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 Preface  

 C was a relatively little-known language when the first edition of  C Primer Plus  appeared in 
1984. Since then, the language has boomed, and many people have learned C with the help of 
this book. In fact,  C Primer Plus  throughout its various editions has sold over 550,000 copies.  

 As the language has grown from the early informal K&R standard through the 1990 ISO/ANSI 
standard through the 1999 ISO/ANSI standard to the 2011 ISO/IEC standard, so has this book 
matured through this, the sixth edition. As with all the editions, my aim has been to create an 
introduction to C that is instructive, clear, and helpful.  

  Approach and Goals  

 My goal is for this book to serve as a friendly, easy-to-use, self-study guide. To accomplish that 
objective,  C Primer Plus  employs the following strategies:  

    ■   Programming concepts are explained, along with details of the C language; the book does 
 not  assume that you are a professional programmer.   

   ■   Many short, easily typed examples illustrate just one or two concepts at a time, because 
learning by doing is one of the most effective ways to master new information.   

   ■   Figures and illustrations clarify concepts that are difficult to grasp in words alone.   

   ■   Highlight boxes summarize the main features of C for easy reference and review.   

   ■   Review questions and programming exercises at the end of each chapter allow you to test 
and improve your understanding of C.    

 To gain the greatest benefit, you should take as active a role as possible in studying the topics 
in this book. Don’t just read the examples, enter them into your system, and try them. C is a 
very portable language, but you may find differences between how a program works on your 
system and how it works on ours. Experiment with changing part of a program to see what 
the effect is. Modify a program to do something slightly different. See if you can develop an 
alternative approach. Ignore the occasional warnings and see what happens when you do the  
wrong thing. Try the questions and exercises. The more you do yourself, the more you will 
learn and remember.  

 I hope that you’ll find this newest edition an enjoyable and effective introduction to the C 
language.   
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  1 
 Getting Ready  

    You will learn about the following in this chapter:  

    ■   C’s history and features   

   ■   The steps needed to write programs   

   ■   A bit about compilers and linkers   

   ■   C standards    

 Welcome to the world of C—a vigorous, professional programming language popular with 
amateur and commercial programmers alike. This chapter prepares you for learning and using 
this powerful and popular language, and it introduces you to the kinds of environments in 
which you will most likely develop your C-legs.  

 First, we look at C’s origin and examine some of its features, both strengths and drawbacks. 
Then we look at the origins of programming and examine some general principles for program-
ming. Finally, we discuss how to run C programs on some common systems.   

     Whence C?  

 Dennis Ritchie of Bell Labs created C in 1972 as he and Ken Thompson worked on designing 
the Unix operating system. C didn’t spring full-grown from Ritchie’s head, however. It came 
from Thompson’s B language, which came from... but that’s another story. The important 
point is that C was created as a tool for working programmers, so its chief goal is to be a useful 
language.  

 Most languages aim to be useful, but they often have other concerns. The main goal for 
Pascal, for instance, was to provide a sound basis for teaching good programming principles. 
BASIC, on the other hand, was developed to resemble English so that it could be learned easily 
by students unfamiliar with computers. These are important goals, but they are not always 
compatible with pragmatic, workaday usefulness. C’s development as a language designed for 
programmers, however, has made it one of the modern-day languages of choice.   
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  Why C?  

 During the past four decades, C has become one of the most important and popular program-
ming languages. It has grown because people try it and like it. In the past decade or two, many 
have moved from C to languages such as C++, Objective C, and Java, but C is still an important 
language in its own right, as well a migration path to these others. As you learn C, you will 
recognize its many virtues (see  Figure   1.1   ). Let’s preview a few of them now.  

 

Powerful control structures Fast

Compact code—small programs Portable to other computers

 Figure 1.1   The virtues of C.         

  Design Features  

 C is a modern language incorporating the control features found desirable by the theory and 
practice of computer science. Its design makes it natural for top-down planning, structured 
programming, and modular design. The result is a more reliable, understandable program.   
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  Efficiency  

 C is an efficient language. Its design takes advantage of the capabilities of current computers. 
C programs tend to be compact and to run quickly. In fact, C exhibits some of the fine control 
usually associated with an assembly language. (An  assembly language  is a mnemonic representa-
tion of the set of internal instructions used by a particular central processing unit design; differ-
ent CPU families have different assembly languages.) If you choose, you can fine-tune your 
programs for maximum speed or most efficient use of memory.   

  Portability  

 C is a portable language, which means that C programs written on one system can be run on 
other systems with little or no modification. If modifications are necessary, they can often be 
made by simply changing a few entries in a header file accompanying the main program. Most 
languages are meant to be portable, but anyone who has converted an IBM PC BASIC program 
to Apple BASIC (and they were close cousins) or has tried to run an IBM mainframe FORTRAN 
program on a Unix system knows that porting is troublesome at best. C is a leader in portabil-
ity.  C compilers (programs that convert your C code into the instructions a computer uses 
internally) are available for many computer architectures, running from 8-bit microprocessors 
to Cray supercomputers. Note, however, that the portions of a program written specifically to 
access particular hardware devices, such as a display monitor, or special features of an operating 
system, such as Windows 8 or OS X, typically are not portable.  

 Because of C’s close ties with Unix, Unix systems typically come with a C compiler as part 
of the package. Linux installations also usually include a C compiler. Several C compilers are 
available for personal computers, including PCs running various versions of Windows and 
Macintoshes. So whether you are using a home computer, a professional workstation, or a 
mainframe, the chances are good that you can get a C compiler for your particular system.   

  Power and Flexibility  

 C is powerful and flexible (two favorite words in computer literature). For example, most of the 
powerful, flexible Unix operating system was written in C. Many compilers and interpreters for 
other languages—such as FORTRAN, Perl, Python, Pascal, LISP, Logo, and BASIC—have been 
written in C. As a result, when you use FORTRAN on a Unix machine, ultimately a C program 
has done the work of producing the final executable program. C programs have been used for 
solving physics and engineering problems and even for animating special effects for movies.   

  Programmer Oriented  

 C is oriented to fulfill the needs of programmers. It gives you access to hardware, and it enables 
you to manipulate individual bits in memory. Its rich selection of operators allows you to 
express yourself succinctly. C is less strict than, say, Pascal or even C++ in limiting what you 
can do. This flexibility is both an advantage and a danger. The advantage is that many tasks, 
such as converting forms of data, are much simpler in C. The danger is that with C, you can 
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make mistakes that are impossible in some languages. C gives you more freedom, but  it also 
puts more responsibility on you.  

 Also, most C implementations have a large library of useful C functions. These functions deal 
with many needs that a programmer commonly faces.   

  Shortcomings  

 C does have some faults. Often, as with people, faults and virtues are opposite sides of the 
same feature. For example, we’ve mentioned that C’s freedom of expression also requires added 
responsibility. C’s use of pointers (something you can look forward to learning about in this 
book), in particular, means that you can make programming errors that are difficult to trace. As 
one computer preliterate once commented, the price of liberty is eternal vigilance.  

 C’s conciseness, combined with its wealth of operators, make it possible to prepare code that is 
extremely difficult to follow. You aren’t compelled to write obscure code, but the opportunity 
is there. After all, what other language has a yearly Obfuscated Code contest?  

 There are more virtues and, undoubtedly, a few more faults. Rather than delve further into the 
matter, let’s move on to a new topic.    

  Whither C?  

 By the early 1980s, C was already a dominant language in the minicomputer world of Unix 
systems. Since then, it has spread to personal computers (microcomputers) and to mainframes 
(the big guys). See  Figure   1.2   . Many software houses use C as the preferred language for produc-
ing word processing programs, spreadsheets, compilers, and other products. These companies 
know that C produces compact and efficient programs. More important, they know that these 
programs will be easy to modify and easy to adapt to new models of computers.   

 What’s good for companies and C veterans is good for other users, too. More and more 
computer users have turned to C to secure its advantages for themselves. You don’t have to be 
a computer professional to use C.  

 In the 1990s, many software houses began turning to the C++ language for large program-
ming projects. C++ grafts object-oriented programming tools to the C language. ( Object-oriented 
programming  is a philosophy that attempts to mold the language to fit a problem instead of 
molding the problem to fit the language.) C++ is nearly a superset of C, meaning that any C 
program is, or nearly is, a valid C++ program, too. By learning C, you also learn much of C++.  

 Despite the popularity of newer languages, such as C++ and Java, C remains a core skill in the 
software business, typically ranking in the top 10 of desired skills. In particular, C has become 
popular for programming embedded systems. That is, it’s used to program the increasingly 
common microprocessors found in automobiles, cameras, DVD players, and other modern 
conveniences. Also, C has been making inroads in FORTRAN’s long dominance of scientific 
programming. Finally, as befits a language created to develop an operating system, it plays a 
strong role in the development of Linux. Thus, the second decade of the twenty-first  century 
finds C still going strong.  
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 In short, C is one of the most important programming languages and will continue to be so. If 
you want a job writing software, one of the first questions you should be able to answer yes to 
is “Oh say, can you C?”   

  What Computers Do  

 Now that you are about to learn how to program in C, you probably should know a little 
about how computers work. This knowledge will help you understand the connection between 
writing a program in C and what eventually takes place when you run that program.  

 Modern computers have several components. The  central processing unit , or  CPU , does most 
of the computing work. The  random access memory , or  RAM , serves as a workspace to hold 
programs and files. The permanent memory storage device, typically a hard disk in the past, 
but now more and more often a solid-state device, remembers those programs and files, even 
while the computer is turned off. And various peripherals—such as the keyboard, mouse, 
touchscreen, and monitor—provide for communication between the computer and you. The 
CPU processes your programs; so let’s concentrate on its role.  

C
Language

UNIX
Operating

System
Computer

Games

Embedded
Systems

Computer
Languages

Robot
Factories

LucasFilm

PC
Applications

Star
Wars

 Figure 1.2   Where C is used.        
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 The life of a CPU, at least in this simplistic account, is quite simple. It fetches an instruction 
from memory and executes it. It fetches the next instruction from memory and executes it, 
and so on. (A gigahertz CPU can do this about a billion times a second, so the CPU can lead its 
boring life at a tremendous pace.) The CPU has its own small workspace, consisting of several 
 registers , each of which can hold a number. One register holds the memory address of the next 
instruction, and the CPU uses this information to fetch the next instruction. After  it fetches 
an instruction, the CPU stores the instruction in another register and updates the first register 
to the address of the next instruction. The CPU has a limited repertoire of instructions (known 
as the  instruction set ) that it understands. Also, these instructions are rather specific; many of 
them ask the computer to move a number from one location to another—for example, from a 
memory location to a register.  

 A couple interesting points go along with this account. First, everything stored in a computer is 
stored as a number. Numbers are stored as numbers. Characters, such as the alphabetical char-
acters you use in a text document, are stored as numbers; each character has a numeric code. 
The instructions that a computer loads into its registers are stored as numbers; each instruction 
in the instruction set has a numeric code. Second, computer programs ultimately have to be 
expressed in this numeric instruction code, or what is called  machine language .  

 One consequence of how computers work is that if you want a computer to do something, you 
have to feed a particular list of instructions (a program) telling it exactly what to do and how 
to do it. You have to create the program in a language that the computer understands directly 
(machine language). This is a detailed, tedious, exacting task. Something as simple as adding 
two numbers together would have to be broken down into several steps, perhaps something 
like the following:  

    1.   Copy the number in memory location 2000 to register 1.   

   2.   Copy the number in memory location 2004 to register 2.   

   3.   Add the contents of register 2 to the contents of register 1, leaving the answer in 
register 1.   

   4.   Copy the contents of register 1 to memory location 2008.    

 And you would have to represent each of these instructions with a numeric code!  

 If writing a program in this manner sounds like something you’d like to do, you’ll be sad to 
learn that the golden age of machine-language programming is long past. But if you prefer 
something a little more enjoyable, open your heart to high-level programming languages.   

  High-level Computer Languages and Compilers  

 High-level programming languages, such as C, simplify your programming life in several ways. 
First, you don’t have to express your instructions in a numeric code. Second, the instructions 
you use are much closer to how you might think about a problem than they are to the detailed 
approach a computer uses. Rather than worry about the precise steps a particular CPU would 
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have to take to accomplish a particular task, you can express your desires on a more abstract 
level. To add two numbers, for example, you might write the following:  

  total = mine + yours;   

 Seeing code like this, you have a good idea what it does; looking at the machine-language 
equivalent of several instructions expressed in numeric code is much less enlightening.  

 Unfortunately, the opposite is true for a computer; to it, the high-level instruction is incom-
prehensible gibberish. This is where compilers enter the picture. The  compiler  is a program that 
translates the high-level language program into the detailed set of machine language instruc-
tions the computer requires. You do the high-level thinking; the compiler takes care of the 
tedious details.  

 The compiler approach has another benefit. In general, each computer design has its own 
unique machine language; so a program written in the machine language for, say, an Intel Core 
i7 CPU means nothing to an ARM Cortex-A57 CPU. But you can match a compiler to a particu-
lar machine language. Therefore, with the right compiler or set of compilers, you can convert 
the same high-level language program to a variety of different machine-language programs. 
You solve a programming problem once, and then you let your compilers translate the solution 
to a variety of machine languages.  

 In short, high-level languages—such as C, Java, and Pascal—describe actions in a more abstract 
form and aren’t tied to a particular CPU or instruction set. Also, high-level languages are easier 
to learn and much easier to program in than are machine languages.    

  Advances in Computing  

 In 1964, Control Data Corporation announced the CDC 6600 computer. This room-filling 
machine is considered to be the first supercomputer, and it had a starting price of about $6 
million. It was the computer of choice for high-energy nuclear physics research. A modern 
smartphone is several hundred times as capable in terms of computing power and memory. It 
can show videos and play music, too. And it’s a phone.  

 In 1964, FORTRAN was the dominant programming language, at least in engineering and sci-
ence. Programming languages haven’t evolved quite as dramatically as the hardware on which 
they run. Nonetheless, the world of programming languages has changed. Languages have 
provided more support first for structured programming, then for object-oriented programming 
as part of the struggle to cope with larger and larger programming projects. Not only have new 
languages come along, but existing languages have changed with the times.    

  Language Standards  

 Currently, many C implementations are available. Ideally, when you write a C program, it 
should work the same on any implementation, providing it doesn’t use machine-specific 
programming. For this to be true in practice, different implementations need to conform to a 
recognized standard.  
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 At first, there was no official standard for C. Instead, the first edition of  The C Programming 
Language  by Brian Kernighan and Dennis Ritchie (1978) became the accepted standard, usually 
referred to as  K&R C  or  Classic C . In particular, the “C Reference Manual” in that book’s appen-
dix acted as the guide to C implementations. Compilers, for example, would claim to offer a 
full K&R implementation. However, although this appendix defined the C language, it did not 
define the C library. More than most languages, C depends on its library, so there is need for a 
library standard, too. In the absence of any  official standard, the library supplied with the Unix 
implementation became a de facto standard.  

  The First ANSI/ISO C Standard  

 As C evolved and became more widely used on a greater variety of systems, the C community 
realized it needed a more comprehensive, up-to-date, and rigorous standard. To meet this need, 
the American National Standards Institute (ANSI) established a committee (X3J11) in 1983 to 
develop a new standard, which was adopted formally in 1989. This standard (ANSI C) defined 
both the language and a standard C library. The International Organization for Standardization 
adopted a C standard (ISO C) in 1990. ISO C and ANSI C are essentially the same standard. 
The final version of the ANSI/ISO standard is often referred to  as  C89  (because that’s when 
ANSI approval came) or  C90  (because that’s when ISO approval came). Also, because the ANSI 
version came out first, people often used the term  ANSI C .  

 The committee had several guiding principles. Perhaps the most interesting was this: Keep the 
spirit of C. The committee listed the following ideas as expressing part of that spirit:  

    ■   Trust the programmer.   

   ■   Don’t prevent the programmer from doing what needs to be done.   

   ■   Keep the language small and simple.   

   ■   Provide only one way to do an operation.   

   ■   Make it fast, even if it is not guaranteed to be portable.    

 By the last point, the committee meant that an implementation should define a particular 
operation in terms of what works best for the target computer instead of trying to impose an 
abstract, uniform definition. You’ll encounter examples of this philosophy as you learn the 
language.   

  The C99 Standard  

 In 1994, a joint ANSI/ISO committee, known then as the  C9X  committee, began revising the 
standard, an effort that resulted in the C99 standard. The committee endorsed the original 
principles of the C90 standard, including keeping the language small and simple. The commit-
tee’s intent was not to add new features to the language except as needed to meet the new 
goals. One of these main goals was to support international programming by, for example, 
providing ways to deal with international character sets. A second goal was to “codify existing 
practice to address evident deficiencies.” Thus, when meeting the need of moving  C to 64-bit 
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processors, the committee based the additions to the standard on the experiences of those who 
dealt with this problem in real life. A third goal was to improve the suitability of C for doing 
critical numeric calculations for scientific and engineering projects, making C a more appealing 
alternative to FORTRAN.  

 These three points—internationalization, correction of deficiencies, and improvement of 
computational usefulness—were the main change-oriented goals. The remaining plans for 
change were more conservative in nature—for example, minimizing incompatibilities with C90 
and with C++ and keeping the language conceptually simple. In the committee’s words, “...the 
committee is content to let C++ be the  big  and ambitious language.”  

 The upshot is that C99 changes preserve the essential nature of C, and C remains a lean, clean, 
efficient language. This book points out many of the C99 changes. However, although the 
standard has been out for a while, not all compilers at this time fully implement all the C99 
changes. You may find that some of them are not available on your system. Or you may find 
that some C99 features are available only if you alter the compiler settings.   

  The C11 Standard  

 Maintaining a standard is a perpetual process, and in 2007 the Standards Committee commit-
ted to the next revision, C1X, which became realized as C11. The committee raised some new 
guiding principles. One was that the “trust the programmer” goal should be tempered some-
what in the face of contemporary concerns of programming security and safety. The committee 
also made some important observations. One was that C99 hasn’t been as well received and 
supported by vendors as C90 was. As a consequence, some features of C99 became optional 
for C11. One reason is that the committee felt that vendors serving the small  machine market 
shouldn’t be required to support features not used in their targeted environments. Another 
observation was that the standard was being revised not because it was broken but because 
there was a need to track new technologies. One example of this is the addition of optional 
support for concurrent programming in response to the trend of using multiple processors in 
computers. We look briefly at this topic, but exploring it is beyond the scope of this book.  

  Note 

 This book will use the terms  ANSI C  or, in a more international spirit, ANSI/ ISO C  or just  ISO C  
to mean features common to C89/90 and later standards, and  C99  and  C11  to refer to new 
features. Occasionally, it will refer to  C90  (for example, when discussing when a feature was 
first added to C).     

  Using C: Seven Steps  

 C, as you’ve seen, is a compiled language. If you are accustomed to using a compiled language, 
such as Pascal or FORTRAN, you will be familiar with the basic steps in putting together a C 
program. However, if your background is in an interpreted language, such as BASIC, or in a 
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graphical interface–oriented language, such as Visual Basic, or if you have no background at 
all, you need to learn how to compile. We’ll look at that process soon, and you’ll see that it is 
straightforward and sensible. First, to give you an overview of programming, let’s break down 
the  act of writing a C program into seven steps (see  Figure   1.3   ). Note that this is an idealiza-
tion. In practice, particularly for larger projects, you would go back and forth, using what you 
learned at a later step to refine an earlier step.  

 

Maintain and
modify the
program

Test and debug
the program

Run the program

Compile

Write the code

Design the program

Define the program objectives

 Figure 1.3   The seven steps of programming.         

  Step 1: Define the Program Objectives  

 Naturally enough, you should start with a clear idea of what you want the program to do. 
Think in terms of the information your program needs, the feats of calculation and manipula-
tion the program needs to do, and the information the program should report back to you. At 
this level of planning, you should be thinking in general terms, not in terms of some specific 
computer language.   

  Step 2: Design the Program  

 After you have a conceptual picture of what your program ought to do, you should decide how 
the program will go about it. What should the user interface be like? How should the program 
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be organized? Who will the target user be? How much time do you have to complete the 
program?  

 You also need to decide how to represent the data in the program and, possibly, in auxiliary 
files, as well as which methods to use to process the data. When you first learn programming 
in C, the choices will be simple, but as you deal with more complex situations, you’ll find that 
these decisions require more thought. Choosing a good way to represent the information can 
often make designing the program and processing the data much easier.  

 Again, you should be thinking in general terms, not about specific code, but some of your deci-
sions may be based on general characteristics of the language. For example, a C programmer 
has more options in data representation than, say, a Pascal programmer.   

  Step 3: Write the Code  

 Now that you have a clear design for your program, you can begin to implement it by writing 
the code. That is, you translate your program design into the C language. Here is where you 
really have to put your knowledge of C to work. You can sketch your ideas on paper, but even-
tually you have to get your code into the computer. The mechanics of this process depend on 
your programming environment. We’ll present the details for some common environments 
soon. In general, you use a text editor to create what is called a  source code  file. This file contains  
the C rendition of your program design.  Listing   1.1    shows an example of C source code.  

  Listing 1.1   Example of C Source Code  

 #include <stdio.h>

  int main(void)

  {

      int dogs;

  

      printf("How many dogs do you have?\n");

      scanf("%d", &dogs);

      printf("So you have %d dog(s)!\n", dogs);

  

      return 0;

  }   

 As part of this step, you should document your work. The simplest way is to use C’s comment 
facility to incorporate explanations into your source code.  Chapter   2   , “Introducing C,” will 
explain more about using comments in your code.   

  Step 4: Compile  

 The next step is to compile the source code. Again, the details depend on your programming 
environment, and we’ll look at some common environments shortly. For now, let’s start with a 
more conceptual view of what happens.  
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 Recall that the compiler is a program whose job is to convert source code into executable code. 
 Executable code  is code in the native language, or  machine language , of your computer. This 
language consists of detailed instructions expressed in a numeric code. As you read earlier, 
different computers have different machine languages, and a C compiler translates C into a 
particular machine language. C compilers also incorporate code from C libraries into the final 
program; the libraries contain a fund of standard routines, such as  printf()  and  scanf() , 
for your use. (More accurately, a program called a  linker  brings in the library routines, but the  
compiler runs the linker for you on most systems.) The end result is an executable file contain-
ing code that the computer understands and that you can run.  

 The compiler also checks that your program is valid C. If the compiler finds errors, it reports 
them to you and doesn’t produce an executable file. Understanding a particular compiler’s 
complaints is another skill you will pick up.   

  Step 5: Run the Program  

 Traditionally, the executable file is a program you can run. To run the program in many 
common environments, including Windows Command-Prompt mode, Unix terminal mode, 
and Linux terminal mode, just type the name of the executable file. Other environments, such 
as VMS on a VAX, might require a run command or some other mechanism.  Integrated develop-
ment environments (IDEs) , such as those provided for Windows and Macintosh environments, 
allow you to edit and execute your C program from within the IDE by selecting choices from a 
menu or by pressing special keys. The resulting program also can be run directly from the  oper-
ating system by clicking or double-clicking the filename or icon.   

  Step 6: Test and Debug the Program  

 The fact that your program runs is a good sign, but it’s possible that it could run incorrectly. 
Consequently, you should check to see that your program does what it is supposed to do. 
You’ll find that some of your programs have mistakes— bugs , in computer jargon.  Debugging  is 
the process of finding and fixing program errors. Making mistakes is a natural part of learning. 
It seems inherent to programming, so when you combine learning and programming, you had 
best prepare yourself to be reminded often of your fallibility. As you become a more powerful 
and subtle programmer, your errors, too, will become  more powerful and subtle.  

 You have many opportunities to err. You can make a basic design error. You can implement 
good ideas incorrectly. You can overlook unexpected input that messes up your program. You 
can use C incorrectly. You can make typing errors. You can put parentheses in the wrong place, 
and so on. You’ll find your own items to add to this list.  

 Fortunately, the situation isn’t hopeless, although there might be times when you think it is. 
The compiler catches many kinds of errors, and there are things you can do to help yourself 
track down the ones that the compiler doesn’t catch. This book will give you debugging advice 
as you go along.   
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  Step 7: Maintain and Modify the Program  

 When you create a program for yourself or for someone else, that program could see extensive 
use. If it does, you’ll probably find reasons to make changes in it. Perhaps there is a minor bug 
that shows up only when someone enters a name beginning with  Zz , or you might think of 
a better way to do something in the program. You could add a clever new feature. You might 
adapt the program so that it runs on a different computer system. All these tasks are greatly 
simplified if you document the program clearly and if you follow sound design practices.   

  Commentary  

 Programming is not usually as linear as the process just described. Sometimes you have to go 
back and forth between steps. For instance, when you are writing code, you might find that 
your plan was impractical. You may see a better way of doing things or, after you see how a 
program runs, you might feel motivated to change the design. Documenting your work helps 
you move back and forth between levels.  

 Most learners tend to neglect steps 1 and 2 (defining program objectives and designing the 
program) and go directly to step 3 (writing the program). The first programs you write are 
simple enough that you can visualize the whole process in your head. If you make a mistake, 
it’s easy to find. As your programs grow longer and more complex, mental visualizations begin 
to fail, and errors get harder to find. Eventually, those who neglect the planning steps are 
condemned to hours of lost time, confusion, and frustration as they produce ugly, dysfunc-
tional, and abstruse programs. The larger and more  complex the job is, the more planning it 
requires.  

 The moral here is that you should develop the habit of planning before coding. Use the ancient 
but honorable pen-and-pencil technology to jot down the objectives of your program and to 
outline the design. If you do so, you eventually will reap substantial dividends in time saved 
and satisfaction gained.    

  Programming Mechanics  

 The exact steps you must follow to produce a program depend on your computer environment. 
Because C is portable, it’s available in many environments, including Unix, Linux, MS-DOS 
(yes, some people still use it), Windows, and Macintosh OS. There’s not enough space in this 
book to cover all environments, particularly because particular products evolve, die, and are 
replaced.  

 First, however, let’s look at some aspects shared by many C environments, including the five 
we just mentioned. You don’t really need to know what follows to run a C program, but it is 
good background. It can also help you understand why you have to go through some particular 
steps to get a C program.  

 When you write a program in the C language, you store what you write in a text file called a 
 source code file . Most C systems, including the ones we mentioned, require that the name of 
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the file end in  .c  (for example,  wordcount.c  and  budget.c ). The part of the name before the 
period is called the  basename , and the part after the period is called the  extension . Therefore, 
 budget  is a basename and  c  is the extension. The combination  budget.c  is the filename. The 
name should also satisfy the requirements of the particular computer operating system. For 
example, MS-DOS is an older operating system for  IBM PCs and clones. It requires that the 
basename be no more than eight characters long, so the  wordcount.c  filename mentioned 
earlier would not be a valid DOS filename. Some Unix systems place a 14-character limit on the 
whole name, including the extension; other Unix systems allow longer names, up to 255 char-
acters. Linux, Windows, and Macintosh OS also allow long names.  

 So that we’ll have something concrete to refer to, let’s assume we have a source file called 
 concrete.c  containing the C source code in   Listing   1.2   .  

  Listing 1.2   The   concrete.c   Program  

 #include <stdio.h>

  int main(void)

  {

      printf("Concrete contains gravel and cement.\n");

  

      return 0;

  }   

 Don’t worry about the details of the source code file shown in  Listing   1.2   ; you’ll learn about 
them in  Chapter   2   .  

  Object Code Files, Executable Files, and Libraries  

 The basic strategy in C programming is to use programs that convert your source code file to an 
executable file, which is a file containing ready-to-run machine language code. C implementa-
tions typically do this in two steps: compiling and linking. The compiler converts your source 
code to an intermediate code, and the linker combines this with other code to produce the 
executable file. C uses this two-part approach to facilitate the modularization of programs. You 
can compile individual modules separately and then use the linker to combine the compiled 
modules later. That way, if you need to change one module,  you don’t have to recompile the 
other ones. Also, the linker combines your program with precompiled library code.  

 There are several choices for the form of the intermediate files. The most prevalent choice, and 
the one taken by the implementations described here, is to convert the source code to machine 
language code, placing the result in an  object code file , or  object file  for short. (This assumes that 
your source code consists of a single file.) Although the object file contains machine language 
code, it is not ready to run. The object file contains the translation of your source code, but it is 
not yet a complete program.  

 The first element missing from the object code file is something called  startup code , which is 
code that acts as an interface between your program and the operating system. For example, 
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you can run an IBM PC compatible under MS Windows or under Linux. The hardware is 
the same in either case, so the same object code would work with both, but you would need 
different startup code for Windows than you would for Linux because these systems handle 
programs differently from one another.  

 The second missing element is the code for library routines. Nearly all C programs make use 
of routines (called  functions ) that are part of the standard C library. For example,  concrete.c  
uses the function  printf() . The object code file does not contain the code for this function; it 
merely contains instructions saying to use the  printf()  function. The actual code is stored in 
another file, called a  library . A library file contains object code for many functions.  

 The role of the linker is to bring together these three elements—your object code, the standard 
startup code for your system, and the library code—and put them together into a single file, the 
executable file. For library code, the linker extracts only the code needed for the functions you 
use from the library (see  Figure   1.4   ).  

 

concrete.c

concrete.obj

concrete.exe

source code

Compiler

object code

library code

executable code

Linker

start-up code

 Figure 1.4   Compiler and linker.         

 In short, an object file and an executable file both consist of machine language instructions. 
However, the object file contains the machine language translation only for the code you 
used, but the executable file also has machine code for the library routines you use and for the 
startup code.  
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 On some systems, you must run the compile and link programs separately. On other systems, 
the compiler starts the linker automatically, so you have to give only the compile command.  

 Now let’s look at some specific systems.   

  Unix System  

 Because C’s popularity and existence began on Unix systems, we will start there. (Note: By 
“Unix,” we include systems such as FreeBSD, which descends from Unix but can’t use the name 
for legal reasons.)  

  Editing on a Unix System  

 Unix C does not have its own editor. Instead, you use one of the general-purpose Unix editors, 
such as emacs, jove, vi, or an X Window System text editor.  

 Your two main responsibilities are typing the program correctly and choosing a name for the 
file that will store the program. As discussed, the name should end with  .c . Note that Unix 
distinguishes between uppercase and lowercase. Therefore,  budget.c ,  BUDGET.c , and  Budget.c  
are three distinct and valid names for C source files, but  BUDGET.C  is not a valid name because 
it uses an uppercase  C  instead of a lowercase  c .  

 Using the vi editor, we prepared the following program and stored it in a file called  inform.c .  

  #include <stdio.h>

  int main(void)

  {

      printf("A .c is used to end a C program filename.\n");

  

      return 0;

  }   

 This text is the source code, and  inform.c  is the source file. The important point here is that 
the source file is the beginning of a process, not the end.   

  Compiling on a Unix System  

 Our program, although undeniably brilliant, is still gibberish to a computer. A computer 
doesn’t understand things such as  #include  and  printf . (At this point, you probably don’t 
either, but you will soon learn, whereas the computer won’t.) As we discussed earlier, we need 
the help of a compiler to translate our code (source code) to the computer’s code (machine 
code). The result of these efforts will be the executable file, which contains all the machine 
code that the computer needs to get the job done.  

 Historically, the Unix C compiler, invoked with the  cc  command, defined the language. But it 
didn’t keep pace with the developing standard, and it has been retired. However, Unix systems 
typically provide a C compiler from some other source, and then make the  cc  command an 
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alias for that compiler. So you still can proceed with the same command, even though it may 
invoke different compilers on different systems.  

 To compile the  inform.c  program, type the following:  

  cc inform.c   

 After a moment, the Unix prompt will return, telling you that the deed is done. You might get 
warnings and error messages if you failed to write the program properly, but let’s assume you 
did everything right. (If the compiler complains about the word  void , your system has not yet 
updated to an ANSI C compiler. We’ll talk more about standards soon. Meanwhile, just delete 
the word  void  from the example.) If you use the  ls  command to list your files, you will find 
that there is a new file called  a.out  (see  Figure   1.5   ). This is the executable file containing the 
translation  (or compilation) of the program. To run it, just type  

  a.out   

 and wisdom pours forth:  

  A .c is used to end a C program filename.   

 If you want to keep the executable file ( a.out ), you should rename it. Otherwise, the file is 
replaced by a new  a.out  the next time you compile a program.  

 

name.c

a.out

source code

enter
source code

Compiler

executable code

run program by
typing filename

a.out

Text Editor

 Figure 1.5   Preparing a C program using Unix.         
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 What about the object code? The cc compiler creates an object code file having the same 
basename as the source code, but with an  .o  extension. In our example, the object code file 
is called  inform.o , but you won’t find it, because the linker removes it once the executable 
program has been completed. However, if the original program used more than one source 
code file, the object code files would be saved. When we discuss multiple-file programs later in 
the text, you will see that this is a fine idea.    

  The GNU Compiler Collection and the LLVM Project  

 The GNU Project, dating from 1987, is a mass collaboration that has developed a large body of 
free Unix-like software. (GNU stands for “GNU’s Not Unix.”) One of its products is the GNU 
Compiler Collection, or GCC, which includes the GCC C compiler. GCC is under constant 
development, guided by a steering committee, and its C compiler closely tracks changing C 
standards. Versions of GCC are available for a wide variety of hardware platforms and operating 
systems, including Unix, Linux, and Windows. The GCC C compiler can be invoked with the 
 gcc  command. And many systems using  gcc  will make  cc  an alias  for  gcc .  

 The LLVM Project provides a second replacement for  cc . The project is an open-source collec-
tion of compiler-related software dating from a 2000 research project at the University of 
Illinois. Its Clang compiler processes C code and can be invoked as  clang . Available on several 
platforms, including Linux, Clang became the default C compiler for FreeBSD in late 2012. Like 
GCC, Clang tracks the C standard pretty well.  

 Both accept a  -v  option for version information, so on systems using the  cc  alias for either the 
 gcc  or  clang  command, the combination  

  cc -v   

 shows which compiler and which version you are using.  

 Both  gcc  and  clang  commands, depending on the version, may require run-time options to 
invoke more recent C standards:  

  gcc -std=c99 inform.c

  gcc -std=c1x inform.c

  gcc -std=c11 inform.c   

 The first example invokes the C99 standard, the second invokes the draft C11 standard for 
GCC versions prior to the acceptance of the standard, and the third invokes the C11 standard 
for GCC versions that followed the acceptance. The Clang compiler uses the same flags.   

  Linux Systems  

 Linux is a popular open-source, Unix-like operating system that runs on a variety of platforms, 
including PCs and Macs. Preparing C programs on Linux is much the same as for Unix systems, 
except that you would use the GCC public domain C compiler that’s provided by GNU. The 
compile command looks like this:  

  gcc inform.c   
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 Note that installing GCC may be optional when installing Linux, so you (or someone) might 
have to install GCC if it wasn’t installed earlier. Typically, the installation makes  cc  an alias for 
 gcc , so you can use  cc  in the command line instead of  gcc  if you like.  

 You can obtain further information about GCC, including information about new releases at 
 http://www.gnu.org/software/gcc/index.html .   

  Command-Line Compilers for the PC  

 C compilers are not part of the standard Windows package, so you may need to obtain and 
install a C compiler. Cygwin and MinGW are free downloads that make the GCC compiler 
available for command-line use on a PC. Cygwin runs in its own window, which has a 
Command-Prompt look but which imitates a Linux command-line environment. MinGW, on 
the other hand runs in the Windows Command-Prompt mode. These come with the newest (or 
near-newest) version of GCC, which supports C99 and at least some of C11. The Borland C++ 
Compiler 5.5 is another free download; it supports C90.  

 Source code files should be text files, not word processor files. (Word processor files contain a 
lot of additional information about fonts and formatting.) You should use a text editor, such as 
Windows Notepad. You can use a word processor if you use the Save As feature to save the file 
in text mode. The file should have a  .c  extension. Some word processors automatically add a 
 .txt  extension to text files. If this happens to you, you need to change the filename, replacing 
 txt  with  c .  

 C compilers for the PC typically, but not always, produce intermediate object code files having 
an  .obj  extension. Unlike Unix compilers, these compilers typically don’t remove these files 
when done. Some compilers produce assembly language files with  .asm  extensions or use some 
special format of their own.  

 Some compilers run the linker automatically after compiling; others might require that you run 
the linker manually. Linking results in the executable file, which appends the  .EXE  extension 
to the original source code basename. For example, compiling and linking a source code file 
called  concrete.c  produces a file called  concrete.exe . You can run the program by typing 
the basename at the command line:  

  C>concrete    

  Integrated Development Environments (Windows)  

 Quite a few vendors, including Microsoft, Embarcadero, and Digital Mars, offer Windows-based 
integrated development environments, or  IDEs . (These days, most are combined C and C++ 
compilers.) Free downloads include Microsoft Visual Studio Express and Pelles C. All have fast, 
integrated environments for putting together C programs. The key point is that each of these 
programs has a built-in editor you can use to write a C program. Each provides menus that 
enable you to name and save your source code file, as well as menus that allow you to compile 
and run your program without leaving the IDE. Each dumps  you back into the editor if the 

http://www.gnu.org/software/gcc/index.html
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compiler finds any errors, and each identifies the offending lines and matches them to the 
appropriate error messages.  

 The Windows IDEs can be a little intimidating at first because they offer a variety of  targets —
that is, a variety of environments in which the program will be used. For example, they might 
give you a choice of 32-bit Windows programs, 64-bit Windows programs, dynamic link library 
files (DLLs), and so on. Many of the targets involve bringing in support for the Windows 
graphical interface. To manage these (and other) choices, you typically create a  project  to which 
you then add the names of the source code files you’ll be using. The precise steps depend on 
the product you use. Typically,  you first use the File menu or Project menu to create a project. 
What’s important is choosing the correct form of project. The examples in this book are generic 
examples designed to run in a simple command-line environment. The various Windows IDEs 
provide one or more choices to match this undemanding assumption. Microsoft Visual Studio, 
for example, offers the Win32 Console Application option. For other systems, look for an 
option using terms such as DOS EXE, Console, or Character Mode executable. These modes will 
run your executable program in a console-like window. After you have the correct project type, 
use  the IDE menu to open a new source code file. For most products, you can do this by using 
the File menu. You may have to take additional steps to add the source file to the project.  

 Because the Windows IDEs typically handle both C and C++, you need to indicate that you 
want a C program. With some products you use the project type to indicate that you want 
to use C. With other products, such as Microsoft Visual C++, you use the  .c  file extension to 
indicate that you want to use C rather than C++. However, most C programs also work as C++ 
programs. Reference Section IX, “Differences Between C and C++,” compares C and C++.  

 One problem you might encounter is that the window showing the program execution 
vanishes when the program terminates. If that is the case for you, you can make the program 
pause until you press the Enter key. To do that, add the following line to the end of the 
program, just before the  return  statement:  

  getchar();   

 This line reads a keystroke, so the program will pause until you press the Enter key. Sometimes, 
depending on how the program functions, there might already be a keystroke waiting. In that 
case, you’ll have to use  getchar()  twice:  

  getchar();

  getchar();   

 For example, if the last thing the program did was ask you to enter your weight, you would 
have typed your weight and then pressed the Enter key to enter the data. The program would 
read the weight, the first  getchar()  would read the Enter key, and the second  getchar()  
would cause the program to pause until you press Enter again. If this doesn’t make a lot of 
sense to you now, it will after you learn more about C input. And we’ll remind you later about 
this approach.  

 Although the various IDEs have many broad principles in common, the details vary from 
product to product and, within a product line, from version to version. You’ll have to do some 
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experimenting to learn how your compiler works. You might even have to read the manual or 
try an online tutorial.    

  Microsoft Visual Studio and the C Standard  

 Microsoft Visual Studio and the freeware Microsoft Visual Studio Express have the greatest 
presence in Windows software development, so their relationship to the C standards is of 
some importance. In brief, Microsoft has encouraged programmers to shift from C to C++ or 
C#. Visual Studio supports C89/90, but its support for later standards, to date, consists of 
supporting those new features that also are found in C++, such as the  long long  type. Also, 
as of the 2012 edition, Visual Studio doesn’t offer C as one of the choices for project type. 
However, you can still use Visual Studio with the  vast majority of programs in this book. One 
choice is just to choose the C++ option, then Win32 Console, then Empty Project in Application 
settings. Nearly all of C is compatible with C++, so most of the C programs in this book also 
work as C++ programs. Or, after choosing the C++ option, you can use the  .c  extension 
instead of the default  .cpp  extension for the source file, and the compiler will use C rules 
instead of C++ rules.    

  The Windows/Linux Option  

 Many Linux distributions can be installed from Windows to set up a dual-boot system. Some of 
your storage will be set aside for a Linux system, and you then can boot to either Windows or 
Linux. You can’t run a Linux program from Windows or vice versa, and you can’t access Linux 
files from Windows, but you can access Windows documents from Linux.   

  C on the Macintosh  

 Currently, Apple offers its Xcode development system as a free download. (In the past, some-
times it has been free, sometimes available for a modest charge.) It lets you choose from several 
programming languages, including C.  

 Xcode, with its capability to handle several programming languages, to target multiple plat-
forms, and to develop large-scale projects, can seem intimidating. But you need learn just 
enough to produce simple C programs. With Xcode 4.6, use the File menu to select New, 
Project, OS X Application Command Line Tool, and then enter a product name and select C 
for the Type. Xcode uses either the Clang or the GCC C compiler for C code. It used to use 
GCC by default, and now uses Clang by default. You can use Xcode settings to choose which 
compiler it uses and also  which C standard to support. (Due to licensing matters, the version of 
Clang available with Xcode is more recent than the GCC version.)  

 Mac OS X is built on Unix, and the Terminal utility opens a window that lets you run programs 
in a Unix command-line environment. Apple doesn’t provide a command-line compiler as 
part of its standard package, but if you download Xcode, you can also download optional 
command-line tools that enable you to use the  clang  and the  gcc  commands to compile in 
command-line mode.    
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  How This Book Is Organized  

 There are many ways to organize information. One of the most direct approaches is to present 
everything about topic A, everything about topic B, and so on. This is particularly useful for a 
reference so you can find all the information about a given topic in one place. But usually it’s 
not the best sequence for learning a subject. For instance, if you began learning English by first 
learning all the nouns, your ability to express ideas would be severely limited. Sure, you could 
point to objects and shout their names, but you’d be much better equipped to express yourself  
if you learned just a few nouns, verbs, adjectives, and so on, along with a few rules about how 
those parts relate to one another.  

