigned
to the first element, and so on. Complete the program by providing the code for show_
array() and new_d_array() .

ptg11524036

 17
 Advanced Data
Representation

 You will learn about the following in this chapter:

 ■ Functions:

 More malloc()

 ■ Using C to represent a variety of data types

 ■ New algorithms and increasing your ability to develop programs conceptually

 ■ Abstract data types (ADTs)

 Learning a computer language is like learning music, carpentry, or engineering. At first, you
work with the tools of the trade, playing scales, learning which end of the hammer to hold and
which end to avoid, solving countless problems involving falling, sliding, and balanced objects.
Acquiring and practicing skills is what you’ve been doing so far in this book, learning to create
variables, structures, functions, and the like. Eventually, however, you move to a higher level
in which using the tools is second nature and the real challenge is designing and creating a
project. You develop an ability to see the project as a coherent whole. This chapter concen-
trates on that higher level. You may find the material covered here a little more challenging
than the preceding chapters, but you may also find it more rewarding because it helps you
move from the role of apprentice to the role of craftsperson.

 We’ll start by examining a vital aspect of program design: the way a program represents data.
Often the most important aspect of program development is finding a good representation of
the data manipulated by that program. Getting data representation right can make writing the
rest of the program simple. By now you’ve seen C’s built-in data types: simple variables, arrays,
pointers, structures, and unions.

 Finding the right data representation, however, often goes beyond simply selecting a type. You
should also think about what operations will be necessary. That is, you should decide how to
store the data, and you should define what operations are valid for the data type. For example,
C implementations typically store both the C int type and the C pointer type as integers, but

ptg11524036

774 Chapter 17 Advanced Data Representation

the two types have different sets of valid operations. You can multiply one integer by another,
for example, but you can’t multiply a pointer by a pointer. You can use the * operator to deref-
erence a pointer, but that operation is meaningless for an integer. The C language defines the
valid operations for its fundamental types. However, when you design a scheme to represent
data, you might need to define the valid operations yourself. In C, you can do so by designing
C functions to represent the desired operations. In short, then, designing a data type consists of
deciding on how to store the data and of designing a set of functions to manage the data.

 You will also look at some algorithms , recipes for manipulating data. As a programmer, you will
acquire a repertoire of such recipes that you apply over and over again to similar problems.

 This chapter looks into the process of designing data types, a process that matches algorithms
to data representations. In it, you’ll meet some common data forms, such as the queue, the list,
and the binary search tree.

 You’ll also be introduced to the concept of the abstract data type (ADT). An ADT packages
methods and data representations in a way that is problem oriented rather than language
oriented. After you’ve designed an ADT, you can easily reuse it in different circumstances.
Understanding ADTs prepares you conceptually for entering the world of object-oriented
programming (OOP) and the C++ language.

 Exploring Data Representation

 Let’s begin by thinking about data. Suppose you had to create an address book program. What
data form would you use to store information? Because there’s a variety of information asso-
ciated with each entry, it makes sense to represent each entry with a structure. How do you
represent several entries? With a standard array of structures? With a dynamic array? With
some other form? Should the entries be alphabetized? Should you be able to search through
the entries by ZIP Code? By area code? The actions you want to perform might affect how you
decide to store the information. In short, you have a lot of design decisions to make before
plunging into coding.

 How would you represent a bitmapped graphics image that you want to store in memory? A
bitmapped image is one in which each pixel on the screen is set individually. In the days of
black-and-white screens, you could use one computer bit (1 or 0) to represent one pixel (on or
off), hence the name bitmapped . With color monitors, it takes more than one bit to describe a
single pixel. For example, you can get 256 colors if you dedicate 8 bits to each pixel. Now the
industry has moved to 65,536 colors (16 bits per pixel), 16,777,216 colors (24 bits per pixel),
2,147,483,648 colors (32 bits per pixel), and even beyond. If you have 32-bit colors and if your
monitor has a resolution of 2560×1440, you’ll need nearly 118 million bits (14MB) to repre-
sent a single screen of bitmapped graphics. Is this the way to go, or can you develop a way of
compressing the information? Should this compression be lossless (no data lost) or lossy (rela-
tively unimportant data lost)? Again, you have a lot of design decisions to make before diving
into coding.

ptg11524036

775Exploring Data Representation

 Let’s tackle a particular case of representing data. Suppose you want to write a program that
enables you to enter a list of all the movies (including videotapes, DVDs, and Blu-ray) you’ve
seen in a year. For each movie, you’d like to record a variety of information, such as the title,
the year it was released, the director, the lead actors, the length, the kind of film (comedy,
science fiction, romance, drivel, and so forth), your evaluation, and so on. That suggests using
a structure for each film and an array of structures for the list. To simplify matters, let’s limit
the structure to two members: the film title and your evaluation, a ranking on a 0-to-10 scale.
 Listing 17.1 shows a bare-bones implementation using this approach.

 Listing 17.1 The films1.c Program

 /* films1.c -- using an array of structures */

 #include <stdio.h>

 #include <string.h>

 #define TSIZE 45 /* size of array to hold title */

 #define FMAX 5 /* maximum number of film titles */

 struct film {

 char title[TSIZE];

 int rating;

 };

 char * s_gets(char * st, int n);

 int main(void)

 {

 struct film movies[FMAX];

 int i = 0;

 int j;

 puts("Enter first movie title:");

 while (i < FMAX && s_gets(movies[i].title, TSIZE) != NULL &&

 movies[i].title[0] != '\0')

 {

 puts("Enter your rating <0-10>:");

 scanf("%d", &movies[i++].rating);

 while(getchar() != '\n')

 continue;

 puts("Enter next movie title (empty line to stop):");

 }

 if (i == 0)

 printf("No data entered. ");

 else

 printf ("Here is the movie list:\n");

 for (j = 0; j < i; j++)

 printf("Movie: %s Rating: %d\n", movies[j].title,

 movies[j].rating);

ptg11524036

776 Chapter 17 Advanced Data Representation

 printf("Bye!\n");

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 The program creates an array of structures and then fills the array with data entered by the
user. Entry continues until the array is full (the FMAX test), until end-of-file (the NULL test) is
reached, or until the user presses the Enter key at the beginning of a line (the ‘\0’ test).

 This formulation has some problems. First, the program will most likely waste a lot of space
because most movies don’t have titles 40 characters long, but some movies do have long titles,
such as The Discreet Charm of the Bourgeoisie and Won Ton Ton, The Dog Who Saved Hollywood .
Second, many people will find the limit of five movies a year too restrictive. Of course, you can
increase that limit, but what would be a good value? Some people see 500 movies a year, so you
could increase FMAX to 500, but that still might be too small for some, yet it might waste enor-
mous amounts of memory for others. Also, some compilers set a default limit for the amount
of memory available for automatic storage class variables such as movies , and such a large array
could exceed that value. You can fix that by making the array a static or external array or by
instructing the compiler to use a larger stack, but that’s not fixing the real problem.

 The real problem here is that the data representation is too inflexible. You have to make deci-
sions at compile time that are better made at runtime. This suggests switching to a data repre-
sentation that uses dynamic memory allocation. You could try something like this:

 #define TSIZE 45 /* size of array to hold title */

 struct film {

 char title[TSIZE];

 int rating;

 };

ptg11524036

777Beyond the Array to the Linked List

 ...

 int n, i;

 struct film * movies; /* pointer to a structure */

 ...

 printf("Enter the maximum number of movies you'll enter:\n");

 scanf("%d", &n);

 movies = (struct film *) malloc(n * sizeof(struct film));

 Here, as in Chapter 12 , “Storage Classes, Linkage, and Memory Management,” you can use the
pointer movies just as though it were an array name:

 while (i < FMAX && s_gets(movies[i].title, TSIZE) != NULL &&

 movies[i].title[0] != '\0')

 By using malloc() , you can postpone determining the number of elements until the program
runs, so the program need not allocate 500 elements if only 20 are needed. However, it puts the
burden on the user to supply a correct value for the number of entries.

 Beyond the Array to the Linked List

 Ideally, you’d like to be able to add data indefinitely (or until the program runs out of memory)
without specifying in advance how many entries you’ll make and without committing the
program to allocating huge chunks of memory unnecessarily. You can do this by calling
 malloc() after each entry and allocating just enough space to hold the new entry. If the user
enters three films, the program calls malloc() three times. If the user enters 300 films, the
program calls malloc() 300 times.

 This fine idea raises a new problem. To see what it is, compare calling malloc() once, asking
for enough space for 300 film structures, and calling malloc() 300 times, each time asking
for enough space for one film structure. The first case allocates the memory as one contiguous
memory block and all you need to keep track of the contents is a single pointer-to- struct vari-
able (film) that points to the first structure in the block. Simple array notation lets the pointer
access each structure in the block, as shown in the preceding code segment. The problem with
the second approach is that there is no guarantee that consecutive calls to malloc() yield adja-
cent blocks of memory. This means the structures won’t necessarily be stored contiguously (see
 Figure 17.1). Therefore, instead of storing one pointer to a block of 300 structures, you need to
store 300 pointers, one for each independently allocated structure!

ptg11524036

778 Chapter 17 Advanced Data Representation

 One solution, which we won’t use, is to create a large array of pointers and assign values to the
pointers, one by one, as new structures are allocated:

 #define TSIZE 45 /* size of array to hold titles */

 #define FMAX 500 /* maximum number of film titles */

 struct film {

 char title[TSIZE];

 int rating;

 };

 ...

 struct film * movies[FMAX]; /* array of pointers to structures */

 int i;

 ...

 movies[i] = (struct film *) malloc (sizeof (struct film));

 This approach saves a lot of memory if you don’t use the full allotment of pointers, because an
array of 500 pointers takes much less memory than an array of 500 structures. It still wastes the
space occupied by unused pointers, however, and it still imposes a 500-structure limit.

movie[0]movie

struct film * movie;

movie = (struct film *) malloc(5*sizeof(struct film);

int i;

struct film * movies[s];

for (i = 0; i < 5; i++)

 movies[i] = (struct films *) malloc(sizeof(struct films));

movie[1] movie[2] movie[3] movie[4]

movies[0]

movies[4]

movies[3]

movies[1]

movies[2]

 Figure 17.1 Allocating structures in a block versus allocating them individually.

ptg11524036

779Beyond the Array to the Linked List

 There’s a better way. Each time you use malloc() to allocate space for a new structure, you
can also allocate space for a new pointer. “But,” you say, “then I need another pointer to keep
track of the newly allocated pointer, and that needs a pointer to keep track of it, and so on.”
The trick to avoiding this potential problem is to redefine the structure so that each structure
includes a pointer to the next structure. Then, each time you create a new structure, you can
store its address in the preceding structure. In short, you need to redefine the film structure
this way:

 #define TSIZE 45 /* size of array to hold titles */

 struct film {

 char title[TSIZE];

 int rating;

 struct film * next;

 };

 True, a structure can’t contain in itself a structure of the same type, but it can contain a pointer
to a structure of the same type. Such a definition is the basis for defining a linked list —a list in
which each item contains information describing where to find the next item.

 Before looking at C code for a linked list, let’s take a conceptual walk through such a list.
Suppose a user enters Modern Times as a title and 10 as a rating. The program would allocate
space for a film structure, copy the string Modern Times into the title member, and set the
 rating member to 10 . To indicate that no structure follows this one, the program would set
the next member pointer to NULL . (NULL , recall, is a symbolic constant defined in the stdio.h
file and represents the null pointer.) Of course, you need to keep track of where the first struc-
ture is stored. You can do this by assigning its address to a separate pointer that we’ll refer to as
the head pointer . The head pointer points to the first item in a linked list of items. Figure 17.2
represents how this structure looks. (The empty space in the title member is suppressed to
save space in the figure.)

Modern Times2240

2240

10 NULL

head title rating next

#define TSIZE 45

struct film {

 char title[TSIZE]

 int rating;

 struct film * next;

};

struct film * head;

 Figure 17.2 First item in a linked list.

ptg11524036

780 Chapter 17 Advanced Data Representation

 Now suppose the user enters a second movie and rating—for example, Midnight in Paris
and 8 . The program allocates space for a second film structure, storing the address of the new
structure in the next member of the first structure (overwriting the NULL previously stored
there) so that the next pointer of one structure points to the following structure in the linked
list. Then the program copies Midnight in Paris and 8 to the new structure and sets its next
member to NULL , indicating that it is now the last structure in the list. Figure 17.3 shows this
list of two items.

Modern Times2240

2240

10 2360

head title rating next

Midnight in Paris

2360

8 NULL

title rating next

 Figure 17.3 Linked list with two items.

 Each new movie will be handled the same way. Its address will be stored in the preceding struc-
ture, the new information goes into the new structure, and its next member is set to NULL ,
setting up a linked list like that shown in Figure 17.4 .

 Suppose you want to display the list. Each time you display an item, you can use the address
stored in the corresponding structure to locate the next item to be displayed. For this scheme
to work, however, you need a pointer to keep track of the very first item in the list because
no structure in the list stores the address of the first item. Fortunately, you’ve already accom-
plished this with the head pointer.

ptg11524036

781Beyond the Array to the Linked List

 Using a Linked List

 Now that you have a picture of how a linked list works, let’s implement it. Listing 17.2 modi-
fies Listing 17.1 so that it uses a linked list instead of an array to hold the movie information.

 Listing 17.2 The films2.c Program

 /* films2.c -- using a linked list of structures */

 #include <stdio.h>

 #include <stdlib.h> /* has the malloc prototype */

 #include <string.h> /* has the strcpy prototype */

 #define TSIZE 45 /* size of array to hold title */

 struct film {

 char title[TSIZE];

 int rating;

Modern Times2240

2240

10 2360

head title rating next

Midnight in Paris

2360

8 2100

title rating next

Star Wars

2100

9 4320

title rating next

Fetid Cheese

4320

1 NULL

title rating next

 Figure 17.4 Linked list with several items.

ptg11524036

782 Chapter 17 Advanced Data Representation

 struct film * next; /* points to next struct in list */

 };

 char * s_gets(char * st, int n);

 int main(void)

 {

 struct film * head = NULL;

 struct film * prev, * current;

 char input[TSIZE];

 /* Gather and store information */

 puts("Enter first movie title:");

 while (s_gets(input, TSIZE) != NULL && input[0] != '\0')

 {

 current = (struct film *) malloc(sizeof(struct film));

 if (head == NULL) /* first structure */

 head = current;

 else /* subsequent structures */

 prev->next = current;

 current->next = NULL;

 strcpy(current->title, input);

 puts("Enter your rating <0-10>:");

 scanf("%d", ¤t->rating);

 while(getchar() != '\n')

 continue;

 puts("Enter next movie title (empty line to stop):");

 prev = current;

 }

 /* Show list of movies */

 if (head == NULL)

 printf("No data entered. ");

 else

 printf ("Here is the movie list:\n");

 current = head;

 while (current != NULL)

 {

 printf("Movie: %s Rating: %d\n",

 current->title, current->rating);

 current = current->next;

 }

 /* Program done, so free allocated memory */

 current = head;

 while (current != NULL)

 {

 free(current);

ptg11524036

783Beyond the Array to the Linked List

 current = current->next;

 }

 printf("Bye!\n");

 return 0;

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 The program performs two tasks using the linked list. First, it constructs the list and fills it with
the incoming data. Second, it displays the list. Displaying is the simpler task, so let’s look at it
first.

 Displaying a List

 The idea is to begin by setting a pointer (call it current) to point to the first structure. Because
the head pointer (call it head) already points there, this code suffices:

 current = head;

 Then you can use pointer notation to access the members of that structure:

 printf("Movie: %s Rating: %d\n", current->title, current->rating);

 The next step is to reset the current pointer to point to the next structure in the list. That
information is stored in the next member of the structure, so this code accomplishes the task:

 current = current->next;

 After this is accomplished, repeat the whole process. When the last item in the list is displayed,
 current will be set to NULL , because that’s the value of the next member of the final structure.

ptg11524036

784 Chapter 17 Advanced Data Representation

You can use that fact to terminate the printing. Here’s all the code films2.c uses to display
the list:

 while (current != NULL)

 {

 printf("Movie: %s Rating: %d\n", current->title, current->rating);

 current = current->next;

 }

 Why not just use head instead of creating a new pointer (current) to march through the list?
Because using head would change the value of head , and the program would no longer have a
way to find the beginning of the list.

 Creating the List

 Creating the list involves three steps:

 1. Use malloc() to allocate enough space for a structure.

 2. Store the address of the structure.

 3. Copy the correct information into the structure.

 There’s no point in creating a structure if none is needed, so the program uses temporary
storage (the input array) to get the user’s choice for a movie name. If the user simulates EOF
from the keyboard or enters an empty line, the input loop quits:

 while (s_gets(input, TSIZE) != NULL && input[0] != '\0')

 If there is input, the program requests space for a structure and assigns its address to the
pointer variable current :

 current = (struct film *) malloc(sizeof(struct film));

 The address of the very first structure should be stored in the pointer variable head . The
address of each subsequent structure should be stored in the next member of the structure
that precedes it. Therefore, the program needs a way to know whether it’s dealing with the first
structure or not. A simple way is to initialize the head pointer to NULL when the program starts.
Then the program can use the value of head to decide what to do:

 if (head == NULL) /* first structure */

 head = current;

 else /* subsequent structures */

 prev->next = current;

 In this code, prev is a pointer that points to the structure allocated the previous time.

 Next, you have to set the structure members to the proper values. In particular, you should set
the next member to NULL to indicate that the current structure is the last one in the list. You

ptg11524036

785Beyond the Array to the Linked List

should copy the film title from the input array to the title member, and you should get a
value for the rating member. The following code does these things:

 current->next = NULL;

 strcpy(current->title, input);

 puts("Enter your rating <0-10>:");

 scanf("%d", ¤t->rating);

 Because the call to s_gets() limits the input to TSIZE – 1 characters, the string in the input
array will fit into the title member, so it’s safe to use strcpy() .

 Finally, you should prepare the program for the next cycle of the input loop. In particular, you
need to set prev to point to the current structure, because it will become the previous structure
after the next movie name is entered and the next structure is allocated. The program sets this
pointer at the end of the loop:

 prev = current;

 Does it work? Here is a sample run:

 Enter first movie title:

 Spirited Away

 Enter your rating <0-10>:

 9

 Enter next movie title (empty line to stop):

 The Duelists

 Enter your rating <0-10>:

 8

 Enter next movie title (empty line to stop):

 Devil Dog: The Mound of Hound

 Enter your rating <0-10>:

 1

 Enter next movie title (empty line to stop):

 Here is the movie list:

 Movie: Spirited Away Rating: 9

 Movie: The Duelists Rating: 8

 Movie: Devil Dog: The Mound of Hound Rating: 1

 Bye!

 Freeing List Memory

 In many environments the program will free the memory used by malloc() when the program
terminates, but it’s best to get into the habit of balancing calls to malloc() with calls to
 free() . Therefore, the program cleans up its memory use by applying free() to each of the
allocated structures:

 current = head;

 while (current != NULL)

ptg11524036

786 Chapter 17 Advanced Data Representation

 {

 free(current);

 current = current->next;

 }

 Afterthoughts

 The films2.c program is a bit skimpy. For example, it fails to check whether malloc() finds
the requested memory, and it doesn’t have any provisions for deleting items from the list.
These failings can be fixed, however. For example, you can add code that checks whether
 malloc() ’s return value is NULL (the sign it failed to obtain the memory you wanted). If the
program needs to delete entries, you can write some more code to do that.

 This ad hoc approach to solving problems and adding features as the need arises isn’t always
the best programming method. On the other hand, you usually can’t anticipate everything
a program needs to do. As programming projects get larger, the model of a programmer or
programming team planning everything in advance becomes more and more unrealistic. It has
been observed that the most successful large programs are those that evolved step-by-step from
successful small programs.

 Given that you may have to revise your plans, it’s a good idea to develop your original ideas in
a way that simplifies modification. The example in Listing 17.2 doesn’t follow this precept. In
particular, it tends to intermingle coding details and the conceptual model. For example, in the
sample program, the conceptual model is that you add items to a list. The program obscures
that interface by pushing details such as malloc() and the current->next pointer into the
foreground. It would be nice if you could write a program in a way that made it obvious you’re
adding something to a list and in which bookkeeping details, such as calling memory-manage-
ment functions and setting pointers, were hidden. Separating the user interface from the details
will make the program easier to understand and to update. By making a fresh start, you can
meet these targets. Let’s see how.

 Abstract Data Types (ADTs)

 In programming, you try to match the data type to the needs of a programming problem. For
example, you would use the int type to represent the number of shoes you own and the float
or double type to represent your average cost per pair of shoes. In the movie examples, the
data formed a list of items, each of which consisted of a movie name (a C string) and rating
(an int). No basic C type matches that description, so we defined a structure to represent indi-
vidual items, and then we devised a couple methods for tying together a series of structures
to form a list. In essence, we used C’s capabilities to design a new data type that matched our
needs, but we did so unsystematically. Now we’ll take a more systematic approach to defining
types.

 What constitutes a type? A type specifies two kinds of information: a set of properties and a set
of operations. For example, the int type’s property is that it represents an integer value and,

ptg11524036

787Abstract Data Types (ADTs)

therefore, shares the properties of integers. The allowed arithmetic operations are changing
the sign, adding two int s, subtracting two int s, multiplying two int s, dividing one int by
another, and taking the modulus of one int with respect to another. When you declare a vari-
able to be an int , you’re saying that these and only these operations can affect it.

 Note Integer Properties

 Behind the C int type is a more abstract concept, that of the integer . Mathematicians can,
and do, define the properties of integers in a formal abstract manner. For example, if N and
M are integers, N + M = M + N, or for every two integers N and M, there is an integer S, such
that N + M = S. If N + M = S and if N + Q = S, then M = Q. You can think of mathematics
as supplying the abstract concept of the integer and of C as supplying an implementation of
that concept. For example, C provides a means of storing an integer and of performing integer
operations such as addition and multiplication. Note that providing support for arithmetic opera-
tions is an essential part of representing integers. The int type would be much less useful if
all you could do was store a value but not use it in arithmetic expressions. Note also that the
implementation doesn’t do a perfect job of representing integers. For example, there are an
infinite number of integers, but a 2-byte int can represent only 65,536 of them; don’t confuse
the abstract idea with a particular implementation.

 Suppose you want to define a new data type. First, you have to provide a way to store the data,
perhaps by designing a structure. Second, you have to provide ways of manipulating the data.
For example, consider the films2.c program (Listing 17.2). It has a linked set of structures to
hold the information and supplies code for adding information and displaying information.
This program, however, doesn’t do these things in a way that makes it clear we were creating a
new type. What should we have done?

 Computer science has developed a very successful way to define new data types. It’s a three-
step process that moves from the abstract to the concrete:

 1. Provide an abstract description of the type’s properties and of the operations you can
perform on the type. This description shouldn’t be tied to any particular implementation.
It shouldn’t even be tied to a particular programming language. Such a formal abstract
description is called an abstract data type (ADT).

 2. Develop a programming interface that implements the ADT. That is, indicate how to
store the data and describe a set of functions that perform the desired operations. In C,
for example, you might supply a structure definition along with prototypes for functions
to manipulate the structures. These functions play the same role for the user-defined type
that C’s built-in operators play for the fundamental C types. Someone who wants to use
the new type will use this interface for her or his programming.

 3. Write code to implement the interface. This step is essential, of course, but the
programmer using the new type need not be aware of the details of the implementation.

 Let’s work through an example to see how this process works. Because we’ve already invested
some effort into the movie listing example, let’s redo it using the new approach.

ptg11524036

788 Chapter 17 Advanced Data Representation

 Getting Abstract

 Basically, all you need for the movie project is a list of items. Each item contains a movie name
and a rating. You need to be able to add new items to the end of the list, and you need to be
able to display the contents of the list. Let’s call the abstract type that will handle these needs
a list . What properties should a list have? Clearly, a list should be able to hold a sequence of
items. That is, a list can hold several items, and these items are arranged in some kind of order,
so you can speak of the first item in a list or of the second item or of the last item. Next, the
list type should support operations such as adding an item to the list. Here are some useful
operations:

 ■ Initializing a list to empty

 ■ Adding an item to the end of a list

 ■ Determining whether the list is empty

 ■ Determining whether the list is full

 ■ Determining how many items are in the list

 ■ Visiting each item in a list to perform some action, such as displaying the item

 We don’t need any further operations for this project, but a more general list of operations for
lists might include the following:

 ■ Inserting an item anywhere in the list

 ■ Removing an item from the list

 ■ Retrieving an item from the list (list left unaltered)

 ■ Replacing one item in the list with another

 ■ Searching for an item in the list

 The informal, but abstract, definition of a list, then, is that it is a data object capable of holding
a sequence of items and to which you can apply any of the preceding operations. This defini-
tion doesn’t state what kind of items can be stored in the list. It doesn’t specify whether an
array or a linked set of structures or some other data form should be used to hold the items.
It doesn’t dictate what method to use, for example, to find the number of elements in a list.
These matters are all details left to the implementation.

 To keep the example simple, let’s adopt a simplified list as the abstract data type, one that
embodies only the features needed for the movie project. Here’s a summary of the type:

 Type Name: Simple List

 Type Properties: Can hold a sequence of items.

 Type Operations: Initialize list to empty.

 Determine whether list is empty.

 Determine whether list is full.

ptg11524036

789Abstract Data Types (ADTs)

 Determine number of items in the list.

 Add item to end of list.

 Traverse list, processing each item in list.

 Empty the list.

 The next step is to develop a C-language interface for the simple list ADT.

 Building an Interface

 The interface for the simple list has two parts. The first part describes how the data will be
represented, and the second part describes functions that implement the ADT operations. For
example, there will be functions for adding an item to a list and for reporting the number of
items in the list. The interface design should parallel the ADT description as closely as possible.
Therefore, it should be expressed in terms of some general Item type instead of in terms of
some specific type, such as int or struct film . One way to do this is to use C’s typedef
facility to define Item as the needed type:

 #define TSIZE 45 /* size of array to hold title */

 struct film

 {

 char title[TSIZE];

 int rating;

 };

 typedef struct film Item;

 Then you can use the Item type for the rest of the definitions. If you later want a list of some
other form of data, you can redefine the Item type and leave the rest of the interface definition
unchanged.

 Having defined Item , you now have to decide how to store items of that type. This step really
belongs to the implementation stage, but making a decision now makes the example easier to
follow. The linked structure approach worked pretty well in the films2.c program, so let’s
adapt it as shown here:

 typedef struct node

 {

 Item item;

 struct node * next;

 } Node;

 typedef Node * List;

 In a linked list implementation, each link is called a node. Each node contains information that
forms the contents of the list along with a pointer to the next node. To emphasize this termi-
nology, we’ve used the tag name node for a node structure, and we’ve used typedef to make

ptg11524036

790 Chapter 17 Advanced Data Representation

 Node the type name for a struct node structure. Finally, to manage a linked list, we need a
pointer to its beginning, and we’ve used typedef to make List the name for a pointer of this
type. Therefore, the declaration

 List movies;

 establishes movies as a pointer suitable for referring to a linked list.

 Is this the only way to define the List type? No. For example, you could incorporate a variable
to keep track of the number of entries:

 typedef struct list

 {

 Node * head; /* pointer to head of list */

 int size; /* number of entries in list */

 } List; /* alternative definition of list */

 You could add a second pointer to keep track of the end of the list. Later, you’ll see an example
that does that. For now, let’s stick to the first definition of a List type. The important point is
that you should think of the declaration

 List movies;

 as establishing a list, not as establishing a pointer to a node or as establishing a structure. The
exact data representation of movies is an implementation detail that should be invisible at the
interface level.

 For example, a program should initialize the head pointer to NULL when starting out, but you
should not use code like this:

 movies = NULL;

 Why not? Because later you might find you like the structure implementation of a List type
better, and that would require the following initializations:

 movies.next = NULL;

 movies.size = 0;

 Anyone using the List type shouldn’t have to worry about such details. Instead, they should
be able do something along the following lines:

 InitializeList(movies);

 Programmers need to know only that they should use the InitializeList() function to
initialize a list. They don’t have to know the exact data implementation of a List variable.
This is an example of data hiding , the art of concealing details of data representation from the
higher levels of programming.

 To guide the user, you can supply a function prototype along these lines:

 /* operation: initialize a list */

 /* preconditions: plist points to a list */

ptg11524036

791Abstract Data Types (ADTs)

 /* postconditions: the list is initialized to empty */

 void InitializeList(List * plist);

 There are three points you should notice. First, the comments outline preconditions —that is,
conditions that should hold before the function is called. Here, for example, you need a list to
initialize. Second, the comments outline postconditions —that is, conditions that should hold
after the function executes. Finally, the function uses a pointer to a list instead of a list as its
argument, so this would be the function call:

 InitializeList(&movies);

 The reason is that C passes arguments by value, so the only way a C function can alter a vari-
able in the calling program is by using a pointer to that variable. Here the restrictions of the
language make the interface deviate slightly from the abstract description.

 The C way to tie all the type and function information into a single package is to place the type
definitions and function prototypes (including precondition and postcondition comments) in
a header file. This file should supply all the information a programmer needs to use the type.
 Listing 17.3 shows a header file for the simple list type. It defines a particular structure as the
 Item type, and then it defines Node in terms of Item and it defines List in terms of Node . The
functions representing list operations then use Item types and List types as arguments. If the
function needs to modify an argument, it uses a pointer to the corresponding type instead of
using the type directly. The file capitalizes each function name as a way of marking it as part of
an interface package. Also, the file uses the #ifndef technique discussed in Chapter 16 , “The C
Preprocessor and the C Library,” to protect against multiple inclusions of a file. If your compiler
doesn’t support the C99 bool type, you can replace

 #include <stdbool.h> /* C99 feature */

 with this in the header file:

 enum bool {false, true}; /* define bool as type, false, true as values */

 Listing 17.3 The list.h Interface Header File

 /* list.h -- header file for a simple list type */

 #ifndef LIST_H_

 #define LIST_H_

 #include <stdbool.h> /* C99 feature */

 /* program-specific declarations */

 #define TSIZE 45 /* size of array to hold title */

 struct film

 {

 char title[TSIZE];

 int rating;

 };

ptg11524036

792 Chapter 17 Advanced Data Representation

 /* general type definitions */

 typedef struct film Item;

 typedef struct node

 {

 Item item;

 struct node * next;

 } Node;

 typedef Node * List;

 /* function prototypes */

 /* operation: initialize a list */

 /* preconditions: plist points to a list */

 /* postconditions: the list is initialized to empty */

 void InitializeList(List * plist);

 /* operation: determine if list is empty */

 /* plist points to an initialized list */

 /* postconditions: function returns True if list is empty */

 /* and returns False otherwise */

 bool ListIsEmpty(const List *plist);

 /* operation: determine if list is full */

 /* plist points to an initialized list */

 /* postconditions: function returns True if list is full */

 /* and returns False otherwise */

 bool ListIsFull(const List *plist);

 /* operation: determine number of items in list */

 /* plist points to an initialized list */

 /* postconditions: function returns number of items in list */

 unsigned int ListItemCount(const List *plist);

 /* operation: add item to end of list */

 /* preconditions: item is an item to be added to list */

 /* plist points to an initialized list */

 /* postconditions: if possible, function adds item to end */

 /* of list and returns True; otherwise the */

 /* function returns False */

 bool AddItem(Item item, List * plist);

 /* operation: apply a function to each item in list */

 /* plist points to an initialized list */

ptg11524036

793Abstract Data Types (ADTs)

 /* pfun points to a function that takes an */

 /* Item argument and has no return value */

 /* postcondition: the function pointed to by pfun is */

 /* executed once for each item in the list */

 void Traverse (const List *plist, void (* pfun)(Item item));

 /* operation: free allocated memory, if any */

 /* plist points to an initialized list */

 /* postconditions: any memory allocated for the list is freed */

 /* and the list is set to empty */

 void EmptyTheList(List * plist);

 #endif

 Only the InitializeList() , AddItem() , and EmptyTheList() functions modify the list,
so, technically, they are the only methods requiring a pointer argument. However, it can get
confusing if the user has to remember to pass a List argument to some functions and an
address of a List as the argument to others. So, to simplify the user’s responsibilities, all the
functions use pointer arguments.

 One of the prototypes in the header file is a bit more complex than the others:

 /* operation: apply a function to each item in list */

 /* plist points to an initialized list */

 /* pfun points to a function that takes an */

 /* Item argument and has no return value */

 /* postcondition: the function pointed to by pfun is */

 /* executed once for each item in the list */

 void Traverse (const List *plist, void (* pfun)(Item item));

 The argument pfun is a pointer to a function. In particular, it is a pointer to a function that
takes an item value as an argument and that has no return value. As you might recall from
 Chapter 14 , “Structures and Other Data Forms,” you can pass a pointer to a function as an
argument to a second function, and the second function can then use the pointed-to function.
Here, for example, you can let pfun point to a function that displays an item. The Traverse()
function would then apply this function to each item in the list, thus displaying the whole list.

 Using the Interface

 Our claim is that you should be able to use this interface to write a program without knowing
any further details—for example, without knowing how the functions are written. Let’s write a
new version of the movie program right now before we write the supporting functions. Because
the interface is in terms of List and Item types, the program should be phrased in those terms.
Here’s a pseudocode representation of one possible plan:

 Create a List variable.

 Create an Item variable.

ptg11524036

794 Chapter 17 Advanced Data Representation

 Initialize the list to empty.

 While the list isn't full and while there's more input:

 Read the input into the Item variable.

 Add the item to the end of the list.

 Visit each item in the list and display it.

 The program shown in Listing 17.4 follows this basic plan, with some error-checking. Note
how it makes use of the interface described in the list.h file (Listing 17.3). Also note that the
listing has code for the showmovies() function, which conforms to the prototype required by
 Traverse() . Therefore, the program can pass the pointer showmovies to Traverse() so that
 Traverse() can apply the showmovies() function to each item in the list. (Recall that the
name of a function is a pointer to the function.)

 Listing 17.4 The films3.c Program

 /* films3.c -- using an ADT-style linked list */

 /* compile with list.c */

 #include <stdio.h>

 #include <stdlib.h> /* prototype for exit() */

 #include "list.h" /* defines List, Item */

 void showmovies(Item item);

 char * s_gets(char * st, int n);

 int main(void)

 {

 List movies;

 Item temp;

 /* initialize */

 InitializeList(&movies);

 if (ListIsFull(&movies))

 {

 fprintf(stderr,"No memory available! Bye!\n");

 exit(1);

 }

 /* gather and store */

 puts("Enter first movie title:");

 while (s_gets(temp.title, TSIZE) != NULL && temp.title[0] != '\0')

 {

 puts("Enter your rating <0-10>:");

 scanf("%d", &temp.rating);

 while(getchar() != '\n')

 continue;

 if (AddItem(temp, &movies)==false)

 {

ptg11524036

795Abstract Data Types (ADTs)

 fprintf(stderr,"Problem allocating memory\n");

 break;

 }

 if (ListIsFull(&movies))

 {

 puts("The list is now full.");

 break;

 }

 puts("Enter next movie title (empty line to stop):");

 }

 /* display */

 if (ListIsEmpty(&movies))

 printf("No data entered. ");

 else

 {

 printf ("Here is the movie list:\n");

 Traverse(&movies, showmovies);

 }

 printf("You entered %d movies.\n", ListItemCount(&movies));

 /* clean up */

 EmptyTheList(&movies);

 printf("Bye!\n");

 return 0;

 }

 void showmovies(Item item)

 {

 printf("Movie: %s Rating: %d\n", item.title,

 item.rating);

 }

 char * s_gets(char * st, int n)

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

ptg11524036

796 Chapter 17 Advanced Data Representation

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 Implementing the Interface

 Of course, you still have to implement the List interface. The C approach is to collect the
function definitions in a file called list.c . The complete program, then, consists of three
files: list.h , which defines the data structures and provides prototypes for the user inter-
face, list.c , which provides the function code to implement the interface, and films3.c ,
which is a source code file that applies the list interface to a particular programming problem.
 Listing 17.5 shows one possible implementation of list.c . To run the program, you must
compile both films3.c and list.c and link them. (You might want to review the discussion
in Chapter 9 , “Functions,” on compiling multiple-file programs.) Together, the files list.h ,
 list.c , and films3.c constitute a complete program (see Figure 17.5).

 Listing 17.5 The list.c Implementation File

 /* list.c -- functions supporting list operations */

 #include <stdio.h>

 #include <stdlib.h>

 #include "list.h"

 /* local function prototype */

 static void CopyToNode(Item item, Node * pnode);

 /* interface functions */

 /* set the list to empty */

 void InitializeList(List * plist)

 {

 * plist = NULL;

 }

 /* returns true if list is empty */

 bool ListIsEmpty(const List * plist)

 {

 if (*plist == NULL)

 return true;

 else

 return false;

 }

ptg11524036

797Abstract Data Types (ADTs)

 /* returns true if list is full */

 bool ListIsFull(const List * plist)

 {

 Node * pt;

 bool full;

 pt = (Node *) malloc(sizeof(Node));

 if (pt == NULL)

 full = true;

 else

 full = false;

 free(pt);

 return full;

 }

 /* returns number of nodes */

 unsigned int ListItemCount(const List * plist)

 {

 unsigned int count = 0;

 Node * pnode = *plist; /* set to start of list */

 while (pnode != NULL)

 {

 ++count;

 pnode = pnode->next; /* set to next node */

 }

 return count;

 }

 /* creates node to hold item and adds it to the end of */

 /* the list pointed to by plist (slow implementation) */

 bool AddItem(Item item, List * plist)

 {

 Node * pnew;

 Node * scan = *plist;

 pnew = (Node *) malloc(sizeof(Node));

 if (pnew == NULL)

 return false; /* quit function on failure */

 CopyToNode(item, pnew);

 pnew->next = NULL;

 if (scan == NULL) /* empty list, so place */

ptg11524036

798 Chapter 17 Advanced Data Representation

 plist = pnew; / pnew at head of list */

 else

 {

 while (scan->next != NULL)

 scan = scan->next; /* find end of list */

 scan->next = pnew; /* add pnew to end */

 }

 return true;

 }

 /* visit each node and execute function pointed to by pfun */

 void Traverse (const List * plist, void (* pfun)(Item item))

 {

 Node * pnode = *plist; /* set to start of list */

 while (pnode != NULL)

 {

 (*pfun)(pnode->item); /* apply function to item */

 pnode = pnode->next; /* advance to next item */

 }

 }

 /* free memory allocated by malloc() */

 /* set list pointer to NULL */

 void EmptyTheList(List * plist)

 {

 Node * psave;

 while (*plist != NULL)

 {

 psave = (*plist)->next; /* save address of next node */

 free(*plist); /* free current node */

 plist = psave; / advance to next node */

 }

 }

 /* local function definition */

 /* copies an item into a node */

 static void CopyToNode(Item item, Node * pnode)

 {

 pnode->item = item; /* structure copy */

 }

ptg11524036

799Abstract Data Types (ADTs)

 Program Notes

 The list.c file has many interesting points. For one, it illustrates when you might use func-
tions with internal linkage. As described in Chapter 12 , functions with internal linkage are
known only in the file where they are defined. When implementing an interface, you might
find it convenient sometimes to write auxiliary functions that aren’t part of the official inter-
face. For instance, the example uses the function CopyToNode() to copy a type Item value to
a type Item variable. Because this function is part of the implementation but not part of the
interface, we hid it in the list.c file by using the static storage class qualifier. Now, let’s
examine the other functions.

list.h

/* list.h--header file for a simple list type */

/* program-specific declarations */

#define TSIZE 45 /* size of array to hold title */

struct film

{

 char title[TSIZE];

 int rating;

};

.

.

.

void Traverse (List 1, void (* pfun)(Item item));

films3.c

/* films3.c -- using and ADT-style linked list */

#include <stdio.h>

#include <stdlib.h> /* prototype for exit() */

#include "list.h"

void showmovies(Item item);

int main(void)

{

.

.

.

}

list.c

/* list.c--functions supporting list operations */

#include<stdio.h>

#include<stdlib.h>

#include "list.h"

.

.

.

/* copies an item into node */

static void CopyToNode (Item item, Node * pnode)

{

pnode->item = item; /* structure copy */

}

 Figure 17.5 The three parts of a program package.

ptg11524036

800 Chapter 17 Advanced Data Representation

 The InitializeList() function initializes a list to empty. In our implementation, that means
setting a type List variable to NULL . As mentioned earlier, this requires passing a pointer to the
 List variable to the function.

 The ListIsEmpty() function is quite simple, but it does depend on the list variable being set
to NULL when the list is empty. Therefore, it’s important to initialize a list before first using
the ListIsEmpty() function. Also, if you were to extend the interface to include deleting
items, you should make sure the deletion function resets the list to empty when the last item
is deleted. With a linked list, the size of the list is limited by the amount of memory available.
The ListIsFull() function tries to allocate enough space for a new item. If it fails, the list
is full. If it succeeds, it has to free the memory it just allocated so that it is available for a real
item.

 The ListItemCount() function uses the usual linked-list algorithm to traverse the list, count-
ing items as it goes:

 unsigned int ListItemCount(const List * plist)

 {

 unsigned int count = 0;

 Node * pnode = *plist; /* set to start of list */

 while (pnode != NULL)

 {

 ++count;

 pnode = pnode->next; /* set to next node */

 }

 return count;

 }

 The AddItem() function is the most elaborate of the group:

 bool AddItem(Item item, List * plist)

 {

 Node * pnew;

 Node * scan = *plist;

 pnew = (Node *) malloc(sizeof(Node));

 if (pnew == NULL)

 return false; /* quit function on failure */

 CopyToNode(item, pnew);

 pnew->next = NULL;

 if (scan == NULL) /* empty list, so place */

 plist = pnew; / pnew at head of list */

 else

 {

 while (scan->next != NULL)

ptg11524036

801Abstract Data Types (ADTs)

 scan = scan->next; /* find end of list */

 scan->next = pnew; /* add pnew to end */

 }

 return true;

 }

 The first thing the AddItem() function does is allocate space for a new node. If this succeeds,
the function uses CopyToNode() to copy the item to the node. Then it sets the next member
of the node to NULL . This, as you’ll recall, indicates that the node is the last node in the
linked list. Finally, after creating the node and assigning the correct values to its members,
the function attaches the node to the end of the list. If the item is the first item added to the
list, the program sets the head pointer to the first item. (Remember, AddItem() is called with
the address of the head pointer as its second argument, so * plist is the value of the head
pointer.) Otherwise, the code marches through the linked list until it finds the item having its
 next member set to NULL . That node is currently the last node, so the function resets its next
member to point to the new node.

 Good programming practice dictates that you call ListIsFull() before trying to add an item
to the list. However, a user might fail to observe this dictate, so AddItem() checks for itself
whether malloc() has succeeded. Also, it’s possible a user might do something else to allocate
memory between calling ListIsFull() and calling AddItem() , so it’s best to check whether
 malloc() worked.

 The Traverse() function is similar to the ListItemCount() function with the addition of
applying a function to each item in the list:

 void Traverse (const List * plist, void (* pfun)(Item item))

 {

 Node * pnode = *plist; /* set to start of list */

 while (pnode != NULL)

 {

 (*pfun)(pnode->item); /* apply function to item */

 pnode = pnode->next; /* advance to next item */

 }

 }

 Recall that pnode->item represents the data stored in a node and that pnode->next identifies
the next node in the linked list. For example, the function call

 Traverse(movies, showmovies);

 applies the showmovies() function to each item in the list.

 Finally, the EmptyTheList() function frees the memory previously allocated using malloc() :

 void EmptyTheList(List * plist)

 {

ptg11524036

802 Chapter 17 Advanced Data Representation

 Node * psave;

 while (*plist != NULL)

 {

 psave = (*plist)->next; /* save address of next node */

 free(*plist); /* free current node */

 plist = psave; / advance to next node */

 }

 }

 The implementation indicates an empty list by having the List variable being set to NULL .
Therefore, this function needs to be passed the address of the List variable to be able to reset
it. Because List already is a pointer, plist is a pointer to a pointer. Thus, within the code, the
expression *plist is type pointer-to- Node . When the list terminates, *plist is NULL , meaning
the original actual argument is now set to NULL .

 The code saves the address of the next node because the call to free() , in principle, may make
the contents of the current node (the one pointed to by *plist) no longer available.

 Note The Limitations of const

 Several of the list-handling functions have const List * plist for a parameter. This indi-
cates the intent that these functions don’t alter the list. Here, const does provide some pro-
tection. It prevents *plist (the quantity to which plist points) from being changed. In this
program, plist points to movies , so const prevents those functions from changing movies ,
which, in turn, points to the first link in the list. Therefore, code such as this is not allowed in,
say, ListItemCount() :
 *plist = (*plist)->next; // not allowed if *plist is const

 This is good, because changing *plist , and, hence, movies, would cause the program
to lose track of the data. However, the fact that *plist and movies are treated as const
doesn’t mean that data pointed to by *plist or movies is const . For example, code such as
this is allowed:
 (*plist)->item.rating = 3; // allowed even if *plist is const

 That’s because this code doesn’t change *plist ; it changes data that *plist points to. The
moral is that you can’t necessarily rely on const to catch programming errors that accidentally
modify data.

 Contemplating Your Work

 Take a little time now to evaluate what the ADT approach has done for you. First, compare
 Listing 17.2 with Listing 17.4 . Both programs use the same fundamental method (dynamic allo-
cation of linked structures) to solve the movie listing problem, but Listing 17.2 exposes all the
programming plumbing, putting malloc() and prev->next into public view. Listing 17.4 , on
the other hand, hides these details and expresses the program in a language that relates directly

ptg11524036

803Abstract Data Types (ADTs)

to the tasks. That is, it talks about creating a list and adding items to the list, not about calling
memory functions or resetting pointers. In short, Listing 17.4 expresses the program in terms of
the problem to be solved, not in terms of the low-level tools needed to solve the problem. The
ADT version is oriented to the end user’s concerns and is much easier to read.

 Next, the list.h and list.c files together constitute a reusable resource. If you need another
simple list, just haul out these files. Suppose you need to store an inventory of your relatives:
names, relationships, addresses, and phone numbers. First, you would go to the list.h file and
redefine the Item type:

 typedef struct itemtag

 {

 char fname[14];

 char lname [24];

 char relationship[36];

 char address [60];

 char phonenum[20];

 } Item;

 Next... well, that’s all you have to do in this case because all the simple list functions are
defined in terms of the Item type. In some cases, you would also have to redefine the
 CopyToNode() function. For example, if an item were an array, you couldn’t copy it by
assignment.

 Another important point is that the user interface is defined in terms of abstract list operations,
not in terms of some particular set of data representations and algorithms. This leaves you free
to fiddle with the implementation without having to redo the final program. For example, the
current AddItem() function is a bit inefficient because it always starts at the beginning of the
list and then searches for the end. You can fix this problem by keeping track of the end of the
list. For example, you can redefine the List type this way:

 typedef struct list

 {

 Node * head; /* points to head of list */

 Node * end; /* points to end of list */

 } List;

 Of course, you would then have to rewrite the list-processing functions using this new defini-
tion, but you wouldn’t have to change a thing in Listing 17.4 . This sort of isolating implemen-
tation from the final interface is particularly useful for large programming projects. It’s called
 data hiding because the detailed data representation is hidden from the final user.

 Note that this particular ADT doesn’t even force you to implement the simple list as a linked
list. Here’s another possibility:

 #define MAXSIZE 100

 typedef struct list

 {

 Item entries[MAXSIZE]; /* array of items */

ptg11524036

804 Chapter 17 Advanced Data Representation

 int items; /* number of items in list */

 } List;

 Again, this would require rewriting the list.c file, but the program using the list doesn’t need
to be changed.

 Finally, think of the benefits this approach provides for the program-development process. If
something is not working right, you probably can localize the problem to a single function. If
you think of a better way to do one of the tasks, such as adding an item, you just have to rewrite
that one function. If you need a new feature, you can think in terms of adding a new function to
the package. If you think that an array or double-linked list would be better, you can rewrite the
implementation without having to modify the programs that use the implementation.

 Getting Queued with an ADT

 The abstract data type approach to programming in C, as you’ve seen, involves the following
three steps:

 1. Describing a type, including its operations, in an abstract, general fashion

 2. Devising a function interface to represent the new type

 3. Writing detailed code to implement the interface

 You’ve seen this approach applied to a simple list. Now, apply it to something slightly more
complex: the queue.

 Defining the Queue Abstract Data Type

 A queue is a list with two special properties. First, new items can be added only to the end of
the list. In this respect, the queue is like the simple list. Second, items can be removed from
the list only at the beginning. You can visualize a queue as a line of people buying tickets to a
theater. You join the line at the end, and you leave the line at the front, after purchasing your
tickets. A queue is a first in, first out (FIFO) data form, just the way a movie line is (if no one
cuts into the line). Once again, let’s frame an informal, abstract definition, as shown here:

 Type Name: Queue

 Type Properties: Can hold an ordered sequence of items.

 Type Operations: Initialize queue to empty.

 Determine whether queue is empty.

 Determine whether queue is full.

 Determine number of items in the queue.

 Add item to rear of queue.

 Remove and recover item from front of queue.

 Empty the queue.

ptg11524036

805Getting Queued with an ADT

 Defining an Interface

 The interface definition will go into a file called queue.h . We’ll use C’s typedef facility to
create names for two types: Item and Queue . The exact implementation for the corresponding
structures should be part of the queue.h file, but conceptually, designing the structures is part
of the detailed implementation stage. For the moment, just assume that the types have been
defined and concentrate on the function prototypes.

 First, consider initialization. It involves altering a Queue type, so the function should take the
address of a Queue as an argument:

 void InitializeQueue (Queue * pq);

 Next, determining whether the queue is empty or full involves a function that should return
a true or false value. Here we assume that the C99 stdbool.h header file is available. If it’s
not, you can use type int or define a bool type yourself. Because the function doesn’t alter
the queue, it can take a Queue argument. On the other hand, it can be faster and less memory
intensive to just pass the address of a Queue , depending on how large a Queue -type object
is. Let’s try that approach. Another advantage is that this way all the functions will take an
address as an argument. To indicate that these functions don’t change a queue, you can, and
should, use the const qualifier:

 bool QueueIsFull(const Queue * pq);

 bool QueueIsEmpty (const Queue * pq);

 Paraphrasing, the pointer pq points to a Queue data object that cannot be altered through the
agency of pq . You can define a similar prototype for a function that returns the number of
items in a queue:

 int QueueItemCount(const Queue * pq);

 Adding an item to the end of the queue involves identifying the item and the queue. This time
the queue is altered, so using a pointer is necessary, not optional. The function could be type
 void , or you can use the return value to indicate whether the operation of adding an item
succeeded. Let’s take the second approach:

 bool EnQueue(Item item, Queue * pq);

 Finally, removing an item can be done several ways. If the item is defined as a structure or as
one of the fundamental types, it could be returned by the function. The function argument
could be either a Queue or a pointer to a Queue . Therefore, one possible prototype is this:

 Item DeQueue(Queue q);

 However, the following prototype is a bit more general:

 bool DeQueue(Item * pitem, Queue * pq);

 The item removed from the queue goes to the location pointed to by the pitem pointer, and
the return value indicates whether the operation succeeded.

ptg11524036

806 Chapter 17 Advanced Data Representation

 The only argument that should be needed for a function to empty the queue is the queue’s
address, suggesting this prototype:

 void EmptyTheQueue(Queue * pq);

 Implementing the Interface Data Representation

 The first step is deciding what C data form to use for a queue. One possibility is an array. The
advantages to arrays are that they’re easy to use and that adding an item to the end of an
array’s filled portion is easy. The problem comes with removing an item from the front of the
queue. In the analogy of people in a ticket line, removing an item from the front of the queue
consists of copying the value of the first element of the array (simple) and then moving each
item left in the array one element toward the front. Although this is easy to program, it wastes
a lot of computer time (see Figure 17.6).

Four folks in a queue

Sue

front rear

front rear

Bob Joe Meg

Ken joins the queue, then Sue leaves the queue

Sue

Ken

Bob Joe Meg

Sue

Ken

front rear

Bob Joe Meg Ken

 Figure 17.6 Using an array as a queue.

 A second way to handle the removal problem in an array implementation is to leave the
remaining elements where they are and, instead, change which element you call the front (see
 Figure 17.7). This method’s problem is that the vacated elements become dead space, so the
available space in the queue keeps decreasing.

ptg11524036

807Getting Queued with an ADT

Four folks in a queue

room for 6

Sue

front rear

front rear

Bob Joe Meg

Ken joins the queue, then Sue leaves the queue

Sue

Ken

Bob Joe Meg

Sue

room for 5

Ken

front rear

Bob Joe Meg Ken

 Figure 17.7 Redefining the front element.

 A clever solution to the dead space problem is to make the queue circular . This means wrapping
around from the end of the array to the beginning. That is, consider the first element of the
array as immediately following the last element so that when you reach the end of the array,
you can start adding items to the beginning elements if they have been vacated (see Figure
 17.8). You can imagine drawing the array on a strip of paper, and then pasting one end of the
array to the other to form a band. Of course, you now have to do some fancy bookkeeping to
make sure the end of the queue doesn’t pass the front.

 Yet another solution is to use a linked list. This has the advantage that removing the front item
doesn’t require moving all the other items. Instead, you just reset the front pointer to point
to the new first element. Because we’ve already been working with linked lists, we’ll take this
track. To test our ideas, we’ll start with a queue of integers:

 typedef int Item;

 A linked list is built from nodes, so let’s define a node next:

 typedef struct node

 {

 Item item;

 struct node * next;

 } Node;

ptg11524036

808 Chapter 17 Advanced Data Representation

 For the queue, you need to keep track of the front and rear items. You can use pointers to do
this. Also, you can use a counter to keep track of the number of items in a queue. Thus, the
structure will have two pointer members and one type int member:

 typedef struct queue

 {

 Node * front; /* pointer to front of queue */

 Node * rear; /* pointer to rear of queue */

front rear

Four folks in a queue

front

rear

Sue and Bob leave the queue and
Ken joins the queue

Sue

Bob Joe

Meg

front

rear

Liz and Ben join the queue

Circular queue wraps around to front of array

Joe

MegBen

KenLiz

Joe

Meg

Bob

Ken

Ken

Sue

Ben

Liz

 Figure 17.8 A circular queue.

ptg11524036

809Getting Queued with an ADT

 int items; /* number of items in queue */

 } Queue;

 Note that a Queue is a structure with three members, so the earlier decision to use pointers to
queues instead of entire queues as arguments is a time and space saver.

 Next, think about the size of a queue. With a linked list, the amount of available memory sets
the limit, but often a much smaller size is more appropriate. For example, you might use a
queue to simulate airplanes waiting to land at an airport. If the number of waiting planes gets
too large, new arrivals might be rerouted to other airports. We’ll set a maximum queue size of
10. Listing 17.6 contains the definitions and prototypes for the queue interface. It leaves open
the exact definition of the Item type. When using the interface, you would insert the appropri-
ate definition for your particular program.

 Listing 17.6 The queue.h Interface Header File

 /* queue.h -- interface for a queue */

 #ifndef _QUEUE_H_

 #define _QUEUE_H_

 #include <stdbool.h>

 /* INSERT ITEM TYPE HERE */

 /* FOR EXAMPLE, */

 typedef int Item; // for use_q.c

 /* OR typedef struct item {int gumption; int charisma;} Item; */

 #define MAXQUEUE 10

 typedef struct node

 {

 Item item;

 struct node * next;

 } Node;

 typedef struct queue

 {

 Node * front; /* pointer to front of queue */

 Node * rear; /* pointer to rear of queue */

 int items; /* number of items in queue */

 } Queue;

 /* operation: initialize the queue */

 /* precondition: pq points to a queue */

 /* postcondition: queue is initialized to being empty */

 void InitializeQueue(Queue * pq);

 /* operation: check if queue is full */

ptg11524036

810 Chapter 17 Advanced Data Representation

 /* precondition: pq points to previously initialized queue */

 /* postcondition: returns True if queue is full, else False */

 bool QueueIsFull(const Queue * pq);

 /* operation: check if queue is empty */

 /* precondition: pq points to previously initialized queue */

 /* postcondition: returns True if queue is empty, else False */

 bool QueueIsEmpty(const Queue *pq);

 /* operation: determine number of items in queue */

 /* precondition: pq points to previously initialized queue */

 /* postcondition: returns number of items in queue */

 int QueueItemCount(const Queue * pq);

 /* operation: add item to rear of queue */

 /* precondition: pq points to previously initialized queue */

 /* item is to be placed at rear of queue */

 /* postcondition: if queue is not empty, item is placed at */

 /* rear of queue and function returns */

 /* True; otherwise, queue is unchanged and */

 /* function returns False */

 bool EnQueue(Item item, Queue * pq);

 /* operation: remove item from front of queue */

 /* precondition: pq points to previously initialized queue */

 /* postcondition: if queue is not empty, item at head of */

 /* queue is copied to *pitem and deleted from */

 /* queue, and function returns True; if the */

 /* operation empties the queue, the queue is */

 /* reset to empty. If the queue is empty to */

 /* begin with, queue is unchanged and the */

 /* function returns False */

 bool DeQueue(Item *pitem, Queue * pq);

 /* operation: empty the queue */

 /* precondition: pq points to previously initialized queue */

 /* postconditions: the queue is empty */

 void EmptyTheQueue(Queue * pq);

 #endif

 Implementing the Interface Functions

 Now we can get down to writing the interface code. First, initializing a queue to “empty”
means setting the front and rear pointers to NULL and setting the item count (the items
member) to 0 :

ptg11524036

811Getting Queued with an ADT

 void InitializeQueue(Queue * pq)

 {

 pq->front = pq->rear = NULL;

 pq->items = 0;

 }

 Next, the items member makes it easy to check for a full queue or empty queue and to return
the number of items in a queue:

 bool QueueIsFull(const Queue * pq)

 {

 return pq->items == MAXQUEUE;

 }

 bool QueueIsEmpty(const Queue * pq)

 {

 return pq->items == 0;

 }

 int QueueItemCount(const Queue * pq)

 {

 return pq->items;

 }

 Adding an item to the queue involves the following steps:

 1. Creating a new node.

 2. Copying the item to the node.

 3. Setting the node’s next pointer to NULL , identifying the node as the last in the list.

 4. Setting the current rear node’s next pointer to point to the new node, linking the new
node to the queue.

 5. Setting the rear pointer to the new node, making it easy to find the last node.

 6. Adding 1 to the item count.

 Also, the function has to handle two special cases. First, if the queue is empty, the front
pointer should be set to point to the new node. That’s because when there is just one node,
that node is both the front and the rear of the queue. Second, if the function is unable to
obtain memory for the node, it should do something. Because we envision using small queues,
such failure should be rare, so we’ll simply have the function terminate the program if the
program runs out of memory. Here’s the code for EnQueue() :

 bool EnQueue(Item item, Queue * pq)

 {

 Node * pnew;

ptg11524036

812 Chapter 17 Advanced Data Representation

 if (QueueIsFull(pq))

 return false;

 pnew = (Node *) malloc(sizeof(Node));

 if (pnew == NULL)

 {

 fprintf(stderr,"Unable to allocate memory!\n");

 exit(1);

 }

 CopyToNode(item, pnew);

 pnew->next = NULL;

 if (QueueIsEmpty(pq))

 pq->front = pnew; /* item goes to front */

 else

 pq->rear->next = pnew; /* link at end of queue */

 pq->rear = pnew; /* record location of end */

 pq->items++; /* one more item in queue */

 return true;

 }

 The CopyToNode() function is a static function to handle copying the item to a node:

 static void CopyToNode(Item item, Node * pn)

 {

 pn->item = item;

 }

 Removing an item from the front of the queue involves the following steps:

 1. Copying the item to a waiting variable

 2. Freeing the memory used by the vacated node

 3. Resetting the front pointer to the next item in the queue

 4. Resetting the front and rear pointers to NULL if the last item is removed

 5. Decrementing the item count

 Here’s code that does all these things:

 bool DeQueue(Item * pitem, Queue * pq)

 {

 Node * pt;

 if (QueueIsEmpty(pq))

 return false;

 CopyToItem(pq->front, pitem);

 pt = pq->front;

 pq->front = pq->front->next;

ptg11524036

813Getting Queued with an ADT

 free(pt);

 pq->items--;

 if (pq->items == 0)

 pq->rear = NULL;

 return true;

 }

 There are a couple of pointer facts you should note. First, the code doesn’t explicitly set the
 front pointer to NULL when the last item is deleted. That’s because it already sets the front
pointer to the next pointer of the node being deleted. If that node is the last node, its next
pointer is NULL , so the front pointer gets set to NULL . Second, the code uses a temporary
pointer (pt) to keep track of the deleted node’s location. That’s because the official pointer
to the first node (pq->front) gets reset to point to the next node, so without the temporary
pointer, the program would lose track of which block of memory to free.

 We can use the DeQueue() function to empty a queue. Just use a loop calling DeQueue() until
the queue is empty:

 void EmptyTheQueue(Queue * pq)

 {

 Item dummy;

 while (!QueueIsEmpty(pq))

 DeQueue(&dummy, pq);

 }

 Note Keeping Your ADT Pure

 After you’ve defined an ADT interface, you should use only the functions of the interface to
handle the data type. Note, for example, that Dequeue() depends on the EnQueue() func-
tion doing its job of setting pointers correctly and setting the next pointer of the rear node
to NULL . If, in a program using the ADT, you decided to manipulate parts of the queue directly,
you might mess up the coordination between the functions in the interface package.

 Listing 17.7 shows all the functions of the interface, including the CopyToItem() function
used in EnQueue() .

 Listing 17.7 The queue.c Implementation File

 /* queue.c -- the Queue type implementation*/

 #include <stdio.h>

 #include <stdlib.h>

 #include "queue.h"

 /* local functions */

 static void CopyToNode(Item item, Node * pn);

ptg11524036

814 Chapter 17 Advanced Data Representation

 static void CopyToItem(Node * pn, Item * pi);

 void InitializeQueue(Queue * pq)

 {

 pq->front = pq->rear = NULL;

 pq->items = 0;

 }

 bool QueueIsFull(const Queue * pq)

 {

 return pq->items == MAXQUEUE;

 }

 bool QueueIsEmpty(const Queue * pq)

 {

 return pq->items == 0;

 }

 int QueueItemCount(const Queue * pq)

 {

 return pq->items;

 }

 bool EnQueue(Item item, Queue * pq)

 {

 Node * pnew;

 if (QueueIsFull(pq))

 return false;

 pnew = (Node *) malloc(sizeof(Node));

 if (pnew == NULL)

 {

 fprintf(stderr,"Unable to allocate memory!\n");

 exit(1);

 }

 CopyToNode(item, pnew);

 pnew->next = NULL;

 if (QueueIsEmpty(pq))

 pq->front = pnew; /* item goes to front */

 else

 pq->rear->next = pnew; /* link at end of queue */

 pq->rear = pnew; /* record location of end */

 pq->items++; /* one more item in queue */

 return true;

 }

ptg11524036

815Getting Queued with an ADT

 bool DeQueue(Item * pitem, Queue * pq)

 {

 Node * pt;

 if (QueueIsEmpty(pq))

 return false;

 CopyToItem(pq->front, pitem);

 pt = pq->front;

 pq->front = pq->front->next;

 free(pt);

 pq->items--;

 if (pq->items == 0)

 pq->rear = NULL;

 return true;

 }

 /* empty the queue */

 void EmptyTheQueue(Queue * pq)

 {

 Item dummy;

 while (!QueueIsEmpty(pq))

 DeQueue(&dummy, pq);

 }

 /* Local functions */

 static void CopyToNode(Item item, Node * pn)

 {

 pn->item = item;

 }

 static void CopyToItem(Node * pn, Item * pi)

 {

 *pi = pn->item;

 }

 Testing the Queue

 It’s a good idea to test a new design, such as the queue package, before inserting it into a criti-
cal program. One approach to testing is writing a short program, sometimes called a driver ,
whose sole purpose is to test the package. For example, Listing 17.8 uses a queue that enables
you to add and delete integers. Before using the program, make sure the following line is
present in queue.h :

 typedef int item;

ptg11524036

816 Chapter 17 Advanced Data Representation

 Remember, too, that you have to link queue.c and use_q.c .

 Listing 17.8 The use_q.c Program

 /* use_q.c -- driver testing the Queue interface */

 /* compile with queue.c */

 #include <stdio.h>

 #include "queue.h" /* defines Queue, Item */

 int main(void)

 {

 Queue line;

 Item temp;

 char ch;

 InitializeQueue(&line);

 puts("Testing the Queue interface. Type a to add a value,");

 puts("type d to delete a value, and type q to quit.");

 while ((ch = getchar()) != 'q')

 {

 if (ch != 'a' && ch != 'd') /* ignore other input */

 continue;

 if (ch == 'a')

 {

 printf("Integer to add: ");

 scanf("%d", &temp);

 if (!QueueIsFull(&line))

 {

 printf("Putting %d into queue\n", temp);

 EnQueue(temp,&line);

 }

 else

 puts("Queue is full!");

 }

 else

 {

 if (QueueIsEmpty(&line))

 puts("Nothing to delete!");

 else

 {

 DeQueue(&temp,&line);

 printf("Removing %d from queue\n", temp);

 }

 }

 printf("%d items in queue\n", QueueItemCount(&line));

 puts("Type a to add, d to delete, q to quit:");

 }

ptg11524036

817Getting Queued with an ADT

 EmptyTheQueue(&line);

 puts("Bye!");

 return 0;

 }

 Here is a sample run. You should also test to see that the implementation behaves correctly
when the queue is full.

 Testing the Queue interface. Type a to add a value,

 type d to delete a value, and type q to quit.

 a

 Integer to add: 40

 Putting 40 into queue

 1 items in queue

 Type a to add, d to delete, q to quit:

 a

 Integer to add: 20

 Putting 20 into queue

 2 items in queue

 Type a to add, d to delete, q to quit:

 a

 Integer to add: 55

 Putting 55 into queue

 3 items in queue

 Type a to add, d to delete, q to quit:

 d

 Removing 40 from queue

 2 items in queue

 Type a to add, d to delete, q to quit:

 d

 Removing 20 from queue

 1 items in queue

 Type a to add, d to delete, q to quit:

 d

 Removing 55 from queue

 0 items in queue

 Type a to add, d to delete, q to quit:

 d

 Nothing to delete!

 0 items in queue

 Type a to add, d to delete, q to quit:

 q

 Bye!

ptg11524036

818 Chapter 17 Advanced Data Representation

 Simulating with a Queue

 Well, the queue works! Now let’s do something more interesting with it. Many real-life situa-
tions involve queues. For example, customers queue in banks and in supermarkets, airplanes
queue at airports, and tasks queue in multitasking computer systems. You can use the queue
package to simulate such situations.

 Suppose, for example, that Sigmund Landers has set up an advice booth in a mall. Customers
can purchase one, two, or three minutes of advice. To ensure a free flow of foot traffic, mall
regulations limit the number of customers waiting in line to 10 (conveniently equal to the
program’s maximum queue size). Suppose people show up randomly and that the time they
want to spend in consultation is spread randomly over the three choices (one, two, or three
minutes). How many customers, on average, will Sigmund handle in an hour? How long, on
average, will customers have to wait? How long, on average, will the line be? These are the sort
of questions a queue simulation can answer.

 First, let’s decide what to put in the queue. You can describe each customer in terms of the
time when he or she joins the queue and in terms of how many minutes of consultation he or
she wants. This suggests the following definition for the Item type:

 typedef struct item

 {

 long arrive; /* the time when a customer joins the queue */

 int processtime; /* the number of consultation minutes desired */

 } Item;

 To convert the queue package to handle this structure, instead of the int type the last example
used, all you have to do is replace the former typedef for Item with the one shown here. After
that’s done, you don’t have to worry about the detailed mechanics of a queue. Instead, you can
proceed to the real problem—simulating Sigmund’s waiting line.

 Here’s one approach. Let time move in one-minute increments. Each minute, check to see
whether a new customer has arrived. If a customer arrives and the queue isn’t full, add the
customer to the queue. This involves recording in an Item structure the customer’s arrival time
and the amount of consultation time the customer wants, and then adding the item to the
queue. If the queue is full, however, turn the customer away. For bookkeeping, keep track of
the total number of customers and the total number of “turnaways” (people who can’t get in
line because it is full).

 Next, process the front of the queue. That is, if the queue isn’t empty and if Sigmund isn’t
occupied with a previous customer, remove the item at the front of the queue. The item, recall,
contains the time when the customer joined the queue. By comparing this time with the
current time, you get the number of minutes the customer has been in the queue. The item
also contains the number of consultation minutes the customer wants, which determines how
long Sigmund will be occupied with the new customer. Use a variable to keep track of this
waiting time. If Sigmund is busy, no one is “dequeued.” However, the variable keeping track of
the waiting time should be decremented.

ptg11524036

819Simulating with a Queue

 The core code can look like this, with each cycle corresponding to one minute of activity:

 for (cycle = 0; cycle < cyclelimit; cycle++)

 {

 if (newcustomer(min_per_cust))

 {

 if (QueueIsFull(&line))

 turnaways++;

 else

 {

 customers++;

 temp = customertime(cycle);

 EnQueue(temp, &line);

 }

 }

 if (wait_time <= 0 && !QueueIsEmpty(&line))

 {

 DeQueue (&temp, &line);

 wait_time = temp.processtime;

 line_wait += cycle - temp.arrive;

 served++;

 }

 if (wait_time > 0)

 wait_time––;

 sum_line += QueueItemCount(&line);

 }

 Note that the time resolution is relatively coarse (one minute) so that the maximum number of
customers per hour is just 60.

 Here are the meanings of some of the variables and functions:

 ■ min_per_cust is the average number of minutes between customer arrivals.

 ■ newcustomer() uses the C rand() function to determine whether a customer shows up
during this particular minute.

 ■ turnaways is the number of arrivals turned away.

 ■ customers is the number of arrivals who join the queue.

 ■ temp is an Item variable describing the new customer.

 ■ customertime() sets the arrive and processtime members of the temp structure.

 ■ wait_time is the number of minutes remaining until Sigmund finishes with the current
client.

 ■ line_wait is the cumulative time spent in line by all customers to date.

 ■ served is the number of clients actually served.

 ■ sum_line is the cumulative length of the line to date.

ptg11524036

820 Chapter 17 Advanced Data Representation

 Think of how much messier and more obscure this code would look if it were sprinkled with
 malloc() and free() functions and pointers to nodes. Having the queue package enables you
to concentrate on the simulation problem, not on programming details.

 Listing 17.9 shows the complete code for the mall advice booth simulation. It uses the standard
 rand() , srand() , and time() functions to generate random values, following the method
suggested in Chapter 12 . To use the program, remember to update the Item definition in
 queue.h with the following:

 typedef struct item

 {

 long arrive; // the time when a customer joins the queue

 int processtime; // the number of consultation minutes desired

 } Item;

 Also remember to link the code for mall.c with queue.c .

 Listing 17.9 The mall.c Program

 // mall.c -- use the Queue interface

 // compile with queue.c

 #include <stdio.h>

 #include <stdlib.h> // for rand() and srand()

 #include <time.h> // for time()

 #include "queue.h" // change Item typedef

 #define MIN_PER_HR 60.0

 bool newcustomer(double x); // is there a new customer?

 Item customertime(long when); // set customer parameters

 int main(void)

 {

 Queue line;

 Item temp; // new customer data

 int hours; // hours of simulation

 int perhour; // average # of arrivals per hour

 long cycle, cyclelimit; // loop counter, limit

 long turnaways = 0; // turned away by full queue

 long customers = 0; // joined the queue

 long served = 0; // served during the simulation

 long sum_line = 0; // cumulative line length

 int wait_time = 0; // time until Sigmund is free

 double min_per_cust; // average time between arrivals

 long line_wait = 0; // cumulative time in line

 InitializeQueue(&line);

 srand((unsigned int) time(0)); // random initializing of rand()

ptg11524036

821Simulating with a Queue

 puts("Case Study: Sigmund Lander's Advice Booth");

 puts("Enter the number of simulation hours:");

 scanf("%d", &hours);

 cyclelimit = MIN_PER_HR * hours;

 puts("Enter the average number of customers per hour:");

 scanf("%d", &perhour);

 min_per_cust = MIN_PER_HR / perhour;

 for (cycle = 0; cycle < cyclelimit; cycle++)

 {

 if (newcustomer(min_per_cust))

 {

 if (QueueIsFull(&line))

 turnaways++;

 else

 {

 customers++;

 temp = customertime(cycle);

 EnQueue(temp, &line);

 }

 }

 if (wait_time <= 0 && !QueueIsEmpty(&line))

 {

 DeQueue (&temp, &line);

 wait_time = temp.processtime;

 line_wait += cycle - temp.arrive;

 served++;

 }

 if (wait_time > 0)

 wait_time--;

 sum_line += QueueItemCount(&line);

 }

 if (customers > 0)

 {

 printf("customers accepted: %ld\n", customers);

 printf(" customers served: %ld\n", served);

 printf(" turnaways: %ld\n", turnaways);

 printf("average queue size: %.2f\n",

 (double) sum_line / cyclelimit);

 printf(" average wait time: %.2f minutes\n",

 (double) line_wait / served);

 }

 else

 puts("No customers!");

 EmptyTheQueue(&line);

 puts("Bye!");

ptg11524036

822 Chapter 17 Advanced Data Representation

 return 0;

 }

 // x = average time, in minutes, between customers

 // return value is true if customer shows up this minute

 bool newcustomer(double x)

 {

 if (rand() * x / RAND_MAX < 1)

 return true;

 else

 return false;

 }

 // when is the time at which the customer arrives

 // function returns an Item structure with the arrival time

 // set to when and the processing time set to a random value

 // in the range 1 - 3

 Item customertime(long when)

 {

 Item cust;

 cust.processtime = rand() % 3 + 1;

 cust.arrive = when;

 return cust;

 }

 The program enables you to specify the number of hours to simulate and the average number
of customers per hour. Choosing a large number of hours gives you good average values, and
choosing a small number of hours shows the sort of random variation you can get from hour
to hour. The following runs illustrate these points. Note that the average queue sizes and wait
times for 80 hours are about the same as for 800 hours, but that the two one-hour samples
differ quite a bit from each other and from the long-term averages. That’s because smaller
statistical samples tend to have larger relative variations.

 Case Study: Sigmund Lander's Advice Booth

 Enter the number of simulation hours:

 80

 Enter the average number of customers per hour:

 20

 customers accepted: 1633

 customers served: 1633

 turnaways: 0

 average queue size: 0.46

 average wait time: 1.35 minutes

ptg11524036

823Simulating with a Queue

 Case Study: Sigmund Lander's Advice Booth

 Enter the number of simulation hours:

 800

 Enter the average number of customers per hour:

 20

 customers accepted: 16020

 customers served: 16019

 turnaways: 0

 average queue size: 0.44

 average wait time: 1.32 minutes

 Case Study: Sigmund Lander's Advice Booth

 Enter the number of simulation hours:

 1

 Enter the average number of customers per hour:

 20

 customers accepted: 20

 customers served: 20

 turnaways: 0

 average queue size: 0.23

 average wait time: 0.70 minutes

 Case Study: Sigmund Lander's Advice Booth

 Enter the number of simulation hours:

 1

 Enter the average number of customers per hour:

 20

 customers accepted: 22

 customers served: 22

 turnaways: 0

 average queue size: 0.75

 average wait time: 2.05 minutes

 Another way to use the program is to keep the numbers of hours constant but to try different
average numbers of customers per hour. Here are two sample runs exploring this variation:

 Case Study: Sigmund Lander's Advice Booth

 Enter the number of simulation hours:

 80

 Enter the average number of customers per hour:

 25

 customers accepted: 1960

 customers served: 1959

 turnaways: 3

 average queue size: 1.43

 average wait time: 3.50 minutes

ptg11524036

824 Chapter 17 Advanced Data Representation

 Case Study: Sigmund Lander's Advice Booth

 Enter the number of simulation hours:

 80

 Enter the average number of customers per hour:

 30

 customers accepted: 2376

 customers served: 2373

 turnaways: 94

 average queue size: 5.85

 average wait time: 11.83 minutes

 Note how the average wait time takes a sharp upturn as the frequency of customers increases.
The average wait for 20 customers per hour (80-hour simulation) was 1.35 minutes. It climbs
to 3.50 minutes at 25 customers per hour and soars to 11.83 minutes at 30 customers an hour.
Also, the number of turnaways climbs from 0 to 3 to 94. Sigmund could use this sort of analy-
sis to decide whether he needs a second booth.

 The Linked List Versus the Array

 Many programming problems, such as creating a list or a queue, can be handled with a linked
list—by which we mean a linked sequence of dynamically allocated structures—or with an
array. Each form has its strengths and weaknesses, so the choice of which to use depends on
the particular requirements of a problem. Table 17.1 summarizes the qualities of linked lists
and arrays.

 Table 17.1 Comparing Arrays to Linked Lists

 Data Form Pros Cons

 Array Directly supported by C. Provides ran-
dom access. at compile time.

 Size determined Inserting and deleting
elements is time consuming

 Linked list Size determined during runtime.
Inserting and deleting elements is
quick.

 No random access. User must provide
programming support.

 Take a closer look at the process of inserting and deleting elements. To insert an element in an
array, you have to move elements to make way for the new element, as shown in Figure 17.9 .
The closer to the front the new element goes, the more elements have to be moved. To insert
a node in a linked list, however, you just have to assign values to two pointers, as shown in
 Figure 17.10 . Similarly, removing an element from an array involves a wholesale relocation of
elements, but removing a node from a linked list involves resetting a pointer and freeing the
memory used by the deleted node.

ptg11524036

825The Linked List Versus the Array

make room by shifting items

place new item

apples bread dill rice yogurt

apples bread dill rice yogurt

apples bread dill rice yogurtcorn

 Figure 17.9 Inserting an element into an array.

create new node

reset pointers

apples

bread

apples

bread

rice

NULL

yogurt

dill

rice

NULL

yogurt

dill

NULL

corn

corn

 Figure 17.10 Inserting an element into a linked list.

ptg11524036

826 Chapter 17 Advanced Data Representation

 Next, consider how to access the members of a list. With an array, you can use the array index
to access any element immediately. This is called random access . With a linked list, you have
to start at the top of the list and then move from node to node until you get to the node you
want, which is termed sequential access . You can have sequential access with an array, too. Just
increment the array index by one step each to move through the array in order. For some situ-
ations, sequential access is sufficient. For example, if you want to display every item in a list,
sequential access is fine. Other situations greatly favor random access, as you will see next.

 Suppose you want to search a list for a particular item. One algorithm is to start at the begin-
ning of the list and search through it in sequence, called a sequential search . If the items aren’t
arranged in some sort of order, a sequential search is about all you can do. If the sought-for
item isn’t in the list, you’ll have to look at every item in the list before concluding the item
isn’t there. (Concurrent programming could help here, as different CPUs could search different
parts of the list simultaneously.)

 You can improve the sequential search by sorting the list first. That way, you can terminate a
search if you haven’t found an item by the time you reach an item that would come later. For
example, suppose you’re seeking Susan in an alphabetical list. Starting from the top of the list,
you look at each item and eventually encounter Sylvia without finding Susan . At that point you
can quit searching because Susan , if in the list, would precede Sylvia . On average, this method
would cut search times in half for attempting to find items not in the list.

 With an ordered list, you can do much better than a sequential search by using the binary
search method. Here’s how it works. First, call the list item you want to find the target and
assume the list is in alphabetical order. Next, pick the item halfway down the list and compare
it to the target. If the two are the same, the search is over. If the list item comes before the
target alphabetically, the target, if it’s in the list, must be in the second half. If the list item
follows the target alphabetically, the target must be in the first half. Either way, the compari-
son rules out half the list as a place to search. Next, apply the method again. That is, choose
an item midway in the half of the list that remains. Again, this method either finds the item
or rules out half the remaining list. Proceed in this fashion until you find the item or until
you’ve eliminated the whole list (see Figure 17.11). This method is quite efficient. Suppose,
for example, that the list is 127 items long. A sequential search, on the average, would take 64
comparisons before finding an item or ruling out its presence. The binary search method, on
the other hand, will take at most seven comparisons. The first comparison prunes the possible
matches to 63, the second comparison cuts the possible matches to 31, and so on, until the
sixth comparison cuts down the possibilities to 1. The seventh comparison then determines
whether the one remaining choice is the target. In general, n comparisons let you process an
array with 2 n −1 members, so the advantage of a binary search over a sequential search gets
greater the longer the list is.

 It’s simple to implement a binary search with an array, because you can use the array index
to determine the midpoint of any list or subdivision of a list. Add the subscripts of the initial
and final elements of the subdivision and divide by 2. For example, in a list of 100 elements,
the first index is 0, the final index is 99, and the initial guess would be (0 + 99) / 2, or 49
(integer division). If the element having index 49 were too far down the alphabet, the correct

ptg11524036

827The Linked List Versus the Array

choice must be in the range 0–48, so the next guess would be (0 + 48) / 2, or 24. If element 24
were too early in the alphabet, the next guess would be (25 + 48) / 2, or 36. This is where the
random access feature of the array comes into play. It enables you to jump from one location
to another without visiting every location in between. Linked lists, which support only sequen-
tial access, don’t provide a means to jump to the midpoint of a list, so you can’t use the binary
search technique with linked lists.

First guess

Arnie

Chloe

Fritz

Susan

Sylvia

Torval

Ursula

Val

Wally

Winfred

Xaveria

Arnie

Chloe

Fritz

Susan

Sylvia

Torval

Ursula

Val

Wally

Winfred

Xaveria

Arnie

Chloe

Fritz

Susan

Sylvia

Torval

Ursula

Val

Wally

Winfred

Xaveria

Third guess

Second guess

Eliminated from
consideration

Eliminated from
consideration

 Figure 17.11 A binary search for Susan.

ptg11524036

828 Chapter 17 Advanced Data Representation

 You can see, then, that the choice of data type depends on the problem. If the situation calls
for a list that is continuously resized with frequent insertions and deletions but that isn’t
searched often, the linked list is the better choice. If the situation calls for a stable list with
only occasional insertions and deletions but that has to be searched often, an array is the better
choice.

 What if you need a data form that supports frequent insertions and deletions and frequent
searches? Neither a linked list nor an array is ideal for that set of purposes. Another form—the
binary search tree—may be just what you need.

 Binary Search Trees

 The binary search tree is a linked structure that incorporates the binary search strategy. Each
node in the tree contains an item and two pointers to other nodes, called child nodes. Figure
 17.12 shows how the nodes in a binary search tree are linked. The idea is that each node has
two child nodes—a left node and a right node. The ordering comes from the fact that the item
in a left node precedes the item in the parent node, and the item in the right node follows the
item in the parent node. This relationship holds for every node with children. Furthermore, all
items that can trace their ancestry back to a left node of a parent contain items that precede
the parent item in order, and every item descended from the right node contains items that
follow the parent item in order. The tree in Figure 17.12 stores words in this fashion. The top
of the tree, in an interesting inversion of botany, is called the root . A tree is a hierarchical orga-
nization, meaning that the data is organized in ranks, or levels, with each rank, in general,
having ranks above and below it. If a binary search tree is fully populated, each level has twice
as many nodes as the level above it.

root

melon

left child node

left subtree right subtree

right child node

fate

llamacarpet

NULL NULL NULL NULL NULL NULL NULL NULL

style

voyageplenum

 Figure 17.12 A binary search tree storing words.

ptg11524036

829Binary Search Trees

 Each node in the binary search tree is itself the root of the nodes descending from it, making
the node and its descendants a subtree . In Figure 17.12 , for example, the nodes containing the
words fate , carpet , and llama form the left subtree of the whole tree, and the word voyage is the
right subtree of the style - plenum - voyage subtree.

 Suppose you want to find an item—call it the target —in such a tree. If the item precedes the
root item, you need to search only the left half of the tree, and if the target follows the root
item, you need to search only the right subtree of the root node. Therefore, one comparison
eliminates half the tree. Suppose you search the left half. That means comparing the target with
the item in the left child. If the target precedes the left-child item, you need to search only the
left half of its descendants, and so on. As with the binary search, each comparison cuts the
number of potential matches in half.

 Let’s apply this method to see whether the word puppy is in the tree shown in Figure 17.12 .
Comparing puppy to melon (the root node item), you see that puppy , if present, must be in the
right half of the tree. Therefore, you go to the right child and compare puppy to style . In this
case, puppy precedes the node item, so you must follow the link to the left node. There you find
 plenum , which precedes puppy . You now have to follow the right branch for that node, but it is
empty, so three comparisons show you that puppy is not in the tree.

 A binary search tree, then, combines a linked structure with binary search efficiency. The
programming price is that putting a tree together is more involved than creating a linked list.
Let’s make a binary tree for the next, and final, ADT project.

 A Binary Tree ADT

 As usual, we’ll start by defining a binary tree in general terms. This particular definition
assumes the tree contains no duplicate items. Many of the operations are the same as list opera-
tions. The difference is in the hierarchical arrangement of data. Here is an informal summary of
this ADT:

 Type Name: Binary Search Tree

 Type Properties: A binary tree is either an empty set of nodes (an empty tree) or a set
of nodes with one node designated the root.

 Each node has exactly two trees, called the left subtree and the right
subtree , descending from it.

 Each subtree is itself a binary tree, which includes the possibility of
being an empty tree.

 A binary search tree is an ordered binary tree in which each node con-
tains an item, in which all items in the left subtree precede the root
item, and in which the root item precedes all items in the right subtree.

 Type Operations: Initializing tree to empty.

 Determining whether tree is empty.

 Determining whether tree is full.

ptg11524036

830 Chapter 17 Advanced Data Representation

 Determining the number of items in the tree.

 Adding an item to the tree.

 Removing an item from the tree.

 Searching the tree for an item.

 Visiting each item in the tree.

 Emptying the tree.

 The Binary Search Tree Interface

 In principle, you can implement a binary search tree in a variety of ways. You can even imple-
ment one as an array by manipulating array indices. But the most direct way to implement a
binary search tree is by using dynamically allocated nodes linked together by using pointers, so
we’ll start with definitions like these:

 typedef SOMETHING Item;

 typedef struct trnode

 {

 Item item;

 struct trnode * left;

 struct trnode * right;

 } Trn;

 typedef struct tree

 {

 Trnode * root;

 int size;

 } Tree;

 Each node contains an item, a pointer to the left child node, and a pointer to the right child
node. You could define a Tree to be type pointer-to- Trnode , because you only need to know
the location of the root node to access the entire tree. Using a structure with a size member,
however, makes it simpler to keep track of the size of the tree.

 The example we’ll be developing is maintaining the roster of the Nerfville Pet Club, with each
item consisting of a pet name and a pet kind. With that in mind, we can set up the interface
shown in Listing 17.10 . We’ve limited the tree size to 10. The small size makes it easier to test
whether the program behaves correctly when the tree fills. You can always set MAXITEMS to a
larger value, if necessary.

 Listing 17.10 The tree.h Interface Header File

 /* tree.h -- binary search tree */

 /* no duplicate items are allowed in this tree */

ptg11524036

831Binary Search Trees

 #ifndef _TREE_H_

 #define _TREE_H_

 #include <stdbool.h>

 /* redefine Item as appropriate */

 typedef struct item

 {

 char petname[20];

 char petkind[20];

 } Item;

 #define MAXITEMS 10

 typedef struct trnode

 {

 Item item;

 struct trnode * left; /* pointer to right branch */

 struct trnode * right; /* pointer to left branch */

 } Trnode;

 typedef struct tree

 {

 Trnode * root; /* pointer to root of tree */

 int size; /* number of items in tree */

 } Tree;

 /* function prototypes */

 /* operation: initialize a tree to empty */

 /* preconditions: ptree points to a tree */

 /* postconditions: the tree is initialized to empty */

 void InitializeTree(Tree * ptree);

 /* operation: determine if tree is empty */

 /* preconditions: ptree points to a tree */

 /* postconditions: function returns true if tree is */

 /* empty and returns false otherwise */

 bool TreeIsEmpty(const Tree * ptree);

 /* operation: determine if tree is full */

 /* preconditions: ptree points to a tree */

 /* postconditions: function returns true if tree is */

 /* full and returns false otherwise */

 bool TreeIsFull(const Tree * ptree);

 /* operation: determine number of items in tree */

 /* preconditions: ptree points to a tree */

ptg11524036

832 Chapter 17 Advanced Data Representation

 /* postconditions: function returns number of items in */

 /* tree */

 int TreeItemCount(const Tree * ptree);

 /* operation: add an item to a tree */

 /* preconditions: pi is address of item to be added */

 /* ptree points to an initialized tree */

 /* postconditions: if possible, function adds item to */

 /* tree and returns true; otherwise, */

 /* the function returns false */

 bool AddItem(const Item * pi, Tree * ptree);

 /* operation: find an item in a tree */

 /* preconditions: pi points to an item */

 /* ptree points to an initialized tree */

 /* postconditions: function returns true if item is in */

 /* tree and returns false otherwise */

 bool InTree(const Item * pi, const Tree * ptree);

 /* operation: delete an item from a tree */

 /* preconditions: pi is address of item to be deleted */

 /* ptree points to an initialized tree */

 /* postconditions: if possible, function deletes item */

 /* from tree and returns true; */

 /* otherwise the function returns false*/

 bool DeleteItem(const Item * pi, Tree * ptree);

 /* operation: apply a function to each item in */

 /* the tree */

 /* preconditions: ptree points to a tree */

 /* pfun points to a function that takes*/

 /* an Item argument and has no return */

 /* value */

 /* postcondition: the function pointed to by pfun is */

 /* executed once for each item in tree */

 void Traverse (const Tree * ptree, void (* pfun)(Item item));

 /* operation: delete everything from a tree */

 /* preconditions: ptree points to an initialized tree */

 /* postconditions: tree is empty */

 void DeleteAll(Tree * ptree);

 #endif

ptg11524036

833Binary Search Trees

 The Binary Tree Implementation

 Next, proceed to the task of implementing the splendid functions outlined in tree.h . The
 InitializeTree() , EmptyTree() , FullTree() , and TreeItems() functions are pretty simple,
working like their counterparts for the list and queue ADTs, so we’ll concentrate on the remain-
ing ones.

 Adding an Item

 When adding an item to the tree, you should first check whether the tree has room for a new
node. Then, because the binary search tree is defined so that it has no duplicate items, you
should check that the item is not already in the tree. If the new item clears these first two
hurdles, you create a new node, copy the item to the node, and set the node’s left and right
pointers to NULL . This indicates that the node has no children. Then you should update the
 size member of the Tree structure to mark the adding of a new item. Next, you have to find
where the node should be located in the tree. If the tree is empty, you should set the root
pointer to point to the new node. Otherwise, look through the tree for a place to add the node.
The AddItem() function follows this recipe, offloading some of the work to functions not yet
defined: SeekItem() , MakeNode() , and AddNode() .

 bool AddItem(const Item * pi, Tree * ptree)

 {

 Trnode * new_node;

 if (TreeIsFull(ptree))

 {

 fprintf(stderr,"Tree is full\n");

 return false; /* early return */

 }

 if (SeekItem(pi, ptree).child != NULL)

 {

 fprintf(stderr, "Attempted to add duplicate item\n");

 return false; /* early return */

 }

 new_node = MakeNode(pi); /* points to new node */

 if (new_node == NULL)

 {

 fprintf(stderr, "Couldn't create node\n");

 return false; /* early return */

 }

 /* succeeded in creating a new node */

 ptree->size++;

 if (ptree->root == NULL) /* case 1: tree is empty */

 ptree->root = new_node; /* new node is tree root */

 else /* case 2: not empty */

 AddNode(new_node,ptree->root); /* add node to tree */

ptg11524036

834 Chapter 17 Advanced Data Representation

 return true; /* successful return */

 }

 The SeekItem() , MakeNode() , and AddNode() functions are not part of the public interface
for the Tree type. Instead, they are static functions hidden in the tree.c file. They deal with
implementation details, such as nodes, pointers, and structures, that don’t belong in the public
interface.

 The MakeNode() function is pretty simple. It handles the dynamic memory allocation and the
initialization of the node. The function argument is a pointer to the new item, and the func-
tion’s return value is a pointer to the new node. Recall that malloc() returns the null pointer
if it can’t make the requested allocation. The MakeNode() function initializes the new node
only if memory allocation succeeds. Here is the code for MakeNode() :

 static Trnode * MakeNode(const Item * pi)

 {

 Trnode * new_node;

 new_node = (Trnode *) malloc(sizeof(Trnode));

 if (new_node != NULL)

 {

 new_node->item = *pi;

 new_node->left = NULL;

 new_node->right = NULL;

 }

 return new_node;

 }

 The AddNode() function is the second most difficult function in the binary search tree
package. It has to determine where the new node goes and then has to add it. In particular,
it needs to compare the new item with the root item to see whether the new item goes into
the left subtree or the right subtree. If the item were a number, you could use < and > to make
comparisons. If the item were a string, you could use strcmp() to make comparisons. But
the item is a structure containing two strings, so you’ll have to define your own functions for
making comparisons. The ToLeft() function, to be defined later, returns True if the new item
should be in the left subtree, and the ToRight() function returns True if the new item should
be in the right subtree. These two functions are analogous to < and > , respectively. Suppose
the new item goes to the left subtree. It could be that the left subtree is empty. In that case,
the function just makes the left child pointer point to the new node. What if the left subtree
isn’t empty? Then the function should compare the new item to the item in the left child
node, deciding whether the new item should go in the left subtree or right subtree of the child
node. This process should continue until the function arrives at an empty subtree, at which
point the new node can be added. One way to implement this search is to use recursion—that
is, apply the AddNode() function to a child node instead of to the root node. The recursive

ptg11524036

835Binary Search Trees

series of function calls ends when a left or right subtree is empty—that is, when root->left or
 root->right is NULL . Keep in mind that root is a pointer to the top of the current subtree, so
it points to a new, and lower-level, subtree each recursive call. (You might want to review the
discussion of recursion in Chapter 9 .)

 static void AddNode (Trnode * new_node, Trnode * root)

 {

 if (ToLeft(&new_node->item, &root->item))

 {

 if (root->left == NULL) /* empty subtree */

 root->left = new_node; /* so add node here */

 else

 AddNode(new_node, root->left);/* else process subtree*/

 }

 else if (ToRight(&new_node->item, &root->item))

 {

 if (root->right == NULL)

 root->right = new_node;

 else

 AddNode(new_node, root->right);

 }

 else /* should be no duplicates */

 {

 fprintf(stderr,"location error in AddNode()\n");

 exit(1);

 }

 }

 The ToLeft() and ToRight() functions depend on the nature of the Item type. The members
of the Nerfville Pet Club will be ordered alphabetically by name. If two pets have the same
name, order them by kind. If they are also the same kind, then the two items are duplicates,
which aren’t allowed in the basic search tree. Recall that the standard C library function
 strcmp() returns a negative number if the string represented by the first argument precedes
the second string, returns zero if the two strings are the same, and returns a positive number if
the first string follows the second. The ToRight() function has similar code. Using these two
functions instead of making comparisons directly in AddNode() makes the code easier to adapt
to new requirements. Instead of rewriting AddNode() when a different form of comparison is
needed, you rewrite ToLeft() and ToRight() .

 static bool ToLeft(const Item * i1, const Item * i2)

 {

 int comp1;

 if ((comp1 = strcmp(i1->petname, i2->petname)) < 0)

 return true;

 else if (comp1 == 0 &&

 strcmp(i1->petkind, i2->petkind) < 0)

ptg11524036

836 Chapter 17 Advanced Data Representation

 return true;

 else

 return false;

 }

 Finding an Item

 Three of the interface functions involve searching the tree for a particular item: AddItem() ,
 InTree() , and DeleteItem() . This implementation uses a SeekItem() function to provide
that service. The DeleteItem() function has an additional requirement: It needs to know the
parent node of the deleted item so that the parent’s child pointer can be updated when the
child is deleted. Therefore, we designed SeekItem() to return a structure containing two point-
ers: one pointing to the node containing the item (NULL if the item isn’t found) and one point-
ing to the parent node (NULL if the node is the root and has no parent). The structure type is
defined as follows:

 typedef struct pair {

 Trnode * parent;

 Trnode * child;

 } Pair;

 The SeekItem() function can be implemented recursively. However, to expose you to a variety
of programming techniques, we’ll use a while loop to handle descending through the tree.
Like AddNode() , SeekItem() uses ToLeft() and ToRight() to navigate through the tree.
 SeekItem() initially sets the look.child pointer to point to the root of the tree, and then
it resets look.child to successive subtrees as it traces the path to where the item should be
found. Meanwhile, look.parent is set to point to successive parent nodes. If no matching item
is found, look.child will be NULL . If the matching item is in the root node, look.parent is
 NULL because the root node has no parent. Here is the code for SeekItem() :

 static Pair SeekItem(const Item * pi, const Tree * ptree)

 {

 Pair look;

 look.parent = NULL;

 look.child = ptree->root;

 if (look.child == NULL)

 return look; /* early return */

 while (look.child != NULL)

 {

 if (ToLeft(pi, &(look.child->item)))

 {

ptg11524036

837Binary Search Trees

 look.parent = look.child;

 look.child = look.child->left;

 }

 else if (ToRight(pi, &(look.child->item)))

 {

 look.parent = look.child;

 look.child = look.child->right;

 }

 else /* must be same if not to left or right */

 break; /* look.child is address of node with item */

 }

 return look; /* successful return */

 }

 Note that because the SeekItem() function returns a structure, it can be used with the struc-
ture membership operator. For example, the AddItem() function used the following code:

 if (SeekItem(pi, ptree).child != NULL)

 After you have SeekItem() , it’s simple to code the InTree() public interface function:

 bool InTree(const Item * pi, const Tree * ptree)

 {

 return (SeekItem(pi, ptree).child == NULL) ? false : true;

 }

 Considerations in Deleting an Item

 Removing an item is the most difficult of the tasks because you have to reconnect the remain-
ing subtrees to form a valid tree. Before attempting to program this task, it’s a good idea to
develop a visual picture of what has to be done.

 Figure 17.13 illustrates the simplest case. Here the node to be deleted has no children. Such a
node is called a leaf . All that has to be done in this case is to reset a pointer in the parent node
to NULL and to use the free() function to reclaim the memory used by the deleted node.

 Next in complexity is deleting a node with one child. Deleting the node leaves the child
subtree separate from the rest of the tree. To fix this, the address of the child subtree needs to
be stored in the parent node at the location formerly occupied by the address of the deleted
node (see Figure 17.14).

ptg11524036

838 Chapter 17 Advanced Data Representation

data

left
1200

right
1580

data

left
2220

right
2450

data

left
NULL

right
1320

node to
be deleted

data

left
1320

right
1580

data

left
2220

right
2450

revised tree segment

a)

data

left
????

right
1580

data

left
2220

right
2450

reconnect stranded
subtree to parent node

b)

c)

 Figure 17.14 Deleting a one-child node.

Data

left
1200

right
1580

Data

right
1580

data

left
NULL

right
NULL

node to be deleted

revised tree segment

left
NULL

 Figure 17.13 Deleting a leaf.

ptg11524036

839Binary Search Trees

 The final case is deleting a node with two subtrees. One subtree, say the left, can be attached
to where the deleted node was formerly attached. But where should the remaining subtree go?
Keep in mind the basic design of a tree. Every item in a left subtree precedes the item in the
parent node, and every item in a right subtree follows the item in the parent node. This means
that every item in the right subtree comes after every item in the left subtree. Also, because
the right subtree once was part of the subtree headed by the deleted node, every item in the
right subtree comes before the parent node of the deleted node. Imagine coming down the
tree looking for where to place the head of the right subtree. It comes before the parent node,
so you have to go down the left subtree from there. However, it comes after every item in the
left subtree, so you have to take the right branch of the left subtree and see whether it has an
opening for a new node. If not, you must go down the right side of the left subtree until you
do find an opening. Figure 17.15 illustrates the approach.

original tree deleting the node leaves two
unconnected subtrees

attach left subtree to original
parent node

attach right subtree to first open
location along the rightmost

branches of first subtree

 Figure 17.15 Deleting a two-child node.

ptg11524036

840 Chapter 17 Advanced Data Representation

 Deleting a Node
 Now you can begin to plan the necessary functions, separating the job into two tasks. One is
associating a particular item with the node to be deleted, and the second is actually deleting
the node. One point to note is that all the cases involve modifying a pointer in the parent
node, which has two important consequences:

 ■ The program has to identify the parent node of the node to be deleted.

 ■ To modify the pointer, the code must pass the address of that pointer to the deleting
function.

 We’ll come back to the first point later. Meanwhile, the pointer to be modified is itself of type
 Trnode * , or pointer-to- Trnode . Because the function argument is the address of that pointer,
the argument will be of type Trnode ** , or pointer-to-pointer-to- Trnode . Assuming you have
the proper address available, you can write the deletion function as the following:

 static void DeleteNode(Trnode **ptr)

 /* ptr is address of parent member pointing to target node */

 {

 Trnode * temp;

 if ((*ptr)->left == NULL)

 {

 temp = *ptr;

 *ptr = (*ptr)->right;

 free(temp);

 }

 else if ((*ptr)->right == NULL)

 {

 temp = *ptr;

 *ptr = (*ptr)->left;

 free(temp);

 }

 else /* deleted node has two children */

 {

 /* find where to reattach right subtree */

 for (temp = (*ptr)->left; temp->right != NULL;

 temp = temp->right)

 continue;

 temp->right = (*ptr)->right;

 temp = *ptr;

 *ptr =(*ptr)->left;

 free(temp);

 }

 }

ptg11524036

841Binary Search Trees

 This function explicitly handles three cases: a node with no left child, a node with no right
child, and a node with two children. A node with no children can be considered a special case
of a node with no left child. If the node has no left child, the code assigns the address of the
right child to the parent pointer. But if the node also has no right child, that pointer is NULL ,
which is the proper value for the no-child case.

 Notice that the code uses a temporary pointer to keep track of the address of the deleted node.
After the parent pointer (*ptr) is reset, the program would lose track of where the deleted node
is, but you need that information for the free() function. So the program stores the original
value of *ptr in temp and then uses temp to free the memory used for the deleted node.

 The code for the two-child case first uses the temp pointer in a for loop to search down the
right side of the left subtree for an empty spot. When it finds an empty spot, it attaches the
right subtree there. Then it reuses temp to keep track of where the deleted node is. Next, it
attaches the left subtree to the parent and then frees the node pointed to by temp .

 Note that because ptr is type Trnode ** , *ptr is of type Trnode * , making it the same type
as temp .

 Deleting an Item
 The remaining part of the problem is associating a node with a particular item. You can use
the SeekItem() function to do so. Recall that it returns a structure containing a pointer to the
parent node and a pointer to the node containing the item. Then you can use the parent node
pointer to get the proper address to pass to the DeleteNode() function. The DeleteItem()
function, shown here, follows this plan:

 bool DeleteItem(const Item * pi, Tree * ptree)

 {

 Pair look;

 look = SeekItem(pi, ptree);

 if (look.child == NULL)

 return false;

 if (look.parent == NULL) /* delete root item */

 DeleteNode(&ptree->root);

 else if (look.parent->left == look.child)

 DeleteNode(&look.parent->left);

 else

 DeleteNode(&look.parent->right);

 ptree->size--;

 return true;

 }

 First, the return value of the SeekItem() function is assigned to the look structure variable. If
 look.child is NULL , the search failed to find the item, and the DeleteItem() function quits,

ptg11524036

842 Chapter 17 Advanced Data Representation

returning false . If the Item is found, the function handles three cases. First, a NULL value for
 look.parent means the item was found in the root node. In this case, there is no parent node
to update. Instead, the program has to update the root pointer in the Tree structure. Therefore,
the function passes the address of that pointer to the DeleteNode() function. Otherwise, the
program determines whether the node to be deleted is the left child or the right child of the
parent, and then it passes the address of the appropriate pointer.

 Note that the public interface function (DeleteItem()) speaks in terms of end-user concerns
(items and trees), and the hidden DeleteNode() function handles the nitty-gritty of pointer
shuffling.

 Traversing the Tree

 Traversing a tree is more involved than traversing a linked list because each node has two
branches to follow. This branching nature makes divide-and-conquer recursion (Chapter 9) a
natural choice for handling the problem. At each node, the function should do the following:

 ■ Process the item in the node.

 ■ Process the left subtree (a recursive call).

 ■ Process the right subtree (a recursive call).

 You can break this process down into two functions: Traverse() and InOrder() . Note that
the InOrder() function processes the left subtree, then processes the item, and then processes
the right subtree. This order results in traversing the tree in alphabetic order. If you have the
time, you might want to see what happens if you use different orders, such as item-left-right
and left-right-item.

 void Traverse (const Tree * ptree, void (* pfun)(Item item))

 {

 if (ptree != NULL)

 InOrder(ptree->root, pfun);

 }

 static void InOrder(const Trnode * root, void (* pfun)(Item item))

 {

 if (root != NULL)

 {

 InOrder(root->left, pfun);

 (*pfun)(root->item);

 InOrder(root->right, pfun);

 }

 }

ptg11524036

843Binary Search Trees

 Emptying the Tree

 Emptying the tree is basically the same process as traversing it. That is, the code needs to visit
each node and apply free() to it. It also needs to reset the members of the Tree structure to
indicate an empty Tree . The DeleteAll() function takes care of the Tree structure and passes
off the task of freeing memory to DeleteAllNodes() . The latter function has the same design
as InOrder() . It does save the pointer value root->right so that it is still available after the
root is freed. Here is the code for these two functions:

 void DeleteAll(Tree * ptree)

 {

 if (ptree != NULL)

 DeleteAllNodes(ptree->root);

 ptree->root = NULL;

 ptree->size = 0;

 }

 static void DeleteAllNodes(Trnode * root)

 {

 Trnode * pright;

 if (root != NULL)

 {

 pright = root->right;

 DeleteAllNodes(root->left);

 free(root);

 DeleteAllNodes(pright);

 }

 }

 The Complete Package

 Listing 17.11 shows the entire tree.c code. Together, tree.h and tree.c constitute a tree
programming package.