 To provide you with a more balanced intake of information, this book uses a spiral approach 
of introducing several topics in earlier chapters and returning later to discuss them more fully. 
For example, understanding functions is essential to understanding C. Consequently, several of 
the early chapters include some discussion of functions so that when you reach the full discus-
sion in  Chapter   9   , “Functions,” you’ll already have achieved some ease about using functions. 
Similarly, early chapters preview strings and loops so that you can begin using these useful 
tools in your programs before learning about them in detail.   

  Conventions Used in This Book  

 We are almost ready to begin studying the C language itself. This section covers some of the 
conventions we use in presenting material.  

  Typeface  

 For text representing programs and computer input and output, we use a type font that resem-
bles what you might see on a screen or on printed output. We have already used it a few times. 
In case it slipped your notice, the font looks like the following:  

  #include <stdio.h>

  int main(void)

  {

      printf("Concrete contains gravel and cement.\n");

  

      return 0;

  }   

 The same monospace type is for code-related terms used in the text, such as  main() , and for 
filenames, such as  stdio.h . The book uses italicized monospace for placeholder terms for 
which you are expected to substitute specific terms, as in the following model of a declaration:  

   type_name variable_name;    

 Here, for instance, you might replace   type_name   with  int  and   variable_name   with 
 zebra_coun t.   
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  Program Output  

 Output from the computer is printed in the same format, with the exception that user input 
is shown in boldface type. For instance, the following is program output from an example in 
 Chapter   14   , “Structures and Other Data Forms”:  

  Please enter the book title.

  Press [enter] at the start of a line to stop.

  

  My Life as a Budgie

  Now enter the author.   

   Mack Zackles    

 The lines printed in normal computer font are program output, and the boldface line is user 
input.  

 There are many ways you and a computer can communicate with each other. However, we will 
assume that you type in commands by using a keyboard and that you read the response on a 
screen.  

  Special Keystrokes  

 Usually, you send a line of instructions by pressing a key labeled Enter, c/r, Return, or some 
variation of these. We refer to this key in the text as the  Enter key . Normally, the book takes it 
for granted that you press the Enter key at the end of each line of input. However, to clarify 
particular points, a few examples explicitly show the Enter key, using the symbol  [enter]  to 
represent it. The brackets mean that you press a single key rather than type the word  enter .  

 We also refer to control characters, such as Ctrl+D. This notation means to press the D key 
while you are pressing the key labeled Ctrl (or perhaps Control).   

  Systems Used in Preparing This Book  

 Some aspects of C, such as the amount of space used to store a number, depend on the system. 
When we give examples and refer to “our system,” we usually speak of an iMac running under 
OS X 10.8.4 and using the Xcode 4.6.2 development system with the Clang 3.2 compiler. Most 
of the programs also have been compiled using Microsoft Visual Studio Express 2012 and Pelles 
C 7.0 on a Windows 7 system, and GCC 4.7.3 on an Ubuntu 13.04 Linux system.  

 You can download the code for this book’s examples if you register the book at  www.informit.
com/register .   

  Your System—What You Need  

 You need to have a C compiler or access to one. C runs on an enormous variety of computer 
systems, so you have many choices. Do make sure that you use a C compiler designed for 
your particular system. Some of the examples in this book require support for the C99 or C11 
standards, but most of the examples will work with a C90 compiler. If the compiler you use is 

http://www.informit.com/register
http://www.informit.com/register
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pre-ANSI/ISO, you will have to make adjustments, probably often enough to encourage you to 
seek something newer.  

 Most compiler vendors offer special pricing to students and educators, so if you fall into that 
category, check the vendor websites.    

  Special Elements  

 The book includes several special elements that highlight particular points: Sidebars, Tips, 
Cautions, and Notes. The following illustrates their appearances and uses:    

  Sidebar  

 A sidebar provides a deeper discussion or additional background to help illuminate a topic.   

  Tip 

 Tips present short, helpful guides to particular programming situations.   

  Caution 

 A caution alerts you to potential pitfalls.   

  Note 

 The notes provide a catchall category for comments that don’t fall into one of the other 
categories.     

  Summary  

 C is a powerful, concise programming language. It is popular because it offers useful program-
ming tools, good control over hardware, and because C programs are easier than most to trans-
port from one system to another.  

 C is a compiled language. C compilers and linkers are programs that convert C language source 
code into executable code.  

 Programming in C can be taxing, difficult, and frustrating, but it can also be intriguing, excit-
ing, and satisfying. We hope you find it as enjoyable and fascinating as we do.    
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     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    What does  portability  mean in the context of programming?    

   2.    Explain the difference between a source code file, object code file, and executable file.    

   3.    What are the seven major steps in programming?    

   4.    What does a compiler do?    

   5.    What does a linker do?      

  Programming Exercise  

 We don’t expect you to write C code yet, so this exercise concentrates on the earlier stages of 
the programming process.  

    1.    You have just been employed by MacroMuscle, Inc. (Software for Hard Bodies). The 
company is entering the European market and wants a program that converts inches 
to centimeters (1 inch = 2.54 cm). The company wants the program set up so that it 
prompts the user to enter an inch value. Your assignment is to define the program 
objectives and to design the program (steps 1 and 2 of the programming process).        
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  2 
 Introducing C  

    You will learn about the following in this chapter:  

    ■   Operator:  

  =    
   ■   Functions:  

  main() ,  printf()    
   ■   Putting together a simple C program   

   ■   Creating integer-valued variables, assigning them values, and displaying those values 
onscreen   

   ■   The newline character   

   ■   How to include comments in your programs, create programs containing more than one 
function, and find program errors   

   ■   What keywords are    

 What does a C program look like? If you skim through this book, you’ll see many examples. 
Quite likely, you’ll find that C looks a little peculiar, sprinkled with symbols such as  
{, cp->tort , and  *ptr++ . As you read through this book, however, you will find that the 
appearance of these and other characteristic C symbols grows less strange, more familiar, and 
perhaps even welcome! Or, if you already are familiar with one of C’s many descendants, you 
might feel as if you are coming home to the source. In this chapter, we begin by presenting a 
simple sample program  and explaining what it does. At the same time, we highlight some of 
C’s basic features.   

     A Simple Example of C  

 Let’s take a look at a simple C program. This program, shown in  Listing   2.1   , serves to point out 
some of the basic features of programming in C. Before you read the upcoming line-by-line 
explanation of the program, read through  Listing   2.1    to see whether you can figure out for 
yourself what  it will do.  
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  Listing 2.1   The  first.c  Program  

 #include <stdio.h>

  int main(void)                /* a simple program             */

  {

      int num;                  /* define a variable called num */

      num = 1;                  /* assign a value to num        */

  

      printf("I am a simple "); /* use the printf() function    */

      printf("computer.\n");

      printf("My favorite number is %d because it is first.\n",num);

  

      return 0;

  }   

 If you think this program will print something on your screen, you’re right! Exactly what will 
be printed might not be apparent, so run the program and see the results. First, use your favor-
ite editor (or your compiler’s favorite editor) to create a file containing the text from  Listing 
  2.1   . Give the file a name that ends in  .c  and that satisfies your local system’s name require-
ments. You can use  first.c , for example. Now compile and run the program. (Check  Chapter 
  1   , “Getting Ready,” for some general guidelines to this process.) If all went well, the output 
should look like the  following:  

  I am a simple computer.

  My favorite number is 1 because it is first.   

 All in all, this result is not too surprising, but what happened to the  \n s and the  %d  in the 
program? And some of the lines in the program do look strange. It’s time for an explanation.    

  Program Adjustments  

 Did the output for this program briefly flash onscreen and then disappear? Some windowing 
environments run the program in a separate window and then automatically close the window 
when the program finishes. In this case, you can supply extra code to make the window stay 
open until you strike a key. One way is to add the following line before the return statement:  

  getchar();   

 This code causes the program to wait for a keystroke, so the window remains open until you 
press a key. You’ll learn more about  getchar()  in  Chapter   8   , “Character Input/Output and 
Input Validation.”    

  The Example Explained  

 We’ll take two passes through the program’s source code. The first pass (“Pass 1: Quick 
Synopsis”) highlights the meaning of each line to help you get a general feel for what’s going 
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on. The second pass (“Pass 2: Program Details”) explores specific implications and details to 
help you gain a deeper understanding.  

  Figure   2.1    summarizes the parts of a C program; it includes more elements than our first 
example uses.  
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 Figure 2.1   Anatomy of a C program.         
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  Pass 1: Quick Synopsis  

 This section presents each line from the program followed by a short description; the next 
section (Pass 2) explores the topics raised here more fully.  

  #include <stdio.h>    include another file   

 This line tells the compiler to include the information found in the file  stdio.h , which is a 
standard part of all C compiler packages; this file provides support for keyboard input and for 
displaying output.  

  int main(void)        a function name   

 C programs consist of one or more  functions , the basic modules of a C program. This program 
consists of one function called  main . The parentheses identify  main()  as a function name. 
The  int  indicates that the  main()  function returns an integer, and the  void  indicates that 
 main()  doesn’t take any arguments. These are matters we’ll go into later. Right now, just 
accept both  int  and  void  as part of the standard ANSI C way for defining  main() . (If you 
have a pre-ANSI C compiler, omit  void ; you may want to get something more recent to avoid 
incompatibilities.)  

  /* a simple program */    a comment   

 The symbols  /*  and  */  enclose comments—remarks that help clarify a program. They are 
intended for the reader only and are ignored by the compiler.  

  {        beginning of the body of the function   

 This opening brace marks the start of the statements that make up the function. A closing brace 
( } ) marks the end of the function definition.  

  int num;        a declaration statement   

 This statement announces that you are using a variable called  num  and that  num  will be an  int  
(integer) type.  

  num = 1;    an assignment statement   

 The statement  num = 1;  assigns the value  1  to the variable called  num .  

  printf("I am a simple ");    a function call statement   

 The first statement using  printf()  displays the phrase  I am a simple  on your screen, 
leaving the cursor on the same line. Here  printf()  is part of the standard C library. It’s termed 
a  function , and using a function in the program is termed  calling a function .  

  printf("computer.\n");    another function call statement   

 The next call to the  printf()  function tacks on  computer  to the end of the last phrase 
printed. The  \n  is code telling the computer to start a new line—that is, to move the cursor to 
the beginning of the next line.  

  printf("My favorite number is %d because it is first.\n", num);   
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 The last use of  printf()  prints the value of  num  (which is  1 ) embedded in the phrase in 
quotes. The  %d  instructs the computer where and in what form to print the value of  num .  

  return 0;    a return statement   

 A C function can furnish, or  return , a number to the agency that used it. For the present, just 
regard this line as the appropriate closing for a  main()  function.  

  }    the end   

 As promised, the program ends with a closing brace.   

  Pass 2: Program Details  

 Now that you have an overview of  Listing   2.1   , we’ll take a closer look. Once again, we’ll 
examine the individual lines from the program, this time using each line of code as a starting 
point for going deeper into the details behind the code and as a basis for developing a more 
general perspective of C programming features.  

   #include  Directives and Header Files  

  #include <stdio.h>   

 This is the line that begins the program. The effect of  #include <stdio.h>  is the same as 
if you had typed the entire contents of the  stdio.h  file into your file at the point where the 
 #include  line appears. In effect, it’s a cut-and-paste operation.  include  files provide a conve-
nient way to share information that is common to many programs.  

 The  #include  statement is an example of a C  preprocessor directive . In general, C compilers 
perform some preparatory work on source code before compiling; this is termed  preprocessing .  

 The  stdio.h  file is supplied as part of all C compiler packages. It contains information about 
input and output functions, such as  printf() , for the compiler to use. The name stands for 
 standard input/output header . C people call a collection of information that goes at the top of a 
file a  header , and C implementations typically come with several header files.  

 For the most part, header files contain information used by the compiler to build the final 
executable program. For example, they may define constants or indicate the names of functions 
and how they should be used. But the actual code for a function is in a library file of precom-
piled code, not in a header file. The linker component of the compiler takes care of finding the 
library code you need. In short, header files help guide the compiler in putting your program 
together correctly.  

 ANSI/ISO C has standardized which header files a C compiler must make available. Some 
programs need to include  stdio.h , and some don’t. The documentation for a particular C 
implementation should include a description of the functions in the C library. These function 
descriptions identify which header files are needed. For example, the description for  printf()  
says to use  stdio.h . Omitting the proper header file might not affect a particular program, but 
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it is best not to rely on that. Each time this book uses library functions, it will use the  include  
files specified by the ANSI/ISO standard for those functions.  

  Note   Why Input and Output Are Not Built In  

 Perhaps you are wondering why facilities as basic as input and output aren’t included auto-
matically. One answer is that not all programs use this I/O (input/output) package, and part 
of the C philosophy is to avoid carrying unnecessary weight. This principle of economic use 
of resources makes C popular for embedded programming—for example, writing code for a 
chip that controls an automotive fuel system or a Blu-ray player. Incidentally, the  #include  
line is not even a C language statement! The  #  symbol in column 1 identifies the line as one 
to be handled by the C preprocessor before the compiler takes over. You  will encounter more 
examples of preprocessor instructions later, and  Chapter   16   , “The C Preprocessor and the C 
Library,” discusses this topic more fully.    

  The  main()  Function  

  int main(void)   

 This next line from the program proclaims a function by the name of  main . True,  main  is a 
rather plain name, but it is the only choice available. A C program (with some exceptions we 
won’t worry about) always begins execution with the function called  main() . You are free to 
choose names for other functions you use, but  main()  must be there to start things. What 
about the parentheses? They identify  main()  as a function. You will learn more about func-
tions soon. For now, just remember that functions are the basic modules of a C program.  

 The  int  is the  main()  function’s return type. That means that the kind of value  main()  can 
return is an integer. Return where? To the operating system—we’ll come back to this question 
in  Chapter   6   , “C Control Statements: Looping.”  

 The parentheses following a function name generally enclose information being passed along 
to the function. For this simple example, nothing is being passed along, so the parentheses 
contain the word  void . ( Chapter   11   , “Character Strings and String Functions,” introduces a 
second format that allows information to be passed to  main()  from the operating system.)  

 If you browse through ancient C code, you’ll often see programs starting off with the following 
format:  

  main()   

 The C90 standard grudgingly tolerated this form, but the C99 and C11 standards don’t. So even 
if your current compiler lets you do this, don’t.  

 The following is another form you may see:  

  void main()   

 Some compilers allow this, but none of the standards have ever listed it as a recognized option. 
Therefore, compilers don’t have to accept this form, and several don’t. Again, stick to the 
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standard form, and you won’t run into problems if you move a program from one compiler to 
another.   

  Comments  

  /* a simple program */   

 The parts of the program enclosed in the  /* */  symbols are comments. Using comments 
makes it easier for someone (including yourself) to understand your program. One nice feature 
of C comments is that they can be placed anywhere, even on the same line as the material they 
explain. A longer comment can be placed on its own line or even spread over more than one 
line. Everything between the opening  /*  and the closing  */  is ignored by the compiler. The 
following are some valid and invalid comment forms:  

  /* This is a C comment. */

  /* This comment, being somewhat wordy, is spread over

     two lines. */

  /*

    You can do this, too.

  */

  /* But this is invalid because there is no end marker.   

 C99 added a second style of comments, one popularized by C++ and Java. The new style uses 
the symbols  //  to create comments that are confined to a single line:  

  // Here is a comment confined to one line.

  int rigue;      // Such comments can go here, too.   

 Because the end of the line marks the end of the comment, this style needs comment markers 
just at the beginning of the comment.  

 The newer form is a response to a potential problem with the old form. Suppose you have the 
following code:  

  /*

  I hope this works.

  */

  x = 100;

  y = 200;

  /* Now for something else. */   

 Next, suppose you decide to remove the fourth line and accidentally delete the third line (the 
 */ ), too. The code then becomes  

  /*

  I hope this works.

  y = 200;

  /* Now for something else. */   
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 Now the compiler pairs the  /*  in the first line with the  */  in the fourth line, making all four 
lines into one comment, including the line that was supposed to be part of the code. Because 
the  //  form doesn’t extend over more than one line, it can’t lead to this “disappearing code” 
problem.  

 Some compilers may not support this feature; others may require changing a compiler setting 
to enable C99 or C11 features.  

 This book, operating on the theory that needless consistency can be boring, uses both kinds of 
comments.   

  Braces, Bodies, and Blocks  

  {

  ...

  }   

 In  Listing   2.1   , braces delimited the  main()  function. In general, all C functions use braces to 
mark the beginning as well as the end of the body of a function. Their presence is mandatory, 
so don’t leave them out. Only braces ( { } ) work for this purpose, not parentheses ( ( ) ) and 
not brackets ( [ ] ).  

 Braces can also be used to gather statements within a function into a unit or block. If you are 
familiar with Pascal, ADA, Modula-2, or Algol, you will recognize the braces as being similar to 
 begin  and  end  in those languages.   

  Declarations  

  int num;   

 This line from the program is termed a  declaration statement . The declaration statement is one 
of C’s most important features. This particular example declares two things. First, somewhere in 
the function, you have a  variable  called  num . Second, the  int  proclaims  num  as an integer—that 
is, a number without a decimal point or fractional part. ( int  is an example of a  data type .) The 
compiler uses this information to arrange for suitable storage space in memory for the  num  vari-
able. The semicolon at the end of the line identifies the line as a C  statement  or instruction. The 
semicolon is part of the statement, not just  a separator between statements as it is in Pascal.  

 The word  int  is a C  keyword  identifying one of the basic C data types. Keywords are the words 
used to express a language, and you can’t use them for other purposes. For instance, you can’t 
use  int  as the name of a function or a variable. These keyword restrictions don’t apply outside 
the language, however, so it is okay to name a cat or favorite child  int . (Local custom or law 
may void this option in some locales.)  

 The word  num  in this example is an  identifier —that is, a name you select for a variable, a func-
tion, or some other entity. So the declaration connects a particular identifier with a particular 
location in computer memory, and it also establishes the type of information, or data type, to 
be stored at that location.  
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 In C,  all  variables must be declared  before  they are used. This means that you have to provide 
lists of all the variables you use in a program and that you have to show which data type each 
variable is. Declaring variables is considered a good programming technique, and, in C, it is 
mandatory.  

 Traditionally, C has required that variables be declared at the beginning of a block with no 
other kind of statement allowed to come before any of the declarations. That is, the body of 
 main()  might look like the following:  

  int main()    // traditional rules

  {

      int doors;

      int dogs;

      doors = 5;

      dogs = 3;

      // other statements

  }   

 C99 and C11, following the practice of C++, let you place declarations about anywhere in 
a block. However, you still must declare a variable before its first use. So if your compiler 
supports this feature, your code can look like the following:  

  int main()          // current C rules

  {

  // some statements

      int doors;

      doors = 5;      // first use of doors

  // more statements

      int dogs;

      dogs = 3;       // first use of dogs

      // other statements

  }   

 For greater compatibility with older systems, this book will stick to the original convention.  

 At this point, you probably have three questions. First, what are data types? Second, what 
choices do you have in selecting a name? Third, why do you have to declare variables at all? 
Let’s look at some answers.  

  Data Types  
 C deals with several kinds (or types) of data: integers, characters, and floating point, for 
example. Declaring a variable to be an integer or a character type makes it possible for the 
computer to store, fetch, and interpret the data properly. You’ll investigate the variety of avail-
able types in the next chapter.   
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  Name Choice  
 You should use meaningful names (or identifiers) for variables (such as  sheep_count  instead of 
 x3  if your program counts sheep). If the name doesn’t suffice, use comments to explain what 
the variables represent. Documenting a program in this manner is one of the basic techniques 
of good programming.  

 With C99 and C11 you can make the name of an identifier as long as you want, but the 
compiler need only consider the first 63 characters as significant. For external identifiers (see 
 Chapter   12   , “Storage Classes, Linkage, and Memory Management”) only 31 characters need to 
be recognized. This is a substantial increase from the C90 requirement of 31 characters and six 
characters, respectively, and older C compilers often stopped at eight characters max. Actually, 
you can use more than the maximum number of characters, but the compiler isn’t required to 
pay attention to the extra characters. What does this  mean? If you have two identifiers each 
63 characters long and identical except for one character, the compiler is required to recognize 
them as distinct from one another. If you have two identifiers 64 characters long and identical 
except for the final character, the compiler might recognize them as distinct, or it might not; 
the standard doesn’t define what should happen in that case.  

 The characters at your disposal are lowercase letters, uppercase letters, digits, and the under-
score ( _ ). The first character must be a letter or an underscore. The following are some 
examples:  

  Valid Names  Invalid Names 

  wiggles     $Z]**   

  cat2     2cat   

  Hot_Tub     Hot-Tub   

  taxRate     tax rate   

  _kcab     don't   

 Operating systems and the C library often use identifiers with one or two initial underscore 
characters, such as in  _kcab , so it is better to avoid that usage yourself. The standard labels 
beginning with one or two underscore characters, such as library identifiers, are  reserved . This 
means that although it is not a syntax error to use them, it could lead to name conflicts.  

 C names are  case   sensitive , meaning an uppercase letter is considered distinct from the corre-
sponding lowercase letter. Therefore,  stars  is different from  Stars  and  STARS .  

 To make C more international, C99 and C11 make an extensive set of characters available for 
use by the Universal Character Names (or  UMC ) mechanism. Reference Section VII, “Expanded 
Character Support,” in  Appendix   B    discusses this addition. This makes available characters that 
are not part of the English alphabet.   
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  Four Good Reasons to Declare Variables  
 Some older languages, such as the original forms of FORTRAN and BASIC, allow you to use 
variables without declaring them. So why can’t you take this easy-going approach in C? Here 
are some reasons:  

    ■   Putting all the variables in one place makes it easier for a reader to grasp what the 
program is about. This is particularly true if you give your variables meaningful names 
(such as  taxrate  instead of  r ). If the name doesn’t suffice, use comments to explain 
what the variables represent. Documenting a program in this manner is one of the basic 
techniques of good programming.   

   ■   Thinking about which variables to declare encourages you to do some planning before 
plunging into writing a program. What information does the program need to get 
started? What exactly do I want the program to produce as output? What is the best way 
to represent the data?   

   ■   Declaring variables helps prevent one of programming’s more subtle and hard-to-find 
bugs—that of the misspelled variable name. For example, suppose that in some language 
that lacks declarations, you made the statement  

  RADIUS1 = 20.4;   

 and that elsewhere in the program you mistyped  

  CIRCUM = 6.28 * RADIUSl;   

 You unwittingly replaced the numeral 1 with the letter  l  (lowercase el). That other 
language would create a new variable called  RADIUSl  and use whatever value it had 
(perhaps zero, perhaps garbage).  CIRCUM  would be given the wrong value, and you 
might have a heck of a time trying to find out why. This can’t happen in C (unless you 
were silly enough to declare two such similar variable names) because the compiler will 
complain when the undeclared  RADIUSl  shows up.   

   ■   Your C program will not compile if you don’t declare your variables. If the preceding 
reasons fail to move you, you should give this one serious thought.    

 Given that you need to declare your variables, where do they go? As mentioned before, C 
prior to C99 required that the declarations go at the beginning of a block. A good reason for 
following this practice is that grouping the declarations together makes it easier to see what the 
program is doing. Of course, there’s also a good reason to spread your declarations around, as 
C99 now allows. The idea is to declare variables just before you’re ready to give them a value. 
That makes it harder to forget to give them a value. As a practical matter, many  compilers don’t 
yet support the C99 rule.    

  Assignment  

  num = 1;   

 The next program line is an  assignment statement , one of the basic operations in C. This particu-
lar example means “assign the value  1  to the variable  num .” The earlier  int num;  line set aside 



ptg11524036

38 Chapter 2 Introducing C

space in computer memory for the variable  num , and the assignment line stores a value in that 
location. You can assign  num  a different value later, if you want; that is why  num  is termed a 
 variable . Note that the assignment statement assigns a value from the right side to the left side. 
Also, the statement is completed with a semicolon, as shown in  Figure   2.2   .  

 

num = 1;

assignment
operator

 Figure 2.2   The assignment statement is one of the basic C operations.          

  The  printf()  Function  

  printf("I am a simple ");

  printf("computer.\n");

  printf("My favorite number is %d because it is first.\n", num);   

 These lines all use a standard C function called  printf() . The parentheses signify that  printf  
is a function name. The material enclosed in the parentheses is information passed from the 
 main()  function to the  printf()  function. For example, the first line passes the phrase  I am 
a simple  to the  printf()  function. Such information is called the  argument  or, more fully, 
the  actual argument  of a function (see  Figure   2.3   ). (C uses the terms  actual argument  and  formal 
argument  to distinguish between a specific value sent to a function and a variable in the func-
tion used to hold the value;  Chapter   5    “Operators, Expressions, and Statements,” goes into this 
matter in more detail.) What does  the function  printf()  do with this argument? It looks at 
whatever lies between the double quotation marks and prints that text onscreen.  

 

printf( )

printf("That's mere contrariness!\n");

arg
umen

t

 Figure 2.3   The  printf()  function with an argument.         
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 This first  printf()  line is an example of how you  call  or  invoke  a function in C. You need type 
only the name of the function, placing the desired argument(s) within the parentheses. When 
the program reaches this line, control is turned over to the named function ( printf()  in this 
case). When the function is finished with whatever it does, control is returned to the original 
(the  calling ) function— main() , in this example.  

 What about this next  printf()  line? It has the characters  \n  included in the quotes, and 
they didn’t get printed! What’s going on? The  \n  symbol means to start a new line. The  \n  
combination (typed as two characters) represents a single character called the  newline character . 
To  printf() , it means “start a new line at the far-left margin.” In other words, printing the 
newline character performs the same function as pressing the Enter key of a typical keyboard. 
Why not just use the Enter key when typing the  printf()  argument? That would be inter-
preted as an immediate command to your editor, not as an  instruction to be stored in your 
source code. In other words, when you press the Enter key, the editor quits the current line on 
which you are working and starts a new one. The newline character, however, affects how the 
output of the program is displayed.  

 The newline character is an example of an  escape sequence . An escape sequence is used to 
represent difficult- or impossible-to-type characters. Other examples are  \t  for  Tab and  \b  
for Backspace. In each case, the escape sequence begins with the backslash character,  \ . We’ll 
return to this subject in  Chapter   3   , “Data and C.”  

 Well, that explains why the three  printf()  statements produced only two lines: The first print 
instruction didn’t have a newline character in it, but the second and third did.  

 The final  printf()  line brings up another oddity: What happened to the  %d  when the line was 
printed? As you will recall, the output for this line was  

  My favorite number is 1 because it is first.   

 Aha! The digit  1  was substituted for the symbol group  %d  when the line was printed, and  1  was 
the value of the variable  num . The  %d  is a placeholder to show where the value of  num  is to be 
printed. This line is similar to the following BASIC statement:  

  PRINT "My favorite number is "; num; " because it is first."   

 The C version does a little more than this, actually. The  %  alerts the program that a variable 
is to be printed at that location, and the  d  tells it to print the variable as a decimal (base 10) 
integer. The  printf()  function allows several choices for the format of printed variables, 
including hexadecimal (base 16) integers and numbers with decimal points. Indeed, the  f  in 
 printf()  is a reminder that this is a  formatting  print function. Each type of data has its own 
specifier—as the book introduces new types, it will also introduce the appropriate specifiers.   
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  Return Statement  

  return 0;   

 This return statement is the final statement of the program. The  int  in  int main(void)  
means that the  main()  function is supposed to return an integer. The C standard requires that 
 main()  behave that way. C functions that return values do so with a return statement, which 
consists of the keyword  return , followed by the returned value, followed by a semicolon. If 
you leave out the return statement for  main() , the program will return 0 when it reaches the 
closing  } . So you can omit the return statement at the end of  main() . However, you can’t omit 
it from other functions, so it’s more  consistent to use it in  main() , too. At this point, you can 
regard the return statement in  main()  as something required for logical consistency, but it has 
a practical use with some operating systems, including Linux and Unix.  Chapter   11    will deal 
further with this topic.     

  The Structure of a Simple Program  

 Now that you’ve seen a specific example, you are ready for a few general rules about C 
programs. A  program  consists of a collection of one or more functions, one of which must be 
called  main() . The description of a  function  consists of a header and a body. The  function header  
contains the function name along with information about the type of information passed to 
the function and returned by the function. You can recognize a function name by the paren-
theses, which may be empty. The  body  is enclosed by braces ( {} ) and consists of a series of 
statements, each terminated by a semicolon (see  Figure    2.4   ). The example in this chapter had 
a  declaration statement , announcing the name and type of variable being used. Then it had an 
 assignment statement  giving the variable a value. Next, there were three  print statements , each 
calling the  printf()  function. The print statements are examples of  function call statements . 
Finally,  main()  ends with a  return statement .  

 In short, a simple standard C program should use the following format:  

  #include <stdio.h>

  int main(void)

  {

      statements 

     return 0;

  }   

 (Recall that each statement includes a terminating semicolon.)  
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int main(void)

{
int q;
q = 1;
printf("%d is neat. \n",q);
return 0;
}

Header

Body

function name with arguments

declaration statement
assignment statement

function statement

 Figure 2.4   A function has a header and a body.          

  Tips on Making Your Programs Readable  

 Making your programs readable is good programming practice. A readable program is much 
easier to understand, and that makes it easier to correct or modify. The act of making a 
program readable also helps clarify your own concept of what the program does.  

 You’ve already seen two techniques for improving readability: Choose meaningful variable 
names and use comments. Note that these two techniques complement each other. If you give 
a variable the name  width , you don’t need a comment saying that this variable represents a 
width, but a variable called  video_routine_4  begs for an explanation of what video routine 4 
does.  

 Another technique involves using blank lines to separate one conceptual section of a func-
tion from another. For example, the simple sample program has a blank line separating the 
declaration section from the action section. C doesn’t require the blank line, but it enhances 
readability.  

 A fourth technique is to use one line per statement. Again, this is a readability convention, 
not a C requirement. C has a  free-form  format. You can place several statements on one line or 
spread one statement over several. The following is legitimate, but ugly, code:  

  int main(  void  ) { int four; four

  =

  4

  ;

  printf(

        "%d\n",

  four); return 0;}   



ptg11524036

42 Chapter 2 Introducing C

 The semicolons tell the compiler where one statement ends and the next begins, but the 
program logic is much clearer if you follow the conventions used in this chapter’s example (see 
 Figure   2.5   ).  

 

int main(void) /* converts 2 fathoms to feet */

{
int feet, fathoms;

fathoms=2;
feet=6*fathoms;
printf("There are %d feet in %d fathoms!\n", feet, fathoms);
return 0;
}

use comments

pick meaningful names
use space

one statement per line

 Figure 2.5   Making your program readable.          

  Taking Another Step in Using C  

 The first sample program was pretty easy, and the next example, shown in  Listing   2.2   , isn’t 
much harder.  

  Listing 2.2   The  fathm_ft.c  Program  

 // fathm_ft.c -- converts 2 fathoms to feet

  

  #include <stdio.h>

  int main(void)

  {

      int feet, fathoms;

  

      fathoms = 2;

      feet = 6 * fathoms;

      printf("There are %d feet in %d fathoms!\n", feet, fathoms);

      printf("Yes, I said %d feet!\n", 6 * fathoms);

  

      return 0;

  }   
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 What’s new? The code provides a program description, declares multiple variables, does some 
multiplication, and prints the values of two variables. Let’s examine these points in more detail.  

  Documentation  

 First, the program begins with a comment (using the new comment style) identifying the 
filename and the purpose of the program. This kind of program documentation takes but a 
moment to do and is helpful later when you browse through several files or print them.   

  Multiple Declarations  

 Next, the program declares two variables instead of just one in a single declaration statement. 
To do this, separate the two variables ( feet  and  fathoms ) by a comma in the declaration state-
ment. That is,  

  int feet, fathoms;   

 and  

  int feet;

  int fathoms;   

 are equivalent.   

  Multiplication  

 Third, the program makes a calculation. It harnesses the tremendous computational power of a 
computer system to multiply 2 by 6. In C, as in many languages,  *  is the symbol for multiplica-
tion. Therefore, the statement  

  feet = 6 * fathoms;   

 means “look up the value of the variable  fathoms , multiply it by 6, and assign the result of this 
calculation to the variable  feet .”   

  Printing Multiple Values  

 Finally, the program makes fancier use of  printf() . If you compile and run the example, the 
output should look like this:  

  There are 12 feet in 2 fathoms!

  Yes, I said 12 feet!   

 This time, the code made  two  substitutions in the first use of  printf() . The first  %d  in the 
quotes was replaced by the value of the first variable ( feet ) in the list following the quoted 
segment, and the second  %d  was replaced by the value of the second variable ( fathoms ) in the 
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list. Note that the list of variables to be printed comes at the tail end of the statement after the 
quoted part. Also note that each item is separated from the others by a comma.  

 The second use of  printf()  illustrates that the value printed doesn’t have to be a variable; it 
just has to be something, such as  6 * fathoms , that reduces to a value of the right type.  

 This program is limited in scope, but it could form the nucleus of a program for converting 
fathoms to feet. All that is needed is a way to assign additional values to  feet  interactively; we 
will explain how to do that in later chapters.    

  While You’re at It—Multiple Functions  

 So far, these programs have used the standard  printf()  function.  Listing   2.3    shows  you how 
to incorporate a function of your own—besides  main() —into a program.  

  Listing 2.3   The  two_func.c  Program  

 //* two_func.c -- a program using two functions in one file */

  #include <stdio.h>

  void butler(void);      /* ANSI/ISO C function prototyping */

  int main(void)

  {

      printf("I will summon the butler function.\n");

      butler();

      printf("Yes. Bring me some tea and writeable DVDs.\n");

  

      return 0;

  }

  

  void butler(void)       /* start of function definition */

  {

      printf("You rang, sir?\n");

  }   

 The output looks like the following:  

  I will summon the butler function.

  You rang, sir?

  Yes. Bring me some tea and writeable DVDs.   

 The  butler()  function appears three times in this program. The first appearance is in the  proto-
type , which informs the compiler about the functions to be used. The second appearance is in 
 main()  in the form of a  function call . Finally, the program presents the  function definition , which 
is the source code for the function itself. Let’s look at each of these three appearances in turn.  
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 The C90 standard added prototypes, and older compilers might not recognize them. (We’ll tell 
you what to do when using such compilers in a moment.) A prototype declares to the compiler 
that you are using a particular function, so it’s called a  function declaration . It also specifies 
properties of the function. For example, the first  void  in the prototype for the  butler()  func-
tion indicates that  butler()  does not have a return value. (In general, a function can return 
a value to the calling function for its use, but  butler()  doesn’t.) The second  void —the one 
in  butler(void) —means that the  butler()  function has no arguments. Therefore, when  the 
compiler reaches the point in  main()  where  butler()  is used, it can check to see whether 
 butler()  is used correctly. Note that  void  is used to mean “empty,” not “invalid.”  

 Older C supported a more limited form of function declaration in which you just specified the 
return type but omitted describing the arguments:  

  void butler();   

 Older C code uses function declarations like the preceding one instead of function prototypes. 
The C90, C99, and C11 standards recognize this older form but indicate it will be phased out in 
time, so don’t use it. If you inherit some legacy C code, you may want to convert the old-style 
declarations to prototypes. Later chapters in this book return to prototyping, function declara-
tions, and return values.  

 Next, you invoke  butler()  in  main()  simply by giving its name, including parentheses. When 
 butler()  finishes its work, the program moves to the next statement in  main() .  

 Finally, the function  butler()  is defined in the same manner as  main() , with a function 
header and the body enclosed in braces. The header repeats the information given in the proto-
type:  butler()  takes no arguments and has no return value. For older compilers, omit the 
second  void .  

 One point to note is that it is the location of the  butler()  call in  main() —not the loca-
tion of the  butler()  definition in the file—that determines when the  butler()  function is 
executed. You could, for example, put the  butler()  definition above the  main()  definition in 
this program, and the program would still run the same, with the  butler()  function executed 
between the two calls to  printf()  in  main() . Remember, all C programs begin execution with 
 main() , no matter where  main()  is located in the program files. However, the usual C practice 
is to list  main()  first because it normally provides the basic framework for a program.  

 The C standard recommends that you provide function prototypes for all functions you 
use. The standard  include  files take care of this task for the standard library functions. For 
example, under standard C, the  stdio.h  file has a function prototype for  printf() . The final 
example in  Chapter   6    will show you how to extend prototyping to  non- void  functions, and 
 Chapter   9    covers functions fully.   
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  Introducing Debugging  

 Now that you can write a simple C program, you are in a position to make simple errors. 
Program errors often are called  bugs , and finding and fixing the errors is called  debugging . 
 Listing   2.4    presents a program with some bugs. See how many you can spot.  

  Listing 2.4   The  nogood.c  Program  

 /*  nogood.c -- a program with errors */

  #include <stdio.h>

  int main(void)

  (

      int n, int n2, int n3;

  

  /* this program has several errors

      n = 5;

      n2 = n * n;

      n3 = n2 * n2;

      printf("n = %d, n squared = %d, n cubed = %d\n", n, n2, n3)

  

      return 0;

  )   

  Syntax Errors  

  Listing   2.4    contains several syntax errors. You commit a  syntax error  when you don’t follow 
C’s rules. It’s analogous to a grammatical error in English. For instance, consider the following 
sentence:  Bugs frustrate   be can . This sentence uses valid English words but doesn’t follow the 
rules for word order, and it doesn’t have quite the right words, anyway. C syntax errors use 
valid C symbols in the wrong places.  

 So what syntax errors did  nogood.c  make? First, it uses parentheses instead of braces to mark 
the body of the function—it uses a valid C symbol in the wrong place. Second, the declaration 
should have been  

  int n, n2, n3;   

 or perhaps  

  int n;

  int n2;

  int n3;   

 Next, the example omits the  */  symbol pair necessary to complete a comment. (Alternatively, 
you could replace  /*  with the new  //  form.) Finally, it omits the mandatory semicolon that 
should terminate the  printf()  statement.  
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 How do you detect syntax errors? First, before compiling, you can look through the source 
code and see whether you spot anything obvious. Second, you can examine errors found by the 
compiler because part of its job is to detect syntax errors. When you attempt to compile this 
program, the compiler reports back any errors it finds, identifying the nature and location of 
each error.  

 However, the compiler can get confused. A true syntax error in one location might cause the 
compiler to mistakenly think it has found other errors. For instance, because the example does 
not declare  n2  and  n3  correctly, the compiler might think it has found further errors whenever 
those variables are used. In fact, if you can’t make sense of all the reported errors, rather than 
trying to correct all the reported errors at once, you should correct just the first one or two and 
then recompile; some of the other errors may go away. Continue in this way until the program 
works.  Another common compiler trick is reporting the error a line late. For instance, the 
compiler may not deduce that a semicolon is missing until it tries to compile the next line. So 
if the compiler complains of a missing semicolon on a line that has one, check the line before.   

  Semantic Errors  

 Semantic errors are errors in meaning. For example, consider the following sentence:  Scornful 
derivatives sing greenly . The syntax is fine because adjectives, nouns, verbs, and adverbs are in 
the right places, but the sentence doesn’t mean anything. In C, you commit a semantic error 
when you follow the rules of C correctly but to an incorrect end. The example has one such 
error:  

  n3 = n2 * n2;   

 Here,  n3  is supposed to represent the cube of  n , but the code sets it up to be the fourth power 
of  n .  

 The compiler does not detect semantic errors, because they don’t violate C rules. The compiler 
has no way of divining your true intentions. That leaves it to you to find these kinds of errors. 
One way is to compare what a program does to what you expected it to do. For instance, 
suppose you fix the syntax errors in the example so that it now reads as shown in  Listing   2.5   .  

  Listing 2.5   The  stillbad.c  Program  

 /* stillbad.c -- a program with its syntax errors fixed */

  #include <stdio.h>

  int main(void)

  {

      int n, n2, n3;

  

  /* this program has a semantic error */

      n = 5;

      n2 = n * n;

      n3 = n2 * n2;

      printf("n = %d, n squared = %d, n cubed = %d\n", n, n2, n3);
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      return 0;

  }   

 Its output is this:  

  n = 5, n squared = 25, n cubed = 625   

 If you are cube-wise, you’ll notice that 625 is the wrong value. The next stage is to track down 
how you wound up with this answer. For this example, you probably can spot the error by 
inspection. In general, however, you need to take a more systematic approach. One method 
is to pretend you are the computer and to follow the program steps one by one. Let’s try that 
method now.  

 The body of the program starts by declaring three variables:  n ,  n2 , and  n3 . You can simulate 
this situation by drawing three boxes and labeling them with the variable names (see  Figure 
  2.6   ). Next, the program assigns  5  to  n . Simulate that by writing  5  into the  n  box. Next, the 
program multiplies  n  by  n  and assigns the result to  n2 , so look in the  n  box, see that the value 
is  5 , multiply  5  by  5  to get  25 , and place  25  in box  n2 . To duplicate the next C statement ( n3 
= n2 * n2; ), look in  n2  and find  25 . You multiply  25  by  25 , get  625 ,  and place it in  n3 . Aha! 
You are squaring  n2  instead of multiplying it by  n .  

 

int n, n2, n3;

n = 5;

n2 = n*n;

n3 = n2*n2;

variables initialized

variable n set to 5

variable n2 set to n
squared

variable n3 set to n2
squared when it

should be n * n2

n n2 n3

n n2 n3

n n2 n3

n n2 n3

executing line in
program stillbad.c

state of variables

5

5

5

25

25 625

? ? ?

??

?

 Figure 2.6   Tracing a program.         

 Well, perhaps this procedure is overkill for this example, but going through a program step-by-
step in this fashion is often the best way to see what’s happening.   
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  Program State  

 By tracing the program step-by-step manually, keeping track of each variable, you monitor the 
program state. The  program state  is simply the set of values of all the variables at a given point 
in program execution. It is a snapshot of the current state of computation.  

 We just discussed one method of tracing the state: executing the program step-by-step yourself. 
In a program that makes, say, 10,000 iterations, you might not feel up to that task. Still, you 
can go through a few iterations to see whether your program does what you intend. However, 
there is always the possibility that you will execute the steps as you intended them to be 
executed instead of as you actually wrote them, so try to be faithful to the actual code.  

 Another approach to locating semantic problems is to sprinkle extra  printf()  statements 
throughout to monitor the values of selected variables at key points in the program. Seeing 
how the values change can illuminate what’s happening. After you have the program working 
to your satisfaction, you can remove the extra statements and recompile.  

 A third method for examining the program states is to use a debugger. A  debugger  is a program 
that enables you to run another program step-by-step and examine the value of that program’s 
variables. Debuggers come in various levels of ease of use and sophistication. The more 
advanced debuggers show which line of source code is being executed. This is particularly 
handy for programs with alternative paths of execution because it is easy to see which particu-
lar paths are being followed. If your compiler comes with a debugger, take time now to learn 
how to use it. Try it with  Listing    2.4   , for example.    

  Keywords and Reserved Identifiers  

 Keywords are the vocabulary of C. Because they are special to C, you can’t use them as identi-
fiers, for example, or as variable names. Many of these keywords specify various types, such 
as  int . Others, such as  if , are used to control the order in which program statements are 
executed. In the following list of C keywords, boldface indicates keywords added by the C90 
standard, italics indicates new keywords added by the C99 standard, and boldface italics indi-
cates keywords added by the C11 standard.  

  ISO C Keywords   

  auto     extern     short     while   

  break     float      signed        _Alignas     

  case     for     sizeof       _Alignof     

  char     goto     static      _Bool    

   const      if     struct      _Complex    

  continue      inline      switch       _Generic     

  default     int     typedef      _Imaginary    
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  ISO C Keywords   

  do     long     union       _Noreturn     

  double     register     unsigned      _ Static_assert     

  else     restrict     void          #_Thread_local

   enum      return      volatile    

 If you try to use a keyword, for, say, the name of a variable, the compiler catches that as a 
syntax error. There are other identifiers, called  reserved identifiers , that you shouldn’t use. They 
don’t cause syntax errors because they are valid names. However, the language already uses 
them or reserves the right to use them, so it could cause problems if you use these identifiers to 
mean something else. Reserved identifiers include those beginning with an underscore charac-
ter and the names of the standard library functions, such as  printf() .   

  Key Concepts  

 Computer programming is a challenging activity. It demands abstract, conceptual thinking 
combined with careful attention to detail. You’ll find that compilers enforce the attention to 
detail. When you talk to a friend, you might use a few words incorrectly, make a grammati-
cal error or two, perhaps leave some sentences unfinished, yet your friend will still understand 
what you are trying to say. But a compiler doesn’t make such allowances; to it, almost right is 
still wrong.  

 The compiler won’t help you with conceptual matters, such as these, so this book will try to fill 
that gap by outlining the key concepts in each chapter.  

 For this chapter, your goal should be to understand what a C program is. You can think of a 
program as a description you prepare of how you want the computer to behave. The compiler 
handles the really detailed job of converting your description to the underlying machine 
language. (As a measure of how much work a compiler does, it can create an executable file 
of 60KB from your source code file of 1KB; a lot of machine language goes into representing 
even a simple C program.) Because the compiler has no real intelligence, you have to express 
your description  in the compiler’s terms, and these terms are the formal rules set up by the 
C language standard. (Although restrictive, this still is far better than having to express your 
description directly in machine language!)  

 The compiler expects to receive its instructions in a specific format, which we described in 
detail in this chapter. Your job as a programmer is to express your ideas about how a program 
should behave within the framework that the compiler—guided by the C standard—can process 
successfully.   
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  Summary  

 A C program consists of one or more C functions. Every C program must contain a function 
called  main()  because it is the function called when the program starts up. A simple function 
consists of a function header followed by an opening brace, followed by the statements consti-
tuting the function body, followed by a terminating, or  closing , brace.  

 Each C statement is an instruction to the computer and is marked by a terminating semicolon. 
A declaration statement creates a name for a variable and identifies the type of data to be stored 
in the variable. The name of a variable is an example of an identifier. An assignment statement 
assigns a value to a variable or, more generally, to a storage area. A function call statement 
causes the named function to be executed. When the called function is done, the program 
returns to the next statement after the function call.  

 The  printf()  function can be used to print phrases and the values of variables.  

 The  syntax  of a language is the set of rules that governs the way in which valid statements in 
that language are put together. The  semantics  of a statement is its meaning. The compiler helps 
you detect syntax errors, but semantic errors show up in a program’s behavior only after it is 
compiled. Detecting semantic errors may involve tracing the program state—that is, the values 
of all variables—after each program step.  

 Finally,  keywords  are the vocabulary of the C language.    

     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    What are the basic modules of a C program called?    

   2.    What is a syntax error? Give an example of one in English and one in C.    

   3.    What is a semantic error? Give an example of one in English and one in C.    

   4.    Indiana Sloth has prepared the following program and brought it to you for approval. 
Please help him out.  

  include studio.h

  int main{void} /* this prints the number of weeks in a year /*

  (

  int s

  

  s := 56;

  print(There are s weeks in a year.);

  return 0;     



ptg11524036

52 Chapter 2 Introducing C

   5.    Assuming that each of the following examples is part of a complete program, what will 
each one print?  

  a. printf("Baa Baa Black Sheep.");

     printf("Have you any wool?\n");

  b. printf("Begone!\nO creature of lard!\n");

  c. printf("What?\nNo/nfish?\n");

  d. int num;

  

     num = 2;

     printf("%d + %d = %d", num, num, num + num);     

   6.    Which of the following are C keywords?  main ,  int ,  function ,  char ,  =     

   7.    How would you print the values of the variables  words  and  lines  so they appear in the 
following form:  

  There were 3020 words and 350 lines.   

 Here,  3020  and  350  represent the values of the two variables.    

   8.    Consider the following program:  

  #include <stdio.h>

  int main(void)

  {

    int a, b;

  

       a = 5;

       b = 2;    /* line 7 */

       b = a;    /* line 8 */

       a = b;    /* line 9 */

       printf("%d %d\n", b, a);

       return 0;

  }   

 What is the program state after line 7? Line 8? Line 9?    

   9.    Consider the following program:  

  #include <stdio.h>

  int main(void)

  {

      int x, y;

  

      x = 10;

      y = 5;        /* line 7 */
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      y = x + y;    /* line 8 */

      x = x*y;      /* line 9 */

      printf("%d %d\n", x, y);

      return 0;

  }   

 What is the program state after line 7? Line 8? Line 9?      

  Programming Exercises  

 Reading about C isn’t enough. You should try writing one or two simple programs to see 
whether writing a program goes as smoothly as it looks in this chapter. A few suggestions 
follow, but you should also try to think up some problems yourself. You’ll find answers to 
selected programming exercises on the publisher’s website.  

    1.    Write a program that uses one  printf()  call to print your first name and last name on 
one line, uses a second  printf()  call to print your first and last names on two separate 
lines, and uses a pair of  printf()  calls to print your first and last names on one line. 
The output should look like this (but using your name):  

  Gustav Mahler First print statement

  Gustav        Second print statement

  Mahler        Still the second print statement

  Gustav Mahler Third and fourth print statements     

   2.    Write a program to print your name and address.    

   3.    Write a program that converts your age in years to days and displays both values. At this 
point, don’t worry about fractional years and leap years.    

   4.    Write a program that produces the following output:  

  For he's a jolly good fellow!

  For he's a jolly good fellow!

  For he's a jolly good fellow!

  Which nobody can deny!   

 Have the program use two user-defined functions in addition to  main() : one named 
 jolly()  that prints the “jolly good” message once, and one named  deny()  that prints 
the final line once.    
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   5.    Write a program that produces the following output:  

  Brazil, Russia, India, China

  India, China,

  Brazil, Russia   

 Have the program use two user-defined functions in addition to  main() : one named 
 br()  that prints “Brazil, Russia” once, and one named  ic()  that prints “India, China” 
once. Let  main()  take care of any additional printing tasks.    

   6.    Write a program that creates an integer variable called  toes . Have the program set  toes  
to  10 . Also have the program calculate what twice  toes  is and what  toes  squared is. The 
program should print all three values, identifying them.    

   7.    Many studies suggest that smiling has benefits. Write a program that produces the 
following output:  

  Smile!Smile!Smile!

  Smile!Smile!

  Smile!   

 Have the program define a function that displays the string  Smile!  once, and have the 
program use the function as often as needed.    

   8.    In C, one function can call another. Write a program that calls a function named  one_
three() . This function should display the word  one  on one line, call a second function 
named  two() , and then display the word  three  on one line. The function  two()  should 
display the word  two  on one line. The  main()  function should display the phrase 
 starting now:  before calling  one_three()  and display  done!  after calling it. Thus, the 
output should look like the following:  

  starting now:

  one

  two

  three

  done!         
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 Data and C  

    You will learn about the following in this chapter:  

    ■   Keywords:  

  int ,  short ,  long ,  unsigned ,  char ,  float ,  double ,  _Bool ,  _Complex ,  _Imaginary    

   ■   Operator:  

  sizeof    

   ■   Function:  

  scanf()    

   ■   The basic data types that C uses   

   ■   The distinctions between integer types and floating-point types   

   ■   Writing constants and declaring variables of those types   

   ■   How to use the  printf()  and  scanf()  functions to read and write values of different 
types    

 Programs work with data. You feed numbers, letters, and words to the computer, and you 
expect it to do something with the data. For example, you might want the computer to calcu-
late an interest payment or display a sorted list of vintners. In this chapter, you do more than 
just read about data; you practice manipulating data, which is much more fun.  

 This chapter explores the two great families of data types: integer and floating point. C offers 
several varieties of these types. This chapter tells you what the types are, how to declare them, 
and how and when to use them. Also, you discover the differences between constants and vari-
ables, and as a bonus, your first interactive program is coming up shortly.   

     A Sample Program  

 Once again, we begin with a sample program. As before, you’ll find some unfamiliar wrinkles 
that we’ll soon iron out for you. The program’s general intent should be clear, so try compiling 
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and running the source code shown in  Listing   3.1   . To save time, you can omit typing the 
comments.  

  Listing 3.1   The  platinum.c  Program  

 /* platinum.c  -- your weight in platinum */

  #include <stdio.h>

  int main(void)

  {

      float weight;    /* user weight             */

      float value;     /* platinum equivalent     */

  

      printf("Are you worth your weight in platinum?\n");

      printf("Let's check it out.\n");

      printf("Please enter your weight in pounds: ");

  

      /* get input from the user                     */

      scanf("%f", &weight);

      /* assume platinum is $1700 per ounce          */

      /* 14.5833 converts pounds avd. to ounces troy */

      value = 1700.0 * weight * 14.5833;

      printf("Your weight in platinum is worth $%.2f.\n", value);

      printf("You are easily worth that! If platinum prices drop,\n");

      printf("eat more to maintain your value.\n");

  

      return 0;

  }   

  Tip   Errors and Warnings  

 If you type this program incorrectly and, say, omit a semicolon, the compiler gives you a syntax 
error message. Even if you type it correctly, however, the compiler may give you a warning simi-
lar to “Warning—conversion from ‘double’ to ‘float,’ possible loss of data.” An error message 
means you did something wrong and prevents the program from being compiled. A  warning , 
however, means you’ve done something that is valid code but possibly is not what you meant 
to do. A warning does not stop compilation. This particular warning pertains to how C handles 
values such as 1700.0. It’s not a  problem for this example, and the chapter explains the warn-
ing later.   

 When you type this program, you might want to change the  1700.0  to the current price of 
the precious metal platinum. Don’t, however, fiddle with the  14.5833 , which represents the 
number of ounces in a pound. (That’s ounces troy, used for precious metals, and pounds avoir-
dupois, used for people—precious and otherwise.)  

 Note that “entering” your weight means to type your weight and then press the Enter or Return 
key. (Don’t just type your weight and wait.) Pressing Enter informs the computer that you have 
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finished typing your response. The program expects you to enter a number, such as  156 , not 
words, such as  too much . Entering letters rather than digits causes problems that require an  if  
statement ( Chapter   7   , “C Control Statements: Branching and Jumps”) to defeat, so please be 
polite and enter a number. Here is some sample output:    

  Are you worth your weight in platinum?

  Let's check it out.

  Please enter your weight in pounds:  156 
  Your weight in platinum is worth $3867491.25.

  You are easily worth that! If platinum prices drop,

  eat more to maintain your value.   

  Program Adjustments  

 Did the output for this program briefly flash onscreen and then disappear even though you 
added the following line to the program, as described in  Chapter   2   , “Introducing C”?  

  getchar();   

 For this example, you need to use that function call twice:  

  getchar();

  getchar();   

 The  getchar()  function reads the next input character, so the program has to wait for input. 
In this case, we provided input by typing  156  and then pressing the Enter (or Return) key, which 
transmits a newline character. So  scanf()  reads the number, the first  getchar()  reads the 
newline character, and the second  getchar()  causes the program to pause, awaiting further 
input.   

  What’s New in This Program?  

 There are several new elements of C in this program:  

    ■   Notice that the code uses a new kind of variable declaration. The previous examples 
just used an integer variable type ( int ), but this one adds a floating-point variable 
type ( float ) so that you can handle a wider variety of data. The  float  type can hold 
numbers with decimal points.   

   ■   The program demonstrates some new ways of writing constants. You now have numbers 
with decimal points.   

   ■   To print this new kind of variable, use the  %f  specifier in the  printf()  code to handle a 
floating-point value. The  .2  modifier to the  %f  specifier fine-tunes the appearance of the 
output so that it displays two places to the right of the decimal.   

   ■   The  scanf()  function provides keyboard input to the program. The  %f  instructs  scanf()  
to read a floating-point number from the keyboard, and the  &weight  tells  scanf()  to 
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assign the input value to the variable named  weight . The  scanf()  function uses the  &  
notation to indicate where it can find the  weight  variable. The next chapter discusses  &  
further; meanwhile, trust us that you need it here.   

   ■   Perhaps the most outstanding new feature is that this program is interactive. The 
computer asks you for information and then uses the number you enter. An interactive 
program is more interesting to use than the noninteractive types. More important, the 
interactive approach makes programs more flexible. For example, the sample program 
can be used for any reasonable weight, not just for 156 pounds. You don’t have to 
rewrite the program every time you want to try it on a new person. The  scanf()  and 
 printf()  functions make this interactivity possible. The  scanf()  function reads data 
from the keyboard and delivers that data to the  program, and  printf()  reads data from 
a program and delivers that data to your screen. Together, these two functions enable 
you to establish a two-way communication with your computer (see  Figure   3.1   ), and that 
makes using a computer much more fun.    

 This chapter explains the first two items in this list of new features: variables and constants of 
various data types.  Chapter   4   , “Character Strings and Formatted Input/Output,” covers the last 
three items, but this chapter will continue to make limited use of  scanf()  and  printf() .  

 

/*platinum.c*/

•

•

int main(void)

{

•

•

•

scanf("-----)

•

•

•

printf("Are you--)

printf(-----)

•

•

return 0;

}

Body

getting keyboard input

displaying program output Are you
---

 Figure 3.1   The  scanf()  and  printf()  functions at work.           
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  Data Variables and Constants  

 A computer, under the guidance of a program, can do many things. It can add numbers, sort 
names, command the obedience of a speaker or video screen, calculate cometary orbits, prepare 
a mailing list, dial phone numbers, draw stick figures, draw conclusions, or anything else your 
imagination can create. To do these tasks, the program needs to work with  data , the numbers 
and characters that bear the information you use. Some types of data are preset before a 
program is used and keep their values unchanged throughout the life of the program. These are 
 constants . Other types of data may  change or be assigned values as the program runs; these are 
 variables . In the sample program,  weight  is a variable and  14.5833  is a constant. What about 
 1700.0 ? True, the price of platinum isn’t a constant in real life, but this program treats it as a 
constant. The difference between a variable and a constant is that a variable can have its value 
assigned or changed while the program is running, and a constant can’t.   

  Data: Data-Type Keywords  

 Beyond the distinction between variable and constant is the distinction between different  types  
of data. Some types of data are numbers. Some are letters or, more generally, characters. The 
computer needs a way to identify and use these different kinds. C does this by recognizing 
several fundamental  data types . If a datum is a constant, the compiler can usually tell its type 
just by the way it looks:  42  is an integer, and  42.100  is floating point. A variable, however, 
needs to have its type announced in a declaration statement. You’ll learn the details of declar-
ing variables as you move along. First, though,  take a look at the fundamental type keywords 
recognized by C. K&R C recognized seven keywords relating to types. The C90 standard added 
two to the list. The C99 standard adds yet another three (see  Table   3.1   ).  

  Table 3.1   C Data Keywords  

  Original K&R Keywords     C90 K&R Keywords     C99 Keywords   

  int     signed     _Bool   

  long     void     _Complex   

  short     _Imaginary   

  unsigned   

  char   

  float   

  double   

 The  int  keyword provides the basic class of integers used in C. The next three keywords ( long , 
 short , and  unsigned ) and the C90 addition  signed  are used to provide variations of the 
basic type, for example,  unsigned short int  and  long long int . Next, the  char  keyword 
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designates the type used for letters of the alphabet and for other characters, such as  # ,  $ ,  % , and 
 * . The  char  type also can be used to represent small integers. Next,  float ,  double , and the 
combination  long double  are used to represent numbers with decimal points. The  _Bool  type 
is for Boolean values ( true  and  false ), and  _Complex  and  _Imaginary  represent complex  and 
imaginary numbers, respectively.  

 The types created with these keywords can be divided into two families on the basis of how 
they are stored in the computer:  integer  types and  floating-point  types.    

  Bits, Bytes, and Words  

 The terms  bit ,  byte , and  word  can be used to describe units of computer data or to describe 
units of computer memory. We’ll concentrate on the second usage here.  

 The smallest unit of memory is called a  bit . It can hold one of two values:  0  or  1 . (Or you can 
say that the bit is set to “off” or “on.”) You can’t store much information in one bit, but a com-
puter has a tremendous stock of them. The bit is the basic building block of computer memory.  

 The  byte  is the usual unit of computer memory. For nearly all machines, a byte is 8 bits, and 
that is the standard definition, at least when used to measure storage. (The C language, how-
ever, has a different definition, as discussed in the “Using Characters: Type  char"  section 
later in this chapter.) Because each bit can be either 0 or 1, there are 256 (that’s 2 times 
itself 8 times) possible bit patterns of 0s and 1s that can fit in an 8-bit byte. These patterns 
can be used, for example, to represent the integers from 0 to 255 or to represent  a set of 
characters. Representation can be accomplished with binary code, which uses (conveniently 
enough) just 0s and 1s to represent numbers. ( Chapter   15   , “Bit Fiddling,” discusses binary 
code, but you can read through the introductory material of that chapter now if you like.)  

 A  word  is the natural unit of memory for a given computer design. For 8-bit microcomputers, 
such as the original Apples, a word is just 8 bits. Since then, personal computers moved up to 
16-bit words, 32-bit words, and, at the present, 64-bit words. Larger word sizes enable faster 
transfer of data and allow more memory to be accessed.   

  Integer Versus Floating-Point Types  

 Integer types? Floating-point types? If you find these terms disturbingly unfamiliar, relax. 
We are about to give you a brief rundown of their meanings. If you are unfamiliar with bits, 
bytes, and words, you might want to read the nearby sidebar about them first. Do you have to 
learn all the details? Not really, not any more than you have to learn the principles of internal 
combustion engines to drive a car, but knowing a little about what goes on inside a computer 
or engine can help you occasionally.  

 For a human, the difference between integers and floating-point numbers is reflected in the 
way they can be written. For a computer, the difference is reflected in the way they are stored. 
Let’s look at each of the two classes in turn.   
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  The Integer  

 An  integer  is a number with no fractional part. In C, an integer is never written with a decimal 
point. Examples are 2, –23, and 2456. Numbers such as 3.14, 0.22, and 2.000 are not integers. 
Integers are stored as binary numbers. The integer 7, for example, is written 111 in binary. 
Therefore, to store this number in an 8-bit byte, just set the first 5 bits to 0 and the last 3 bits 
to 1 (see  Figure   3.2   ).  

 

8-bit word

2
2

2
1

2
0

4 + + = 72 1

0 0 0 0 0 1 1 1

integer 7

 Figure 3.2   Storing the integer 7 using a binary code.          

  The Floating-Point Number  

 A  floating-point  number more or less corresponds to what mathematicians call a  real number . 
Real numbers include the numbers between the integers. Some floating-point numbers are 
2.75, 3.16E7, 7.00, and 2e–8. Notice that adding a decimal point makes a value a floating-point 
value. So 7 is an integer type but 7.00 is a floating-point type. Obviously, there is more than 
one way to write a floating-point number. We will discuss the e-notation more fully later, 
but, in brief, the notation 3.16E7 means to multiply 3.16 by 10 to the 7th power; that is, by 1 
followed by 7 zeros. The 7 would  be termed the  exponent  of 10.  

 The key point here is that the scheme used to store a floating-point number is different from 
the one used to store an integer. Floating-point representation involves breaking up a number 
into a fractional part and an exponent part and storing the parts separately. Therefore, the 
7.00 in this list would not be stored in the same manner as the integer 7, even though both 
have the same value. The decimal analogy would be to write 7.0 as 0.7E1. Here, 0.7 is the frac-
tional part, and the 1 is the exponent part.  Figure   3.3    shows another example of floating-point 
storage. A  computer, of course, would use binary numbers and powers of two instead of powers 
of 10 for internal storage. You’ll find more on this topic in  Chapter   15   . Now, let’s concentrate 
on the practical differences:  

    ■   An integer has no fractional part; a floating-point number can have a fractional part.   

   ■   Floating-point numbers can represent a much larger range of values than integers can. 
See Table 3.3 near the end of this chapter.   

   ■   For some arithmetic operations, such as subtracting one large number from another, 
floating-point numbers are subject to greater loss of precision.   
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   ■   Because there is an infinite number of real numbers in any range—for example, in the 
range between 1.0 and 2.0—computer floating-point numbers can’t represent all the 
values in the range. Instead, floating-point values are often approximations of a true 
value. For example, 7.0 might be stored as a 6.99999  float  value—more about precision 
later.   

   ■   Floating-point operations were once much slower than integer operations. However, 
today many CPUs incorporate floating-point processors that close the gap.    

 

sign

+

+ .314159 1

exponent

x 101

fraction

.314159 3.14159

 Figure 3.3   Storing the number pi in floating-point format (decimal version).           

  Basic C Data Types  

 Now let’s look at the specifics of the basic data types used by C. For each type, we describe how 
to declare a variable, how to represent a constant with a literal value, such as  5  or  2.78 , and 
what a typical use would be. Some older C compilers do not support all these types, so check 
your documentation to see which ones you have available.  

  The  int  Type  

 C offers many integer types, and you might wonder why one type isn’t enough. The answer is 
that C gives the programmer the option of matching a type to a particular use. In particular, 
the C integer types vary in the range of values offered and in whether negative numbers can be 
used. The  int  type is the basic choice, but should you need other choices to meet the require-
ments of a particular task or machine, they are available.  

 The  int  type is a signed integer. That means it must be an integer and it can be positive, nega-
tive, or zero. The range in possible values depends on the computer system. Typically, an  int  
uses one machine word for storage. Therefore, older IBM PC compatibles, which have a 16-bit 
word, use 16 bits to store an  int . This allows a range in values from  –32768  to  32767 . Current 
personal computers typically have 32-bit integers and fit an  int  to that size. Now the personal 
computer industry is moving toward 64-bit processors that naturally will use even larger inte-
gers. ISO C specifies that the  minimum range for type  int  should be from  –32767  to  32767 . 
Typically, systems represent signed integers by using the value of a particular bit to indicate the 
sign.  Chapter   15    discusses common methods.  
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  Declaring an  int  Variable  

 As you saw in  Chapter   2   , “Introducing C,” the keyword  int  is used to declare the basic integer 
variable. First comes  int , and then the chosen name of the variable, and then a semicolon. 
To declare more than one variable, you can declare each variable separately, or you can follow 
the  int  with a list of names in which each name is separated from the next by a comma. The 
following are valid declarations:  

  int erns;

  int hogs, cows, goats;   

 You could have used a separate declaration for each variable, or you could have declared all 
four variables in the same statement. The effect is the same: Associate names and arrange 
storage space for four  int -sized variables.  

 These declarations create variables but don’t supply values for them. How do variables get 
values? You’ve seen two ways that they can pick up values in the program. First, there is 
assignment:  

  cows = 112;   

 Second, a variable can pick up a value from a function—from  scanf() , for example. Now let’s 
look at a third way.   

  Initializing a Variable  

 To  initialize  a variable means to assign it a starting, or  initial , value. In C, this can be done as 
part of the declaration. Just follow the variable name with the assignment operator ( = ) and the 
value you want the variable to have. Here are some examples:  

  int hogs = 21;

  int cows = 32, goats = 14;

  int dogs, cats = 94;        /* valid, but poor, form */   

 In the last line, only  cats  is initialized. A quick reading might lead you to think that  dogs  is 
also initialized to  94 , so it is best to avoid putting initialized and noninitialized variables in the 
same declaration statement.  

 In short, these declarations create and label the storage for the variables and assign starting 
values to each (see  Figure   3.4   ).  
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2

Boars

create storage and give it value

int sows;

int boars=2;

create storage

 Figure 3.4   Defining and initializing a variable.          

  Type  int  Constants  

 The various integers ( 21 ,  32 ,  14 , and  94 ) in the last example are  integer constants , also called 
 integer literals . When you write a number without a decimal point and without an exponent, C 
recognizes it as an integer. Therefore,  22  and  –44  are integer constants, but  22.0  and  2.2E1  are 
not. C treats most integer constants as type  int . Very large integers can be treated differently; 
see the later discussion of the  long int  type in the section  "long  Constants and  long long  
Constants.”   

  Printing  int  Values  

 You can use the  printf()  function to print  int  types. As you saw in  Chapter   2   , the  %d  nota-
tion is used to indicate just where in a line the integer is to be printed. The  %d  is called a  format 
specifier  because it indicates the form that  printf()  uses to display a value. Each  %d  in the 
format string must be matched by a corresponding  int  value in the list of items to be printed. 
That value can be an  int  variable, an  int  constant, or any other expression having an  int  
value. It’s your job to make sure the number of format specifiers matches the number of values; 
the compiler won’t  catch mistakes of that kind.  Listing   3.2    presents a simple program that 
initializes a variable and prints the value of the variable, the value of a constant, and the value 
of a simple expression. It also shows what can happen if you are not careful.  

  Listing 3.2   The  print1.c  Program  

 /* print1.c-displays some properties of printf() */

  #include <stdio.h>

  int main(void)

  {

      int ten = 10;

      int two = 2;

  

      printf("Doing it right: ");

      printf("%d minus %d is %d\n", ten, 2, ten - two );
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      printf("Doing it wrong: ");

      printf("%d minus %d is %d\n", ten );  // forgot 2 arguments

  

      return 0;

  }   

 Compiling and running the program produced this output on one system:  

  Doing it right: 10 minus 2 is 8

  Doing it wrong: 10 minus 16 is 1650287143   

 For the first line of output, the first  %d  represents the  int  variable  ten , the second  %d  repre-
sents the  int  constant  2 , and the third  %d  represents the value of the  int  expression  ten - 
two . The second time, however, the program used  ten  to provide a value for the first  %d  and 
used whatever values happened to be lying around in memory for the next two! (The numbers 
you get could very well be different from those shown here. Not only might the memory 
contents be different, but different compilers will manage memory locations differently.)  

 You might be annoyed that the compiler doesn’t catch such an obvious error. Blame the 
unusual design of  printf() . Most functions take a specific number of arguments, and the 
compiler can check to see whether you’ve used the correct number. However,  printf()  can 
have one, two, three, or more arguments, and that keeps the compiler from using its usual 
methods for error checking. Some compilers, however, will use unusual methods of checking 
and warn you that you might be doing something wrong. Still, it’s best to remember to always 
check to see that the number of format specifiers you give to   printf()  matches the number of 
values to be displayed.   

  Octal and Hexadecimal  

 Normally, C assumes that integer constants are decimal, or base 10, numbers. However, octal 
(base 8) and hexadecimal (base 16) numbers are popular with many programmers. Because 8 
and 16 are powers of 2, and 10 is not, these number systems occasionally offer a more conve-
nient way for expressing computer-related values. For example, the number 65536, which often 
pops up in 16-bit machines, is just 10000 in hexadecimal. Also, each digit in a hexadecimal 
number corresponds to exactly 4 bits. For example, the hexadecimal digit 3 is 0011 and the 
hexadecimal digit 5 is 0101. So the hexadecimal value 35  is the bit pattern 0011 0101, and the 
hexadecimal value 53 is 0101 0011. This correspondence makes it easy to go back and forth 
between hexadecimal and binary (base 2) notation. But how can the computer tell whether 
10000 is meant to be a decimal, hexadecimal, or octal value? In C, special prefixes indicate 
which number base you are using. A prefix of  0x  or  0X  (zero-ex) means that you are specifying 
a hexadecimal value, so 16 is written as  0x10 , or  0X10 , in hexadecimal. Similarly, a  0  (zero) 
prefix means that you are writing in octal. For example, the decimal value 16  is written as  020  
in octal.  Chapter   15    discusses these alternative number bases more fully.  

 Be aware that this option of using different number systems is provided as a service for your 
convenience. It doesn’t affect how the number is stored. That is, you can write  16  or  020  or 
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 0x10 , and the number is stored exactly the same way in each case—in the binary code used 
internally by computers.   

  Displaying Octal and Hexadecimal  

 Just as C enables you write a number in any one of three number systems, it also enables you 
to display a number in any of these three systems. To display an integer in octal notation 
instead of decimal, use  %o  instead of  %d . To display an integer in hexadecimal, use  %x . If you 
want to display the C prefixes, you can use specifiers  %#o ,  %#x , and  %#X  to generate the  0 ,  0x , 
and  0X  prefixes respectively.  Listing   3.3    shows a short example. (Recall that you may have 
to insert a  getchar();  statement in the code for some IDEs to keep the program execution 
window from closing  immediately.)  

  Listing 3.3   The  bases.c  Program  

 /* bases.c--prints 100 in decimal, octal, and hex */

  #include <stdio.h>

  int main(void)

  {

      int x = 100;

  

      printf("dec = %d; octal = %o; hex = %x\n", x, x, x);

      printf("dec = %d; octal = %#o; hex = %#x\n", x, x, x);

  

      return 0;

  }   

 Compiling and running this program produces this output:  

  dec = 100; octal = 144; hex = 64

  dec = 100; octal = 0144; hex = 0x64   

 You see the same value displayed in three different number systems. The  printf()  function 
makes the conversions. Note that the  0  and the  0x  prefixes are not displayed in the output 
unless you include the  #  as part of the specifier.    

  Other Integer Types  

 When you are just learning the language, the  int  type will probably meet most of your integer 
needs. To be complete, however, we’ll cover the other forms now. If you like, you can skim 
this section and jump to the discussion of the  char  type in the “Using Characters: Type  char"  
section, returning here when you have a need.  

 C offers three adjective keywords to modify the basic integer type:  short ,  long , and  unsigned . 
Here are some points to keep in mind:  
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    ■   The type  short int  or, more briefly,  short  may use less storage than  int , thus saving 
space when only small numbers are needed. Like  int ,  short  is a signed type.   

   ■   The type  long int , or  long , may use more storage than  int , thus enabling you to 
express larger integer values. Like  int ,  long  is a signed type.   

   ■   The type  long long int , or  long long  (introduced in the C99 standard), may use 
more storage than  long . At the minimum, it must use at least 64 bits. Like  int ,  long 
long  is a signed type.   

   ■   The type  unsigned int , or  unsigned , is used for variables that have only nonnegative 
values. This type shifts the range of numbers that can be stored. For example, a 16-bit 
 unsigned int  allows a range from  0  to  65535  in value instead of from  –32768  to  32767 . 
The bit used to indicate the sign of signed numbers now becomes another binary digit, 
allowing the larger number.   

   ■   The types  unsigned long int , or  unsigned long , and  unsigned short int , or 
 unsigned short , are recognized as valid by the C90 standard. To this list, C99 adds 
 unsigned long long int , or  unsigned long long .   

   ■   The keyword  signed  can be used with any of the signed types to make your intent 
explicit. For example,  short ,  short int ,  signed short , and  signed short int  are all 
names for the same type.    

  Declaring Other Integer Types  

 Other integer types are declared in the same manner as the  int  type. The following list shows 
several examples. Not all older C compilers recognize the last three, and the final example is 
new with the C99 standard.  

  long int estine;

  long johns;

  short int erns;

  short ribs;

  unsigned int s_count;

  unsigned players;

  unsigned long headcount;

  unsigned short yesvotes;

  long long ago;    

  Why Multiple Integer Types?  

 Why do we say that  long  and  short  types “may” use more or less storage than  int ? Because 
C guarantees only that  short  is no longer than  int  and that  long  is no shorter than  int . The 
idea is to fit the types to the machine. For example, in the days of Windows 3, an  int  and a 
 short  were both 16 bits, and a  long  was 32 bits. Later, Windows and Apple systems moved to 
using 16 bits for  short  and 32 bits for  int  and  long . Using 32 bits allows integers in excess of 
2 billion. Now that 64-bit processors are common, there’s a need for 64-bit integers,  and that’s 
the motivation for the  long long  type.  
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 The most common practice today on personal computers is to set up  long long  as 64 bits, 
 long  as 32 bits,  short  as 16 bits, and  int  as either 16 bits or 32 bits, depending on the 
machine’s natural word size. In principle, these four types could represent four distinct sizes, 
but in practice at least some of the types normally overlap.  

 The C standard provides guidelines specifying the minimum allowable size for each basic data 
type. The minimum range for both  short  and  int  is –32,767 to 32,767, corresponding to a 
16-bit unit, and the minimum range for  long  is –2,147,483,647 to 2,147,483,647, correspond-
ing to a 32-bit unit. (Note: For legibility, we’ve used commas, but C code doesn’t allow that 
option.) For  unsigned short  and  unsigned int , the minimum range is 0 to 65,535, and for 
 unsigned long , the minimum range is 0 to 4,294,967,295. The  long long  type is intended 
to support 64-bit needs. Its minimum range is a substantial –9,223,372,036,854,775,807 
to 9,223,372,036,854,775,807, and the  minimum range for  unsigned long long  is 0 to 
18,446,744,073,709,551,615. For those of you writing checks, that’s eighteen quintillion, four 
hundred and forty-six quadrillion, seven hundred forty-four trillion, seventy-three billion, 
seven hundred nine million, five hundred fifty-one thousand, six hundred fifteen using U.S. 
nomenclature (the short scale or  échelle courte  system), but who’s counting?  

 When do you use the various  int  types? First, consider  unsigned  types. It is natural to use 
them for counting because you don’t need negative numbers, and the unsigned types enable 
you to reach higher positive numbers than the signed types.  

 Use the  long  type if you need to use numbers that  long  can handle and that  int  cannot. 
However, on systems for which  long  is bigger than  int , using  long  can slow down calcula-
tions, so don’t use  long  if it is not essential. One further point: If you are writing code on 
a machine for which  int  and  long  are the same size, and you do need 32-bit integers, you 
should use  long  instead of  int  so that the program will function correctly if transferred to a 
16-bit machine. Similarly, use  long long  if you need 64-bit integer values.  

 Use  short  to save storage space if, say, you need a 16-bit value on a system where  int  is 32-bit. 
Usually, saving storage space is important only if your program uses arrays of integers that are 
large in relation to a system’s available memory. Another reason to use  short  is that it may 
correspond in size to hardware registers used by particular components in a computer.    

  Integer Overflow  

 What happens if an integer tries to get too big for its type? Let’s set an integer to its largest 
possible value, add to it, and see what happens. Try both signed and unsigned types. (The 
 printf()  function uses the  %u  specifier to display  unsigned int values .)  

  /* toobig.c-exceeds maximum int size on our system */

  #include <stdio.h>

  int main(void)

  {

      int i = 2147483647;

      unsigned int j = 4294967295;

  

      printf("%d %d %d\n", i, i+1, i+2);
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      printf("%u %u %u\n", j, j+1, j+2);

  

      return 0;

  }   

 Here is the result for our system:  

  2147483647 -2147483648 -2147483647

  4294967295 0 1   

 The unsigned integer  j  is acting like a car’s odometer. When it reaches its maximum value, 
it starts over at the beginning. The integer  i  acts similarly. The main difference is that the 
 unsigned int  variable  j , like an odometer, begins at 0, but the  int  variable  i  begins at 
–2147483648. Notice that you are not informed that  i  has exceeded (overflowed) its maximum 
value. You would have to include your own programming to keep tabs on that.  

 The behavior described here is mandated by the rules of C for unsigned types. The standard 
doesn’t define how signed types should behave. The behavior shown here is typical, but you 
could encounter something different    

   long  Constants and  long long  Constants  

 Normally, when you use a number such as 2345 in your program code, it is stored as an  int  
type. What if you use a number such as 1000000 on a system in which  int  will not hold such 
a large number? Then the compiler treats it as a  long int , assuming that type is large enough. 
If the number is larger than the  long  maximum, C treats it as  unsigned long . If that is still 
insufficient, C treats the value as  long long  or  unsigned long long , if those types are 
available.  

 Octal and hexadecimal constants are treated as type  int  unless the value is too large. Then the 
compiler tries  unsigned int . If that doesn’t work, it tries, in order,  long ,  unsigned long , 
 long long , and  unsigned long long .  

 Sometimes you might want the compiler to store a small number as a  long  integer. 
Programming that involves explicit use of memory addresses on an IBM PC, for instance, can 
create such a need. Also, some standard C functions require type  long  values. To cause a small 
constant to be treated as type  long , you can append an  l  (lowercase  L ) or  L  as a suffix. The 
second form is better because it looks less like the digit 1. Therefore, a system with a 16-bit 
 int  and a 32-bit  long  treats the integer  7  as 16 bits and the integer  7L  as 32 bits. The  l  and  L  
suffixes can  also be used with octal and hex integers, as in  020L  and  0x10L .  

 Similarly, on those systems supporting the  long long  type, you can use an  ll  or  LL  suffix to 
indicate a  long long  value, as in  3LL . Add a  u  or  U  to the suffix for  unsigned long long , as 
in  5ull  or  10LLU  or  6LLU  or  9Ull .   
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  Printing  short ,  long ,  long long , and  unsigned  Types  

 To print an  unsigned int  number, use the  %u  notation. To print a  long  value, use the  %ld  
format specifier. If  int  and  long  are the same size on your system, just  %d  will suffice, but your 
program will not work properly when transferred to a system on which the two types are differ-
ent, so use the  %ld  specifier for  long . You can use the  l  prefix for  x  and  o , too. So you would 
use  %lx  to print a long integer in hexadecimal format and  %lo  to print in octal format. Note 
that although C allows both uppercase and lowercase letters for constant suffixes, these format 
specifiers use just lowercase.  

 C has several additional  printf()  formats. First, you can use an  h  prefix for  short  types. 
Therefore,  %hd  displays a  short  integer in decimal form, and  %ho  displays a  short  integer 
in octal form. Both the  h  and  l  prefixes can be used with  u  for unsigned types. For instance, 
you would use the  %lu  notation for printing  unsigned long  types.  Listing   3.4    provides an 
example. Systems supporting the  long long  types use  %lld  and  %llu  for the signed and 
unsigned versions.  Chapter   4    provides a fuller discussion of format specifiers.  

  Listing 3.4   The  print2.c  Program  

 /* print2.c-more printf() properties */

  #include <stdio.h>

  int main(void)

  {

      unsigned int un = 3000000000; /* system with 32-bit int */

      short end = 200;              /* and 16-bit short       */

      long big = 65537;

      long long verybig = 12345678908642;

  

      printf("un = %u and not %d\n", un, un);

      printf("end = %hd and %d\n", end, end);

      printf("big = %ld and not %hd\n", big, big);

      printf("verybig= %lld and not %ld\n", verybig, verybig);

  

      return 0;

  }   

 Here is the output on one system (results can vary):  

  un = 3000000000 and not -1294967296

  end = 200 and 200

  big = 65537 and not 1

  verybig= 12345678908642 and not 1942899938   

 This example points out that using the wrong specification can produce unexpected results. 
First, note that using the  %d  specifier for the unsigned variable  un  produces a negative number! 
The reason for this is that the unsigned value 3000000000 and the signed value –129496296 
have exactly the same internal representation in memory on our system. ( Chapter   15    explains 
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this property in more detail.) So if you tell  printf()  that the number is unsigned, it prints one 
value, and if you tell it that the same number is signed, it prints the other value. This behavior 
shows up with values larger than the maximum signed  value. Smaller positive values, such as 
96, are stored and displayed the same for both signed and unsigned types.  

 Next, note that the  short  variable  end  is displayed the same whether you tell  printf()  that 
 end  is a  short  (the  %hd  specifier) or an  int  (the  %d  specifier). That’s because C automatically 
expands a type  short  value to a type  int  value when it’s passed as an argument to a function. 
This may raise two questions in your mind: Why does this conversion take place, and what’s 
the use of the  h  modifier? The answer to the first question is that the  int  type is intended to be 
the integer size that the computer handles most efficiently. So, on a computer for which  short  
and  int  are different sizes, it may be faster  to pass the value as an  int . The answer to the 
second question is that you can use the  h  modifier to show how a longer integer would look if 
truncated to the size of  short . The third line of output illustrates this point. The value 65537 
expressed in binary format as a 32-bit number is 00000000000000010000000000000001. Using 
the  %hd  specifier persuaded  printf()  to look at just the last 16 bits; therefore, it displayed the 
value as 1. Similarly, the final output line shows the full value of  verybig  and then the value 
stored in the last 32 bits, as viewed through the  %ld  specifier.  

 Earlier you saw that it is your responsibility to make sure the number of specifiers matches 
the number of values to be displayed. Here you see that it is also your responsibility to use the 
correct specifier for the type of value to be displayed.  

  Tip   Match the Type   printf( )  Specifiers  

 Remember to check to see that you have one format specifier for each value being displayed in 
a  printf()  statement. And also check that the type of each format specifier matches the type 
of the corresponding display value.     