 Listing 17.11 The tree.c Implementation File

 /* tree.c -- tree support functions */

 #include <string.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include "tree.h"

 /* local data type */

 typedef struct pair {

 Trnode * parent;

 Trnode * child;

ptg11524036

844 Chapter 17 Advanced Data Representation

 } Pair;

 /* protototypes for local functions */

 static Trnode * MakeNode(const Item * pi);

 static bool ToLeft(const Item * i1, const Item * i2);

 static bool ToRight(const Item * i1, const Item * i2);

 static void AddNode (Trnode * new_node, Trnode * root);

 static void InOrder(const Trnode * root, void (* pfun)(Item item));

 static Pair SeekItem(const Item * pi, const Tree * ptree);

 static void DeleteNode(Trnode **ptr);

 static void DeleteAllNodes(Trnode * ptr);

 /* function definitions */

 void InitializeTree(Tree * ptree)

 {

 ptree->root = NULL;

 ptree->size = 0;

 }

 bool TreeIsEmpty(const Tree * ptree)

 {

 if (ptree->root == NULL)

 return true;

 else

 return false;

 }

 bool TreeIsFull(const Tree * ptree)

 {

 if (ptree->size == MAXITEMS)

 return true;

 else

 return false;

 }

 int TreeItemCount(const Tree * ptree)

 {

 return ptree->size;

 }

 bool AddItem(const Item * pi, Tree * ptree)

 {

 Trnode * new_node;

 if (TreeIsFull(ptree))

 {

 fprintf(stderr,"Tree is full\n");

ptg11524036

845Binary Search Trees

 return false; /* early return */

 }

 if (SeekItem(pi, ptree).child != NULL)

 {

 fprintf(stderr, "Attempted to add duplicate item\n");

 return false; /* early return */

 }

 new_node = MakeNode(pi); /* points to new node */

 if (new_node == NULL)

 {

 fprintf(stderr, "Couldn't create node\n");

 return false; /* early return */

 }

 /* succeeded in creating a new node */

 ptree->size++;

 if (ptree->root == NULL) /* case 1: tree is empty */

 ptree->root = new_node; /* new node is tree root */

 else /* case 2: not empty */

 AddNode(new_node,ptree->root); /* add node to tree */

 return true; /* successful return */

 }

 bool InTree(const Item * pi, const Tree * ptree)

 {

 return (SeekItem(pi, ptree).child == NULL) ? false : true;

 }

 bool DeleteItem(const Item * pi, Tree * ptree)

 {

 Pair look;

 look = SeekItem(pi, ptree);

 if (look.child == NULL)

 return false;

 if (look.parent == NULL) /* delete root item */

 DeleteNode(&ptree->root);

 else if (look.parent->left == look.child)

 DeleteNode(&look.parent->left);

 else

 DeleteNode(&look.parent->right);

 ptree->size--;

 return true;

 }

ptg11524036

846 Chapter 17 Advanced Data Representation

 void Traverse (const Tree * ptree, void (* pfun)(Item item))

 {

 if (ptree != NULL)

 InOrder(ptree->root, pfun);

 }

 void DeleteAll(Tree * ptree)

 {

 if (ptree != NULL)

 DeleteAllNodes(ptree->root);

 ptree->root = NULL;

 ptree->size = 0;

 }

 /* local functions */

 static void InOrder(const Trnode * root, void (* pfun)(Item item))

 {

 if (root != NULL)

 {

 InOrder(root->left, pfun);

 (*pfun)(root->item);

 InOrder(root->right, pfun);

 }

 }

 static void DeleteAllNodes(Trnode * root)

 {

 Trnode * pright;

 if (root != NULL)

 {

 pright = root->right;

 DeleteAllNodes(root->left);

 free(root);

 DeleteAllNodes(pright);

 }

 }

 static void AddNode (Trnode * new_node, Trnode * root)

 {

 if (ToLeft(&new_node->item, &root->item))

 {

 if (root->left == NULL) /* empty subtree */

 root->left = new_node; /* so add node here */

ptg11524036

847Binary Search Trees

 else

 AddNode(new_node, root->left);/* else process subtree*/

 }

 else if (ToRight(&new_node->item, &root->item))

 {

 if (root->right == NULL)

 root->right = new_node;

 else

 AddNode(new_node, root->right);

 }

 else /* should be no duplicates */

 {

 fprintf(stderr,"location error in AddNode()\n");

 exit(1);

 }

 }\

 static bool ToLeft(const Item * i1, const Item * i2)

 {

 int comp1;

 if ((comp1 = strcmp(i1->petname, i2->petname)) < 0)

 return true;

 else if (comp1 == 0 &&

 strcmp(i1->petkind, i2->petkind) < 0)

 return true;

 else

 return false;

 }

 static bool ToRight(const Item * i1, const Item * i2)

 {

 int comp1;

 if ((comp1 = strcmp(i1->petname, i2->petname)) > 0)

 return true;

 else if (comp1 == 0 &&

 strcmp(i1->petkind, i2->petkind) > 0)

 return true;

 else

 return false;

 }

 static Trnode * MakeNode(const Item * pi)

 {

 Trnode * new_node;

 new_node = (Trnode *) malloc(sizeof(Trnode));

ptg11524036

848 Chapter 17 Advanced Data Representation

 if (new_node != NULL)

 {

 new_node->item = *pi;

 new_node->left = NULL;

 new_node->right = NULL;

 }

 return new_node;

 }

 static Pair SeekItem(const Item * pi, const Tree * ptree)

 {

 Pair look;

 look.parent = NULL;

 look.child = ptree->root;

 if (look.child == NULL)

 return look; /* early return */

 while (look.child != NULL)

 {

 if (ToLeft(pi, &(look.child->item)))

 {

 look.parent = look.child;

 look.child = look.child->left;

 }

 else if (ToRight(pi, &(look.child->item)))

 {

 look.parent = look.child;

 look.child = look.child->right;

 }

 else /* must be same if not to left or right */

 break; /* look.child is address of node with item */

 }

 return look; /* successful return */

 }

 static void DeleteNode(Trnode **ptr)

 /* ptr is address of parent member pointing to target node */

 {

 Trnode * temp;

 if ((*ptr)->left == NULL)

 {

 temp = *ptr;

 *ptr = (*ptr)->right;

ptg11524036

849Binary Search Trees

 free(temp);

 }

 else if ((*ptr)->right == NULL)

 {

 temp = *ptr;

 *ptr = (*ptr)->left;

 free(temp);

 }

 else /* deleted node has two children */

 {

 /* find where to reattach right subtree */

 for (temp = (*ptr)->left; temp->right != NULL;

 temp = temp->right)

 continue;

 temp->right = (*ptr)->right;

 temp = *ptr;

 *ptr =(*ptr)->left;

 free(temp);

 }

 }

 Trying the Tree

 Now that you have the interface and the function implementations, let’s use them. The
program in Listing 17.12 uses a menu to offer a choice of adding pets to the club member-
ship roster, listing members, reporting the number of members, checking for membership, and
quitting. The brief main() function concentrates on the essential program outline. Supporting
functions do most of the work.

 Listing 17.12 The petclub.c Program

 /* petclub.c -- use a binary search tree */

 #include <stdio.h>

 #include <string.h>

 #include <ctype.h>

 #include "tree.h"

 char menu(void);

 void addpet(Tree * pt);

 void droppet(Tree * pt);

 void showpets(const Tree * pt);

 void findpet(const Tree * pt);

 void printitem(Item item);

 void uppercase(char * str);

 char * s_gets(char * st, int n);

ptg11524036

850 Chapter 17 Advanced Data Representation

 int main(void)

 {

 Tree pets;

 char choice;

 InitializeTree(&pets);

 while ((choice = menu()) != 'q')

 {

 switch (choice)

 {

 case 'a' : addpet(&pets);

 break;

 case 'l' : showpets(&pets);

 break;

 case 'f' : findpet(&pets);

 break;

 case 'n' : printf("%d pets in club\n",

 TreeItemCount(&pets));

 break;

 case 'd' : droppet(&pets);

 break;

 default : puts("Switching error");

 }

 }

 DeleteAll(&pets);

 puts("Bye.");

 return 0;

 }

 char menu(void)

 {

 int ch;

 puts("Nerfville Pet Club Membership Program");

 puts("Enter the letter corresponding to your choice:");

 puts("a) add a pet l) show list of pets");

 puts("n) number of pets f) find pets");

 puts("d) delete a pet q) quit");

 while ((ch = getchar()) != EOF)

 {

 while (getchar() != '\n') /* discard rest of line */

 continue;

 ch = tolower(ch);

 if (strchr("alrfndq",ch) == NULL)

 puts("Please enter an a, l, f, n, d, or q:");

ptg11524036

851Binary Search Trees

 else

 break;

 }

 if (ch == EOF) /* make EOF cause program to quit */

 ch = 'q';

 return ch;

 }

 void addpet(Tree * pt)

 {

 Item temp;

 if (TreeIsFull(pt))

 puts("No room in the club!");

 else

 {

 puts("Please enter name of pet:");

 s_gets(temp.petname,SLEN);

 puts("Please enter pet kind:");

 s_gets(temp.petkind,SLEN);

 uppercase(temp.petname);

 uppercase(temp.petkind);

 AddItem(&temp, pt);

 }

 }

 void showpets(const Tree * pt)

 {

 if (TreeIsEmpty(pt))

 puts("No entries!");

 else

 Traverse(pt, printitem);

 }

 void printitem(Item item)

 {

 printf("Pet: %-19s Kind: %-19s\n", item.petname,

 item.petkind);

 }

 void findpet(const Tree * pt)

 {

 Item temp;

 if (TreeIsEmpty(pt))

 {

ptg11524036

852 Chapter 17 Advanced Data Representation

 puts("No entries!");

 return; /* quit function if tree is empty */

 }

 puts("Please enter name of pet you wish to find:");

 s_gets(temp.petname, SLEN);

 puts("Please enter pet kind:");

 s_gets(temp.petkind, SLEN);

 uppercase(temp.petname);

 uppercase(temp.petkind);

 printf("%s the %s ", temp.petname, temp.petkind);

 if (InTree(&temp, pt))

 printf("is a member.\n");

 else

 printf("is not a member.\n");

 }

 void droppet(Tree * pt)

 {

 Item temp;

 if (TreeIsEmpty(pt))

 {

 puts("No entries!");

 return; /* quit function if tree is empty */

 }

 puts("Please enter name of pet you wish to delete:");

 s_gets(temp.petname, SLEN);

 puts("Please enter pet kind:");

 s_gets(temp.petkind, SLEN);

 uppercase(temp.petname);

 uppercase(temp.petkind);

 printf("%s the %s ", temp.petname, temp.petkind);

 if (DeleteItem(&temp, pt))

 printf("is dropped from the club.\n");

 else

 printf("is not a member.\n");

 }

 void uppercase(char * str)

 {

 while (*str)

 {

 *str = toupper(*str);

 str++;

 }

ptg11524036

853Binary Search Trees

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue; // dispose of rest of line

 }

 return ret_val;

 }

 The program converts all letters to uppercase so that SNUFFY , Snuffy , and snuffy are not consid-
ered distinct names. Here is a sample run:

 Nerfville Pet Club Membership Program

 Enter the letter corresponding to your choice:

 a) add a pet l) show list of pets

 n) number of pets f) find pets

 q) quit

 a

 Please enter name of pet:

 Quincy

 Please enter pet kind:

 pig

 Nerfville Pet Club Membership Program

 Enter the letter corresponding to your choice:

 a) add a pet l) show list of pets

 n) number of pets f) find pets

 q) quit

 a

 Please enter name of pet:

 Bennie Haha

 Please enter pet kind:

 parrot

 Nerfville Pet Club Membership Program

 Enter the letter corresponding to your choice:

 a) add a pet l) show list of pets

 n) number of pets f) find pets

ptg11524036

854 Chapter 17 Advanced Data Representation

 q) quit

 a

 Please enter name of pet:

 Hiram Jinx

 Please enter pet kind:

 domestic cat

 Nerfville Pet Club Membership Program

 Enter the letter corresponding to your choice:

 a) add a pet l) show list of pets

 n) number of pets f) find pets

 q) quit

 n

 3 pets in club

 Nerfville Pet Club Membership Program

 Enter the letter corresponding to your choice:

 a) add a pet l) show list of pets

 n) number of pets f) find pets

 q) quit

 l

 Pet: BENNIE HAHA Kind: PARROT

 Pet: HIRAM JINX Kind: DOMESTIC CAT

 Pet: QUINCY Kind: PIG

 Nerfville Pet Club Membership Program

 Enter the letter corresponding to your choice:

 a) add a pet l) show list of pets

 n) number of pets f) find pets

 q) quit

 q

 Bye.

 Tree Thoughts

 The binary search tree has some drawbacks. For example, the binary search tree is efficient only
if it is fully populated, or balanced . Suppose you’re storing words that are entered randomly.
Chances are the tree will have a fairly bushy look, as in Figure 17.12 . Now suppose you enter
data in alphabetical order. Then each new node would be added to the right, and the tree
might look like Figure 17.16 . The Figure 17.12 tree is said to be balanced , and the Figure 17.16
tree is unbalanced . Searching this tree is no more effective than sequentially searching a linked
list.

 One way to avoid stringy trees is use more care when building a tree. If a tree or subtree begins
to get too unbalanced on one side or the other, rearrange the nodes to restore a better balance.
Similarly, you might need to rearrange the tree after a deletion. The Russian mathematicians
Adel’son-Vel’skii and Landis developed an algorithm to do this. Trees built with their method
are called AVL trees . It takes longer to build a balanced tree because of the extra restructuring,
but you ensure maximum, or nearly maximum, search efficiency.

ptg11524036

855Binary Search Trees

 You might want a binary search tree that does allow duplicate items. Suppose, for example,
that you wanted to analyze some text by tracking how many times each word in the text
appears. One approach is to define Item as a structure that holds one word and a number. The
first time a word is encountered, it’s added to the tree, and the number is set to 1 . The next
time the same word is encountered, the program finds the node containing the word and incre-
ments the number. It doesn’t take much work to modify the basic binary search tree to behave
in this fashion.

 For another possible variation, consider the Nerfville Pet Club. The example ordered the tree by
both name and kind, so it could hold Sam the cat in one node, Sam the dog in another node,
and Sam the goat in a third node. You couldn’t have two cats called Sam, however. Another
approach is to order the tree just by name. Making that change alone would allow for only
one Sam, regardless of kind, but you could then define Item to be a list of structures instead of
being a single structure. The first time a Sally shows up, the program would create a new node,
then create a new list, and then add Sally and her kind to the list. The next Sally that shows up
would be directed to the same node and added to the list.

root

carpet

NULL
fate

NULL
llama

NULL
melon

NULL
plenum

NULL
style

NULL
voyage

NULL
NULL

 Figure 17.16 A badly unbalanced binary search tree.

ptg11524036

856 Chapter 17 Advanced Data Representation

 Tip Add-On Libraries

 You’ve probably concluded that implementing an ADT such as a linked list or a tree is hard
work with many, many opportunities to err. Add-on libraries provide an alternative approach: Let
someone else do the work and testing. Having gone through the two relatively simple examples
in this chapter, you are in a better position to understand and appreciate such libraries.

 Other Directions

 In this book, we’ve covered the essential features of C, but we’ve only touched upon the
library. The ANSI C library contains scores of useful functions. Most implementations also
offer extensive libraries of functions specific to particular systems. Windows-based compilers
support the Windows graphic interface. Macintosh C compilers provide functions to access
the Macintosh toolbox to facilitate producing programs with the standard Macintosh inter-
face or for IOS systems, such as iPhones and iPads. Similarly, there are tools for creating Linux
programs with graphical interfaces. Take the time to explore what your system has to offer. If it
doesn’t have what you want, make your own functions. That’s part of C. If you think you can
do a better job on, say, an input function, do it! And as you refine and polish your program-
ming technique, you will go from C to shining C.

 If you’ve found the concepts of lists, queues, and trees exciting and useful, you might want to
read a book or take a course on advanced programming techniques. Computer scientists have
invested a lot of energy and talent into developing and analyzing algorithms and ways of repre-
senting data. You may find that someone has already developed exactly the tool you need.

 After you are comfortable with C, you might want to investigate C++, Objective C, or Java.
These object-oriented languages have their roots in C. C already has data objects ranging in
complexity from a simple char variable to large and intricate structures. Object-oriented
languages carry the idea of the object even further. For example, the properties of an object
include not only what kinds of information it can hold, but also what kinds of operations can
be performed on it. The ADTs in this chapter follow that pattern. Also, objects can inherit prop-
erties from other objects. OOP carries modularizing to a higher level of abstraction than does C,
and it facilitates writing large programs.

 You might want to check out the bibliography in Reference Section I, “Additional Reading,” for
books that might further your interests.

 Key Concepts

 A data type is characterized by how the data is structured and stored and also by what opera-
tions are possible. An abstract data type (ADT) specifies in an abstract manner the properties
and operations characterizing a type. Conceptually, you can translate an ADT to a particular
programming language in two steps. The first step is defining the programming interface. In C,
you can do this by using a header file to define type names and to provide function prototypes

ptg11524036

857Review Questions

that correspond to the allowed operations. The second step is implementing the interface. In C,
you can do this with a source code file that supplies the function definitions corresponding to
the prototypes.

 Summary

 The list, the queue, and the binary tree are examples of ADTs commonly used in computer
programming. Often they are implemented using dynamic memory allocation and linked struc-
tures, but sometimes implementing them with an array is a better choice.

 When you program using a particular type (say, a queue or a tree), you should write the
program in terms of the type interface. That way, you can modify and improve the implemen-
tation without having to alter programs by using the interface.

 Review Questions

 You’ll find answers to the review questions in Appendix A , “Answers to the Review Questions.”

 1. What’s involved in defining a data type?

 2. Why can the linked list in Listing 17.2 be traversed in only one direction? How could
you modify the struct film definition so that the list could be traversed in both
directions?

 3. What’s an ADT?

 4. The QueueIsEmpty() function took a pointer to a queue structure as an argument, but
it could have been written so that it took a queue structure rather than a pointer as an
argument. What are the advantages and disadvantages of each approach?

 5. The stack is another data form from the list family. In a stack, additions and deletions
can be made from only one end of the list. Items are said to be “pushed onto” the top of
the stack and to be “popped off” the stack. Therefore, the stack is a LIFO structure (that
is, last in, first out).

 a. Devise an ADT for a stack.

 b. Devise a C programming interface for a stack, i.e., a stack.h header file.

 6. What is the maximum number of comparisons a sequential search and a binary search
would need to determine that a particular item is not in a sorted list of three items?
1,023 items? 65,535 items?

ptg11524036

858 Chapter 17 Advanced Data Representation

 7. Suppose a program constructs a binary search tree of words, using the algorithm
developed in this chapter. Draw four trees, one for each of the following word entry
orderings:

 a. nice food roam dodge gate office wave

 b. wave roam office nice gate food dodge

 c. food dodge roam wave office gate nice

 d. nice roam office food wave gate dodge

 8. Consider the binary trees constructed in Review Question 7. What would each one look
like after the word food is removed from each tree using the algorithm from this chapter?

 Programming Exercises

 1. Modify Listing 17.2 so that it displays the movie list both in the original order and in
reverse order. One approach is to modify the linked-list definition so that the list can be
traversed in both directions. Another approach is to use recursion.

 2. Suppose list.h (Listing 17.3) uses the following definition of a list:

 typedef struct list

 {

 Node * head; /* points to head of list */

 Node * end; /* points to end of list */

 } List;

 Rewrite the list.c (Listing 17.5) functions to fit this definition and test the resulting
code with the films3.c (Listing 17.4) program.

 3. Suppose list.h (Listing 17.3) uses the following definition of a list:

 #define MAXSIZE 100

 typedef struct list

 {

 Item entries[MAXSIZE]; /* array of items */

 int items; /* number of items in list */

 } List;

 Rewrite the list.c (Listing 17.5) functions to fit this definition and test the resulting
code with the films3.c (Listing 17.4) program.

 4. Rewrite mall.c (Listing 17.7) so that it simulates a double booth having two queues.

ptg11524036

859Programming Exercises

 5. Write a program that lets you input a string. The program then should push the
characters of the string onto a stack, one by one (see review question 5), and then pop
the characters from the stack and display them. This results in displaying the string in
reverse order.

 6. Write a function that takes three arguments: the name of an array of sorted integers, the
number of elements of the array, and an integer to seek. The function returns the value
 1 if the integer is in the array, and 0 if it isn’t. Have the function use the binary search
technique.

 7. Write a program that opens and reads a text file and records how many times each word
occurs in the file. Use a binary search tree modified to store both a word and the number
of times it occurs. After the program has read the file, it should offer a menu with three
choices. The first is to list all the words along with the number of occurrences. The
second is to let you enter a word, with the program reporting how many times the word
occurred in the file. The third choice is to quit.

 8. Modify the Pet Club program so that all pets with the same name are stored in a list in
the same node. When the user chooses to find a pet, the program should request the pet
name and then list all pets (along with their kinds) having that name.

ptg11524036

This page intentionally left blank

ptg11524036

 A
Answers to the Review

Questions

 Answers to Review Questions for Chapter 1

 1. A perfectly portable program is one whose source code can, without modification, be
compiled to a successful program on a variety of different computer systems.

 2. A source code file contains code as written in whatever language the programmer is
using. An object code file contains machine language code; it need not be the code for a
complete program. An executable file contains the complete code, in machine language,
constituting an executable program.

 3. a. Defining program objectives.
 b. Designing the program.

 c. Coding the program.

 d. Compiling the program.

 e. Running the program.

 f. Testing and debugging the program.

 g. Maintaining and modifying the program.

 4. A compiler translates source code (for example, code written in C) to the equivalent
machine language code, also termed object code .

 5. The linker combines translated source code with library code and start-up code to
produce an executable program.

ptg11524036

862 Appendix A Answers to the Review Questions

 Answers to Review Questions for Chapter 2

 1. They are called functions.

 2. A syntax error is a violation of the rules governing how sentences or programs are put
together. Here’s an example in English: “Me speak English good.” Here’s an example in
C:

 printf"Where are the parentheses?";.

 3. A semantic error is one of meaning. Here’s an example in English: “This sentence is
excellent Czech.” Here’s a C example:

 thrice_n = 3 + n;

 4. Line 1: Begin the line with a # ; spell the file stdio.h ; place the filename within angle
brackets.

 Line 2: Use () , not {} ; end the comment with */ , not /* .

 Line 3: Use { , not (.

 Line 4: Complete the statement with a semicolon.

 Line 5: Indiana got this one (the blank line) right!

 Line 6: Use = , not := for assignment. (Apparently, Indiana knows a little Pascal.) Use 52,
not 56, weeks per year.

 Line 7: Should be

 printf("There are %d weeks in a year.\n", s);

 Line 9: There isn’t a line 9, but there should be, and it should consist of the closing
brace, } .

 Here’s how the code looks after these changes:

 #include <stdio.h>

 int main(void) /* this prints the number of weeks in a year */

 {

 int s;

 s = 52;

 printf("There are %d weeks in a year.\n", s);

 return 0;

 }

 5. a. Baa Baa Black Sheep. Have you any wool ?

ptg11524036

863Answers to Review Questions for Chapter 3

 (Note that there is no space after the period. You could have had a space by using "
Have instead of "Have .)

 b.

Begone!

 O creature of lard!

 (Note that the cursor is left at the end of the second line.)

 c.

What?

 No/nfish?

 (Note that the slash [/] does not have the same effect as the backslash [\]; it simply
prints as a slash.)

 d. 2 + 2 = 4

 (Note how each %d is replaced by the corresponding variable value from the list.
Note, too, that + means addition and that calculation can be done inside a printf()
statement.)

 6. int and char (main is a function name, function is a technical term for describing C,
and = is an operator).

 7. printf("There were %d words and %d lines.\n", words, lines);

 8. After line 7, a is 5 and b is 2. After line 8, both a and b are 5. After line 9, both a and
 b are still 5. (Note that a can’t be 2 because by the time you say a = b; , b has already
been changed to 5.)

 9. After line 7, x is 10 and b is 5. After line 8, x is 10 and y is 15. After line 9, x is 150 and y
is 15.

 Answers to Review Questions for Chapter 3

 1. a. int , possibly short or unsigned or unsigned short ; population is a whole
number.

 b. float ; it’s unlikely the cost will be an exact integer. (You could use double but
don’t really need the extra precision.)

 c. char .

 d. int , possibly unsigned .

 2. One reason is that long may accommodate larger numbers than int on your system;
another reason is that if you do need to handle larger values, you improve portability by
using a type guaranteed to be at least 32 bits on all systems.

ptg11524036

864 Appendix A Answers to the Review Questions

 3. To get exactly 32 bits, you could use int32_t , provided it was defined for your system.
To get the smallest type that could store at least 32 bits, use int_least32_t . And to get
the type that would provide the fastest computations for 32 bits, choose int_fast32_t .

 4. a. char constant (but stored as type int)

 b. int constant

 c. double constant

 d. unsigned int constant, hexadecimal format

 e. double constant

 5. Line 1: Should be #include <stdio.h> .

 Line 2: Should be int main(void) .

 Line 3: Use { , not (.

 Line 4: Should be a comma, not a semicolon, between g and h .

 Line 5: Fine.

 Line 6 (the blank line): Fine.

 Line 7: There should be at least one digit before the e . Either 1e21 or 1.0e21 is okay,
although rather large.

 Line 8: Fine, at least in terms of syntax.

 Line 9: Use } , not) .

 Missing lines: First, rate is never assigned a value. Second, the variable h is never used.
Also, the program never informs you of the results of its calculation. None of these errors
will stop the program from running (although you might be given a warning about the
unused variable), but they do detract from its already limited usefulness. Also, there
should be a return statement at the end.

 Here is one possible correct version:

 #include <stdio.h>

 int main(void)

 {

 float g, h;

 float tax, rate;

 rate = 0.08;

 g = 1.0e5;

 tax = rate*g;

 h = g + tax;

ptg11524036

865Answers to Review Questions for Chapter 3

 printf("You owe $%f plus $%f in taxes for a total of $%f.\n", g, tax, h);

 return 0;

 }

 6.

 Constant Type Specifier

 a. 12 int %d

 b. 0X3 unsigned int %#X

 c. 'C' char (really int) %c

 d. 2.34E07 double %e

 e. '\040' char (really int) %c

 f. 7.0 double %f

 g. 6L long %ld

 h. 6.0f float %f

 i. 0x5.b6p12 float %a

 7.

 Constant Type Specifier

 a. 012 unsigned int %#o

 b. 2.9e05L long double %Le

 c. 's' char (really int) %c

 d. 100000 long %ld

 e. '\n' char (really int) %c

 f. 20.0f float %f

 g. 0x44 unsigned int %x

 h. -40 int %d

 8.

 printf("The odds against the %d were %ld to 1.\n", imate, shot);

 printf("A score of %f is not an %c grade.\n", log, grade);

 9.

 ch = '\r';

 ch = 13;

 ch = '\015'

 ch = '\xd'

ptg11524036

866 Appendix A Answers to the Review Questions

 10. Line 0: Should have #include <stdio.h> .

 Line 1: Use /* and */ or else //

 Line 3: int cows, legs;

 Line 4: count?\n");

 Line 5: %d , not %c ; replace legs with &legs

 Line 7: %d , not %f

 Also, add a return statement.

 Here’s one correct version:

 #include <stdio.h>

 int main(void) /* this program is perfect */

 {

 int cows, legs;

 printf("How many cow legs did you count?\n");

 scanf("%d", &legs);

 cows = legs / 4;

 printf("That implies there are %d cows.\n", cows);

 return 0;

 }

 11. a. A newline character

 b. A backslash character

 c. A double quotation mark

 d. A tab character

 Answers to Review Questions for Chapter 4

 1. The program malfunctions. The first scanf() statement reads just your first name,
leaving your last name untouched but still stored in the input “buffer.” (This buffer is
just a temporary storage area used to store the input.) When the next scanf() statement
comes along looking for your weight, it picks up where the last reading attempt ended,
and it tries to read your last name as your weight. This frustrates scanf() . On the other
hand, if you respond to the name request with something such as Lasha 144 , it uses 144
as your weight, even though you typed it before your weight was requested.

 2. a. He sold the painting for $234.50.
 b. Hi!

ptg11524036

867Answers to Review Questions for Chapter 4

 (Note: The first character is a character constant, the second is a decimal integer
converted to a character, and the third is an ASCII representation, in octal, of a
character constant.)

 c.

 His Hamlet was funny without being vulgar.

 has 42 characters.

 d. Is 1.20e+003 the same as 1201.00?

 3. Use \" , as in the following:

 printf("\"%s\"\nhas %d characters.\n", Q, strlen(Q));

 4. Here is a corrected version:

 #include <stdio.h> /* don't forget this */

 #define B "booboo" /* add #, quotes */

 #define X 10 /* add # */

 int main(void) /* instead of main(int) */

 {

 int age;

 int xp; /* declare all variables */

 char name[40]; /* make into an array */

 printf("Please enter your first name.\n"); /* \n for readability */

 scanf("%s", name);

 printf("All right, %s, what's your age?\n", name); /* %s for string */

 scanf("%d", &age); /* %d, not %f, &age, not age */

 xp = age + X;

 printf("That's a %s! You must be at least %d.\n", B, xp);

 return 0; /* not rerun */

 }

 5. Recall the %% construction for printing % .

 printf("This copy of \"%s\" sells for $%0.2f.\n", BOOK, cost);

 printf("That is %0.0f%% of list.\n", percent);

 6. a. %d

 b. %4X

 c. %10.3f

 d. %12.2e

 e. %-30s

 7. a. %15lu

 b. %#4x

ptg11524036

868 Appendix A Answers to the Review Questions

 c. %-12.2E

 d. %+10.3f

 e. %8.8s

 8. a. %6.4d

 b. %*o

 c. %2c

 d. %+0.2f

 e. %-7.5s

 9. a.

 int dalmations;

 scanf("%d", &dalmations);

 b.

 float kgs, share;

 scanf("%f%f", &kgs, &share);

 (Note: For input, e , f , and g can be used interchangeably. Also, for all but %c , it
makes no difference if you leave spaces between the conversion specifiers.)

 c.

 char pasta[20];

 scanf("%s", pasta);

 d.

 char action[20];

 int value;

 scanf("%s %d", action, &value);

 e.

 int value;

 scanf("%*s %d", &value);

 10. Whitespace consists of spaces, tabs, and newlines. C uses whitespace to separate tokens
from one another; scanf() uses whitespace to separate consecutive input items from
each other.

 11. The z in %z is a modifier, not a specifier, so it requires a specifier for it to modify. You
could use %zd to print the result in base 10 or use a different specifier to print using a
different base, for example, %zx for hexadecimal.

 12. The substitutions would take place. Unfortunately, the preprocessor cannot discriminate
between those parentheses that should be replaced with braces and those that should
not. Therefore,

ptg11524036

869Answers to Review Questions for Chapter 5

 #define ({

 #define) }

 int main(void)

 (

 printf("Hello, O Great One!\n");

)

 becomes

 int main{void}

 {

 printf{"Hello, O Great One!\n"};

 }

 Answers to Review Questions for Chapter 5

 1. a. 30 .

 b. 27 (not 3). (12 + 6)/(2*3) would give 3 .

 c. x = 1, y = 1 (integer division).

 d. x = 3 (integer division) and y = 9 .

 2. a. 6 (reduces to 3 + 3.3)

 b. 52

 c. 0 (reduces to 0 * 22.0)

 d. 13 (reduces to 66.0 / 5 or 13.2 and is then assigned to int)

 3. a. 37.5 (reduces to 7.5 * 5.0)

 b. 1.5 (reduces to 30.0 / 20.0)

 c. 35 (reduces to 7 * 5)

 d. 37 (reduces to 150 / 4)

 e. 37.5 (reduces to 7.5 * 5)

 f. 35.0 (reduces to 7 * 5.0)

 4. Line 0 : Should include <stdio.h> .

 Line 3 : Should end in a semicolon, not a comma.

 Line 6 : The while statement sets up an infinite loop because the value of i remains 1
and is always less than 30 . Presumably, we meant to write while(i++ < 30) .

 Lines 6–8 : The indentation implies that we wanted lines 7 and 8 to form a block, but the
lack of braces means that the while loop includes only line 7. Braces should be added.

ptg11524036

870 Appendix A Answers to the Review Questions

 Line 7 : Because 1 and i are both integers, the result of the division will be 1 when i is 1 ,
and 0 for all larger values. Using n = 1.0/i; would cause i to be converted to floating
point before division and would yield nonzero answers.

 Line 8 : We omitted a newline character (\n) in the control statement. This causes the
numbers to be printed on one line, if possible.

 Line 10 : Should be return 0; .

 Here is a corrected version:

 #include <stdio.h>

 int main(void)

 {

 int i = 1;

 float n;

 printf("Watch out! Here come a bunch of fractions!\n");

 while (i++ < 30)

 {

 n = 1.0/i;

 printf(" %f\n", n);

 }

 printf("That's all, folks!\n");

 return 0;

 }

 5. The main problem lies in the relationship between the test statement (is sec greater
than 0?) and the scanf() statement that fetches the value of sec . In particular, the first
time the test is made, the program hasn’t had a chance to even get a value for sec , and
the comparison will be made to some garbage value that happens to be at that memory
location; it might or might not be greater than 0. One solution, albeit an inelegant
one, is to initialize sec to, say, 1 so that the test is passed the first time through. This
uncovers a second problem. When you finally type 0 to halt the program, sec doesn’t
get checked until after the loop is finished, and the results for 0 seconds are printed out.
What you really want is to have a scanf() statement just before the while test is made.
You can accomplish that by altering the central part of the program to read this way:

 scanf("%d", &sec);

 while (sec > 0) {

 min = sec/S_TO_M;

 left = sec % S_TO_M;

 printf("%d sec is %d min, %d sec. \n", sec, min, left);

 printf("Next input?\n");

 scanf("%d", &sec);

 }

ptg11524036

871Answers to Review Questions for Chapter 5

 The first time through, the scanf() outside the loop is used. Thereafter, the scanf()
at the end of the loop (and hence just before the loop begins again) is used. This is a
common method for handling problems of this sort, which is why Listing 5.9 used it.

 6. Here is the output:

 %s! C is cool!

 ! C is cool!

 11

 11

 12

 11

 Let’s explain. The first printf() statement is the same as this:

 printf("%s! C is cool!\n","%s! C is cool!\n");

 The second print statement first increments num to 11 and then prints the value. The
third print statement prints num , which is 11 , and then increments it to 12 . The fourth
print statement prints the current value of n , which still is 12 , and then decrements n to
 11 . The final print statement prints the current value of num , which is 11 .

 7. Here is the output:

 SOS:4 4.00

 The expression c1 - c2 has the same value as 'S' - '0' , which in ASCII is 83 - 79 .

 8. It prints on one line the digits 1 through 10 in fields that are five columns wide and then
starts a new line:

 1 2 3 4 5 6 7 8 9 10

 9. Here is one possibility, which assumes that the letters are coded consecutively, as is the
case for ASCII:

 #include <stdio.h>

 int main(void)

 {

 char ch = 'a';

 while (ch <= 'g')

 printf("%5c", ch++);

 printf("\n");

 return 0;

 }

 10. Here is the output for each example:

 a. 1 2

 Note that x is incremented and then compared. The cursor is left on the same line.

ptg11524036

872 Appendix A Answers to the Review Questions

 b.

 101

 102

 103

 104

 Note that this time x is compared and then incremented. In both this case
and in example a, x is incremented before printing takes place. Note, too, that
indenting the second printf() statement does not make it part of the while loop.
Therefore, it is called only once, after the while loop ends.

 c. stuvw

 Here, there is no incrementing until after the first printf() .

 11. This is an ill-constructed program. Because the while statement doesn’t use braces, only
the printf() statement is part of the loop, so the program prints the message COMPUTER
BYTES DOG indefinitely until you can kill the program.

 12. a. x = x + 10;

 b. x++; or ++x; or x = x + 1;

 c. c = 2 * (a + b);

 d. c = a + 2* b;

 13. a. x--; or --x; or x = x - 1;

 b. m = n % k;

 c. p = q / (b - a);

 d. x = (a + b) / (c * d);

 Answers to Review Questions for Chapter 6

 1. 2 , 7 , 70 , 64 , 8 , 2

 2. It would produce the following output:

 36 18 9 4 2 1

 If value were double , the test would remain true even when value became less than 1.
The loop would continue until floating-point underflow yielded a value of 0. Also, the
 %3d specifier would be the wrong choice.

 3. a. x > 5

 b. scanf("%lf",&x) != 1

 c. x == 5

ptg11524036

873Answers to Review Questions for Chapter 6

 4. a. scanf("%d", &x) == 1

 b. x != 5

 c. x >= 20

 5. Line 4: Should be list[10] .

 Line 6: Commas should be semicolons.

 Line 6: The range for i should be from 0 to 9, not 1 to 10.

 Line 9: Commas should be semicolons.

 Line 9: >= should be <= . Otherwise, when i is 1 , the loop runs for quite a while.

 Line 10: There should be another closing brace between lines 9 and 10. One brace closes
the compound statement, and one closes the program. In between should be a return
0; line.

 Here’s a corrected version:

 #include <stdio.h>

 int main(void)

 { /* line 3 */

 int i, j, list[10]; /* line 4 */

 for (i = 0; i < 10; i++) /* line 6 */

 { /* line 7 */

 list[i] = 2*i + 3; /* line 8 */

 for (j = 1; j <= i; j++) /* line 9 */

 printf(" %d", list[j]); /* line 10 */

 printf("\n"); /* line 11 */

 }

 return 0;

 }

 6. Here’s one way:

 #include <stdio.h>

 int main(void)

 {

 int col, row;

 for (row = 1; row <= 4; row++)

 {

 for (col = 1; col <= 8; col++)

 printf("$");

 printf("\n");

 }

ptg11524036

874 Appendix A Answers to the Review Questions

 return 0;

 }

 7. a. It would produce the following output:

 Hi! Hi! Hi! Bye! Bye! Bye! Bye! Bye!

 b. It would produce the following output:

 ACGM

 Because the code adds an int value to a char value, a compiler might warn of possible
loss of significant digits.

 8. a. It would produce the following output:

 Go west, youn

 b. It would produce the following output:

 Hp!xftu-!zpvo

 c. It would produce the following output:

 Go west, young

 d. It would produce the following output:

 $o west, youn

 9. Here is the output you should get:

 31|32|33|30|31|32|33|

 1

 5

 9

 13

 2 6

 4 8

 8 10

 ======

 =====

 ====

 ===

 ==

 10. a. mint

 b. 10 elements

ptg11524036

875Answers to Review Questions for Chapter 6

 c. Type double values

 d. Line ii is correct; mint[2] is a type double value and &mint[2] is its location.

 11. Because the first element has index 0 , the loop range should be 0 to SIZE - 1 , not 1 to
 SIZE . Making that change, however, causes the first element to be assigned the value 0
instead of 2 . So rewrite the loop this way:

 for (index = 0; index < SIZE; index++)

 by_twos[index] = 2 * (index + 1);

 Similarly, the limits for the second loop should be changed. Also, an array index should
be used with the array name:

 for(index = 0; index < SIZE; index++)

 printf("%d ", by_twos[index]);

 One dangerous aspect of bad loop limits is that the program may work; however, because
it is placing data where it shouldn’t, it might not work at some time in the future,
forming sort of a programming time bomb.

 12. It should declare the return type as long , and it should have a return statement that
returns a long value.

 13. Typecasting num to long makes sure the calculation is done as a long calculation, not an
 int calculation. On a system with a 16-bit int , multiplying two int s produces a result
that is truncated to an int before the value is returned, possibly losing data.

 long square(int num)

 {

 return ((long) num) * num;

 }

 14. Here is the output:

 1: Hi!

 k = 1

 k is 1 in the loop

 Now k is 3

 k = 3

 k is 3 in the loop

 Now k is 5

 k = 5

 k is 5 in the loop

 Now k is 7

 k = 7

ptg11524036

876 Appendix A Answers to the Review Questions

 Answers to Review Questions for Chapter 7

 1. True: b.

 2. a. number >= 90 && number < 100

 b. ch != 'q' && ch != 'k'

 c. (number >= 1 && number <= 9) && number != 5

 d. !(number >= 1 && number <= 9) is one choice, but

 number < 1 || number > 9 is simpler to understand

 3. Line 5: Should be scanf("%d %d", &weight, &height); . Don’t forget those & s for
 scanf() . Also, this line should be preceded by a line prompting input.

 Line 9: What is meant is (height < 72 && height > 64) . However, the first part
of the expression is unnecessary because height must be less than 72 for the else if
to be reached in the first place. Therefore, a simple (height > 64) will serve. But line
6 already guarantees that height > 64 , so no test at all is needed, and the if else
should just be an else .

 Line 11: The condition is redundant; the second subexpression (weight not less than or
equal to 300) means the same as the first. A simple (weight > 300) is all that is needed.
But there is more trouble. Line 11 gets attached to the wrong if ! Clearly, this else is
meant to go along with line 6. By the most recent if rule, however, it will be associated
with the if of line 9. Therefore, line 11 is reached when weight is less than 100 and
 height is 64 or under. This makes it impossible for weight to exceed 300 when this
statement is reached.

 Lines 7 through 10: Should be enclosed in braces. Then line 11 will become an
alternative to line 6, not to line 9. Alternatively, if the if else on line 9 is replaced with
a simple else , no braces are needed.

 Line 13: Simplify to if (height > 48) . Actually, you can omit this line entirely
because line 12 already makes this test.

 Line 15: This else associates with the last if , the one on line 13. Enclose lines 13 and 14
in braces to force this else to associate with the if of line 11. Or, as suggested, simply
eliminate line 13.

 Here’s a corrected version:

 #include <stdio.h>

 int main(void)

 {

 int weight, height; /* weight in lbs, height in inches */

 printf("Enter your weight in pounds and ");

ptg11524036

877Answers to Review Questions for Chapter 7

 printf("your height in inches.\n");

 scanf("%d %d", &weight, &height);

 if (weight < 100 && height > 64)

 if (height >= 72)

 printf("You are very tall for your weight.\n");

 else

 printf("You are tall for your weight.\n");

 else if (weight > 300 && height < 48)

 printf(" You are quite short for your weight.\n");

 else

 printf("Your weight is ideal.\n");

 return 0;

 }

 4. a. 1 . The assertion is true, which numerically is a 1 .

 b. 0 . 3 is not less than 2.

 c. 1 . If the first expression is false, the second is true, and vice versa; just one true
expression is needed.

 d. 6 , because the value of 6 > 2 is 1 .

 e. 10 , because the test condition is true.

 f. 0 . If x > y is true, the value of the expression is y > x , which is false in that case,
or 0 . If x > y is false, the value of the expression is x > y , which is false in that
case.

 5. The program prints the following:

 #%#%$#%*#%*#%$#%*#%*#%$#%*#%*#%

 Despite what the indentation suggests, the # is printed during every loop because it is
not part of a compound statement.

 6. The program prints the following:

 fat hat cat Oh no!

 hat cat Oh no!

 cat Oh no!

 7. The comments on lines 5 through 7 should be terminated with */ , or else you can
replace /* with // . The expression 'a' <= ch >= 'z' should be replaced with this:

 ch >= 'a' && ch <= 'z'

 Or, more simply and more portably, you can include ctype.h and use islower() .
Incidentally, 'a' <= ch >= 'z' is valid C in terms of syntax; it just doesn’t have
the right meaning. Because relational operators associate left to right, the expression is
interpreted as ('a' <= ch) >= 'z' . The expression in parentheses has the value 1 or 0

ptg11524036

878 Appendix A Answers to the Review Questions

(true or false), and this value is checked to see whether it is equal to or greater than the
numeric code for 'z' . Neither 0 nor 1 satisfies that test, so the whole expression always
evaluates to 0 (false). In the second test expression, || should be && . Also, although !(ch
< 'A') is both valid and correct in meaning, ch >= 'A' is simpler. The 'Z' should
be followed by two closing parentheses, not one. Again, more simply, use isupper() .
The oc++; statement should be preceded by an else . Otherwise, it is incremented every
character. The control expression in the printf() call should be enclosed in double
quotes.

 Here is a corrected version:

 #include <stdio.h>

 #include <ctype.h>

 int main(void)

 {

 char ch;

 int lc = 0; /* lowercase char count */

 int uc = 0; /* uppercase char count */

 int oc = 0; /* other char count */

 while ((ch = getchar()) != '#')

 {

 if (islower(ch))

 lc++;

 else if (isupper(ch))

 uc++;

 else

 oc++;

 }

 printf("%d lowercase, %d uppercase, %d other", lc, uc, oc);

 return 0;

 }

 8. Unhappily, it prints the same line indefinitely:

 You are 65. Here is your gold watch.

 The problem is that the line

 if (age = 65)

 sets age to 65 , which tests as true every loop cycle.

 9. Here is the resulting run using the given input:

 q

 Step 1

 Step 2

ptg11524036

879Answers to Review Questions for Chapter 8

 Step 3

 c

 Step 1

 h

 Step 1

 Step 3

 b

 Step 1

 Done

 Note that both b and # terminate the loop, but that entering b elicits the printing of step
1, and entering # doesn’t.

 10. Here is one solution:

 #include <stdio.h>

 int main(void)

 {

 char ch;

 while ((ch = getchar()) != '#')

 {

 if (ch != '\n')

 {

 printf("Step 1\n");

 if (ch == 'b')

 break;

 else if (ch != 'c')

 {

 if (ch != 'h')

 printf("Step 2\n");

 printf("Step 3\n");

 }

 }

 }

 printf("Done\n");

 return 0;

 }

 Answers to Review Questions for Chapter 8

 1. The expression putchar(getchar()) causes the program to read the next input
character and to print it; the return value from getchar() is the argument to
 putchar() . No, getchar(putchar()) is invalid because getchar() doesn’t use an
argument and putchar() needs one.

ptg11524036

880 Appendix A Answers to the Review Questions

 2. a. Display the H character.

 b. Sound the alert if the system uses ASCII.

 c. Move the cursor to the beginning of the next line.

 d. Backspace.

 3. count <essay >essayct or else count >essayct <essay

 4. None are valid.

 5. It’s a signal (a special value) returned by getchar() and scanf() to indicate that they
have detected the end of a file.

 6. a. The output is as follows:

 If you qu

 Note that the character I is distinct from the character i . Also note that the i is not
printed because the loop quits upon detecting it.

 b. The output for ASCII is as follows:

 HJacrthjacrt

 The first time through, ch has the value H . The ch++ causes the value to be used (printed)
and then incremented (to I). Then the ++ch causes the value to be incremented (to J)
and then used (printed). After that, the next character (a) is read, and the process is
repeated. An important point to note here is that the incrementations affect the value
of ch after it has been assigned a value; they don’t somehow cause the program to move
through the input queue.

 7. C’s standard I/O library maps diverse file forms to uniform streams that can be handled
equivalently.

 8. Numeric input skips over spaces and newlines, but character input does not. Suppose you
have code like this:

 int score;

 char grade;

 printf("Enter the score.\n");

 scanf("%s", %score);

 printf("Enter the letter grade.\n");

 grade = getchar();

 If you enter 98 for the score and then press the Enter key to send the score to the
program, you also sent a newline character, which becomes the next input character and
is read into grade as the grade value. If you precede character input with numeric input,
you should add code to dispose of the newline character before the character input takes
place.

ptg11524036

881Answers to Review Questions for Chapter 9

 Answers to Review Questions for Chapter 9

 1. A formal parameter is a variable that is defined in the function being called. The actual
argument is the value appearing in the function call; this value is assigned to the formal
argument. You can think of the actual argument as being the value to which the formal
parameter is initialized when the function is called.

 2. a. void donut(int n)

 b. int gear(int t1, int t2)

 c. int guess(void)

 d. void stuff_it(double d, double *pd)

 3. a. char n_to_char(int n)

 b. int digits(double x, int n)

 c. double * which(double * p1, double * p2)

 d. int random(void)

 4.

 int sum(int a, int b)

 {

 return a + b;

 }

 5. Replace int with double throughout:

 double sum(double a, double b)

 {

 return a + b;

 }

 6. This function needs to use pointers:

 void alter(int * pa, int * pb)

 {

 int temp;

 temp = *pa + *pb;

 *pb = *pa - *pb;

 *pa = temp;

 }

ptg11524036

882 Appendix A Answers to the Review Questions

 or

 void alter(int * pa, int * pb)

 {

 *pa += *pb;

 *pb = *pa - 2 * *pb;

 }

 7. Yes; num should be declared in the salami() argument list, not after the brace. Also, it
should be count++ , not num++ .

 8. Here is one solution:

 int largest(int a, int b, int c)

 {

 int max = a;

 if (b > max)

 max = b;

 if (c > max)

 max = c;

 return max;

 }

 9. Here is a minimal program; the showmenu() and getchoice() functions are possible
solutions to parts a and b.

 #include <stdio.h>

 void showmenu(void); /* declare functions used */

 int getchoice(int, int);

 int main()

 {

 int res;

 showmenu();

 while ((res = getchoice(1,4)) != 4)

 {

 printf("I like choice %d.\n", res);

 showmenu();

 }

 printf("Bye!\n");

 return 0;

 }

 void showmenu(void)

 {

 printf("Please choose one of the following:\n");

 printf("1) copy files 2) move files\n");

 printf("3) remove files 4) quit\n");

 printf("Enter the number of your choice:\n");

ptg11524036

883Answers to Review Questions for Chapter 10

 }

 int getchoice(int low, int high)

 {

 int ans;

 int good;

 good = scanf("%d", &ans);

 while (good == 1 && (ans < low || ans > high))

 {

 printf("%d is not a valid choice; try again\n", ans);

 showmenu();

 scanf("%d", &ans);

 }

 if (good != 1)

 {

 printf("Non-numeric input. ");

 ans = 4;

 }

 return ans;

 }

 Answers to Review Questions for Chapter 10

 1. The printout is this:

 8 8

 4 4

 0 0

 2 2

 2. The array ref has four elements because that is the number of values in the initialization
list.

 3. The array name ref points to the first element of the array, the integer 8 . The expression
 ref + 1 points to the second element, the integer 4 . The construction ++ref is not a
valid C expression; ref is a constant, not a variable.

 4. ptr points to the first element, and ptr + 2 points to the third element, which would
be the first element of the second row.

 a. 12 and 16.

 b. 12 and 14 (just the 12 goes in the first row because of the braces).

 5. ptr points to the first row and ptr+1 points to the second row; *ptr points to the first
element in the first row, and *(ptr + 1) points to the first element of the second row.

ptg11524036

884 Appendix A Answers to the Review Questions

 a. 12 and 16.

 b. 12 and 14 (just the 12 goes in the first row because of the braces).

 6. a. &grid[22][56]

 b. &grid[22][0] or grid[22]

 (The latter is the name of a one-dimensional array of 100 elements, hence the address of
its first element, which is the element grid[22][0] .)

 c. &grid[0][0] or grid[0] or (int *) grid

 (Here, grid[0] is the address of the int element grid[0][0] , and grid is the address
of the 100-element array grid[0] . The two addresses have the same numeric value but
different types; the typecast makes the types the same.)

 7. a. int digits[10];

 b. float rates[6];

 c. int mat[3][5];

 d. char * psa[20] ;

 Note that [] has higher precedence than * , so in the absence of parentheses, the array
descriptor is applied first, and then the pointer descriptor. Hence, this declaration is the
same as char *(psa[20]); .

 e. char (*pstr)[20];

 Note

 char *pstr[20]; is incorrect for e. This would make pstr an array of pointers instead of a
pointer to an array. In particular, pstr would point to a single char , the first member of the
array; pstr + 1 would point to the next byte. With the correct declaration, pstr is a variable
rather than an array name, and pstr + 1 points 20 bytes beyond the initial byte.

 8. a. int sextet[6] = {1, 2, 4, 8, 16, 32};

 b. sextet[2]

 c. int lots[100] = { [99] = -1};

 d. int pots[100] = { [5] = 101, [10] = 101,

 101, 101, 101};

 9. 0 through 9

 10. a. rootbeer[2] = value;

 Valid.

 b. scanf("%f", &rootbeer);

ptg11524036

885Answers to Review Questions for Chapter 10

 Invalid; rootbeer is not a float .

 c. rootbeer = value;

 Invalid; rootbeer is not a float .

 d. printf("%f", rootbeer);

 Invalid; rootbeer is not a float .

 e. things[4][4] = rootbeer[3];

 Valid.

 f. things[5] = rootbeer;

 Invalid; can’t assign arrays.

 g. pf = value;

 Invalid; value is not an address.

 h. pf = rootbeer;

 Valid.

 11. int screen[800][600] ;

 12. a.

 void process(double ar[], int n);

 void processvla(int n, double ar[n]);

 process(trots, 20);

 processvla(20, trots);

 b.

 void process2(short ar2[30], int n);

 void process2vla(int n, int m, short ar2[n][m]);

 process2(clops, 10);

 process2vla(10, 30, clops);

 c.

 void process3(long ar3[10][15], int n);

 void process3vla(int n, int m,int k, long ar3[n][m][k]);

 process3(shots, 5);

 process3vla(5, 10, 15, shots);

 13. a.

 show((int [4]) {8,3,9,2}, 4);

 b.

 show2((int [][3]){{8,3,9}, {5,4,1}}, 2);

ptg11524036

886 Appendix A Answers to the Review Questions

 Answers to Review Questions for Chapter 11

 1. The initialization should include a '\0' if you want the result to be a string. Of course,
the alternative syntax adds the null character automatically:

 char name[] = "Fess";

 2.

 See you at the snack bar.

 ee you at the snack bar.

 See you

 e you

 3.

 y

 my

 mmy

 ummy

 Yummy

 4. I read part of it all the way through.

 5. a. Ho Ho Ho!!oH oH oH

 b. Pointer-to- char (that is, char *).

 c. The address of the initial H .

 d. *––pc means to decrement the pointer by 1 and use the value found there. ––*pc
means to take the value pointed to by pc and decrement that value by 1 (for
example, H becomes G).

 e. Ho Ho Ho!!oH oH o

 Note

 A null character comes between ! and ! , but typically it produces no printing effect.

 f. while(*pc) checks to see that pc does not point to a null character (that is, to the
end of the string). The expression uses the value at the pointed-to location.

 while(pc - str) checks to see that pc does not point to the same location
that str does (the beginning of the string). The expression uses the values of the
pointers themselves.

ptg11524036

887Answers to Review Questions for Chapter 11

 g. After the first while loop, pc points to the null character. Upon entering the
second loop, it is made to point to the storage location before the null character
(that is, to the location just before the one that str points to). That byte is
interpreted as a character and is printed. The pointer then backs up to the
preceding byte. The terminating condition (pc == str) never occurs, and the
process continues until you, or the system, tire.

 h. pr() must be declared in the calling program:

 char * pr(char *);

 6. Character variables occupy a byte, so sign occupies a byte. But a character constant is
stored in an int , meaning the '$' typically would use 2 or 4 bytes; however, only 1 byte
of the int is actually used to store the code for '$' . The string "$" uses 2 bytes: one to
hold the code for '$' , and one to hold the code for '\0' .

 7. Here is what you get:

 How are ya, sweetie? How are ya, sweetie?

 Beat the clock.

 eat the clock.

 Beat the clock. Win a toy.

 Beat

 chat

 hat

 at

 t

 t

 at

 How are ya, sweetie?

 8. Here is what you get:

 faavrhee

 *le*on*sm

 9. Here is one solution:

 #include <stdio.h> // for fgets(), getchar()

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (*st != '\n' && *st != '\0')

 st++;

 if (*st == '\n')

ptg11524036

888 Appendix A Answers to the Review Questions

 *st = '\0';

 else

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 10. Here is one solution:

 int strlen(const char * s)

 {

 int ct = 0;

 while (*s++) // or while (*s++ != '\0')

 ct++;

 return(ct);

 }

 11. Here is one solution:

 #include <stdio.h> // for fgets(), getchar()

 #include <string.h> // for strchr();

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 char * find;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 find = strchr(st, '\n'); // look for newline

 if (find) // if the address is not NULL,

 *find = '\0'; // place a null character there

 else

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 12. Here is one solution:

 #include <stdio.h> /* for NULL definition */

 char * strblk(char * string)

 {

 while (*string != ' ' && *string != '\0')

ptg11524036

889Answers to Review Questions for Chapter 11

 string++; /* stops at first blank or null */

 if (*string == '\0')

 return NULL; /* NULL is the null pointer */

 else

 return string;

 }

 Here is a second solution that prevents the function from modifying the string but
that allows the return value to be used to change the string. The expression (char *)
string is called “casting away const .”