  Using Characters: Type  char   

 The  char  type is used for storing characters such as letters and punctuation marks, but techni-
cally it is an integer type. Why? Because the  char  type actually stores integers, not characters. 
To handle characters, the computer uses a numerical code in which certain integers represent 
certain characters. The most commonly used code in the U.S. is the ASCII code given in the 
table on the inside front cover. It is the code this book assumes. In it, for example, the integer 
value  65  represents an uppercase  A . So to store the letter  A , you actually need to store the 
integer  65 . (Many IBM mainframes  use a different code, called EBCDIC, but the principle is the 
same. Computer systems outside the U.S. may use entirely different codes.)  

 The standard ASCII code runs numerically from 0 to 127. This range is small enough that 7 bits 
can hold it. The  char  type is typically defined as an 8-bit unit of memory, so it is more than 
large enough to encompass the standard ASCII code. Many systems, such as the IBM PC and 
the Apple Macs, offer extended ASCII codes (different for the two systems) that still stay within 
an 8-bit limit. More generally, C guarantees that the  char  type is large enough to store the 
basic character set for the system on which C is implemented.  
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 Many character sets have many more than 127 or even 255 values. For example, there is the 
Japanese kanji character set. The commercial Unicode initiative has created a system to repre-
sent a variety of characters sets worldwide and currently has over 110,000 characters. The 
International Organization for Standardization (ISO) and the International Electrotechnical 
Commission (IEC) have developed a standard called ISO/IEC 10646 for character sets. 
Fortunately, the Unicode standard has been kept compatible with the more extensive ISO/IEC 
10646 standard.  

 The C language defines a byte to be the number of bits used by type  char , so one can have a 
system with a 16-bit or 32-bit byte and  char  type.  

  Declaring Type  char  Variables  

 As you might expect,  char  variables are declared in the same manner as other variables. Here 
are some examples:  

  char response;

  char itable, latan;   

 This code would create three  char  variables:  response ,   itable , and  latan .   

  Character Constants and Initialization  

 Suppose you want to initialize a character constant to the letter  A . Computer languages are 
supposed to make things easy, so you shouldn’t have to memorize the ASCII code, and you 
don’t. You can assign the character  A  to  grade  with the following initialization:  

  char grade = 'A';   

 A single character contained between single quotes is a C  character constant . When the compiler 
sees  'A' , it converts the  'A'  to the proper code value. The single quotes are essential. Here’s 
another example:  

  char broiled;        /* declare a char variable        */

  broiled = 'T';       /* OK                             */

  broiled = T;         /* NO! Thinks T is a variable     */

  broiled = "T";       /* NO! Thinks "T" is a string     */   

 If you omit the quotes, the compiler thinks that  T  is the name of a variable. If you use double 
quotes, it thinks you are using a string. We’ll discuss strings in  Chapter   4   .  

 Because characters are really stored as numeric values, you can also use the numerical code to 
assign values:  

  char grade = 65;  /* ok for ASCII, but poor style */   

 In this example,  65  is type  int , but, because the value is smaller than the maximum  char  size, 
it can be assigned to  grade  without any problems. Because 65 is the ASCII code for the letter  A , 
this example assigns the value  A  to  grade . Note, however, that this example assumes that the 
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system is using ASCII code. Using  'A'  instead of  65  produces code that works on any system. 
Therefore, it’s much better to use character constants than numeric code values.  

 Somewhat oddly, C treats character constants as type  int  rather than type  char . For example, 
on an ASCII system with a 32-bit  int  and an 8-bit  char , the code  

  char grade = 'B';   

 represents  'B'  as the numerical value 66 stored in a 32-bit unit, but  grade  winds up with 66 
stored in an 8-bit unit. This characteristic of character constants makes it possible to define a 
character constant such as  'FATE' , with four separate 8-bit ASCII codes stored in a 32-bit unit. 
However, attempting to assign such a character constant to a  char  variable results in only the 
last 8 bits being used, so the variable gets the value  'E' .   

  Nonprinting Characters  

 The single-quote technique is fine for characters, digits, and punctuation marks, but if you look 
through the table on the inside front cover of this book, you’ll see that some of the ASCII char-
acters are nonprinting. For example, some represent actions such as backspacing or going to the 
next line or making the terminal bell ring (or speaker beep). How can these be represented? C 
offers three ways.  

 The first way we have already mentioned—just use the ASCII code. For example, the ASCII 
value for the beep character is 7, so you can do this:  

  char beep = 7;   

 The second way to represent certain awkward characters in C is to use special symbol 
sequences. These are called  escape sequences .  Table   3.2    shows the escape sequences and their 
meanings.  

  Table 3.2   Escape Sequences  

  Sequence     Meaning   

  \a    Alert (ANSI C).  

  \b    Backspace.  

  \f    Form feed.  

  \n    Newline.  

  \r    Carriage return.  

  \t    Horizontal tab.  

  \v    Vertical tab.  

  \\    Backslash ( \ ).  

  \'    Single quote ( ' ).  
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  Sequence     Meaning   

  \"    Double quote ( " ).  

  \?    Question mark ( ? ).  

  \0oo    Octal value. ( o  represents an octal digit.)  

  \xhh    Hexadecimal value. ( h  represents a hexadecimal digit.)  

 Escape sequences must be enclosed in single quotes when assigned to a character variable. For 
example, you could make the statement  

  char nerf = '\n';   

 and then print the variable  nerf  to advance the printer or screen one line.  

 Now take a closer look at what each escape sequence does. The alert character ( \a ), added by 
C90, produces an audible or visible alert. The nature of the alert depends on the hardware, with 
the beep being the most common. (With some systems, the alert character has no effect.) The 
C standard states that the alert character shall not change the active position. By  active position , 
the standard means the location on the display device (screen, teletype, printer, and so on) at 
which the next character would otherwise appear. In short, the active position is a generaliza-
tion of the screen  cursor with which you are probably accustomed. Using the alert character in 
a program displayed on a screen should produce a beep without moving the screen cursor.  

 Next, the  \b ,  \f ,  \n ,  \r ,  \t , and  \v  escape sequences are common output device control char-
acters. They are best described in terms of how they affect the active position. A backspace 
( \b ) moves the active position back one space on the current line. A form feed character ( \f ) 
advances the active position to the start of the next page. A newline character ( \n ) sets the 
active position to the beginning of the next line. A carriage return ( \r ) moves the active posi-
tion to the beginning of the current line. A horizontal tab character ( \t ) moves the active posi-
tion to the  next horizontal tab stop (typically, these are found at character positions 1, 9, 17, 
25, and so on). A vertical tab ( \v ) moves the active position to the next vertical tab position.  

 These escape sequence characters do not necessarily work with all display devices. For example, 
the form feed and vertical tab characters produce odd symbols on a PC screen instead of any 
cursor movement, but they work as described if sent to a printer instead of to the screen.  

 The next three escape sequences ( \\ ,  \' , and  \" ) enable you to use  \ ,  ' , and  "  as character 
constants. (Because these symbols are used to define character constants as part of a  printf()  
command, the situation could get confusing if you use them literally.) Suppose you want to 
print the following line:  

  Gramps sez, "a \ is a backslash."   

 Then use this code:  

  printf("Gramps sez, \"a \\ is a backslash.\"\n");   



ptg11524036

75Basic C Data Types

 The final two forms ( \0oo  and  \xhh ) are special representations of the ASCII code. To represent 
a character by its octal ASCII code, precede it with a backslash ( \ ) and enclose the whole thing 
in single quotes. For example, if your compiler doesn’t recognize the alert character ( \a ), you 
could use the ASCII code instead:  

  beep = '\007';   

 You can omit the leading zeros, so  '\07'  or even  '\7'  will do. This notation causes numbers 
to be interpreted as octal, even if there is no initial  0 .  

 Beginning with C90, C provides a third option—using a hexadecimal form for character 
constants. In this case, the backslash is followed by an  x  or  X  and one to three hexadecimal 
digits. For example, the Ctrl+P character has an ASCII hex code of 10 (16, in decimal), so it can 
be expressed as  '\x10'  or  '\X010' .  Figure   3.5    shows some representative integer types.  

 

type hexadecimal

Examples of Integer Constants

octal decimal

char \0x41 \0101 N.A.

int 0x41 0101 65

unsigned int 0x41u 0101u 65u

long 0x41L 0101L 65L

unsigned long 0x41UL 0101UL 65UL

long long 0x41LL 0101LL 65LL

unsigned long long 0x41ULL 0101ULL 65ULL

 Figure 3.5   Writing constants with the  int  family.         

 When you use ASCII code, note the difference between numbers and number characters. For 
example, the character 4 is represented by ASCII code value 52. The notation  '4'  represents the 
symbol 4, not the numerical value 4.  

 At this point, you may have three questions:  

    ■    Why aren’t the escape sequences enclosed in single quotes in the last example  
( printf("Gramps sez, \"a \\ is a backslash\"\"n"); )?   When a character, 
be it an escape sequence or not, is part of a string of characters enclosed in double 
quotes, don’t enclose it in single quotes. Notice that none of the other characters in 
this example ( G ,  r ,  a ,  m ,  p ,  s , and so on) are marked off by single quotes. A string of 
characters enclosed in double quotes is called a  character string . ( Chapter   4    explores 
strings.) Similarly,  printf("Hello!\007\n");  will print  Hello!  and beep, but 
 printf("Hello!7\n");  will print  Hello!7 . Digits that are not part of an escape 
sequence are treated as ordinary characters to be printed.   
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   ■    When should I use the ASCII code, and when should I use the escape sequences?    If you have 
a choice between using one of the special escape sequences, say ' \f' , or an equivalent 
ASCII code, say  '\014' , use the  '\f' . First, the representation is more mnemonic. 
Second, it is more portable. If you have a system that doesn’t use ASCII code, the  '\f'  
will still work.   

   ■    If I need to use numeric code, why use, say,   '\032'   instead of   032 ?—   First, using  '\032'  
instead of  032  makes it clear to someone reading the code that you intend to represent a 
character code. Second, an escape sequence such as  \032  can be embedded in part of a C 
string, the way  \007  was in the first point.     

  Printing Characters  

 The  printf()  function uses  %c  to indicate that a character should be printed. Recall that a 
character variable is stored as a 1-byte integer value. Therefore, if you print the value of a  char  
variable with the usual  %d  specifier, you get an integer. The  %c  format specifier tells  printf()  
to display the character that has that integer as its code value.  Listing   3.5    shows a  char  variable 
both ways.  

  Listing 3.5   The  charcode.c  Program  

 /* charcode.c-displays code number for a character */

  #include <stdio.h>

  int main(void)

  {

      char ch;

  

      printf("Please enter a character.\n");

      scanf("%c", &ch);   /* user inputs character */

      printf("The code for %c is %d.\n", ch, ch);

  

      return 0;

  }   

 Here is a sample run:  

  Please enter a character.

   C 
  The code for C is 67.   

 When you use the program, remember to press the Enter or Return key after typing the char-
acter. The  scanf()  function then fetches the character you typed, and the ampersand ( & ) 
causes the character to be assigned to the variable  ch . The  printf()  function then prints the 
value of  ch  twice, first as a character (prompted by the  %c  code) and then as a decimal integer 
(prompted by the  %d  code). Note that the  printf()  specifiers determine how data is displayed, 
not how it is stored (see  Figure   3.6   ).  
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storage (ASCII code)

code

display

0ch

"%c" "%d"

1 0 0 0 0 1 1

C 67

 Figure 3.6   Data display versus data storage.          

  Signed or Unsigned?  

 Some C implementations make  char  a signed type. This means a  char  can hold values typi-
cally in the range –128 through 127. Other implementations make  char  an unsigned type, 
which provides a range of 0 through 255. Your compiler manual should tell you which type 
your  char  is, or you can check the  limits.h  header file, discussed in the next chapter.  

 As of C90, C enabled you to use the keywords  signed  and  unsigned  with  char . Then, regard-
less of what your default  char  is,  signed char  would be signed, and  unsigned char  would 
be unsigned. These versions of  char  are useful if you’re using the type to handle small integers. 
For character use, just use the standard  char  type without modifiers.    

  The  _Bool  Type  

 The  _Bool  type is a C99 addition that’s used to represent Boolean values—that is, the logical 
values  true  and  false . Because C uses the value 1 for  true  and 0 for  false , the  _Bool  type 
really is just an integer type, but one that, in principle, only requires 1 bit of memory, because 
that is enough to cover the full range from 0 to 1.  

 Programs use Boolean values to choose which code to execute next. Code execution is covered 
more fully in  Chapter   6   , “C Control Statements: Looping,” and  Chapter   7   , so let’s defer further 
discussion until then.   

  Portable Types:  stdint.h  and  inttypes.h   

 By now you’ve probably noticed that C offers a wide variety of integer types, which is a good 
thing. And you probably also have noticed that the same type name doesn’t necessarily mean 
the same thing on different systems, which is not such a good thing. It would be nice if C had 
types that had the same meaning regardless of the system. And, as of C99, it does—sort of.  

 What C has done is create more names for the existing types. The trick is to define these new 
names in a header file called  stdint.h . For example,  int32_t  represents the type for a 32-bit 
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signed integer. The header file on a system that uses a 32-bit  int  could define  int32_t  as an 
alias for  int . A different system, one with a 16-bit  int  and a 32-bit  long , could define the 
same name,  int32_t , as an alias for  int . Then, when you write a program using  int32_t  as 
a type and include the  stdint.h  header file, the compiler will substitute  int  or  long  for the 
type in a  manner appropriate for your particular system.  

 The alternative names we just discussed are examples of  exact-width integer types ;  int32_t  is 
exactly 32 bits, no less or no more. It’s possible the underlying system might not support these 
choices, so the exact-width integer types are optional.  

 What if a system can’t support exact-width types? C99 and C11 provide a second category of 
alternative names that are required. This set of names promises the type is at least big enough 
to meet the specification and that no other type that can do the job is smaller. These types are 
called  minimum width types . For example,  int_least8_t  will be an alias for the smallest avail-
able type that can hold an 8-bit signed integer value. If the smallest type on a particular system 
were 16 bits, the  int8_t  type would not be defined. However, the  int_least8_t  type would 
be available, perhaps implemented  as a 16-bit integer.  

 Of course, some programmers are more concerned with speed than with space. For them, C99 
and C11 define a set of types that will allow the fastest computations. These are called the 
 fastest minimum   width  types. For example, the  int_fast8_t  will be defined as an alternative 
name for the integer type on your system that allows the fastest calculations for 8-bit signed 
values.  

 Finally, for some programmers, only the biggest possible integer type on a system will do; 
 intmax_t  stands for that type, a type that can hold any valid signed integer value. Similarly, 
 uintmax_t  stands for the largest available unsigned type. Incidentally, these types could be 
bigger than  long long  and  unsigned long  because C implementations are permitted to 
define types beyond the required ones. Some compilers, for example, introduced the  long 
long  type before it became part of the standard.  

 C99 and C11 not only provide these new, portable type names, they also provide assistance 
with input and output. For example,  printf()  requires specific specifiers for particular types. 
So what do you do to display an  int32_t  value when it might require a  %d  specifier for one 
definition and an  %ld  for another? The current standard provides some string macros (a 
mechanism introduced in  Chapter   4   ) to be used to display the portable types. For example, 
the  inttypes.h  header file will define  PRId32  as a string representing the appropriate speci-
fier ( d  or  l , for instance) for a 32-bit signed value.  Listing   3.6    shows a brief example illustrating 
how  to use a portable type and its associated specifier. The  inttypes.h  header file includes 
 stdint.h , so the program only needs to include  inttypes.h .  

  Listing 3.6   The  altnames.c  Program  

 /* altnames.c -- portable names for integer types */

  #include <stdio.h>

  #include <inttypes.h> // supports portable types

  int main(void)
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  {

      int32_t me32;     // me32 a 32-bit signed variable

  

      me32 = 45933945;

      printf("First, assume int32_t is int: ");

      printf("me32 = %d\n", me32);

      printf("Next, let's not make any assumptions.\n");

      printf("Instead, use a \"macro\" from inttypes.h: ");

      printf("me32 = %" PRId32 "\n", me32);

  

      return 0;

  }   

 In the final  printf()  argument, the  PRId32  is replaced by its  inttypes.h  definition of  "d" , 
making the line this:  

  printf("me16 = %" "d" "\n", me16);   

 But C combines consecutive quoted strings into a single quoted string, making the line this:  

  printf("me16 = %d\n", me16);   

 Here’s the output; note that the example also uses the  \"  escape sequence to display double 
quotation marks:  

  First, assume int32_t is int: me32 = 45933945

  Next, let's not make any assumptions.

  Instead, use a "macro" from inttypes.h: me32 = 45933945   

 It’s not the purpose of this section to teach you all about expanded integer types. Rather, its 
main intent is to reassure you that this level of control over types is available if you need it. 
Reference Section VI, “Extended Integer Types,” in  Appendix   B    provides a complete rundown 
of the  inttypes.h  and  stdint.h  header files.  

  Note   C99/C11 Support  

 Even though C has moved to the C11 standard, compiler writers have implemented C99 fea-
tures at different paces and with different priorities. At the time this book was prepared, some 
compilers haven’t yet implemented the  inttypes.h  header file and features.    

  Types  float ,  double , and  long double   

 The various integer types serve well for most software development projects. However, financial 
and mathematically oriented programs often make use of  floating-point  numbers. In C, such 
numbers are called type  float ,  double , or  long double . They correspond to the  real  types 
of FORTRAN and Pascal. The floating-point approach, as already mentioned, enables you to 
represent a much greater range of numbers, including decimal fractions. Floating-point number 
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representation is similar to  scientific notation , a system used by scientists to express very large 
and very small numbers. Let’s take a look.  

 In scientific notation, numbers are represented as decimal numbers times powers of 10. Here 
are some examples.  

  Number     Scientific Notation     Exponential Notation   

 1,000,000,000   = 1.0×10 9    = 1.0e9  

 123,000   = 1.23×10 5    = 1.23e5  

 322.56   = 3.2256×10 2    = 3.2256e2  

 0.000056   = 5.6×10 –5    = 5.6e–5  

 The first column shows the usual notation, the second column scientific notation, and the 
third column exponential notation, or  e-notation , which is the way scientific notation is usually 
written for and by computers, with the  e  followed by the power of 10.  Figure   3.7    shows more 
floating-point representations.  

 The C standard provides that a  float  has to be able to represent at least six significant figures 
and allow a range of at least 10 –37  to 10 +37 . The first requirement means, for example, that 
a  float  has to represent accurately at least the first six digits in a number such as 33.333333. 
The second requirement is handy if you like to use numbers such as the mass of the sun 
(2.0e30 kilograms), the charge of a proton (1.6e–19 coulombs), or the national debt. Often, 
systems use 32 bits to store a floating-point number. Eight bits are used to give the exponent its 
value  and sign, and 24 bits are used to represent the nonexponent part, called the  mantissa  or 
 significand , and its sign.  

 

2.58

1.376+7

1.6E-19

12E20

 Figure 3.7   Some floating-point numbers.         



ptg11524036

81Basic C Data Types

 C also has a  double  (for double precision) floating-point type. The  double  type has the same 
minimum range requirements as  float , but it extends the minimum number of significant 
figures that can be represented to 10. Typical  double  representations use 64 bits instead of 32. 
Some systems use all 32 additional bits for the nonexponent part. This increases the number of 
significant figures and reduces round-off errors. Other systems use some of the bits to accom-
modate a larger exponent; this increases the range of numbers that can be accommodated. 
Either approach leads to at least 13 significant figures, more than meeting the minimum  
standard.  

 C allows for a third floating-point type:  long double . The intent is to provide for even more 
precision than  double . However, C guarantees only that  long double  is at least as precise as 
 double .  

  Declaring Floating-Point Variables  

 Floating-point variables are declared and initialized in the same manner as their integer 
cousins. Here are some examples:  

  float noah, jonah;

  double trouble;

  float planck = 6.63e-34;

  long double gnp;    

  Floating-Point Constants (Literals)  

 There are many choices open to you when you write a literal floating-point constant. The basic 
form of a floating-point literal is a signed series of digits, including a decimal point, followed 
by an  e  or  E , followed by a signed exponent indicating the power of 10 used. Here are two valid 
floating-point constants:  

  -1.56E+12

  2.87e-3   

 You can leave out positive signs. You can do without a decimal point (2E5) or an exponential 
part (19.28), but not both simultaneously. You can omit a fractional part (3.E16) or an integer 
part (.45E–6), but not both (that wouldn’t leave much!). Here are some more valid floating-
point constants:  

  3.14159

  .2

  4e16

  .8E-5

  100.   

 Don’t use spaces in a floating-point constant.  

  Wrong: 1.56 E+12   
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 By default, the compiler assumes floating-point constants are  double  precision. Suppose, for 
example, that  some  is a  float  variable and that you have the following statement:  

  some = 4.0 * 2.0;   

 Then  4.0  and  2.0  are stored as  double , using (typically) 64 bits for each. The product is calcu-
lated using double precision arithmetic, and only then is the answer trimmed to regular  float  
size. This ensures greater precision for your calculations, but it can slow down a program.  

 C enables you to override this default by using an  f  or  F  suffix to make the compiler treat a 
floating-point constant as type  float ; examples are  2.3f  and  9.11E9F . An  l  or  L  suffix makes 
a number type  long double ; examples are  54.3l  and  4.32e4L . Note that  L  is less likely to be 
mistaken for  1  (one) than is  l . If the floating-point number has no suffix, it is type  double .  

 Since C99, C has a new format for expressing floating-point constants. It uses a hexadecimal 
prefix ( 0x  or  0X ) with hexadecimal digits, a  p  or  P  instead of  e  or  E , and an exponent that is a 
power of 2 instead of a power of 10. Here’s what such a number might look like:  

  0xa.1fp10   

 The  a  is 10 in hex, the  .1f  is 1/16th plus 15/256 th  ( f  is 15 in hex), and the  p10  is 2 10 , or 
1024, making the complete value (10 + 1/16 + 15/256) x 1024, or 10364.0 in base 10 notation.  

 Not all C compilers have added support for this feature.   

  Printing Floating-Point Values  

 The  printf()  function uses the  %f  format specifier to print type  float  and  double  numbers 
using decimal notation, and it uses  %e  to print them in exponential notation. If your system 
supports the hexadecimal format for floating-point numbers, you can use  a  or  A  instead of  e  
or  E . The  long double  type requires the  %Lf ,  %Le , and  %La  specifiers to print that type. Note 
that both  float  and  double  use the  %f ,  %e , or  %a  specifier for output. That’s because C auto-
matically expands type  float  values to type  double  when they are passed as arguments to any 
function, such as  printf() , that doesn’t explicitly prototype the argument type.  Listing   3.7    
illustrates these behaviors.  

  Listing 3.7   The  showf_pt.c  Program  

 /* showf_pt.c -- displays float value in two ways */

  #include <stdio.h>

  int main(void)

  {

      float aboat = 32000.0;

      double abet = 2.14e9;

      long double dip = 5.32e-5;

  

      printf("%f can be written %e\n", aboat, aboat);

      // next line requires C99 or later compliance

      printf("And it's %a in hexadecimal, powers of 2 notation\n", aboat);
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      printf("%f can be written %e\n", abet, abet);

      printf("%Lf can be written %Le\n", dip, dip);

  

      return 0;

  }   

 This is the output, provided your compiler is C99/C11 compliant:  

  32000.000000 can be written 3.200000e+04

  And it's 0x1.f4p+14 in hexadecimal, powers of 2 notation

  2140000000.000000 can be written 2.140000e+09

  0.000053 can be written 5.320000e-05   

 This example illustrates the default output. The next chapter discusses how to control the 
appearance of this output by setting field widths and the number of places to the right of the 
decimal.   

  Floating-Point Overflow and Underflow  

 Suppose the biggest possible  float  value on your system is about 3.4E38 and you do this:  

  float toobig = 3.4E38 * 100.0f;

  printf("%e\n", toobig);   

 What happens? This is an example of  overflow —when a calculation leads to a number too 
large to be expressed. The behavior for this case used to be undefined, but now C specifies that 
 toobig  gets assigned a special value that stands for  infinity  and that  printf()  displays either 
 inf  or  infinity  (or some variation on that theme) for the value.  

 What about dividing very small numbers? Here the situation is more involved. Recall that a 
 float  number is stored as an exponent and as a value part, or  mantissa . There will be a number 
that has the smallest possible exponent and also the smallest value that still uses all the bits 
available to represent the mantissa. This will be the smallest number that still is represented 
to the full precision available to a  float  value. Now divide it by 2. Normally, this reduces the 
exponent, but the exponent already is as small as it can get. So, instead, the computer moves 
the  bits in the mantissa over, vacating the first position and losing the last binary digit. An 
analogy would be taking a base 10 value with four significant digits, such as 0.1234E-10, divid-
ing by 10, and getting 0.0123E-10. You get an answer, but you’ve lost a digit in the process. 
This situation is called  underflow , and C refers to floating-point values that have lost the full 
precision of the type as  subnormal . So dividing the smallest positive normal floating-point value 
by 2 results in a subnormal value. If you divide by a large enough value, you lose all the digits 
and are  left with 0. The C library now provides functions that let you check whether your 
computations are producing subnormal values.  

 There’s another special floating-point value that can show up:  NaN , or not-a-number. For 
example, you give the  asin()  function a value, and it returns the angle that has that value as 
its sine. But the value of a sine can’t be greater than 1, so the function is undefined for values 
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in excess of 1. In such cases, the function returns the  NaN  value, which  printf()  displays as 
 nan ,  NaN , or something similar.      

  Floating-Point Round-off Errors  

 Take a number, add 1 to it, and subtract the original number. What do you get? You get 1. A 
floating-point calculation, such as the following, may give another answer:  

  /* floaterr.c--demonstrates round-off error */

  #include <stdio.h>

  int main(void)

  {

      float a,b;

  

      b = 2.0e20 + 1.0;

      a = b - 2.0e20;

      printf("%f \n", a);

  

      return 0;

  }   

 The output is this:  

  0.000000 older gcc on Linux

  -13584010575872.000000  Turbo C 1.5

  4008175468544.000000  XCode 4.5, Visual Studio 2012, current gcc   

 The reason for these odd results is that the computer doesn’t keep track of enough decimal 
places to do the operation correctly. The number 2.0e20 is 2 followed by 20 zeros and, by add-
ing 1, you are trying to change the 21st digit. To do this correctly, the program would need to 
be able to store a 21-digit number. A  float  number is typically just six or seven digits scaled 
to bigger or smaller numbers with an exponent. The attempt is doomed. On the other hand, if 
you used 2.0e4 instead of 2.0e20, you would get the correct answer because you  are trying to 
change the fifth digit, and  float  numbers are precise enough for that.   

  Floating-Point Representation  

 The preceding sidebar listed different possible outputs for the same program, depending on 
the computer system used. The reason is that there are many possible ways to implement 
floating-point representation within the broad outlines discussed earlier. To provide greater 
uniformity, the Institute of Electrical and Electronics Engineers (IEEE) developed a standard for 
floating-point representation and computation, a standard now used by many hardware floating-
point units. In 2011 this standard was adopted as the international ISO/IEC/IEEE 60559:2011 
standard. This standard is incorporated as an option in the C99 and C11 standards, with the 
intention that it be supported on platforms with  conforming hardware. The final example of out-
put for the  floaterr.c  program comes from systems supporting this floating-point standard. C 
support includes tools for catching the problem. See  Appendix   B   , Section V for more details.     
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  Complex and Imaginary Types  

 Many computations in science and engineering use complex and imaginary numbers. C99 
supports these numbers, with some reservations. A free-standing implementation, such as that 
used for embedded processors, doesn’t need to have these types. (A VCR chip probably doesn’t 
need complex numbers to do its job.) Also, more generally, the imaginary types are optional. 
With C11, the entire complex number package is optional.  

 In brief, there are three complex types, called  float _Complex ,  double _Complex , and  long 
double _Complex . A  float _Complex  variable, for example, would contain two  float  values, 
one representing the real part of a complex number and one representing the imaginary part. 
Similarly, there are three imaginary types, called  float _Imaginary ,  double _Imaginary , 
and  long double _Imaginary .  

 Including the  complex.h  header file lets you substitute the word  complex  for  _Complex  and 
the word  imaginary  for  _Imaginary , and it allows you to use the symbol  I  to represent the 
square root of –1.  

 You may wonder why the C standard doesn’t simply use  complex  as the keyword instead 
of using  _Complex  and then adding a header file to define  complex  as  _Complex . The stan-
dards committee is hesitant to introduce a new keyword because that can invalidate existing 
code that uses the same word as an identifier. For example, prior to C99, many programmers 
had already used, say,  struct complex  to define a structure to represent complex numbers 
or, perhaps, psychological conditions. (The keyword  struct , as discussed in  Chapter   14   , 
“Structures and Other Data Forms,” is used to define data structures capable of holding more 
than one value.)  Making complex a keyword would make these previous uses syntax errors. But 
it’s much less likely that someone would have used  struct _Complex , especially since using 
identifiers having an initial underscore is supposed to be reserved. So the committee settled on 
 _Complex  as the keyword and made  complex  available as an option for those who don’t have 
to worry about conflicts with past usage.   

  Beyond the Basic Types  

 That finishes the list of fundamental data types. For some of you, the list must seem long. 
Others of you might be thinking that more types are needed. What about a character string 
type? C doesn’t have one, but it can still deal quite well with strings. You will take a first look 
at strings in  Chapter   4   .  

 C does have other types derived from the basic types. These types include arrays, pointers, 
structures, and unions. Although they are subject matter for later chapters, we have already 
smuggled some pointers into this chapter’s examples. For instance, a  pointer  points to the loca-
tion of a variable or other data object. The  &  prefix used with the  scanf()  function creates a 
pointer telling  scanf()  where to place information.      
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  Summary: The Basic Data Types  

  Keywords:   

 The basic data types are set up using 11 keywords:  int ,  long ,  short ,  unsigned ,  char , 
 float ,  double ,  signed ,  _Bool ,  _Complex , and  _Imaginary .  

  Signed Integers:   

 These can have positive or negative values:  

    ■     int —    The basic integer type for a given system. C guarantees at least 16 bits for  int .   

   ■     short  or  short int  —   The largest  short  integer is no larger than the largest  int  and 
may be smaller. C guarantees at least 16 bits for  short .   

   ■     long  or  long int  —   Can hold an integer at least as large as the largest  int  and possi-
bly larger. C guarantees at least 32 bits for  long .   

   ■     long long  or  long long int  —   This type can hold an integer at least as large as the 
largest  long  and possibly larger. The  long long  type is least 64 bits.    

 Typically,  long  will be bigger than  short , and  int  will be the same as one of the two. For 
example, old DOS-based systems for the PC provided 16-bit  short  and  int  and 32-bit  long , 
and Windows 95–based systems and later provide 16-bit  short  and 32-bit  int  and  long .  

 You can, if you want, use the keyword  signed  with any of the signed types, making the fact 
that they are signed explicit.  

  Unsigned Integers:   

 These have zero or positive values only. This extends the range of the largest possible posi-
tive number. Use the keyword  unsigned  before the desired type:  unsigned int ,  unsigned 
long ,  unsigned short . A lone  unsigned  is the same as  unsigned int .  

  Characters:   

 These are typographic symbols such as  A ,  & , and  + . By definition, the  char  type uses 1 byte of 
memory to represent a character. Historically, this character byte has most often been 8 bits, 
but it can be 16 bits or larger, if needed to represent the base character set.  

    ■     char —    The keyword for this type. Some implementations use a signed  char , but others 
use an unsigned  char . C enables you to use the keywords  signed  and  unsigned  to 
specify which form you want.    

  Boolean:   

 Boolean values represent  true  and  false ; C uses  1  for  true  and  0  for  false .  

    ■     _Bool —    The keyword for this type. It is an unsigned  int  and need only be large enough 
to accommodate the range 0 through 1.    

  Real Floating Point:   

 These can have positive or negative values:  

    ■     float —    The basic floating-point type for the system; it can represent at least six signifi-
cant figures accurately.   

   ■     double —    A (possibly) larger unit for holding floating-point numbers. It may allow more sig-
nificant figures (at least 10, typically more) and perhaps larger exponents than  float .   
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   ■     long double —    A (possibly) even larger unit for holding floating-point numbers. It may 
allow more significant figures and perhaps larger exponents than  double .    

  Complex and Imaginary Floating Point:   

 The imaginary types are optional. The real and imaginary components are based on the corre-
sponding real types:  

    ■    float _Complex    

   ■    double _Complex    

   ■    long double _Complex    

   ■    float _Imaginary    

   ■    double _Imaginary    

   ■    long double _Imaginary      

  Summary: How to Declare a Simple Variable  

    1.   Choose the type you need.   

   2.   Choose a name for the variable using the allowed characters.   

   3.   Use the following format for a declaration statement:  
   type-specifier variable-name ;   

 The   type-specifier   is formed from one or more of the type keywords; here are exam-
ples of declarations:  
  int erest;

  unsigned short cash;.    

   4.   You can declare more than one variable of the same type by separating the variable 
names with commas. Here’s an example:  
  char ch, init, ans;.    

   5.   You can initialize a variable in a declaration statement:  
  float mass = 6.0E24;       

  Type Sizes  

 What type sizes does your system use? Try running the program in  Listing   3.8    to find out.  

  Listing 3.8   The  typesize.c  Program  

 //* typesize.c -- prints out type sizes */

  #include <stdio.h>

  int main(void)

  {

      /* c99 provides a %zd specifier for sizes */
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      printf("Type int has a size of %zd bytes.\n", sizeof(int));

      printf("Type char has a size of %zd bytes.\n", sizeof(char));

      printf("Type long has a size of %zd bytes.\n", sizeof(long));

      printf("Type long long has a size of %zd bytes.\n",

             sizeof(long long));

      printf("Type double has a size of %zd bytes.\n",

             sizeof(double));

      printf("Type long double has a size of %zd bytes.\n",

             sizeof(long double));

      return 0;

  }   

 C has a built-in operator called  sizeof  that gives sizes in bytes. C99 and C11 provide a  %zd  
specifier for this type used by  sizeof . Noncompliant compilers may require  %u  or  %lu  instead. 
Here is a sample output:  

  Type int has a size of 4 bytes.

  Type char has a size of 1 bytes.

  Type long has a size of 8 bytes.

  Type long long has a size of 8 bytes.

  Type double has a size of 8 bytes.

  Type long double has a size of 16 bytes.   

 This program found the size of only six types, but you can easily modify it to find the size of 
any other type that interests you. Note that the size of  char  is necessarily 1 byte because C 
defines the size of 1 byte in terms of  char . So, on a system with a 16-bit  char  and a 64-bit 
 double ,  sizeof  will report  double  as having a size of 4 bytes. You can check the  limits.h  
and  float.h  header files for more detailed information on type limits. (The next chapter 
discusses these two files further.)  

 Incidentally, notice in the last few lines how a  printf()  statement can be spread over two 
lines. You can do this as long as the break does not occur in the quoted section or in the 
middle of a word.    

  Using Data Types  

 When you develop a program, note the variables you need and which type they should be. 
Most likely, you can use  int  or possibly  float  for the numbers and  char  for the characters. 
Declare them at the beginning of the function that uses them. Choose a name for the variable 
that suggests its meaning. When you initialize a variable, match the constant type to the vari-
able type. Here’s an example:  

  int apples = 3;         /* RIGHT     */

  int oranges = 3.0;      /* POOR FORM */   
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 C is more forgiving about type mismatches than, say, Pascal. C compilers allow the second 
initialization, but they might complain, particularly if you have activated a higher warning 
level. It is best not to develop sloppy habits.  

 When you initialize a variable of one numeric type to a value of a different type, C converts 
the value to match the variable. This means you may lose some data. For example, consider the 
following initializations:  

  int cost = 12.99;         /* initializing an int to a double  */

  float pi = 3.1415926536;  /* initializing a float to a double */   

 The first declaration assigns 12 to  cost ; when converting floating-point values to integers, C 
simply throws away the decimal part ( truncation ) instead of rounding. The second declaration 
loses some precision, because a  float  is guaranteed to represent only the first six digits accu-
rately. Compilers may issue a warning (but don’t have to) if you make such initializations. You 
might have run into this when compiling  Listing   3.1   .  

 Many programmers and organizations have systematic conventions for assigning variable 
names in which the name indicates the type of variable. For example, you could use an 
 i_  prefix to indicate type  int  and  us_  to indicate  unsigned short , so  i_smart  would be 
instantly recognizable as a type  int  variable and  us_verysmart  would be an  unsigned short  
variable.   

  Arguments and Pitfalls  

 It’s worth repeating and amplifying a caution made earlier in this chapter about using 
 printf() . The items of information passed to a function, as you may recall, are termed  argu-
ments . For instance, the function call  printf("Hello, pal.")  has one argument:  "Hello, 
pal." . A series of characters in quotes, such as  "Hello, pal." , is called a  string . We’ll discuss 
strings in  Chapter   4   . For now, the important point is that one string, even one containing 
several words and punctuation marks, counts as one argument.  

 Similarly, the function call  scanf("%d", &weight)  has two arguments:  "%d"  and  &weight . C 
uses commas to separate arguments to a function. The  printf()  and  scanf()  functions are 
unusual in that they aren’t limited to a particular number of arguments. For example, we’ve 
used calls to  printf()  with one, two, and even three arguments. For a program to work prop-
erly, it needs to know how many arguments there are. The  printf()  and  scanf()  functions 
use the first argument to indicate how many additional arguments are coming. The trick is that 
each format specification in the initial string indicates an additional argument. For instance, 
the following statement has two  format specifiers,  %d  and  %d :  

  printf("%d cats ate %d cans of tuna\n", cats, cans);   

 This tells the program to expect two more arguments, and indeed, there are two more— cats  
and  cans .  
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 Your responsibility as a programmer is to make sure that the number of format specifications 
matches the number of additional arguments and that the specifier type matches the value 
type. C now has a function-prototyping mechanism that checks whether a function call has 
the correct number and correct kind of arguments, but it doesn’t work with  printf()  and 
 scanf()  because they take a variable number of arguments. What happens if you don’t live up 
to the programmer’s burden? Suppose, for example, you write a program like that in  
Listing   3.9   .  

  Listing 3.9   The  badcount.c  Program  

 /* badcount.c -- incorrect argument counts */

  #include <stdio.h>

  int main(void)

  {

      int n = 4;

      int m = 5;

      float f = 7.0f;

      float g = 8.0f;

  

      printf("%d\n", n, m);    /* too many arguments   */

      printf("%d %d %d\n", n); /* too few arguments    */

      printf("%d %d\n", f, g); /* wrong kind of values */

  

      return 0;

  }   

 Here’s a sample output from XCode 4.6 (OS 10.8):  

  4

  4 1 -706337836

  1606414344 1   

 Next, here’s a sample output from Microsoft Visual Studio Express 2012 (Windows 7):  

  4

  4 0 0

  0 1075576832   

 Note that using  %d  to display a  float  value doesn’t convert the  float  value to the nearest  int . 
Also, the results you get for too few arguments or the wrong kind of argument differ from plat-
form to platform and can from trial to trial.  

 None of the compilers we tried refused to compile this code; although most did issue warnings 
that something might be wrong. Nor were there any complaints when we ran the program. It 
is true that some compilers might catch this sort of error, but the C standard doesn’t require 
them to. Therefore, the computer may not catch this kind of error, and because the program 
may otherwise run correctly, you might not notice the errors either. If a program doesn’t print 
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the expected number of values or if it prints unexpected values, check to see whether you’ve 
used the correct  number of  printf()  arguments.   

  One More Example: Escape Sequences  

 Let’s run one more printing example, one that makes use of some of C’s special escape 
sequences for characters. In particular, the program in  Listing   3.10    shows how the backspace 
( \b ), tab ( \t ), and carriage return ( \r ) work. These concepts date from when computers used 
teletype machines for output, and they don’t always translate successfully to contemporary 
graphical interfaces. For example,  Listing   3.10    doesn’t work as described on some Macintosh 
implementations.  

  Listing 3.10   The  escape.c  Program  

 /* escape.c -- uses escape characters */

  #include <stdio.h>

  int main(void)

  {

      float salary;

  

      printf("\aEnter your desired monthly salary:");/* 1 */

      printf(" $_______\b\b\b\b\b\b\b");             /* 2 */

      scanf("%f", &salary);

      printf("\n\t$%.2f a month is $%.2f a year.", salary,

                 salary * 12.0);                     /* 3 */

      printf("\rGee!\n");                            /* 4 */

  

      return 0;

  }   

  What Happens When the Program Runs  

 Let’s walk through this program step by step as it would work under a system in which the 
escape characters behave as described. (The actual behavior could be different. For instance, 
XCode 4.6 displays the  \a ,  \b , and  \r  characters as upside down question marks!)  

 The first  printf()  statement (the one numbered  1 ) sounds the alert signal (prompted by the 
 \a ) and then prints the following:  

  Enter your desired monthly salary:   

 Because there is no  \n  at the end of the string, the cursor is left positioned after the colon.  

 The second  printf()  statement picks up where the first one stops, so after it is finished, the 
screen looks as follows:  

  Enter your desired monthly salary: $_______   
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 The space between the colon and the dollar sign is there because the string in the second 
 printf()  statement starts with a space. The effect of the seven backspace characters is to move 
the cursor seven positions to the left. This backs the cursor over the seven underscore charac-
ters, placing the cursor directly after the dollar sign. Usually, backspacing does not erase the 
characters that are backed over, but some implementations may use destructive backspacing, 
negating the point of this little exercise.  

 At this point, you type your response, say  4000.00 . Now the line looks like this:  

  Enter your desired monthly salary: $4000.00   

 The characters you type replace the underscore characters, and when you press Enter (or 
Return) to enter your response, the cursor moves to the beginning of the next line.  

 The third  printf()  statement output begins with  \n\t . The newline character moves the 
cursor to the beginning of the next line. The tab character moves the cursor to the next tab 
stop on that line, typically, but not necessarily, to column 9. Then the rest of the string is 
printed. After this statement, the screen looks like this:  

  Enter your desired monthly salary: $4000.00

          $4000.00 a month is $48000.00 a year.   

 Because the  printf()  statement doesn’t use the newline character, the cursor remains just 
after the final period.  