 #include <stdio.h> /* for NULL definition */

 char * strblk(const char * string)

 {

 while (*string != ' ' && *string != '\0')

 string++; /* stops at first blank or null */

 if (*string == '\0')

 return NULL; /* NULL is the null pointer */

 else

 return (char *) string;

 }

 13. Here is one solution:

 /* compare.c -- this will work */

 #include <stdio.h>

 #include <string.h> // declares strcmp()

 #include <ctype.h>

 #define ANSWER "GRANT"

 #define SIZE 40

 char * s_gets(char * st, int n);

 void ToUpper(char * str);

 int main(void)

 {

 char try[SIZE];

 puts("Who is buried in Grant's tomb?");

 s_gets(try, SIZE);

 ToUpper(try);

 while (strcmp(try,ANSWER) != 0)

 {

 puts("No, that's wrong. Try again.");

 s_gets(try, SIZE);

 ToUpper(try);

 }

 puts("That's right!");

ptg11524036

890 Appendix A Answers to the Review Questions

 return 0;

 }

 void ToUpper(char * str)

 {

 while (*str != '\0')

 {

 *str = toupper(*str);

 str++;

 }

 }

 char * s_gets(char * st, int n)

 {

 char * ret_val;

 int i = 0;

 ret_val = fgets(st, n, stdin);

 if (ret_val)

 {

 while (st[i] != '\n' && st[i] != '\0')

 i++;

 if (st[i] == '\n')

 st[i] = '\0';

 else // must have words[i] == '\0'

 while (getchar() != '\n')

 continue;

 }

 return ret_val;

 }

 Answers to Review Questions for Chapter 12

 1. The automatic storage class, the register storage class, and the static, no linkage storage
class.

 2. The static, no linkage storage class; the static, internal linkage storage class; and the
static, external linkage storage class.

 3. The static, external linkage storage class. The static, internal linkage storage class.

 4. No linkage.

 5. The keyword extern is used in declarations to indicate a variable or function that has
been defined elsewhere.

ptg11524036

891Answers to Review Questions for Chapter 13

 6. Both allocate an array of 100 int values. The statement using calloc() additionally sets
each element to 0.

 7. daisy is known to main() , by default, and to petal() , stem() , and root() because
of the extern declaration. The extern int daisy; declaration in file 2 makes daisy
known to all the functions in file 2. The first lily is local to main() . The reference to
 lily in petal() is an error because there is no external lily in either file. There is an
external static lily , but it is known just to functions in the second file. The first external
 rose is known to root() , but stem() has overridden it with its own local rose .

 8. Here is the output:

 color in main() is B

 color in first() is R

 color in main() is B

 color in second() is G

 color in main() is G

 The first() function does not use the global color variable, but second() does.

 9. a. It tells you that the program will use the variable plink , which is local to the
file containing the function. The first argument to value_ct() is a pointer to an
integer, presumably the first element of an array of n members. The important
point here is that the program will not be allowed to use the pointer arr to modify
values in the original array.

 b. No. Already, value and n are copies of original data, so there is no way for the
function to alter the corresponding values in the calling program. What these
declarations do accomplish is to prevent the function from altering value and n
within the function. For example, the function couldn’t use the expression n++ if n
were qualified as const .

 Answers to Review Questions for Chapter 13

 1. It should have #include <stdio.h> for its file definitions. It should declare fp a
file pointer: FILE *fp; . The function fopen() requires a mode: fopen("gelatin",
"w") , or perhaps the "a" mode. The order of the arguments to fputs() should be
reversed. For clarity, the output string should have a newline because fputs() doesn’t
add one automatically. The fclose() function requires a file pointer, not a filename:
 fclose(fp); . Here is a corrected version:

 #include <stdio.h>

 int main(void)

 {

 FILE * fp;

 int k;

ptg11524036

892 Appendix A Answers to the Review Questions

 fp = fopen("gelatin", "w");

 for (k = 0; k < 30; k++)

 fputs("Nanette eats gelatin.\n", fp);

 fclose(fp);

 return 0;

 }

 2. It would open, if possible, the file whose name is the first command-line argument, and
it would display onscreen each digit character in the file.

 3. a. ch = getc(fp1);

 b. fprintf(fp2,"%c"\n",ch);

 c. putc(ch,fp2);

 d. fclose(fp1); /* close the terky file */

 Note

 fp1 is used for input operations because it identifies the file opened in the read mode.
Similarly, fp2 was opened in the write mode, so it is used with output functions.

 4. Here is one approach:

 #include <stdio.h>

 #include <stdlib.h>

 int main(int argc,char * argv[])

 {

 FILE * fp;

 double n;

 double sum = 0.0;

 int ct = 0;

 if (argc == 1)

 fp = stdin;

 else if (argc == 2)

 {

 if ((fp = fopen(argv[1], "r")) == NULL)

 {

 fprintf(stderr, "Can't open %s\n", argv[1]);

 exit(EXIT_FAILURE);

 }

 }

 else

 {

 fprintf(stderr, "Usage: %s [filename]\n", argv[0]);

ptg11524036

893Answers to Review Questions for Chapter 13

 exit(EXIT_FAILURE);

 }

 while (fscanf(fp, "%lf", &n) == 1)

 {

 sum += n;

 ++ct;

 }

 if (ct > 0)

 printf("Average of %d values = %f\n", ct, sum / ct);

 else

 printf("No valid data.\n");

 return 0;

 }

 5. Here is one approach.

 #include <stdio.h>

 #include <stdlib.h>

 #define BUF 256

 int has_ch(char ch, const char * line);

 int main(int argc,char * argv[])

 {

 FILE * fp;

 char ch;

 char line [BUF];

 if (argc != 3)

 {

 printf("Usage: %s character filename\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 ch = argv[1][0];

 if ((fp = fopen(argv[2], "r")) == NULL)

 {

 printf("Can't open %s\n", argv[2]);

 exit(EXIT_FAILURE);

 }

 while (fgets(line,BUF,fp) != NULL)

 {

 if (has_ch(ch,line))

 fputs(line,stdout);

 }

 fclose(fp);

 return 0;

 }

ptg11524036

894 Appendix A Answers to the Review Questions

 int has_ch(char ch, const char * line)

 {

 while (*line)

 if (ch == *line++)

 return(1);

 return 0;

 }

 The fgets() and fputs() functions work together because fgets() leaves the \n
produced by Enter in the string, and fputs() does not add a \n the way that puts()
does.

 6. The distinction between a binary file and a text file is a system-dependent difference
between file formats. The distinction between a binary stream and a text stream consists
of translations performed by the program as it reads or writes streams. (A binary stream
has no translations; a text stream may convert newline and other characters.)

 7. a. When 8238201 is saved using fprintf() , it’s saved as seven characters stored in
7 bytes. When fwrite() is used, it’s saved as a 4-byte integer using the binary
representation of that numeric value.

 b. No difference; in each case it’s saved as a 1-byte binary code.

 8. The first is just a shorthand notation for the second; the third writes to the standard
error. Normally, the standard error is directed to the same place as the standard output,
but the standard error is not affected by standard output redirection.

 9. The "r+" mode lets you read and write anywhere in a file, so it’s best suited. The "a+"
mode only lets you append material to the end of the file, and the "w+" mode starts with
a clean slate, discarding previous file contents.

 Answers to Review Questions for Chapter 14

 1. The proper keyword is struct , not structure . The template requires either a tag before
the opening brace or a variable name after the closing brace. Also, there should be a
semicolon after * togs and at the end of the template.

 2. Here is the output:

 6 1

 22 Spiffo Road

 S p

 3.

 struct month {

 char name[10];

 char abbrev[4];

ptg11524036

895Answers to Review Questions for Chapter 14

 int days;

 int monumb;

 };

 4.

 struct month months[12] =

 {

 {"January", "jan", 31, 1},

 {"February", "feb", 28, 2},

 {"March", "mar", 31, 3},

 {"April", "apr", 30, 4},

 {"May", "may", 31, 5},

 {"June", "jun", 30, 6},

 {"July", "jul", 31, 7},

 {"August", "aug", 31, 8},

 {"September", "sep", 30, 9},

 {"October", "oct", 31, 10},

 {"November", "nov", 30, 11},

 {"December", "dec", 31, 12}

 };

 5.

 extern struct month months[];

 int days(int month)

 {

 int index, total;

 if (month < 1 || month > 12)

 return(-1); /* error signal */

 else

 {

 for (index = 0, total = 0; index < month; index ++)

 total += months[index].days;

 return(total);

 }

 }

 Note that index is one less than the month number because arrays start with subscript 0.
Therefore, use index < month instead of index <= month .

 6. a. Include string.h to provide strcpy() :

 typedef struct lens { /* lens descriptor */

 float foclen; /* focal length,mm */

 float fstop; /* aperture */

 char brand[30]; /* brand name */

 } LENS;

ptg11524036

896 Appendix A Answers to the Review Questions

 LENS bigEye[10];

 bigEye[2].foclen = 500;

 bigEye[2].fstop = 2.0;

 strcpy(bigEye[2].brand, "Remarkatar");

 b.

 LENS bigEye[10] = { [2] = {500, 2, "Remarkatar"} };

 7. a.

 6

 Arcturan

 cturan

 b. Use the structure name and use the pointer:

 deb.title.last

 pb->title.last

 c. Here is one version:

 #include <stdio.h>

 #include "starfolk.h" /* make struct defs available */

 void prbem (const struct bem * pbem)

 {

 printf("%s %s is a %d-limbed %s.\n", pbem->title.first,

 pbem->title.last, pbem->limbs, pbem->type);

 }

 8. a. willie.born

 b. pt->born

 c. scanf("%d", &willie.born);

 d. scanf("%d", &pt->born);

 e. scanf("%s", willie.name.lname);

 f. scanf("%s", pt->name.lname);

 g. willie.name.fname[2]

 h. strlen(willie.name.fname) + strlen(willie.name.lname)

 9. Here is one possibility:

 struct car {

 char name[20];

 float hp;

ptg11524036

897Answers to Review Questions for Chapter 14

 float epampg;

 float wbase;

 int year;

 };

 10. The functions could be set up like this:

 struct gas {

 float distance;

 float gals;

 float mpg;

 };

 struct gas mpgs(struct gas trip)

 {

 if (trip.gals > 0)

 trip.mpg = trip.distance / trip.gals ;

 else

 trip.mpg = -1.0;

 return trip;

 }

 void set_mpgs(struct gas * ptrip)

 {

 if (ptrip->gals > 0)

 ptrip->mpg = ptrip->distance / ptrip->gals ;

 else

 ptrip->mpg = -1.0;

 }

 Note that the first function cannot directly alter values in the calling program, so you
must use the return value to convey the information:

 struct gas idaho = {430.0, 14.8}; // set first two members

 idaho = mpgs(idaho); // reset structure

 The second function, however, accesses the original structure directly:

 struct gas ohio = {583, 17.6}; // set first two members

 set_mpgs(&ohio); // set third member

 11. enum choices {no, yes, maybe};

 12. char * (*pfun)(char *, char);

 13.

 double sum(double, double);

 double diff(double, double);

ptg11524036

898 Appendix A Answers to the Review Questions

 double times(double, double);

 double divide(double, double);

 double (*pf1[4])(double, double) = {sum, diff, times, divide};

 Or, more simply, replace the last line of code with these lines:

 typedef double (*ptype)(double, double);

 ptype pf1[4] = {sum, diff, times, divide};

 To invoke the diff() function:

 pf1[1](10.0, 2.5); // first notation

 (*pf1[1])(10.0, 2.5); // equivalent notation

 Answers to Review Questions for Chapter 15

 1. a. 00000011

 b. 00001101

 c. 00111011

 d. 01110111

 2. a. 21, 025, 0x15

 b. 85, 0125, 0x55

 c. 76, 0114, 0x4C

 d. 157, 0235, 0x9D

 3. a. 252

 b. 2

 c. 7

 d. 7

 e. 5

 f. 3

 g. 28

 4. a. 255

 b. 1 (not false is true)

 c. 0

 d. 1 (true and true is true)

 e. 6

ptg11524036

899Answers to Review Questions for Chapter 16

 f. 1 (true or true is true)

 g. 40

 5. In binary, the mask is 1111111 . In decimal, it’s 127 . In octal, it’s 0177 . In hexadecimal,
it’s 0x7F .

 6. Both bitvbal *= 2 and bitval << 1 double the current value of bitval , so they are
equivalent. However, mask += bitval and mask |= bitval have the same effect only
if bitval and mask have no bits set to “on” in common. For example, 2 | 4 is 6 , but so
is 3 | 6 .

 7. a.

 struct tb_drives {

 unsigned int diskdrives : 2;

 unsigned int : 1;

 unsigned int cdromdrives : 2;

 unsigned int : 1;

 unsigned int harddrives : 2;

 };

 b.

 struct kb_drives {

 unsigned int harddrives : 2;

 unsigned int : 1;

 unsigned int cdromdrives : 2;

 unsigned int : 1;

 unsigned int diskdrives : 2;

 };

 Answers to Review Questions for Chapter 16

 1. a. dist = 5280 * miles; is valid.

 b. plort = 4 * 4 + 4; is valid. But if the user really wanted 4 * (4 + 4) , he or
she should have used #define POD (FEET + FEET) .

 c. nex = = 6;; is invalid. (If there were no space between the two equal signs, it
would be valid but useless.) Apparently, the user forgot that he or she was writing
for the preprocessor, not writing in C.

 d. y = y + 5; is valid. berg = berg + 5 * lob; is valid, but this is probably not
the desired result. est = berg + 5/ y + 5; is valid, but this is probably not
the desired result. nilp = lob *-berg + 5; is valid, but this is probably not the
desired result.

 2. #define NEW(X) ((X) + 5)

ptg11524036

900 Appendix A Answers to the Review Questions

 3. #define MIN(X,Y) ((X) < (Y) ? (X) : (Y))

 4. #define EVEN_GT(X,Y) ((X) > (Y) && (X) % 2 == 0 ? 1 : 0)

 5. #define PR(X,Y) printf(#X " is %d and " #Y " is %d\n", X,Y)

 Because X and Y are never exposed to any other operations (such as multiplication) in
this macro, you don’t have to cocoon everything in parentheses.

 6. a. #define QUARTERCENTURY 25

 b. #define SPACE ' '

 c. #define PS() putchar(' ')

 or

 #define PS() putchar(SPACE)

 d. #define BIG(X) ((X) + 3)

 e. #define SUMSQ(X,Y) ((X)*(X) + (Y)*(Y))

 7. Try this:

 #define P(X) printf("name: "#X"; value: %d; address: %p\n", X, &X)

 Or, if your implementation doesn’t recognize the %p specification for the address, try %u
or %lu .

 8. Use the conditional compilation directives. One way is to use #ifndef :

 #define _SKIP_ /* remove when you don't want to skip code */

 #ifndef _SKIP_

 /* code to be skipped */

 #endif

 9.

 #ifdef PR_DATE

 printf("Date = %s\n", _ _DATE_ _);

 #endif

 10. One version returns the value x*x . This just returns the type double value of the square.
For example, square(1.3) would return 1.69 . The second version returns (int)(x*x) .
This truncates the result to an int . Then, because the return type is double , the int
value is promoted to a double value. So 1.69 would be converted first to 1 then to 1.00 .
The final version returns (int)(x*x+0.5) . Adding 0.5 makes the function round to the
nearest whole number instead of truncating. So 1.69 becomes 2.19 , which is truncated
to 2 and then converted to 2.00 . But 1.44 becomes 1.94 , which is truncated to 1 and
then converted to 1.00 .

ptg11524036

901Answers to Review Questions for Chapter 17

 11. Here’s one possibility:

 #define BOOL(X) _Generic((X), _Bool : "boolean", default : "not boolean")

 12. The argv argument should be declared as type char *argv[] . Command-line arguments
are stored as strings, so the program should first convert the string in argv[1] to a type
 double value—for example, by using atof() from the stdlib.h library. The math.h
header file should be included for the sqrt() function. The program should check for
negative values before taking a square root.

 13. a. The function call should look like this:

 qsort((void *)scores, (size_t) 1000, sizeof (double), comp);

 b. Here’s a suitable comparison function:

 int comp(const void * p1, const void * p2)

 {

 /* need to use pointers to int to access values */

 /* the type casts are optional in C, required in C++ */

 const int * a1 = (const int *) p1; const int * a2 = (const int *)
p2;

 if (*a1 > *a2)

 return -1;

 else if (*a1 == *a2)

 return 0;

 else

 return 1;

 }

 14. a. The function call should look like this:

 memcpy(data1, data2, 100 * sizeof(double));

 b. The function call should look like this:

 memcpy(data1, data2 + 200 , 100 * sizeof(double));

 Answers to Review Questions for Chapter 17

 1. Defining a data type consists of deciding how to store the data and designing a set of
functions to manage the data.

 2. The list can be traversed in only one direction because each structure contains the
address of the next structure, but not of the preceding structure. You could modify the
structure definition so that each structure contains two pointers—one to the preceding
structure and one to the next structure. The program, of course, would have to assign
proper addresses to these pointers each time a new structure is added.

ptg11524036

902 Appendix A Answers to the Review Questions

 3. An ADT is an abstract data type , a formal definition of the properties of a type and of the
operations that can be performed with the type. An ADT should be expressed in general
terms, not in terms of some specific computer language or implementation details.

 4. Advantages of passing a variable directly: This function inspects a queue, but should
not alter it. Passing a queue variable directly means the function works with a copy
of the original, guaranteeing that the function does not alter the original data. When
passing a variable directly, you don’t have to remember to use the address operator or a
pointer.

 Disadvantages of passing a variable directly: The program has to allocate enough space
to hold the variable and then copy information from the original to the copy. If the
variable is a large structure, using it has a time and space penalty.

 Advantages of passing the address of a variable: Passing an address and accessing the
original data is faster and requires less memory than passing a variable if the variable is a
large structure.

 Disadvantages of passing the address of a variable: You have to remember to use the
address operator or a pointer. Under K&R C, the function could inadvertently alter the
original data, but you can overcome this objection with the ANSI C const qualifier.

 5. a.

 Type Name: Stack.

 Type Properties: Can hold an ordered sequence of items.

 Type Operations: Initialize stack to empty.

 Determine whether stack is empty.

 Determine whether stack is full.

 Add item to top of stack (pushing an item).

 Remove and recover item from top of stack (popping an item).

 b. The following implements the stack as an array, but that information affects only
the structure definition and the details of the function definitions; it doesn’t affect
the interface described by the function prototypes.

 /* stack.h –– interface for a stack */

 #include <stdbool.h>

 /* INSERT ITEM TYPE HERE */

 /* FOR EXAMPLE, typedef int Item; */

 #define MAXSTACK 100

 typedef struct stack

 {

 Item items[MAXSTACK]; /* holds info */

ptg11524036

903Answers to Review Questions for Chapter 17

 int top; /* index of first empty slot */

 } Stack;

 /* operation: initialize the stack */

 /* precondition: ps points to a stack */

 /* postcondition

 : stack is initialized to being empty */

 void InitializeStack(Stack * ps);

 /* operation: check if stack is full */

 /* precondition: ps points to previously initialized stack */

 /* postcondition: returns true if stack is full, else false */

 bool FullStack(const Stack * ps);

 /* operation: check if stack is empty */

 /* precondition: ps points to previously initialized stack */

 /* postcondition: returns true if stack is empty, else false */

 bool EmptyStack(const Stack *ps);

 /* operation: push item onto top of stack */

 /* precondition: ps points to previously initialized stack */

 /* item is to be placed on top of stack */

 /* postcondition: if stack is not full, item is placed at */

 /* top of stack and function returns */

 /* true; otherwise, stack is unchanged and */

 /* function returns false */

 bool Push(Item item, Stack * ps);

 /* operation: remove item from top of stack */

 /* precondition: ps points to previously initialized stack */

 /* postcondition: if stack is not empty, item at top of */

 /* stack is copied to *pitem and deleted from */

 /* stack, and function returns true; if the */

 /* operation empties the stack, the stack is */

 /* reset to empty. If the stack is empty to */

 /* begin with, stack is unchanged and the */

 /* function returns false */

 bool Pop(Item *pitem, Stack * ps);

 6. Maximum number of comparisons required:

 Items Sequential Search Binary Search

 3 3 2

 1,023 1,023 10

 65,535 65,535 16

ptg11524036

904 Appendix A Answers to the Review Questions

 7. See Figure A.1 .

gate

food

dodge

gate

roam

office wave

nice

food

nice

roam

officedodge

wave

wave

roam

office

nice

gate

food

dodge

a)

dodge gate

food

nice

roam

office wave

d)

c)

b)

 Figure A.1 Binary search tree of words.

 8. See Figure A.2 .

gate

dodge

gate

roam

office wave

nice

dodge

nice

roam

office

wave

wave

roam

office

nice

gate

dodge

a)

gate

nice

roam

office wave

d)

c)

b)

dodge

 Figure A.2 Binary search tree of words after removal.

ptg11524036

 B
Reference Section

 This portion of the book provides summaries of basic C features along with a more detailed
look at particular topics. Here are the sections:

 ■ Section I: Additional Reading

 ■ Section II: C Operators

 ■ Section III: Basic Types and Storage Classes

 ■ Section IV: Expressions, Statements, and Program Flow

 ■ Section V: The Standard ANSI C Library with C99 and C11 Additions

 ■ Section VI: Extended Integer Types

 ■ Section VII: Expanded Character Support

 ■ Section VIII: C99/C11 Numeric Computational Enhancements

 ■ Section IX: Differences Between C and C++

 Section I: Additional Reading

 If you want to learn more about C and programming, you will find the following references
useful.

 Online Resources

 C programmers helped create the Internet, and the Internet can help you with C. The Internet
is always growing and changing; the resources listed here are a sample of what is available at
the time of this writing. Of course, the Internet changes continuously, and you may find other
resources.

 Probably the place to start, if you have a specific question about C or just want to expand your
knowledge, is to visit the C FAQ (Frequently Asked Questions) site:

c-faq.com

ptg11524036

906 Appendix B Reference Section

 However, its coverage mainly is just through C89.

 If you have questions about the C library, you can get information from the following site:
www.acm.uiuc.edu/webmonkeys/book/c_guide/index.html

 The next site provides a comprehensive discussion of pointers: pweb.netcom.com/~tjensen/ptr/
pointers.htm

 You also can use search engines such as Google and Yahoo! Search to find articles and sites
about specific topics:

 www.google.com

 search.yahoo.com

 www.bing.com

 You can use the advanced search features of these sites to tune your searches more finely. For
example, you can try searching for C tutorials.

 Newsgroups give you the opportunity to ask questions on the Net. Newsgroups typically are
accessed through newsreader programs accessing an account provided by your Internet provider
service. Another means of access is via web browser at the following address: http://groups.
google.com

 You should take the time to read the newsgroups first to get an idea of what topics are covered.
For example, if you have a question about how to do something in C, try these news groups:

 comp.lang.c

 comp.lang.c.moderated

 Here you’ll find people willing and able to help. The questions should be about the standard
C language. Don’t ask here about how to get unbuffered input on a Unix system; there are
specialized newsgroups for platform-specific questions. And above all, don’t ask them how to
do homework problems!

 If you have a question about interpreting the C standard, try this group:

 comp.std.c

 But don’t ask here how to declare a pointer to a three-dimensional array; that’s the sort of ques-
tion to address to the comp.lang.c group.

 Finally, if you’re interested in the history of C, Dennis Ritchie, the creator of C, describes the
genesis and development of C in a 1993 article at the following site.

 cm.bell-labs.com/cm/cs/who/dmr/chist.html

http://groups.google.com
http://groups.google.com
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/index.html
http://www.google.com
http://www.bing.com

ptg11524036

907Section I: Additional Reading

 C Language Books

 Feuer, Alan R. The C Puzzle Book, Revised Printing. Upper Saddle River, NJ: Addison-Wesley
Professional, 1998.

 This book contains many programs whose output you are supposed to predict. Predicting the
output gives you a good opportunity to test and expand your understanding of C. The book
includes answers and explanations.

 Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language, Second Edition .
Englewood Cliffs, NJ: Prentice Hall, 1988.

 This is the second edition of the first book on C. (Note that the creator of C, Dennis Ritchie,
is one of the authors.) The first edition constituted the definition of “K&R” C, the unofficial
standard for many years. This edition incorporates ANSI changes based on the ANSI draft that
was standard at the time the book was written. The book includes many interesting examples.
It does, however, assume that the reader is familiar with systems programming.

 Koenig, Andrew. C Traps and Pitfalls . Reading, MA: Addison-Wesley, 1989.

 The title says it all.

 Summit, Steve. C Programming FAQs . Reading, MA: Addison-Wesley, 1995.

 This is an expanded book version of the Internet FAQ.

 Programming Books

 Kernighan, Brian W. and P.J. Plauger. The Elements of Programming Style, Second Edition . New
York: McGraw-Hill, 1978.

 This slim, out-of-print classic draws on examples from other texts to illustrate the do’s and
don’ts of clear, effective programming.

 Knuth, Donald E. The Art of Computer Programming, Volume 1 (Fundamental Algorithms), Third
Edition . Reading, MA: Addison-Wesley, 1997.

 This non-slim classic standard reference examines data representation and algorithm analysis in
great detail. It is advanced and mathematical in nature. Volume 2 (Seminumerical Algorithms,
1997) includes an extensive discussion of pseudorandom numbers. Volume 3 (Sorting and
Searching, 1998), as the name suggests, examines sorting and searching. Examples are given in
pseudocode and assembly language.

 Sedgewick, Robert. Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching,
Third Edition. Reading, MA: Addison-Wesley Professional, 1997/

 Not surprisingly, this book covers data structures, sorting, and searching.

ptg11524036

908 Appendix B Reference Section

 Reference Books

 Harbison, Samuel P. and Steele, Guy L. C: A Reference Manual, Fifth Edition . Englewood Cliffs,
NJ: Prentice Hall, 2002.

 This reference manual presents the rules of the C language and describes most of the standard
library functions. It incorporates discussion of C99 and provides many examples.

 Plauger, P.J. The Standard C Library . Englewood Cliffs, NJ: Prentice Hall, 1992.

 This large reference manual describes the standard library functions, with more explanation
than you would find in a typical compiler manual.

 The International C Standard . ISO/IEC 9899:2011

 At the time of this writing, the standard is available as a $285 electronic download from www.
ansi.org and as a €238 download from the IEC. Do not expect to learn C from this document
because it is not intended as a tutorial. Here is a representative sentence: “If more than one
declaration of a particular identifier is visible at any point in a translation unit, the syntactic
context disambiguates uses that refer to different entities.”

 C++ Books

 Prata, Stephen. C++ Primer Plus, Sixth Edition . Upper Saddle River, NJ: Addison-Wesley, 2012.

 This book introduces you to the C++ language (the C++11 standard) and to the philosophy of
object-oriented programming.

 Stroustrup, Bjarne. The C++ Programming Language, Fourth Edition . Reading, MA: Addison-
Wesley, 2013.

 This book, by the creator of C++, presents the C++11 standard.

 Section II: C Operators

 C is rich in operators. Table RS.II.1 lists the C operators in order of decreasing precedence and
indicates how they associate. All operators are binary (two operands) unless otherwise indi-
cated. Note that some binary and unary operators, such as * (multiplication) and * (indirec-
tion), share the same symbol but have different precedence. Following the table are summaries
of each operator.

 Table RS.II.1 The C Operators

 Operators (from High to Low Precedence) Associativity

 ++ (postfix) -- (postfix) () (function call) []{}
(compound literal) .->

 L–R

 ++ (prefix) -- (prefix) -+~! * (dereference) & (address)

http://www.ansi.org
http://www.ansi.org

ptg11524036

909Section II: C Operators

 Operators (from High to Low Precedence) Associativity

 sizeof_Alignof (type) (all unary) R-L

 (type name) R-L

 */% L–R

 +- (both binary) L–R

 <<>> L–R

 <><=>= L–R

 ==!= L–R

 & L–R

 ̂ L–R

 | L–R

 && L–R

 || L–R

 ? : (conditional expression) R-L

 =*=/=%=+=-=<<=>>=&=|=^= R–L

 , (comma operator) L–R

 Arithmetic Operators

 + adds the value at its right to the value at its left.

 + , as a unary operator, produces a value equal in magnitude (and of the same sign) to the
operand to the right.

 – subtracts the value at its right from the value at its left.

 – , as a unary operator, produces a value equal in magnitude (but opposite in sign) to the
operand to the right.

 * multiplies the value at its right by the value at its left.

 / divides the value at its left by the value at its right. The answer is truncated if both operands
are integers.

 % yields the remainder when the value at its left is divided by the value to its right (integers
only).

 ++ adds 1 to the value of the variable to its right (prefix mode) or adds 1 to the value of the
variable to its left (postfix mode).

 -- is like ++ , but subtracts 1.

ptg11524036

910 Appendix B Reference Section

 Relational Operators

 Each of the following operators compares the value at its left to the value at its right:

 < Less than

 <= Less than or equal to

 == Equal to

 >= Greater than or equal to

 > Greater than

 != Unequal to

 Relational Expressions

 A simple relational expression consists of a relational operator with an operand on each side.
If the relation is true, the relational expression has the value 1 . If the relation is false, the rela-
tional expression has the value 0 . Here are two examples:

 5 > 2 is true and has the value 1 .

 (2 + a) == a is false and has the value 0 .

 Assignment Operators

 C has one basic assignment operator and several combination assignment operators. The =
operator is the basic form:

 = assigns the value at its right to the lvalue on its left.

 Each of the following assignment operators updates the lvalue at its left by the value at its
right, using the indicated operation (we use R–H for right-hand and L–H for left-hand):

 += adds the R–H quantity to the L–H variable and places the result in the L-H variable.

 -= subtracts the R–H quantity from the L–H variable and places the result in the L-H
variable.

 *= multiplies the L–H variable by the R–H quantity and places the result in the L-H
variable.

 /= divides the L–H variable by the R–H quantity and places the result in the L-H variable.

 %= gives the remainder from dividing the L–H quantity by the R–H quantity and places
the result in the L-H variable.

 &= assigns L–H & R–H to the L–H quantity and places the result in the L-H variable.

 |= assigns L–H | R–H to the L–H quantity and places the result in the L-H variable.

 ̂ = assigns L–H ̂ R–H to the L–H quantity and places the result in the L-H variable.

ptg11524036

911Section II: C Operators

 >>= assigns L–H >> R–H to the L–H quantity and places the result in the L-H variable.

 <<= assigns L–H << R–H to the L–H quantity and places the result in the L-H variable.

 Example

 rabbits *= 1.6; has the same effect as rabbits = rabbits * 1.6;.

 Logical Operators

 Logical operators normally take relational expressions as operands. The ! operator takes one
operand. The rest take two: one to the left, and one to the right.

 && AND

 || OR

 ! NOT

 Logical Expressions

 expression1 && expression2 is true if, and only if, both expressions are true.

 expression1 || expression2 is true if either one or both expressions are true.

 !expression is true if the expression is false, and vice versa.

 Order of Evaluation for Logical Expressions

 Logical expressions are evaluated from left to right. Evaluation stops as soon as something is
discovered that renders the expression false.

 Examples

 6 > 2 && 3 == 3 is true.

 ! (6 > 2 && 3 == 3) is false.

 x != 0 && 20/x < 5 . The second expression is evaluated only if x is nonzero.

 The Conditional Operator

 ? : takes three operands, each of which is an expression. They are arranged this way:

 expression1 ? expression2 : expression3

 The value of the whole expression equals the value of expression2 if expression1 is true,
and equals the value of expression3 otherwise.

ptg11524036

912 Appendix B Reference Section

 Examples

 (5 > 3) ? 1 : 2 has the value 1 .

 (3 > 5) ? 1 : 2 has the value 2 .

 (a > b) ? a : b has the value of the larger of a or b .

 Pointer-Related Operators

 & is the address operator. When followed by a variable name, & gives the address of that
variable.

 * is the indirection or dereferencing operator. When followed by a pointer, * gives the value
stored at the pointed-to address.

 Example

 Here, &nurse is the address of the variable nurse :

 nurse = 22;

 ptr = &nurse; /* pointer to nurse */

 val = *ptr;

 The net effect is to assign the value 22 to val .

 Sign Operators

 – is the minus sign and reverses the sign of the operand.

 + is the plus sign and leaves the sign unchanged.

 Structure and Union Operators

 Structures and unions use operators to identify individual members. The membership operator
is used with structures and unions, and the indirect membership operator is used with pointers
to structures or unions.

 The Membership Operator

 The membership operator (.) is used with a structure or union name to specify a member of
that structure or union. If name is the name of a structure and member is a member specified by
the structure template, name.member identifies that member of the structure. The type of name.
member is the type specified for member . The membership operator can also be used in the same
fashion with unions.

ptg11524036

913Section II: C Operators

 Example

 struct {

 int code;

 float cost;

 } item;

 item.code = 1265;

 This statement assigns a value to the code member of the structure item .

 The Indirect Membership Operator (or Structure Pointer Operator)

 The indirect membership operator (–>) is used with a pointer to a structure or union to identify
a member of that structure or union. Suppose that ptrstr is a pointer to a structure and that
 member is a member specified by the structure template. Then ptrstr->member identifies that
member of the pointed-to structure. The indirect membership operator can be used in the same
fashion with unions.

 Example

 struct {

 int code;

 float cost;

 } item, * ptrst;

 ptrst = &item;

 ptrst->code = 3451;

 This program fragment assigns a value to the code member of item . The following three
expressions are equivalent:

 ptrst->code item.code (*ptrst).code

 Bitwise Operators

 All the following bitwise operators, except ~ , are binary operators:

 ~ is the unary operator and produces a value with each bit of the operand inverted.

 & is AND and produces a value in which each bit is set to 1 only if both corresponding bits in the
two operands are 1.

 | is OR and produces a value in which each bit is set to 1 if either, or both, corresponding bits
of the two operands are 1.

 ̂ is EXCLUSIVE OR and produces a value in which each bit is set to 1 only if one or the other
(but not both) of the corresponding bits of the two operands is 1.

 << is left-shift and produces a value obtained by shifting the bits of the left-hand operand to the
left by the number of places given by the right-hand operand. Vacated slots are filled with zeros.

ptg11524036

914 Appendix B Reference Section

 >> is right-shift and produces a value obtained by shifting the bits of the left-hand operand to
the right by the number of places given by the right-hand operand. For unsigned integers, the
vacated slots are filled with zeros. The behavior for signed values is implementation dependent.

 Examples

 Suppose you have the following:

 int x = 2;

 int y = 3;

 Then x & y has the value 2 because only bit 1 is “on” for both x and y . Also, y<<x has the
value 12 because that is the value obtained when the bit pattern for 3 is shifted two bits to the
left.

 Miscellaneous Operators

 sizeof yields the size, in units the size of a char value, of the operand to its right. Typically,
a char value is 1 byte in size. The operand can be a type-specifier in parentheses, as in sizeof
(float) , or it can be the name of a particular variable, array, or so on, as in sizeof foo . A
 sizeof expression is of type size_t .

 _Alignof (C11) yields the alignment requirement for the type specified by its operand. Some
systems require that a particular type be stored at an address that is a multiple of some particu-
lar value, such as four. This integer is the alignment requirement.

 (type) is the cast operator and converts the value that follows it to the type specified by the
enclosed keyword(s). For example, (float) 9 converts the integer 9 to the floating-point
number 9.0 .

 , is the comma operator; it links two expressions into one and guarantees that the leftmost
expression is evaluated first. The value of the whole expression is the value of the right-hand
expression. This operator is typically used to include more information in a for loop control
expression.

 Example

 for (step = 2, fargo = 0; fargo < 1000; step *= 2)

 fargo += step;

ptg11524036

915Section III: Basic Types and Storage Classes

 Section III: Basic Types and Storage Classes

 Summary: The Basic Data Types

 C’s basic types fall into two categories: integers and floating-point numbers. The different vari-
eties give you choices for range and precision.

 Keywords

 The basic data types are set up using the following eight keywords: int , long , short ,
 unsigned , char , float , double , and signed (ANSI C).

 Signed Integers

 Signed integers can have positive or negative values:

 int is the basic integer type for a given system.

 long or long int can hold an integer at least as large as the largest int and possibly larger;
 long is at least 32 bits.

 The largest short or short int integer is no larger than the largest int , and may be smaller.
A short is at least 16 bits. Typically, long is bigger than short , and int is the same as one
of the two. For example, C DOS compilers for the PC provided 16-bit short and int and 32-bit
 long . It all depends on the system.

 The long long type, provided by the C99 standard, is at least as big as long and is at least
64 bits.

 Unsigned Integers

 Unsigned integers have zero or positive values only, which extends the range of the largest
possible positive number. Use the keyword unsigned before the desired type: unsigned int ,
 unsigned long , unsigned short , or unsigned long long . A lone unsigned is the same as
 unsigned int .

 Characters

 Characters are typographic symbols such as A , & , and + . By definition, one byte of memory is
used for a char variable. In the past, 8 bits has been the most typical size for char . However,
the ability of C to cope with larger character sets can lead to 16-bit or even 32-bit bytes.

 char is the keyword for this type. Some implementations use a signed char , but others use an
unsigned char . ANSI C allows you to use the keywords signed and unsigned to specify which
form you want. Technically, char , unsigned char , and signed char are three distinct types,
with the char type having the same representation as one of the other two.

ptg11524036

916 Appendix B Reference Section

 Boolean Type (C99)

 The C99 Boolean type is _Bool . It’s an unsigned integer type that can hold one of two values: 0
for false and 1 for true. Including the stdbool.h header file allows you to use bool for _Bool ,
 true for 1 , and false for 0 , making code compatible with C++.

 Real and Complex Floating Types

 C99 recognizes two domains of floating types: real floating and complex floating types.
Collectively, the two domains constitute the floating types.

 Real floating-point numbers can have positive or negative values. C recognizes three real float-
ing types:

 float is the basic floating-point type for the system. It can represent at least six significant dig-
its accurately. Typically, float uses 32 bits.

 double is a (possibly) larger unit for holding floating-point numbers. It may allow more signifi-
cant figures and perhaps larger exponents than float . It can represent at least 10 significant
digits accurately. Typically, double uses 64 bits.

 long double is a (possibly) even larger unit for holding floating-point numbers. It may allow
more significant figures and perhaps larger exponents than double .

 Complex numbers have two components: a real part and an imaginary part. C99 represents a
complex number internally with a two-element array, with the first component being the real
part and the second component being the imaginary part. There are three complex types:

 float _Complex represents the real and imaginary parts with type float values.

 double _Complex represents the real and imaginary parts with type double values.

 long double _Complex represents the real and imaginary parts with type long double
values.

 In each case, the prefix type is termed the corresponding real type . For example, double is the
corresponding real type for double _Complex .

 Under C99, the complex types were optional in a freestanding environment, in which C
programs can run without an operating system. Under C11, they are optional for both free-
standing and hosted environments.

 There also are three imaginary types; these are optional in both freestanding environments and
hosted environments (environments in which C programs run under an operating system). An
imaginary number has just an imaginary part. The three types are listed here:

 float _Imaginary represents the imaginary part with a type float value.

 double _Imaginary represents the imaginary part with a type double value.

 long double _Imaginary represents the imaginary part with a type long double value.

ptg11524036

917Section III: Basic Types and Storage Classes

 Complex numbers can be initialized using real numbers and the value I , defined in complex.h
and representing i , the square root of −1:

 #include <complex.h> // for I

 double _Complex z = 3.0; // real part = 3.0, imaginary part = 0

 double _Complex w = 4.0 * I; // real part = 0.0, imaginary part = 4.0

 double Complex u = 6.0 – 8.0 * I; // real part = 6.0, imaginary part = -8.0

 The complex.h library, discussed later in this appendix, includes functions that return the real
and the imaginary components of a complex number.

 Summary: How to Declare a Simple Variable

 1. Choose the type you need.

 2. Choose a name for the variable.

 3. Use this format for a declaration statement:

 type-specifiervariable-name ;

 The type-specifier is formed from one or more of the type keywords. Here are some
examples:

 int erest;

 unsigned short cash;

 4. To declare more than one variable of the same type, separate the variable names with
commas:

 char ch, init, ans;

 5. You can initialize a variable in a declaration statement:

 float mass = 6.0E24;

 Summary: Storage Classes

 Keywords:
 auto, extern, static,

 register, _Thread_local (C11)

 General Comments:

 The storage class of a variable determines its scope, its linkage, and its storage duration. A
storage class is determined both by where the variable is defined and by its associated key-
word. Variables defined outside all functions are external, have file scope, external linkage, and
static storage duration. Variables declared inside a function are automatic unless one of the
other keywords is used. They have block scope, no linkage, and automatic storage duration.
Variables defined with the keyword static inside a function have block scope, no linkage, and
static storage duration. Variables defined with the keyword static outside a function have file
scope, internal linkage, and static storage duration.

ptg11524036

918 Appendix B Reference Section

 C11 has added a new storage class qualifier: _Thread_local . An object declared with this
qualifier has thread storage duration, meaning it persists for the lifetime of the thread in which
it is declared and that it’s initialized when the thread begins. Thus such an object is local to
the thread.

 Properties:

 The following summarizes properties of the storage classes:

 Storage Class Duration Scope Linkage How Declared

 Automatic Automatic Block None In a block

 Register Automatic Block None In a block with
the keyword
 register

 Static with exter-
nal linkage

 Static File External Outside of all
functions

 Static with inter-
nal linkage

 Static File Internal Outside of all
functions and
with static

 Static with no
linkage

 Static Block None In a block with
the keyword
 static

 Thread with
external linkage

 Thread File External Outside all
blocks with key-
word _Thread_
local

 Thread with
internal linkage

 Thread File Internal Outside all
blocks with key-
words static
and _Thread_
local

 Thread with no
linkage

 Thread Block None Inside a block
with keywords
 static and
 _Thread_local

 Note that the keyword extern is used only to redeclare variables that have been defined exter-
nally elsewhere. The act of defining the variable outside a function makes it external.

 In addition to these storage classes, C provides allocated memory. This memory is allocated by
calling one of the malloc() family of functions, which returns a pointer that can be used to
access the memory. The memory remains allocated until a call to free() or until the program
terminates. Access to the memory can be from any function that has access to a pointer to the
memory. For example, a function can return the pointer value to another function, which then
can access the memory.

ptg11524036

919Section III: Basic Types and Storage Classes

 Summary: Qualifiers

 Keywords

 Use the following keywords to qualify variables:

 const , volatile , restrict

 General Comments

 A qualifier constrains a variable’s use in some way. A const variable, after it’s initialized, can’t
be altered. The compiler can’t assume that a volatile variable hasn’t been changed by some
outside agency, such as a hardware update. A pointer qualified with restrict is understood to
provide the only access (in a particular scope) to a block of memory.

 Properties

 The declaration

 const int joy = 101;

 establishes that the value of joy is fixed at 101 .

 The declaration

 volatile unsigned int incoming;

 establishes that the value of incoming might change between one occurrence of incoming in a
program and its next occurrence.

 The declaration

 const int * ptr = &joy;

 establishes that the pointer ptr can’t be used to alter the value of the variable joy . The pointer
can, however, be made to point to another location.

 The declaration

 int * const ptr = &joy;

 establishes that the pointer ptr can’t have its value changed; that is, it can point only to joy .
However, it can be used to alter joy .

 The prototype

 void simple (const char * s);

 establishes that after the formal argument s is initialized to whatever value is passed to
 simple() in a function call, simple() may not alter the value to which s points.

 The prototype

 void supple(int * const pi);

ptg11524036

920 Appendix B Reference Section

 and the equivalent prototype

 void supple(int pi[const]);

 establish that the function supple() will not alter the value of the parameter pi .

 The prototype

 void interleave(int * restrict p1, int * restrict p2, int n);

 indicates that p1 and p2 are each the sole access to the respective blocks of memory to which
they point; this implies that there is no overlap between the two blocks.

 Section IV: Expressions, Statements, and Program Flow

 Summary: Expressions and Statements

 In C, expressions represent values, and statements represent instructions to the computer.

 Expressions

 An expression is a combination of operators and operands. The simplest expression is just a
constant or a variable with no operator, such as 22 or beebop . More complex examples are 55
+ 22 and vap = 2 * (vip + (vup = 4)) .

 Statements

 A statement is a command to the computer. Any expression followed by a semicolon forms a
statement, although not necessarily a meaningful one. Statements can be simple or compound.
 Simple statements terminate in a semicolon, as shown in these examples:

 Declaration statement: int toes;

 Assignment statement: toes = 12;

 Function call statement: printf ("%d\n", toes);

 Control statement: while (toes < 20) toes = toes + 2;

 Null statement: ; /* does nothing */

 (Technically, the Standard assigns declarations their own category rather than grouping them
with statements.)

 Compound statements , or blocks , consist of one or more statements (which themselves can be
compound) enclosed in braces. The following while statement is an example:

 while (years < 100)

 {

 wisdom = wisdom + 1;

 printf("%d %d\n", years, wisdom);

 years = years + 1;

 }

ptg11524036

921Section IV: Expressions, Statements, and Program Flow

 Summary: The while Statement

 Keyword

 The keyword for the while statement is while .

 General Comments

 The while statement creates a loop that repeats until the test expression becomes false, or
zero. The while statement is an entry-condition loop; the decision to go through one more pass
of the loop is made before the loop has been traversed. Therefore, it is possible that the loop
is never traversed. The statement part of the form can be a simple statement or a compound
statement.

 Form

 while (expression)

 statement

 The statement portion is repeated until the expression becomes false or zero.

 Examples

 while (n++ < 100)

 printf(" %d %d\n",n, 2*n+1);

 while (fargo < 1000)

 {

 fargo = fargo + step;

 step = 2 * step;

 }

 Summary: The for Statement

 Keyword

 The for statement keyword is for .

 General Comments

 The for statement uses three control expressions, separated by semicolons, to control a
looping process. The initialize expression is executed once, before any of the loop state-
ments are executed. If the test expression is true (or nonzero), the loop is cycled through
once. Then the update expression is evaluated, and it is time to check the test expression
again. The for statement is an entry-condition loop; the decision to go through one more pass
of the loop is made before the loop has been traversed. Therefore, it is possible that the loop

ptg11524036

922 Appendix B Reference Section

is never traversed. The statement part of the form can be a simple statement or a compound
statement.

 Form

 for (initialize ; test ; update)

 statement

 The loop is repeated until test becomes false or zero.

 C99 allows the initialization part to include a declaration. The scope and duration of the vari-
able is restricted to the for loop.

 Examples

 for (n = 0; n < 10 ; ++n)

 printf("%d %d\n", n, 2 * n+1);

 for (int k = 0; k < 10 ; ++k) // C99

 printf("%d %d\n", k, 2 * k+1);

 Summary: The do while Statement

 Keywords

 The keywords for the do while statement are do and while .

 General Comments

 The do while statement creates a loop that repeats until the test expression becomes false
or zero. The do while statement is an exit-condition loop; the decision to go through one more
pass of the loop is made after the loop has been traversed. Therefore, the loop must be executed
at least once. The statement part of the form can be a simple statement or a compound
statement.

 Form

 do

 statement

 while (expression);

 The statement portion is repeated until expression becomes false or zero.

 Example

 do

 scanf("%d", &number)

 while(number != 20);

ptg11524036

923Section IV: Expressions, Statements, and Program Flow

 Summary: Using if Statements for Making Choices

 Keywords

 The keywords for if statements are if and else .

 General Comments

 In each of the following forms, the statement can be either a simple statement or a compound
statement. A “true” expression, more generally, means one with a nonzero value.

 Form 1

 if (expression)

 statement

 The statement is executed if expression is true.

 Form 2

 if (expression)

 statement1

 else

 statement2

 If the expression is true, statement1 is executed. Otherwise, statement2 is executed.

 Form 3

 if (expression1)

 statement1

 else if (expression2)

 statement2

 else

 statement3

 If expression1 is true, statement1 is executed. If expression1 is false but expression2 is
true, statement2 is executed. Otherwise, if both expressions are false, statement3 is executed.

 Example

 if (legs == 4)

 printf("It might be a horse.\n");

 else if (legs > 4)

 printf("It is not a horse.\n");

 else /* case of legs < 4 */

 {

 legs++;

 printf("Now it has one more leg.\n");

 }

ptg11524036

924 Appendix B Reference Section

 Summary: Multiple Choice with switch

 Keyword

 The keyword for the switch statement is switch .

 General Comments

 Program control jumps to the statement bearing the value of expression as a label. Program
flow then proceeds through the remaining statements unless redirected again. Both expres-
sion and labels must have integer values (type char is included), and the labels must be
constants or expressions formed solely from constants. If no label matches the expression
value, control goes to the statement labeled default , if present. Otherwise, control passes to
the next statement following the switch statement. After control goes to a particular label, all
the subsequent statements in the switch are executed until the end of the switch , or a break
statement, is encountered, whichever comes first.

 Form

 switch (expression)

 {

 case label1 : statement1

 case label2 : statement2

 default : statement3

 }

 There can be more than two labeled statements, and the default case is optional.

 Examples

 switch (value)

 case 1 : find_sum(ar, n);

 break;

 case 2 : show_array(ar, n);

 break;

 case 3 : puts("Goodbye!");

 break;

 default : puts("Invalid choice, try again.");

 break;

 }

 switch (letter)

 {

 case 'a' :

 case 'e' : printf("%d is a vowel\n", letter);

 case 'c' :

 case 'n' : printf("%d is in \"cane\"\n", letter);

ptg11524036

925Section IV: Expressions, Statements, and Program Flow

 default : printf("Have a nice day.\n");

 }

 If letter has the value 'a' or 'e' , all three messages are printed; 'c' and 'n' cause the last
two to be printed. Other values print only the last message.

 Summary: Program Jumps

 Keywords

 The keywords for program jumps are break , continue , and goto .

 General Comments

 The three instructions break , continue , and goto cause program flow to jump from one loca-
tion of a program to another location.

 The break Command

 The break command can be used with any of the three loop forms and with the switch state-
ment. It causes program control to skip the rest of the loop or switch containing it, and to
resume with the next command following the loop or switch .

 Example

 while ((ch = getchar()) != EOF)

 {

 putchar(ch);

 if (ch == ' ')

 break; // terminate loop

 chcount++;

 }

 The continue Command

 The continue command can be used with any of the three loop forms, but not with switch .
It causes program control to skip the remaining statements in a loop. For a while or for loop,
the next loop cycle is started. For a do while loop, the exit condition is tested and then, if
necessary, the next loop cycle is started.

 Example

 while ((ch = getchar()) != EOF)

 {

 if (ch == ' ')

 continue; // go to test condition

 putchar(ch);

ptg11524036

926 Appendix B Reference Section

 chcount++;

 }

 This fragment echoes and counts nonspace characters.

 The goto Command

 A goto statement causes program control to jump to a statement bearing the indicated label.
A colon is used to separate a labeled statement from its label. Label names follow the rules for
variable names. The labeled statement can come either before or after the goto .

 Form

 goto label ;

 label : statement

 Example

 top : ch = getchar();

 if (ch != 'y')

 goto top;

 Section V: The Standard ANSI C Library with C99 and

C11 Additions

 The ANSI C library classifies functions into several groups, with each group having an associ-
ated header file. This appendix gives you an overview of the library, listing the header files
and briefly describing their associated functions. Some of these functions (for example, several
I/O functions) are discussed in much greater detail in the text. More generally, for complete
descriptions, consult the documentation for your implementation, or a reference manual,
or try an online reference such as the following: http://www.acm.uiuc.edu/webmonkeys/
book/c_guide/

 Diagnostics: assert.h

 This header file defines assert() as a macro. Defining the macro identifier NDEBUG before
including the assert.h header file deactivates the assert() macro. The expression used as an
argument is typically a relational or logical expression that should be true at that point in the
program if the program is functioning properly. Table RS.V.1 describes the assert() macro.

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/

ptg11524036

927Section V: The Standard ANSI C Library with C99 and C11 Additions

 Table RS.V.1 Diagnostic Macro

 Prototype Description

 void assert(int exprs); If exprs evaluates to nonzero (or true), the macro does nothing.
If it evaluates to zero (false), assert() displays expression, the
line number for the assert() statement, and the name of the file
containing the statement. Then it calls abort() .

 C11 adds the static_assert macro, which expands to _Static_assert . _Static_assert ,
in turn, is a keyword that is considered a form of declaration. It provides a compile-time check
that used this way:

 _Static_assert (constant-expression , string-literal);

 If the constant expression evaluates to zero, the compiler issues an error message that includes
the string-literal. Otherwise, there is no effect.

 Complex Numbers: complex.h (C99)

 The C99 standards add extensive support for complex number calculations, and C11 expands
the support. Implementations may choose to provide an _Imaginary type in addition to the _
Complex type. Under C11, both are optional. C99 made _Complex obligatory and _Imaginary
optional. Section VIII of this appendix discusses complex number support a bit further. The
header file defines the following macros listed in Table RS.V.2 .

 Table RS.V.2 The complex.h Macros

 Macro Description

 complex Expands to the type keyword _Complex

 _Complex_I Expands to an expression of type const float _Complex , whose value, when
squared, is −1

 imaginary If imaginary types are supported, expands to the type keyword _Imaginary

 _Imaginary_I If imaginary types are supported, expands to an expression of type const
float _Imaginary , whose value, when squared, is −1

 I Expands to either _Complex_I or _Imaginary_I

 The C implementation of complex numbers, supported by the complex.h header file, is quite
different from the C++ implementation, supported by the complex header file. C++ uses classes
to define a complex type.

ptg11524036

928 Appendix B Reference Section

 The STDC CX_LIMITED_RANGE pragma can be used to indicate whether the usual mathematical
formulas can be used (the on setting) or if special attention has to be paid for extreme values
(the off setting):

 #include <complex.h>

 #pragma STDC CX_LIMITED_RANGE on

 The library functions come in three flavors: double , float , and long double . Table RS.V.3
lists the double version. The float and long double versions append an f and an l , respec-
tively, to the function names. Thus, csinf() is the float version of csin() , and csinl() is
the long double version.

 Angles are measured in radians.

 Table RS.V.3 Complex Number Functions

 Prototype Description

 double complex cacos(double complex z); Returns the complex arc cosine of z

 double complex casin(double complex z); Returns the complex arcsine of z

 double complex catan(double complex z); Returns the complex arctangent of z

 double complex ccos(double complex z); Returns the complex cosine of z

 double complex csin(double complex z); Returns the complex sine of z

 double complex ctan(double complex z); Returns the complex tangent of z

 double complex cacosh(double complex z); Returns the complex arc hyperbolic cosine
of z

 double complex casinh(double complex z); Returns the complex arc hyperbolic sine of z

 double complex catanh(double complex z); Returns the complex arc hyperbolic tangent
of z

 double complex ccosh(double complex z); Returns the complex hyperbolic cosine of z

 double complex csinh(double complex z); Returns the complex hyperbolic sine of z

 double complex ctanh(double complex z); Returns the complex hyperbolic tangent of z

 double complex cexp(double complex z); Returns the complex value of e to the z
power

 double complex clog(double complex z); Returns the complex natural (base e) loga-
rithm of z .

 double cabs(double complex z); Returns absolute value (or magnitude) of z

 double complex cpows(double complex z,
double complex y);

 Returns the value of z raised to the y power

 double complex csqrt(double complex z); Returns the complex square root of z

ptg11524036

929Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 double carg(double complex z); Returns the phase angle (or argument), in
radians, of z

 double cimag(double complex z); Returns the imaginary part of z as a real
number

 double complex conj(double complex z); Returns the complex conjugate of z

 double complex cproj(double complex z); Returns the projection of z onto the Riemann
sphere

 double complex CMPLX(double x,double y); Returns a complex number whose real com-
ponent is x and whose imaginary component
is y (C11)

 double creal(double complex z); Returns the real part of z as a real number

 Character Handling: ctype.h

 These functions take int arguments, which should be able to be represented as either
 unsigned char values or as EOF ; the effect of supplying other values is undefined. In Table
 RS.V.4 , “true” is used as shorthand for “a nonzero value.” Interpretation of some definitions
depends on the current locale setting, which is controlled by the functions of locale.h ; the
table shows the interpretations for the “C” locale.