 The fourth  printf()  statement begins with  \r . This positions the cursor at the beginning of 
the current line. Then  Gee!  is displayed there, and the  \n  moves the cursor to the next line. 
Here is the final appearance of the screen:  

  Enter your desired monthly salary: $4000.00

  Gee!    $4000.00 a month is $48000.00 a year.    

  Flushing the Output  

 When does  printf()  actually send output to the screen? Initially,  printf()  statements send 
output to an intermediate storage area called a  buffer . Every now and then, the material in the 
buffer is sent to the screen. The standard C rules for when output is sent from the buffer to the 
screen are clear: It is sent when the buffer gets full, when a newline character is encountered, 
or when there is impending input. (Sending the output from the buffer to the screen or file is 
called  flushing the buffer .) For instance, the first two  printf()  statements don’t fill the buffer 
and don’t contain  a newline, but they are immediately followed by a  scanf()  statement asking 
for input. That forces the  printf()  output to be sent to the screen.  

 You may encounter an older implementation for which  scanf()  doesn’t force a flush, which 
would result in the program looking for your input without having yet displayed the prompt 
onscreen. In that case, you can use a newline character to flush the buffer. The code can be 
changed to look like this:  

  printf("Enter your desired monthly salary:\n");
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  scanf("%f", &salary);   

 This code works whether or not impending input flushes the buffer. However, it also puts the 
cursor on the next line, preventing you from entering data on the same line as the prompting 
string. Another solution is to use the  fflush()  function described in  Chapter   13   , “File Input/
Output.”    

  Key Concepts  

 C has an amazing number of numeric types. This reflects the intent of C to avoid putting 
obstacles in the path of the programmer. Instead of mandating, say, that one kind of integer is 
enough, C tries to give the programmer the options of choosing a particular variety (signed or 
unsigned) and size that best meet the needs of a particular program.  

 Floating-point numbers are fundamentally different from integers on a computer. They are 
stored and processed differently. Two 32-bit memory units could hold identical bit patterns, 
but if one were interpreted as a  float  and the other as a  long , they would represent totally 
different and unrelated values. For example, on a PC, if you take the bit pattern that represents 
the  float  number 256.0 and interpret it as a  long  value, you get 113246208. C does allow you 
to write an expression with mixed data types, but it will make automatic conversions so that 
the actual calculation uses just one data type.  

 In computer memory, characters are represented by a numeric code. The ASCII code is the 
most common in the U.S., but C supports the use of other codes. A character constant is the 
symbolic representation for the numeric code used on a computer system—it consists of a char-
acter enclosed in single quotes, such as  'A' .   

  Summary  

 C has a variety of data types. The basic types fall into two categories: integer types and floating-
point types. The two distinguishing features for integer types are the amount of storage allotted 
to a type and whether it is signed or unsigned. The smallest integer type is  char , which can 
be either signed or unsigned, depending on the implementation. You can use  signed char  
and  unsigned char  to explicitly specify which you want, but that’s usually done when you 
are using the type to hold small integers rather than character codes. The other integer types 
include the  short ,  int ,  long , and  long  long  type. C guarantees that each of these types 
is at least as large as the preceding type. Each of them is a signed type, but you can use the 
 unsigned  keyword to create the corresponding unsigned types:  unsigned short ,  unsigned 
int ,  unsigned long , and  unsigned long long . Or you can add the  signed  modifier to 
explicitly state that the type is signed. Finally, there is the  _Bool  type, an unsigned type able to 
hold the values  0  and  1 , representing  false  and  true .  

 The three floating-point types are  float ,  double , and, since C90,  long double . Each is at 
least as large as the preceding type. Optionally, an implementation can support complex and 
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imaginary types by using the keywords  _Complex  and  _Imaginary  in conjunction with the 
floating-type keywords. For example, there would be a  double _Complex  type and a  float 
_Imaginary  type.  

 Integers can be expressed in decimal, octal, or hexadecimal form. A leading  0  indicates an octal 
number, and a leading  0x  or  0X  indicates a hexadecimal number. For example,  32 ,  040 , and 
 0x20  are decimal, octal, and hexadecimal representations of the same value. An  l  or  L  suffix 
indicates a  long  value, and an  ll  or  LL  indicates a  long long  value.  

 Character constants are represented by placing the character in single quotes:  'Q' ,  '8' , and 
 '$' , for example. C escape sequences, such as  '\n' , represent certain nonprinting characters. 
You can use the form  '\007'  to represent a character by its ASCII code.  

 Floating-point numbers can be written with a fixed decimal point, as in  9393.912 , or in expo-
nential notation, as in  7.38E10 . C99 and C11 provide a third exponential notation using hexa-
decimal digits and powers of 2, as in  0xa.1fp10 .  

 The  printf()  function enables you to print various types of values by using conversion speci-
fiers, which, in their simplest form, consist of a percent sign and a letter indicating the type, as 
in  %d  or  %f .    

     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    Which data type would you use for each of the following kinds of data (sometimes more 
than one type could be appropriate)?  

    a.   The population of East Simpleton   

   b.   The cost of a movie on DVD   

   c.   The most common letter in this chapter   

   d.   The number of times that the letter occurs in this chapter      

   2.    Why would you use a type  long  variable instead of type  int ?    

   3.    What portable types might you use to get a 32-bit signed integer, and what would the 
rationale be for each choice?    

   4.    Identify the type and meaning, if any, of each of the following constants:  

    a.    '\b'    

   b.    1066    

   c.    99.44    
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   d.    0XAA    

   e.    2.0e30       

   5.    Dottie Cawm has concocted an error-laden program. Help her find the mistakes.  

  include <stdio.h>

  main

  (

   float g; h;

   float tax, rate;

  

   g = e21;

   tax = rate*g;

  )     

   6.    Identify the data type (as used in declaration statements) and the  printf()  format 
specifier for each of the following constants:  

 Constant   Type   Specifier  

    a.    12    

   b.    0X3    

   c.    'C'    

   d.    2.34E07    

   e.    '\040'    

   f.    7.0    

   g.    6L    

   h.   6.0f   

   i.   0x5.b6p12      

   7.    Identify the data type (as used in declaration statements) and the  printf()  format 
specifier for each of the following constants (assume a 16-bit  int ):  

 Constant   Type   Specifier  

    a.    012    

   b.    2.9e05L    

   c.    's'    

   d.    100000    

   e.    '\n'    
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   f.    20.0f    

   g.   0x44   

   h.    -40       

   8.    Suppose a program begins with these declarations:  

  int imate = 2;

  long shot = 53456;

  char grade = 'A';

  float log = 2.71828;   

 Fill in the proper type specifiers in the following  printf()  statements:  

  printf("The odds against the %__ were %__ to 1.\n", imate, shot);

  printf("A score of %__ is not an %__ grade.\n", log, grade);     

   9.    Suppose that  ch  is a type  char  variable. Show how to assign the carriage-return character 
to  ch  by using an escape sequence, a decimal value, an octal character constant, and a 
hex character constant. (Assume ASCII code values.)    

   10.    Correct this silly program. (The  /  in C means division.)  

  void main(int) / this program is perfect /

  {

   cows, legs integer;

   printf("How many cow legs did you count?\n);

   scanf("%c", legs);

   cows = legs / 4;

   printf("That implies there are %f cows.\n", cows)

  }     

   11.    Identify what each of the following escape sequences represents:  

    a.    \n    

   b.    \\    

   c.    \"    

   d.    \t         
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  Programming Exercises  

    1.    Find out what your system does with integer overflow, floating-point overflow, and 
floating-point underflow by using the experimental approach; that is, write programs 
having these problems. (You can check the discussion in  Chapter   4    of  limits.h  and 
 float.h  to get guidance on the largest and smallest values.)    

   2.    Write a program that asks you to enter an ASCII code value, such as 66, and then prints 
the character having that ASCII code.    

   3.    Write a program that sounds an alert and then prints the following text:  

  Startled by the sudden sound, Sally shouted,

  "By the Great Pumpkin, what was that!"     

   4.    Write a program that reads in a floating-point number and prints it first in decimal-point 
notation, then in exponential notation, and then, if your system supports it, p notation. 
Have the output use the following format (the actual number of digits displayed for the 
exponent depends on the system):  

  Enter a floating-point value:  64.25 
  fixed-point notation: 64.250000

  exponential notation: 6.425000e+01

  p notation: 0x1.01p+6     

   5.    There are approximately 3.156 × 10 7  seconds in a year. Write a program that requests 
your age in years and then displays the equivalent number of seconds.    

   6.    The mass of a single molecule of water is about 3.0×10 -23  grams. A quart of water is 
about 950 grams. Write a program that requests an amount of water, in quarts, and 
displays the number of water molecules in that amount.    

   7.    There are 2.54 centimeters to the inch. Write a program that asks you to enter your 
height in inches and then displays your height in centimeters. Or, if you prefer, ask for 
the height in centimeters and convert that to inches.    

   8.    In the U.S. system of volume measurements, a pint is 2 cups, a cup is 8 ounces, an 
ounce is 2 tablespoons, and a tablespoon is 3 teaspoons. Write a program that requests a 
volume in cups and that displays the equivalent volumes in pints, ounces, tablespoons, 
and teaspoons. Why does a floating-point type make more sense for this application than 
an integer type?        
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  4 
 Character Strings and 

Formatted Input/Output  

    You will learn about the following in this chapter:  

    ■   Function:  

  strlen()    

   ■   Keywords:  

  const    

   ■   Character strings   

   ■   How character strings are created and stored   

   ■   How you can use  scanf()  and  printf()  to read and display character strings   

   ■   How to use the  strlen()  function to measure string lengths   

   ■   The C preprocessor’s  #define  directive and ANSI C’s  const  modifier for creating 
symbolic constants    

 This chapter concentrates on input and output. You’ll add personality to your programs by 
making them interactive and using character strings. You will also take a more detailed look at 
those two handy C input/output functions,  printf()  and  scanf() . With these two functions, 
you have the program tools you need to communicate with users and to format output to meet 
your needs and tastes. Finally, you’ll take a quick look at an important C facility, the C prepro-
cessor, and learn how to define and use symbolic constants.   

     Introductory Program  

 By now, you probably expect a sample program at the beginning of each chapter, so  Listing   4.1    
is a program that engages in a dialog with the user. To add a little variety, the code uses the 
newer comment style.  
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  Listing 4.1   The  talkback.c  Program  

 // talkback.c -- nosy, informative program

  #include <stdio.h>

  #include <string.h>      // for strlen() prototype

  #define DENSITY 62.4     // human density in lbs per cu ft

  int main()

  {

      float weight, volume;

      int size, letters;

      char name[40];        // name is an array of 40 chars

  

      printf("Hi! What's your first name?\n");

      scanf("%s", name);

      printf("%s, what's your weight in pounds?\n", name);

      scanf("%f", &weight);

      size = sizeof name;

      letters = strlen(name);

      volume = weight / DENSITY;

      printf("Well, %s, your volume is %2.2f cubic feet.\n",

              name, volume);

      printf("Also, your first name has %d letters,\n",

              letters);

      printf("and we have %d bytes to store it.\n", size);

  

      return 0;

  }   

 Running  talkback.c  produces results such as the following:  

  Hi! What's your first name?

   Christine 
  Christine, what's your weight in pounds?

   154 
  Well, Christine, your volume is 2.47 cubic feet.

  Also, your first name has 9 letters,

  and we have 40 bytes to store it.   

 Here are the main new features of this program:  

    ■   It uses an  array  to hold a  character string . Here, someone’s name is read into the array, 
which, in this case, is a series of 40 consecutive bytes in memory, each able to hold a 
single character value.   

   ■   It uses the  %s   conversion specification  to handle the input and output of the string. Note 
that  name , unlike  weight , does not use the  &  prefix when used with  scanf() . (As you’ll 
see later, both  &weight  and  name  are addresses.)   
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   ■   It uses the C preprocessor to define the symbolic constant  DENSITY  to represent the value 
 62.4 .   

   ■   It uses the C function  strlen()  to find the length of a string.    

 The C approach might seem a little complex compared with the input/output of, say, BASIC. 
However, this complexity buys a finer control of I/O and greater program efficiency, and it’s 
surprisingly easy once you get used to it.  

 Let’s investigate these new ideas.   

  Character Strings: An Introduction  

 A  character string  is a series of one or more characters. Here is an example of a string:  

  "Zing went the strings of my heart!"   

 The double quotation marks are not part of the string. They inform the compiler that they 
enclose a string, just as single quotation marks identify a character.  

  Type  char  Arrays and the Null Character  

 C has no special variable type for strings. Instead, strings are stored in an array of type  char . 
Characters in a string are stored in adjacent memory cells, one character per cell, and an array 
consists of adjacent memory locations, so placing a string in an array is quite natural (see 
 Figure   4.1   ).  

 

Z i n w e en t t s t o f m h e a r t ! \0yr i n sghg

each cell is one byte null character

 Figure 4.1   A string in an array.         

 Note that  Figure   4.1    shows the character  \0  in the last array position. This is the  null charac-
ter , and C uses it to mark the end of a string. The null character is not the digit zero; it is the 
nonprinting character whose ASCII code value (or equivalent) is  0 . Strings in C are always 
stored with this terminating null character. The presence of the null character means that the 
array must have at least one more cell than the number of characters to be stored. So when the 
preceding program said it had 40 bytes to store the string, that meant  it could hold up to 39 
characters in addition to the null character.  

 Now just what is an array? You can think of an array as several memory cells in a row. If you 
prefer more formal language, an array is an ordered sequence of data elements of one type. This 
example creates an array of 40 memory cells, or  elements , each of which can store one  
char -type value by using this declaration:  

  char name[40];   
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 The brackets after  name  identify it as an array. The  40  within the brackets indicates the number 
of elements in the array. The  char  identifies the type of each element (see  Figure   4.2   ).  

 name

type char
allocate 5 bytes

char name[5];

ch

type char
allocate 1 byte
char ch;

 Figure 4.2   Declaring a variable versus declaring an array.         

 Using a character string is beginning to sound complicated! You have to create an array, place 
the characters of a string into an array, one by one, and remember to add  \0  at the end. 
Fortunately, the computer can take care of most of the details itself.   

  Using Strings  

 Try the program in  Listing   4.2    to see how easy it really is to use strings.  

  Listing 4.2   The  praise1.c  Program  

 /* praise1.c -- uses an assortment of strings */

  #include <stdio.h>

  #define PRAISE "You are an extraordinary being."

  int main(void)

  {

      char name[40];

  

      printf("What's your name? ");

      scanf("%s", name);

      printf("Hello, %s. %s\n", name, PRAISE);

  

      return 0;

  }   
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 The  %s  tells  printf()  to print a string. The  %s  appears twice because the program prints 
two strings: the one stored in the  name  array and the one represented by  PRAISE . Running 
 praise1.c  should produce an output similar to this:  

  What's your name?  Angela Plains 
  Hello, Angela. You are an extraordinary being.   

 You do not have to put the null character into the  name  array yourself. That task is done for 
you by  scanf()  when it reads the input. Nor do you include a null character in the  character 
string constant   PRAISE . We’ll explain the  #define  statement soon; for now, simply note that 
the double quotation marks that enclose the text following  PRAISE  identify the text as a string. 
The compiler takes care of putting in the null character.  

 Note (and this is important) that  scanf()  just reads Angela Plains’s first name. After  scanf()  
starts to read input, it stops reading at the first  whitespace  (blank, tab, or newline) it encounters. 
Therefore, it stops scanning for  name  when it reaches the blank between  Angela  and  Plains . 
In general,  scanf()  is used with  %s  to read only a single word, not a whole phrase, as a string. 
C has other input-reading functions, such as  fgets() , for handling general strings. Later chap-
ters will explore string functions more fully.  

  Strings Versus Characters  

 The string constant  "x"  is not the same as the character constant  'x' . One difference is that 
 'x'  is a basic type ( char ), but  "x"  is a derived type, an array of  char . A second difference is 
that  "x"  really consists of two characters,  'x'  and  '\0' , the null character (see  Figure   4.3   ).  

 

'x' the character

"x" the string

x

x \0

null character ends string

 Figure 4.3   The character  'x'  and the string  "x".            

  The  strlen()  Function  

 The previous  chapter unleashed the  sizeof  operator, which gives the size of things in bytes. 
The  strlen()  function gives the length of a string in characters. Because it takes one byte to 
hold one character, you might suppose that both would give the same result when applied to a 
string, but they don’t. Add a few lines to the example, as shown in  Listing   4.3   , and see why.  
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  Listing 4.3   The  praise2.c  Program  

 /* praise2.c */

  // try the %u or %lu specifiers if your implementation

  // does not recognize the %zd specifier

  #include <stdio.h>

  #include <string.h>      /* provides strlen() prototype */

  #define PRAISE "You are an extraordinary being."

  int main(void)

  {

      char name[40];

  

      printf("What's your name? ");

      scanf("%s", name);

      printf("Hello, %s. %s\n", name, PRAISE);

      printf("Your name of %zd letters occupies %zd memory cells.\n",

             strlen(name), sizeof name);

      printf("The phrase of praise has %zd letters ",

             strlen(PRAISE));

      printf("and occupies %zd memory cells.\n", sizeof PRAISE);

  

      return 0;

  }   

 If you are using a pre-ANSI C compiler, you might have to remove the following line:  

  #include <string.h>   

 The  string.h  file contains function prototypes for several string-related functions, including 
 strlen() .  Chapter   11   , “Character Strings and String Functions,” discusses this header file more 
fully. (By the way, some pre-ANSI Unix systems use  strings.h  instead of  string.h  to contain 
declarations for string functions.)  

 More generally, C divides the C function library into families of related functions and provides 
a header file for each family. For example,  printf()  and  scanf()  belong to a family of stan-
dard input and output functions and use the  stdio.h  header file. The  strlen()  function joins 
several other string-related functions, such as functions to copy strings and to search through 
strings, in a family served by the  string.h  header.  

 Notice that  Listing   4.3    uses two methods to handle long  printf()  statements. The first 
method spreads one  printf()  statement over two lines. (You can break a line between argu-
ments to  printf( ) but not in the middle of a string—that is, not between the quotation 
marks.) The second method uses two  printf()  statements to print just one line. The newline 
character ( \n ) appears only in the second statement. Running the program could produce the 
following interchange:  

  What's your name?  Serendipity Chance 
  Hello, Serendipity. You are an extraordinary being.
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  Your name of 11 letters occupies 40 memory cells.

  The phrase of praise has 31 letters and occupies 32 memory cells.   

 See what happens. The array name has 40 memory cells, and that is what the  sizeof  opera-
tor reports. Only the first 11 cells are needed to hold Serendipity, however, and that is what 
 strlen()  reports. The twelfth cell in the array name contains the null character, and its pres-
ence tells  strlen()  when to stop counting.  Figure   4.4    illustrates  this concept with a shorter 
string.  

 

5 characters

terminating null character

garbage (in general)

T u f f y \0

 Figure 4.4   The  strlen()  function knows when to stop.         

 When you get to  PRAISE , you find that  strlen()  again gives you the exact number of char-
acters (including spaces and punctuation) in the string. The  sizeof  operator gives you a 
number one larger because it also counts the invisible null character used to end the string. The 
program didn’t tell the computer how much memory to set aside to store the phrase. It had to 
count the number of characters between the double quotes itself.  

 As mentioned in  Chapter   3   , “Data and C,” the C99 and C11 standards use a  %zd  specifier for 
the type used by the  sizeof  operator. This also applies for type returned by  strlen() . For 
earlier versions of C you need to know the actual type returned by  sizeof  and  strlen() ; typi-
cally that would be  unsigned  or  unsigned long .  

 One other point: The preceding chapter used  sizeof  with parentheses, but this example 
doesn’t. Whether you use parentheses depends on whether you want the size of a type or the 
size of a particular quantity. Parentheses are required for types but are optional for particular 
quantities. That is, you would use  sizeof(char)  or  sizeof(float)  but can use  sizeof name  
or  sizeof 6.28 . However, it is all right to use parentheses in these cases, too, as in  sizeof 
(6.28) .  

 The last example used  strlen()  and  sizeof  for the rather trivial purpose of satisfying a user’s 
potential curiosity. Actually, however,  strlen()  and  sizeof  are important programming 
tools. For example,  strlen()  is useful in all sorts of character-string programs, as you’ll see in 
 Chapter   11   .  

 Let’s move on  to the  #define  statement.    
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  Constants and the C Preprocessor  

 Sometimes you need to use a constant in a program. For example, you could give the circum-
ference of a circle as follows:  

  circumference = 3.14159 * diameter;   

 Here, the constant 3.14159 represents the world-famous constant pi (π). To use a constant, 
just type in the actual value, as in the example. However, there are good reasons to use a 
 symbolic constant  instead. That is, you could use a statement such as the following and have the 
computer substitute in the actual value later:  

  circumference = pi * diameter;   

 Why is it better to use a symbolic constant? First, a name tells you more than a number does. 
Compare the following two statements:  

  owed = 0.015 * housevalue;

  owed = taxrate * housevalue;   

 If you read through a long program, the meaning of the second version is plainer.  

 Also, suppose you have used a constant in several places, and it becomes necessary to change 
its value. After all, tax rates do change. Then you only need to alter the definition of the 
symbolic constant, rather than find and change every occurrence of the constant in the 
program.  

 Okay, how do you set up a symbolic constant? One way is to declare a variable and set it equal 
to the desired constant. You could write this:  

  float taxrate;

  taxrate = 0.015;   

 This provides a symbolic name, but  taxrate  is a variable, so your program might change its 
value accidentally. Fortunately, C has a couple better ideas.  

 The original better idea is the C preprocessor. In  Chapter   2   , “Introducing C,” you saw how the 
preprocessor uses  #include  to incorporate information from another file. The preprocessor 
also lets you define constants. Just add a line like the following at the top of the file containing 
your program:  

  #define TAXRATE 0.015   

 When your program is compiled, the value  0.015  will be substituted everywhere you have used 
 TAXRATE . This is called a  compile-time substitution . By the time you run the program, all the 
substitutions have already been made (see  Figure   4.5   ). Such defined constants are often termed 
 manifest constants .  
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what you type

preprocessor
at work

#define TAXRATE 0.015

int main(void)

{

•

•

•

bill=TAXRATE * sum;

{

•

•

•

}

int main(void)

{

•

•

•

bill=0.015 * sum;

•

•

•

}

COMPILER

 Figure 4.5   What you type versus what is compiled.         
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 Note the format. First comes  #define . Next comes the symbolic name ( TAXRATE ) for the 
constant and then the value ( 0.015 ) for the constant. (Note that this construction does not use 
the  =  sign.) So the general form is as follows:  

  #define NAME value   

 You would substitute the symbolic name of your choice for   NAME   and the appropriate value 
for   value  . No semicolon is used because this is a substitution mechanism handled by the 
preprocessor, not a C statement. Why is  TAXRATE  capitalized? It is a sensible C tradition to type 
constants in uppercase. Then, when you encounter one in the depths of a program, you know 
immediately that it is a constant, not a variable. Capitalizing constants is just another tech-
nique to make programs more readable. Your programs will still work if you don’t capitalize the 
constants, but capitalizing them is a reasonable habit to  cultivate.  

 Other, less common, naming conventions include prefixing a name with a  c_  or  k_  to indicate 
a constant, producing names such as  c_level  or  k_line .  

 The names you use for symbolic constants must satisfy the same rules that the names of vari-
ables do. You can use uppercase and lowercase letters, digits, and the underscore character. The 
first character cannot be a digit.  Listing   4.4    shows a simple example.  

  Listing 4.4   The  pizza.c  Program  

 /* pizza.c -- uses defined constants in a pizza context */

  #include <stdio.h>

  #define PI 3.14159

  int main(void)

  {

      float area, circum, radius;

  

      printf("What is the radius of your pizza?\n");

      scanf("%f", &radius);

      area = PI * radius * radius;

      circum = 2.0 * PI *radius;

      printf("Your basic pizza parameters are as follows:\n");

      printf("circumference = %1.2f, area = %1.2f\n", circum,

             area);

      return 0;

  }   

 The  %1.2f  in the  printf()  statement causes the printout to be rounded to two decimal places. 
Of course, this program may not reflect your major pizza concerns, but it does fill a small niche 
in the world of pizza programs. Here is a sample run:  

  What is the radius of your pizza?

   6.0 
  Your basic pizza parameters are as follows:

  circumference = 37.70, area = 113.10   
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 The  #define  statement can be used for character and string constants, too. Just use single 
quotes for the former and double quotes for the latter. The following examples are valid:  

  #define BEEP '\a'

  #define TEE 'T'

  #define ESC '\033'

  #define OOPS "Now you have done it!"   

 Remember that everything following the symbolic name is substituted for it. Don’t make this 
common error:  

  /* the following is wrong */

  #define TOES = 20   

 If you do this,  TOES  is replaced by  = 20 , not just  20 . In that case, a statement such as  

  digits = fingers + TOES;   

 is converted to the following misrepresentation:  

  digits = fingers + = 20;   

  The  const  Modifier  

 C90 added a second way to create symbolic constants—using the  const  keyword to convert a 
declaration for a variable into a declaration for a constant:  

  const int MONTHS = 12;    // MONTHS a symbolic constant for 12   

 This makes  MONTHS  into a read-only value. That is, you can display  MONTHS  and use it in 
calculations, but you cannot alter the value of  MONTHS . This newer approach is more flex-
ible than using  #define ; it lets you declare a type, and it allows better control over which 
parts of a program can use the constant.  Chapter   12   , “Storage Classes, Linkage, and Memory 
Management,” discusses this and other uses of  const .  

 Actually, C has yet a third way to create symbolic constants, and that is the  enum  facility 
discussed in  Chapter   14   , “Structures and Other Data Forms.”   

  Manifest Constants on the Job  

 The C header files  limits.h  and  float.h  supply detailed information about the size limits of 
integer types and floating types, respectively. Each file defines a series of manifest constants 
that apply to your implementation. For instance, the  limits.h  file contains lines similar to the 
following:  

  #define INT_MAX    +32767

  #define INT_MIN    -32768   
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 These constants represent the largest and smallest possible values for the  int  type. If your 
system uses a 32-bit  int , the file would provide different values for these symbolic constants. 
The file defines minimum and maximum values for all the integer types. If you include the 
 limits.h  file, you can use code such as the following:  

  printf("Maximum int value on this system = %d\n", INT_MAX);   

 If your system uses a 4-byte  int , the  limits.h  file that comes with that system would provide 
definitions for  INT_MAX  and  INT_MIN  that match the limits of a 4-byte  int .  Table   4.1    lists some 
of the constants found in  limits.h .  

  Table 4.1   Some Symbolic Constants from  limits.h  

  Symbolic Constant     Represents   

  CHAR_BIT    Number of bits in a  char   

  CHAR_MAX    Maximum  char  value  

  CHAR_MIN    Minimum  char  value  

  SCHAR_MAX    Maximum  signed char  value  

  SCHAR_MIN    Minimum  signed char  value  

  UCHAR_MAX    Maximum  unsigned char  value  

  SHRT_MAX    Maximum  short  value  

  SHRT_MIN    Minimum  short  value  

  USHRT_MAX    Maximum  unsigned short  value  

  INT_MAX    Maximum  int  value  

  INT_MIN    Minimum  int  value  

  UINT_MAX    Maximum  unsigned int  value  

  LONG_MAX    Maximum  long  value  

  LONG_MIN    Minimum  long  value  

  ULONG_MAX    Maximum  unsigned long value   

  LLONG_MAX    Maximum  long long  value  

  LLONG_MIN    Minimum  long long  value  

  ULLONG_MAX    Maximum  unsigned long long  value  

 Similarly, the  float.h  file defines constants such as  FLT_DIG  and  DBL_DIG , which represent 
the number of significant figures supported by the  float  type and the  double  type.  Table   4.2    
lists some of the constants found in  float.h . (You can use a text editor to open and inspect 
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the  float.h  header file your system uses.) This example relates to the  float  type. Equivalent 
constants are defined for types  double  and  long double , with  DBL  and  LDBL  substituted for 
 FLT  in the name. (The table assumes the system represents floating-point numbers in terms of 
powers of 2.)  

  Table 4.2   Some Symbolic Constants from  float.h   

  Symbolic Constant     Represents   

  FLT_MANT_DIG    Number of bits in the mantissa of a  float   

  FLT_DIG    Minimum number of significant decimal digits for a  float   

  FLT_MIN_10_EXP    Minimum base-10 negative exponent for a  float  with a full set of 
significant figures  

  FLT_MAX_10_EXP    Maximum base-10 positive exponent for a  float   

  FLT_MIN    Minimum value for a positive  float  retaining full precision  

  FLT_MAX    Maximum value for a positive  float   

  FLT_EPSILON    Difference between 1.00 and the least float value greater than 
1.00  

  Listing   4.5    illustrates using data from  float.h  and  limits.h . (Note that a compiler that 
doesn’t fully support the C99 standard might not accept the  LLONG_MIN   identifier.)  

  Listing 4.5   The  defines.c  Program  

 // defines.c -- uses defined constants from limit.h and float.

  #include <stdio.h>

  #include <limits.h>    // integer limits

  #include <float.h>     // floating-point limits

  int main(void)

  {

      printf("Some number limits for this system:\n");

      printf("Biggest int: %d\n", INT_MAX);

      printf("Smallest long long: %lld\n", LLONG_MIN);

      printf("One byte = %d bits on this system.\n", CHAR_BIT);

      printf("Largest double: %e\n", DBL_MAX);

      printf("Smallest normal float: %e\n", FLT_MIN);

      printf("float precision = %d digits\n", FLT_DIG);

      printf("float epsilon = %e\n", FLT_EPSILON);

  

      return 0;

  }   
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 Here is the sample output:  

  Some number limits for this system:

  Biggest int: 2147483647

  Smallest long long: -9223372036854775808

  One byte = 8 bits on this system.

  Largest double: 1.797693e+308

  Smallest normal float: 1.175494e-38

  float precision = 6 digits

  float epsilon = 1.192093e-07   

 The C preprocessor is a useful, helpful tool, so take advantage of it when you can. We’ll show 
you more applications as you move along through this book.    

  Exploring and Exploiting  printf()  and  scanf()   

 The functions  printf()  and  scanf()  enable you to communicate with a program. They are 
called  input/output functions , or  I/O functions  for short. They are not the only I/O functions 
you can use with C, but they are the most versatile. Historically, these functions, like all other 
functions in the C library, were not part of the definition of C. C originally left the implemen-
tation of I/O up to the compiler writers; this made it possible to better match I/O to specific 
machines. In the interests of compatibility, various implementations all came with versions 
of  scanf()  and  printf() . However, there were occasional discrepancies between implemen-
tations.  The C90 and C99 standards describe standard versions of these functions, and we’ll 
follow that standard.  

 Although  printf()  is an output function and  scanf()  is an input function, both work much 
the same, each using a control string and a list of arguments. We will show you how these 
work, first with  printf()  and then with  scanf() .  

  The  printf()  Function  

 The instructions you give  printf()  when you ask it to print a variable depend on the variable 
type. For example, we have used the  %d  notation when printing an integer and the  %c  nota-
tion when printing a character. These notations are called  conversion specifications  because they 
specify how the data is to be converted into displayable form. We’ll list the conversion speci-
fications that the ANSI C standard provides for  printf()  and then show how to use the more 
common ones.  Table   4.3    presents the conversion specifiers and the type of output they cause to 
be printed.  

  Table 4.3   Conversion Specifiers and the Resulting Printed Output  

  Conversion     Output Specification   

  %a    Floating-point number, hexadecimal digits and p-notation (C99/C11).  

  %A    Floating-point number, hexadecimal digits and P-notation (C99/C11).  
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  Conversion     Output Specification   

  %c    Single character.  

  %d    Signed decimal integer.  

  %e    Floating-point number, e-notation.  

  %E    Floating-point number, e-notation.  

  %f    Floating-point number, decimal notation.  

  %g    Use  %f  or  %e , depending on the value. The  %e  style is used if the exponent is 
less than −4 or greater than or equal to the precision.  

  %G    Use  %f  or  %E , depending on the value. The  %E  style is used if the exponent is 
less than −4 or greater than or equal to the precision.  

  %i    Signed decimal integer (same as  %d ).  

  %o    Unsigned octal integer.  

  %p    A pointer.  

  %s    Character string.  

  %u    Unsigned decimal integer.  

  %x    Unsigned hexadecimal integer, using hex digits  0f .  

  %X    Unsigned hexadecimal integer, using hex digits  0F .  

  %%    Prints a percent sign.  

  Using  printf()   

  Listing   4.6    contains a program that uses some of the conversion specifications.  

  Listing 4.6   The  printout.c  Program  

 /* printout.c -- uses conversion specifiers */

  #include <stdio.h>

  #define PI 3.141593

  int main(void)

  {

      int number = 7;

      float pies = 12.75;

      int cost = 7800;

  

      printf("The %d contestants ate %f berry pies.\n", number,

             pies);

      printf("The value of pi is %f.\n", PI);
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      printf("Farewell! thou art too dear for my possessing,\n");

      printf("%c%d\n", '$', 2 * cost);

  

      return 0;

  }   

 The output, of course, is  

  The 7 contestants ate 12.750000 berry pies.

  The value of pi is 3.141593.

  Farewell! thou art too dear for my possessing,

  $15600   

 This is the format for using  printf() :  

  printf( Control-string ,  item1 ,  item2 ,...);   

   Item1  ,   item2  , and so on, are the items to be printed. They can be variables or constants, or 
even expressions that are evaluated first before the value is printed.   Control-string   is a char-
acter string describing how the items are to be printed. As mentioned in  Chapter   3   , the control 
string should contain a conversion specifier for each item to be printed. For example, consider 
the following statement:  

  printf("The %d contestants ate %f berry pies.\n", number,

         pies);   

   Control-string   is the phrase enclosed in double quotes. This particular control string 
contains two conversion specifiers corresponding to  number  and  pies —the two items to be 
displayed.  Figure   4.6    shows another example of a  printf() statement.  

 

variable listcontrol statement

printf(  "You look great in %s\n"  ,  color );

 Figure 4.6   Arguments for  printf().          

 Here is another line from the example:  

  printf("The value of pi is %f.\n", PI);   

 This time, the list of items has just one member—the symbolic constant  PI .  

 As you can see in  Figure   4.7   ,   Control-string   contains two distinct forms of information:  

    ■   Characters that are actually printed   

   ■   Conversion specifications    
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  Caution 

 Don’t forget to use one conversion specification for each item in the list following   
Control-string  . Woe unto you should you forget this basic requirement! Don’t do the 
following:  
  printf("The score was Squids %d, Slugs %d.\n", score1);   

 Here, there is no value for the second  %d . The result of this faux pas depends on your system, 
but at best you will get partial nonsense.   

 

literal characters literal characters

conversion specifications

"The value of pi is %f. \n"

 Figure 4.7   Anatomy of a control string.         

 If you want to print only a phrase, you don’t need any conversion specifications. If you just 
want to print data, you can dispense with the running commentary. Each of the following 
statements from Listing 4.6 is quite acceptable:  

  printf("Farewell! thou art too dear for my possessing,\n");

  printf("%c%d\n", '$', 2 * cost);   

 In the second statement, note that the first item on the print list was a character constant 
rather than a variable and that the second item is a multiplication. This illustrates that 
 printf()  uses values, be they variables, constants, or expressions.  

 Because the  printf()  function uses the  %  symbol to identify the conversion specifications, 
there is a slight problem if you want to print the  %  sign itself. If you simply use a lone  %  sign, 
the compiler thinks you have bungled a conversion specification. The way out is simple—just 
use two  %  symbols, as shown here:  

  pc = 2*6;

  printf("Only %d%% of Sally's gribbles were edible.\n", pc);   

 The following output would result:  

  Only 12% of Sally's gribbles were edible.    

  Conversion Specification Modifiers for  printf()   

 You can modify a basic conversion specification by inserting modifiers between the  %  and the 
defining conversion character.  Tables   4.4    and    4.5    list the characters you can place there legally. 
If you use more than one modifier, they should be in the same order as they appear in  Table 
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  4.4   . Not all combinations are possible. The table reflects the C99 additions; your implementa-
tion may not support all the options shown here.  

  Table 4.4   The  printf()  Modifiers  

  Modifier     Meaning   

 flag   The five flags ( - ,  + , space,  # , and  0 ) are described in  Table   4.5   . Zero or more 
flags may be present.  

 Example:  "%-10d".   

 digit(s)   The minimum field width. A wider field will be used if the printed number or string 
won’t fit in the field.  

 Example:  "%4d".   

  .digit(s)    Precision. For  %e ,  %E , and  %f  conversions, the number of digits to be printed to 
the right of the decimal. For  %g  and  %G  conversions, the maximum number of 
significant digits. For  %s  conversions, the maximum number of characters to be 
printed. For integer conversions, the minimum number of digits to appear; leading 
zeros are used if necessary to meet this minimum. Using only  .  implies a follow-
ing zero, so  %.f  is the same as  %.0f .  

 Example:  "%5.2f"  prints a  float  in a field five characters wide with two digits 
after the decimal point.  

  h    Used with an integer conversion specifier to indicate a  short int  or  unsigned 
short int  value.  

 Examples:  "%hu" ,  "%hx" , and  "%6.4hd".   

  hh    Used with an integer conversion specifier to indicate a  signed char  or 
 unsigned char  value.  

 Examples:  "%hhu" ,  "%hhx" , and  "%6.4hhd".   

  j    Used with an integer conversion specifier to indicate an  intmax_t  or  uintmax_t  
value; these are types defined in  stdint.h .  

 Examples:  "%jd"  and  "%8jX".   

  l    Used with an integer conversion specifier to indicate a  long int  or  unsigned 
long int .  

 Examples:  "%ld"  and  "%8lu".   

  ll    Used with an integer conversion specifier to indicate a  long long int  or 
 unsigned long long int . (C99).  

 Examples:  "%lld"  and  "%8llu".   

  L    Used with a floating-point conversion specifier to indicate a  long double  value.  

 Examples:  "%Lf"  and  "%10.4Le".   
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  Modifier     Meaning   

  t    Used with an integer conversion specifier to indicate a  ptrdiff_t  value. This is 
the type corresponding to the difference between two pointers. (C99).  

 Examples:  "%td"  and  "%12ti".   

  z    Used with an integer conversion specifier to indicate a  size_t  value. This is the 
type returned by  sizeof . (C99).  

 Examples:  "%zd"  and  "%12zx".   

  Note   Type Portability  

 The  sizeof  operator, recall, returns the size, in bytes, of a type or value. This should be some 
form of integer, but the standard only provides that it should be an unsigned integer. Thus it 
could be  unsigned int ,  unsigned long , or even  unsigned long long . So, if you were 
to use  printf()  to display a  sizeof  expression, you might use  %u  on one system,  %lu  one 
another, and  %llu  on a third. This means you would need to research the correct usage for 
your system and that you might need to alter your program if you move it to a different system. 
Well, it would  have meant that except that C provides help to make the type more portable. 
First, the  stddef.h  header file (included when you include  stdio.h ) defines  size_t  to be 
whatever the type your system uses for  sizeof ; this is called the underlying type. Second, 
 printf()  uses the  z  modifier to indicate the corresponding type for printing. Similarly, C 
defines the  ptrdiff_t  type and  t  modifier to indicate whatever underlying signed integer type 
the system used for the difference between two addresses.   

  Note   Conversion of  float  Arguments  

 There are conversion specifiers to print the floating types  double  and  long double . However, 
there is no specifier for  float . The reason is that  float  values were automatically converted 
to type  double  before being used in an expression or as an argument under K&R C. ANSI C (or 
later), in general, does not automatically convert  float  to  double . To protect the enormous 
number of existing programs that assume  float  arguments are converted to  double , however, 
all  float  arguments to  printf() —as well as to any other C function not using an explicit pro-
totype—are still automatically converted to  double . Therefore, under either K&R C or ANSI C, 
no  special conversion specifier is needed for displaying type  float .   

  Table 4.5   The  printf()  Flags  

  Flag     Meaning   

  -    The item is left-justified; that is, it is printed beginning at the left of the field.  

 Example:  "%-20s".   
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  Flag     Meaning   

  +    Signed values are displayed with a plus sign, if positive, and with a minus sign, if 
negative.  

 Example:  "%+6.2f".   

  space    Signed values are displayed with a leading space (but no sign) if positive and with 
a minus sign if negative. A  +  flag overrides a space.  

 Example:  "% 6.2f".   

  #    Use an alternative form for the conversion specification. Produces an initial  0  
for the  %o  form and an initial  0x  or  0X  for the  %x  or  %X  form, respectively. For 
all floating-point forms,  #  guarantees that a decimal-point character is printed, 
even if no digits follow. For  %g  and  %G  forms, it prevents trailing zeros from being 
removed.  

 Examples:  "%#o" ,  "%#8.0f" , and  "%+#10.3E".   

  0    For numeric forms, pad the field width with leading zeros instead of with spaces. 
This flag is ignored if a  -  flag is present or if, for an integer form, a precision is 
specified.  

 Examples:  "%010d"  and  "%08.3f".   

  Examples Using Modifiers and Flags  

 Let’s put these modifiers to work, beginning with a look at the effect of the field width modifier 
on printing an integer. Consider the program in  Listing   4.7   .  

  Listing 4.7   The  width.c  Program  

 /* width.c -- field widths */

  #include <stdio.h>

  #define PAGES 959

  int main(void)

  {

      printf("*%d*\n", PAGES);

      printf("*%2d*\n", PAGES);

      printf("*%10d*\n", PAGES);

      printf("*%-10d*\n", PAGES);

  

      return 0;

  }   

  Listing   4.7    prints the same quantity four times using four different conversion specifications. It 
uses an asterisk ( * ) to show you where each field begins and ends. The output looks as follows:  
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  *959*

  *959*

  *       959*

  *959       *   

 The first conversion specification is  %d  with no modifiers. It produces a field with the same 
width as the integer being printed. This is the default option; that is, it’s what’s printed if you 
don’t give further instructions. The second conversion specification is  %2d . This should produce 
a field width of 2, but because the integer is three digits long, the field is expanded automati-
cally to fit the number. The next conversion specification is  %10d . This produces a field 10 
spaces wide, and, indeed, there are seven blanks and three digits between the asterisks, with the 
number tucked into the right  end of the field. The final specification is  %-10d . It also produces 
a field 10 spaces wide, and the  -  puts the number at the left end, just as advertised. After you 
get used to it, this system is easy to use and gives you nice control over the appearance of your 
output. Try altering the value for  PAGES  to see how different numbers of digits are printed.  