 Table RS.V.4 Character-Handling Functions

 Prototype Description

 int isalnum(int c); Returns true if c is alphanumeric (alphabetic or numeric).

 int isalpha(int c); Returns true if c is alphabetic.

 int isblank(int c); Returns true if c is a space or a horizontal tab. (C99)

 int iscntrl(int c); Returns true if c is a control character, such as Ctrl+B.

 int isdigit(int c); Returns true if c is a digit.

 int isgraph(int c); Returns true if c is any printing character other than a space.

 int islower(int c); Returns true if c is a lowercase character.

 int isprint(int c); Returns true if c is a printing character.

 int ispunct(int c); Returns true if c is a punctuation character (any printing character
other than a space or an alphanumeric character).

ptg11524036

930 Appendix B Reference Section

 Prototype Description

 int isspace(int c); Returns true if c is a whitespace character: space, newline, form
feed, carriage return, vertical tab, horizontal tab, or, possibly, anoth-
er implementation-defined character.

 int isupper(int c); Returns true if c is an uppercase character.

 int isxdigit(int c); Returns true if c is a hexadecimal-digit character.

 int tolower(int c); If the argument is an uppercase character, returns the lowercase
version; otherwise, just returns the original argument.

 int toupper(int c); If the argument is a lowercase character, returns the uppercase ver-
sion; otherwise, just returns the original argument.

 Error Reporting: errno.h

 The errno.h header file supports an older error-reporting mechanism. The mechanism
provides an external static memory location that can be accessed by the identifier (or, possibly,
the macro) ERRNO . Some library functions place a value in this location to report an error. A
program including this header file then can check the value of ERRNO to see whether a particu-
lar error has been reported. The ERRNO mechanism is regarded as less than state of the art, and
math functions no longer are required to set ERRNO values. The standard provides for three
macro values representing particular errors, but an implementation can provide more. Table
RS.V.5 lists the standard macros.

 Table RS.V.5 The errno.h Macros

 Macro Meaning

 EDOM A domain error in a function call (the argument is out of range)

 ERANGE A range error in a function return (the return value is out of range)

 EILSEQ A wide-character translation error

 Floating-Point Environment: fenv.h (C99)

 The C99 standard provides access to and control of the floating-point environment through the
 fenv.h header file.

 The floating-point environment consists of a set of status flags and control modes. An exceptional
circumstance that occurs during floating-point calculation, such as dividing by zero, can “raise
an exception.” This means the event sets one of the floating-environment flags. The control
mode value can control, for example, the direction of rounding. The fenv.h header defines a
set of macros representing several exceptions and control modes, and it provides prototypes for

ptg11524036

931Section V: The Standard ANSI C Library with C99 and C11 Additions

functions that interact with the environment. The header also provides a pragma for enabling
or disabling access to the floating-point environment.

 The directive

 #pragma STDC FENV_ACCESS on

 turns on access to the environment, and the directive

 #pragma STDC FENV_ACCESS off

 turns it off. If external, the pragma should be given before any outside declarations, or at the
beginning of a compound block. It remains in effect until superseded by another occurrence of
the pragma, or until the end of the file (external directive) or the end of the compound state-
ment (block directive).

 The header file defines two types, shown in Table RS.V.6 .

 Table RS.V.6 The fenv.h Types

 Type Represents

 fenv_t The entire floating-point environment

 fexcept_t The collection of floating-point status flags

 The header file defines macros representing several possible floating-point exceptions and
control states. The implementation may define additional macros, provided they begin with
 FE_ followed by an uppercase character. Table RS.V.7 shows the standard exception macros.

 Table RS.V.7 The fenv.h Types

 Macro Represents

 FE_DIVBYZERO Division-by-zero exception raised

 FE_INEXACT Inexact value exception raised

 FE_INVALID Invalid value exception raised

 FE_OVERFLOW Overflow exception raised

 FE_UNDERFLOW Underflow exception raised

 FE_ALL_EXCEPT The bitwise OR of all the floating-point exceptions supported by the implemen-
tation

 FE_DOWNWARD Rounds downward

 FE_TONEAREST Rounds to the nearest value

 FE_TOWARDZERO Rounds toward zero

ptg11524036

932 Appendix B Reference Section

 Macro Represents

 FE_UPWARD Rounds upward

 FE_DFL_ENV Represents the default environment and has the type const fenv_t * .

 Table RS.V.8 shows the standard function prototypes in the fenv.h header file. Note that often
argument values and return values correspond to the macros in Table RS.V.7 . For example,
 FE_UPWARD is an appropriate argument for fesetround() .

 Table RS.V.8 The fenv.h Types

 Prototype Description

 void feclearexcept(int excepts); Clears the exceptions represented by excepts .

 void fegetexceptflag
(fexcept_t *flagp, int excepts);

 Stores the states of the floating-point status flags
indicated by excepts in the object pointed to by
 flagp .

 void feraiseexcept(int excepts); Raises the exceptions specified by excepts .

 void fesetexceptflag
(const fexcept_t *flagp, int

excepts);

 Sets those floating-point status flags indicated by
 excepts to the values provided by flagp ; flagp
should have been set by a previous call to feget-
exceptflag() .

 int fetestexcept(int excepts); excepts specifies the status flags to be queried;
the function returns the bitwise OR of those speci-
fied status flags.

 int fegetround(void); Returns the current rounding direction.

 int fesetround(int round); Sets the rounding direction to the value provided by
 round ; returns 0 if and only if successful.

 void fegetenv(fenv_t *envp); Stores the current environment in the location point-
ed to by envp .

 int feholdexcept(fenv_t *envp); Saves the current floating-point environment in the
location pointed to by envp , clears the floating-point
status flags, and then, if possible, installs a non-
stop mode, in which execution continues despite
exceptions; returns 0 if and only if successful.

 void fesetenv(const fenv_t *envp); Installs the floating-point environment represented
by envp ; envp should point to a data object set by
a prior call to fegetenv() or feholdexcept() , or
to a floating-point environment macro.

ptg11524036

933Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 void feupdateenv
(const fenv_t *envp);

 Function saves the currently raised floating-point
exceptions in automatic storage, installs the
floating-point environment represented by the object
pointed to by envp , and then raises the saved float-
ing-point exceptions; envp should point to a data
object set by a prior call to fegetenv() or fehold-
except() , or to a floating-point environment macro.

 Floating-point Characteristics: float.h

 The float.h header file defines several macros representing various limits and parameters.
 Table RS.V.9 lists the macros, with C11 additions shown in italics. Many of the macros refer to
this model of floating-point representation:

x = sbe fkb
�k

k = 1

p

 If the very first digit f 1 is nonzero (and x is nonzero), the number is termed a normalized float-
ing-point number . Section VIII of this appendix explains this and the meanings of some of these
macros more fully.

 Table RS.V.9 The float.h Macros

 Macro Represents

 FLT_ROUNDS Default rounding scheme

 FLT_EVAL_METHOD Default scheme for evaluating floating-point expressions

 FLT_HAS_SUBNORM Presence or absences of float subnormal numbers

 DBL_HAS_SUBNORM Presence or absences of double subnormal numbers

 LDBL_HAS_SUBNORM Presence or absences of long double subnormal numbers

 FLT_RADIX The radix (b) used in exponential representation (minimum value of 2)

 FLT_MANT_DIG Number of digits in base- FLT_RADIX representation (p) in the signifi-
cand for float

 DBL_MANT_DIG Number of digits in base- FLT_RADIX representation (p) in the signifi-
cand for double

 LDBL_MANT_DIG Number of digits in base- FLT_RADIX representation (p) in the signifi-
cand for longdouble

 FLT_DECIMAL_DIG Number of decimal digits for a float that can be converted from base
 b to base 10 and back to base b with no change in value (minimum
value of 6)

ptg11524036

934 Appendix B Reference Section

 Macro Represents

 DBL_DECIMAL_DIG Number of decimal digits for a double that can be converted from base
 b to base 10 and back to base b with no change in value (minimum
value of 10)

 LDBL_DECIMAL_DIG Number of decimal digits for a long double that can be converted
from base b to base 10 and back to base b with no change in value
(minimum value of 10)

 DECIMAL_DIG Number of decimal digits for the widest supported floating type that
can be converted from base b to base 10 and back to base b with no
change in value (minimum value of 10)

 FLT_DIG Number of decimal digits for a float that can be converted from base
10 to base b and back to base 10 with no change in value (minimum
value of 6)

 DBL_DIG Number of decimal digits for a double that can be converted from base
10 to base b and back to base 10 with no change in value (minimum
value of 10)

 LDBL_DIG Number of decimal digits for a long double that can be converted
from base 10 to base b and back to base 10 with no change in value
(minimum value of 10)

 FLT_MIN_EXP Minimum negative integer value for e for float

 DBL_MIN_EXP Minimum negative integer value for e for double

 LDBL_MIN_EXP Minimum negative integer value for e for long double

 FLT_MIN_10_EXP Minimum negative integer such that 10 to that power is still a normal-
ized float number (no larger than -37)

 DBL_MIN_10_EXP Minimum negative integer such that 10 to that power is still a normal-
ized double number (no larger than -37)

 LDBL_MIN_10_EXP Minimum negative integer such that 10 to that power is still a normal-
ized long double number (no larger than -37)

 FLT_MAX_EXP Maximum positive integer value for e for float

 DBL_MAX_EXP Maximum positive integer value for e for long

 LDBL_MAX_EXP Maximum positive integer value for e for long double)

 FLT_MAX_10_EXP Maximum positive integer such that 10 to that power is in the range of
representable finite float values (at least +37)

 DBL_MAX_10_EXP Maximum positive integer such that 10 to that power is in the range of
representable finite double values (at least +37)

 LDBL_MAX_10_EXP Maximum positive integer such that 10 to that power is in the range of
representable finite long double values (at least +37)

ptg11524036

935Section V: The Standard ANSI C Library with C99 and C11 Additions

 Macro Represents

 FLT_MAX Maximum representable finite float value (at least 1E+37)

 DBL_MAX Maximum representable finite double value (at least 1E+37)

 LDBL_MAX Maximum representable finite long double value (at least 1E+37)

 FLT_EPSILON Difference between 1 and the least value greater than 1 for float (no
more than 1E-5)

 DBL_EPSILON Difference between 1 and the least value greater than 1 for double (no
more than 1E-9)

 LDBL_EPSILON Difference between 1 and the least value greater than 1 for long dou-
ble (no more than 1E-9)

 FLT_MIN Smallest positive normalized float value (no more than 1E-37)

 DBL_MIN Smallest positive normalized double value (no more than 1E-37)

 LDBL_MIN Smallest positive normalized long double value (no more than 1E-37)

 FLT_TRUE_MIN Smallest positive float value (no more than 1E-37)

 DBL_TRUE_MIN Smallest positive double value (no more than 1E-37)

 LDBL_TRUE_MIN Smallest positive long double value (no more than 1E-37)

 Format Conversion of Integer Types: inttypes.h (C99)

 This header file defines several macros that can be used as format specifiers for the expanded
integer types. Reference Section VI, “Extended Integer Types,” discusses these further. This
header file also declares the following type:

 imaxdiv_t

 This is a structure type representing the return value of the idivmax() function.

 This header file also includes stdint.h and declares several functions that use the greatest-
width integer type, which is declared as intmax in stdint.h . Table RS.V.10 lists these
functions.

 Table RS.V.10 Greatest-Width Integer Functions

 Prototype Description

 intmax_t imaxabs(intmax_t j); Returns the absolute value of j

 imaxdiv_t imaxdiv(intmax_t numer,
intmax_t denom);

 Computes the quotient and remainder of
 numer / denom in a single operation and stores
the two values in the returned structure

ptg11524036

936 Appendix B Reference Section

 Prototype Description

 intmax_t strtoimax(const char *
restrict nptr, char ** restrict endp-

tr, int base);

 Equivalent to the strtol() function, except
that it converts the string to type intmax_t and
returns that value

 uintmax_t strtoumax(const char *
restrict nptr, char ** restrict endp-

tr, int base);

 Equivalent to the strtoul() function, except
that it converts the string to type uintmax_t and
returns that value

 intmax_t wcstoimax(const wchar_t *
restrict nptr, wchar_t ** restrict

endptr, int base);

 The wchar_t version of strtoimax()

 uintmax_t wcstoumax(const wchar_t *
restrict nptr, wchar_t ** restrict

endptr, int base);

 The wchar_t version of strtoumax()

 Alternative Spellings: iso646.h

 This header provides 11 macros that expand to the indicated operators, as shown in Table
 RS.V.11 .

 Table RS.V.11 Alternative Spellings

 Macro Operator Macro Operator Macro Operator

 and && and_eq &= bitand &

 bitor | compl ~ not !

 not_eq != or || or_eq |=

 xor ̂ xor_eq ̂ =

 Localization: locale.h

 A locale is a group of settings that controls items such as the symbol used as a decimal point.
Locale values are stored in a structure of type struct lconv , defined in the locale.h header
file. A locale can be specified by a string, which acts to specify a particular set of values for the
structure members. The default locale is designated by the string "C" . Table RS.V.12 lists the
localization functions, and a brief discussion follows.

ptg11524036

937Section V: The Standard ANSI C Library with C99 and C11 Additions

 Table RS.V.12 Localization Functions

 Prototype Description

 char * setlocale
(int category, const

char * locale);

 The function sets certain locale values to the values specified by the
locale and indicated by locale . The category value controls which
locale values get set (see Table RS.V.11). The function returns the null
pointer if it cannot honor the request. Otherwise, it returns a pointer
associated with the specified category in the new locale.

 struct lconv *
localeconv(void);

 Returns a pointer to a struct lconv structure filled in with the values
of the current locale.

 The required possible values for the locale parameter to setlocale() are "C" , which is the
default, and "" , which represents the implementation-defined native environment. An imple-
mentation can define additional locales. The possible values for the category parameter to
 setlocale() are represented by the macros listed in Table RS.V.13 .

 Table RS.V.13 Category Macros

 Macro Description

 NULL Leave the locale unchanged and return a pointer to the current locale.

 LC_ALL Change all locale values.

 LC_COLLATE Change locale values for the collating sequence used by strcoll() and strx-
frm() .

 LC_CTYPE Change locale values for the character-handling functions and the multibyte func-
tions.

 LC_MONETARY Change locale values for monetary-formatting information.

 LC_NUMERIC Change locale values for the decimal point symbol and non-monetary formatting
used by formatted I/O and by string-conversion functions.

 LC_TIME Change locale values for the time formatting used by strftime() .

ptg11524036

938 Appendix B Reference Section

 Table RS.V.14 lists the required members of a struct lconv structure.

 Table RS.V.14 Required struct lconv Members

 Macro Description

 char *decimal_point Decimal-point character for non-monetary values.

 char *thousands_sep Character used to separate groups of digits before the decimal
point for non-monetary quantities.

 char *grouping A string whose elements indicate the size of each group of dig-
its for non-monetary quantities.

 char *int_curr_symbol The international currency symbol.

 char *currency_symbol The local currency symbol.

 char *mon_decimal_point Decimal-point character for monetary values.

 char *mon_thousands_sep Character used to separate groups of digits before the decimal
point for monetary quantities.

 char *mon_grouping A string whose elements indicate the size of each group of dig-
its for monetary quantities.

 char *positive_sign String used to indicate a non-negative formatted monetary
value.

 char *negative_sign String used to indicate a negative formatted monetary value.

 char int_frac_digits Number of digits displayed after the decimal point for an inter-
nationally formatted monetary quantity.

 char frac_digits Number of digits displayed after the decimal point for a locally
formatted monetary quantity.

 char p_cs_precedes Set to 1 or 0 depending on whether currency_symbol pre-
cedes or follows the value of a non-negative formatted mon-
etary quantity.

 char p_sep_by_space Set to 1 or 0 depending on whether currency_symbol is
separated by a space from the value of a non-negative format-
ted monetary quantity.

 char n_cs_precedes Set to 1 or 0 depending on whether currency_symbol pre-
cedes or follows the value of a negative formatted monetary
quantity.

 char n_sep_by_space Set to 1 or 0 depending on whether currency_symbol is
separated by a space from the value of a negative formatted
monetary quantity.

ptg11524036

939Section V: The Standard ANSI C Library with C99 and C11 Additions

 Macro Description

 char p_sign_posn Set to a value indicating the positioning of a positive_sign
string; 0 means parentheses surround the quantity and cur-
rency symbol, 1 means the string precedes the quantity and
currency symbol, 2 means the string follows the quantity and
currency symbol, 3 means the string immediately precedes the
currency symbol, and 4 means the string immediately follows
the currency symbol.

 char n_sign_posn Set to a value indicating the positioning of a negative_sign
string; the meaning is the same as for char p_sign_posn .

 char int_p_cs_precedes Set to 1 or 0 depending on whether int_currency_symbol
precedes or follows the value of a non-negative formatted mon-
etary quantity.

 char int_p_sep_by_space Set to 1 or 0 depending on whether int_currency_symbol is
separated by a space from the value of a non-negative format-
ted monetary quantity.

 char int_n_cs_precedes Set to 1 or 0 depending on whether int_currency_symbol
precedes or follows the value of a negative formatted monetary
quantity.

 char int_n_sep_by_space Set to 1 or 0 depending on whether int_currency_symbol is
separated by a space from the value of a negative formatted
monetary quantity.

 char int_p_sign_posn Set to a value indicating the positioning of the positive_sign
for a non-negative internationally formatted monetary quantity.

 char int_n_sign_posn Set to a value indicating the positioning of negative_sign for
a negative internationally formatted monetary quantity.

 Math Library: math.h

 With C99, the math.h header file defines two types:

 float_t

 double_t

 These types are at least as wide as float and double , respectively, and double_t is at least as
wide as float_t . These are intended to be the most efficient types for doing float and double
calculations, respectively.

 This header file also defines several macros, as described in Table RS.V.15 ; all but HUGE_VAL
are C99 additions. Some of these are discussed in more detail in Section VIII, “C99 Numeric
Computational Enhancements.”

ptg11524036

940 Appendix B Reference Section

 Table RS.V.15 The math.h Macros

 Macro Description

 HUGE_VAL A positive double constant not necessarily expressible as a float; in the
past, it was used as the return value for functions when the magnitude
of the result exceeded the largest representable value.

 HUGE_VALF The type float counterpart of HUGE_VAL .

 HUGE_VALL The type long double counterpart of HUGE_VAL .

 INFINITY Expands to a constant float expression representing positive or
unsigned infinity, if available; otherwise, expands to a positive float con-
stant that overflows during compile time.

 NAN Defined, if and only if, the implementation supports quiet NaNs (a value
signifying Not-a-Number) for float .

 FP_INFINITE Classification number indicating an infinite floating-point value.

 FP_NAN Classification number indicating a floating-point value that is not a num-
ber.

 FP_NORMAL Classification number indicating a normal floating-point value.

 FP_SUBNORMAL Classification number indicating a subnormal (lowered precision)
floating-point value.

 FP_ZERO Classification number indicating a floating-point value representing 0.

 FP_FAST_FMA (Optional) If defined, this macro indicates that the fma() function works
about as fast, or faster than, a multiply and add of double operands.

 FP_FAST_FMAF (Optional) If defined, this macro indicates that the fmaf() function
works about as fast, or faster than, a multiply and add of float oper-
ands.

 FP_FAST_FMAL (Optional) If defined, this macro indicates that the fmal() function
works about as fast, or faster than, a multiply and add of long double
operands.

 FP_ILOGB0 An integer constant expression representing the value returned by
 ilogb(0) .

 FP_ILOGBNAN An integer constant expression representing the value returned by
 ilogb(NaN) .

 MATH_ERRNO Expands to the integer constant 1.

 MATH_ERREXCEPT Expands to the integer constant 2.

 math_errhandling Has the value MATH_ERRNO or MATH_ERREXCEPT or the bitwise OR of
those two values.

ptg11524036

941Section V: The Standard ANSI C Library with C99 and C11 Additions

 The math functions typically work with type double values. C99 has added float and long
double versions of these functions, which are indicated by adding an f suffix and an l suffix,
respectively, to the function name. For example, the language now provides these prototypes:

 double sin(double);

 float sinf(float);

 long double sinl(long double);

 For brevity, Table RS.V.16 lists just the double versions of the functions of the math library.
The table refers to FLT_RADIX . This constant, defined in float.h , is the base used for exponen-
tiation in the internal floating-point representation. The most common value is 2 .

 Table RS.V.16 ANSI C Standard Math Functions

 Prototype Description

 int classify(real-floating x); A C99 macro that returns the floating-point classifica-
tion value appropriate for x .

 int isfinite(real-floating x); A C99 macro that returns a nonzero value if, and only
if, x is finite.

 int isfin(real-floating x); A C99 macro that returns a nonzero value if, and only
if, x is infinite.

 int isnan(real-floating x); A C99 macro that returns a nonzero value if, and only
if, x is a NaN.

 int isnormal(real-floating x); A C99 macro that returns a nonzero value if, and only
if, x is normal.

 int signbit(real-floating x); A C99 macro that returns a nonzero value if, and only
if, the sign of x is negative.

 double acos(double x); Returns the angle (0 to π radians) whose cosine is x .

 double asin(double x); Returns the angle (−π/2 to π/2 radians) whose sine
is x .

 double atan(double x); Returns the angle (−π/2 to π/2 radians) whose tan-
gent is x .

 double atan2(double y, double x); Returns the angle (−π to π radians) whose tangent is
 y / x .

 double cos(double x); Returns the cosine of x (x in radians).

 double sin(double x); Returns the sine of x (x in radians).

 double tan(double x); Returns the tangent of x (x in radians).

 double cosh(double x); Returns the hyperbolic cosine of x .

 double sinh(double x); Returns the hyperbolic sine of x .

ptg11524036

942 Appendix B Reference Section

 Prototype Description

 double tanh(double x); Returns the hyperbolic tangent of x .

 double exp(double x); Returns the exponential function of x (e x).

 double exp2(double x); Returns 2 to the x power (C99).

 double expm1(double x); Returns e x - 1 (C99).

 double frexp(double v, int *pt_e); Breaks a value, v , into a normalized fraction, which
is returned, and a power of 2, which is placed in the
location pointed to by pt_e .

 int ilogb(double x); Returns the exponent of x as a signed int (C99).

 double ldexp(double x, int p); Returns 2 to the p power times x .

 double log(double x); Returns the natural logarithm of x .

 double log10(double x); Returns the base 10 logarithm of x .

 double log1p(double x); Returns log(1 + x) (C99).

 double log2(double x); Returns the base 2 logarithm of x (C99).

 double logb(double x); Returns the signed exponent of its argument for the
underlying base used to represent floating-point val-
ues on the system (FLT_RADIX) (C99).

 double modf(double x, double *p); Breaks x into an integral part and a fraction part,
both of the same sign, returns the fractional part, and
stores the integral part in the location pointed to by p .

 double scalbn(double x, int n); Returns x × FLT_RADIX n (C99).

 double scalbln(double x, long n); Returns x × FLT_RADIX n (C99).

 double cbrt(double x); Returns the cube root of x (C99).

 double hypot(double x, double y); Returns the square root of the sums of the squares
of x and y (C99).

 double pow(double x, double y); Returns x to the y power.

 double sqrt(double x); Returns the square root of x .

 double erf(double x); Returns the error function of x (C99).

 double erfc(double x); Returns the complementary error function of x (C99).

 double lgamma(double x); Returns the natural logarithm of the absolute value of
the gamma function of x (C99).

 double tgamma(double x); Returns the gamma function of x (C99).

 double ceil(double x); Returns the smallest integral value not less than x .

 double fabs(double x); Returns the absolute value of x .

ptg11524036

943Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 double floor(double x); Returns the largest integral value not greater than x .

 double nearbyint(double x); Rounds x to the nearest integer in floating-point for-
mat; it uses the rounding direction specified by the
floating-point environment, if available. The “inexact”
exception is not raised. (C99).

 double rint(double x); Like nearbyint() , except it may raise the “inexact”
exception (C99).

 long int lrint(double x); Rounds x to the nearest integer in long int format;
it uses the rounding direction specified by the floating-
point environment, if available (C99).

 long long int llrint(double x); Rounds x to the nearest integer in long long int
format; it uses the rounding direction specified by the
floating-point environment, if available (C99).

 double round(double x); Rounds x to the nearest integer in floating-point for-
mat; it always rounds halfway values away from zero
(C99).

 long int lround(double x); Like round() , but the answer is returned as type
 long int (C99).

 long long int llround(double x); Like round() , but the answer is returned as type
 long long int (C99).

 double trunc(double x); Rounds x to the nearest integer in floating-point for-
mat that is no greater in magnitude than x (C99).

 int fmod(double x, double y); Returns the fractional part of x/y ; if y is nonzero, the
result has the same sign as x and is smaller in mag-
nitude than y .

 double remainder(double x, double
y);

 Returns x REM y , which IEC 60559 defines as
x - n*y , where n is the integer nearest the value of
 x/y ; n is even if the absolute value of (n - x/y) is
1/2. (C99).

 double remquo(double x, double y,
int *quo);

 Returns the same value as remainder() and places
in the location pointed to by quo a value having the
same sign as x/y and having the value the integer
magnitude of x/y modulus 2 k , where k is an imple-
mentation-dependent integer whose value is at least
3 (C99).

 double copysign(double x, double
y);

 Returns a value with the magnitude of x and the sign
of y (C99).

ptg11524036

944 Appendix B Reference Section

 Prototype Description

 double nan(const char *tagp); Returns the type double representation of a
quiet NaN; nan(" n-char-seq ") is equivalent to
 strtod("NAN(n-char-seq)", (char **)NULL) ;
 nan("") is equivalent to strtod("NAN()", (char
**)NULL) ; for other argument strings, the call is
equivalent to strtod("NAN", (char **)NULL) .
Returns 0 if quiet NaNs are not supported (C99).

 double nextafter(double x, double
y);

 Returns the next representable type double value
after x in the direction of y ; returns x if x equals y
(C99).

 double nexttoward(double x, long
double y);

 The same as nextafter() , except the second argu-
ment is long double and, if x equals y , the function
returns y converted to double (C99).

 double fdim(double x, double y); Returns the positive difference of the arguments
(C99).

 double fmax(double x, double y); Returns the maximum numeric value of the argu-
ments; if one argument is a NaN and the other
numeric, the numeric value is returned (C99).

 double fmin(double x, double y); Returns the minimum numeric value of the argu-
ments. If one argument is a NaN and the other
numeric, the numeric value is returned (C99).

 double fma(double x, double y,
double z);

 Returns the quantity (x*y)+z as a ternary operation,
rounding once at the end (C99).

 int isgreater(real-floating x,
real-floating y);

 A C99 macro that returns the value of (x) > (y)
without raising the “invalid” floating-point exception if
one or both arguments are NaNs.

 int isgreaterequal(real-floating
x,real-floating y);

 A C99 macro that returns the value of (x) >= (y)
without raising the “invalid” floating-point exception if
one or both arguments are NaNs.

 int isless(real-floating x, real-
floating y);

 A C99 macro that returns the value of (x) < (y)
without raising the “invalid” floating-point exception if
one or both arguments are NaNs.

 int islessequal(real-floating x,
real-floating y);

 A C99 macro that returns the value of (x) <= (y)
without raising the “invalid” floating-point exception if
one or both arguments are NaNs.

 int islessgreater(real-floating x,
real-floating y);

 A C99 macro that returns the value of (x) < (y) ||
(x) >(y) without raising the “invalid” floating-point
exception if one or both arguments are NaNs.

 int isunordered(real-floating x,
real-floating y);

 Returns one if the arguments are unordered (at least
one being a Nan) and zero otherwise.

ptg11524036

945Section V: The Standard ANSI C Library with C99 and C11 Additions

 Non-Local Jumps: setjmp.h

 The setjmp.h header file enables you to bypass the usual function-call, function-return
sequence. The setjmp() function stores information about the current execution environment
(for example, a pointer to the current instruction) in a type jmp_buf variable (an array type
defined in this header file), and the l ongjmp() function transfers execution to such an envi-
ronment. The functions are intended to help handle error conditions, not to be used as part of
normal program flow control. Table RS.V.17 lists the functions.

 Table RS.V.17 The setjmp.h Functions

 Prototype Description

 int setjmp(jmp_buf env); Saves the calling environment in the array env and returns
 0 if called directly and nonzero if the return is from a call to
 longjmp() .

 void longjmp(jmp_buf env,
int val);

 Restores the environment saved by the most recent evocation of
 setjmp() that set the env array; after completing this change,
the program continues as though that evocation of setjmp()
had returned val , except that a return value of 0 is not allowed
and is converted to 1 .

 Signal Handling: signal.h
 A signal is a condition that can be reported during program execution. It is represented by a
positive integer. The raise() function sends, or raises , a signal, and the signal() function
sets the response to a particular signal.

 The standard defines an integer type, sig_atomic_t , used to specify objects that are atomic
with respect to signal handlers. That is, updating an atomic type is an indivisible process.

 The standard provides the macros listed in Table RS.V.18 to represent possible signals; an imple-
mentation can add further values. They can be used as arguments to raise() and signal() .

 Table RS.V.18 Signal Macros

 Macro Description

 SIGABRT Abnormal termination, such as initiated by a call to abort() .

 SIGFPE Erroneous arithmetic operation.

 SIGILL Invalid function image (such as illegal instruction) detected.

 SIGINT Interactive attention signal received (such as a DOS interrupt).

 SIGSEGV Invalid access to storage.

 SIGTERM Termination request sent to program.

ptg11524036

946 Appendix B Reference Section

 The signal() function takes as its second argument a pointer to a void function that takes an
 int argument. It also returns a pointer of the same type. A function invoked in response to a
signal is termed a signal handler . The standard defines three macros fitting this prototype:

 void (*funct)(int);

 Table RS.V.19 lists these macros.

 Table RS.V.19 Type void (*f)(int) Macros

 Macro Description

 SIG_DFL When used as an argument to signal() , along with a signal value, this macro
indicates that the default handling for that signal will occur.

 SIG_ERR Used as a return value for signal() if it cannot return its second argument.

 SIG_IGN When used as an argument to signal() , along with a signal value, this macro
indicates that the signal will be ignored.

 If the signal sig is raised and func points to a function (see the signal() prototype in
 Table RS.V.20), first, under most circumstances, signal(sig, SIG_DFL) is called to reset
signal handling to the default, and then (*func)(sig) is called. The signal-handling func-
tion pointed to by func can terminate by executing a return statement or by calling abort() ,
 exit() , or longjmp() . Table RS.V.20 lists the signal functions.

 Table RS.V.20 Signal Functions

 Prototype Description

 void (*signal(int
sig, void (*func)

(int)))(int);

 Causes the function pointed to by func to be executed if signal sig is
raised. If possible, returns func ; otherwise, returns SIG_ERR .

 int raise(int sig); Sends the signal sig to the executing program; returns zero if suc-
cessful and nonzero otherwise.

 Alignment: stdalign.h (C11)

 The stdalign.h header file defines four macros relating to determining and specifying align-
ment properties of data objects. Table RS.V.21 lists these macros. The first two create aliases
that are compatible with C++ usage.

ptg11524036

947Section V: The Standard ANSI C Library with C99 and C11 Additions

 Table RS.V.21 stdalign.h Macros

 Macro Description

 alignas Expands to the keyword _Alignas .

 alignof Expands to the keyword _Alignof .

 _ _alignas_is_defined Expands to the integer constant 1, suitable to be used with #if .

 _ _alignof_is_defined Expands to the integer constant 1, suitable to be used with #if .

 Variable Arguments: stdarg.h
 The stdarg.h header file provides a means for defining a function having a variable number
of arguments. The prototype for such a function should have a parameter list with at least one
parameter followed by ellipses:

 void f1(int n, ...); /* valid */

 int f2(int n, float x, int k, ...); /* valid */

 double f3(...); /* invalid */

 In the following table, the term parmN is the identifier used for the last parameter preceding
the ellipses. In the preceding examples, parmN would be n for the first case and k for the second
case.

 The header file declares a va_list type to represent a data object used to hold the parameters
corresponding to the ellipses part of the parameter list. Table RS.V.22 lists three macros to be
used in the function with the variable parameter list. An object of type va_list should be
declared before using these macros.

 Table RS.V.22 Variable Argument List Macros

 Prototype Description

 void va_start(va_list
ap, parmN);

 This macro initializes ap before use by va_arg () and va_end() ;
 parmN is the identifier for the last named parameter in the argument
list.

 void va_copy(va_list
dest, va_list src);

 This macro initializes dest as a copy of the current state of src
(C99).

 type va_arg(va_list
ap, type);

 This macro expands to an expression having the same value and type
as the next item in the argument list represented by ap ; type is the
type for that item. Each call advances to the next item in ap .

 void va_end(va_list
ap);

 This macro closes out the process and may render ap unusable with-
out another call to va_start() .

 void va_copy(va_list
dest, va_list src);

 This macro initializes dest as a copy of the current state of src
(C99).

ptg11524036

948 Appendix B Reference Section

 Atomics Support: stdatomic.h (C11)

 This header file, along with threads.h , provides support for concurrent programming. This
topic is well beyond the scope of this book, but, in general terms, the stdatomic.h header
file provides macros for creating atomic operations. The programming community uses the
term atomic as Democritus did in his theory of matter, meaning indivisible. An operation,
such as assigning one structure to another, may appear to be atomic at the programming level
but may consist of multiple steps at the machine language level. If a program is split into
multiple threads, one thread might read or modify data that a second thread is in the process
of using. You could, for instance, wind up with a chimera of a structure having some members
assigned values by one thread and other members assigned values by a different thread. The
 stdatomic.h header file enables you to create operations that act as if they were atomic so
that one thread cannot interrupt the work of another thread.

 Boolean Support: stdbool.h (C99)

 This header file defines the four macros shown in Table RS.V.23 .

 Table RS.V.23 The stdbool.h Macros

 Macro Description

 bool Expands to _Bool

 false Expands to the integer constant 0

 true Expands to the integer constant 1

 _ _bool_true_false_
are_defined

 Expands to the integer constant 1

 Common Definitions: stddef.h

 This header file defines some types and macros, as shown in Tables RS.V.24 and RS.V.25

 Table RS.V.24 The stddef.h Types

 Type Description

 ptrdiff_t A signed integer type for representing the result of subtracting one pointer from
another

 size_t An unsigned integer type representing the result of the sizeof operator

 wchar_t An integer type that can represent the largest extended character set specified
by supported locales

ptg11524036

949Section V: The Standard ANSI C Library with C99 and C11 Additions

 Table RS.V.25 The stddef.h Macros

 Macro Description

 NULL An implementation-defined constant representing the null pointer.

 offsetof(type,
member-designator)

 Expands to a size_t value representing the offset, in bytes, of the
indicated member from the beginning of a structure having type type ;
the behavior undefined if the member is a bit field.

 Example

 #include <stddef.h>

 struct car

 {

 char brand[30];

 char model[30];

 double hp;

 double price;

 };

 int main(void)

 {

 size_t into = offsetof(struct car, hp); /* offset of hp member */

 ...

 Integer Types: stdint.h

 This header file uses the typedef facility to create integer type names that specify the proper-
ties of the integers. This header file is included by the inttypes.h header file, which provides
macros for use in input/output function calls. Reference Section VI (“Extended Integer Types”)
outlines how these types may be used.

 Exact-Width Types

 One set of typedef s identify types with precise sizes. Table RS.V.26 lists the names and sizes.
Note, however, that not all systems may be able to support all the types.

 Table RS.V.26 Exact-Width Types

 typedef Name Properties

 int8_t 8 bits signed

 int16_t 16 bits signed

 int32_t 32 bits signed

ptg11524036

950 Appendix B Reference Section

 typedef Name Properties

 int64_t 64 bits signed

 uint8_t 8 bits unsigned

 uint16_t 16 bits unsigned

 uint32_t 32 bits unsigned

 uint64_t 64 bits unsigned

 Minimum-Width Types

 The minimum-width types guarantee a type that is at least a certain number of bits in size.
 Table RS.V.27 lists the minimum-width types. These types always exist.

 Table RS.V.27 Minimum Width Types

 typedef Name Properties

 int_least8_t At least 8 bits signed

 int_least16_t At least 16 bits signed

 int_least32_t At least 32 bits signed

 int_least64_t At least 64 bits signed

 uint_least8_t At least 8 bits unsigned

 uint_least16_t At least 16 bits unsigned

 uint_least32_t At least 32 bits unsigned

 uint_least64_t At least 64 bits unsigned

 Fastest Minimum-Width Types

 For a particular system, some integer representations can be faster than others. So stdint.h
also defines the fastest type for representing at least a certain number of bits. Table RS.V.28 lists
the fastest minimum-width types. These types always exist. In some cases, there might be no
clear-cut choice for fastest; in that case, the system simply specifies one of the choices.

 Table RS.V.28 Fastest Minimum-Width Types

 typedef Name Properties

 int_fast8_t At least 8 bits signed

 int_fast16_t At least 16 bits signed

ptg11524036

951Section V: The Standard ANSI C Library with C99 and C11 Additions

 typedef Name Properties

 int_fast32_t At least 32 bits signed

 int_fast64_t At least 64 bits signed

 uint_fast8_t At least 8 bits unsigned

 uint_fast16_t At least 16 bits unsigned

 uint_fast32_t At least 32 bits unsigned

 uint_fast64_t At least 64 bits unsigned

 Maximum-Width Types

 The stdint.h header file also defines maximum-width types. A variable of this type can hold
any integer value possible for the system, taking the sign into account. Table RS.V.29 lists the
types.

 Table RS.V.29 Maximum-Width Types

 typedef Name Properties

 intmax_t The widest signed type

 uintmax_t The widest unsigned type

 Integers That Can Hold Pointer Values

 The header file also has two integer types, listed in Table RS.V.30 , that can hold pointer values
accurately. That is, if you assign a type void * value to one of these types, and then assign the
integer type back to the pointer, no information is lost. Either or both types might not exist.

 Table RS.V.30 Integer Types for Holding Pointer Values

 typedef Name Properties

 intptr_t Signed type can hold a pointer value.

 uintptr_t Unsigned type can hold a pointer value.

 Defined Constants

 The stdint.h header file defines constants representing limiting values for the types defined
in that header file. The constants are named after the type. Take the type name, replace the
 _t with _MIN or _MAX , and make all the characters uppercase to get the name of the constant
representing the minimum or maximum value for the type. For example, the smallest value

ptg11524036

952 Appendix B Reference Section

for the int32_t type is INT32_MIN , and the largest value for the uint_fast16_t type is
 UINT_FAST16_MAX . Table RS.V.31 summarizes these constants, with N standing for the number
of bits, along with defined constants relating to the intptr_t , uintptr_t , intmax_t , and
 uintmax_t types. The magnitude of these constants will equal or exceed (unless “exactly” is
specified) the listed amount.

 Table RS.V.31 Integer Constants

 Constant Identifier Minimum (in Magnitude) Value

 INT N _MIN Exactly –(2 N -1 −1)

 INT N _MAX Exactly 2 N -1 −1

 UINT N _MAX Exactly 2 N −1

 INT_LEAST N _MIN −(2 N -1 −1)

 INT_LEAST N _MAX 2 N -1 −1

 UINT_LEAST N _MAX 2 N −1

 INT_FAST N _MIN −(2 N -1 −1)

 INT_FAST N _MAX 2 N -1 −1

 UINT_FAST N _MAX 2 N −1

 INTPTR_MIN –(2 15 −1)

 INTPTR_MAX 2 15 −1

 UINTPTR_MAX 2 16 −1

 INTMAX_MIN −(2 15 −1)

 INTMAX_MAX 2 63 −1

 UINTMAX_MAX 2 64 −1

 The header file also defines some constants for types defined elsewhere. Table RS.V.32 lists
them.

 Table RS.V.32 Further Integer Constants

 Constant Identifier Meaning

 PTRDIFF_MIN Minimum value of the ptrdiff_t type

 PTRDIFF_MAX Maximum value of the ptrdiff_t type

 SIG_ATOMIC_MIN Minimum value of the sig_atomic_t type

 SIG_ATOMIC_MAX Maximum value of the sig_atomic_t type

ptg11524036

953Section V: The Standard ANSI C Library with C99 and C11 Additions

 Constant Identifier Meaning

 WCHAR_MIN Minimum value of the wchar_t type

 WCHAR_MAX Maximum value of the wchar_t type

 WINT_MIN Minimum value of the wint_t type

 WINT_MAX Maximum value of the wint_t type

 SIZE_MAX Maximum value of the size_t type

 Extended Integer Constants

 The stdint.h header file defines macros for specifying constants of the various extended
integer types. Essentially, the macro is a type cast to the underlying type—that is, to the funda-
mental type that represents the extended type in a particular implementation.

 The macro names are formed by taking the type name, replacing the _t with _C , and making
all the letters uppercase. For example, to make 1000 a type uint_least64_t constant, use the
expression UINT_LEAST64_C(1000) .

 Standard I/O Library: stdio.h

 The ANSI C standard library includes several standard I/O functions associated with streams
and the stdio.h file. Table RS.V.33 presents the ANSI prototypes for these functions, along
with a brief explanation of what they do. (Many are described more fully in Chapter 13 , “File
Input/Output.”) The header file also defines the FILE type, the values EOF and NULL , and the
standard I/O streams stdin , stdout , and stderr , along with several constants used by the
functions in this library.

 Table RS.V.33 C Standard I/O Functions

 Prototype Description

 void clearerr(FILE *); Clears end-of-file and error indicators

 int fclose(FILE *); Closes the indicated file

 int feof(FILE *); Tests for end-of-file

 int ferror(FILE *); Tests error indicator

 int fflush(FILE *); Flushes the indicated file

 int fgetc(FILE *); Gets the next character from the indicated input stream

 int fgetpos(FILE *
restrict, restrict);

 Stores the current value fpos_t * of the file position indicator

ptg11524036

954 Appendix B Reference Section

 Prototype Description

 char * fgets(char *
restrict, restrict);

 Gets the next line (or int , FILE * indicated number of characters)
from the indicated stream

 FILE * fopen(const char
* restrict, const char

*restrict);

 Opens the indicated file

 int fprintf(FILE *
restrict, const char *

restrict, ...);

 Writes the formatted output to the indicated stream

 int fputc(int, FILE *); Writes the indicated character to the indicated stream

 int fputs(const char
* restrict, FILE *

restrict);

 Writes the character string pointed to by the first argument to the
indicated stream

 size_t fread(void *
restrict, size_t, size_t,

FILE * restrict);

 Reads binary data from the indicated stream

 FILE * freopen(const
char * restrict, const

char * restrict, FILE *

restrict);

 Opens the indicated file and associates it with the indicated stream

 int fscanf(FILE *
restrict, const char *

restrict, ...);

 Reads formatted input from the indicated stream

 int fsetpos(FILE *,const
fpos_t *);

 Sets the file-position pointer to the indicated value

 int fseek(FILE *, long,
int);

 Sets the file-position pointer to the indicated value

 long ftell(FILE *); Gets the current file position

 size_t fwrite(const void
* restrict, size_t,

size_t, FILE * restrict);

 Writes binary data to the indicated stream

 int getc(FILE *); Reads the next character from the indicated input

 int getchar(); Reads the next character from the standard input

 char * gets(char *); Gets the next line from the standard input (deleted from the library
by C11)

 void perror(const char
*);

 Writes system error messages to the standard error

ptg11524036

955Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 int printf(const char *
restrict, ...);

 Writes formatted output to the standard output

 int putc(int, FILE *); Writes the indicated character to the indicated output

 int putchar(int); Writes the indicated character to the standard output

 int puts(const char *); Writes the string to the standard output

 int remove(const char *); Removes the named file

 int rename(const char *,
constchar *);

 Renames the named file

 void rewind(FILE *); Sets the file-position pointer to the start of the file

 int scanf(const char *
restrict, ...);

 Reads formatted input from the standard input

 void setbuf(FILE *
restrict, char *

restrict);

 Sets the buffer size and location

 int setvbuf(FILE *
restrict, char *restrict,

int, size_t);

 Sets the buffer size, location, and mode

 int snprintf(char *
restrict, size_t n, const

char * restrict, ...);

 Writes formatted output up to n characters to the indicated string

 int sprintf(char *
restrict, const char *

restrict, ...);

 Writes formatted output to the indicated string

 int sscanf(const char
*restrict, const char *

restrict, ...);

 Reads formatted input from the indicated string

 FILE * tmpfile(void); Creates a temporary file

 char * tmpnam(char *); Generates a unique name for a temporary file

 int ungetc(int, FILE *); Pushes the indicated character back onto the input stream

 int vfprintf(FILE *
restrict, const char *

restrict, va_list);

 Like fprintf() , except uses a single list-argument of type va_
list , initialized by va_start , instead of a variable argument list

 int vprintf(const char *
restrict, va_list);

 Like printf() , except uses a single list-argument of type va_
list , initialized by va_start , instead of a variable argument list

ptg11524036

956 Appendix B Reference Section

 Prototype Description

 int vsnprintf(char *
restrict, size_t n);

const char * restrict,

va_list);

 Like snprintf() , except uses a single list- argument of type va_
list initialized by va_start instead of a variable argument list

 int vsprintf(char *
restrict, const char *

restrict, va_list);

 Like sprintf() , except uses a single list-argument of type va_
list initialized by va_start instead of a variable argument list

 int vscanf(const char *
restrict, va list);

 Like scanf() , except uses a single list-argument of type va_list
initialized by va_start instead of a variable argument list

 int vsscanf(const char
* restrict,* restrict,

va_list);

 Like sscanf() , except const char uses a single list-argument of
type va_list initialized by va_start instead of a variable argu-
ment list

 General Utilities: stdlib.h

 The ANSI C standard library includes a variety of utility functions defined in stdlib.h . The
header file defines the types shown in Table RS.V.34 .

 Table RS.V.34 Types Declared in stdlib.h

 Type Description

 size_t The integer type returned by the sizeof operator.

 wchar_t The integer type used to represent wide characters.

 div_t The structure type returned by div() ; it has a quot and a rem member, both of type
 int .

 ldiv_t The structure type returned by ldiv() ; it has a quot and a rem member, both of type
 long .

 lldiv_t The structure type returned by lldiv() ; it has a quot and a rem member, both of
type long long . (C99)

 The header file defines the constants listed in Table RS.V.35 .

ptg11524036

957Section V: The Standard ANSI C Library with C99 and C11 Additions

 Table RS.V.35 Constants Defined in stdlib.h

 Type Description

 NULL The null pointer (equivalent to 0)

 EXIT_FAILURE Can be used as an argument to exit() to indicate unsuccessful execution
of a program

 EXIT_SUCCESS Can be used as an argument to exit() to indicate successful execution of
a program

 RAND_MAX The maximum value (an integer) returned by rand()

 MB_CUR_MAX The maximum number of bytes for a multibyte character for the extended
character set corresponding to the current locale

 Table RS.V.36 lists the functions whose prototypes are found in stdlib.h .

 Table RS.V.36 General Utilities

 Prototype Description

 double atof(const
char * nptr);

 Returns the initial portion of the string nptr converted to a type double
value; conversion ends upon reaching the first character that is not part
of the number; initial whitespace is skipped; zero is returned if no num-
ber is found.

 int atoi(const char
* nptr);

 Returns the initial portion of the string nptr converted to a type int
value; conversion ends upon reaching the first character that is not part
of the number; initial whitespace is skipped; zero is returned if no num-
ber is found.

 int atol(const char
* nptr);

 Returns the initial portion of the string nptr converted to a type long
value; conversion ends upon reaching the first character that is not part
of the number; initial whitespace is skipped; zero is returned if no num-
ber is found.

 double
strtod(restrict npt,

char ** restrict

ept);

 Returns the initial const char * portion of the string nptr converted
to a type double value; conversion ends upon reaching the first charac-
ter that is not part of the number; initial whitespace is skipped; zero is
returned if no number is found. If conversion is successful, the address
of the first character after the number is assigned to the location point-
ed to by ept ; if conversion fails, npt is assigned to the location pointed
to by ept .

 float strtof(const
char * restrictnpt,

char ** restrict

ept);

 Same as strtod() , but converts the string pointed to by nptr to a type
 float value (C99).

ptg11524036

958 Appendix B Reference Section

 Prototype Description

 long double
strtols(const char *

restrictnpt, char **

restrict ept);

 Same as strtod() , but converts the string pointed to by nptr to a type
 long double value (C99).

 long strtol(const
char * restrict npt

char ** restrict

ept, int base);

 Returns the initial portion of the string nptr converted to a type long
value; conversion ends upon reaching the first character that is not
part of the number; initial whitespace is skipped; zero is returned if no
number is found. If conversion is successful, the address of the first
character after the number is assigned to the location pointed to by ept ;
if conversion fails, npt is assigned to the location pointed to by ept .
The number in the string is assumed to be written in a base specified by
 base .

 long long
strtoll(const char *

restrict npt, char

** restrict ept,

int base);

 Same as strtol() , but converts the string pointed to by nptr to a type
 long long value (C99).

 unsigned long
strtoul(const char *

restrict npt, char

** restrict ept,

int base);

 Returns the initial portion of the string nptr converted to a type
 unsigned long value; conversion ends upon reaching the first charac-
ter that is not part of the number; initial whitespace is skipped; zero is
returned if no number is found. If conversion is successful, the address
of the first character after the number is assigned to the location point-
ed to by ept ; if conversion fails, npt is assigned to the location pointed
to by ept . The number in the string is assumed to be written in a base
specified by base .

 unsigned long long
strtoull(const char

* restrict npt,

char ** restrict

ept, int base);

 Same as strtoul() , but converts the string pointed to by nptr to a
type unsigned long long value (C99).

 int rand(void); Returns a pseudorandom integer in the range 0 to RAND_MAX .

 void srand(unsigned
int seed);

 Sets the random-number generator seed to seed ; if rand() is called
before a call to srand() , the seed is 1 .

 void *aligned_
alloc(size_t algn,

size_t size);

 Allocates space for an object of alignment algn and of size bytes;
 algn should be a supported alignment value, and size should be a mul-
tiple of algn . (C11)

 void *calloc(size_t
nmem, size_t size);

 Allocates space for an array of nmem members, each element of which
is size bytes in size; all bits in the space are initialized to 0 . The func-
tion returns the address of the array if successful, and NULL otherwise.

ptg11524036

959Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 void free(void
*ptr);

 Deallocates the space pointed to by ptr ; ptr should be a value previ-
ously returned by a call to calloc() , malloc() , or realloc() , or ptr
can be the null pointer, in which case no action is taken. The behavior is
undefined for other pointer values.

 void *malloc(size_t
size);

 Allocates an uninitialized block of memory of size bytes; the function
returns the address of the array if successful, and NULL otherwise.

 void *realloc(void
*ptr, size_t size);

 Changes the size of the block of memory pointed to by ptr to size
bytes; the contents of the block up to the lesser of the old and new
sizes are unaltered; the function returns the location of the block, which
may have been moved; if space cannot be reallocated, the function
returns NULL and leaves the original block unchanged. If ptr is NULL ,
the behavior is the same as calling malloc() with an argument of size ;
if size is zero and ptr is not NULL , the behavior is the same as calling
 free() with ptr as an argument.

 void abort(void); Causes abnormal program termination unless the signal SIGABRT is
caught and the corresponding signal handler does not return; closing of
I/O streams and temporary files is implementation dependent; the func-
tion executes raise(SIGABRT) .

 int atexit(void
(*func)(void));

 Registers the function pointed to by func to be called upon normal pro-
gram termination; the implementation should support registration of at
least 32 functions, which will be called opposite the order in which they
are registered; the function returns zero if registration succeeds, and
nonzero otherwise.

 int at_quick_
exit(void (*func)

(void));

 Registers the function pointed to by func to be called if quick_exit()
is called; the implementation should support registration of at least 32
functions, which will be called opposite the order in which they are reg-
istered; the function returns zero if registration succeeds, and nonzero
otherwise. (C11)

 void exit(int
status);

 Causes normal program termination to occur, first invoking the functions
registered by atexit() , then flushing all open output streams, and then
closing all I/O streams, then closing all files created by tmpfile() , and
then returning control to the host environment. If status is 0 or EXIT_
SUCCESS , an implementation-defined value indicating successful termina-
tion is returned to the host environment; if status is EXIT_FAILURE ,
an implementation-defined value indicating unsuccessful termination is
returned to the host environment. The effects of other values of statu-
s are implementation defined.

 void _Exit(int
status);

 Similar to exit() except that the functions registered by atexit() are
not called, signal handlers registered by signal() are not called, and
the handling of open streams is implementation defined (C99).

ptg11524036

960 Appendix B Reference Section

 Prototype Description

 char *getenv(const
char * name);

 Returns a pointer to a string representing the value of the environmental
variable pointed to by name ; returns NULL if it cannot match the speci-
fied name .