 Now look at some floating-point formats. Enter, compile, and run the program in  Listing   4.8   .  

  Listing 4.8   The  floats.   c   Program  

 // floats.c -- some floating-point combinations

  #include <stdio.h>

  

  int main(void)

  {

      const double RENT = 3852.99;  // const-style constant

  

      printf("*%f*\n", RENT);

      printf("*%e*\n", RENT);

      printf("*%4.2f*\n", RENT);

      printf("*%3.1f*\n", RENT);

      printf("*%10.3f*\n", RENT);

      printf("*%10.3E*\n", RENT);

      printf("*%+4.2f*\n", RENT);

      printf("*%010.2f*\n", RENT);

  

      return 0;

  }   

 This time, the program uses the keyword  const  to create a symbolic constant. The output is  

  *3852.990000*

  *3.852990e+03*

  *3852.99*

  *3853.0*

  *  3852.990*

  * 3.853E+03*
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  *+3852.99*

  *0003852.99*   

 The example begins with the default version,  %f . In this case, there are two defaults—the field 
width and the number of digits to the right of the decimal. The second default is six digits, and 
the field width is whatever it takes to hold the number.  

 Next is the default for  %e . It prints one digit to the left of the decimal point and six places to 
the right. We’re getting a lot of digits! The cure is to specify the number of decimal places to 
the right of the decimal, and the next four examples in this segment do that. Notice how the 
fourth and the sixth examples cause the output to be rounded off. Also, the sixth example uses 
 E  instead of  e .  

 Finally, the  +  flag causes the result to be printed with its algebraic sign, which is a plus sign in 
this case, and the  0  flag produces leading zeros to pad the result to the full field width. Note 
that in the specifier  %010.2f , the first  0  is a flag, and the remaining digits before the period 
( 10 ) specify the field width.  

 You can modify the  RENT  value to see how variously sized values are printed.  Listing   4.9    
demonstrates a few more combinations.  

  Listing 4.9   The  flags.c  Program  

 /* flags.c -- illustrates some formatting flags */

  #include <stdio.h>

  int main(void)

  {

      printf("%x %X %#x\n", 31, 31, 31);

      printf("**%d**% d**% d**\n", 42, 42, -42);

      printf("**%5d**%5.3d**%05d**%05.3d**\n", 6, 6, 6, 6);

  

      return 0;

  }   

 The output looks as follows:  

  1f 1F 0x1f

  **42** 42**-42**

  **    6**  006**00006**  006**   

 First,  1f  is the hex equivalent of 31. The  x  specifier yields  1f , and the  X  specifier yields  1F . 
Using the  #  flag provides an initial  0x .  

 The second line of output illustrates how using a space in the specifier produces a leading space 
for positive values, but not for negative values. This can produce a pleasing output because 
positive and negative values with the same number of significant digits are printed with the 
same field widths.  
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 The third line illustrates how using a precision specifier ( %5.3d ) with an integer form produces 
enough leading zeros to pad the number to the minimum value of digits (three, in this case). 
Using the  0  flag, however, pads the number with enough leading zeros to fill the whole field 
width. Finally, if you provide both the  0  flag and the precision specifier, the  0  flag is ignored.  

 Now let’s examine some of the string options. Consider the example in  Listing   4.10   .  

  Listing 4.10   The  stringf.c  Program  

 /* stringf.c -- string formatting */

  #include <stdio.h>

  #define BLURB "Authentic imitation!"

  int main(void)

  {

      printf("[%2s]\n", BLURB);

      printf("[%24s]\n", BLURB);

      printf("[%24.5s]\n", BLURB);

      printf("[%-24.5s]\n", BLURB);

  

      return 0;

  }   

 Here is the output:  

  [Authentic imitation!]

  [    Authentic imitation!]

  [                   Authe]

  [Authe                   ]   

 Notice how, for the  %2s  specification, the field is expanded to contain all the characters in the 
string. Also notice how the precision specification limits the number of characters printed. The 
 .5  in the format specifier tells  printf()  to print just five characters. Again, the  -  modifier 
left-justifies the text.   

  Using What You Just Learned  

 Okay, you’ve seen some examples. Now, how would you set up a statement to print something 
having the following form?  

  The NAME family just may be $XXX.XX dollars richer!   

 Here,  NAME  and  XXX.XX  represent values that will be supplied by variables in the program—say, 
 name[40]  and  cash .  

 One solution is  

  printf("The %s family just may be $%.2f richer!\n",name,cash);     
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  What Does a Conversion Specification Convert?  

 Let’s take a closer look at what a conversion specification converts. It converts a value stored 
in the computer in some binary format to a series of characters (a string) to be displayed. For 
example, the number 76 may be stored internally as binary 01001100. The  %d  conversion speci-
fier converts this to the characters  7  and  6 , displaying  76 . The  %x  conversion converts the same 
value ( 01001100 ) to the hexadecimal representation  4c . The  %c  converts the same value to the 
character representation  L .  

 The term  conversion  is probably somewhat misleading because it might suggest that the original 
value is replaced with a converted value. Conversion specifications are really translation specifi-
cations;  %d  means “translate the given value to a decimal integer text representation and print 
the representation.”  

  Mismatched Conversions  

 Naturally, you should match the conversion specification to the type of value being printed. 
Often, you have choices. For instance, if you want to print a type  int  value, you can use  %d , 
 %x,  or  %o . All these specifiers assume that you are printing a type  int  value; they merely 
provide different representations of the value. Similarly, you can use  %f ,  %e , or  %g  to represent 
a type  double  value.  

 What if you mismatch the conversion specification to the type? You’ve seen in the preceding 
chapter that mismatches can cause problems. This is a very important point to keep in mind, 
so  Listing   4.11    shows some more examples of mismatches within the integer family.  

  Listing 4.11   The  intconv.c  Program  

 /* intconv.c -- some mismatched integer conversions */

  #include <stdio.h>

  #define PAGES 336

  #define WORDS 65618

  int main(void)

  {

      short num = PAGES;

      short mnum = -PAGES;

  

      printf("num as short and unsigned short:  %hd %hu\n", num,

              num);

      printf("-num as short and unsigned short: %hd %hu\n", mnum,

              mnum);

      printf("num as int and char: %d %c\n", num, num);

      printf("WORDS as int, short, and char: %d %hd %c\n",

              WORDS, WORDS, WORDS);

     return 0;

  }   
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 Our system produces the following results:  

  num as short and unsigned short:  336 336

  -num as short and unsigned short: -336 65200

  num as int and char: 336 P

  WORDS as int, short, and char: 65618 82 R   

 Looking at the first line, you can see that both  %hd  and  %hu  produce  336  as output for the vari-
able  num ; no problem there. On the second line, the  %u  (unsigned) version of  mnum  came out 
as  65200 , however, not as the  336  you might have expected; this results from the way that 
signed  short int  values are represented on our reference system. First, they are 2 bytes in size. 
Second, the system uses a method called the  two’s complement  to represent signed integers. In 
this method, the numbers 0 to 32767 represent themselves, and the numbers 32768 to 65535 
represent negative numbers, with 65535 being −1, 65534  being −2, and so forth. Therefore, 
 −336  is represented by  65536 - 336 , or  65200 . So 65200 represents −336 when interpreted as 
a signed  int  and represents 65200 when interpreted as an unsigned  int . Be wary! One number 
can be interpreted as two different values. Not all systems use this method to represent negative 
integers. Nonetheless, there is a moral: Don’t expect a  %u  conversion to simply strip the sign 
from a number.  

 The third line shows what happens if you try to convert a value greater than 255 to a char-
acter. On this system, a  short int  is 2 bytes and a  char  is 1 byte. When  printf()  prints 
336 using  %c , it looks at only 1 byte out of the 2 used to hold 336. This truncation (see  Figure 
  4.8   ) amounts to dividing the integer by 256 and keeping just the remainder. In this case, 
the remainder is 80, which is the ASCII value for the character  P . More technically, you can 
say that the number is interpreted  modulo 256 , which means using the  remainder when the 
number is divided by 256.  

 

80 in binary ASCII 'P'

336 in binary

0 1 0 1 0 0 0 0

1 0 1 0 0 0 001000000 0

 Figure 4.8   Reading 336 as a character.         

 Finally, we tried printing an integer (65618) larger than the maximum  short int  (32767) 
allowed on our system. Again, the computer does its modulo thing. The number 65618, 
because of its size, is stored as a 4-byte  int  value on our system. When we print it using the 
 %hd  specification,  printf()  uses only the last 2 bytes. This corresponds to using the remain-
der after dividing by 65536. In this case, the remainder is 82. A remainder between 32767 and 
65536 would be printed as a negative number because of the way negative numbers are stored. 
Systems with different integer sizes would have the same  general behavior, but with different 
numerical values.  
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 When you start mixing integer and floating types, the results are more bizarre. Consider, for 
example,  Listing   4.12   .  

  Listing 4.12   The  floatcnv.c  Program  

 /* floatcnv.c -- mismatched floating-point conversions */

  #include <stdio.h>

  int main(void)

  {

      float n1 = 3.0;

      double n2 = 3.0;

      long n3 = 2000000000;

      long n4 = 1234567890;

  

      printf("%.1e %.1e %.1e %.1e\n", n1, n2, n3, n4);

      printf("%ld %ld\n", n3, n4);

      printf("%ld %ld %ld %ld\n", n1, n2, n3, n4);

  

      return 0;

  }   

 On one system,  Listing   4.12    produces the following output:  

  3.0e+00 3.0e+00 3.1e+46 1.7e+266

  2000000000 1234567890

  0 1074266112 0 1074266112   

 The first line of output shows that using a  %e  specifier does not convert an integer to a floating-
point number. Consider, for example, what happens when you try to print  n3  (type  long ) using 
the  %e  specifier. First, the  %e  specifier causes  printf()  to expect a type  double  value, which 
is an 8-byte value on this system. When  printf()  looks at  n3 , which is a 4-byte value on this 
system, it also looks at the adjacent 4 bytes. Therefore, it looks at an 8-byte unit in which the 
actual n3 is embedded. Second, it interprets the bits in this unit as a floating-point number. Some 
bits, for  example, would be interpreted as an exponent. So even if  n3  had the correct number of 
bits, they would be interpreted differently under  %e  than under  %ld . The net result is nonsense.  

 The first line also illustrates what we mentioned earlier—that  float  is converted to  double  
when used as arguments to  printf() . On this system,  float  is 4 bytes, but  n1  was expanded 
to 8 bytes so that  printf()  would display it correctly.  

 The second line of output shows that  printf()  can print  n3  and  n4  correctly if the correct 
specifier is used.  

 The third line of output shows that even the correct specifier can produce phony results if the 
 printf()  statement has mismatches elsewhere. As you might expect, trying to print a floating-
point value with an  %ld  specifier fails, but here, trying to print a type  long  using  %ld  fails! The 
problem lies in how C passes information to a function. The exact details of this failure are imple-
mentation dependent, but the sidebar “Passing Arguments” discusses a representative system.    
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  Passing Arguments  

 The mechanics of argument passing depend on the implementation. This is how argument 
passing works on one system. The function call looks as follows:  

  printf("%ld %ld %ld %ld\n", n1, n2, n3, n4);   

 This call tells the computer to hand over the values of the variables  n1 ,  n2 ,  n3 , and  n4  to the 
computer. Here’s one common way that’s accomplished. The program places the values in 
an area of memory called the  stack . When the computer puts these values on the stack, it is 
guided by the types of the variables, not by the conversion specifiers. Consequently, for  n1 , it 
places 8 bytes on the stack ( float  is converted to  double ). Similarly, it places 8 more bytes 
for  n2 , followed by 4 bytes each for  n3  and  n4 . Then control shifts to the  printf()  function. 
This function  reads the values off the stack but, when it does so, it reads them according to 
the conversion specifiers. The  %ld  specifier indicates that  printf()  should read 4 bytes, so 
 printf()  reads the first 4 bytes in the stack as its first value. This is just the first half of  n1 , 
and it is interpreted as a  long  integer. The next  %ld  specifier reads 4 more bytes; this is just 
the second half of  n1  and is interpreted as a second  long  integer (see  Figure   4.9   ). Similarly, 
the third and fourth instances of  %ld  cause the first and second halves of  n2  to be read and 
to be interpreted  as two more  long  integers, so although we have the correct specifiers for  n3  
and  n4 ,  printf()  is reading the wrong bytes.  

 

Arguments n1 and n2 placed
on stack as type double values,
n3 and n4 as type long

printf() removes
values from stack as
type long

float n1;  /* passed as type double */

double n2;

long n3, n4;

...

printf("%ld %1d %ld %ld\n", n1, n2, n3, n4);

n4

8 bytes

4 bytes

%ld

%ld

%ld

%ld

n3

n2

n1

 Figure 4.9   Passing arguments.           
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  The Return Value of  printf()   

 As mentioned in  Chapter   2   , a C function generally has a return value. This is a value that the 
function computes and returns to the calling program. For example, the C library contains a 
 sqrt()  function that takes a number as an argument and returns its square root. The return 
value can be assigned to a variable, can be used in a computation, can be passed as an argu-
ment—in short, it can be used like any other value. The  printf()  function also has a return 
value; it returns the number of characters it printed. If there is an output error,  printf()  
returns a  negative value. (Some ancient versions of  printf()  have different return values.)  

 The return value for  printf()  is incidental to its main purpose of printing output, and it 
usually isn’t used. One reason you might use the return value is to check for output errors. This 
is more commonly done when writing to a file rather than to a screen. If a full CD or DVD 
prevented writing from taking place, you could then have the program take some appropriate 
action, such as beeping the terminal for 30 seconds. However, you have to know about the  if  
statement before doing that sort of thing. The simple example in  Listing   4.13    shows how you 
can determine  the return value.  

  Listing 4.13   The  prntval.c  Program  

 /* prntval.c -- finding printf()'s return value */

  #include <stdio.h>

  int main(void)

  {

      int bph2o = 212;

      int rv;

  

      rv = printf("%d F is water's boiling point.\n", bph2o);

      printf("The printf() function printed %d characters.\n",

               rv);

      return 0;

  }   

 The output is as follows:  

  212 F is water's boiling point.

  The printf() function printed 32 characters.   

 First, the program used the form  rv = printf(...);  to assign the return value to  rv . This 
statement therefore performs two tasks: printing information and assigning a value to a vari-
able. Second, note that the count includes all the printed characters, including the spaces and 
the unseen newline character.   

  Printing Long Strings  

 Occasionally,  printf()  statements are too long to put on one line. Because C ignores 
whitespace (spaces, tabs, newlines) except when used to separate elements, you can spread 
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a statement over several lines, as long as you put your line breaks between elements. For 
example,  Listing   4.13    used two lines for a statement.  

  printf("The printf() function printed %d characters.\n",

            rv);   

 The line is broken between the comma element and  rv . To show a reader that the line was 
being continued, the example indents the  rv . C ignores the extra spaces.  

 However, you cannot break a quoted string in the middle. Suppose you try something like the 
following:  

  printf("The printf() function printed %d

            characters.\n", rv);   

 C will complain that you have an illegal character in a string constant. You can use  \n  in a 
string to symbolize the newline character, but you can’t have the actual newline character 
generated by the Enter (or Return) key in a string.  

 If you do have to split a string, you have three choices, as shown in  Listing   4.14   .  

  Listing 4.14   The  longstrg.c  Program  

 /* longstrg.c –– printing long strings */

  #include <stdio.h>

  int main(void)

  {

      printf("Here's one way to print a ");

      printf("long string.\n");

      printf("Here's another way to print a \

  long string.\n");

      printf("Here's the newest way to print a "

            "long string.\n");      /* ANSI C */

      return 0;

  }   

 Here is the output:  

  Here's one way to print a long string.

  Here's another way to print a long string.

  Here's the newest way to print a long string.   

 Method 1 is to use more than one  printf()  statement. Because the first string printed doesn’t 
end with a  \n  character, the second string continues where the first ends.  

 Method 2 is to terminate the end of the first line with a backslash/return combination. This 
causes the text onscreen to start a new line without a newline character being included in the 
string. The effect is to continue the string over to the next line. However, the next line has to 
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start at the far left, as shown. If you indent that line, say, five spaces, those five spaces become 
part of the string.  

 Method 3, which ANSI C introduced, is string concatenation. If you follow one quoted string 
constant with another, separated only by whitespace, C treats the combination as a single 
string, so the following three forms are equivalent:  

  printf("Hello, young lovers, wherever you are.");

  printf("Hello, young "    "lovers" ", wherever you are.");

  printf("Hello, young lovers"

         ", wherever you are.");   

 With all these methods, you should include any required spaces in the strings:  "young" 
"lovers"  becomes  "younglovers" , but the combination  "young " "lovers"  is  "young 
lovers" .    

  Using  scanf()   

 Now let’s go from output to input and examine the  scanf()  function. The C library contains 
several input functions, and  scanf()  is the most general of them, because it can read a variety 
of formats. Of course, input from the keyboard is text because the keys generate text characters: 
letters, digits, and punctuation. When you want to enter, say, the integer 2014, you type the 
characters  2 0 1  and  4 . If you want to store that as a numerical value rather than as a string, 
your program has to convert the string character-by-character to a numerical value; that is what 
 scanf()  does! It  converts string input into various forms: integers, floating-point numbers, 
characters, and C strings. It is the inverse of  printf() , which converts integers, floating-point 
numbers, characters, and C strings to text that is to be displayed onscreen.  

 Like  printf() ,  scanf()  uses a control string followed by a list of arguments. The control 
string indicates the destination data types for the input stream of characters. The chief differ-
ence is in the argument list. The  printf()  function uses variable names, constants, and expres-
sions. The  scanf()  function uses pointers to variables. Fortunately, you don’t have to know 
anything about pointers to use the function. Just remember these simple rules:  

    ■   If you use  scanf()  to read a value for one of the basic variable types we’ve discussed, 
precede the variable name with an  & .   

   ■   If you use  scanf()  to read a string into a character array, don’t use an  & .    

  Listing   4.15    presents a short program illustrating these rules.  

  Listing 4.15   The  input.c  Program  

 // input.c -- when to use &

  #include <stdio.h>

  int main(void)

  {

      int age;             // variable
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      float assets;        // variable

      char pet[30];        // string

  

      printf("Enter your age, assets, and favorite pet.\n");

      scanf("%d %f", &age, &assets); // use the & here

      scanf("%s", pet);              // no & for char array

      printf("%d $%.2f %s\n", age, assets, pet);

  

      return 0;

  }   

 Here is a sample exchange:  

  Enter your age, assets, and favorite pet.

   38 
   92360.88 llama 
  38 $92360.88 llama   

 The  scanf()  function uses whitespace (newlines, tabs, and spaces) to decide how to divide the 
input into separate fields. It matches up consecutive conversion specifications to consecutive 
fields, skipping over the whitespace in between. Note how this sample run spread the input 
over two lines. You could just as well have used one or five lines, as long as you had at least 
one newline, space, or tab between each entry:  

  Enter your age, assets, and favorite pet.

     42 
  

        2121.45 
  

       guppy 
  42 $2121.45 guppy   

 The only exception to this is the  %c  specification, which reads the very next character, even if 
that character is whitespace. We’ll return to this topic in a moment.  

 The  scanf()  function uses pretty much the same set of conversion-specification characters as 
 printf()  does. The main difference is that  printf()  uses  %f ,  %e ,  %E ,  %g , and  %G  for both type 
 float  and type  double , whereas  scanf()  uses them just for type  float , requiring the  l  modi-
fier for  double .  Table   4.6    lists the main conversion specifiers as described in the C99 standard.  

  Table 4.6   ANSI C Conversion Specifiers for  scanf()   

  Conversion Specifier     Meaning   

  %c    Interpret input as a character.  

  %d    Interpret input as a signed decimal integer.  
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  Conversion Specifier     Meaning   

  %e ,  %f ,  %g ,  %a    Interpret input as a floating-point number ( %a  is C99).  

  %E ,  %F ,  %G ,  %A    Interpret input as a floating-point number ( %A  is C99).  

  %i    Interpret input as a signed decimal integer.  

  %o    Interpret input as a signed octal integer.  

  %p    Interpret input as a pointer (an address).  

  %s    Interpret input as a string. Input begins with the first non-whitespace 
character and includes everything up to the next whitespace character.  

  %u    Interpret input as an unsigned decimal integer.  

  %x ,  %X    Interpret input as a signed hexadecimal integer.  

 You also can use modifiers in the conversion specifiers shown in  Table   4.6   . The modifiers go 
between the percent sign and the conversion letter. If you use more than one in a specifier, 
they should appear in the same order as shown in  Table   4.7   .  

  Table 4.7   Conversion Modifiers for  scanf()   

  Modifier     Meaning   

  *    Suppress assignment (see text).  

 Example:  "%*d".   

 digit(s)   Maximum field width. Input stops when the maximum field width is reached or 
when the first whitespace character is encountered, whichever comes first.  

 Example:  "%10s".   

  hh    Read an integer as a  signed char  or  unsigned char .  

 Examples:  "%hhd" "%hhu".   

  ll    Read an integer as a  long long  or unsigned  long long (C99) .  

 Examples:  "%lld" "%llu".   

  h ,  l , or  L     "%hd"  and  "%hi"  indicate that the value will be stored in a short  int .  "%ho" , 
 "%hx" , and  "%hu"  indicate that the value will be stored in an  unsigned short 
int .  "%ld"  and  "%li"  indicate that the value will be stored in a  long .  "%lo" , 
 "%lx" , and  "%lu"  indicate that the value will be stored in  unsigned long . 
 "%le" ,  "%lf" , and  "%lg"  indicate that the value will be stored in type  double . 
Using  L  instead of  l  with  e ,  f , and  g  indicates that the value will be stored in 
type  long double . In the absence of these modifiers,  d ,  i ,  o , and  x  indicate 
type  int , and  e ,  f , and  g  indicate  type  float .  
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  Modifier     Meaning   

  j    When followed by an integer specifier, indicates using the  intmax_t  or 
 uintmax_t  type (C99).  

 Examples:  "%jd" "%ju".   

  z    When followed by an integer specifier, indicates using the type returned by 
 sizeof  (C99).  

 Examples:  "%zd" "%zo".   

  t    When followed by an integer specifier, indicates using the type used to represent 
the difference between two pointers (C99).  

 Examples:  "%td" "%tx".   

 As you can see, using conversion specifiers can be involved, and these tables have omitted 
some of the features. The omitted features primarily facilitate reading selected data from highly 
formatted sources, such as punched cards or other data records. Because this book uses  scanf()  
primarily as a convenient means for feeding data to a program interactively, it won’t discuss 
the more esoteric features.  

  The  scanf()  View of Input  

 Let’s look in more detail at how  scanf()  reads input. Suppose you use a  %d  specifier to read 
an integer. The  scanf()  function begins reading input a character at a time. It skips over 
whitespace characters (spaces, tabs, and newlines) until it finds a non-whitespace charac-
ter. Because it is attempting to read an integer,  scanf()  expects to find a digit character or, 
perhaps, a sign ( +  or  - ). If it finds a digit or a sign, it saves that character and then reads the 
next character. If that is a digit, it saves the digit and reads the next character.  scanf()  contin-
ues reading and saving characters  until it encounters a nondigit. It then concludes that it has 
reached the end of the integer.  scanf()  places the nondigit back into the input. This means 
that the next time the program goes to read input, it starts at the previously rejected, nondigit 
character. Finally,  scanf()  computes the numerical value corresponding to the digits (and 
possible sign) it read and places that value in the specified variable.  

 If you use a field width,  scanf()  halts at the field end or at the first whitespace, whichever 
comes first.  

 What if the first non-whitespace character is, say, an  A  instead of a digit? Then  scanf()  
stops right there and places the  A  (or whatever) back in the input. No value is assigned to the 
specified variable, and the next time the program reads input, it starts at the  A  again. If your 
program has only  %d  specifiers,  scanf()  will never get past that  A . Also, if you use a  scanf()  
statement with several specifiers, C requires the function to stop reading input at the first 
failure.  
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 Reading input using the other numeric specifiers works much the same as the  %d  case. The 
main difference is that  scanf()  may recognize more characters as being part of the number. 
For instance, the  %x  specifier requires that  scanf()  recognize the hexadecimal digits a–f and 
A–F. Floating-point specifiers require  scanf()  to recognize decimal points, e-notation, and the 
new p-notation.  

 If you use an  %s  specifier, any character other than whitespace is acceptable, so  scanf()  skips 
whitespace to the first non-whitespace character and then saves up non-whitespace characters 
until hitting whitespace again. This means that  %s  results in  scanf()  reading a single word—
that is, a string with no whitespace in it. If you use a field width,  scanf()  stops at the end of 
the field or at the first whitespace, whichever comes first. You can’t use the field width to make 
 scanf()  read more than one word for one  %s  specifier. A final point: When  scanf()  places 
the string in the designated array, it adds the terminating  '\0'  to  make the array contents a C 
string.  

 If you use a  %c  specifier, all input characters are fair game. If the next input character is a 
space or a newline, a space or a newline is assigned to the indicated variable; whitespace is not 
skipped.  

 Actually,  scanf()  is not the most commonly used input function in C. It is featured here 
because of its versatility (it can read all the different data types), but C has several other input 
functions, such as  getchar()  and  fgets() , that are better suited for specific tasks, such as 
reading single characters or reading strings containing spaces. We will cover some of these 
functions in  Chapter   7   , “C Control Statements: Branching and Jumps”;  Chapter   11   , “Character 
Strings and String Functions”; and  Chapter   13   , “File Input/Output.” In the meantime, if you 
need an integer, decimal fraction, a character, or a string, you can  use  scanf() .   

  Regular Characters in the Format String  

 The  scanf()  function does enable you to place ordinary characters in the format string. 
Ordinary characters other than the space character must be matched exactly by the input 
string. For example, suppose you accidentally place a comma between two specifiers:  

  scanf("%d,%d", &n, &m);   

 The  scanf()  function interprets this to mean that you will type a number, type a comma, and 
then type a second number. That is, you would have to enter two integers as follows:  

  88,121   

 Because the comma comes immediately after the  %d  in the format string, you would have to 
type it immediately after the  88 . However, because  scanf()  skips over whitespace preceding an 
integer, you could type a space or newline after the comma when entering the input. That is,  

  88, 121   

 and  

  88,

  121   
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 also would be accepted.  

 A space in the format string means to skip over any whitespace before the next input item. For 
instance, the statement  

  scanf("%d ,%d", &n, &m);   

 would accept any of the following input lines:  

  88,121

  88  ,121

  88 ,  121   

 Note that the concept of “any whitespace” includes the special cases of no whitespace.  

 Except for  %c , the specifiers automatically skip over whitespace preceding an input value, so 
 scanf("%d%d", &n, &m)  behaves the same as  scanf("%d %d", &n, &m) . For  %c , adding a 
space character to the format string does make a difference. For example, if  %c  is preceded by 
a space in the format string,  scanf()  does skip to the first non-whitespace character. That is, 
the command  scanf("%c", &ch)  reads the first character encountered in input, and  scanf(" 
%c", &ch)  reads the first non-whitespace character encountered.   

  The  scanf()  Return Value  

 The  scanf()  function returns the number of items that it successfully reads. If it reads no 
items, which happens if you type a nonnumeric string when it expects a number,  scanf()  
returns the value  0 . It returns  EOF  when it detects the condition known as “end of file.” ( EOF  is 
a special value defined in the  stdio.h  file. Typically, a  #define  directive gives  EOF  the value 
 –1 .) We’ll discuss end of file in  Chapter   6   , “C Control Statements: Looping,” and make use of 
 scanf() ’s return value later in the book. After you learn about  if  statements and  while  state-
ments, you can use the  scanf()  return value to detect and handle mismatched  input.    

  The  *  Modifier with  printf()  and  scanf()   

 Both  printf()  and  scanf()  can use the  *  modifier to modify the meaning of a specifier, but 
they do so in dissimilar fashions. First, let’s see what the  *  modifier can do for  printf() .  

 Suppose that you don’t want to commit yourself to a field width in advance but rather you 
want the program to specify it. You can do this by using  *  instead of a number for the field 
width, but you also have to add an argument to tell what the field width should be. That is, 
if you have the conversion specifier  %*d , the argument list should include a value for  *   and  a 
value for  d . The technique also can be used with floating-point values to specify the precision 
as well as the field width.  Listing   4.16    is a short example showing how  this works.  

  Listing 4.16   The  varwid.c  Program  

 /* varwid.c -- uses variable-width output field */

  #include <stdio.h>
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  int main(void)

  {

      unsigned width, precision;

      int number = 256;

      double weight = 242.5;

  

      printf("Enter a field width:\n");

      scanf("%d", &width);

      printf("The number is :%*d:\n", width, number);

      printf("Now enter a width and a precision:\n");

      scanf("%d %d", &width, &precision);

      printf("Weight = %*.*f\n", width, precision, weight);

      printf("Done!\n");

  

      return 0;

  }   

 The variable  width  provides the  field width , and  number  is the number to be printed. 
Because the  *  precedes the  d  in the specifier,  width  comes before  number  in  printf() ’s argu-
ment list. Similarly,  width  and  precision  provide the formatting information for printing 
 weight . Here is a sample run:  

  Enter a field width:

   6 
  The number is :   256:

  Now enter a width and a precision:

   8 3 
  Weight =  242.500

  Done!   

 Here, the reply to the first question was  6 , so  6  was the field width used. Similarly, the second 
reply produced a width of  8  with  3  digits to the right of the decimal. More generally, a program 
could decide on values for these variables after looking at the value of  weight .  

 The  *  serves quite a different purpose for  scanf() . When placed between the  %  and the speci-
fier letter, it causes that function to skip over corresponding input.  Listing   4.17    provides an 
example.  

  Listing 4.17   The  skip2.c  Program  

 /* skiptwo.c -- skips over first two integers of input */

  #include <stdio.h>

  int main(void)

  {

      int n;

  

      printf("Please enter three integers:\n");
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      scanf("%*d %*d %d", &n);

      printf("The last integer was %d\n", n);

  

      return 0;

  }   

 The  scanf()  instruction in  Listing   4.17    says, “Skip two integers and copy the third into  n .” 
Here is a sample run:  

  Please enter three integers:

   2013 2014 2015 
  The last integer was 2015   

 This skipping facility is useful if, for example, a program needs to read a particular column of a 
file that has data arranged in uniform columns.   

  Usage Tips for  printf()   
 Specifying fixed field widths is useful when you want to print columns of data. Because the 
default field width is just the width of the number, the repeated use of, say,  

  printf("%d %d %d\n", val1, val2, val3);   

 produces ragged columns if the numbers in a column have different sizes. For example, the 
output could look like the following:  

  12 234 1222

  4 5 23

  22334 2322 10001   

 (This assumes that the value of the variables has been changed between  print  statements.)  

 The output can be cleaned up by using a sufficiently large fixed field width. For example, using  

  printf("%9d %9d %9d\n", val1, val2, val3);   

 yields the following:  

     12        234       1222

      4          5         23

  22334       2322      10001   

 Leaving a blank between one conversion specification and the next ensures that one number 
never runs into the next, even if it overflows its own field. This is so because the regular charac-
ters in the control string, including spaces, are printed.  

 On the other hand, if a number is to be embedded in a phrase, it is often convenient to specify 
a field as small or smaller than the expected number width. This makes the number fit in 
without unnecessary blanks. For example,  
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  printf("Count Beppo ran %.2f miles in 3 hours.\n", distance);   

 might produce  

  Count Beppo ran 10.22 miles in 3 hours.   

 Changing the conversion specification to  %10.2f  would give you the following:    

  Count Beppo ran      10.22 miles in 3 hours.   

  Locale Choices  

 The United States and many other parts of the world use a period to separate the integer part 
of a decimal value from the fractional part, as in 3.14159. But many other parts of the world 
use a comma instead, as in 3,14159. You may have noticed that the  printf()  and  scanf()  
specifiers don’t seem to offer the comma format. But C hasn’t ignored the rest of the world. 
As outlined in  Appendix   B   , Section V, “The Standard ANSI C Library with C99 Additions,” C sup-
ports the concept of a  locale . This gives a C program the option of choosing a particular  locale. 
For example, it might specify a Netherlands locale, and  printf()  and  scanf()  would use 
the local convention (a comma, in this case) when displaying and reading floating-point values. 
Also, once you specified that environment, you would use the comma convention for numbers 
appearing in your code:  

  double pi = 3,14159;  // Netherlands locale   

 The C standard requires but two locales:  "C"  and  "" . By default, programs use the  "C"  locale 
which, basically, is U.S. usage. The  ""  locale stands for a local locale in use on your system. 
In principle, it could be the same as the  "C"  locale. In practice, operating systems such as 
Unix, Linux, and Windows offer long lists of locale choices. However, they might not offer the 
same lists.     

  Key Concepts  

 The C  char  type represents a single character. To represent a sequence of characters, C uses 
the character string. One form of string is the character constant, in which the characters are 
enclosed in double quotation marks;  "Good luck, my friend"  is an example. You can store 
a string in a character array, which consists of adjacent bytes in memory. Character strings, 
whether expressed as a character constant or stored in a character array, are terminated by a 
hidden character called the  null  character.  

 It’s a good idea to represent numerical constants in a program symbolically, either by using 
 #define  or the keyword  const . Symbolic constants make a program more readable and easier 
to maintain and modify.  

 The standard C input and output functions  scanf()  and  printf()  use a system in which 
you have to match type specifiers in the first argument to values in the subsequent arguments. 
Matching, say, an  int  specifier such as  %d  to a  float  value produces odd results. You have to 
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exert care to match the number and type of specifiers to the rest of the function arguments. For 
 scanf() , remember to prefix variables’ names with the address operator ( & ).  

 Whitespace characters (tabs, spaces, and newlines) play a critical role in how  scanf()  views 
input. Except when in the  %c  mode (which reads just the next character),  scanf()  skips over 
whitespace characters to the first non-whitespace character when reading input. It then keeps 
reading characters either until encountering whitespace or until encountering a character that 
doesn’t fit the type being read. Let’s consider what happens if we feed the identical input line 
to several different  scanf()  input modes. Start with the following input line:  

  -13.45e12#  0   

 First, suppose we use the  %d  mode;  scanf()  would read the three characters ( −13 ) and stop 
at the period, leaving the period as the next input character.  scanf()  then would convert 
the character sequence  −13  into the corresponding integer value and store that value in the 
destination  int  variable. Next, reading the same line in the  %f  mode,  scanf()  would read the 
 −13.45E12  characters and stop at the  #  symbol, leaving it as the next input character. It then 
would convert the character sequence  −13.45E12  into the corresponding floating-point value 
and store that value in the destination  float  variable. Reading the same line in the  %s  mode, 
 scanf()  would read  −13.45E12# , stopping at  the space, leaving it as the next input character. 
It then would store the character codes for these 10 characters into the destination character 
array, appending a null character at the end. Finally, reading the same line using the  %c  speci-
fier,  scanf()  would read and store the first character, in this case a space.   

  Summary  

 A string is a series of characters treated as a unit. In C, strings are represented by a series of 
characters terminated by the null character, which is the character whose ASCII code is 0. 
Strings can be stored in character arrays. An array is a series of items, or elements, all of the 
same type. To declare an array called  name  that has 30 elements of type  char , do the following:  

  char name[30];   

 Be sure to allot a number of elements sufficient to hold the entire string, including the null 
character.  

 String constants are represented by enclosing the string in double quotes:  "This is an 
example of a string" .  

 The  strlen()  function (declared in the  string.h  header file) can be used to find the length of 
a string (not counting the terminating null character). The  scanf()  function, when used with 
the  %s  specifier, can be used to read in single-word strings.  

 The C preprocessor searches a source code program for preprocessor directives, which begin 
with the  #  symbol, and acts upon them before the program is compiled. The  #include  direc-
tive causes the processor to add the contents of another file to your file at the location of 
the directive. The  #define  directive lets you establish manifest constants—that is, symbolic 
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representations for constants. The  limits.h  and  float.h  header files use  #define  to define a 
set of constants representing various properties of integer and floating-point types. You also can 
use the  const  modifier to create symbolic constants.  

 The  printf()  and  scanf()  functions provide versatile support for input and output. Each uses 
a control string containing embedded conversion specifiers to indicate the number and type 
of data items to be read or printed. Also, you can use the conversion specifiers to control the 
appearance of the output: field widths, decimal places, and placement within a field.    

     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    Run  Listing   4.1    again, but this time give your first and last name when it asks you for 
your first name. What happens? Why?    

   2.    Assuming that each of the following examples is part of a complete program, what will 
each one print?  

    a.   

  printf("He sold the painting for $%2.2f.\n", 2.345e2);     

   b.   

  printf("%c%c%c\n", 'H', 105, '\41');     

   c.   

  #define Q "His Hamlet was funny without being vulgar."

     printf("%s\nhas %d characters.\n", Q, strlen(Q));     

   d.   

  printf("Is %2.2e the same as %2.2f?\n", 1201.0, 1201.0);        

   3.    In Question 2c, what changes could you make so that string  Q  is printed out enclosed in 
double quotation marks?    

   4.    It’s find the error time!  

  define B booboo

  define X 10

  main(int)

  {

     int age;

     char name;
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     printf("Please enter your first name.");

     scanf("%s", name);

     printf("All right, %c, what's your age?\n", name);

     scanf("%f", age);

     xp = age + X;

     printf("That's a %s! You must be at least %d.\n", B, xp);

     rerun 0;

  }     

   5.    Suppose a program starts as follows:  

  #define BOOK "War and Peace"

  int main(void)

  {

     float cost =12.99;

     float percent = 80.0;   

 Construct a  printf()  statement that uses  BOOK ,  cost , and  percent  to print the 
following:  

  This copy of "War and Peace" sells for $12.99.

  That is 80% of list.     

   6.    What conversion specification would you use to print each of the following?  

    a.   A decimal integer with a field width equal to the number of digits   

   b.   A hexadecimal integer in the form 8A in a field width of 4   

   c.   A floating-point number in the form 232.346 with a field width of 10   

   d.   A floating-point number in the form 2.33e+002 with a field width of 12   

   e.   A string left-justified in a field of width 30      

   7.    Which conversion specification would you use to print each of the following?  

    a.   An  unsigned long  integer in a field width of 15   

   b.   A hexadecimal integer in the form 0x8a in a field width of 4   

   c.   A floating-point number in the form 2.33E+02 that is left-justified in a field width 
of 12   

   d.   A floating-point number in the form +232.346 in a field width of 10   

   e.   The first eight characters of a string in a field eight characters wide      
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   8.    What conversion specification would you use to print each of the following?  

    a.   A decimal integer having a minimum of four digits in a field width of 6   

   b.   An octal integer in a field whose width will be given in the argument list   

   c.   A character in a field width of 2   

   d.   A floating-point number in the form +3.13 in a field width equal to the number of 
characters in the number   

   e.   The first five characters in a string left-justified in a field of width 7      

   9.    For each of the following input lines, provide a  scanf()  statement to read it. Also 
declare any variables or arrays used in the statement.  

    a.   101   

   b.   22.32 8.34E−09   

   c.   linguini   

   d.   catch 22   

   e.   catch 22 (but skip over catch)      

   10.    What is whitespace?    

   11.    What’s wrong with the following statement and how can you fix it?  

  printf("The double type is %z bytes..\n", sizeof (double));     

   12.    Suppose that you would rather use parentheses than braces in your programs. How well 
would the following work?  

  #define ( {

  #define ) }       

  Programming Exercises  

    1.    Write a program that asks for your first name, your last name, and then prints the names 
in the format  last, first .    

   2.    Write a program that requests your first name and does the following with it:  

    a.   Prints it enclosed in double quotation marks   

   b.   Prints it in a field 20 characters wide, with the whole field in quotes and the name 
at the right end of the field   
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   c.   Prints it at the left end of a field 20 characters wide, with the whole field enclosed 
in quotes   

   d.   Prints it in a field three characters wider than the name      

   3.    Write a program that reads in a floating-point number and prints it first in decimal-point 
notation and then in exponential notation. Have the output use the following formats 
(the number of digits shown in the exponent may be different for your system):  

    a.   The input is  21.3  or  2.1e+001 .   

   b.   The input is  +21.290  or  2.129E+001 .      

   4.    Write a program that requests your height in inches and your name, and then displays 
the information in the following form:  

  Dabney, you are 6.208 feet tall   

 Use type  float , and use  /  for division. If you prefer, request the height in centimeters 
and display it in meters.    

   5.    Write a program that requests the download speed in megabits per second (Mbs) and 
the size of a file in megabytes (MB). The program should calculate the download time 
for the file. Note that in this context one byte is eight bits. Use type  float , and use  /  
for division. The program should report all three values (download speed, file size, and 
download time) showing two digits to the right of the decimal point, as in the following:  

  At 18.12 megabits per second, a file of 2.20 megabytes

  downloads in 0.97 seconds.     

   6.    Write a program that requests the user’s first name and then the user’s last name. Have 
it print the entered names on one line and the number of letters in each name on the 
following line. Align each letter count with the end of the corresponding name, as in the 
following:  

  Melissa Honeybee

        7        8   

 Next, have it print the same information, but with the counts aligned with the beginning 
of each name.  

  Melissa Honeybee

  7       8     

   7.    Write a program that sets a type  double  variable to 1.0/3.0 and a type  float  variable 
to 1.0/3.0. Display each result three times—once showing four digits to the right of the 
decimal, once showing 12 digits to the right of the decimal, and once showing 16 digits 
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to the right of the decimal. Also have the program include  float.h  and display the 
values of  FLT_DIG  and  DBL_DIG . Are the displayed values of 1.0/3.0 consistent with these 
values?    