 _Noreturn void
quick_exit(int

status);

 Causes normal program termination to occur. Functions registered
by atexit() signal handlers registered by signal() are not called.
Functions registered by at_quick_exit() are called in the reverse
order of registration. Behavior is undefined if a program calls quick_
exit() more than once or if it calls both quick_exit() and exit() .
Control is returned to the host environment via the call _Exit(status) .
(C11)

 int system(const
char *str);

 Passes the string pointed to by str to the host environment to be
executed by a command processor, such as DOS or UNIX . If str is the
 NULL pointer, the function returns nonzero if a command processor is
available, and zero otherwise; if str is not NULL , the return value is
implementation dependent.

 void *bsearch(const
void *key, const

void *base, size_t

nmem, size_t size,

int (*comp)(const

void *, const void

*));

 Searches an array pointed to by base having nmem members of size
 size for an element matching the object pointed to by key ; items are
compared by the function pointed to by comp ; the comparison func-
tion will return a value less than zero if the key object is less than an
array element, zero if they are equivalent, or a value greater than zero
if the key object is greater. The function returns a pointer to a match-
ing element, or NULL if no element matches; if two or more elements
match the key, it is unspecified which of the matching elements will be
selected.

 void qsort(void
*base, size_t nmem,

size_t size, int

(*comp) (const void

*, const void *));

 Sorts the array pointed to by base in the order provided by the function
pointed to by comp ; the array has nmem elements, each of size bytes;
the comparison function will return a value less than zero if the object
pointed to by the first argument is less than the object pointed to by the
second argument, zero if the objects are equivalent, or a value greater
than zero if the first object is greater.

 int abs(int n); Returns the absolute value of n ; the return value may be undefined if n
is a negative value with no positive counterpart, which can happen if n is
 INT_MIN in two’s complement representation.

 div_t div(int
numer, int denom);

 Computes the quotient and remainder from dividing numer by denom ,
placing the quotient in the quot member of a div_t structure and the
remainder in the rem member; for inexact division, the quotient is the
integer of lesser magnitude that is nearest the algebraic quotient (that
is, truncate toward zero).

ptg11524036

961Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 long labs(int n); Returns the absolute value of n ; the return value may be undefined if n
is a negative value with no positive counterpart, which can happen if n is
 LONG_MIN in two’s complement representation.

 ldiv_t ldiv(long
numer, long denom);

 Computes the quotient and remainder from dividing numer by denom ,
placing the quotient in the quot member of an ldiv_t structure and the
remainder in the rem member; for inexact division, the quotient is the
integer of lesser magnitude that is nearest the algebraic quotient (that
is, truncate toward zero).

 long long llabs
(int n);

 Returns the absolute value of n ; the return value may be undefined if n
is a negative value with no positive counterpart, which can happen if n is
 LONG_LONG_MIN in two’s complement representation (C99).

 lldiv_t lldiv(long
numer, long denom);

 Computes the quotient and remainder from dividing numer by denom ,
placing the quotient in the quot member of an lldiv_t structure and
the remainder in the rem member; for inexact division, the quotient is
the integer of lesser magnitude that is nearest the algebraic quotient—
that is, truncate toward zero (C99).

 int mblen(const
char *s, size_t n);

 Returns the number of bytes (up to n) constituting the multibyte charac-
ter pointed to by s , returns 0 if s points to the null character, returns -1
if s does not point to a multibyte character; if s is NULL , returns nonzero
if multibyte characters have state-dependent encoding, and zero other-
wise.

 int mbtowc(wchar_t
*pw, const char *s,

size_t n);

 If s is not NULL , determines the number of bytes (up to n) constitut-
ing the multibyte character pointed to by s and determines the type
 wchar_t code for that character; if pw is not NULL , assigns the code to
the location pointed to by pw; returns the same value as mblen(s, n) .

 int wctomb(char *s,
wchar_t wc);

 Converts the character code in wc to the corresponding multibyte charac-
ter representation and stores it in the array pointed to by s , unless s is
 NULL ; if s is not NULL , it returns -1 if wc does not correspond to a valid
multibyte character. If wc is valid, it returns the number of bytes consti-
tuting the multibyte character. If s is NULL , it returns nonzero if multibyte
characters have state-dependent encoding, and it returns zero otherwise.

 size_t
mbstowcs(wchar_t *

restrict pwcs,

const char *s

restrict ,

size_t n);

 Converts the array of multibyte characters pointed to by s to an array of
wide character codes stored at the location beginning at pwcs ; conver-
sion proceeds up to n elements in the pwcs array or a null byte in the s
array, whichever occurs first. If an invalid multibyte character is encoun-
tered, it returns (size_t) (-1) ; otherwise, it returns the number of
array elements filled (excluding a null character, if any).

ptg11524036

962 Appendix B Reference Section

 Prototype Description

 size_t wcstombs
(char * restrict

s, const wchart_t

* restrict pwcs,

size_t n);

 Converts the sequence of wide-character codes stored in the array point-
ed to by pwcs into a multibyte character sequence copied to the location
pointed to by s , stopping after storing n bytes or a null character, which-
ever comes first. If an invalid wide-character code is encountered, it
returns (size_t) (-1) ; otherwise, it returns the number of array bytes
filled (excluding a null character, if any).

 _Noreturn : stdnoreturn.h

 This defines the macro noreturn , which expands to _Noreturn .

 String Handling: string.h

 The string.h library defines the size_t type and the NULL macro for the null pointer. It
provides several functions for analyzing and manipulating character strings and a few that deal
with memory more generally. Table RS.V.37 lists the functions.

 Table RS.V.37 String Functions

 Prototype Description

 void *memchr(const
void *s, int c,

size_t n);

 Searches for the first occurrence of c (converted to unsigned char)
in the initial n characters of the object pointed to by s ; returns a point-
er to the first occurrence, NULL if none is found.

 int memcmp(const void
*s1, const void *s2,

size_t n);

 Compares the first n characters of the object pointed to by s1 to the
first n characters of the object pointed to by s2 , interpreting each
value as unsigned char . The two objects are identical if all n pairs
match; otherwise, the objects compare as the first unmatching pair.
Returns zero if the objects are the same, less than zero if the first
object is numerically less than the second, and greater than zero if the
first object is greater.

 void *memcpy(void *
restrict s1, const

void * restrict s2,

size_t n);

 Copies n bytes from the location pointed to by s2 to the location point-
ed to by s1 ; behavior is undefined if the two locations overlap; returns
the value of s1 .

 void *memmove(void
*s1, const void *s2,

size_t n);

 Copies n bytes from the location pointed to by s2 to the location point-
ed to by s1 ; behaves as if copying. First uses a temporary location so
that copying to an overlapping location works; returns the value of s1 .

 void *memset(void *s,
int v, size_t n);

 Copies the value v (converted to type unsigned char) to the first n
bytes pointed to by s ; returns s .

ptg11524036

963Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 char *strcat(char *
restrict s1, const

char * restrict s2);

 Appends a copy of the string pointed to by s2 (including the null charac-
ter) to the location pointed to by s1 ; the first character of the s2 string
overwrites the null character of the s1 string; returns s1 .

 char *strncat(char *
restrict s1, const

char * restrict s2,

size_t n);

 Appends a copy up to n characters or up to the null character from the
string pointed to by s2 to the location pointed to by s1 , with the first
character of s2 overwriting the null character of s1 ; a null character is
always appended; the function returns s1 .

 char *strcpy(char *
restrict s1, const

char * restrict s2);

 Copies the string pointed to by s2 (including the null character) to the
location pointed to by s1 ; returns s1 .

 char *strncpy(char *
restrict s1, const

char * restrict s2,

size_t n);

 Copies up to n characters or up to the null character from the string
pointed to by s2 to the location pointed to by s1 ; if the null charac-
ter in s2 occurs before n characters are copied, null characters are
appended to bring the total to n ; if n characters are copied before
reaching a null character, no null character is appended; the function
returns s1 .

 int strcmp(const char
*s1, const char *s2);

 Compares the strings pointed to by s1 and s2 ; two strings are iden-
tical if all pairs match; otherwise, the strings compare as the first
unmatching pair. Characters are compared using the character code
values; the function returns zero if the strings are the same, less than
zero if the first string is less than the second, and greater than zero if
the string array is greater.

 int strcoll(const
char *s1, const char

*s2);

 Works like strcmp() except that it uses the collating sequence speci-
fied by the LC_COLLATE category of the current locale as set by the
 setlocale() function.

 int strncmp(const
char *s1, const char

*s2, size_t n);

 Compares up to the first n characters or up to the first null charac-
ter of the arrays pointed to by s1 and s2 ; two arrays are identical
if all tested pairs match; otherwise, the arrays compare as the first
unmatching pair. Characters are compared using the character code
values; the function returns zero if the arrays are the same, less than
zero if the first array is less than the second, and greater than zero if
the first array is greater.

 size_t strxfrm(char
* restrict s1, const

char * restrict s2,

size_t n);

 Transforms the string in s2 and copies up to n characters, including a
terminating null character, to the array pointed to by s1 ; the criterion
for the transformation is that two transformed strings will be placed in
the same order by strcmp() as strcoll() would place the untrans-
formed strings; the function returns the length of the transformed
string (not including the terminal null character).

ptg11524036

964 Appendix B Reference Section

 Prototype Description

 char *strchr(const
char *s, int c);

 Searches for the first occurrence of c (converted to char) in the string
pointed to by s ; the null character is part of the string; returns a point-
er to the first occurrence, or NULL if none is found.

 size_t strcspn(const
char *s1, const char

*s2);

 Returns the length of the maximum initial segment of s1 that does not
contain any of the characters found in s2 .

 char *strpbrk(const
char *s1, const char

*s2);

 Returns a pointer to the location of the first character in s1 to match
any of the characters in s2 ; returns NULL if no match is found.

 char *strrchr(const
char *s, int c);

 Searches for the last occurrence of c (converted to char) in the string
pointed to by s ; the null character is part of the string; returns a point-
er to the first occurrence, or NULL if none is found.

 size_t strspn(const
char *s1, const char

*s2);

 Returns the length of the maximum initial segment of s1 that consists
entirely of characters from s2 .

 char *strstr(const
char *s1, const char

*s2);

 Returns a pointer to the location of the first occurrence in s1 of the
sequence of characters in s2 (excluding the terminating null character);
returns NULL if no match is found.

 char *strtok(char *
restrict s1, const

char * restrict s2);

 This function decomposes the string s1 into separate tokens; the
string s2 contains the characters that are recognized as token separa-
tors. The function is called sequentially. For the initial call, s1 should
point to the string to be separated into tokens. The function locates
the first token separator that follows a non-separator character and
replaces it with a null character. It returns a pointer to a string holding
the first token. If no tokens are found, it returns NULL. To find further
tokens in the string, call strtok() again, but with NULL as the first
argument. Each subsequent call returns a pointer to the next token or
to NULL if no further tokens are found. (See the example following this
table.)

 char * strerror(int
errnum);

 Returns a pointer to an implementation-dependent error message
string corresponding to the error number stored in errnum .

 int strlen(const char
* s);

 Returns the number of characters (excluding the terminating null char-
acter) in the string s .

 The strtok() function is a bit unusual in how it is used, so here is a short example:

 #include <stdio.h>

 #include <string.h>

ptg11524036

965Section V: The Standard ANSI C Library with C99 and C11 Additions

 int main(void)

 {

 char data[] = " C is\t too#much\nfun!";

 const char tokseps[] = " \t\n#"; /* separators */

 char * pt;

 puts(data);

 pt = strtok(data,tokseps); /* intial call */

 while (pt) /* quit on NULL */

 {

 puts (pt); /* show token */

 pt = strtok(NULL, tokseps); /* next token */

 }

 return 0;

 }

 Here is the output:

 C is too#much

 fun!

 C

 is

 too

 much

 fun!

 Type-Generic Math: tgmath.h (C99)

 The math.h and complex.h libraries provide many instances of functions that differ in type
only. For example, the following six functions all compute sines:

 double sin(double);

 float sinf(float);

 long double sinl(long double);

 double complex csin(double complex);

 float csinf(float complex);

 long double csinl(long double complex);

 The tgmath.h header file defines macros that expand a generic call to the appropriate function
as indicated by the argument type. The following code illustrates using the sin() macro, which
expands into various forms of the sine function:

 #include <tgmath.h>

 ...

 double dx, dy;

 float fx, fy;

 long double complex clx, cly;

 dy = sin(dx); // expands to dy = sin(dx) (the function)

ptg11524036

966 Appendix B Reference Section

 fy = sin(fx); // expands to fy = sinf(fx)

 cly = sin(clx); // expands to cly = csinl(clyx)

 The header defines generic macros for three classes of functions. The first class consists of
 math.h and complex.h functions defined with six variations, using l and f suffixes and the c
prefix, as with the previous sin() example. In this case, the generic macro has the same name
as the type double version of the function.

 The second class consists of math.h functions defined with three variations, using the l and f
suffixes and having no complex counterparts, such as erf() . In this case, the macro name is
the same as the suffix-free function, erf() , in this example. The effect of using such a macro
with a complex argument is undefined.

 The third class consists of complex.h functions defined with three variations, using the l and
 f suffixes and having no real counterparts, such as cimag() . In this case, the macro name is
the same as the suffix-free function, cimag() , in this example. The effect of using such a macro
with a real argument is undefined.

 Table RS.V.38 lists the generic macro functions.

 Table RS.V.38 Generic Math Functions

 acos asin atanb acosh asinh atanh

 cos sin tan cosh sinh tanh

 exp log pow sqrt fabs atan2

 cbrt ceil copysign erf erfc exp2

 expm1 fdim floor fma fmax fmin

 fmod frexp hypot ilogb ldexp lgamma

 llrint llround log10 log1p log2 logb

 lrint lround nearbyint nextafter nexttoward remainder

 remquo rint round scalbn scalbln tgamma

 trunc carg cimag conj cproj creal

 Prior to C11, implementers had to resort to extensions to the standard to implement generic
macros. But the addition of the _Generic expression allows a straightforward implementation
using standard C11.

ptg11524036

967Section V: The Standard ANSI C Library with C99 and C11 Additions

 Threads: threads.h (C11)

 This header file, along with stdatomic.h , provides support for concurrent programming. This
topic is well beyond the scope of this book, but, in general terms, this header supports multiple
threads of execution, which, in principle, could be assigned to different processors.

 Date and Time: time.h
 The time.h header file defines three macros. The first, also defined in many other header files,
is NULL , representing the null pointer. The second macro is CLOCKS_PER_SEC ; dividing the
value returned by clock() by this macro yields time in seconds. The third (C11) is TIME_UTC ,
a positive integer constant designating the UTC (Coordinated Universal Time) time base, a
potential argument to the timespec_get() function.

 The UTC is the present primary world time standard. It is used, for example, in aviation,
weather forecasts, synchronizing computer clocks, and as a common standard for the Internet
and the World Wide Web.

 The header file defines the types listed in Table RS.V.39 .

 Table RS.V.39 Types Defined in time.h

 Type Description

 size_t The integer type returned by the sizeof operator

 clock_t An arithmetic type suitable to represent time

 time_t An arithmetic type suitable to represent time

 struct timespec A structure type for holding a time interval specified in seconds and nano-
seconds (C11)

 struct tm A structure type for holding components of calendar time

 The timespec structure contains at least the two members shown in Table RS.V.40 .

 Table RS.V.40 Members of a timespec Structure

 Member Description

 time_t tv_sec Whole seconds (>=0)

 long tv_nsec nanoseconds(range [0,999999999])

 The components of the calendar type are referred to as broken-down time . Table RS.V.41 lists the
required members of a struct tm structure.

ptg11524036

968 Appendix B Reference Section

 Table RS.V.41 Members of a struct tm Structure

 Member Description

 int tm_sec Seconds after the minute (0–61)

 int tm_min Minutes after the hour (0–59)

 int tm_hour Hours after midnight (0–23)

 int tm_mday Day of the month (0–31)

 int tm_mon Months since January (0–11)

 int tm_year Years since 1900

 int tm_wday Days since Sunday (0–6)

 int tm_yday Days since January 1 (0–365)

 int tm_isdst Daylight Savings Time flag (greater than zero value means DST is in effect;
zero means not in effect; negative means information not available)

 The term calendar time represents the current date and time; for example, it could be the
number of seconds elapsed since the first second of 1900. The term local time is the calendar
time expressed for a local time zone. Table RS.V.42 lists the time functions.

 Table RS.V.42 Time Functions

 Prototype Description

 clock_t clock(void); Returns the implementation’s best approximation of the pro-
cessor time elapsed since the program was invoked; divide
by CLOCKS_PER_SEC to get the time in seconds. Returns
 (clock_t)(-1) if the time is not available or representable.

 double difftime(time_t
t1, time_t t0);

 Calculates the difference (t1- t0) between two calendar times;
expresses the result in seconds and returns the result.

 time_t mktime(struct tm
*tmptr);

 Converts the broken-down time in the structure pointed to by
 tmptr into a calendar time; having the same encoding used
by the time() function, the structure is altered in that out-of-
range values are adjusted (for example, 2 minutes, 100 seconds
becomes 3 minutes, 40 seconds) and tm_wday and tm_yday
are set to the values implied by the other members. Returns
 (time_t)(-1) if the calendar time cannot be represented; other-
wise, returns the calendar time in time_t format.

 time_t time(time_t *ptm) Returns the current calendar time and also places it in the
location pointed to by ptm , provided ptm is not NULL . Returns
 (time_t)(-1) if the calendar time is not available.

ptg11524036

969Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 int timespec_get(struct
timespec * ts, int base)

 Sets the structure pointed to by ts to the current calendar time
based on the specified time base. Returns base (a nonzero
value) if successful, zero otherwise. (C11)

 char *asctime(const
struct tm *tmpt);

 Converts the broken-down time in the structure pointed to
by tmpt into a string of the form Thu Feb 26 13:14:33
1998\n\0 and returns a pointer to that string.

 char *ctime(const time_t
*ptm);

 Converts the calendar time pointed to by ptm into a string in the
form Wed Aug 11 10:48:24 1999\n\0 and returns a pointer to
that string.

 struct tm *gmtime(const
time_t *ptm);

 Converts the calendar time pointed to by ptm into a broken-down
time, expressed as Coordinated Universal Time (UTC), a succes-
sor to Greenwich Mean Time (GMT), and returns a pointer to a
structure holding that information. Returns NULL if UTC is not
available.

 struct tm
*localtime(const time_t

*ptm);

 Converts the calendar time pointed to by ptm into a broken-down
time, expressed as local time. Stores a tm structure and returns
a pointer to that structure.

 size_t strftime(char *
restrict s, size_t max

const char * restrict

fmt, const struct tm *

restrict tmpt);

 Copies string fmt to string ,s , replacing format specifiers (see
Table RS.V.38) in fmt with appropriate data derived from the con-
tents of the broken-down time structure pointed to by tmpt ; no
more than max characters are placed into s . The function returns
the number of characters placed (excluding the null character);
if the resulting string (including null character) is larger than max
characters, the function returns 0 and the contents of s are inde-
terminate.

 Table RS.V.43 shows the format specifiers used by the strftime() function. Many replacement
values, such as month names, depend on the current locale.

 Table RS.V.43 Format Specifiers Used by the strftime() Function

 Format Specifier Replaced By

 %a Locale’s abbreviated weekday name

 %A Locale’s full weekday name

 %b Locale’s abbreviated month name

 %B Locale’s full month name

 %c Locale’s appropriate date and time designation

ptg11524036

970 Appendix B Reference Section

 Format Specifier Replaced By

 %d Day of the month as a decimal number (01–31)

 %D Equivalent to “ %m/%d%y"

 %e Day of the month as a decimal number, with single digits preceded by a
space

 %F Equivalent to “ %Y-%m-%d"

 %g The last two digits of the week-based year (00–99)

 %G The week-based year as a decimal number

 %h Equivalent to "%b"

 %H The hour (24-hour clock) as a decimal number (00–23)

 %I The hour (12-hour clock) as a decimal number (01–12)

 %j The day of the year as a decimal number (001–366)

 %m The month as a decimal number (01–12)

 %n The newline character

 %M The minute as a decimal number (00–59)

 %p Locale’s equivalent of a.m./p.m. for 12-hour clock

 %r Locale’s 12-hour clock time

 %R Equivalent to "%H:%M"

 %S The second as a decimal number (00–61)

 %t The horizontal tab character

 %T Equivalent to "%H:%M:%S"

 %u ISO 8601 weekday number (1–7), with Monday being 1

 %U Week number of the year, counting Sunday as the first day of week 1
(00–53)

 %V ISO 8601 week number of the year, counting Sunday as the first day of
week 1 (00–53)

 %w Weekday as a decimal, beginning with Sunday (0–6)

 %W Week number of the year, counting Monday as the first day of week 1
(00–53)

 %x The locale’s date representation

 %X The locale’s time representation

 %y The year without century as a decimal number (00–99)

 %Y The year with century as a decimal number

ptg11524036

971Section V: The Standard ANSI C Library with C99 and C11 Additions

 Format Specifier Replaced By

 %z Offset from UTC in ISO 8601 format (“–800” meaning eight hours behind
Greenwich, thus eight hours west); no characters are substituted if the
information is not available

 %Z The time zone name; no characters are substituted if the information is not
available %% % (that is, the percent sign)

 Unicode Utilities: uchar.h (C11)

 The C99 wchar.h header file provides two means of supporting larger character sets. C11
adds support specifically targeting Unicode by providing types suitable for UTF-16 and UTF-32
encoding (see Table RS.V.44).

 Table RS.V.44 Types Declared in uchar.h

 Type Description

 char16_t An unsigned integer type used for 16-bit characters (the same type as uint_
least16_t of stdint.h)

 char32_t An unsigned integer type used for 32-bit characters (the same type as uint_
least32_t of stdint.h)

 size_t The integer type returned by the sizeof operator (stddef.h)

 mbstate_t A nonarray type that can hold the conversion state information needed to convert
between sequences of multibyte characters and of wide characters (wchar.h)

 The header file declares functions (see Table RS.V.45) for converting multibyte character strings
to chart16_t and char32_t formats, and vice versa.

 Table RS.V.45 Wide-Character, Multibyte Conversion Functions

 Prototype Description

 size_t mbrto16(char16_t * restrict
pwc, const char * restrict s, size_t

n, mbstate_t * restrict ps);

 Same as mbrtowc() (wchar.h), except the con-
version is to type char_16 , not wchar_t

 size_t mbrto32(char32_t * restrict
pwc, const char * restrict s, size_t

n, mbstate_t * restrict ps);

 Same as mbrto16() , except the conversion is to
type char32_t

ptg11524036

972 Appendix B Reference Section

 Prototype Description

 size_t c16rtomb(char * restrict s,
wchar_t wc, mbstate_t * restrict ps);

 Same as wcrtobm() (wchar.h), except the con-
version is from char16_t , not wchar_t

 size_t c32rtomb(char * restrict s,
wchar_t wc, mbstate_t * restrict ps);

 Same as wcrtobm() (wchar.h), except the con-
version is from char32_t , not wchar_t

 Extended Multibyte and Wide-Character Utilities: wchar.h (C99)

 Each implementation has a basic character set, and the C char type is required to be wide
enough to handle that set. An implementation may also support an extended character set,
and these characters may have a representation that requires more than one byte per charac-
ter. Multibyte characters can be stored along with single-byte characters in an ordinary array
of char , with particular byte values indicating the presence and size of a multibyte character.
The interpretation of multibyte characters can depend on a shift state . In the initial shift state,
single-byte characters retain their usual interpretation. Specific multibyte characters can then
change the shift state. A particular shift state stays in effect until explicitly changed.

 The wchar_t type provides a second way of representing extended characters, with the type
being wide enough to represent the encoding of any member of the extended character set.
This wide-character representation allows single characters to be stored in a wchar_t variable
and strings of wide characters to be stored in an array of wchar_t . The wide character represen-
tation of a character need not be the same as the multibyte representation, because the latter
may use shift states whereas the former does not.

 The wchar.h header file provides facilities for handling both representations of extended char-
acters. It defines the types shown in Table RS.V.46 . (Some of these types are also defined in
other header files.)

 Table RS.V.46 Types Defined in wchar.h

 Type Description

 wchar_t An integer type that can represent the largest extended character set specified by
supported locales

 wint_t An integer type that can hold any value of the extended character set plus at least
one value not a member of the extended character set

 size_t The integer type returned by the sizeof operator

 mbstate_t A non-array type that can hold the conversion state information needed to convert
between sequences of multibyte character and of wide characters

 struct tm A structure type for holding components of calendar time

ptg11524036

973Section V: The Standard ANSI C Library with C99 and C11 Additions

 The header file also defines some macros, as shown in Table RS.V.47 .

 Table RS.V.47 Macros Defined in wchar.h

 Macro Description

 NULL The null pointer.

 WCHAR_MAX The maximum value for wchar_t .

 WCHAR_MIN The minimum value for wchar_t .

 WEOF A constant expression of type wint_t that does not correspond to any mem-
ber of the extended character set; the wide character equivalent of EOF , it’s
used to indicate end-of-file for wide-character input.

 The library provides input/output functions that are analogs to the standard I/O functions
described in stdio.h . In those cases that a standard I/O function returns EOF , the correspond-
ing wide-character function returns WEOF . Table RS.V.48 lists these functions.

 Table RS.V.48 Wide-Character I/O Functions

 Function Prototype

 int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);

 int fwscanf(FILE * restrict stream, const wchar_t * restrict format, ...);

 int swprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict
format, ...);

 int swscanf(const wchar_t * restrict s, const wchar_t * restrict format,
...);

 int vfwprintf(FILE * restrict stream, const wchar_t * restrict format,
va_list arg);

 int vfwscanf(FILE * restrict stream, const wchar_t * restrict format,
va_list arg);

 int vswprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict
format, va_list arg);

 int vswscanf(const wchar_t * restrict s, const wchar_t * restrict format,
va_list arg);

 int vwprintf(const wchar_t * restrict format, va_list arg);

 int vwscanf(const wchar_t * restrict format, va_list arg);

 int wprintf(const wchar_t * restrict format, ...);

ptg11524036

974 Appendix B Reference Section

 Function Prototype

 int wscanf(const wchar_t * restrict format, ...);

 wint_t fgetwc(FILE *stream);

 wchar_t *fgetws(wchar_t * restrict s, int n, FILE * restrict stream);

 wint_t fputwc(wchar_t c, FILE *stream);

 int fputws(const wchar_t * restrict s, FILE * restrict stream);

 int fwide(FILE *stream, int mode);

 wint_t getwc(FILE *stream);

 wint_t getwchar(void);

 wint_t putwc(wchar_t c, FILE *stream);

 wint_t putwchar(wchar_t c);

 wint _t ungetwc(wint_t c, FILE *stream);

 There is one wide-character I/O function without a standard I/O counterpart:

 int fwide(FILE *stream, int mode);

 If mode is positive, it first attempts to make the stream represented by the parameter stream-
 wide-character oriented ; if mode is negative, it first attempts to make the stream byte oriented ; if
 mode is 0, it doesn’t attempt to change the stream orientation. It attempts to change the orien-
tation only if the stream initially has none. In all cases, it returns a positive value if the stream
is wide-character oriented, a negative value if the stream is byte oriented, and zero if the stream
has no orientation.

 The header provides several string conversion and manipulation functions modeled on those in
 string.h . In general, str in the string.h identifier is replaced with wcs , so wcstod() is the
wide character version of the strtod() function. Table RS.V.49 lists these functions.

 Table RS.V.49 Wide-Character String Utilities

 Function Prototype

 double wcstod(const wchar_t * restrict nptr, wchar_t ** restrict endptr);

 float wcstof(const wchar_t * restrict nptr, wchar_t ** restrict endptr);

 long double wcstold(const wchar_t * restrict nptr, wchar_t ** restrict
endptr);

 long int wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr,
int base);

ptg11524036

975Section V: The Standard ANSI C Library with C99 and C11 Additions

 Function Prototype

 long long int wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict
endptr, int base);

 unsigned long int wcstoul(const wchar_t * restrict nptr, wchar_t ** restrict
endptr, int base);

 unsigned long long int wcstoull(const wchar_t * restrict nptr, wchar_t **
restrict endptr, int base);

 wchar_t *wcscpy(wchar_t * restrict s1, const wchar_t * restrict s2);

 wchar_t *wcsncpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t
n);

 wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);

 wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t
n);

 int wcscmp(const wchar_t *s1, const wchar_t *s2);

 int wcscoll(const wchar_t *s1, const wchar_t *s2);

 int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);

 size_t wcsxfrm(wchar_t * restrict s1, const wchar_t * restrict s2, size_t
n);

 wchar_t *wcschr(const wchar_t *s, wchar_t c);

 size_t wcscspn(const wchar_t *s1, const wchar_t *s2);

 size_t wcslen(const wchar_t *s);

 wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);

 wchar_t *wcsrchr(const wchar_t *s, wchar_t c);

 size_t wcsspn(const wchar_t *s1, const wchar_t *s2);

 wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);

 wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2, wchar_t
** restrict ptr);

 wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);

 int wmemcmp(wchar_t * restrict s1, const wchar_t * restrict s2, size_t n);

 wchar_t *wmemcpy(wchar_t * restrict s1,

 const wchar_t * restrict s2, size_t n);

 wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);

 wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);

ptg11524036

976 Appendix B Reference Section

 The header file also declares a one-time function modeled on the strftime() function from
the time.h header file:

 size_t wcsftime(wchar_t * restrict s, size_t maxsize,

 const wchar_t * restrict format,

 const struct tm * restrict timeptr);

 Finally, the header file declares several functions for converting wide-character strings to multi-
byte strings, and vice versa, as shown in Table RS.V.50 .

 Table RS.V.50 Wide-Character, Multibyte Conversion Functions

 Prototype Description

 wint_t btowc(int c); If (unsigned char) c is a valid single-byte character in the
initial shift state, the function returns the wide-character rep-
resentation; otherwise, the function returns WEOF .

 int wctob(wint_t c); If c is a member of the extended character set whose multi-
byte character’s representation in the initial shift state is a
single byte, the function returns the single-byte representation
as an unsigned char converted to an int ; otherwise, the
function returns EOF .

 int mbsinit(const mbstate_
t *ps);

 The function returns nonzero if ps is the null pointer, or
points to a data object that specifies an initial conversion
state; otherwise, the function returns zero.

 size_t mbrlen(const char
* restrict s, size_t n,

mbstate_t * restrict ps);

 The mbrlen() function is equivalent to the call
 mbrtowc(NULL, s, n, ps != NULL ? ps :
&internal) , where internal is the mbstate_t object for
the mbrlen() function, except that the expression desig-
nated by ps is evaluated only once.

 size_t mbrtowc(wchar_t *
restrict pwc, const char

* restrict s, size_t n,

mbstate_t * restrict ps);

 If s is the null pointer, the call is equivalent to setting pwc
to the null pointer and n to 1. If s is not null, the function
inspects at most n bytes to determine the number of bytes
needed to complete the next multibyte character (including
any shift sequences). If the function determines that the next
multibyte character is complete and valid, it determines the
value of the corresponding wide character and then, if pwc is
not a null pointer, stores that value in the object pointed to
by pwc . If the corresponding wide character is the null wide
character, the resulting state described is the initial conver-
sion state. The function returns 0 if the null wide character is
detected. If it detects another valid wide character, it returns
the number of bytes needed to complete the character. If
 n bytes aren’t enough to specify a valid wide character but
appear to potentially represent part of one, the function
returns –2. If there is a coding error, the function returns –1,
stores EILSEQ in errno , and stores no value.

ptg11524036

977Section V: The Standard ANSI C Library with C99 and C11 Additions

 Prototype Description

 size_t wcrtomb(char *
restrict s, wchar_t wc,

mbstate_t * restrict ps);

 If s is the null pointer, the call is equivalent to setting wc to
the null wide character and using an internal buffer for the
first argument. If s is not a null pointer, the wcrtomb() func-
tion determines the number of bytes needed to represent the
multibyte character that corresponds to the wide character
given by wc (including any shift sequences), and stores the
multibyte character representation in the array whose first
element is pointed to by s . At most, MB_CUR_MAX bytes are
stored. If wc is a null wide character, a null byte is stored,
preceded by any shift sequence needed to restore the initial
shift state; the resulting state described is the initial conver-
sion state. If wc is a valid wide character, the function returns
the number of bytes to store the multibyte version, include
bytes, if any, specifying a shift state. If wc is not valid, the
function stores EILSEQ in errno , and returns –1.

 size_t mbsrtowcs(wchar_t *
restrict dst, const char **

restrict src, size_t len,

mbstate_t * restrict ps);

 The mbstrtowcs() function converts a sequence of multib-
yte characters that begins in the conversion state described
by the object pointed to by ps , from the array indirectly point-
ed to by src , into a sequence of corresponding wide charac-
ters. If dst is not a null pointer, the converted characters are
stored in the array pointed to by dst . Conversion continues
up to and including a terminating null character, which is
also stored. Conversion stops earlier in two cases: when a
sequence of bytes is encountered that does not form a valid
multibyte character, and (if dst is not a null pointer) when
 len wide characters have been stored into the array pointed
to by dst . Each conversion takes place as if by a call to the
 mbrtowc() function. If dst is not a null pointer, the pointer
object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null char-
acter) or the address just past the last multibyte character
converted (if any). If conversion stopped due to reaching a
terminating null character and if dst is not a null pointer,
the resulting state described is the initial conversion state. If
successful, the function returns the number of multibyte char-
acters successfully converted (excluding the null character, if
any); otherwise it returns –1.

ptg11524036

978 Appendix B Reference Section

 Prototype Description

 size_t wcsrtombs(char *
restrict dst,const wchar_t

** restrict src,size_t

len,mbstate_t * restrict

ps);

 The wcsrtombs() function converts a sequence of wide
characters from the array indirectly pointed to by src into a
sequence of corresponding multibyte characters that begins
in the conversion state described by the object pointed to by
 ps . If dst is not a null pointer, the converted characters are
then stored into the array pointed to by dst . Conversion con-
tinues up to and including a terminating null wide character,
which is also stored. Conversion stops earlier in two cases:
when a wide character is reached that does not correspond
to a valid multibyte character, and (if dst is not a null pointer)
when the next multibyte character would exceed the limit of
 len total bytes to be stored into the array pointed to by dst .
Each conversion takes place as if by a call to the wcrtomb
function. If dst is not a null pointer, the pointer object point-
ed to by src is assigned either a null pointer (if conversion
stopped due to reaching a terminating null wide character)
or the address just past the last wide character converted (if
any). If conversion stopped due to reaching a terminating null
wide character, the resulting state described is the initial con-
version state. If successful, the function returns the number
of multibyte characters in the resulting multibyte sequence
(excluding the null character, if any); otherwise it returns –1.

 Wide Character Classification and Mapping Utilities: wctype.h (C99)

 The wctype.h library provides wide character analogs to the character functions of ctype.h
along with a few additional functions. It also defines the three types and the macro shown in
 Table RS.V.51 .

 Table RS.V.51 wctype.h Types and Macros

 Macro Description

 wint_t An integer type that can hold any value of the extended character set plus at
least one value not a member of the extended character set.

 wctrans_t A scalar type that can represent locale-specific character mappings.

 wctype_t A scalar type that can represent locale-specific character classifications.

 WEOF A constant expression of type wint_t that does not correspond to any member
of the extended character set; the wide character equivalent of EOF , it’s used to
indicate end-of-file for wide-character input.

ptg11524036

979Section V: The Standard ANSI C Library with C99 and C11 Additions

 The character classifications in this library return true (nonzero) if the wide-character argu-
ment satisfies the conditions described by the function. In general, the wide-character function
returns true if the corresponding ctype.h function returns true for the single-byte character
corresponding to the wide character. Table RS.V.52 lists these functions.

 Table RS.V.52 Wide-Character Classification Functions

 Prototype Description

 int iswalnum(wint_t wc); Returns true if wc represents an alphanumeric (alphabetic or
numeric) character

 int iswalpha(wint_t wc); Returns true if wc represents an alphabetic character

 int iswblank(wint_t wc); Returns true if wc represents a blank

 int iswcntrl(wint_t wc); Returns true if wc represents a control character

 int iswdigit(wint_t wc); Returns true if wc represents a digit

 int iswgraph(wint_t wc); Returns true if iswprint(wc) is true and iswspace(wc) is
false

 int iswlower(wint_t wc); Returns true if wc represents a lowercase character

 int iswprint(wint_t wc); Returns true if wc represents a printable character

 int iswpunct(wint_t wc); Returns true if wc represents a punctuation character

 int iswspace(wint_t wc); Returns true if wc represents a tab, space, or newline

 int iswupper(wint_t wc); Returns true if wc corresponds to a uppercase character

 int iswxdigit(wint_t wc); Returns true if wc represents a hexadecimal digit

 The library also includes two classification functions that are termed extensible because they use
the LC_CTYPE value of the current locale to classify characters. Table RS.V.53 lists these functions.

 Table RS.V.53 Extensible Wide-Character Classification Functions

 Prototype Description

 int iswctype(wint_t wc,
wctype_t desc);

 Returns true if wc has the property described by desc . (See discus-
sion in the accompanying text.)

 wctype_t wctype(const
char *property);

 The wctype function constructs a value with type wctype_t that
describes a class of wide characters identified by the string argu-
ment property. If the property identifies a valid class of wide char-
acters according to the LC_CTYPE category of the current locale,
the wctype() function returns a nonzero value that is valid as the
second argument to the iswctype() function; otherwise, it returns
zero.

ptg11524036

980 Appendix B Reference Section

 The valid arguments for wctype() consist of the names of the wide-character classification
functions stripped of the isw prefix and expressed as strings. For example, wctype("alpha")
characterizes the class of characters tested by the iswalpha() function. Therefore, the call

 iswctype(wc, wctype("alpha"))

 is equivalent to the call

 iswalpha(wc)

 except that characters are classified using the LC_CTYPE categories.

 The library provides four conversion-related functions. Two are wide-character equivalents to
 toupper() and tolower() from the ctype.h library. The third is an extensible version that
uses the LC_CTYPE setting from the locale to determine which characters are considered upper-
case or lowercase. The fourth provides suitable classification arguments for the third. Table
 RS.V.54 lists these functions.

 Table RS.V.54 Wide-Character Transformation Functions

 Prototype Description

 wint_t
towlower(wint_t

wc);

 Returns the uppercase version of wc if wc is lowercase; otherwise,
returns wc .

 wint_t
towupper(wint_t

wc);

 Returns the lowercase version of wc if wc is uppercase; otherwise,
returns wc .

 wint_t
towctrans(wint_t

wc, wctrans_t

desc);

 Returns the lowercase version of wc (as determined by the LC_CTYPE set-
ting) if desc is equal to the return value of wctrans("lower") ; returns
the uppercase version of wc (as determined by the LC_CTYPE setting) if
 desc is equal to the return value of wctrans("upper") .

 wctrans_t
wctrans(const char

*property);

 If the argument is "upper" or "lower" , the function returns a
 wctrans_t value usable as an argument to towctrans() and reflecting
the LC_CTYPE setting; otherwise, returns 0.

 Section VI: Extended Integer Types

 As described in Chapter 3 , “Data and C,” the C99 header file inttypes.h provides a systematic
set of alternative names for the various integer types. These names describe the properties of
the type more clearly than do the standard names. For example, type int might be 16 bits, 32
bits, or 64 bits, but the int32_t type always is 32 bits.

 More precisely, the inttypes.h header file defines macros that can be used with scanf() and
 printf() to read and write integers of these types. This header file includes the stdlib.h

ptg11524036

981Section VI: Extended Integer Types

header file, which provides the actual type definitions. The formatting macros are strings that
can be concatenated with other strings to produce the proper formatting directions.

 The types are defined using typedef . For example, a system with a 32-bit int might use this
definition:

 typedef int int32_t;

 The format specifiers are defined using the #define directive. For example, a system using the
previous definition for int32_t might have this definition:

 #define PRId32 "d" // output specifier

 #define SCNd32 "d" // input specifier

 Using these definitions, you could declare an extended integer variable, input a value, and
display it as follows:

 int32_t cd_sales; // 32-bit integer

 scanf("%" SCNd32, &cd_sales);

 printf("CD sales = %10" PRId32 " units\n", cd_sales);

 String concatenation then combines strings, if needed, to get the final control string. Thus, the
previous code gets converted to the following:

 int cd_sales; // 32-bit integer

 scanf("%d", &cd_sales);

 printf("CD sales = %10d units\n", cd_sales);

 If you moved the original code to a system with a 16-bit int , that system might define
 int32_t as long , PRId32 as "ld" , and SCNd32 as "ld" . But you could use the same code,
knowing that it uses a 32-bit integer.

 The rest of this reference section lists the extended types along with the format specifiers and
macros representing the type limits.

 Exact-Width Types

 One set of typedef s identify types with precise sizes. The general form is int N _t for signed
types and uint N _t for unsigned types, with N indicating the number of bits. Note, however,
that not all systems can support all the types. For example, there could be a system for which
the smallest usable memory size is 16 bits; such a system would not support the int8_t and
 uint8_t types. The format macros can use either d or i for the signed types, so PRIi8 and
 SCNi8 also work. For the unsigned types, you can substitute o , x , or X for u to obtain the %o ,
 %x , or % X specifier instead of %u . For example, you can use PRIX32 to print a uint32_t type
value in hexadecimal format. Table RS.VI.1 lists the exact-width types, format specifiers, and
value limits.

ptg11524036

982 Appendix B Reference Section

 Table RS.VI.1 Exact-Width Types

 Type Name printf()

Specifier

 scanf()

Specifier

 Minimum Value Maximum Value

 int8_t PRId8 SCNd8 INT8_MIN INT8_MAX

 int16_t PRId16 SCNd16 INT16_MIN INT16_MAX

 int32_t PRId32 SCNd32 INT32_MIN INT32_MAX

 int64_t PRId64 SCNd64 INT64_MIN INT64_MAX

 uint8_t PRIu8 SCNu8 0 UINT8_MAX

 uint16_t PRIu16 SCNu16 0 UINT16_MAX

 uint32_t PRIu32 SCNu32 0 UINT32_MAX

 uint64_t PRIu64 SCNu64 0 UINT64_MAX

 Minimum-Width Types

 The minimum-width types guarantee a type that is at least a certain number of bits in size.
These types always exist. For example, a system that does not support 8-bit units could define
 int_least_8 as a 16-bit type. Table RS.VI.2 lists minimum-width types, format specifiers, and
value limits.

 Table RS.VI.2 Minimum-Width Types

 Type Name printf()

Specifier

 scanf()

Specifier

 Minimum Value Maximum Value

 int_least8_t PRILEASTd8 SCNLEASTd8 INT_LEAST8_MIN INT_LEAST8_MAX

 int_least16_t PRILEASTd16 SCNLEASTd16 INT_LEAST16_MIN INT_LEAST16_MAX

 int_least32_t PRILEASTd32 SCNLEASTd32 INT_LEAST32_MIN INT_LEAST32_MAX

 int_least 64_t PRILEASTd64 SCNLEASTd64 INT_LEAST64_MIN INT_LEAST64_MAX

 uint_least 8_t PRILEASTu8 SCNLEASTu8 0 UINT_LEAST8_MAX

 uint_least 16_t PRILEASTu16 SCNLEASTu16 0 UINT_LEAST16_
MAX

 uint_least 32_t PRILEASTu32 SCNLEASTu32 0 UINT_LEAST32_
MAX

 uint_least 64_t PRILEASTu64 SCNLEASTu64 0 UINT_LEAST64_
MAX

ptg11524036

983Section VI: Extended Integer Types

 Fastest Minimum-Width Types

 For a particular system, some integer representations can be faster than others. For example,
 int_least16_t might be implemented as short , but the system might do arithmetic faster
using type int . So inttypes.h also defines the fastest type for representing at least a certain
number of bits. These types always exist. In some cases, there might be no clear-cut choice for
fastest; in that case, the system simply specifies one of the choices. Table RS.VI.3 lists fastest
minimum-width types, format specifiers, and value limits.

 Table RS.VI.3 Fastest Minimum-Width Types

 Type Name printf()

Specifier

 scanf()

Specifier

 Minimum Value Maximum Value

 int_fast8_t PRIFASTd8 SCNFASTd8 INT_FAST8_MIN INT_FAST8_MAX

 int_fast16_t PRIFASTd16 SCNFASTd16 INT_FAST16_MIN INT_FAST16_MAX

 int_fast32_t PRIFASTd32 SCNFASTd32 INT_FAST32_MIN INT_FAST32_MAX

 int_fast 64_t PRIFASTd64 SCNFASTd64 INT_FAST64_MIN INT_FAST64_MAX

 uint_fast 8_t PRIFASTu8 SCNFASTu8 0 UINT_FAST8_MAX

 uint_fast 16_t PRIFASTu16 SCNFASTu16 0 UINT_FAST16_MAX

 uint_fast 32_t PRIFASTu32 SCNFASTu32 0 UINT_FAST32_MAX

 uint_fast 64_t PRIFASTu64 SCNFASTu64 0 UINT_FAST64_MAX

 Maximum-Width Types

 Sometimes you may want the largest integer type available. Table RS.VI.4 lists these types.
They may, in fact, be wider than long long or unsigned long long , because a system may
provide additional types wider than the required types.

 Table RS.VI.4 Maximum-Width Types

 Type Name printf()

Specifier

 scanf()

Specifier

 Minimum Value Maximum Value

 intmax_t PRIdMAX SCNdMAX INTMAX_MIN INTMAX_MAX

 uintmax_t PRIuMAX SCBuMAX 0 UINTMAX_MAX

ptg11524036

984 Appendix B Reference Section

 Integers That Can Hold Pointer Values

 The inttypes.h header file (via the included stdint.h header file) defines two integer types,
listed in Table RS.VI.5 , that can hold pointer values accurately. That is, if you assign a type
 void * value to one of these types, and then assign the integer type back to the pointer, no
information is lost. Either or both types might not exist.

 Table RS.VI.5 Integer Types for Holding Pointer Values

 Type Name printf()

Specifier

 scanf()

Specifier

 Minimum Value Maximum Value

 intptr_t PRIdPTR SCNdPTR INTPTR_MIN INTPTR_MAX

 uintptr_t PRIuPTR SCBuPTR 0 UINTPTR_MAX

 Extended Integer Constants

 You can indicate a long constant with the L suffix, as in 445566L . How do you indicate that
a constant is type int32_t ? Use macros defined in inttypes.h . For example, the expression
 INT32_C(445566) expands to a type int32_t constant. Essentially, the macro is a type cast to
the underlying type—that is, to the fundamental type that represents int32_t in a particular
implementation.

 The macro names are formed by taking the type name, replacing the _t with _C , and making
all the letters uppercase. For example, to make 1000 a type uint_least64_t constant, use the
expression UINT_LEAST64_C(1000) .

 Section VII: Expanded Character Support

 C wasn’t designed originally as an international programming language. Its choice of char-
acters was based on the more or less standard U.S. keyboard. The international popularity of
C, however, has led to several extensions supporting different and larger character sets. This
section of the reference provides an overview of these additions.

 Trigraph Sequences

 Some keyboards don’t provide all the symbols used in C. Therefore, C provides alternative
representations of several symbols with a set of three-character sequences, called trigraph
sequences . Table RS.VII.1 lists these trigraphs.

ptg11524036

985Section VII: Expanded Character Support

 Table RS.VII.1 Trigraph Sequences

 Trigraph Symbol Trigraph Symbol Trigraph Symbol

 ??= # ??([??/ \

 ??)] ??' ̂ ??< {

 ??! | ??> } ??- ~

 C replaces all occurrences of these trigraphs in a source code file, even in a quoted string, with
the corresponding symbol. Thus,

 ??=include <stdio.h>

 ??=define LIM 100

 int main()

 ??<

 int q??(LIM??);

 printf("More to come.??/n");

 ...

 ??>

 becomes the following:

 #include <stdio.h>

 #define LIM 100

 int main()

 {

 int q[LIM];

 printf("More to come.\n");

 ...

 }

 You may have to turn on a compiler flag to activate this feature.

 Digraphs

 Recognizing the clumsiness of the trigraph system, C99 provides two-character tokens, called
 digraphs , that can be used instead of certain standard C punctuators. Table RS.VII.2 lists these
digraphs.

 Table RS.VII.2 Digraphs

 Digraph Symbol Digraph Symbol Digraph Symbol

 <: [:>] <% {

 %> } %: # %:%: ##

ptg11524036

986 Appendix B Reference Section

 Unlike trigraphs, digraphs within a quoted string have no special meaning. Thus,

 %:include <stdio.h>

 %:define LIM 100

 int main()

 <%

 int q<:LIM:>;

 printf("More to come.:>");

 ...

 %>

 behaves the same as the following:

 #include <stdio.h>

 #define LIM 100

 int main()

 {

 int q[LIM];

 printf("More to come.:>"); // :> just part of string

 ...

 } // :> same as }

 Alternative Spellings: iso646.h

 Using trigraph sequences, you can write the || operator as ??!??! , which is a bit unappealing.
C99, via the iso646.h header (Section V, Table RS.V.11), provides macros that expand into
operators. The standard refers to these macros as alternative spellings .

 If you include the iso646.h header file, a statement such as

 if(x == M1 or x == M2)

 x and_eq 0XFF;

 expands to the following:

 if(x == M1 || x == M2)

 x &= 0XFF;

 Multibyte Characters

 The standard describes a multibyte character as a sequence of one or more bytes represent-
ing a member of the extended character set of either the source or execution environment.
The source environment is the one in which you prepare the source code; the execution
environment is the one in which you run the compiled program. The two can be different.
For example, you could develop a program in one environment with the intent of running in
another environment. The extended character set is a superset of the basic character set that C
requires.

ptg11524036

987Section VII: Expanded Character Support

 An implementation may provide an extended character set that allows you, for example, to
enter keyboard characters not corresponding to the basic character set. These can be used in
string literals and character constants and can appear in files. An implementation may also
provide multibyte equivalents of characters in the basic character set that can be used instead
of trigraphs or digraphs.

 A German implementation, for example, might allow you to use an umlauted character in a
string:

 puts("eins zwei drei vier fünf");

 In general, the extended character sets available to a program depend upon the locale setting.

 Universal Character Names (UCNs)

 Multibyte characters can be used in strings but not in identifiers. Universal character names
(UCNs) are a C99 addition that allows you to use characters from an extended character set
as part of identifier names. The system extends the escape sequence concept to allow encod-
ing of characters from the ISO/IEC 10646 standard. This standard is the joint work of the
International Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) and provides numeric codes for a vast list of characters. The 10646 standard
coordinates closely with Unicode (see the sidebar).

 Unicode and ISO 10646

 Unicode provides a solution to the representation of various character sets by providing a stan-
dard numbering system for a great number of characters and symbols, grouping them by type.
For example, the ASCII code is incorporated as a subset of Unicode, so U.S. Latin characters
such as A and Z have the same representation under both systems. But Unicode also incorpo-
rates other Latin characters, such as those used in European languages; characters from other
alphabets, including Greek, Cyrillic, Hebrew, Cherokee, Arabic, Thai, and Bengali; and ideo-
graphs, such as those used for Chinese and Japanese. So far Unicode represents more than
110,000 symbols and 100 scripts, and it is still under development. If you want to know more,
you can check the Unicode Consortium’s website, at www.unicode.org .

 Unicode assigns a number, called a code point , for each of its characters. The typical notation
for Unicode code points looks like this: U-222B. The U identifies this as a Unicode character,
and the 222B is the hexadecimal number for the character, an integral sign, in this case.

 The International Organization for Standardization (ISO) established a working group to develop
ISO 10646, also a standard for coding multilingual text. The ISO 10646 group and the Unicode
group have worked together since 1991 to keep their standards synchronized with one another.

 There are two forms of UCN sequences. The first is \u hexquad , where hexquad is a sequence
of four hexadecimal digits; \u00F6 is an example. The second is \U hexquadhexquad ; \
U0000AC01 is an example. Because each hexadecimal digit corresponds to four bits, the \u form
can be used for codes representable by a 16-bit integer, and the \U form can be used for codes
representable by a 32-bit integer.

http://www.unicode.org

ptg11524036

988 Appendix B Reference Section

 If your system implements UCNs and includes the desired characters in the extended character
set, UCNs can be used in strings, character constants, and identifiers:

 wchar_t value\u00F6\u00F8 = L'\u00f6';

 Wide Characters

 C99, through the wchar.h and wctype.h libraries, provides yet more support for larger char-
acter sets through the use of wide characters. These header files define wchar_t as an integer
type; the exact type is implementation dependent. Its intended use is to hold characters from
an extended character set that is a superset of the basic character set. By definition, the char
type is sufficient to handle the basic character set. The wchar_t type may need more bits to
handle a greater range of code values. For example, char might be an 8-bit byte and wchar_t
might be a 16-bit unsigned short .

 Wide-character constants and string literals are indicated with an L prefix, and you can use the
 %lc and %ls modifiers to display wide-character data:

 wchar_t wch = L'I';

 wchar_t w_arr[20] = L"am wide!";

 printf("%lc %ls\n", wch, w_arr);

 If, for example, wchar_t is implemented as a 2-byte unit, the 1-byte code for 'I' would be
stored in the low-order byte of wch . Characters not from the standard set might require both
bytes to hold the character code. You could use universal character codes, for example, to indi-
cate characters whose code values exceed the char range:

 wchar_t w = L'\u00E2'; /* 16-bit code value */

 An array of wchar_t values can hold a wide-character string, with each element holding a
single wide-character code. A wchar_t value with a code value of 0 is the wchar_t equivalent
of the null character, and it is termed a null wide character . It is used to terminate wide-character
strings.

 You can use the %lc and %ls specifiers to read wide characters:

 wchar_t wch1;

 wchar_t w_arr[20];

 puts("Enter your grade:");

 scanf("%lc", &wch1);

 puts("Enter your first name:");

 scanf("%ls",w_arr);

 The wchar.h header file offers further wide-character support. In particular, it provides wide-
character I/O functions, wide-character conversion functions, and wide-character string-
manipulation functions. For the most part, they are wide-character equivalents of existing
functions. For example, you can use fwprintf() and wprintf() for output and fwscanf()
and wscanf() for input. The main differences are that these functions require a wide-character

ptg11524036

989Section VII: Expanded Character Support

control string and they deal with input and output streams of wide characters. For example, the
following displays information as a sequence of wide characters:

 wchar_t * pw = L"Points to a wide-character string";

 int dozen = 12;

 wprintf(L"Item %d: %ls\n", dozen, pw);

 Similarly, there are getwchar() , putwchar() , fgetws() , and fputws() functions. The header
defines a WEOF macro that plays the same role that EOF does for byte-oriented I/O. It’s required
to be a value that does not correspond to a valid character. Because it is possible that all values
of wchar_t type are valid characters, the library defines a wint_t type that can encompass all
 wchar_t values plus WEOF .

 There are equivalents to the string.h library functions. For example, wcscpy(ws2, ws1)
copies the wide-character string pointed to by ws1 to the wide-character array pointed to by
 ws2 . Similarly, there is a wcscmp() function for comparing wide strings, and so on.

 The wctype.h header file adds character-classification functions to the mix. For example,
 iswdigit() returns true if its wide-character argument is a digit, and the iswblank() function
returns true if its argument is a blank. The standard values for a blank are a space, written as L'
' , and a horizontal tab, written as L'\t' .