   8.    Write a program that asks the user to enter the number of miles traveled and the number 
of gallons of gasoline consumed. It should then calculate and display the miles-per-gallon 
value, showing one place to the right of the decimal. Next, using the fact that one gallon 
is about 3.785 liters and one mile is about 1.609 kilometers, it should convert the mile-
per-gallon value to a liters-per-100-km value, the usual European way of expressing fuel 
consumption, and display the result, showing one place to the right of the decimal. Note 
that the U. S. scheme measures the distance traveled per  amount of fuel (higher is better), 
whereas the European scheme measures the amount of fuel per distance (lower is better). 
Use symbolic constants (using  const  or  #define ) for the two conversion factors.        
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 Operators, Expressions, and 

Statements  

    You will learn about the following in this chapter:  

    ■   Keyword:  

  while ,  typedef    

   ■   Operators:  

  = - * /   

  % ++ -- (type)    

   ■   C’s multitudinous operators, including those used for common arithmetic operations   

   ■   Operator precedence and the meanings of the terms  statement  and  expression    

   ■   The handy  while  loop   

   ■   Compound statements, automatic type conversions, and type casts   

   ■   How to write functions that use arguments    

 Now that you’ve looked at ways to represent data, let’s explore ways to process data. C offers a 
wealth of operations for that purpose. You can do arithmetic, compare values, modify variables, 
combine relationships logically, and more. Let’s start with basic arithmetic—addition, subtrac-
tion, multiplication, and division.  

 Another aspect of processing data is organizing your programs so that they take the right steps 
in the right order. C has several language features to help you with that task. One of these 
features is the loop, and in this chapter you get a first look at it. A loop enables you to repeat 
actions and makes your programs more interesting and powerful.   
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     Introducing Loops  

  Listing   5.1    shows a sample program that does a little arithmetic to calculate the length in 
inches of a foot that wears a U. S. size 9 (men’s) shoe. To enhance your appreciation of loops, 
this first version illustrates the limitations of programming without using a loop.  

  Listing 5.1   The  shoes1.   c   Program  

 /* shoes1.c -- converts a shoe size to inches */

  #include <stdio.h>

  #define ADJUST 7.31              // one kind of symbolic constant

  int main(void)

  {

      const double SCALE = 0.333;  // another kind of symbolic constant

      double shoe, foot;

  

      shoe = 9.0;

      foot = SCALE * shoe + ADJUST;

      printf("Shoe size (men's)    foot length\n");

      printf("%10.1f %15.2f inches\n", shoe, foot);

  

      return 0;

  }   

 Here is the output:  

  Shoe size (men's)    foot length

         9.0           10.31 inches   

 The program demonstrates two ways to create symbolic constants, and it uses multiplication 
and addition. It takes your shoe size (if you wear a size 9) and tells you how long your foot is in 
inches. “But,” you say, “I could solve this problem by hand (or with a calculator) more quickly 
than you could type the program.” That’s a good point. A one-shot program that does just one 
shoe size is a waste of time and effort. You could make the program more useful by writing it as 
an interactive program, but that still barely taps the potential of a  computer.  

 What’s needed is some way to have a computer do repetitive calculations for a succession of 
shoe sizes. After all, that’s one of the main reasons for using a computer to do arithmetic. C 
offers several methods for doing repetitive calculations, and we will outline one here. This 
method, called a   while  loop , will enable you to make a more interesting exploration of opera-
tors.  Listing   5.2    presents the improved shoe-sizing program.  

  Listing 5.2   The  shoes2.c  Program  

 /* shoes2.c -- calculates foot lengths for several sizes */

  #include <stdio.h>

  #define ADJUST 7.31              // one kind of symbolic constant
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  int main(void)

  {

      const double SCALE = 0.333;  // another kind of symbolic constant

      double shoe, foot;

  

      printf("Shoe size (men's)    foot length\n");

      shoe = 3.0;

      while (shoe < 18.5)      /* starting the while loop */

      {                        /* start of block          */

          foot = SCALE * shoe + ADJUST;

          printf("%10.1f %15.2f inches\n", shoe, foot);

          shoe = shoe + 1.0;

      }                        /* end of block            */

      printf("If the shoe fits, wear it.\n");

  

      return 0;

  }   

 Here is a condensed version of  shoes2.c ’s output:  

  Shoe size (men's)    foot length

         3.0            8.31 inches

         4.0            8.64 inches

         5.0            8.97 inches

         6.0            9.31 inches

  ...

        16.0           12.64 inches

        17.0           12.97 inches

        18.0           13.30 inches

  If the shoe fits, wear it.   

 (Those of you with a serious interest in shoe sizes should be aware the program makes the unre-
alistic assumption that there is a rational and uniform system of shoe sizes. Real-world sizing 
may be different.)  

 Here is how the  while  loop works. When the program first reaches the  while  statement, it 
checks to see whether the condition within parentheses is true. In this case, the expression is as 
follows:  

  shoe < 18.5   

 The  <  symbol means “is less than.” The variable  shoe  was initialized to  3.0 , which is certainly 
less than  18.5 . Therefore, the condition is true and the program proceeds to the next state-
ment, which converts the size to inches. Then it prints the results. The next statement increases 
 shoe  by 1.0, making it 4.0:  

  shoe = shoe + 1.0;   
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 At this point, the program returns to the  while  portion to check the condition. Why at this 
point? Because the next line is a closing brace ( } ), and the code uses a set of braces ( {} ) to mark 
the extent of the  while  loop. The statements between the two braces are the ones that are 
repeated. The section of program between and including the braces is called a  block . Now back 
to the program. The value  4  is less than  18.5 , so the whole cycle of embraced commands (the 
block) following the  while  is repeated. (In computerese, the program is said to “loop” through 
these  statements.) This continues until  shoe  reaches a value of  19.0 . Now the condition  

  shoe < 18.5   

 becomes false because  19.0  is not less than  18.5 . When this happens, control passes to the 
first statement following the  while  loop. In this case, that is the final  printf()  statement.  

 You can easily modify this program to do other conversions. For example, change  SCALE  to  1.8  
and  ADJUST  to  32.0 , and you have a program that converts Centigrade to Fahrenheit. Change 
 SCALE  to  0.6214  and  ADJUST  to  0 , and you convert kilometers to miles. If you make these 
changes, you should change the printed messages, too, to prevent confusion.  

 The  while  loop provides a convenient, flexible means of controlling a program. Now let’s turn 
to the fundamental operators that you can use in your programs.   

  Fundamental Operators  

 C uses  operators  to represent arithmetic operations. For example, the  +  operator causes the two 
values flanking it to be added together. If the term  operator  seems odd to you, please keep in 
mind that those things had to be called something. “Operator” does seem to be a better choice 
than, say, “those things” or “arithmetical transactors.” Now take a look at the operators used 
for basic arithmetic:  = ,  + ,  - ,  * , and  / . (C does not have an exponentiating operator. The stan-
dard C math library, however, provides the  pow()  function for that purpose. For example, 
 pow(3.5, 2.2)  returns 3.5 raised to the power of  2.2.)  

  Assignment Operator:  =   

 In C, the equal sign does not mean “equals.” Rather, it is a value-assigning operator. The 
statement  

  bmw = 2002;   

 assigns the value  2002  to the variable named  bmw . That is, the item to the left of the  =  sign is 
the  name  of a variable, and the item on the right is the  value  assigned to the variable. The  =  
symbol is called the  assignment operator . Again, don’t think of the line as saying,  "bmw  equals 
 2002 .” Instead, read it as “assign the value  2002  to the variable  bmw .” The action goes from 
right to left for this operator.  

 Perhaps this distinction between the name of a variable and the value of a variable seems like 
hair-splitting, but consider the following common type of computer statement:  

  i = i + 1;   
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 As mathematics, this statement makes no sense. If you add 1 to a finite number, the result isn’t 
“equal to” the number you started with, but as a computer assignment statement, it is perfectly 
reasonable. It means “Find the value of the variable named  i , add  1  to that value, and then 
assign this new value to the variable  i"  (see  Figure   5.1   ).  

 

i i

22

i=i+1;

i=22+1;

i=23;

23

 Figure 5.1   The statement  i = i + 1; .         

 A statement such as  

  2002 = bmw;   

 makes no sense in C (and, indeed, is invalid) because  2002  is what C calls an  rvalue , in this 
case, just a literal constant. You can’t assign a value to a constant; it already  is  its value. When 
you sit down at the keyboard, therefore, remember that the item to the left of the  =  sign must 
be the name of a variable. Actually, the left side must refer to a storage location. The simplest 
way is to use the name of a variable, but, as you will see later, a “pointer” can be used to point 
to a location. More generally, C  uses the term  modifiable lvalue  to label those entities to which 
you can assign values. “Modifiable lvalue” is not, perhaps, the most intuitive phrase you’ve 
encountered, so let’s look at some definitions.  

  Some Terminology: Data Objects, Lvalues, Rvalues, and Operands  

 Consider an assignment statement. Its purpose is to store a value at a memory location.  Data 
object  is a general term for a region of data storage that can be used to hold values. The C 
standard uses just the term  object  for this concept. One way to identify an object is by using 
the name of a variable. But, as you will eventually learn, there are other was to identify an 
object. For example, you could specify an element of an array, a member of a structure, or use 
a pointer expression that involves the address of the object. C uses  the term  lvalue  to mean any 
such name or expression that identifies a particular data object. Object refers to the actual data 
storage, but an lvalue is a label used to identify, or locate, that storage.  

 In the early days of C, saying something was an lvalue meant two things:  

    1.   It specified an object, hence referred to an address in memory.   

   2.   It could be used on the left side of an assignment operator, hence the “l” in lvalue.    

 But then C added the  const  modifier. This allows you to create an object, but one whose value 
cannot be changed. So a  const  identifier satisfies the first of the two properties above, but not 
the second. At this point the standard continued to use lvalue for any expression identifying an 
object, even though some lvalues could not be used on the left side of an assignment operator. 
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And C added the term  modifiable lvalue  to identify an object whose value can be changed. 
Therefore, the left side of an assignment operator should be a modifiable lvalue.  

 The current standard suggests that  object locator value  might be a better term.  

 The term  rvalue  refers to quantities that can be assigned to modifiable lvalues but which are not 
themselves lvalues For instance, consider the following statement:  

  bmw = 2002;   

 Here,  bmw  is a modifiable lvalue, and  2002  is an rvalue. As you probably guessed, the  r  in  rvalue  
comes from  right . Rvalues can be constants, variables, or any other expression that yields a 
value, such as a function call. Indeed, the current standard uses  value of an expression  instead of 
 rvalue .  

 Let’s look at a short example:  

  int ex;

  int why;

  int zee;

  const int TWO = 2;

  why = 42;

  zee = why;

  ex = TWO * (why + zee);   

 Here  ex ,  why , and  zee  all are modifiable lvalues (or object locator values). They can be used 
either on the left side or the right side of an assignment operator.  TWO  is a non-modifiable 
lvalue; it can only be used on the right side. (In the context of initializing  TWO  to  2 , the  =  
operator represents initialization, not assignment, so the rule isn’t violated.) Meanwhile,  42  is 
an rvalue; it doesn’t refer to some specific memory location. Also, while  why  and  zee  are modi-
fiable lvalues, the expression  (why + zee)  is an rvalue; it doesn’t represent a specific memory 
location and you can’t assign to it. It’s just  a temporary value the program calculates, and then 
discards when it’s finished with it.  

 As long as you are learning the names of things, the proper term for what we have called an 
“item” (as in “the item to the left of the  =" ) is  operand . Operands are what operators operate 
on. For example, you can describe eating a hamburger as applying the “eat” operator to the 
“hamburger” operand; similarly, you can say that the left operand of the  =  operator shall be a 
modifiable lvalue.  

 The basic C assignment operator is a little flashier than most. Try the short program in  Listing 
  5.3   .  

  Listing 5.3   The  golf.c  Program  

 /* golf.c -- golf tournament scorecard */

  #include <stdio.h>

  int main(void)

  {
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      int jane, tarzan, cheeta;

  

      cheeta = tarzan = jane = 68;

      printf("                  cheeta   tarzan    jane\n");

      printf("First round score %4d %8d %8d\n",cheeta,tarzan,jane);

  

      return 0;

  }   

 Many languages would balk at the triple assignment made in this program, but C accepts 
it routinely. The assignments are made right to left: First,  jane  gets the value  68 , and then 
 tarzan  does, and finally  cheeta  does. Therefore, the output is as follows:  

                    cheeta   tarzan    jane

  First round score   68       68       68     

  Addition Operator:  +   

 The  addition operator  causes the two values on either side of it to be added together. For 
example, the statement  

  printf("%d", 4 + 20);   

 causes the number  24  to be printed, not the expression  

  4 + 20.   

 The values (operands) to be added can be variables as well as constants. Therefore, the 
statement  

  income = salary + bribes;   

 causes the computer to look up the values of the two variables on the right, add them, and 
then assign this total to the variable  income .  

 As a reminder, note that  income ,  salary , and  bribes  all are modifiable lvalues because each 
identifies a data object that could be assigned a value, but the expression  salary + bribes  is 
an rvalue, a calculated value not identified with a particular memory location.   

  Subtraction Operator:  –   

 The  subtraction operator  causes the number after the  –  sign to be subtracted from the number 
before the sign. The statement  

  takehome = 224.00 – 24.00;   

 assigns the value  200.0  to  takehome .  
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 The  +  and  –  operators are termed  binary , or  dyadic,  operators, meaning that they require  two  
operands.   

  Sign Operators:  –  and  +   

 The minus sign can also be used to indicate or to change the algebraic sign of a value. For 
instance, the sequence  

  rocky = –12;

  smokey = –rocky;   

 gives  smokey  the value  12 .  

 When the minus sign is used in this way, it is called a  unary operator , meaning that it takes just 
one operand (see  Figure   5.2   ).  

 The C90 standard adds a unary  +  operator to C. It doesn’t alter the value or sign of its operand; 
it just enables you to use statements such as  

  dozen = +12;   

 without getting a compiler complaint. Formerly, this construction was not allowed.  

 

value is 24

two operands

36–12

binary

–16

unary

–(12–20)

both

value is -16

value is 8

two operands

one operand

one operand

 Figure 5.2   Unary and binary operators.          



ptg11524036

151Fundamental Operators

  Multiplication Operator:  *   

 Multiplication is indicated by the  *  symbol. The statement  

  cm = 2.54 * inch;   

 multiplies the variable  inch  by  2.54  and assigns the answer to  cm .  

 By any chance, do you want a table of squares? C doesn’t have a squaring function, but, as 
shown in  Listing   5.4   , you can use multiplication to calculate squares.  

  Listing 5.4   The  squares.   c   Program  

 /* squares.c -- produces a table of first 20 squares */

  #include <stdio.h>

  int main(void)

  {

      int num = 1;

  

      while (num < 21)

      {

          printf("%4d %6d\n", num, num * num);

          num = num + 1;

      }

  

      return 0;

  }   

 This program prints the first 20 integers and their squares, as you can verify for yourself. Let’s 
look at a more interesting example.  

  Exponential Growth  

 You have probably heard the story of the powerful ruler who seeks to reward a scholar who 
has done him a great service. When the scholar is asked what he would like, he points to a 
chessboard and says, just one grain of wheat on the first square, two on the second, four on the 
third, eight on the next, and so on. The ruler, lacking mathematical erudition, is astounded at 
the modesty of this request, for he had been prepared to offer great riches. The joke, of course, 
is on the ruler, as the program in  Listing   5.5    shows. It calculates  how many grains go on each 
square and keeps a running total. Because you might not be up to date on wheat crops, the 
program also compares the running total to a very rough estimate of the annual world wheat 
crop.  

  Listing 5.5   The  wheat.c  Program  

 /* wheat.c -- exponential growth */

  #include <stdio.h>

  #define SQUARES 64             // squares on a checkerboard
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  int main(void)

  {

      const double CROP = 2E16;  // world wheat production in wheat grains

      double current, total;

      int count = 1;

  

      printf("square     grains       total     ");

      printf("fraction of \n");

      printf("           added        grains    ");

      printf("world total\n");

      total = current = 1.0; /* start with one grain   */

      printf("%4d %13.2e %12.2e %12.2e\n", count, current,

             total, total/CROP);

      while (count < SQUARES)

      {

          count = count + 1;

          current = 2.0 * current;

          /* double grains on next square */

          total = total + current;     /* update total */

          printf("%4d %13.2e %12.2e  %12.2e\n", count, current,

                 total, total/CROP);

      }

      printf("That's all.\n");

  

      return 0;

  }   

 The output begins innocuously enough:  

  square     grains       total     fraction of

             added        grains    world total

     1      1.00e+00     1.00e+00     5.00e-17

     2      2.00e+00     3.00e+00     1.50e-16

     3      4.00e+00     7.00e+00     3.50e-16

     4      8.00e+00     1.50e+01     7.50e-16

     5      1.60e+01     3.10e+01     1.55e-15

     6      3.20e+01     6.30e+01     3.15e-15

     7      6.40e+01     1.27e+02     6.35e-15

     8      1.28e+02     2.55e+02     1.27e-14

     9      2.56e+02     5.11e+02     2.55e-14

    10      5.12e+02     1.02e+03     5.12e-14   

 After 10 squares, the scholar has acquired just a little over a thousand grains of wheat, but look 
what has happened by square 55!  

  55      1.80e+16     3.60e+16     1.80e+00   
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 The haul has exceeded the total world annual output! If you want to see what happens by the 
64th square, you will have to run the program yourself.  

 This example illustrates the phenomenon of exponential growth. The world population growth 
and our use of energy resources have followed the same pattern.    

  Division Operator:  /   

 C uses the  /  symbol to represent division. The value to the left of the  /  is divided by the value 
to the right. For example, the following gives  four  the value of  4.0 :  

  four = 12.0/3.0;   

 Division works differently for integer types than it does for floating types. Floating-type divi-
sion gives a floating-point answer, but integer division yields an integer answer. An integer 
can’t have a fractional part, which makes dividing 5 by 3 awkward, because the answer does 
have a fractional part. In C, any fraction resulting from integer division is discarded. This 
process is called  truncation .  

 Try the program in  Listing   5.6    to see how truncation works and how integer division differs 
from floating-point division.  

  Listing 5.6   The  divide.c  Program  

 /* divide.c -- divisions we have known */

  #include <stdio.h>

  int main(void)

  {

       printf("integer division:  5/4   is %d \n", 5/4);

       printf("integer division:  6/3   is %d \n", 6/3);

       printf("integer division:  7/4   is %d \n", 7/4);

       printf("floating division: 7./4. is %1.2f \n", 7./4.);

       printf("mixed division:    7./4  is %1.2f \n", 7./4);

  

       return 0;

  }   

  Listing   5.6    includes a case of “mixed types” by having a floating-point value divided by an 
integer. C is a more forgiving language than some and will let you get away with this, but 
normally you should avoid mixing types. Now for the results:  

  integer division:  5/4   is 1

  integer division:  6/3   is 2

  integer division:  7/4   is 1

  floating division: 7./4. is 1.75

  mixed division:    7./4  is 1.75   
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 Notice how integer division does not round to the nearest integer, but always truncates (that 
is, discards the entire fractional part). When you mixed integers with floating point, the answer 
came out the same as floating point. Actually, the computer is not really capable of dividing a 
floating-point type by an integer type, so the compiler converts both operands to a single type. 
In this case, the integer is converted to floating point before division.  

 Until the C99 standard, C gave language implementers some leeway in deciding how integer 
division with negative numbers worked. One could take the view that the rounding proce-
dure consists of finding the largest integer smaller than or equal to the floating-point number. 
Certainly, 3 fits that description when compared to 3.8. But what about −3.8? The largest 
integer method would suggest rounding to −4 because −4 is less than −3.8. But another way of 
looking at the rounding process is that it just dumps the fractional part; that interpretation, 
called  truncating toward zero , suggests converting −3.8 to −3. Before C99,  some implementations 
used one approach, some the other. But C99 says to truncate toward zero, so −3.8 is converted 
to −3.  

 The properties of integer division turn out to be handy for some problems, and you’ll see 
an example fairly soon. First, there is another important matter: What happens when you 
combine more than one operation into one statement? That is the next topic.   

  Operator Precedence  

 Consider the following line of code:  

  butter = 25.0 + 60.0 * n / SCALE;   

 This statement has an addition, a multiplication, and a division operation. Which operation 
takes place first? Is  25.0  added to  60.0 , the result of  85.0  then multiplied by  n , and that result 
then divided by  SCALE ? Is  60.0  multiplied by  n , the result added to  25.0 , and that answer 
then divided by  SCALE ? Is it some other order? Let’s take  n  to be 6.0 and  SCALE  to be 2.0. If 
you work through the statement using these values, you will find that the first approach yields 
a value of 255. The second approach yields 192.5. A C program must have some other order in 
mind,  because it would give a value of 205.0 for  butter .  

 Clearly, the order of executing the various operations can make a difference, so C needs unam-
biguous rules for choosing what to do first. C does this by setting up an operator pecking order. 
Each operator is assigned a  precedence  level. As in ordinary arithmetic, multiplication and divi-
sion have a higher precedence than addition and subtraction, so they are performed first. What 
if two operators have the same precedence? If they share an operand, they are executed accord-
ing to the order in which they occur in the statement. For most operators, the order is from left 
to right. (The  =  operator was an  exception to this.) Therefore, in the statement  

  butter = 25.0 + 60.0 * n / SCALE;   

 the order of operations is as follows:  

  60.0 * n    The first  *  or  /  in the expression (assuming  n  is  6  so that  60.0 * n  is 
 360.0 )  
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  360.0 / SCALE    Then the second  *  or  /  in the expression  

  25.0 + 180    Finally (because  SCALE  is  2.0 ), the first  +  or  -  in the expression, to yield 
 205.0   

 Many people like to represent the order of evaluation with a type of diagram called an  expres-
sion tree .  Figure   5.3    is an example of such a diagram. The diagram shows how the original 
expression is reduced by steps to a single value.  

 

SCALE=2;

n=6;

butter=25.0+60.0*n/ SCALE;

+

/

*

25.0

60.0 n

SCALE

+

/
25.0

360.0

180

205.0
2

+

25.0

 Figure 5.3   Expression trees showing operators, operands, and order of evaluation.         

 What if you want an addition operation to take place before division? Then you can do as we 
have done in the following line:  

  flour = (25.0 + 60.0 * n) / SCALE;   

 Whatever is enclosed in parentheses is executed first. Within the parentheses, the usual 
rules hold. For this example, first the multiplication takes place and then the addition. That 
completes the expression in the parentheses. Now the result can be divided by  SCALE .  

  Table   5.1    summarizes the rules for the operators used so far. (The inside back cover of this book 
presents a table covering all operators.)  

  Table 5.1   Operators in Order of Decreasing Precedence  

  Operators     Associativity   

  ()    Left to right  

  + -  (unary)   Right to left  

  * /    Left to right  
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  Operators     Associativity   

  + -  (binary)   Left to right  

  =    Right to left  

 Notice that the two uses of the minus sign have different precedences, as do the two uses of the 
plus sign. The associativity column tells you how an operator associates with its operands. For 
example, the unary minus sign associates with the quantity to its right, and in division the left 
operand is divided by the right.   

  Precedence and the Order of Evaluation  

 Operator precedence provides vital rules for determining the order of evaluation in an expres-
sion, but it doesn’t necessarily determine the complete order. C leaves some choices up to the 
implementation. Consider the following statement:  

  y = 6 * 12 + 5 * 20;   

 Precedence dictates the order of evaluation when two operators share an operand. For example, 
the  12  is an operand for both the  *  and the  +  operators, and precedence says that multiplica-
tion comes first. Similarly, precedence says that the  5  is to be multiplied, not added. In short, 
the multiplications  6 * 12  and  5 * 20  take place before any addition. What precedence does 
not establish is which of these two multiplications occurs first. C leaves that choice to the 
implementation because one choice might be more efficient for one kind of hardware, but the 
other choice might work better on another kind of hardware.  In either case, the expression 
reduces to  72 + 100 , so the choice doesn’t affect the final value for this particular example. 
“But,” you say, “multiplication associates from left to right. Doesn’t that mean the leftmost 
multiplication is performed first?” (Well, maybe you don’t say that, but somewhere someone 
does.) The association rule applies for operators that  share  an operand. For instance, in the 
expression  12 / 3 * 2 , the  /  and  *  operators, which have the same precedence, share the 
operand  3 . Therefore, the left-to-right rule applies in this case, and the expression reduces to  4 
* 2 , or  8 . (Going  from right to left would give  12 / 6 , or  2 . Here the choice does matter.) In 
the previous example, the two  *  operators did not share a common operand, so the left-to-right 
rule did not apply.  

  Trying the Rules  

 Let’s try these rules on a more complex example— Listing   5.7   .  

  Listing 5.7   The  rules.c  Program  

 /* rules.c -- precedence test */

  #include <stdio.h>

  int main(void)
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  {

      int top, score;

  

      top = score = -(2 + 5) * 6 + (4 + 3 * (2 + 3));

      printf("top = %d, score = %d\n", top, score);

  

      return 0;

  }   

 What value will this program print? Figure it out, and then run the program or read the follow-
ing description to check your answer.  

 First, parentheses have the highest precedence. Whether the parentheses in  -(2 + 5) * 6  or 
in  (4 + 3 * (2 + 3))  are evaluated first depends on the implementation, as just discussed. 
Either choice will lead to the same result for this example, so let’s take the left one first. The 
high precedence of parentheses means that in the subexpression  -(2 + 5) * 6 , you evalu-
ate  (2 + 5)  first, getting  7 . Next, you apply the unary minus operator to  7  to get  -7 . Now the 
expression is  

  top = score = -7 * 6 + (4 + 3 * (2 + 3))   

 The next step is to evaluate  2 + 3 . The expression becomes  

  top = score = -7 * 6 + (4 + 3 * 5)   

 Next, because the  *  in the parentheses has priority over  + , the expression becomes  

  top = score = -7 * 6 + (4 + 15)   

 and then  

  top = score = -7 * 6 + 19   

 Multiply  -7  by  6  and get the following expression:  

  top = score = -42 + 19   

 Then addition makes it  

  top = score = -23   

 Now  score  is assigned the value  -23 , and, finally,  top  gets the value  -23 . Remember that the  =  
operator associates from right  to left.     

  Some Additional Operators  

 C has about 40 operators, but some are used much more than others. The ones just covered are 
among the most common, but let’s add four more useful operators to the list.  
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  The  sizeof  Operator and the  size_t  Type  

 You saw the  sizeof  operator in  Chapter   3   , “Data and C.” To review, the  sizeof  operator 
returns the size, in bytes, of its operand. (Recall that a C byte is defined as the size used by the 
 char  type. In the past, this has most often been 8 bits, but some character sets may use larger 
bytes.) The operand can be a specific data object, such as the name of a variable, or it can be a 
type. If it is a type, such as  float , the operand must be enclosed in parentheses. The example 
in  Listing   5.8    shows both forms.  

  Listing 5.8   The  sizeof.c  Program  

 // sizeof.c -- uses sizeof operator

  // uses C99 %z modifier -- try %u or %lu if you lack %zd

  #include <stdio.h>

  int main(void)

  {

      int n = 0;

      size_t intsize;

  

      intsize = sizeof (int);

      printf("n = %d, n has %zd bytes; all ints have %zd bytes.\n",

           n, sizeof n, intsize );

  

      return 0;

  }   

 C says that  sizeof  returns a value of type  size_t . This is an unsigned integer type, but not a 
brand-new type. Instead, as you may recall from the preceding chapter, it is defined in terms of 
the standard types. C has a  typedef  mechanism (discussed further in  Chapter   14   , “Structures 
and Other Data Forms”) that lets you create an alias for an existing type. For example,  

  typedef double real;   

 makes  real  another name for  double . Now you can declare a variable of type  real :  

  real deal;   // using a typedef   

 The compiler will see the word  real , recall that the  typedef  statement made  real  an alias for 
 double , and create  deal  as a type  double  variable. Similarly, the C header files system can use 
 typedef  to make  size_t  a synonym for  unsigned int  on one system or for  unsigned long  
on another. Thus, when you use the  size_t  type, the compiler will substitute the standard 
type that works for your system.  

 C99 goes a step further and supplies  %zd  as a  printf()  specifier for displaying a  size_t  value. 
If your system doesn’t implement  %zd , you can try using  %u  or  %lu  instead.   
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  Modulus Operator:  %   

 The  modulus operator  is used in integer arithmetic. It gives the  remainder  that results when the 
integer to its left is divided by the integer to its right. For example,  13 % 5  (read as “13 modulo 
5”) has the value 3, because 5 goes into 13 twice, with a remainder of 3. Don’t bother trying to 
use this operator with floating-point numbers. It just won’t work.  

 At first glance, this operator might strike you as an esoteric tool for mathematicians, but it 
is actually rather practical and helpful. One common use is to help you control the flow of a 
program. Suppose, for example, you are working on a bill-preparing program designed to add in 
an extra charge every third month. Just have the program evaluate the month number modulo 
3 (that is,  month % 3 ) and check to see whether the result is 0. If it is, the program adds in 
the extra charge. After you learn about  if  statements in  Chapter   7   , “C Control Statements:  
Branching and Jumps,” you’ll understand this better.  

  Listing   5.9    shows another use for the  %  operator. It also shows another way to use a  while  
loop.  

  Listing 5.9   The  min_sec.c  Program  

 // min_sec.c -- converts seconds to minutes and seconds

  #include <stdio.h>

  #define SEC_PER_MIN 60            // seconds in a minute

  int main(void)

  {

      int sec, min, left;

  

      printf("Convert seconds to minutes and seconds!\n");

      printf("Enter the number of seconds (<=0 to quit):\n");

      scanf("%d", &sec);            // read number of seconds

      while (sec > 0)

      {

          min = sec / SEC_PER_MIN;  // truncated number of minutes

          left = sec % SEC_PER_MIN; // number of seconds left over

          printf("%d seconds is %d minutes, %d seconds.\n", sec,

                  min, left);

          printf("Enter next value (<=0 to quit):\n");

          scanf("%d", &sec);

      }

      printf("Done!\n");

  

      return 0;

  }   

 Here is some sample output:  

  Convert seconds to minutes and seconds!

  Enter the number of seconds (<=0 to quit):
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   154 
  154 seconds is 2 minutes, 34 seconds.

  Enter next value (<=0 to quit):

   567 
  567 seconds is 9 minutes, 27 seconds.

  Enter next value (<=0 to quit):

   0 
  Done!   

  Listing   5.2    used a counter to control a  while  loop. When the counter exceeded a given size, 
the loop quit.  Listing   5.9   , however, uses  scanf()  to fetch new values for the variable  sec . As 
long as the value is positive, the loop continues. When the user enters a zero or negative value, 
the loop quits. The important design point in both cases is that each loop cycle revises the 
value of the variable being tested.  

 What about negative numbers? Before C99 settled on the “truncate toward zero” rule for 
integer division, there were a couple of possibilities. But with the rule in place, you get a nega-
tive modulus value if the first operand is negative, and you get a positive modulus otherwise:  

  11 / 5  is  2 , and  11 % 5  is  1   

  11 / -5  is  -2 , and  11 % -2  is  1   

  -11 / -5  is  2 , and  -11 % -5  is  -1   

  -11 / 5  is  -2 , and  -11 % 5  is  -1   

 If your system shows different behavior, it hasn’t caught up to the C99 standard. In any case, 
the standard says, in effect, that if  a  and  b  are integer values, you can calculate  a%b  by subtract-
ing  (a/b)*b  from  a . For example, you can evaluate  -11%5  this way:  

  -11 - (-11/5) * 5 = -11 -(-2)*5 = -11 -(-10) = -1    

  Increment and Decrement Operators:  ++  and  --   

 The  increment operator  performs a simple task; it increments (increases) the value of its operand 
by 1. This operator comes in two varieties. The first variety has the  ++  come before the affected 
variable; this is the  prefix  mode. The second variety has the  ++  after the affected variable; this 
is the  postfix  mode. The two modes differ with regard to the precise time that the increment-
ing takes place. We’ll explain the similarities first and then return to that difference. The short 
example in  Listing   5.10    shows how the increment operators work.  

  Listing 5.10   The  add_one.c  Program  

 /* add_one.c -- incrementing: prefix and postfix */

  #include <stdio.h>

  int main(void)

  {
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      int ultra = 0, super = 0;

  

      while (super < 5)

      {

          super++;

          ++ultra;

          printf("super = %d, ultra = %d \n", super, ultra);

      }

  

      return 0;

  }   

 Running  add_one.c  produces this output:  

  super = 1, ultra = 1

  super = 2, ultra = 2

  super = 3, ultra = 3

  super = 4, ultra = 4

  super = 5, ultra = 5   

 The program counted to five twice and simultaneously. You could get the same results by 
replacing the two increment statements with this:  

  super = super + 1;

  ultra = ultra + 1;   

 These are simple enough statements. Why bother creating one, let alone two, abbreviations? 
One reason is that the compact form makes your programs neater and easier to follow. These 
operators give your programs an elegant gloss that cannot fail to please the eye. For example, 
you can rewrite part of  shoes2.c  ( Listing   5.2   ) this way:  

  shoe = 3.0;

  while (shoe < 18.5)

  {

      foot = SCALE * size + ADJUST;

      printf("%10.1f %20.2f inches\n", shoe, foot);

      ++shoe;

  }   

 However, you still haven’t taken full advantage of the increment operator. You can shorten the 
fragment this way:  

  shoe = 2.0;

  while (++shoe < 18.5)

  {

     foot = SCALE*shoe + ADJUST;

     printf("%10.1f %20.2f inches\n", shoe, foot);

  }   
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 Here you have combined the incrementing process and the  while  comparison into one expres-
sion. This type of construction is so common in C that it merits a closer look.  

 First, how does this construction work? Simply. The value of  shoe  is increased by 1 and then 
compared to  18.5 . If it is less than  18.5 , the statements between the braces are executed 
once. Then  shoe  is increased by 1 again, and the cycle is repeated until  shoe  gets too big. We 
changed the initial value of  shoe  from  3.0  to  2.0  to compensate for  shoe  being incremented 
before the first evaluation of  foot  (see  Figure   5.4   ).  

 

shoe = 2.0;

while (++shoe < 18.5)

{

  foot=SCALE*shoe + ADJUST;

  printf("––––––", shoe, foot);

}

while loop

increment shoe to 3

evaluate test (true)

do these statements

return to beginning of loop

1

2
3

4

 Figure 5.4   Through the loop once.         

 Second, what’s so good about this approach? It is more compact. More important, it gathers 
in one place the two processes that control the loop. The primary process is the test: Do you 
continue or not? In this case, the test is checking to see whether the shoe size is less than 18.5. 
The secondary process changes an element of the test; in this case, the shoe size is increased.  

 Suppose you forgot to change the shoe size. Then  shoe  would  always  be less than  18.5 , and 
the loop would never end. The computer would churn out line after identical line, caught in 
a dreaded  infinite loop . Eventually, you would lose interest in the output and have to kill the 
program somehow. Having the loop test and the loop change at one place, instead of at sepa-
rate locations, helps you to remember to update the loop.  

 A disadvantage is that combining two operations in a single expression can make the code 
harder to follow and can make it easier to make counting errors.  

 Another advantage of the increment operator is that it usually produces slightly more efficient 
machine language code because it is similar to actual machine language instructions. However, 
as vendors produce better C compilers, this advantage may disappear. A smart compiler can 
recognize that  x = x + 1  can be treated the same as  ++x .  

 Finally, these operators have an additional feature that can be useful in certain delicate situa-
tions. To find out what this feature is, try running the program in  Listing   5.11   .  
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  Listing 5.11   The  post_pre.c  Program  

 /* post_pre.c -- postfix vs prefix */

  #include <stdio.h>

  int main(void)

  {

      int a = 1, b = 1;

      int a_post, pre_b;

  

      a_post = a++;  // value of a++ during assignment phase

      pre_b = ++b;   // value of ++b during assignment phase

      printf("a  a_post   b   pre_b \n");

      printf("%1d %5d %5d %5d\n", a, a_post, b, pre_b);

  

      return 0;

  }   

 If you and your compiler do everything correctly, you should get this result:  

  a  a_post   b   pre_b

  2     1     2     2   

 Both  a  and  b  were increased by 1, as promised. However,  a_post  has the value of  a   before   a  
changed, but  b_pre  has the value of  b   after   b  changed. This is the difference between the prefix 
form and the postfix form  (see  Figure   5.5   ).  

  a_post = a++;  // postfix: a is changed after its value is used

  b_pre= ++b;    // prefix: b is changed before its value is used   

 When one of these increment operators is used by itself, as in a solitary  ego++;  statement, it 
doesn’t matter which form you use. The choice does matter, however, when the operator and 
its operand are part of a larger expression, as in the assignment statements you just saw. In this 
kind of situation, you must give some thought to the result you want. For instance, recall that 
we suggested using the following:  

  while (++shoe < 18.5)    

 This test condition provides a table up to size 18. If you use  shoe++  instead of  ++shoe , the 
table will go to size 19 because  shoe  will be increased after the comparison instead of before.  

 Of course, you could fall back on the less subtle form,  

  shoe = shoe + 1;   

 but then no one will believe you are a true C programmer.  

 You should pay special attention to the examples of increment operators as you read through 
this book. Ask yourself if you could have used the prefix and the suffix forms interchangeably 
or if circumstances dictated a particular choice.  
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 Perhaps an even wiser policy is to avoid code in which it makes a difference whether you use 
the prefix or postfix form. For example, instead of  

  b = ++i;  // different result for b if i++ is used   

 use  

  ++i;    // line 1

  b = i;  // same result for b as if i++ used in line 1   

 However, sometimes it’s more fun to be a little reckless, so this book will not always follow this 
sensible advice.   

  Decrementing:  --   

 For each form of increment operator, there is a corresponding form of  decrement operator . 
Instead of  ++ , use  -- :  

  -- count;   // prefix form of decrement operator

  count --;   // postfix form of decrement operator   

  Listing   5.12    illustrates that computers can be accomplished lyricists.  

  Listing 5.12   The  bottles.c  Program  

 #include <stdio.h>

  #define MAX 100

  int main(void)

  {

      int count = MAX + 1;

  

      while (--count > 0) {

          printf("%d bottles of spring water on the wall, "

q = 2*++a;

prefix

q = 2*a++;

postfix

first, increment a by 1;
then, multiply a by 2 and assign to q

first, multiply a by 2, assign to q
then, increment a by 1

 Figure 5.5   Prefix and postfix.        
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                 "%d bottles of spring water!\n", count, count);

          printf("Take one down and pass it around,\n");

          printf("%d bottles of spring water!\n\n", count - 1);

      }

  

      return 0;

  }   

 The output starts like this:  

  100 bottles of spring water on the wall, 100 bottles of spring water!

  Take one down and pass it around,

  99 bottles of spring water!

  

  99 bottles of spring water on the wall, 99 bottles of spring water!

  Take one down and pass it around,

  98 bottles of spring water!   

 It goes on a bit and ends this way:  

  1 bottles of spring water on the wall, 1 bottles of spring water!

  Take one down and pass it around,

  0 bottles of spring water!   

 Apparently the accomplished lyricist has a problem with plurals, but that could be fixed by 
using the conditional operator of  Chapter   7   .  

 Incidentally, the  >  operator stands for “is greater than.” Like  <  (“is less than”), it is a  relational  
 operator . You will get a longer look at relational operators in  Chapter   6   , “C Control Statements: 
Looping.”   

  Precedence  

 The increment and decrement operators have a very high precedence of association; only 
parentheses are higher. Therefore,  x*y++  means  (x)*(y++) , not  (x*y)++ , which is fortunate 
because the latter is invalid. The increment and decrement operators affect a  variable  (or, more 
generally, a modifiable lvalue), and the combination  x*y  is not itself a modifiable lvalue, 
although its parts are.  

 Don’t confuse precedence of these two operators with the order of evaluation. Suppose you 
have the following:  

  y = 2;

  n = 3;

  nextnum = (y + n++)*6;   
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 What value does  nextnum  get? Substituting in values yields  

  nextnum = (2 + 3)*6 = 5*6 = 30   

 Only after  n  is used is it increased to  4 . Precedence tells us that the  ++  is attached only to the  n , 
not to  y + n . It also tells us when the value of  n  is used for evaluating the expression, but the 
nature of the increment operator determines when the value of  n  is changed.  

 When  n++  is part of an expression, you can think of it as meaning “use  n ; then increment it.” 
On the other hand,  ++n  means “increment  n ; then use it.”   

  Don’t Be Too Clever  

 You can get fooled if you try to do too much at once with the increment operators. For 
example, you might think that you could improve on the  squares.c  program ( Listing   5.4   ) to 
print integers and their squares by replacing the  while  loop with this one:  

  while (num < 21)

     {

     printf("%10d %10d\n", num, num*num++);

     }   

 This looks reasonable. You print the number  num , multiply it by itself to get the square, and 
then increase  num  by 1. In fact, this program may even work on some systems, but not all. The 
problem is that when  printf()  goes to get the values for printing, it might evaluate the last 
argument first and increment  num  before getting to the other argument. Therefore, instead of 
printing  

  5          25   

 it may print  

  6          25   

 It even might work from right to left, using 5 for the rightmost  num  and 6 for the next two, 
resulting in this output:  

  6          30   

 In C, the compiler can choose which arguments in a function to evaluate first. This freedom 
increases compiler efficiency, but can cause trouble if you use an increment operator on a func-
tion argument.  

 Another possible source of trouble is a statement like this one:  

  ans = num/2 + 5*(1 + num++);   

 Again, the problem is that the compiler may not do things in the same order you have in 
mind. You would think that it would find  num/2  first and then move on, but it might do the 
last term first, increase  num , and use the new value in  num/2 . There is no guarantee.  
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 Yet another troublesome case is this:  

  n = 3;

  y = n++ + n++;   

 Certainly,  n  winds up larger by 2 after the statement is executed, but the value for  y  is ambigu-
ous. A compiler can use the old value of  n  twice in evaluating  y  and then increment  n  twice. 
This gives  y  the value  6  and  n  the value  5 , or it can use the old value once, increment  n  once, 
use that value for the second  n  in the expression, and then increment  n  a second time. This 
gives  y  the value  7  and  n  the value  5 . Either choice is allowable. More exactly, the result is 
undefined, which means the C standard fails to define what the result should be.  

 You can easily avoid these problems:  

    ■   Don’t use increment or decrement operators on a variable that is part of more than one 
argument of a function.   

   ■   Don’t use increment or decrement operators on a variable that appears more than once 
in an expression.    