 The C11 standard, through the uchar.h header file, provides additional wide character support
by defining two types designed to match two common Unicode encoding formats. The first
type, char16_t , is the smallest available unsigned integer type that can hold a 16-bit code. It
can be used with the hexquad UCN form and the Unicode UTF-16 encoding scheme.

 char16_t = '\u00F6';

 The second type, char32_t , is the smallest available unsigned integer type that can hold a
32-bit code. It can be used with the hexquad UCN form and the Unicode UTF-32 encoding
scheme.

 char32_t = '\U0000AC01';

 The prefixes u and U can be used to denote char16_t and char32_t strings, respectively.

 char16_t ws16[11] = u"Tannh\u00E4user";

 char32_t ws32[13] = U"caf\U000000E9 au lait";

 Note these two types are more specific than wchar_t . For example, wchar_t might be wide
enough for 32-bit codes on one system but only wide enough for 16-bit codes on another. Also,
the two new types are compatible with C++ usage.

 Wide Characters and Multibyte Characters

 Wide characters and multibyte characters are two different approaches to dealing with
extended character sets. A multibyte character, for example, might be a single byte, two bytes,
three bytes, or more. All wide characters will have just one width. Multibyte characters might
use a shift state (that is, a byte that determines how subsequent bytes are interpreted); wide

ptg11524036

990 Appendix B Reference Section

characters don’t have a shift state. A file of multibyte characters would be read into an ordinary
array of char using the standard input functions; a file of wide characters would be read into a
wide-character array using one of the wide-character input functions.

 C99, through the wchar.h library, provides functions for converting between the multibyte
and wchar_t representations. The mbrtowc() function converts a multibyte character to a
wide character, and the wcrtomb() function converts a wide character to a multibyte character.
Similarly, the mbstrtowcs() function converts a multibyte string to a wide character string,
and the wcstrtombs() function converts a wide character string to a multibyte string.

 C11, through the uchar.h library, provides functions for converting between multibyte and
 char16_t representations and between multibyte and char32_t representations.

 Section VIII: C99/C11 Numeric Computational

Enhancements

 Historically, FORTRAN has been the premier language for numerical scientific and engineering
computation. C90 brought C computational methods into closer agreement with FORTRAN.
For example, the specification of floating-point characteristics used in float.h is based on the
model developed by the FORTRAN standardization committee. The C99 and C11 standards
continue the work of enhancing C’s appropriateness for computational work. For example vari-
able-length arrays, added in C99 but made optional in C11, correspond better than traditional
C arrays to FORTRAN usage. (C11 specifies a _ _STDC_NO_VLA_ _ macro that evaluates to 1 if
the implementation doesn’t support variable length arrays.)

 The IEC Floating-Point Standard

 The International Electotechnical Committee (IEC) has published a standard for floating-point
calculations (IEC 60559). The standard includes discussion of floating-point formats, preci-
sion, NaNs, infinities, rounding practices, conversions, exceptions, recommended functions
and algorithms, and so on. C99 accepts this standard as a guide to the C implementation of
floating-point calculations. Most of the C99 additions to floating-point facilities are part of this
effort, such as the fenv.h header file and several of the new math functions. Also, the float.h
header defines several macros relating to the IEC floating-point model.

 The Floating-Point Model

 Let’s take a quick look at the floating-point model. The standard visualizes a floating-point
value x as being a power of a number base times a fraction in that number base, rather like C’s
E-notation, in which we can write 876.54 as 0.87654E3. As you might expect, the formal repre-
sentation looks more formidable:

x = sbe fkb
�k

k = 1

p

 Briefly, this represents a number as a product of a power, or exponent, e , of the number base, b ,
multiplied by a significand , a multidigit fraction.

ptg11524036

991Section VIII: C99/C11 Numeric Computational Enhancements

 Here are the meanings of the various components:

 s is the sign (±1).

 b is the radix , or number base used. The most common value is 2 because floating-point
processors commonly use binary math.

 e represents an integer exponent. (It shouldn’t be confused with numeric constant e used
as a base for natural logarithms). It will be limited to a range having a minimum and
maximum value. Those values will depend on the number of bits set aside to store the
exponent.

 f k represent the possible digits for base b ; for example, in base 2 the possible digits are 0
and 1, and in hexadecimal, the possible digits are 0 through F.

 p is the precision, the number of base b digits used to represent the significand. Its value
will be limited by the number of bits set aside to store the significand.

 Understanding this representation is key to understanding the contents of float.h and
 fenv.h , so let’s look at two examples illustrating how the floating-point representation works.

 First, suppose the number base b , or radix, is 10. And suppose the precision p is 5. Then the
value 24.51 could be written this way:

 (+1)10 3 (2/10 + 4/100 + 5/1000 + 1/10000 + 0/100000)

 The computer, assuming it can store decimal digits, could store the sign, the exponent 3, and
the five f k values 2, 4, 5, 1, and 0. (Here f 1 is 2, f 2 is 4, etc.) Thus, the significand is 0.24510.
Multiplying that by 10 3 yields 24.51.

 Next, suppose, as is more common, that the radix b is 2. Suppose p is 7, the exponent is 5, and
the significand is stored as 1011001, using 7 binary digits, as specified by p . And suppose the
sign is positive. Then we can construct the number per the formula above:

 x = (+1)2 5 (1/2 +0/4 + 1/8 + 1/16 + 0/32 + 0/64 + 1/128)

 = 32(1/2 +0/4 + 1/8 + 1/16 + 0/32 + 0/64 + 1/128)

 = 16 + 0 + 4 + 2 +0 + 0 + ¼ = 22.25

 Many of the float.h macros refer to this representation. For instance, FLT_RADIX is b , the
number base used, and FLT_MANT_DIG is p , the number of digits (base b) in the signficand, for
a float value.

 Normal and Subnormal Values

 The concept of a normalized floating-point value plays an important role, so let’s investigate it.
For simplicity, let’s suppose the system uses base 10 (b = FLT_RADIX = 10) and that the signifi-
cand uses 5 decimal digits for a float value (p = FLT_MANT_DIG = 5). (The standard requires
greater precision than this, but our simplicity disclaimer allows us to ignore this requirement.)
Consider the following ways of representing the value 31.841:

ptg11524036

992 Appendix B Reference Section

 exponent = 3, significand = .31841 (.31841E3)

 exponent = 4, significand = .03184 (.03184E4)

 exponent = 5, significand = .00318 (.00318E5)

 Clearly, the first method is the most precise because it uses all five available digits in the signifi-
cand. A normalized floating-point nonzero value is one for which the first digit in the signifi-
cand is nonzero, and that’s how floating-point values normally are stored.

 Now suppose the minimum exponent (FLT_MIN_EXP) is -10. Then the smallest normalized
value is this:

 exponent = -10, significand = .10000 (.10000E-10)

 Normally, multiplying or dividing by 10 means raising or lowering the exponent, but, in this
case, if you divide by 10, you can’t lower the exponent further. However, you can change the
significand to get this representation:

 exponent = -10, significand = 0.0100 (.01000E-10)

 This number would be termed subnormal because it’s not using the full precision of the signifi-
cand. For instance, dividing 0.12343E-10 by 10 yields .01234E-10, and a digit of information
has been lost.

 For this particular example, 0.1000E-10 is the smallest nonzero normal representation (FLT_
MIN), and the smallest nonzero subnormal value is 0.00001E-10 (FLT_TRUE_MIN).

 The float.h macros FLT_HAS_SUBNORM , DBL_HAS_SUBNORM , and LDBL_HAS_SUBNORM charac-
terize how an implementation handles subnormal values. Here are the possible values for these
macros and their meanings:

 -1 indeterminable (no consistent treatment)

 0 absent (implementation could, for instance, replace subnormal values with 0)

 1 present

 The math.h library provides means, including the fpclassify() and isnormal() macros,
enabling one to identify when a program produces subnormal values, thus losing precision.

 Evaluation Schemes

 The float.h macro FLT_EVAL_METHOD indicates the scheme the implementation uses to evalu-
ate floating-point expressions. The designated choices are these:

 -1 indeterminable

 0 evaluated operations and constants to the range and precision of the type

ptg11524036

993Section VIII: C99/C11 Numeric Computational Enhancements

 1 evaluate operations and constants of type float and double to the range and preci-
sion of the double type, and evaluate long double operations and constants to the
range of long double

 2 evaluate operations and constants of all floating-point types to the range and preci-
sion of l ong double

 An implementation is allowed to provide additional negative values to indicate other choices.

 Suppose, for example, your program multiplies two float values, assigning the result to a third
 float . Under option 1, which was what K&R C did, the two float values are expanded to
 double , the calculation is done using double , and the result is rounded to float when it is
assigned.

 Under choice 0, which ANSI C made an option, the two float values would be multiplied as
 float and the result then assigned. This might be a faster operation than mode 1, but there
might be a slight loss of precision.

 Rounding

 The float.h macro FLT_ROUNDS describes how the system handles rounding. The specified
possibilities for rounding are these:

 -1 indeterminable

 0 toward zero

 1 to nearest

 2 toward positive infinity

 3 toward negative infinity

 A system with different options can define further values.

 Some systems provide control over the rounding scheme, and the fenv.h function
fesetround() provides programming control in that case.

 The effects of different rounding methods probably aren’t important if you are calculating
how much flour you need to make 37 cakes, but they can affect, say, critical financial or scien-
tific calculations. Clearly, the rounding method comes into play when you convert a higher
precision floating-point value to a lower precision value, for example, assigning the result of
a double calculation to a float . It also can come into play when you change number bases.
A fraction with an exact representation in one number base might not have one in a different
number base. Consider, for example, this code:

 float x = 0.8;

ptg11524036

994 Appendix B Reference Section

 The fraction 8/10, or 4/5, can be represented exactly base 10. But most computer systems will
store the result in base 2, and, in that base, 4/5 is an infinitely repeating fraction:

 0.1100110011001100...

 Thus, 0.8 is rounded to an approximate value when stored in x , and the value can depend
upon the rounding method.

 However, it could be that an implementation doesn’t meet all the requirements of IEC 60559;
for example, the underlying hardware may not be up to the task. Therefore, C99 defines two
macros that can be used in preprocessor directives to check for compliance. First, the macro

 _ _STDC_IEC_559_ _

 is conditionally defined as the constant 1 if the implementation conforms to IEC 60559
floating-point specifications. Second, the macro

 _ _STDC_IEC_559_COMPLEX_ _

 is conditionally defined as the constant 1 if the implementation adheres to IEC
60559–compatible complex arithmetic.

 If an implementation doesn’t define these macros, there is no guarantee of IEC
60559 compliance.

 The fenv.h Header File

 The fenv.h header file provides a means of interacting with the floating-point environment.
That is, it allows you to set floating-point control mode values that govern how floating-point
calculations take place, and it allows you to determine the value of floating-point status flags,
or exceptions , that report information about the effects of an arithmetic calculation. An example
of a control mode setting is specifying the method used to round numbers. An example of a
status flag is a flag that is set if an operation produces floating-point overflow. An operation
that sets a status flag is described as raising an exception .

 The status flags and control modes are meaningful only if the hardware supports them. For
example, you can’t change the rounding method if the hardware doesn’t have that option.

 You use a preprocessor directive to turn support on:

 #pragma STDC FENV_ACCESS ON

 Support stays on until the program reaches the end of the block containing the pragma, or, if
the pragma is external, to the end of the file or translation unit. Alternatively, you can use the
following directive to turn off support:

 #pragma STDC FENV_ACCESS OFF

 You also can issue the following pragma:

 #pragma STDC FENV_ACCESS DEFAULT

ptg11524036

995Section VIII: C99/C11 Numeric Computational Enhancements

 This restores the default state for the compiler, which is implementation dependent.

 This facility is important for those involved in critical floating-point calculations, but of limited
interest to the general user, so this appendix doesn’t go into the details.

 The STDC FP_CONTRACT Pragma

 Some floating-point processors can contract a multiple-operator floating-expression into a
single operation. For example, a processor might be able to evaluate the following expression in
one step:

 x*y - z

 This increases the speed of the calculation, but it can decrease the predictability of the calcula-
tion. The STDC FP_CONTRACT pragma allows you to turn this feature on or off. The default
state is implementation dependent.

 To turn the contraction feature off for a particular calculation, and then turn it back on again,
you can do this:

 #pragma STDC FP_CONTRACT OFF

 val = x * y - z;

 #pragma STDC FP_CONTRACT ON

 Additions to the math.h Library

 The C90 math library, for the most part, declares functions with type double arguments and
type double return values, such as the following

 double sin(double);

 double sqrt(double);

 The C99 and C11 libraries provide type float and type long double versions of all these
functions. These functions use an f or an l suffix in the name, as follows:

 float sinf(float); /* float version of sin() */

 long double sinl(long double); /* long double version of sin() */

 Having function families with different levels of precision allows you to choose the most effi-
cient combination of types and functions needed for a particular purpose.

 C99 also added several functions commonly used in scientific, engineering, and mathematical
computations. Table RS.V.14 , which lists the type double versions of all the math functions,
identifies the C99 additions. In many cases, the functions return values that could be calculated
using existing functions, but the new functions do so faster or more accurately. For instance,
 log1p(x) represents the same value as log(1 + x) , but log1p(x) uses a different algorithm,
one that is more accurate for small values of x . So you would use the log() function for
calculations in general, but you would use log1p() for small values of x if high accuracy were
critical.

ptg11524036

996 Appendix B Reference Section

 In addition to these functions, the math library defines several constants and functions related
to classifying numbers and rounding them. For example, a value can be classified as being infi-
nite, not a number (NaN), normal, subnormal, and true zero. (NaN is a special value indicating
that a value is not a number; for example, asin(2.0) returns NaN because asin() is defined
only for arguments in the range -1 to 1 . A subnormal number is one whose magnitude is
smaller than the smallest value that can be represented to full precision.) There are also special-
ized comparison functions that behave differently from the standard relational operators when
one or more arguments are abnormal values.

 You can use C99’s classification schemes to detect computational irregularities. For example,
the isnormal() macro from math.h returns true if its argument is a normal number. Here is
code using that function to terminate a loop when a number becomes subnormal:

 #include <math.h> // for isnormal()

 ...

 float num = 1.7e-19;

 float numprev = num;

 while (isnormal(num)) // while num has full float precision

 {

 numprev = num;

 num /= 13.7f;

 }

 In short, there is expanded support for detailed control of how floating-point calculations are
handled.

 Support for Complex Numbers

 A complex number is a number with a real part and an imaginary part. The real part is an ordi-
nary real number, such as what’s represented by the floating-point types. The imaginary part
represents an imaginary number. An imaginary number, in turn, is a multiple of the square
root of –1. In mathematics, complex numbers are often written in the form 4.2 + 2.0 i ; i
symbolically represents the square root of –1.

 C99 supports three complex types (under C11 this support is optional):

 ■ float _Complex

 ■ double _Complex

 ■ long double _Complex

 A float _Complex value, for example, would be stored using the same memory layout as a
two-element array of float , with the real value stored in the first element and the imaginary
value in the second element.

 C99 and C11 implementations may also support three imaginary types:

ptg11524036

997Section VIII: C99/C11 Numeric Computational Enhancements

 ■ float _Imaginary

 ■ double _Imaginary

 ■ long double _Imaginary

 Including the complex.h header file lets you use complex for _Complex and imaginary for
 _Imaginary .

 Arithmetic operations are defined for complex types following the usual rules of mathematics.
For example, the value of (a+b*I)*(c+d*I) is (a*c-b*d)+(b*c+a*d)*I .

 The complex.h header file defines some macros and several functions that accept complex
numbers and return complex numbers. In particular, the macro I represents the square root of
–1. It enables you do the following:

 double complex c1 = 4.2 + 2.0 * I;

 float imaginary c2= -3.0 * I;

 C11 provides a second means, the CMPLX() macro, to assign values to a complex number. For
example, if re and im are type double values, you can do this:

 double complex c3 = CMPLX(re, im);

 The intent is that the macro can handle unusual cases, such as im being infinite or not-a-
number, better than straight assignment.

 The complex.h header file prototypes several complex functions. Many are complex equiva-
lents of math.h functions, using a c prefix. For example, csin() returns the complex sine of its
complex argument. Others relate specifically to the features of complex numbers. For example,
 creal() returns the real part of a complex number, and cimag() returns the imaginary part as
a real number. That is, given that z is type double complex , the following is true:

 z = creal(z) + cimag(z) * I;

 If you are familiar with complex numbers and need to use them, you’ll want to peruse the
contents of complex.h .

 Here’s a short program illustrating some portions of complex number support.

 // complex.c -- complex numbers

 #include <stdio.h>

 #include <complex.h>

 void show_cmlx(complex double cv);

 int main(void)

 {

 complex double v1 = 4.0 + 3.0*I;

 double re, im;

 complex double v2;

 complex double sum, prod, conjug;

 printf("Enter the real part of a complex number: ");

ptg11524036

998 Appendix B Reference Section

 scanf("%lf", &re);

 printf("Enter the imaginary part of a complex number: ");

 scanf("%lf", &im);

 // CMPLX() a C11 feature

 // v2 = CMPLX(re, im);

 v2 = re + im * I;

 printf("v1: ");

 show_cmlx(v1);

 putchar('\n');

 printf("v2: ");

 show_cmlx(v2);

 putchar('\n');

 sum = v1 + v2;

 prod = v1 * v2;

 conjug =conj(v1);

 printf("sum: ");

 show_cmlx(sum);

 putchar('\n');

 printf("product: ");

 show_cmlx(prod);

 putchar('\n');

 printf("complex congjugate of v1: ");

 show_cmlx(conjug);

 putchar('\n');

 return 0;

 }

 void show_cmlx(complex double cv)

 {

 printf("(%.2f, %.2fi)", creal(cv), cimag(cv));

 return;

 }

 If you use C++, you should be aware that the C++ complex header file provides a different way,
based on classes, of handling complex numbers than does the C complex.h header file.

 Section IX: Differences Between C and C++

 For the most part, C++ is a superset of C, meaning that a valid C program is also a valid C++
program. The main differences between C++ and C are the many additional features that C++
supports. However, there are a few areas in which the C++ rules are slightly different from the
C equivalents. These are the differences that might cause a C program to work a little differ-
ently, or perhaps, not at all, if you compile it as a C++ program. And these are the differences
this appendix discusses. If you compile your C programs using a compiler that does just C++

ptg11524036

999Section IX: Differences Between C and C++

and not C, you need to know about these differences. Although they affect very few of the
examples in this book, the differences can cause some instances of valid C code to lead to error
messages if the code is compiled as a C++ program.

 The release of the C99 standard complicated issues because in some places it brought C closer
to C++. For example, it allows interspersing declarations throughout the body of the code and
recognizes the // comment indicator. In other ways, C99 increases the separation from C++—
for example, by adding variable arrays and the restrict keyword. C11 closes the gap some-
what, for example, introducing the char16_t type, adding the keyword _Alignas and creating
a macro alignas to match the C++ keyword. With C11 still in its infancy and C99 not fully
accepted by some vendors, we’re faced with differences between C90, C99, and C11, and with
differences between C++11 and each of those C standards. This section will face the future and
discuss some of differences between C99, C11, and C++. Meanwhile, C++ is also evolving, so
the exact correspondences and differences between C and C++ will continue to change.

 Function Prototypes

 In C++, function prototyping is mandatory, but it is optional in C. This difference shows up
if you leave the parentheses empty when declaring a function. In C, empty parentheses mean
you are foregoing prototyping, but in C++ they mean the function has no parameters. That is,
in C++, the prototype

 int slice();

 means the same as the following:

 int slice(void);

 For example, the following sequence is acceptable, if old-fashioned, in C but an error in C++:

 int slice();

 int main()

 {

 ...

 slice(20, 50);

 ...

 }

 int slice(int a, int b)

 {

 ...

 }

 In C, the compiler assumes you used the older form for declaring functions. In C++, the
compiler assumes that slice() is the same as slice(void) and that you failed to declare the
 slice(int, int) function.

 Also, C++ allows you to declare more than one function of the same name, provided they have
different argument lists.

ptg11524036

1000 Appendix B Reference Section

 char Constants

 C treats char constants as type int , and C++ treats them as type char . For instance, consider
this statement:

 char ch = 'A';

 In C, the constant 'A' is stored in an int -sized chunk of memory; more precisely, the charac-
ter code is stored in the int . The same numeric value is also stored in the variable ch , but here
it occupies just one byte of memory.

 C++, on the other hand, uses one byte for 'A' , as well as for ch . This distinction doesn’t affect
any of the examples in this text. However, some C programs do make use of char constants
being type int by using character notation to represent integer values. For instance, if a system
has a 4-byte int , you can do this in C:

 int x = 'ABCD'; /* ok in C for 4-byte int but not for C++ */

 The meaning of 'ABCD' is a 4-byte int in which the first byte stores the character code for the
letter A , the second byte stores the character code of B , and so on. Note that 'ABCD' is some-
thing quite different from "ABCD" . The former is just a funny way of writing an int value, but
the latter is a string and corresponds to the address of a 5-byte chunk of memory.

 Consider the following code:

 int x = 'ABCD';

 char c = 'ABCD';

 printf("%d %d %c %c\n", x, 'ABCD', c, 'ABCD');

 On our system, it produces this output:

 1094861636 1094861636 D D

 This example illustrates that if you treat 'ABCD' as an int , it is a 4-byte integer value, but if
you treat it as type char , the program looks only at the final byte. Attempting to print 'ABCD'
by using the %s specifier caused the program to crash on our system, because the numeric value
of 'ABCD' (1094861636) was an out-of-bounds address.

 The rationale for using values such as 'ABCD' is that it provides a means to set each byte in the
 int independently, because each character corresponds exactly to one byte. However, a better
approach, because it doesn’t depend on particular character codes, is to use hexadecimal values
for integer constants, using the fact that each two-digit hexadecimal group corresponds to one
byte. Chapter 15 , “Bit Fiddling,” discusses this technique. (Early versions of C didn’t provide
hexadecimal notation, which probably is why the multicharacter constant technique was devel-
oped in the first place.)

 The const Modifier

 In C, a global const has external linkage, but in C++, it has internal linkage. That is, the C++
declaration

ptg11524036

1001Section IX: Differences Between C and C++

 const double PI = 3.14159;

 is equivalent to the C declaration

 static const double PI = 3.14159;

 provided both declarations are outside of any function. The C++ rule has the goal of making it
simpler to use const in header files. If the constant has internal linkage, each file that includes
the header file gets its own copy of the constant. If a constant has external linkage, one file has
to have a defining declaration and the other files have to have a reference declaration, one that
uses the keyword extern .

 Incidentally, C++ can use the keyword extern to make a const value have external linkage, so
both languages can create constants with internal linkage and external linkage. The difference
is just in which kind of linkage is used by default.

 One additional property of the C++ const is that it can be used to declare the size of an ordi-
nary array:

 const int ARSIZE = 100;

 double loons[ARSIZE]; /* in C++, same as double loons[100]; */

 You can make the same declarations in C99, but in C99, the declaration creates a variable array.

 In C++, but not in C, you can use constvalues to initialize other const values:

 const double RATE = 0.06; // valid C++, C

 const double STEP = 24.5; // valid C++, C

 const double LEVEL = RATE * STEP; // valid C++, invalid C

 Structures and Unions

 After you declare a structure or union having a tag, you can use the tag as a type name in C++:

 struct duo

 {

 int a;

 int b;

 };

 struct duo m; /* valid C, C++ */

 duo n; /* invalid C, valid C++ */

 As a result, a structure name can conflict with a variable name. For example, the following
program compiles as a C program, but it fails as a C++ program because C++ interprets duo in
the printf() statement as a structure type rather than as the external variable:

 #include <stdio.h>

 float duo = 100.3;

 int main(void)

 {

 struct duo { int a; int b;};

ptg11524036

1002 Appendix B Reference Section

 struct duo y = { 2, 4};

 printf ("%f\n", duo); /* ok in C, not in C++ */

 return 0;

 }

 In C and in C++, you can declare one structure inside another:

 struct box

 {

 struct point {int x; int y; } upperleft;

 struct point lowerright;

 };

 In C, you can use either structure later, but C++ requires a special notation for the nested
structure:

 struct box ad; /* valid C, C++ */

 struct point dot; /* valid C, invalid C++ */

 box::point dot; /* invalid C, valid C++ */

 Enumerations

 C++ is stricter about using enumerations than C is. In particular, about the only useful things
you can do with an enum variable are assign an enum constant to it and compare it to other
values. You can’t assign int s to an enum without an explicit type cast, and you can’t increment
an enum variable. The following code illustrates these points:

 enum sample {sage, thyme, salt, pepper};

 enum sample season;

 season = sage; /* ok in C, C++ */

 season = 2; /* warning in C, error in C++ */

 season = (enum sample) 3; /* ok in C, C++ */

 season++; /* ok in C, error in C++ */

 Also, C++ lets you drop the keyword enum when declaring a variable:

 enum sample {sage, thyme, salt, pepper};

 sample season; /* invalid C, valid C++ */

 As was the case with structures and unions, this can lead to conflicts if a variable and an enum
type have the same name.

 Pointer-to- void

 In C++, as in C, you can assign a pointer of any type to a pointer-to- void , but, unlike in C,
you cannot assign a pointer-to- void to another type unless you use an explicit type cast. The
following code illustrates these points:

 int ar[5] = {4, 5, 6,7, 8};

ptg11524036

1003Section IX: Differences Between C and C++

 int * pi;

 void * pv;

 pv = ar; /* ok in C, C++ */

 pi = pv; /* ok in C, invalid in C++ */

 pi = (int *) pv; /* ok in C, C++ */

 Another difference in C++ is that you can assign the address of a derived-class object to a base-
class pointer, but that relates to features that don’t even exist in C.

 Boolean Types

 In C++, the Boolean type is bool , and true and false are keywords. In C, the Boolean type is
 _Bool , but including the header file stdbool.h makes bool , true , and false available.

 Alternative Spellings

 In C++, the alternative spellings of or for || , and so on, are keywords. In C99 and C11, they
are defined as macros, and you need to include iso646.h to make them available.

 Wide-Character Support

 In C++, wchar_t is a built-in type, and wchar_t is a keyword. In C99 and C11, the wchar_t
type is defined in several header files (stddef.h , stdlib.h , wchar.h , wctype.h). Similarly,
 char16_t and char32_t are C++11 keywords but are macros defined in uchar.h in C11.

 C++ provides wide-character I/O support (wchar_t , char16_t , and char32_t) through the
 iostream header file, whereas C99 provides a completely different package of I/O support
through the wchar.h header file.

 Complex Types

 C++ supports complex types through a complex class provided by the complex header file. C
has built-in complex types and supports them through the complex.h header file. The two
approaches are quite different and are not compatible with one another. The C version reflects
a greater concern with the needs and practices of the numerical computation community.

 Inline Functions

 C99 has added inline function support, a feature C++ already had. However, the C99 imple-
mentation is more flexible. In C++, an inline function has internal linkage by default. If a
C++ inline function appears in more than one file, it has to have the same definition, using
the same tokens. For example, one file can’t have a definition using a type int parameter and
another file have a definition using a type int32_t parameter, even if int32_t is a typedef
for int . C, however, allows that arrangement. Also, C, as described in Chapter 15 , allows a
mixture of inline and external definitions that C++ doesn’t allow.

ptg11524036

1004 Appendix B Reference Section

 C99/11 Features Not Found in C++11

 Although C traditionally is more or less a subset of C++, the C99 standard adds several features
missing in C++. Here are some of the more prominent C99/C11-only features:

 ■ Designated initializers

 ■ Compound initializers

 ■ Restricted pointers

 ■ Variable-length arrays

 ■ Flexible array members

 ■ Macros with a variable number of arguments

 Note

 This list is just a snapshot at one particular time, and the lists of shared and unshared fea-
tures will continue to evolve. For example, C++14 adds a feature similar to the C99 variable-
length array.

ptg11524036

Index

Symbols
-/+ (sign operators), 149

 [] (brackets), 102

 arrays, 384

 empty, 388 , 424

 %= assignment operator, 214

 *= assignment operator, 214 , 230

 += assignment operator, 214

 -= assignment operator, 214

 /= assignment operator, 214

 ~ bitwise operator, 688

 << (left shift) bitwise operator, 684

 >> (right shift) bitwise operator, 684 - 685

 . (period) character, 262

 * modifier, printf() function, 133 - 135

 ! operator, 264

 # operator, strings from macro arguments,

 721 - 722

 ## operator, 722 - 723

 & operator, 367 - 368

 bitwise, 679

 && operator, 264

 ranges, 267 - 268

 | operator, bitwise, 679 - 680

 || operator, 264

 + (addition) operator, 149

 = (assignment) operator, 146 - 149 , 202

 ?: (conditional) operator, 272 - 273

 -- (decrement) operator, 164 - 166

ptg11524036

1006 == (equality) operator

 == (equality) operator, 191

 ++ (increment) operator, 160 - 166

 * (indirection) operator, 371 - 372

 * (multiplication) operator, 151 - 153

 . (membership) operator, 912 - 913

 == (relational) operator, 202

 + (sign) operator, 150

 - (subtraction) operator, 149 - 150

 */ symbol, 30 , 33 - 34

 /* symbol, 30 , 33 - 34

 * unary operator, 406

 ++ unary operator, 406

 / (division) operator, 153 - 154

 < (redirection) operator, 308

 > (redirection) operator, 308

 { } (braces), 34

 while loop, 146

 A
 a+b mode, 643

 actual arguments, 343 - 344

 add_one.c program, 160 - 161

 addaword.c program, 577 - 578

 addemup.c program, 169 - 170

 AddItem() function, 793 , 800 - 801 , 833 - 837

 addition (+) operator, 149

 AddNode() function, 833 - 835

 addresses

 & operator, 367 - 368

 double quotation marks, 465

 function pointers, 657

 inline functions, 743

 pointers, 409

 structures, 619 - 620

 variables, 375

 addresses.c program, 446 - 447

 ADT (abstract data type), 774 , 786 - 787

 binary search trees, 829

 EmptyTree() function, 833

 FullTree() function, 833

 InitializeTree() function, 833

 interface, 830 - 832

 TreeItems() function, 833

 defining, 787

 interfaces

 building, 789 - 793

 defining, 805 - 806

 functions, 810 - 815

 implementing, 796 - 802

 using, 793 - 796

 lists, operations, 788

 queue, 804

 align.c program, 704 - 705

 alignment, C11, 703

 allocated memory, 543

 calloc() function, 548

 dynamic, VLAs and, 548 - 549

 free() function, 545 - 548

 malloc() function, 543 - 544

 storage classes and, 549 - 551

 structures, 605

 altnames.c program, 78 - 79

 AND operator, 679

 animals.c program, 280 - 281

 anonymous structures, 636 - 637

 anonymous unions, 647

 ANSI (American Nation Standards

Institute), 8

 ANSI C, 8 - 9 , 17

 functions, prototyping, 349 - 353

 math functions, 748

 type qualifiers, 551

 _Atomic, 556 - 557

ptg11524036

1007arrays

 const, 552 - 554

 formal parameters, 557

 restrict, 555 - 556

 volatile, 554 - 555

 ANSI/ISO C standard, 8 - 9

 a.out file, 17

 append.c program, 590 - 592

 Apple, Xcode, 21

 arguments, 89 - 91

 actual, 343 - 344

 command-line, 497

 integrated environment, 500 , 569 -
 570

 #define, 718 - 722

 ## operator, 722 - 723

 variadic macros, 723 - 724

 float, conversion, 116

 fseek() function, 580 - 581

 functions, 340

 functions with, 177 - 180

 none, 352 - 353

 passing, 124 , 621 - 622

 printf() function, 114

 unspecified, 352 - 353

 arithmetic operators, 908

 array2d.c program, 424 - 426

 arrays, 226 - 227 , 407 . See also VLAs

(variable-length arrays)

 [] (brackets), 102 , 384

 empty, 388

 of arrays, 419

 bounds, 390 - 392

 char, 101 - 102 , 227

 in memory, 228

 character string arrays, 444 - 445 ,
449 - 451

 compound literals, 432

 const keyword, 385

 array size, 431

 contents, protecting, 412 - 417

 creating, 544

 days[], 385

 declaring, 102

 constant expressions, 544

 pointers and, 544

 variable expressions and, 544

 description, 101

 designated initializers, 388 - 390

 elements, inserting, 824

 function pointers, 664

 index, 384

 initialization, 384 - 388 , 444 - 445

 multidimensional, 396

 int, in memory, 228

 linked lists and, 824 - 828

 for loops in, 228 - 230

 members, flexible, 633 - 636

 multidimensional, 393 - 398

 functions and, 423 - 427

 pointers and, 417 - 427

 two-dimensional, 394 - 398

 names, pointer notation, 402

 notation, pointers and, 402

 parameters, declaring, 403

 pointers and, 398

 comparison, 445 - 447

 differences, 447 - 449

 parentheses, 420

 as queue, 806

 ragged, 450

 rectangular, 450

 size, specifying, 392 - 393

 storage classes, 386

ptg11524036

1008 arrays

 structures, 607 - 608

 character arrays, 627 - 628

 declaring, 611

 functions, 637 - 638

 members, 612

 of unions, 645

 values, assigning, 390

 VLAs, dynamic memory allocation and,
 548 - 549

 arrchar.c program, 449 - 450

 ASCII code, numbers versus number char-

acters, 75

 assembly languages, 3

 assert library, 760

 assert() function, 760 - 763

 assert() function, 760 - 763

 assert.c program, 761 - 762

 assigned values, enumerated types, 650

 assignment

 pointers, 409

 void function, 658

 assignment operators, 910 - 911

 =, 146-149, 202

 %=, 214

 *=, 214, 230

 +=, 214

 -=, 214

 /=, 214

 assignment statements, 37 - 38

 atan() function, 747

 atexit() function, 753 - 755

 atoi() function, 500 - 502

 _Atomic type qualifier, 556 - 557

 auto keyword, 518

 automatic access to C library, 745

 automatic variables, storage classes,

518 - 522

 B
 B language, 1

 base 2 system, 674

 bases.c program, 66

 BASIC, 3

 Bell Labs, 1

 binary files, 566 , 582

 binary floating points

 floating-point representation, 676

 fractions, 676

 binary integers, 674 - 675

 binary I/O, random access, 593 - 594

 binary numbers

 decimal equivalents, 678

 hexadecimal equivalents, 678

 octal digits, 677

 binary operators, 150

 binary output, 586

 binary searches, 826 - 827

 trees, 828 - 829

 adding items, 833 - 836

 AddItem() function, 833 - 835 ,
836 - 837

 AddNode() function, 833 - 835

 ADTs, 829 - 843

 DeleteAll() function, 843

 DeleteItem() function, 836 - 837 ,
 841 - 842

 DeleteNode() function, 841 - 842

 deleting items, 837 - 839 , 841 - 842

 deleting nodes, 840 - 841

 emptying, 843

 EmptyTree() function, 833

 finding items, 836 - 837

 FullTree() function, 833

 InitializeTree() function, 833

ptg11524036

1009braces

 book inventory sample, 601 - 602

 arrays of structures, functions, 637 - 638

 book.c program, 602 - 603

 flexible array members, 633 - 636

 manybook.c program, 608 - 613

 structure declaration, 604

 initialization, 606

 initializers, 607 - 608

 member access, 607

 struct keyword, 604

 variables, 605 - 608

 structures

 address, 619 - 620

 anonymous, 636 - 637

 arrays, 608 - 613

 compound literals and, 631 - 633

 passing as argument, 621 - 622

 passing members, 618 - 619

 pointers to, 626 - 627

 saving contents to file, 639 - 644

 book.c program, 602 - 603

 books

 C++, 908

 C language, 907

 programming, 907

 reference, 908

 booksave.c program, 640 - 643

 _Bool type, 77 , 203 - 204

 Borland C, floating-point values and, 608

 Borland C++ Compiler 5.5, 19

 bottles.c program, 164 - 165

 bounds, arrays, 390 - 392

 bounds.c program, 391 - 392

 braces ({ }), 30 , 34

 while loop, 146

 interface, 830 - 832

 InTree() function, 836 - 837

 MakeNode() function, 833 - 835

 SeekItem() function, 833 - 835 , 836 -
 837 , 841 - 842

 tips, 854 - 856

 ToLeft() function, 835

 ToRight() function, 835

 traversing trees, 842

 TreeItems() function, 833

 binary system, 674

 binary tree, 644

 binary view (files), 567

 binary.c program, 359 - 360

 binbit.c program, 686 - 687

 bit fields, 690 - 692

 bitwise operators and, 696 - 703

 example, 692 - 695

 bit numbers, values, 674

 bitmapped images, 774

 bits, 60 , 674

 bitwise operators, 683 , 913 - 914

 ~, 688

 binbit.c program, 686 - 687

 bit fields and, 696 - 703

 clearing bits, 682 - 683

 logical, 678 - 680

 masks, 680 - 681

 setting bits, 681 - 682

 shift operators, 684 - 685

 values, checking, 683 - 684

 black-box viewpoint, 345

 blank lines, 41

 block scope, 514

 blocks (compound statements), 171 - 173

 body, functions, 40

ptg11524036

1010 brackets

 brackets ([]), 102

 arrays, 384

 emtpy, 424

 break statement, 282 - 283

 loops, 277 - 279

 break.c program, 277 - 279

 buffers, 300 - 302

 file position indicator and, 584

 input, user interface, 312 - 314

 butler() function, 44 - 45 , 177

 bytes, 60

 C
 C language

 operators, 908 - 909

 reference books, 907

 C library

 access

 automatic, 745

 file inclusion, 745

 library inclusion, 745 - 746

 descriptions, 746 - 747

 C Reference Manual, 8

 C++, 4

 books, 908

 C comparison, const keyword, 423

 enumeration, 649

 C11 standard, 9

 alignment, 703 - 705

 generic selection, 740 - 741

 _Noreturn functions, 744

 C99 standard, 8 - 9

 compound literals, structures and,
631 - 633

 designated initializers, 388 - 390

 flexible array members, 633 - 636

 functions, inline, 741 - 744

 tgmath.h library, 752

 calling functions

 arguments, 343 - 344

 nested calls, 468 - 469

 variables, altering, 369 - 371

 calloc() function, 548

 case labels

 enum variables and, 650

 multiple, 284 - 285

 cast operator, type conversions, 176

 cc compiler, 17

 CDC 6600 computer, 7

 char arrays, 101 - 102 , 227

 in memory, 228

 char keyword, 60

 char type, 71 - 72 , 93 , 136

 nonprinting characters, 73 - 76

 printing characters, 76

 signed, 77

 unsigned, 77

 variables, declaring, 72

 character arrays, structures, 627 - 628

 character constants, 94

 initialization, 72 - 73

 character functions, ctype.h, 252 - 253

 character input, mixing with number, 314 -

 317 , 327 - 330

 character pointers, structures, 627 - 628

 character string arrays, 444 - 445 , 449 - 451

 character string literals, 442 - 443

 character strings, 101 , 227 , 441

 characters

 null, 459

 reading single, 283

 single-character I/O, 300 - 301

 versus strings, 103

ptg11524036

1011compiling

 compilers, 19

 redirection, 310

 comments, 13

 first.c program, 33 - 34

 compare.c program, 476 - 477

 comparisons, pointers, 411

 compatibility, pointers, 421 - 423

 compback.c program, 477 - 479

 compflt.c program, 198 - 199

 compilers, 3 , 11 - 12

 Borland C++ Compiler 5.5, 19

 cc, 17

 command-line, 19

 GCC, 18

 languages, 7

 linkers, 15

 system requirements, 24

 translation and, 712

 compiling

 Apple IDE, multiple source code files
and, 362 - 363

 conditional, 731

 #elif directive, 736 - 737

 #else directive, 732 - 733

 #endif directive, 732 - 733

 #error directive, 738 - 740

 #if directive, 736 - 737

 #ifdef directive, 732 - 733

 #line directive, 738 - 740

 predefined macros, 737 - 740

 DOS command-line, multiple source
code files and, 362

 header files, multiple source code files
and, 363 - 367

 Linux systems, multiple source code
files and, 362 - 32

 modules, 14

 charcode.c program, 76

 chcount.c program, 262 - 264

 checking.c program, 320 - 323

 circular queue, 808

 clang command, 18

 classes, storage, 511 - 513

 automatic, 517

 automatic variables, 518 - 522

 dynamic memory allocation and,
549 - 551

 functions and, 533 - 534

 register, 517

 register variables, 522

 scope, 513 - 515

 static variables, 522 - 524

 static with external linkage, 517

 static with internal linkage, 517

 static with no linkage, 517

 Classic C, 8

 clearing bits (bitwise operators), 682 - 683

 code

 executable files, 14 - 18

 libraries, 14 - 18

 object code files, 14 - 18

 source code, 14

 startup, 15

 writing, 11

 colddays.c program, 246 - 248

 combination redirection, 309 - 310

 comma format, 136

 comma operator, 214 - 218

 for loop and, 216

 command-line

 arguments, 497

 integrated environment, 500

 Macintosh, 500

 standard I/O, 569 - 570

ptg11524036

1012 compiling

 Unix and, 16 - 18

 Unix systems, multiple source code
files and, 362

 Windows, multiple source code files
and, 362 - 363

 complex types, 85

 complit.c program, 632 - 633

 compound literals, 431

 arrays, 432 - 434

 structures and, 631 - 633

 compound statements (blocks), 171 - 173

 conditional compilation, 731

 #elif directive, 736 - 737

 #else directive, 732 - 733

 #endif directive, 732 - 733

 #error directive, 738 - 740

 #if directive, 736 - 737

 #ifdef directive, 732 - 733

 #line directive, 738 - 740

 macros, predefined, 737 - 740

 conditional operators, 911 - 912

 conditional (?:) operator, 272 - 273

 const keyword, 109 , 148

 arrays, 385

 protecting, 415 - 417

 sizes and, 431

 C++ compared to C, 423

 constants created, 716

 formal parameters, 413 - 415

 const type qualifier, 552

 global data, 553 - 554

 parameter declarations, 552 - 553

 pointers and, 552 - 553

 constants, 57 - 59

 character constants, initialization,
72 - 73

 enum keyword, 649 - 650

 expressions, array declaration, 544

 floating-point, 81 - 82

 int, 64

 long, 68

 long long, 68

 manifest, 109 - 110

 #define directive, 713

 preprocessor and, 106 - 112

 redefining, 717 - 718

 string constants, 442 - 443

 double quotation marks, 465

 symbolic, 106 - 111

 when to use, 716

 contents of arrays, protecting, 412 - 417

 continue statement, loops, 274 - 277

 control strings, 115 - 114

 scanf(), 128

 conversion specifiers, 112 - 113

 mismatched conversions, 122 - 124

 modifiers, 116 - 121 , 129

 conversions . See also type conversions

 string-to-number, 500 - 503

 copy1.c program, 482 - 484

 copy2.c program, 484 - 485

 copy3.c program, 486 - 487

 CopyToNode() function, 799

 count.c program, 569

 counting loops, 207 - 208

 CPU (central processing unit), 5

 ctype.h

 character functions, 252 - 253 , 495

 strings, 495

 Cygwin, 19

 cypher1.c program, 250 - 252

ptg11524036

1013directives

 parameters, 403

 pointers, 544

 variable expressions, 544

 pointers, 372 - 373

 declaring variables, 37 , 57 , 102

 char type, 72

 int, 63

 decrement (--) operator, 164 - 166

 decrementing pointers, 410 - 411

 #define statement, 109 , 136

 arguments, 718

 ## operator, 722 - 723

 function-like macros, 718

 mac_arg.c program, 719 - 721

 strings from macro arguments,
 721 - 722

 variadic macros, 723 - 724

 enumerations instead, 701

 manifest constants, 713

 typedef, 654

 defines.c program, 111 - 112

 DeleteAll() function, 843

 DeleteItem() function, 836 - 837 , 841 - 842

 DeleteNode() function, 841 - 842

 dereferencing uninitialized pointers, 411

 design features, 2

 designated initializers, 388 - 390

 designing the program, 11

 dice rolling example, 538 - 543

 diceroll.c file, 539 - 540

 diceroll.h file, 540

 differencing between pointers, 411

 directives

 #elif, 736 - 737

 #else, 732 - 733

 #endif, 732 - 733

 first.c program, 31 - 32

 D
 data keywords, 59 - 60

 data objects, 147

 data representation, 773 - 774

 films1.c program, 775 - 777

 interfaces

 building, 789 - 793

 defining, 805 - 806

 implementing, 796 - 802 , 806 - 810

 using, 793 - 796

 data types, 35 . See also ADT (abstract

data type)

 basic, 87

 _Bool, 203 - 204

 int, 62 - 65

 mismatches, 89

 size_t, 158

 day_mon1.c program, 385 - 386

 day_mon2.c program, 387 - 388

 day_mon3.c program, 401

 days[] array, 385

 debugging, 12

 nogood.c, 46 - 49

 program state, 49

 programs for, 49

 semantic errors, 47 - 48

 syntax errors, 46 - 47

 tracing, 48

 decimal system, 674

 binary equivalents, 678

 declarations, 34 - 35

 fathm_ft.c program, 43

 function declarations, 45

 modifiers, 655 - 656

 declaring

 arrays, 102

 constant expressions, 544

ptg11524036

1014 directives

 #if, 736 - 737

 #ifdef, 732 - 733

 #ifndef, 733 - 735

 #undef, 731

 disks, 5

 displaying linked lists, 783 - 784

 division (/) operator, 153 - 154

 divisors.c program, 261 - 262

 DLLs (dynamic link libraries), 20

 do while loop, 220 - 223

 documentation

 commenting, 13

 fathm_ft.c program, 43

 doubincl.c program, 735

 double keyword, 60

 double quotation marks, 465

 macros and, 716

 double type, 80 - 81

 do_while.c program, 221

 dualview.c program, 697 - 703

 Dummy() function, 663

 dynamic memory allocation

 storage classes and, 549 - 551

 VLAs and, 431 , 548 - 549

 dyn_arr.c program, 545 - 547

 E
 eatline() function, 664

 echo.c program, 300

 echo_eof.c program, 305 - 306

 editors, Unix systems, 16

 efficiency, 3

 electric.c program, 255 - 257

 elements

 arrays, 824

 linked lists, 824

 #elif directive, 736 - 737

 #else directive, 732 - 733

 else if statement, 253 - 257

 emacs editor, 16

 EmptyTheList() function, 793

 EmptyTree() function, 833

 #endif directive, 732 - 733

 end-of-file. See EOF (end-of-file)

 entity identifier, 512

 entry condition loop, 195

 enum keyword, 649

 constants, 649 - 650

 usage, 650 - 652

 enum.c program, 650 - 652

 enumerated types, 649

 C++, 649

 shared namespaces, 652 - 653

 values

 assigned, 650

 default, 650

 enumeration, #define statement, 701

 EOF (end-of-file), 304 - 306

 standard I/O, 572 - 573

 equality (==) operator, 191

 #error directive, 738 - 740

 errors

 semantic, 47 - 48

 syntax, 46 - 47

 escape sequences, 73 , 91 , 94

 escape.c program, 91

 printf() function, 91 - 92

 escape.c program, 91

 EXCLUSIVE OR operator, 680

 executable files, 14 - 18

 execution, smooth, 325

 exit() function, 570 , 753 - 755

ptg11524036

1015first.c program

 file inclusion

 C library, 745

 #include directive, 726 - 730

 file I/O

 fgets() function, 578 - 579

 fprintf() function, 576 - 578

 fputs() function, 578 - 579

 fscanf() function, 576 - 578

 file-condensing program, 574 - 576

 filenames, 14

 files, 303

 binary, 566 , 582

 binary view, 567

 description, 566

 EOF (end-of-file), 304 - 306

 executable, 14 - 18

 object code, 14 - 18

 portability, 582 - 583

 redirection, 307

 size, 566

 source code, 14

 structure contents, saving, 639 - 644

 text, 566

 versus binary, 582

 binary mode, 567

 text mode, 567

 text view, 567

 films1.c program, 775 - 777

 films3.c program, 794 - 796

 first.c program, 28

 { } (braces), 34

 comments, 33 - 34

 data types, 35

 declarations, 34 - 35

 directives, 31 - 32

 header files, 31 - 32

 main() function, 32 - 33

 exit-condition loop, 220 - 223

 EXIT_FAILURE macro, 570

 EXIT_SUCCESS macro, 570

 expressions, 167 - 168

 generic selection, 740 - 741

 logical, 911

 relational, 910

 false, 199 - 203

 true, 199 - 203

 values, 168

 extern keyword, 536

 external linkage, 515

 F
 %f specifier in printf() function, 57

 factor.c program, 356 - 358

 fathm_ft.c program, 42 - 43

 declarations, 43

 documentation, 43

 multiplication, 43

 fclose() function, 574

 feof() function, 589

 ferror() function, 589

 fflush() function, 585

 fgetpos() function, 583

 fgets() function, 495 - 497 , 578 - 579

 string input, 456 - 461

 fgets1.c program, 456 - 457

 fgets2.c program, 457 - 458

 fgets3.c program, 459 - 460

 Fibonnaci numbers, 360

 fields, bit fields, 690 - 692

 bitwise operators and, 696 - 703

 storage, 692 - 695

 fields.c program, 693 - 695

ptg11524036

1016 first.c program

 name choices, 36

 return statement, 40

 stdio.h file, 31

 fit() function, 470 - 471

 flags.c program, 120

 flc.c program, 433 - 434

 flexibility of C, 3

 flexible arrays, 633 - 636

 flexmemb.c program, 634 - 636

 float argument, conversion, 116

 float keyword, 60

 float type, 80 - 81

 floating points, binary

 binary fractions, 676

 floating-point representation, 676

 floating-point constants, 81 - 82

 floating-point numbers, 61 - 57 , 93

 overflow, 83 - 84

 round-off errors, 84

 underflow, 83 - 84

 floating-point representation, 84

 floating-point types, 94

 integer comparison, 60

 floating-point values

 Borland C and, 608

 printing, 82 - 83

 floating-point variables, declaring, 81

 flushing output, 92 - 93

 fopen() function, 570 - 572 , 579 , 584

 for keyword, 209

 for loop, 208 - 209

 arrays and, 228 - 230

 comma operator and, 216

 flexibility, 210 - 214

 selecting, 223 - 224

 structure, 209

 for_cube.c program, 209 - 210

 FORTRAN, 7

 fprintf() function, 576 - 578

 fputs() function, 578 - 579

 string input, 456 - 460

 string output, 465 - 466

 fractional parts, 61

 fractions, binary, 676

 fread() function, 586 - 639

 example, 589 - 590

 free() function, 545 - 547 , 802

 importance of, 547 - 548

 friend.c program, 615 - 618

 fscanf() function, 576 - 578

 fseek() function, 579 - 582

 fsetpos() function, 583

 ftell() function, 579 - 582

 ftoa() function, 503

 FullTree() function, 833

 func_ptr.c program, 660 - 664

 function declarations, 45

 function pointers, 657

 addresses, 657

 ToUpper() function, 657 - 658

 function scope, 514

 function-like macros, 718 , 731

 functions, 4

 { } (braces), 34

 AddItem(), 793 , 800 - 801 , 833 - 835

 AddNode(), 833 - 835

 ANSI C, prototyping, 349 - 353

 arguments, 177 - 180 , 340 - 342

 formal parameters, 342 - 343

 none, 352 - 353

 prototyping function with, 343

 unspecified, 352 - 353

ptg11524036

1017functions

 fsetpos(), 583

 ftell(), 579 - 582

 ftoa(), 503

 FullTree(), 833

 fwrite(), 586 - 590 , 639

 getc(), 572

 getchar(), 20 , 250 - 252

 get_choice(), 325 - 327

 getinfo(), 624

 get_long(), 322

 getnights(), 366

 gets(), 453 - 455 , 460 - 461

 gets_s(), 460 - 461

 headers, 40

 imax(), 350 - 351

 imin(), 345 - 348

 InitializeList(), 793 , 800

 InitializeTree(), 833

 inline, 725 , 741 - 744

 InOrder(), 842

 input, 584

 isalnum(), 254

 isalpha() function, 254

 isblank(), 254

 iscntrl(), 254

 isdigit(), 254

 isgraph(), 254

 islower(), 254 , 268

 isprint(), 254

 ispunct(), 254

 isspace(), 254 , 269

 isupper(), 254

 isxdigit(), 254

 itoa(), 503

 itobs(), 687

 ListIsEmpty(), 800

 ListIsFull(), 800 - 801

 arrays

 multidimensional, 423 - 427

 of structures, 637 - 638

 assert(), 760 - 763

 atan(), 747

 atoi(), 500

 black-box viewpoint, 345

 body, 34 , 40

 butler(), 44 - 45 , 177

 calling

 altering variables, 369 - 371

 with argument, 343 - 344

 nested calls, 468 - 469

 calloc(), 548

 character, ctype.h, 252 - 253

 creating, 337 - 340

 DeleteAll(), 843

 DeleteItem(), 841 - 842

 DeleteNode(), 841 - 842

 description, 335

 Dummy(), 663

 eatline(), 664

 EmptyTheList(), 793

 EmptyTree(), 833

 exit(), 570 , 753 - 755

 fclose(), 574

 feof(), 589

 ferror(), 589

 fflush(), 585

 fgetpos(), 583

 fgets(), 456 - 461 , 578 - 579

 fit(), 470 - 471

 fopen(), 570 - 572 , 579 , 584

 fputs(), 456 - 460 , 465 - 466 , 578 - 579

 fread(), 586 - 590 , 639

 free(), 545 - 548 , 802

 fseek(), 579 - 582

ptg11524036

1018 functions

 ListItemCount(), 800 - 801

 versus macros, 725 - 726

 main(), 30 - 33 , 232 , 337 - 340

 makeinfo(), 624 - 626

 MakeNode(), 833 - 835

 malloc(), 543 - 544 , 628 - 631 , 777

 math library, 748

 memcpy(), 763 - 765

 memmove(), 763 - 765

 menu(), 366

 mult_array(), 415 - 416

 multiple, 44 - 45

 mycomp(), 758 - 760

 names, 336

 uses, 664

 _Noreturn (C11), 744

 pointers

 arrays of, 664

 communication and, 373 - 375

 declaring, 658

 pound(), 179

 pow(), 230

 power(), 233

 printf(), 30 - 31 , 38 - 39

 multiple values, 43 - 44

 print_name(), 352 - 353

 prototyping

 ANSI C, 349 - 353

 arguments and, 343

 scope, 514 - 515

 put1(), 467

 put2(), 468

 putc(), 572

 putchar(), 250 - 252

 puts(), 442 , 453 - 455 , 464 - 465 , 471

 qsort(), 657 , 755 - 758

 rand(), 534 , 819 - 820

 rand0(), 535

 recursive, 353 - 355

 returns, 356

 statements, 356

 variables, 355

 return values, 233 - 234

 rewind(), 577 , 643

 rfact(), 358

 scanf(), 58 , 128 - 129

 SeekItem(), 833 - 835 , 841 - 842

 setvbuf(), 584 - 586

 s_gets(), 461 - 462 , 592

 show(), 659

 show_array(), 416

 show_bstr(), 687

 showmenu(), 663 - 664

 show_n_char(), 340 - 344

 sprintf(), 487 - 489

 sqrt(), 660 , 747

 srand(), 536 - 538 , 542 , 820

 starbar(), 337 - 340

 storage classes, 533 - 534

 strcat(), 471 - 473 , 489

 strchr(), 490 , 664

 strcmp(), 475 - 480 , 489

 strcpy(), 482 - 485 , 489

 strlen(), 101 - 105 , 469 - 471 , 490

 strncat(), 473 - 474 , 489

 strncmp(), 489

 strncpy(), 482 - 489

 strpbrk(), 490

 strstr(), 490

 strtod(), 503

 strtol(), 503

 strtoul(), 503

 structure, 339

 sum(), 402

ptg11524036

1019hotel.h

 generic selection, 740 - 741

 getc() function, 572

 getchar(), 28

 end-of-file, 304

 single-character I/O and, 300 - 301

 getchar() function, 20 , 250 - 252

 get_choice() function, 325 - 327

 getinfo() function, 624

 get_long() function, 322

 getnights() function, 366

 gets() function, 453 - 455

 string input, 460 - 461

 getsputs.c program, 453 - 455

 gets_s() function, string input, 460 - 461

 global data, const type qualifier, 553 - 554

 GNU (GNU's Not Unix), 18

 goto statement, 287 , 290

 guess.c program, 312 - 314

 H
 header files

 compiling, multiple source code files
and, 363 - 367

 example, 727

 first.c program, 31 - 32

 IDEs, 726

 #include directive, 726 - 727

 multiple inclusions, 727 - 728

 uses, 729 - 730

 headers, functions, 40

 hello.c program, 500 - 502

 hexadecimal numbers, 65 - 66 , 94 , 677 - 678

 binary equivalents, 678

 hotel.h, 365 - 366

 sump(), 405

 time(), 538 , 654 , 820

 to_binary(), 360

 ToLeft(), 835

 ToLower(), 663

 tolower(), 253

 ToRight(), 835

 ToUpper(), 657 - 659 , 663

 toupper(), 253

 Transpose(), 663

 Traverse(), 793 , 801 , 842

 TreeItems(), 833

 types, 348 - 349

 ungetc(), 585

 up_and_down(), 354 - 355

 uses, 336

 values, return keyword, 345 - 348

 VLAs, two-dimensional argument, 428

 void, 658

 funds1.c program, 618 - 619

 funds2.c program, 620

 funds3.c program, 621 - 622

 funds4.c program, 637 - 638

 fwrite() function, 586 - 588 , 639

 example, 589 - 590

 G
 gcc command, 18

 GCC compiler, 18

 general utilities library

 atexit() function, 753 - 755

 exit() function, 753 - 755

 qsort() function, 755 - 758

 _Generic keyword, 740 - 741

ptg11524036

1020 IDE

 I
 IDE (integrated development environ-

ments), header files, 726

 identifiers

 entity, 512

 reserved, 49 - 50

 IDEs (integrated development environ-

ments), 19 - 21

 #if directive, 736 - 737

 if else pairings, 257 - 259

 if else statement, 248 - 249 , 291

 ?: (conditional) operator, 272 - 273

 switch statement comparison, 286 - 287

 if statement, 246 - 248 , 291

 if else comparison, 249

 #ifdef directive, 732 - 733

 ifdef.c program, 732 - 733

 #ifndef directive, 733 - 735

 images, bitmapped, 774

 imaginary types, 85

 imax() function, 350 - 351

 imin() function, 345 - 348

 #include directive

 C library file inclusion, 745 - 746

 file inclusion, 726 - 730

 #include statement, 30 - 31

 increment (++) operator, 160 - 164

 incrementing pointers, 410

 indefinite loops, 207 - 208

 indexes, arrays, 384

 indirect membership operator, 913

 initialization

 arrays, 384 - 388

 multidimensional, 396

 character string arrays, 444 - 445

 structures, 606

 unions, 645

 variables, 63

 InitializeList() function, 793 , 800

 InitializeTree() function, 833

 inline definition, 744

 inline functions, 725 , 741 - 744

 inline keyword, 744

 InOrder() function, 842

 input

 buffered, 301

 character, mixing with numeric,
314 - 317

 functions, 584

 keyboard, 304

 terminating, 302 - 306

 numbers, 323 - 324

 numeric mixed with character input,
 314 - 317 , 327 - 330

 redirection, 307 - 308

 string

 buffer overflow, 455

 fgets() function, 456 - 460

 fputs() function, 456 - 460

 gets() function, 453 - 455

 gets_s() function, 460 - 461

 long, 455

 scanf() function, 462 - 463

 s_gets() function, 461 - 462

 space creation, 453

 user interface, 312 - 314

 numeric mixed with character,
 314 - 317

 validation, 299 - 300 , 317 - 324

 int arrays, in memory, 228

 int constants, 64

 int keyword, 60

ptg11524036

1021itobs() function

 inword flag, 269 - 270

 I/O (input/output)

 file I/O

 fprintf() function, 576 - 578

 fscanf() function, 576 - 578

 file-condensing program, 574 - 576

 functions, 299 - 300

 levels, 568

 single character, 300 - 301

 standard, 568 - 569

 command-line arguments, 569 - 570

 end-of-file, 572 - 573

 fclose() function, 574

 fopen() function, 570 - 572

 getc() function, 572

 pointers to files, 574

 putc() function, 572

 I/O package, 32

 isalnum() function, 254

 isalpha() function, 254

 isblank() function, 254

 iscntrl() function, 254

 isdigit() function, 254

 isgraph() function, 254

 islower() function, 254 , 268

 ISO (International Organization for

Standardization), 8

 C keywords, 49

 ISO C, 9

 isprint() function, 254

 ispunct() function, 254 , 495 - 497

 isspace() function, 254 , 269

 isupper() function, 254

 isxdigit() function, 254

 itoa() function, 503

 itobs() function, 687

 int type, 30 , 34 , 62

 constants, 75

 hexadecimal numbers, 65 - 66

 long, 66 - 67

 multiple, 67 - 68

 octal numbers, 65 - 66

 printing int values, 64

 short, 66 - 67

 unsigned, 66 - 67

 variable declaration, 63

 intconv.c program, 122 - 123

 integers, 61

 binary, 674 - 675

 floating-point type comparison, 60

 mixing with floating types, 124

 overflow, 69

 pointers, 410

 subtracting, 410

 properties, 787

 signed, 675 - 676

 union as, 697

 integrated environment, command-line

arguments, 500

 interactive programs, 58

 interchange() function, 369 - 371

 interfaces

 binary search tree, 830 - 832

 building, ADTs and, 789 - 793

 defining, 805 - 806

 functions, implementing, 810 - 815

 implementing, 796 - 802

 using, 793 - 796

 intermediate files, 14

 internal linkage, 515

 InTree() function, 836 - 837

 inttypes.h, 78

ptg11524036

1022 jove editor

 J
 jove editor, 16

 K
 keyboard input, 304

 keystrokes, 23

 keywords, 49 - 50

 for, 209

 auto, 518

 char, 60

 const, 109 , 385

 C/C++ comparison, 423

 formal parameters, 413 - 415

 protecting arrays, 415 - 417

 data types, 59 - 60

 double, 60

 enum, 649

 constants, 649 - 650

 usage, 650 - 652

 values, 650

 extern, 536

 float, 60

 _Generic, 740 - 741

 inline, 744

 int, 34 , 60

 long, 60

 return, 230 , 345 - 348

 short, 60

 struct, 604

 typedef, 158 , 653 , 654 - 656

 #define statement and, 654

 location, 653

 variable names, 653 - 654

 unsigned, 60

 void, 178

 K&R C, 8

 L
 labels, case, 284 - 285

 languages

 Classic C, 8

 compilers, 7

 high-level, 6

 K&R C, 8

 standards, 7 - 9

 length of strings, 101

 lesser.c program, 345 - 348

 lethead1.c program, 337 - 340

 libraries, 14 - 18

 assert, 760

 assert() function, 760 - 763

 C library

 automatic access, 745

 descriptions, 746 - 747

 file inclusion, 745

 library inclusion, 745 - 746

 general utilities

 atexit() function, 753 - 755

 exit() function, 753 - 755

 qsort() function, 755 - 758

 math, 747

 ANSI C standard functions, 748

 tgmath.h library, 752

 trigonometry, 747 - 750

 types, 750 - 752

 library inclusion (C library), 745 - 746

 limitations of C, 4

 #line directive, 738 - 740

 linkage, 515 - 516

 external, static variables, 524 - 529

 internal, static variables, 529 - 530

 variable scope and, 515

ptg11524036

1023 Macintosh

 logical operators, 264 , 911

 alternative spellings, 265

 bitwise, 678 - 680

 order of evaluation, 266

 precedence, 265 - 266

 relational expressions, 291

 long constants, 68

 long double type, 80 - 81

 long int type, 66 - 67

 printing, 70

 long keyword, 60

 long long constants, 68

 long long int type, printing, 70

 long strings, printing, 126 - 128

 loops

 break statement, 277 - 279

 continue statement, 274 - 277

 counting, 207 - 208

 do while, 220 - 223

 entry condition, 195

 for, 210 - 214

 indefinite, 207 - 208

 introduction, 144 - 146

 nested, 224 - 226

 selecting, 223 - 224

 tail recursion and, 356 - 358

 while, 144 , 190 - 191 , 195

 terminating, 194 - 195

 M
 mac_arg.c program, 719 - 721

 machine language, 6

 Macintosh

 command-line arguments, 500

 Xcode, 21

 linked lists, 779 - 780

 arrays comparison, 824 - 828

 creating, 784 - 785

 displaying lists, 783 - 784

 elements, inserting, 824

 films2.c program, 781 - 785

 list memory, freeing, 785 - 786

 searches, 826

 several items, 781

 two items, 780

 Linux systems, 18 - 19

 compiling, multiple source code files
and, 362 - 32

 redirection, 307 - 311

 Windows/Linux option, 21

 list.c program, 796 - 802

 list.h header file, 791 - 793

 ListIsEmpty() function, 800

 ListIsFull() function, 800 - 801

 ListItemCount() function, 800 - 801

 lists

 ADTS, operations, 788

 linked

 arrays and, 824 - 828

 creating, 784 - 785

 displaying, 783 - 784

 freeing list memory, 785 - 786

 ordered, 826

 literals, 81 - 82

 character string literals, 442 - 443

 compound, 431

 arrays, 432 - 434

 structures and, 631 - 633

 string literals, storage, 512

 LLVM Project, 18

 loccheck.c program, 367 - 368

ptg11524036

1024 macros

 macros

 arguments, strings from, 721 - 722

 containing macros, 715

 double quotation marks and, 716

 empty macros, 731

 EXIT_FAILURE, 570

 EXIT_SUCCESS, 570

 function-like macros, 718 , 731

 versus functions, 725 - 726

 object-like macros, 714 , 731

 predefined, 737 - 740

 SQUARE, 719 - 720

 strings, 715

 tokens, 717

 va_arg(), 766

 va_copy(), 767

 va_end(), 766

 variadic, 723 - 724

 va_start(), 766

 mail.c program, 820 - 824

 main() function, 30 , 32 - 33 , 232 , 337 - 340

 makeinfo() function, 624 , 626

 MakeNode() function, 833 - 835

 malloc() function, 543 - 544

 data representation, 777

 new structures, 779

 pointers, 628 - 631

 structures, 628 - 631

 VLAs and, 548 - 549

 manifest constants, 109 - 110

 #define preprocessor directive, 713

 manybook.c program, 608 - 613

 manydice.c file, 541 - 542

 masks, bitwise operators, 680 - 681

 math library, 747

 ANSI C standard functions, 748

 tgmath.h library, 752

 trigonometry, 747 - 750

 types, 750 - 752

 membership operator (.), 912

 memcpy() function, 763 - 765

 memmove() function, 763 - 765

 memory, 5 - 6

 allocated, 543

 calloc() function, 548

 dynamic, VLAs and, 548 - 549

 free() function, 545 - 548

 malloc() function, 543 - 544

 storage classes and, 549 - 551

 for a structure, 605

 dynamic allocation, VLAs, 431

 list, freeing, 785 - 786

 storage classes, 511 - 513

 structures and, 608

 menu() function, 366

 menuette.c program, 328 - 330

 menus, 324

 tasks, 324

 MinGW, 19

 min.sec.c program, 159

 miscellaneous operators, 914

 misuse.c program, 350 - 351

 mode strings, fopen() function, 571

 modifiers, declarations, 655 - 656

 mod_str.c program, 495 - 497

 modules, compiling, 14

 modulus operator, 159 - 160

 mult_array() function, 415 - 416

 multidimensional arrays, 393 - 398

 functions and, 423 - 427

 pointers and, 417 - 427

 two-dimensional, 394 - 396

 initializing, 397 - 398

ptg11524036

1025operators

 number input, mixing with character, 314 -

 317 , 327 - 330

 numbers, 6

 binary, octal digits, 677

 bits, values, 674

 decimal points, 57

 decimal system, 674

 floating-point, 57 - 61

 hexadecimal, 65 - 66 , 94 , 677 - 678

 input, 323 - 324

 octal, 65 - 66 , 94

 order number bases, 676 - 678

 O
 object code files, 14 - 18

 object-like macros, 714 , 731

 octal numbers, 65 - 66 , 94 , 677

 one's complement, 679

 online resources, 905 - 906

 operators

 #, 713

 ##, 722

 AND, 679

 + (addition), 149

 = (assignment), 146 - 149 , 202

 ?: (conditional), 272 - 273

 -- (decrement), 164 - 166

 == (equality), 191

 ++ (increment), 166

 * (indirection), 371 - 372

 . (membership), 912

 * (multiplication), 151 - 153

 == (relational), 202

 -/+ (sign operators), 150

 - (subtraction), 149 - 150

 / (division), 153 - 154

 < (redirection), 308

 multiplication (*) operator, 151 - 153

 mycomp() function, 758 - 760

 N
 names1.c program, 622 - 624

 names2.c program, 624 - 626

 names3.c program, 629 - 631

 names.h header file, 735

 namespaces, shared, 652 - 653

 names_st.h header file, 727

 naming, 36

 arrays, pointer notation, 402

 functions, 336

 uses of names, 664

 pointer variables, 371

 pointers, arrays and, 402

 variables, 375

 typedef, 653 - 654

 nested function calls, 468 - 469

 nested if statement, 259 - 262

 nested loops, 224 - 226

 nested structures, 613 - 615

 newline character

 preprocessor directives, 713

 stripping, 603

 no_data.c program, 386

 nogood.c program, 46 - 49

 nono.c program, 465

 nonprinting characters, 73 - 76

 _Noreturn functions (C11), 744

 Notepad, 19

 null character, 101 , 459

 scanf() function, 103

 null pointer, 459

 num variable, 30 , 34

ptg11524036

1026 operators

 > (redirection), 308

 arithmetic, 908

 assignment, 910 - 911

 %=, 215

 *=, 215

 +=, 215

 -=, 215

 /=, 215

 binary, 150

 bitwise, 913 - 914

 binbit.c program, 686 - 687

 bit fields and, 696 - 703

 clearing bits, 682 - 683

 logical, 678 - 680

 masks, 680 - 681

 setting bits, 681 - 682

 shift operators, 684 - 685

 toggling bits, 683

 value checking, 683 - 684

 C, 908

 comma operator, 214 - 218

 conditional, 911 - 912

 EXCLUSIVE OR, 680

 indirect membership, 913

 logical, 264 , 911

 alternative spellings, 265

 order of evaluation, 266

 precedence, 265 - 266

 miscellaneous, 914

 modulus, 159 - 160

 OR, 679 - 680

 pointer-related, 912

 precedence, 154 - 155

 increment/decrement, 165 - 166

 logical operators, 265 - 266

 order of evaluation, 155 - 157 , 266

 relational, 197 , 910

 expressions, 910

 precedence, 205

 sign, 912

 sizeof, 158 , 388

 structure, 617 - 618 , 647 , 912 - 913

 structure pointer, 913

 unary, 150

 *, 406

 ++, 406

 union, 912 - 913

 OR operator, 679 - 680

 order number bases, 676 - 678

 order of operator evaluation, 155 - 157

 logical operators, 266

 order.c program, 406 - 407

 ordered lists, 826

 output, 23

 binary, 586

 disappearing, 28 , 57

 printf() function, 92 - 93

 redirection, 308 - 309

 string

 fputs() function, 465 - 466

 printf() function, 466

 puts() function, 464 - 465

 text, 586

 P
 paint.c program, 272 - 273

 parameters

 arrays, declaring, 403

 const type qualifier, 552 - 553

 formal parameters

 const keyword, 413 - 415

 function arguments, 342 - 343

 pointers, 404 - 407

 parentheses, pointers to arrays, 420

ptg11524036

1027precedence of operators

 function communication, 373 - 375

 function pointers, 657

 addresses, 657

 ToUpper() function, 657 - 658

 incrementing, 410

 integers, 410

 subtracting, 410

 malloc() function, 628 - 631

 null, 459

 operations, 408 - 412

 parameters, 404 - 407

 passing, 412

 standard files (I/O), 574

 strcpy() function, 485

 strings, sorting, 493

 strings and, 451 - 452

 structures, 626 - 627

 character pointers, 627 - 628

 declaring, 617

 initializing, 617

 member acces, 617 - 618

 uninitialized, dereferencing, 411

 value finding, 409

 variables, names, 371

 portability, 3 , 582 - 583

 postage.c program, 216

 postfix, 163 - 164

 pound() function, 179

 pow() function, 230

 power() function, 233

 power.c program, 231 - 233

 praise1.c program, 102

 praise2.c program, 104 - 105

 precedence of operators, 154 - 155

 increment/decrement, 165 - 166

 logical operators, 265 - 266

 order of evaluation, 155 - 157

 relational operators, 205

 parta.c file, 532

 partb.c file, 532 - 533

 passing

 arguments, 124

 pointers, 412

 structure members, 618 - 619

 structures, as arguments, 621 - 622

 period (.) character, 262

 peripherals, 5

 petclub.c program, 849 - 854

 pizza.c program, 108

 platinum.c program, 56 - 58

 pnt_add.c program, 399 - 400

 pointer-related operators, 912

 pointers, 371 , 407

 * (indirection) operator, 371 - 372

 addresses, 409

 arrays, 398

 comparison, 445 - 447

 declaration, 544

 differences, 447 - 449

 names, 402

 notation and, 402

 multidimensional, 417 - 427

 parentheses, 420

 assignment and, 409

 comparisons, 411

 compatibility, 421 - 423

 const type qualifier, 552 - 553

 constants

 as function parameter, 416

 value changes and, 415

 declaring, 372 - 373

 to functions, 658

 decrementing, 410 - 411

 differencing, 411

 function, arrays of, 664

ptg11524036

1028 predefined macros

 predefined macros, 737 - 740

 prefix, 163 - 164

 preproc.c program, 713 - 718

 preprocessor

 constants and, 106 - 112

 directives, newline character, 713

 identifiers and, 731

 print_name() function, 352 - 353

 print1.c program, 64 - 65

 print2.c program, 70 - 71

 printf() function, 30 - 31 , 38 - 39

 * modifier, 133 - 135

 %f specifier, 57

 arguments, 89 - 91 , 114

 conversion specifications, 112 - 113

 mismatched conversions, 122 - 124

 modifiers, 116 - 121

 escape sequences, 91 - 92

 flags, 118

 multiple values, 43 - 44

 output, 92 - 93

 return value, 126

 usage tips, 135 - 136

 printing

 char type and, 76

 floating-point values, 82 - 83

 int values, 64

 long long types, 70

 long types, 70

 short types, 70

 strings, 102 - 103

 long strings, 126 - 128

 unsigned types, 70

 printout.c program, 112 - 114

 prntval.c program, 126

 program jumps, 290

 program state, 49

 programmers, 3

 programming

 books, 907

 code, writing, 11

 commenting, 13

 compiling, 11 - 12

 debugging, 12

 design, 11

 maintenance, 13

 objectives, 10

 running the program, 12

 seven steps,

 testing, 12

 programs

 readability, 41 - 42

 structure, 40

 protecting array contents, 412 - 417

 proto.c program, 351 - 352

 prototyping functions

 ANSI C, 349 - 353

 arguments and, 343

 scope, 514 - 515

 ptr_ops.c program, 408 - 409

 put1() function, 467

 put2() function, 468

 putc() function, 572

 putchar() function, 250 - 252

 single-character I/O and, 300 - 301

 put_out.c program, 464 - 465

 put_put.c program, 468 - 469

 puts() function, 442

 null character and, 471

 string input, 453 - 455

 string output, 464 - 465

ptg11524036

1029return values

 reversal and, 358 - 360

 statements, 356

 tail recursion, 356 - 358

 up_and_down() function, 354 - 355

 variables, 355

 redefining constants, 717 - 718

 redirection, 307

 < operator, 308

 > operator, 308

 combination, 309 - 310

 command-line, 310

 input, 307 - 308

 output, 308 - 309

 reducto.c program, 574 - 576

 reference books, 908

 register variables, storage classes, 522

 relational expressions

 false, 199 - 203

 logical operator and, 291

 true, 199 - 203

 relational operators, 197 , 910

 ==, 191

 expressions, 910

 precedence, 205

 repeat.c program, 498 - 499

 reserved identifiers, 49 - 50

 resources

 books

 C++, 907

 C language, 907

 programming, 907

 reference, 908

 online, 905 - 906

 restrict type qualifier, 555 - 556

 return keyword, 230 , 345 - 348

 return statement, 40

 Q
 qsort() function, 657 , 755 - 758

 queue abstract data type, 804

 array as queue, 806

 circular queue, 808

 interface, defining, 805 - 806

 simulations, 818 - 824

 testing queue, 815 - 817

 queue.c implementation file, 813 - 815

 queue.h interface header file, 809 - 810

 quotation marks, double, 465

 R
 ragged arrays, 450

 rain.c program, 395 - 396

 RAM (random access memory), 5

 rand() function, 534 , 819 , 820

 rand0() function, 535

 randbin.c program, 593 - 594

 random access

 binary I/O, 593 - 594

 fgetpos() function, 583

 fopen() function, 579

 fseek() function, 579 - 582

 fsetpos() function, 583

 ftell() function, 579 - 582

 ranges, && operator, 267 - 268

 readability, 41 - 42

 rectangular arrays, 450

 rect_pol.c program, 749 - 750

 recur.c program, 354 - 355

 recursion, 353 - 355

 Fibonacci numbers and, 360

 pros/cons, 360 - 361

 returns, 356

ptg11524036

1030 return values

 return values

 functions, 233 - 234

 printf() function, 126

 scanf() function, 133

 reversal, recursion and, 358 - 360

 reverse.c program, 579 - 580

 rewind() function, 577 , 643

 rfact() function, 358

 Ritchie, Dennis, 1

 routines, library routines, 15

 rows1.c program, 224 - 225

 running.c program, 180 - 181

 S
 samples, book inventory, 601 - 602

 scanf() function, 58 , 128 - 129

 arguments, 89 - 91

 conversion specifiers, 129

 format string, regular characters,
132 - 133

 input, 129 - 132

 null character, 103

 return value, 133

 while loop and, 191 - 193

 scope

 block, 514

 function, 514

 function prototypes, 514 - 515

 linkage, 515 - 516

 storage classes, 513 - 515

 scores_in.c program, 228 - 230

 searches

 binary, 826 - 827

 binary search trees, 828 - 829

 adding items, 833 - 836

 AddItem() function, 833 - 837

 AddNode() function, 833 - 835

 ADT, 829 - 843

 DeleteAll() function, 843

 DeleteItem() function, 836 - 837 ,
 841 - 842

 DeleteNode() function, 841 - 842

 deleting items, 837 - 842

 deleting nodes, 840 - 841

 emptying, 843

 EmptyTree() function, 833

 finding items, 836 - 837

 FullTree() function, 833

 InitializeTree() function, 833

 interface, 830 - 832

 InTree() function, 836 - 837

 MakeNode() function, 833 - 835

 SeekItem() function, 833 - 837 ,
841 - 842

 tips, 854 - 856

 ToLeft() function, 835

 ToRight() function, 835

 traversing trees, 842

 TreeItems() function, 833

 linked lists, 826

 SeekItem() function, 833 - 837 , 841 - 842

 selection sort algorithm, 494 - 495

 semantic errors, 47 - 48

 sequence points, statements, 170 - 171

 setting bits (bitwise operators), 681 - 682

 setvbuf() function, 584 - 586

 s_gets() function, 592

 string input, 461 - 462

 shared namespaces, 652 - 653

 shift operators (bitwise), 684 - 685

 short int type, 66 - 67

 printing, 70

 short keyword, 60

ptg11524036

1031statements

 standard files (I/O), 568

 pointers to, 574

 standard I/O, 568 - 569

 binary, random access and, 593 - 594

 command-line arguments, 569 - 570

 end-of-file, 572 - 573

 fclose() function, 574

 feof() function, 589

 ferror() function, 589

 fflush() function, 585

 fopen() function, 570 - 572 , 584

 fread() function, 586 - 589

 example, 589 - 590

 fwrite() function, 586 - 588

 example, 589 - 590

 getc() function, 572

 putc() function, 572

 setvbuf() function, 584 - 586

 ungetc() function, 585

 starbar() function, 337 - 340

 starsrch.c program, 481

 startup code, 15

 statements, 168 - 170

 assignment, 37 - 38

 break, 277 - 279 , 282 - 283

 compound (blocks), 171 - 173

 continue, 274 - 277

 declarations, 34 - 35

 #define, 109

 else if, 253 - 257

 goto, 287 - 290

 if, 246 - 248 , 291

 if else, 248 - 249 , 272 - 273 , 291

 #include, 30 - 31

 recursive functions, 356

 return, 40

 sequence points, 170 - 171

 show() function, 659

 show_array() function, 416

 show_bstr() function, 687

 showchar2.c program, 316 - 317

 showf_pt.c program, 82 - 83

 showmenu() function, 663 , 664

 show_n_char() function, 340 - 344

 side effects, statements, 170 - 171

 sign operators, 912

 sign operators (-/+), 150

 signed integers, 675 - 676

 signed types, 93

 char, 77

 simulations, queue package, 818 - 824

 single-character I/O, 300 - 301

 single-character reading, 283

 sizeof operator, 158 , 388

 sizeof.c program, 158

 size_t type, 158

 skip2.c program, 134 - 135

 skippart.c program, 274 - 276

 somedata.c program, 387

 sort_str.c program, 491 - 493

 sorting, strings, 491

 pointers, 493

 selection sort algorithm, 494 - 495

 source code

 files, 14

 text files, 19

 two or more files when compiling,
361 - 367

 sprintf() function, 487 - 489

 sqrt() function, 660 , 747

 SQUARE macro, 719 - 720

 srand() function, 536 - 538 , 542 , 820

ptg11524036

1032 statements

 side effects, 170 - 171

 switch, 280 - 283 , 291

 terminating semicolon, 40

 while, 145 , 170 , 193

 static class qualifier, 557

 static variables, 534

 storage classes, 522 - 524

 external linkage, 524 - 529

 internal linkage, 529 - 530

 stdarg.h file, variadic macros, 765 - 768

 stdin stream, 307

 stdint.h, 77 - 78

 stdio.h file, 31

 pointers to standard files, 574

 storage, 5

 bit fields, 692 - 695

 numbers, 6

 string literals, 512

 storage classes, 511 - 513

 arrays and, 386

 automatic, 517

 dynamic memory allocation, 549 - 551

 functions and, 533 - 534

 linkage, 515 - 516

 multiple files, 530

 register, 517

 scope, 513 - 515

 selecting, 534

 specifiers, 530 - 531

 static w/ external linkage, 517

 static w/ internal linkage, 517

 static w/ no linkage, 517

 storage duration, 516 - 517

 variables

 automatic, 518 - 522

 register, 522

 static with block scope, 522 - 524

 static with external linkage,
524 - 529

 static with internal linkage,
529 - 530

 storage duration, 516 - 517

 strcat() function, 471 - 473 , 489

 strchr() function, 490 , 495 - 497 , 664

 strcmp() function, 475 - 480 , 489

 strcnvt.c program, 502 - 503

 strcpy() function, 482 - 484 , 489

 pointers, 485

 properties, 484 - 485

 streams, 303

 string functions

 sprintf(), 487 - 489

 strcat(), 471 - 473 , 489

 strchr(), 490

 strcmp(), 475 - 480 , 489

 strcpy(), 482 - 484 , 489

 properties, 484 - 485

 strlen(), 469 - 471 , 490

 strncat(), 473 - 474 , 489

 strncmp(), 489

 strncpy(), 482 - 489

 strpbrk(), 490

 strstr(), 490

 string input

 buffer overflow, 455

 fgets() function, 456 - 460

 fputs() function, 456 - 460

 gets() function, 453 - 455

 gets_s() function, 460 - 461

 long, 455

 scanf() function, 462 - 463

 s_gets() function, 461 - 462

 space creation, 453

ptg11524036

1033structures

 strncat() function, 473 - 474 , 489

 strncmp() function, 489

 strncpy() function, 482 - 489

 strpbrk() function, 490

 strptr.c program, 443

 strstr() function, 490

 strtod() function, 503

 strtol() function, 503

 strtoul() function, 503

 struct keyword, 604

 structure declaration

 initialization, 606

 initializers, 607 - 608

 member access, 607

 memory allocation, 605

 struct keyword, 604

 variables, defining, 605 - 608

 structure operators, 912 - 913

 structure pointer operator, 913

 structures

 address, 619 - 620

 allocating in a block, 778

 anonymous, 636 - 637

 arrays, 607

 declaring, 611

 functions, 637 - 638

 members, 612

 arrays of, 608

 binary tree, 644

 character arrays, 627 - 628

 character pointers, 627 - 628

 compound literals and, 631 - 633

 malloc() function, 628 - 631

 members, passing, 618 - 619

 memory and, 608

 nested, 613 - 615

 string literals, storage, 512

 string output

 fputs() function, 465 - 466

 printf() function, 466

 puts() function, 464 - 465

 stringf.c program, 121

 string.h library

 memcpy() function, 763 - 765

 memmove() function, 763 - 765

 strings, 102 - 103

 character string arrays, 444 - 445 ,
449 - 451

 character string literals, 442 - 443

 character strings, 101 , 227 , 441

 versus characters, 103

 constants, 442 - 443

 double quotation marks, 465

 control strings, 115 - 114

 defining, within program, 442 - 452

 displaying, 442

 length, 101

 long strings, printing, 126 - 128

 from macro arguments, 721 - 722

 macros, 715

 mode strings, fopen() function, 571

 pointers and, 451 - 452

 printing, 102 - 103

 long strings, 126 - 128

 puts() function, 442

 regular characters, 132 - 133

 sorting, 491

 pointers, 493

 selection sort algorithm, 494 - 495

 strings1.c program, 442

 string-to-number conversions, 500 - 503

 strlen() function, 101 , 103 - 105 , 469 - 471 ,

 490

ptg11524036

1034 structures

 operator, 617 - 618

 operators, 647

 passing as argument, 621 - 622

 pointers to, 615 - 616 , 626 - 627

 declaring, 617

 initializing, 617

 member access, 617 - 618

 saving contents to file, 639 - 644

 union as, 697

 subst.c program, 722

 subtraction (-) operator, 149 - 150

 sum() function, 402

 structure addresses, 619 - 620

 sum_arr1.c program, 403 - 404

 sum_arr2.c program, 405 - 407

 summing.c program, 190 - 191

 sump() function, 405

 swap3.c program, 373 - 375

 sweetie1.c program, 207 - 208

 sweetie2.c program, 208

 switch statement, 280 - 283 , 291

 if else statement comparison, 286 - 287

 symbolic constants, 106 - 111

 when to use, 716

 symbols

 */, 30 , 33 - 34

 /*, 30

 syntax errors, 46 - 47

 syntax points, while loop, 195 - 197

 system requirements, 24

 T
 tail recursion, 356 - 358

 talkback.c program, 100

 tasks, 324

 terminating while loop, 194 - 195

 test_fit.c program, 470 - 471

 testing programs, 12

 text files, 566

 versus binary, 582

 binary mode, 567

 text mode, 567

 versus word process files, 19

 text output, 586

 text view (files), 567

 tgmath.h library, 752

 Thompson, Ken, 1

 time() function, 538 , 654 , 820

 to_binary() function, 360

 toggling bits (bitwise operators), 683

 tokens

 macros, 717

 translation and, 712 - 713

 ToLeft() function, 835

 ToLower() function, 663

 tolower() function, 253

 ToRight() function, 835

 ToUpper() function, 657 - 659 , 663

 toupper() function, 253 , 495 - 497

 tracing, 48

 translation

 compiler and, 712

 newline character and, 712

 tokens, 712 - 713

 whitespace characters, 713

 Transpose() function, 663

 Traverse() function, 793 , 801 , 842

 tree.c implementation file, 843 - 849

 tree.h header file, 830 - 832

 TreeItems() function, 833

 trigonometry, math library and, 747 - 750

 trouble.c program, 201 - 203

ptg11524036

1035va_list type variable

 templates, tags and, 645

 uses, 646 - 647

 Unix systems

 compiling, multiple source code files
and, 362

 editors, 16

 file size, 566

 filenaming, 16

 redirection, 307 - 311

 unsigned int type, 66 - 67

 printing, 70

 unsigned keyword, 60

 unsigned types, char, 77

 unspecified arguments, 352 - 353

 up_and_down() function, 354 - 355

 usehotel.c

 control module, 363 - 364

 function support module, 364 - 365

 use_q.c program, 816 - 817

 user interface

 input

 buffered, 312 - 314

 numeric mixed with character,
 314 - 317

 menus, 324

 tasks, 324

 V
 -v option, 18

 va_arg() macro, 766

 va_copy() macro, 767

 va_end() macro, 766

 va_start() macro, 766

 validation, input, 299 - 300 , 317 - 324

 va_list type variable, 765 - 766

 two-dimensional array, 394 - 396

 initializing, 397 - 398

 two_func.c program, 44 - 45

 type conversions, 174 - 176

 cast operator, 176

 type portability, 116

 type qualifiers, ANSI C

 _Atomic, 556 - 557

 const, 552 - 554

 formal parameters, 557

 restrict, 555 - 556

 volatile, 554 - 555

 type sizes, 86 - 88

 typedef keyword, 158 , 655 - 656

 #define statement and, 654

 location, 653

 variables, names, 653 - 654

 typeface in book, 22

 types

 enumerated, 649

 math library, 750 - 752

 U
 unary operators, 150

 &, 354

 *, 406

 ++, 406

 #undef directive, 731

 ungetc() function, 585

 union operators, 912 - 913

 unions

 anonymous, 647

 arrays of, 645

 initializing, 645

 as integer, 697

 as structure, 697

ptg11524036

1036 values

 values

 arrays, assigning, 390

 bit numbers, 674

 bitwise operators, 683 - 684

 changing, pointers to constants, 415

 expressions, 168

 pointers and, 409

 return keyword, 345 - 348

 variables, 375

 varargs.c program, 767 - 768

 vararr2d.c program, 429 - 431

 variables, 59

 addresses, 375

 automatic, storage classes, 518 - 522

 calling functions, altering, 369 - 371

 declaring, 37 , 57 , 102

 char type, 72

 floating-point, 81

 int, 63

 expressions, array declaration, 544

 floating-point, declaring, 81

 initialization, 63

 names, 375

 typedef, 653 - 654

 num, 30 , 34

 pointers

 declaring, 372 - 373

 names, 371

 recursion, 355

 register, storage classes, 522

 static, 534

 with block scope, 522 - 524

 with external linkage, 524 - 529

 with internal linkage, 529 - 530

 structure, defining, 605 - 608

 values, 375

 variadic macros, 723 - 724

 stdarg.h file, 765 - 768

 varwid.c program, 133 - 134

 vi editor, 16

 Visual Studio, 20 - 21

 VLAs (variable-length arrays), 427

 dynamic memory allocation, 431 ,
548 - 549

 functions, two-dimensional VLA argu-
ment, 428

 malloc() function, 548

 restrictions, 428

 size, 428

 support for, 428

 void, 17

 void function, assignment statements, 658

 void keyword, 178

 volatile type qualifier, 554 - 555

 vowels.c program, 284 - 285

 W
 when.c program, 194 - 195

 where.c program, 550 - 551

 while loop, 144 , 190 - 191

 compound statement and, 172

 conditions, 146

 entry condition loop, 195

 scanf() function, 191 - 193

 selecting, 223 - 224

 structure, 193

 syntax points, 195 - 197

 terminating, 194 - 195

 while statement, 145 , 170 , 193

 whitespace, 137

 scanf() function, 129

 translation and, 713

ptg11524036

1037zippo2.c program

 width.c program, 116 - 119

 Win32 Console Application, 20

 Windows Notepad, 19

 Windows/Linux option, 21

 word processor files versus text files, 19

 wordcnt.c program, 270 - 271

 word-counting program, 268 - 271

 words, 60

 X-Y-Z
 X Window System, text editor, 16

 Xcode, 21

 zippo1.c program, 418 - 419

 zippo2.c program, 420 - 421

ptg11524036

This page intentionally left blank

	Table of Contents
	Preface
	1 Getting Ready
	Whence C?
	Why C?
	Design Features
	Efficiency
	Portability
	Power and Flexibility
	Programmer Oriented
	Shortcomings

	Whither C?
	What Computers Do
	High-level Computer Languages and Compilers
	Language Standards
	The First ANSI/ISO C Standard
	The C99 Standard
	The C11 Standard

	Using C: Seven Steps
	Step 1: Define the Program Objectives
	Step 2: Design the Program
	Step 3: Write the Code
	Step 4: Compile
	Step 5: Run the Program
	Step 6: Test and Debug the Program
	Step 7: Maintain and Modify the Program
	Commentary

	Programming Mechanics
	Object Code Files, Executable Files, and Libraries
	Unix System
	The GNU Compiler Collection and the LLVM Project
	Linux Systems
	Command-Line Compilers for the PC
	Integrated Development Environments (Windows)
	The Windows/Linux Option
	C on the Macintosh

	How This Book Is Organized
	Conventions Used in This Book
	Typeface
	Program Output
	Special Elements

	Summary
	Review Questions
	Programming Exercise

	2 Introducing C
	A Simple Example of C
	The Example Explained
	Pass 1: Quick Synopsis
	Pass 2: Program Details

	The Structure of a Simple Program
	Tips on Making Your Programs Readable
	Taking Another Step in Using C
	Documentation
	Multiple Declarations
	Multiplication
	Printing Multiple Values

	While You’re at It—Multiple Functions
	Introducing Debugging
	Syntax Errors
	Semantic Errors
	Program State

	Keywords and Reserved Identifiers
	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	3 Data and C
	A Sample Program
	What’s New in This Program?

	Data Variables and Constants
	Data: Data-Type Keywords
	Integer Versus Floating-Point Types
	The Integer
	The Floating-Point Number

	Basic C Data Types
	The int Type
	Other Integer Types
	Using Characters: Type char
	The _Bool Type
	Portable Types: stdint.h and inttypes.h
	Types float, double, and long double
	Complex and Imaginary Types
	Beyond the Basic Types
	Type Sizes

	Using Data Types
	Arguments and Pitfalls
	One More Example: Escape Sequences
	What Happens When the Program Runs
	Flushing the Output

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	4 Character Strings and Formatted Input/Output
	Introductory Program
	Character Strings: An Introduction
	Type char Arrays and the Null Character
	Using Strings
	The strlen() Function

	Constants and the C Preprocessor
	The const Modifier
	Manifest Constants on the Job

	Exploring and Exploiting printf() and scanf()
	The printf() Function
	Using printf()
	Conversion Specification Modifiers for printf()
	What Does a Conversion Specification Convert?
	Using scanf()
	The * Modifier with printf() and scanf()
	Usage Tips for printf()

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	5 Operators, Expressions, and Statements
	Introducing Loops
	Fundamental Operators
	Assignment Operator: =
	Addition Operator: +
	Subtraction Operator: –
	Sign Operators: – and +
	Multiplication Operator: *
	Division Operator: /
	Operator Precedence
	Precedence and the Order of Evaluation

	Some Additional Operators
	The sizeof Operator and the size_t Type
	Modulus Operator: %
	Increment and Decrement Operators: ++ and --
	Decrementing: --
	Precedence
	Don’t Be Too Clever

	Expressions and Statements
	Expressions
	Statements
	Compound Statements (Blocks)

	Type Conversions
	The Cast Operator

	Function with Arguments
	A Sample Program
	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	6 C Control Statements: Looping
	Revisiting the while Loop
	Program Comments
	C-Style Reading Loop

	The while Statement
	Terminating a while Loop
	When a Loop Terminates
	while: An Entry-Condition Loop
	Syntax Points

	Which Is Bigger: Using Relational Operators and Expressions
	What Is Truth?
	What Else Is True?
	Troubles with Truth
	The New _Bool Type
	Precedence of Relational Operators

	Indefinite Loops and Counting Loops
	The for Loop
	Using for for Flexibility

	More Assignment Operators: +=, -=, *=, /=, %=
	The Comma Operator
	Zeno Meets the for Loop

	An Exit-Condition Loop: do while
	Which Loop?
	Nested Loops
	Program Discussion
	A Nested Variation

	Introducing Arrays
	Using a for Loop with an Array

	A Loop Example Using a Function Return Value
	Program Discussion
	Using Functions with Return Values

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	7 C Control Statements: Branching and Jumps
	The if Statement
	Adding else to the if Statement
	Another Example: Introducing getchar() and putchar()
	The ctype.h Family of Character Functions
	Multiple Choice else if
	Pairing else with if
	More Nested ifs

	Let’s Get Logical
	Alternate Spellings: The iso646.h Header File
	Precedence
	Order of Evaluation
	Ranges

	A Word-Count Program
	The Conditional Operator: ?:
	Loop Aids: continue and break
	The continue Statement
	The break Statement

	Multiple Choice: switch and break
	Using the switch Statement
	Reading Only the First Character of a Line
	Multiple Labels
	switch and if else

	The goto Statement
	Avoiding goto

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	8 Character Input/Output and Input Validation
	Single-Character I/O: getchar() and putchar()
	Buffers
	Terminating Keyboard Input
	Files, Streams, and Keyboard Input
	The End of File

	Redirection and Files
	Unix, Linux, and Windows Command Prompt Redirection

	Creating a Friendlier User Interface
	Working with Buffered Input
	Mixing Numeric and Character Input

	Input Validation
	Analyzing the Program
	The Input Stream and Numbers

	Menu Browsing
	Tasks
	Toward a Smoother Execution
	Mixing Character and Numeric Input

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	9 Functions
	Reviewing Functions
	Creating and Using a Simple Function
	Analyzing the Program
	Function Arguments
	Defining a Function with an Argument: Formal Parameters
	Prototyping a Function with Arguments
	Calling a Function with an Argument: Actual Arguments
	The Black-Box Viewpoint
	Returning a Value from a Function with return
	Function Types

	ANSI C Function Prototyping
	The Problem
	The ANSI C Solution
	No Arguments and Unspecified Arguments
	Hooray for Prototypes

	Recursion
	Recursion Revealed
	Recursion Fundamentals
	Tail Recursion
	Recursion and Reversal
	Recursion Pros and Cons

	Compiling Programs with Two or More Source Code Files
	Unix
	Linux
	DOS Command-Line Compilers
	Windows and Apple IDE Compilers
	Using Header Files

	Finding Addresses: The & Operator
	Altering Variables in the Calling Function
	Pointers: A First Look
	The Indirection Operator: *
	Declaring Pointers
	Using Pointers to Communicate Between Functions

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	10 Arrays and Pointers
	Arrays
	Initialization
	Designated Initializers (C99)
	Assigning Array Values
	Array Bounds
	Specifying an Array Size

	Multidimensional Arrays
	Initializing a Two-Dimensional Array
	More Dimensions

	Pointers and Arrays
	Functions, Arrays, and Pointers
	Using Pointer Parameters
	Comment: Pointers and Arrays

	Pointer Operations
	Protecting Array Contents
	Using const with Formal Parameters
	More About const

	Pointers and Multidimensional Arrays
	Pointers to Multidimensional Arrays
	Pointer Compatibility
	Functions and Multidimensional Arrays

	Variable-Length Arrays (VLAs)
	Compound Literals
	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	11 Character Strings and String Functions
	Representing Strings and String I/O
	Defining Strings Within a Program
	Pointers and Strings

	String Input
	Creating Space
	The Unfortunate gets() Function
	The Alternatives to gets()
	The scanf() Function

	String Output
	The puts() Function
	The fputs() Function
	The printf() Function

	The Do-It-Yourself Option
	String Functions
	The strlen() Function
	The strcat() Function
	The strncat() Function
	The strcmp() Function
	The strcpy() and strncpy() Functions
	The sprintf() Function
	Other String Functions

	A String Example: Sorting Strings
	Sorting Pointers Instead of Strings
	The Selection Sort Algorithm

	The ctype.h Character Functions and Strings
	Command-Line Arguments
	Command-Line Arguments in Integrated Environments
	Command-Line Arguments with the Macintosh

	String-to-Number Conversions
	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	12 Storage Classes, Linkage, and Memory Management
	Storage Classes
	Scope
	Linkage
	Storage Duration
	Automatic Variables
	Register Variables
	Static Variables with Block Scope
	Static Variables with External Linkage
	Static Variables with Internal Linkage
	Multiple Files
	Storage-Class Specifier Roundup
	Storage Classes and Functions
	Which Storage Class?

	A Random-Number Function and a Static Variable
	Roll ’Em
	Allocated Memory: malloc() and free()
	The Importance of free()
	The calloc() Function
	Dynamic Memory Allocation and Variable-Length Arrays
	Storage Classes and Dynamic Memory Allocation

	ANSI C Type Qualifiers
	The const Type Qualifier
	The volatile Type Qualifier
	The restrict Type Qualifier
	The _Atomic Type Qualifier (C11)
	New Places for Old Keywords

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	13 File Input/Output
	Communicating with Files
	What Is a File?
	The Text Mode and the Binary Mode
	Levels of I/O
	Standard Files

	Standard I/O
	Checking for Command-Line Arguments
	The fopen() Function
	The getc() and putc() Functions
	End-of-File
	The fclose() Function
	Pointers to the Standard Files

	A Simple-Minded File-Condensing Program
	File I/O: fprintf(), fscanf(), fgets(), and fputs()
	The fprintf() and fscanf() Functions
	The fgets() and fputs() Functions

	Adventures in Random Access: fseek() and ftell()
	How fseek() and ftell() Work
	Binary Versus Text Mode
	Portability
	The fgetpos() and fsetpos() Functions

	Behind the Scenes with Standard I/O
	Other Standard I/O Functions
	The int ungetc(int c, FILE *fp) Function
	The int fflush() Function
	The int setvbuf() Function
	Binary I/O: fread() and fwrite()
	The size_t fwrite() Function
	The size_t fread() Function
	The int feof(FILE *fp) and int ferror(FILE *fp) Functions
	An fread() and fwrite() Example
	Random Access with Binary I/O

	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	14 Structures and Other Data Forms
	Sample Problem: Creating an Inventory of Books
	Setting Up the Structure Declaration
	Defining a Structure Variable
	Initializing a Structure
	Gaining Access to Structure Members
	Initializers for Structures

	Arrays of Structures
	Declaring an Array of Structures
	Identifying Members of an Array of Structures
	Program Discussion

	Nested Structures
	Pointers to Structures
	Declaring and Initializing a Structure Pointer
	Member Access by Pointer

	Telling Functions About Structures
	Passing Structure Members
	Using the Structure Address
	Passing a Structure as an Argument
	More on Structure Features
	Structures or Pointer to Structures?
	Character Arrays or Character Pointers in a Structure
	Structure, Pointers, and malloc()
	Compound Literals and Structures (C99)
	Flexible Array Members (C99)
	Anonymous Structures (C11)
	Functions Using an Array of Structures

	Saving the Structure Contents in a File
	A Structure-Saving Example
	Program Points

	Structures: What Next?
	Unions: A Quick Look
	Using Unions
	Anonymous Unions (C11)

	Enumerated Types
	enum Constants
	Default Values
	Assigned Values
	enum Usage
	Shared Namespaces

	typedef: A Quick Look
	Fancy Declarations
	Functions and Pointers
	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	15 Bit Fiddling
	Binary Numbers, Bits, and Bytes
	Binary Integers
	Signed Integers
	Binary Floating Point

	Other Number Bases
	Octal
	Hexadecimal

	C’s Bitwise Operators
	Bitwise Logical Operators
	Usage: Masks
	Usage: Turning Bits On (Setting Bits)
	Usage: Turning Bits Off (Clearing Bits)
	Usage: Toggling Bits
	Usage: Checking the Value of a Bit
	Bitwise Shift Operators
	Programming Example
	Another Example

	Bit Fields
	Bit-Field Example
	Bit Fields and Bitwise Operators

	Alignment Features (C11)
	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	16 The C Preprocessor and the C Library
	First Steps in Translating a Program
	Manifest Constants: #define
	Tokens
	Redefining Constants

	Using Arguments with #define
	Creating Strings from Macro Arguments: The # Operator
	Preprocessor Glue: The ## Operator
	Variadic Macros: ... and __VA_ARGS__

	Macro or Function?
	File Inclusion: #include
	Header Files: An Example
	Uses for Header Files

	Other Directives
	The #undef Directive
	Being Defined—The C Preprocessor Perspective
	Conditional Compilation
	Predefined Macros
	#line and #error
	#pragma
	Generic Selection (C11)

	Inline Functions (C99)
	_Noreturn Functions (C11)
	The C Library
	Gaining Access to the C Library
	Using the Library Descriptions

	The Math Library
	A Little Trigonometry
	Type Variants
	The tgmath.h Library (C99)

	The General Utilities Library
	The exit() and atexit() Functions
	The qsort() Function

	The Assert Library
	Using assert
	_Static_assert (C11)

	memcpy() and memmove() from the string.h Library
	Variable Arguments: stdarg.h
	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	17 Advanced Data Representation
	Exploring Data Representation
	Beyond the Array to the Linked List
	Using a Linked List
	Afterthoughts

	Abstract Data Types (ADTs)
	Getting Abstract
	Building an Interface
	Using the Interface
	Implementing the Interface

	Getting Queued with an ADT
	Defining the Queue Abstract Data Type
	Defining an Interface
	Implementing the Interface Data Representation
	Testing the Queue

	Simulating with a Queue
	The Linked List Versus the Array
	Binary Search Trees
	A Binary Tree ADT
	The Binary Search Tree Interface
	The Binary Tree Implementation
	Trying the Tree
	Tree Thoughts

	Other Directions
	Key Concepts
	Summary
	Review Questions
	Programming Exercises

	A: Answers to the Review Questions
	Answers to Review Questions for Chapter 1
	Answers to Review Questions for Chapter 2
	Answers to Review Questions for Chapter 3
	Answers to Review Questions for Chapter 4
	Answers to Review Questions for Chapter 5
	Answers to Review Questions for Chapter 6
	Answers to Review Questions for Chapter 7
	Answers to Review Questions for Chapter 8
	Answers to Review Questions for Chapter 9
	Answers to Review Questions for Chapter 10
	Answers to Review Questions for Chapter 11
	Answers to Review Questions for Chapter 12
	Answers to Review Questions for Chapter 13
	Answers to Review Questions for Chapter 14
	Answers to Review Questions for Chapter 15
	Answers to Review Questions for Chapter 16
	Answers to Review Questions for Chapter 17

	B: Reference Section
	Section I: Additional Reading
	Online Resources
	C Language Books
	Programming Books
	Reference Books
	C++ Books

	Section II: C Operators
	Arithmetic Operators
	Relational Operators
	Assignment Operators
	Logical Operators
	The Conditional Operator
	Pointer-Related Operators
	Sign Operators
	Structure and Union Operators
	Bitwise Operators
	Miscellaneous Operators

	Section III: Basic Types and Storage Classes
	Summary: The Basic Data Types
	Summary: How to Declare a Simple Variable
	Summary: Qualifiers

	Section IV: Expressions, Statements, and Program Flow
	Summary: Expressions and Statements
	Summary: The while Statement
	Summary: The for Statement
	Summary: The do while Statement
	Summary: Using if Statements for Making Choices
	Summary: Multiple Choice with switch
	Summary: Program Jumps

	Section V: The Standard ANSI C Library with C99 and C11 Additions
	Diagnostics: assert.h
	Complex Numbers: complex.h (C99)
	Character Handling: ctype.h
	Error Reporting: errno.h
	Floating-Point Environment: fenv.h (C99)
	Floating-point Characteristics: float.h
	Format Conversion of Integer Types: inttypes.h (C99)
	Alternative Spellings: iso646.h
	Localization: locale.h
	Math Library: math.h
	Non-Local Jumps: setjmp.h
	Signal Handling: signal.h
	Alignment: stdalign.h (C11)
	Variable Arguments: stdarg.h
	Atomics Support: stdatomic.h (C11)
	Boolean Support: stdbool.h (C99)
	Common Definitions: stddef.h
	Integer Types: stdint.h
	Standard I/O Library: stdio.h
	General Utilities: stdlib.h
	_Noreturn: stdnoreturn.h
	String Handling: string.h
	Type-Generic Math: tgmath.h (C99)
	Threads: threads.h (C11)
	Date and Time: time.h
	Unicode Utilities: uchar.h (C11)
	Extended Multibyte and Wide-Character Utilities: wchar.h (C99)
	Wide Character Classification and Mapping Utilities: wctype.h (C99)

	Section VI: Extended Integer Types
	Exact-Width Types
	Minimum-Width Types
	Fastest Minimum-Width Types
	Maximum-Width Types
	Integers That Can Hold Pointer Values
	Extended Integer Constants

	Section VII: Expanded Character Support
	Trigraph Sequences
	Digraphs
	Alternative Spellings: iso646.h
	Multibyte Characters
	Universal Character Names (UCNs)
	Wide Characters
	Wide Characters and Multibyte Characters

	Section VIII: C99/C11 Numeric Computational Enhancements
	The IEC Floating-Point Standard
	The fenv.h Header File
	The STDC FP_CONTRACT Pragma
	Additions to the math.h Library
	Support for Complex Numbers

	Section IX: Differences Between C and C++
	Function Prototypes
	char Constants
	The const Modifier
	Structures and Unions
	Enumerations
	Pointer-to-void
	Boolean Types
	Alternative Spellings
	Wide-Character Support
	Complex Types
	Inline Functions
	C99/11 Features Not Found in C++11

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