 On the other hand, C does have some guarantees about when incrementing takes place. We’ll 
return to this subject when we discuss sequence points later this chapter in the section, “Side 
Effects and Sequence Points.”    

  Expressions and Statements  

 We have been using the terms  expression  and  statement  throughout these first few chapters, 
and now the time has come to study their meanings more closely. Statements form the basic 
program steps of C, and most statements are constructed from expressions. This suggests that 
you look at expressions first.  

  Expressions  

 An  expression  consists of a combination of operators and operands. (An operand, recall, is what 
an operator operates on.) The simplest expression is a lone operand, and you can build in 
complexity from there. Here are some expressions:  

  4

  -6

  4+21

  a*(b + c/d)/20

  q = 5*2

  x = ++q % 3

  q > 3   
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 As you can see, the operands can be constants, variables, or combinations of the two. Some 
expressions are combinations of smaller expressions, called  subexpressions . For example,  c/d  is a 
subexpression of the fourth example.  

  Every Expression Has a Value  

 An important property of C is that every C expression has a value. To find the value, you 
perform the operations in the order dictated by operator precedence. The value of the first few 
expressions we just listed is clear, but what about the ones with  =  signs? Those expressions 
simply have the same value that the variable to the left of the  =  sign receives. Therefore, the 
expression  q=5*2  as a whole has the value  10 . What about the expression  q > 3 ? Such rela-
tional expressions have the value  1  if true and  0  if false. Here are some expressions and their 
values:  

  Expression     Value   

  -4 + 6     2   

  c = 3 + 8     11   

  5 > 3     1   

  6 + (c = 3 + 8)     17   

 The last expression looks strange! However, it is perfectly legal (but ill-advised) in C because it 
is the sum of two subexpressions, each of which has a value.    

  Statements  

  Statements  are the primary building blocks of a program. A  program  is a series of statements with 
some necessary punctuation. A statement is a complete instruction to the computer. In C, state-
ments are indicated by a semicolon at the end. Therefore,  

  legs = 4   

 is just an expression (which could be part of a larger expression), but  

  legs = 4;   

 is a statement.  

 The simplest possible statement is the null statement:  

  ;  // null statement   

 It does nothing, a special case of an instruction.  

 More generally, what makes a complete instruction? First, C considers any expression to be 
a statement if you append a semicolon. (These are called  expression statements .) Therefore, C 
won’t object to lines such as the following:  
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  8;

  3 + 4;   

 However, these statements do nothing for your program and can’t really be considered sensible 
statements. More typically, statements change values and call functions:  

  x = 25;

  ++x;

  y = sqrt(x);   

 Although a statement (or, at least, a sensible statement) is a complete instruction, not all 
complete instructions are statements. Consider the following statement:  

  x = 6 + (y = 5);   

 In it, the subexpression  y = 5  is a complete instruction, but it is only part of the statement. 
Because a complete instruction is not necessarily a statement, a semicolon is needed to identify 
instructions that truly are statements.  

 So far you have encountered five kinds of statements (not counting the null statement).  Listing 
  5.13    gives a short example that uses all five.  

  Listing 5.13   The  addemup.c  Program  

 /* addemup.c -- five kinds of statements */

  #include <stdio.h>

  int main(void)                /* finds sum of first 20 integers */

  {

      int count, sum;           /* declaration statement          */

  

      count = 0;                /* assignment statement           */

      sum = 0;                  /* ditto                          */

      while (count++ < 20)      /* while                          */

          sum = sum + count;    /*     statement                  */

      printf("sum = %d\n", sum);/* function statement             */

  

      return 0;                 /* return statement               */   

 Let’s discuss  Listing   5.13   . By now, you must be pretty familiar with the declaration statement. 
Nonetheless, we will remind you that it establishes the names and type of variables and causes 
memory locations to be set aside for them. Note that a declaration statement is not an expres-
sion statement. That is, if you remove the semicolon from a declaration, you get something 
that is not an expression and that does not have a value:  

  int port                       /* not an expression, has no value */   

 The  assignment statement  is the workhorse of many programs; it assigns a value to a variable. It 
consists of a variable name followed by the assignment operator ( = ) followed by an expression 
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followed by a semicolon. Note that this particular  while  statement includes an assignment 
statement within it. An assignment statement is an example of an expression statement.  

 A  function statement  causes the function to do whatever it does. In this example, the  printf()  
function is invoked to print some results. A  while  statement has three distinct parts (see  Figure 
  5.6   ). First is the keyword  while . Then, in parentheses, is a test condition. Finally, you have the 
statement that is performed if the test is met. Only one statement is included in the loop. It 
can be a simple statement, as in this example, in which case no braces are needed to mark it 
off, or the statement can be a compound statement, like some of the earlier examples, in which 
case  braces are required. You can read about compound statements just ahead.  

 

while

false

go to next
statement

loop
back

true

(test condition)

printf("Be my Valentine!\n");

 Figure 5.6   Structure of a simple  while  loop.         

 The  while  statement belongs to a class of statements sometimes called  structured statements  
because they possess a structure more complex than that of a simple assignment statement. In 
later chapters, you will encounter many other kinds of structured statements.  

 The  return  statement terminates the execution of a function.  

  Side Effects and Sequence Points  

 Now for a little more C terminology: A  side effect  is the modification of a data object or file. For 
instance, the side effect of the statement  

  states = 50;   

 is to set the  states  variable to  50 . Side effect? This looks more like the main intent! From the 
standpoint of C, however, the main intent is evaluating expressions. Show C the expression 
 4 + 6 , and C evaluates it to 10. Show it the expression  states = 50 , and C evaluates it to 
50. Evaluating that expression has the side effect of changing the  states  variable to  50 . The 
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increment and decrement operators, like the assignment operator, have side effects and are 
used primarily because of their side effects.  

 Similarly, when you call the printf() function, the fact that it displays information is a side 
effect. (The value of  printf() , recall, is the number of items displayed.)  

 A  sequence point  is a point in program execution at which all side effects are evaluated before 
going on to the next step. In C, the semicolon in a statement marks a sequence point. That 
means all changes made by assignment operators, increment operators, and decrement opera-
tors in a statement must take place before a program proceeds to the next statement. Some 
operators that we’ll discuss in later chapters have sequence points. Also, the end of any full 
expression is a sequence point.  

 What’s a full expression? A  full expression  is one that’s not a subexpression of a larger expres-
sion. Examples of full expressions include the expression in an expression statement and the 
expression serving as a test condition for a  while  loop.  

 Sequence points help clarify when postfix incrementation takes place. Consider, for instance, 
the following code:  

  while (guests++ < 10)

       printf("%d \n", guests);   

 Sometimes C newcomers assume that “use the value and then increment it” means, in 
this context, to increment  guests  after it’s used in the  printf()  statement. However, the 
 guests++ < 10  expression is a full expression because it is a  while  loop test condition, so the 
end of this expression is a sequence point. Therefore, C guarantees that the side effect (incre-
menting  guests ) takes place before the program moves on to  printf() . Using the postfix 
form, however, guarantees that  guests  will be incremented after the comparison to  10  is made.  

 Now consider this statement:  

  y = (4 + x++) + (6 + x++);   

 The expression  4 + x++  is not a full expression, so C does not guarantee that  x  will be incre-
mented immediately after the subexpression  4 + x++  is evaluated. Here, the full expression 
is the entire assignment statement, and the semicolon marks the sequence point, so all that C 
guarantees is that  x  will have been incremented twice by the time the program moves to the 
following statement. C does not specify whether  x  is incremented after each subexpression is 
evaluated or only after all the expressions have been evaluated, which is why you should avoid 
statements of this kind.    

  Compound Statements (Blocks)  

 A  compound statement  is two or more statements grouped together by enclosing them in braces; 
it is also called a  block . The  shoes2.c  program used a block to let the  while  statement encom-
pass several statements. Compare the following program fragments:  

  /* fragment 1 */
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  index = 0;

  while (index++ < 10)

      sam = 10 * index + 2;

  printf("sam = %d\n", sam);

  

  /* fragment 2 */

  index = 0;

  while (index++ < 10)

  {

      sam = 10 * index + 2;

      printf("sam = %d\n", sam);

  }   

 In fragment 1, only the assignment statement is included in the  while  loop. In the absence of 
braces, a  while  statement runs from the  while  to the next semicolon. The  printf()  function 
will be called just once, after the loop has been completed.  

 In fragment 2, the braces ensure that both statements are part of the  while  loop, and 
 printf()  is called each time the loop is executed. The entire compound statement is consid-
ered to be the single statement in terms of the structure of a  while  statement (see  Figure   5.7   ).  

 

while

false

note prefix notation:
fish gets incremented

before each test
calculation

loop
back

true

(++fish<school)

{

    food = quota * fish;

    printf("%d----%d---", food, fish);

}

 Figure 5.7   A  while  loop with a compound statement.         
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  Tip   Style Tips  

 Look again at the two  while  fragments and notice how an indentation marks off the body of 
each loop. The indentation makes no difference to the compiler; it uses the braces and its 
knowledge of the structure of  while  loops to decide how to interpret your instructions. The 
indentation is there so you can see at a glance how the program is organized.  

 The example shows one popular style for positioning the braces for a block, or compound, 
statement. Another very common style is this:  
  while (index++ < 10) {

      sam = 10*index + 2;

      printf("sam = %d \n", sam);

  }   

 This style highlights the attachment of the block to the  while  loop. The other style emphasizes 
that the statements form a block. Again, as far as the compiler is concerned, both forms are 
identical.  

 To sum up, use indentation as a tool to point out the structure of a program to the reader.     

  Summary: Expressions and Statements  

  Expressions:   

 An  expression  is a combination of operators and operands. The simplest expression is just a 
constant or a variable with no operator, such as  22  or  beebop . More complex examples are  55 
+ 22  and  vap = 2 * (vip + (vup = 4)) .  

  Statements:   

 A  statement  is a command to the computer. There are simple statements and compound state-
ments.  Simple statements  terminate in a semicolon, as in these examples:  

 Declaration statement:    int toes;   

 Assignment statement:    toes = 12;   

 Function call statement:    printf("%d\n", toes);   

 Structured statement:    while (toes < 20) toes = toes + 2;   

 Return statement:   return 0;  

 null statement:    ; /* does nothing */   

  Compound statements , or  blocks , consist of one or more statements (which themselves can 
be compound statements) enclosed in braces. The following  while  statement contains an 
example:  

  while (years < 100)

  {

      wisdom = wisdom * 1.05;

      printf("%d %d\n", years, wisdom);

      years = years + 1;

  }      
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  Type Conversions  

 Statements and expressions should normally use variables and constants of just one type. If, 
however, you mix types, C doesn’t stop dead in its tracks the way, say, Pascal does. Instead, it 
uses a set of rules to make type conversions automatically. This can be a convenience, but it 
can also be a danger, especially if you are mixing types inadvertently. (The lint program, found 
on many Unix systems, checks for type “clashes.” Many non-Unix C compilers report possible 
type problems if you select a higher error level.) It is a good idea to have at least some knowl-
edge of  the type conversion rules.  

 The basic rules are  

    1.   When appearing in an expression,  char  and  short , both  signed  and  unsigned , are 
automatically converted to  int  or, if necessary, to  unsigned int . (If  short  is the 
same size as  int ,  unsigned short  is larger than  int ; in that case,  unsigned short  
is converted to  unsigned int .) Under K&R C, but not under current C,  float  is 
automatically converted to  double . Because they are conversions to larger types, they are 
called  promotions .   

   2.   In any operation involving two types, both values are converted to the higher ranking of 
the two types.   

   3.   The ranking of types, from highest to lowest, is  long double ,  double ,  float ,  unsigned 
long long ,  long long ,  unsigned long ,  long ,  unsigned int , and  int . One possible 
exception is when  long  and  int  are the same size, in which case  unsigned int  
outranks  long . The  short  and  char  types don’t appear in this list because they would 
have been already promoted to  int  or perhaps  unsigned int .   

   4.   In an assignment statement, the final result of the calculations is converted to the type of 
the variable being assigned a value. This process can result in promotion, as described in 
rule 1, or  demotion , in which a value is converted to a lower-ranking type.   

   5.   When passed as function arguments,  char  and  short  are converted to  int , and  float  is 
converted to  double . This automatic promotion is overridden by function prototyping, 
as discussed in  Chapter   9   , “Functions.”    

 Promotion is usually a smooth, uneventful process, but demotion can lead to real trouble. The 
reason is simple: The lower-ranking type may not be big enough to hold the complete number. 
For instance, an 8-bit  char  variable can hold the integer  101  but not the integer  22334 .  

 What happens when the converted value won’t fit into the destination? The answer depends 
on the types involved. Here are the rules for when the assigned value doesn’t fit into the desti-
nation type:  

    1.   When the destination is some form of unsigned integer and the assigned value is an 
integer, the extra bits that make the value too big are ignored. For instance, if the 
destination is 8-bit  unsigned char , the assigned value is the original value modulus 
256.   
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   2.   If the destination type is a signed integer and the assigned value is an integer, the result 
is implementation-dependent.   

   3.   If the destination type is an integer and the assigned value is floating point, the behavior 
is undefined.    

 What if a floating-point value will fit into an integer type? When floating types are demoted to 
integer types, they are truncated, or rounded toward zero. That means  23.12  and  23.99  both 
are truncated to  23  and that  -23.5  is truncated to  -23 .  

  Listing   5.14    illustrates the working of some of these rules.  

  Listing 5.14   The  convert.   c   Program  

 /* convert.c -- automatic type conversions */

  #include <stdio.h>

  int main(void)

  {

      char ch;

      int i;

      float fl;

  

      fl = i = ch = 'C';                                  /* line 9  */

      printf("ch = %c, i = %d, fl = %2.2f\n", ch, i, fl); /* line 10 */

      ch = ch + 1;                                        /* line 11 */

      i = fl + 2 * ch;                                    /* line 12 */

      fl = 2.0 * ch + i;                                  /* line 13 */

      printf("ch = %c, i = %d, fl = %2.2f\n", ch, i, fl); /* line 14 */

      ch = 1107;                                          /* line 15 */

      printf("Now ch = %c\n",  ch);                        /* line 16 */

      ch = 80.89;                                         /* line 17 */

      printf("Now ch = %c\n", ch);                        /* line 18 */

  

      return 0;

  }   

 Running  convert.c  produces the following output:  

  ch = C, i = 67, fl = 67.00

  ch = D, i = 203, fl = 339.00

  Now ch = S

  Now ch = P   

 On this system, which has an 8-bit  char  and a 32-bit  int , here is what happened:  

    ■    Lines 9 and 10 —   The character  'C'  is stored as a 1-byte ASCII value in  ch . The integer 
variable  i  receives the integer conversion of  'C' , which is  67  stored as 4 bytes. Finally, 
 fl  receives the floating conversion of  67 , which is  67.00 .   
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   ■    Lines 11 and 14 —   The character variable  'C'  is converted to the integer  67 , which is 
then added to the  1 . The resulting 4-byte integer  68  is truncated to 1 byte and stored in 
 ch . When printed using the  %c  specifier,  68  is interpreted as the ASCII code for  'D' .   

   ■    Lines 12 and 14 —   The value of  ch  is converted to a 4-byte integer ( 68 ) for the 
multiplication by  2 . The resulting integer ( 136 ) is converted to floating point in order to 
be added to  fl . The result ( 203.00f ) is converted to  int  and stored in  i .   

   ■    Lines 13 and 14 —   The value of  ch  ( 'D' , or  68 ) is converted to floating point for 
multiplication by  2.0 . The value of  i  ( 203 ) is converted to floating point for the 
addition, and the result ( 339.00 ) is stored in  fl .   

   ■    Lines 15 and 16 —   Here the example tries a case of demotion, setting  ch  equal to an 
out-of-range number. After the extra bits are ignored,  ch  winds up with the ASCII code 
for the  S  character. Or, more specifically,  1107 % 256  is  83 , the code for  S .   

   ■    Lines 17 and 18 —   Here the example tries another case of demotion, setting  ch  equal to 
a floating point number. After truncation takes place,  ch  winds up with the ASCII code 
for the  P  character.    

  The Cast Operator  

 You should usually steer clear of automatic type conversions, especially of demotions, but 
sometimes it is convenient to make conversions, provided you exercise care. The type conver-
sions we’ve discussed so far are done automatically. However, it is possible for you to demand 
the precise type conversion that you want or else document that you know you’re making a 
type conversion. The method for doing this is called a  cast  and consists of preceding the quan-
tity with the name of the desired type in parentheses. The parentheses and type name together 
constitute a  cast operator . This is the general form of a cast  operator:  

  ( type )   

 The actual type desired, such as  long , is substituted for the word   type  .  

 Consider the next two code lines, in which  mice  is an  int  variable. The second line contains 
two casts to type  int .  

  mice = 1.6 + 1.7;

  mice = (int) 1.6 + (int) 1.7;   

 The first example uses automatic conversion. First,  1.6  and  1.7  are added to yield  3.3 . This 
number is then converted through truncation to the integer  3  to match the  int  variable. In the 
second example,  1.6  is converted to an integer ( 1 ) before addition, as is  1.7 , so that  mice  is 
assigned the value  1+1 , or  2 . Neither form is intrinsically more correct than the other; you have 
to consider the context of the programming problem to see which makes more sense.  

 Normally, you shouldn’t mix types (that is why some languages don’t allow it), but there are 
occasions when it is useful. The C philosophy is to avoid putting barriers in your way and to 
give you the responsibility of not abusing that freedom.    
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  Summary: Operating in C  

 Here are the operators we have discussed so far:  

  Assignment Operator:   

  =    Assigns the value at its right to the variable at its left.  

  Arithmetic Operators:   

  +    Adds the value at its right to the value at its left.  

  –    Subtracts the value at its right from the value at its left.  

  –    As a unary operator, changes the sign of the value at its right.  

  *    Multiplies the value at its left by the value at its right.  

  /    Divides the value at its left by the value at its right. The answer is truncated if 
both operands are integers.  

  %    Yields the remainder when the value at its left is divided by the value to its right 
(integers only).  

  ++    Adds 1 to the value of the variable to its right (prefix mode) or to the value of the 
variable to its left (postfix mode).  

  --    Like  ++ , but subtracts 1.  

  Miscellaneous Operators:   

  sizeof    Yields the size, in bytes, of the operand to its right. The operand can be a type 
specifier in parentheses, as in  sizeof (float) , or it can be the name of a par-
ticular variable, array, and so forth, as in  sizeof foo .  

  (   type   )    As the cast operator, converts the following value to the type specified by the 
enclosed keyword(s). For example,  (float) 9  converts the integer  9  to the float-
ing-point number  9.0f .  

  Function with Arguments  

 By now, you’re familiar with using function arguments. The next step along the road to func-
tion mastery is learning how to write your own functions that use arguments. Let’s preview 
that skill now. (At this point, you might want to review the  butler()  function example near 
the end of  Chapter   2   , “Introducing C”; it shows how to write a function without an argument.) 
 Listing   5.15    includes a  pound()  function that prints a specified number of pound signs ( # ). 
(This symbol also is called the number sign and the hash symbol.) The example also illustrates 
some points about type conversion.  
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  Listing 5.15   The  pound.c  Program  

 /* pound.c -- defines a function with an argument   */

  #include <stdio.h>

  void pound(int n);   // ANSI function prototype declaration

  int main(void)

  {

      int times = 5;

      char ch = '!';   // ASCII code is 33

      float f = 6.0f;

  

      pound(times);    // int argument

      pound(ch);       // same as pound((int)ch);

      pound(f);        // same as pound((int)f);

  

      return 0;

  }

  

  void pound(int n)    // ANSI-style function header

  {                    // says takes one int argument

      while (n-- > 0)

          printf("#");

      printf("\n");

  }   

 Running the program produces this output:  

  #####

  #################################

  ######   

 First, let’s examine the function heading:  

  void pound(int n)   

 If the function took no arguments, the parentheses in the function heading would contain the 
keyword  void . Because the function takes one type  int  argument, the parentheses contain 
a declaration of an  int  variable called  n . You can use any name consistent with C’s naming 
rules.  

 Declaring an argument creates a variable called the  formal argument  or the  formal parameter . 
In this case, the formal parameter is the  int  variable called  n . Making a function call such as 
 pound(10)  acts to assign the value  10  to  n . In this program, the call  pound(times)  assigns the 
value of  times  ( 5 ) to  n . We say that the function call  passes  a value, and this value is called the 
 actual argument  or the  actual parameter , so the function call  pound(10)  passes the actual argu-
ment  10  to the function, where  10  is assigned to the formal parameter (the variable  n ). That is, 
the value of the  times  variable in  main()  is copied to  the new variable  n  in  pound() .  
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  Note    Arguments Versus Parameters   

 Although the terms  argument  and  parameter  often have been used interchangeably, the C99 
documentation has decided to use the term  argument  for actual argument or actual parameter 
and the term  parameter  for formal parameter or formal argument. With this convention, we can 
say that parameters are variables and that arguments are values provided by a function call 
and assigned to the corresponding parameters. Thus, in  Listing   5.15   ,  times  is an argument to 
 pound() , and  n  is a parameter for  pound() . Similarly, in the function call  pound(times+4) , 
the value of the expression  times+4  would be the argument.   

 Variable names are private to the function. This means that a name defined in one function 
doesn’t conflict with the same name defined elsewhere. If you used  times  instead of  n  in 
 pound() , that would create a variable distinct from the  times  in  main() . That is, you would 
have two variables with the same name, but the program keeps track of which is which.  

 Now let’s look at the function calls. The first one is  pound(times) , and, as we said, it causes 
the  times  value of  5  to be assigned to  n . This causes the function to print five pound signs and 
a newline.  

 The second call is  pound(ch) . Here,  ch  is type  char . It is initialized to the  !  character, which, 
on ASCII systems, means that  ch  has the numerical value 33. But  char  is the wrong type for 
the  pound()  function. This is where the function prototype near the top of the program comes 
into play. A  prototype  is a function declaration that describes a function’s return value and its 
arguments. This particular prototype says two things about the  pound()  function:  

    ■   The function has no return value (that’s the  void  part).   

   ■   The function takes one argument, which is a type  int  value.    

 In this case, the prototype informs the compiler that  pound()  expects an  int  argument. In 
response, when the compiler reaches the  pound(ch)  expression, it automatically applies a type-
cast to the  ch  argument, converting it to an  int  argument. On this system, the argument is 
changed from 33 stored in 1 byte to 33 stored in 4 bytes, so the value 33 is now in the correct 
form to be used as an argument to this function. Similarly, the last call,  pound(f) , generates a 
type cast to convert the type  float  variable  f  to the proper type for this argument.  

 Before ANSI C, C used function declarations that weren’t prototypes; they just indicated the 
name and return type but not the argument types. For backwards compatibility, C still allows 
this form:  

  void pound();       /* pre-ANSI function declaration */   

 What would happen in the  pound.c  program if you used this form of declaration instead of 
a prototype? The first function call,  pound(times) , would work because  times  is type  int . 
The second call,  pound(ch)  would also work because, in the absence of a prototype, C auto-
matically promotes  char  and  short  arguments to  int . The third call,  pound(f) , would fail, 
however, because, in the absence of a prototype,  float  is automatically promoted to  double , 
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which doesn’t really help much. The program will still run, but it won’t behave correctly. You 
could fix it by using an explicit type cast in the function call:  

  pound ((int) f); // force correct type   

 Note that this still might not help if the value of  f  is too large to fit into type  int .   

  A Sample Program  

  Listing   5.16    is a useful program (for a narrowly defined subgrouping of humanity) that illus-
trates several of the ideas in this chapter. It looks long, but all the calculations are done in six 
lines near the end. The bulk of the program relays information between the computer and the 
user. We’ve tried using enough comments to make it nearly self-explanatory. Read through it, 
and when you are done, we’ll clear up a few points.  

  Listing 5.16   The  running.c  Program  

 // running.c -- A useful program for runners

  #include <stdio.h>

  const int S_PER_M = 60;         // seconds in a minute

  const int S_PER_H = 3600;       // seconds in an hour

  const double M_PER_K = 0.62137; // miles in a kilometer

  int main(void)

  {

      double distk, distm;  // distance run in km and in miles

      double rate;          // average speed in mph

      int min, sec;         // minutes and seconds of running time

      int time;             // running time in seconds only

      double mtime;         // time in seconds for one mile

      int mmin, msec;       // minutes and seconds for one mile

  

      printf("This program converts your time for a metric  race\n");

      printf("to a time for running a mile and to your average\n");

      printf("speed in miles per hour.\n");

      printf("Please enter, in kilometers, the distance run.\n");

      scanf("%lf", &distk);  // %lf for type double

      printf("Next enter the time in minutes and seconds.\n");

      printf("Begin by entering the minutes.\n");

      scanf("%d", &min);

      printf("Now enter the seconds.\n");

      scanf("%d", &sec);

  // converts time to pure seconds

      time = S_PER_M * min + sec;

  // converts kilometers to miles

      distm = M_PER_K * distk;

  // miles per sec x sec per hour = mph



ptg11524036

181A Sample Program

      rate = distm / time * S_PER_H;

  // time/distance = time per mile

      mtime = (double) time / distm;

       mmin = (int) mtime / S_PER_M; // find whole minutes

      msec = (int) mtime % S_PER_M; // find remaining seconds

      printf("You ran %1.2f km (%1.2f miles) in %d min, %d sec.\n",

           distk, distm, min, sec);

      printf("That pace corresponds to running a mile in %d min, ",

           mmin);

      printf("%d sec.\nYour average speed was %1.2f mph.\n",msec,

           rate);

  

      return 0;

  }   

  Listing   5.16    uses the same approach used earlier in  min_sec  to convert the final time to 
minutes and seconds, but it also makes type conversions. Why? Because you need integer 
arguments for the seconds-to-minutes part of the program, but the metric-to-mile conversion 
involves floating-point numbers. We have used the cast operator to make these conversions 
explicit.  

 To tell the truth, it should be possible to write the program using just automatic conversions. 
In fact, we did so, using  mtime  of type  int  to force the time calculation to be converted to 
integer form. However, that version failed to run on one of the 11 systems we tried. That 
compiler (an ancient and obsolete version) failed to follow the C rules. Using type casts makes 
your intent clearer not only to the reader, but perhaps to the compiler as well.  

 Here’s some sample output:  

  This program converts your time for a metric race

  to a time for running a mile and to your average

  speed in miles per hour.

  Please enter, in kilometers, the distance run.

   10.0 
  Next enter the time in minutes and seconds.

  Begin by entering the minutes.

   36 
  Now enter the seconds.

   23 
  You ran 10.00 km (6.21 miles) in 36 min, 23 sec.

  That pace corresponds to running a mile in 5 min, 51 sec.

  Your average speed was 10.25 mph.    
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  Key Concepts  

 C uses operators to provide a variety of services. Each operator can be characterized by the 
number of operands it requires, its precedence, and its associativity. The last two qualities deter-
mine which operator is applied first when the two share an operand. Operators are combined 
with values to produce expressions, and every C expression has a value. If you are not aware 
of operator precedence and associativity, you may construct expressions that are illegal or that 
have values different from what you intend; that would not enhance your reputation as a 
programmer.  

 C allows you to write expressions combining different numerical types. But arithmetic opera-
tions require operands to be of the same type, so C makes automatic conversions. However, it’s 
good programming practice not to rely upon automatic conversions. Instead, make your choice 
of types explicit either by choosing variables of the correct type or by using typecasts. That 
way, you won’t fall prey to automatic conversions that you did not expect.   

  Summary  

 C has many operators, such as the assignment and arithmetic operators discussed in this 
chapter. In general, an  operator  operates on one or more operands to produce a value. Operators 
that take one operand, such as the minus sign and  sizeof , are termed  unary operators . 
Operators requiring two operands, such as the addition and the multiplication operators, are 
called  binary operators .  

  Expressions  are combinations of operators and operands. In C, every expression has a value, 
including assignment expressions and comparison expressions. Rules of  operator precedence  help 
determine how terms are grouped when expressions are evaluated. When two operators share 
an operand, the one of higher precedence is applied first. If the operators have equal prece-
dence, the associativity (left-right or right-left) determines which operator is applied first.  

  Statements  are complete instructions to the computer and are indicated in C by a terminating 
semicolon. So far, you have worked with declaration statements, assignment statements, func-
tion call statements, and control statements. Statements included within a pair of braces consti-
tute a  compound statement , or  block . One particular control statement is the  while  loop, which 
repeats statements as long as a test condition remains true.  

 In C, many  type conversions  take place automatically. The  char  and  short  types are promoted 
to type  int  whenever they appear in expressions or as function arguments to a function 
without a prototype. The  float  type is promoted to type  double  when used as a function 
argument. Under K&R C (but not ANSI C),  float  is also promoted to  double  when used in 
an expression. When a value of one type is assigned to a variable of a second type, the value 
is converted to the same type as the variable. When larger types are converted to smaller types 
( long  to  short  or  double  to  float , for example), there might be  a loss of data. In cases of 
mixed arithmetic, smaller types are converted to larger types following the rules outlined in 
this chapter.  
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 When you define a function that takes an argument, you declare a  variable , or  formal argument , 
in the function definition. Then the value passed in a function call is assigned to this variable, 
which can now be used in the function.    

     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    Assume all variables are of type  int . Find the value of each of the following variables:  

    a.    x = (2 + 3) * 6;    

   b.    x = (12 + 6)/2*3;    

   c.    y = x = (2 + 3)/4;    

   d.    y = 3 + 2*(x = 7/2);       

   2.    Assume all variables are of type  int . Find the value of each of the following variables:  

    a.    x = (int) 3.8 + 3.3;    

   b.    x = (2 + 3) * 10.5;    

   c.    x = 3 / 5 * 22.0;    

   d.    x = 22.0 * 3 / 5;       

   3.    Evaluate each of the following expressions:  

    a.    30.0 / 4.0 * 5.0;    

   b.    30.0 / (4.0 * 5.0);    

   c.    30 / 4 * 5;    

   d.    30 * 5 / 4;    

   e.    30 / 4.0 * 5;    

   f.    30 / 4 * 5.0;       

   4.    You suspect that there are some errors in the next program. Can you find them?  

  int main(void)

  {

    int i = 1,

    float n;

    printf("Watch out! Here come a bunch of fractions!\n");

    while (i < 30)

      n = 1/i;

      printf(" %f", n);
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    printf("That's all, folks!\n");

    return;

  }     

   5.    Here’s an alternative design for  Listing   5.9   . It appears to simplify the code by replacing 
the two  scanf()  statements in  Listing   5.9    with a single  scanf()  statement. What makes 
this design inferior to the original?  

  #include <stdio.h>

  #define S_TO_M 60

  int main(void)

  {

    int sec, min, left;

  

    printf("This program converts seconds to minutes and ");

    printf("seconds.\n");

    printf("Just enter the number of seconds.\n");

    printf("Enter 0 to end the program.\n");

    while (sec > 0) {

      scanf("%d", &sec);

      min = sec/S_TO_M;

      left = sec % S_TO_M;

      printf("%d sec is %d min, %d sec. \n", sec, min, left);

      printf("Next input?\n");

      }

    printf("Bye!\n");

    return 0;

  }     

   6.    What will this program print?  

  #include <stdio.h>

  #define FORMAT "%s! C is cool!\n"

  int main(void)

  {

       int num = 10;

  

       printf(FORMAT,FORMAT);

       printf("%d\n", ++num);

       printf("%d\n", num++);

       printf("%d\n", num--);

       printf("%d\n", num);

       return 0;

  }     
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   7.    What will the following program print?  

  #include <stdio.h>

  int main(void)

  {

       char c1, c2;

       int diff;

       float num;

  

       c1 = 'S';

       c2 = 'O';

       diff = c1 - c2;

       num = diff;

       printf("%c%c%c:%d %3.2f\n", c1, c2, c1, diff, num);

       return 0;

  }     

   8.    What will this program print?  

  #include <stdio.h>

  #define TEN 10

  int main(void)

  {

       int n = 0;

  

       while (n++ < TEN)

            printf("%5d", n);

       printf("\n");

       return 0;

  }     

   9.    Modify the last program so that it prints the letters  a  through  g  instead.    

   10.    If the following fragments were part of a complete program, what would they print?  

    a.   

  int x = 0;

  while (++x < 3)

      printf("%4d", x);     

   b.   

  int x = 100;

  

  while (x++ < 103)
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      printf("%4d\n",x);

      printf("%4d\n",x);     

   c.   

  char ch = 's';

  

  while (ch < 'w')

  {

      printf("%c", ch);

      ch++;

  }

  printf("%c\n",ch);        

   11.    What will the following program print?  

  #define MESG "COMPUTER BYTES DOG"

  #include <stdio.h>

  int main(void)

  {

     int n = 0;

  

     while ( n < 5 )

        printf("%s\n", MESG);

        n++;

     printf("That's all.\n");

     return 0;

  }     

   12.    Construct statements that do the following (or, in other terms, have the following side 
effects):  

    a.   Increase the variable  x  by  10 .   

   b.   Increase the variable  x  by  1 .   

   c.   Assign twice the sum of  a  and  b  to  c .   

   d.   Assign  a  plus twice  b  to  c .      

   13.    Construct statements that do the following:  

    a.   Decrease the variable  x  by  1 .   

   b.   Assigns to  m  the remainder of  n  divided by  k .   

   c.   Divide  q  by  b  minus  a  and assign the result to  p .   

   d.   Assign to  x  the result of dividing the sum of  a  and  b  by the product of  c  and  d .        
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  Programming Exercises  

    1.    Write a program that converts time in minutes to time in hours and minutes. Use 
 #define  or  const  to create a symbolic constant for 60. Use a  while  loop to allow the 
user to enter values repeatedly and terminate the loop if a value for the time of 0 or less 
is entered.    

   2.    Write a program that asks for an integer and then prints all the integers from (and 
including) that value up to (and including) a value larger by 10. (That is, if the input is 5, 
the output runs from 5 to 15.) Be sure to separate each output value by a space or tab or 
newline.    

   3.    Write a program that asks the user to enter the number of days and then converts that 
value to weeks and days. For example, it would convert 18 days to 2 weeks, 4 days. 
Display results in the following format:  

  18 days are 2 weeks, 4 days.   

 Use a  while  loop to allow the user to repeatedly enter day values; terminate the loop 
when the user enters a nonpositive value, such as  0  or  -20 .    

   4.    Write a program that asks the user to enter a height in centimeters and then displays the 
height in centimeters and in feet and inches. Fractional centimeters and inches should 
be allowed, and the program should allow the user to continue entering heights until a 
nonpositive value is entered. A sample run should look like this:  

  Enter a height in centimeters:  182 
  182.0 cm = 5 feet, 11.7 inches

  Enter a height in centimeters (<=0 to quit):  168.7 
  168.0 cm = 5 feet, 6.4

   inches

  Enter a height in centimeters (<=0 to quit):  0 
  bye     

   5.    Change the program  addemup.c  ( Listing   5.13   ), which found the sum of the first 20 
integers. (If you prefer, you can think of  addemup.c  as a program that calculates how 
much money you get in 20 days if you receive $1 the first day, $2 the second day, $3 the 
third day, and so on.) Modify the program so that you can tell it interactively how far 
the calculation should proceed. That is, replace the  20  with a variable that is read in.    

   6.    Now modify the program of Programming Exercise 5 so that it computes the sum of the 
squares of the integers. (If you prefer, how much money you receive if you get $1 the 
first day, $4 the second day, $9 the third day, and so on. This looks like a much better 
deal!) C doesn’t have a squaring function, but you can use the fact that the square of  n  is 
 n * n .    
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   7.    Write a program that requests a type  double  number and prints the value of the number 
cubed. Use a function of your own design to cube the value and print it. The  main()  
program should pass the entered value to this function.    

   8.    Write a program that displays the results of applying the modulus operation. The user 
should first enter an integer to be used as the second operand, which will then remain 
unchanged. Then the user enters the numbers for which the modulus will be computed, 
terminating the process by entering 0 or less. A sample run should look like this:  

  This program computes moduli.

  Enter an integer to serve as the second operand:  256 
  Now enter the first operand:  438 
  438 % 256 is 182

  Enter next number for first operand (<= 0 to quit):  1234567 
  1234567 % 256 is 135

  Enter next number for first operand (<= 0 to quit):  0 
  Done     

   9.    Write a program that requests the user to enter a Fahrenheit temperature. The program 
should read the temperature as a type  double  number and pass it as an argument to 
a user-supplied function called  Temperatures() . This function should calculate the 
Celsius equivalent and the Kelvin equivalent and display all three temperatures with a 
precision of two places to the right of the decimal. It should identify each value with the 
temperature scale it represents. Here is the formula for converting Fahrenheit to Celsius:  

   Celsius = 5.0 / 9.0 * (Fahrenheit - 32.0)  

   The Kelvin scale, commonly used in science, is a scale in which 0 represents absolute 
zero, the lower limit to possible temperatures. Here is the formula for converting Celsius 
to Kelvin:  

   Kelvin = Celsius + 273.16  

 The  Temperatures()  function should use  const  to create symbolic representations of 
the three constants that appear in the conversions. The  main()  function should use 
a loop to allow the user to enter temperatures repeatedly, stopping when a  q  or other 
nonnumeric value is entered. Use the fact that  scanf()  returns the number of items 
read, so it will return  1  if it reads a number, but it won’t return 1 if the user enters  q . The 
 ==  operator tests for equality, so you can use it to compare the return value of  scanf()  
with  1 .        
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 C Control Statements: 

Looping  

    You will learn about the following in this chapter:  

    ■   Keywords:  

  for   

  while   

  do while    

   ■   Operators:  

  < > >=   

  <= != == +=   

  *= -= /= %=    

   ■   Functions:  

  fabs()    

   ■   C’s three loop structures— while ,  for , and  do while    

   ■   Using relational operators to construct expressions to control these loops   

   ■   Several other operators   

   ■   Arrays, which are often used with loops   

   ■   Writing functions that have return values     

    Powerful, intelligent, versatile, and useful! Most of us wouldn’t mind being described that 
way. With C, there’s at least the chance of having our programs described that way. The trick 
is controlling the flow of a program. According to computer science (which is the science of 
computers and not science by computers...yet), a good language should provide these three 
forms of program flow:  
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    ■   Executing a sequence of statements   

   ■   Repeating a sequence of statements until some condition is met (looping)   

   ■   Using a test to decide between alternative sequences (branching)    

 The first form you know well; all the previous programs have consisted of a sequence of state-
ments. The  while  loop is one example of the second form. This chapter takes a closer look 
at the  while  loop along with two other loop structures— for  and  do while . The final form, 
choosing between different possible courses of action, makes a program much more “intel-
ligent” and increases the usefulness of a computer enormously. Sadly, you’ll have to wait a 
chapter before being entrusted with such power. This chapter also introduces arrays because 
they give you something to do with your new knowledge of loops. In addition,  this chapter 
continues your education about functions. Let’s begin by reviewing the  while  loop.  

  Revisiting the  while  Loop  

 You are already somewhat familiar with the  while  loop, but let’s review it with a program that 
sums integers entered from the keyboard (see  Listing   6.1   ). This example makes use of the return 
value of  scanf()  to terminate input.  

  Listing 6.1   The  summing.c  Program  

 /* summing.c -- sums integers entered interactively */

  #include <stdio.h>

  int main(void)

  {

      long num;

      long sum = 0L;      /* initialize sum to zero   */

      int status;

  

      printf("Please enter an integer to be summed ");

      printf("(q to quit): ");

      status = scanf("%ld", &num);

      while (status == 1) /* == means "is equal to"   */

      {

          sum = sum + num;

          printf("Please enter next integer (q to quit): ");

          status = scanf("%ld", &num);

      }

      printf("Those integers sum to %ld.\n", sum);

  

      return 0;

  }   
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  Listing   6.1    uses type  long  to allow for larger numbers. For consistency, the program initializes 
 sum  to  0L  (type  long  zero) rather than to  0  (type  int  zero), even though C’s automatic conver-
sions enable you to use a plain  0 .  

 Here is a sample run:  

  Please enter an integer to be summed (q to quit):  44 
  Please enter next integer (q to quit):  33 
  Please enter next integer (q to quit):  88 
  Please enter next integer (q to quit):  121 
  Please enter next integer (q to quit):  q 
  Those integers sum to 286.   

  Program Comments  

 Let’s look at the  while  loop first. The test condition for this loop is the following expression:  

  status == 1   

 The  ==  operator is C’s  equality operator ; that is, this expression tests whether  status  is equal to 
 1 . Don’t confuse it with  status = 1 , which assigns  1  to  status . With the  status == 1  test 
condition, the loop repeats as long as  status  is  1 . For each cycle, the loop adds the current 
value of  num  to  sum , so that  sum  maintains a running total. When  status  gets a value other 
than  1 , the loop terminates, and the program reports the final value of  sum .  

 For the program to work properly, it should get a new value for  num  on each loop cycle, and 
it should reset  status  on each cycle. The program accomplishes this by using two distinct 
features of  scanf() . First, it uses  scanf()  to attempt to read a new value for  num . Second, it 
uses the  scanf()  return value to report on the success of that attempt. Recall from  Chapter   4   , 
“Character Strings and Formatted Input/Output,” that  scanf()  returns the number of items 
successfully read. If  scanf()  succeeds in reading an integer, it places the integer into  num  and 
returns the value  1 , which is assigned to  status . (Note  that the input value goes to  num , not 
to  status .) This updates both  num  and the value of  status , and the  while  loop goes through 
another cycle. If you respond with nonnumeric input, such as  q ,  scanf()  fails to find an 
integer to read, so its return value and  status  will be  0 . That terminates the loop. The input 
character  q , because it isn’t a number, is placed back into the input queue; it does not get read. 
(Actually, any nonnumeric input, not just  q , terminates the loop, but asking the user to enter  q  
is a simpler instruction than asking the user to enter  nonnumeric input.)  

 If  scanf()  runs into a problem before attempting to convert the value (for example, by detect-
ing the end of the file or by encountering a hardware problem), it returns the special value  EOF , 
which typically is defined as  -1 . This value, too, will cause the loop to terminate.  

 This dual use of  scanf()  gets around a troublesome aspect of interactive input to a loop: How 
do you tell the loop when to stop? Suppose, for instance, that  scanf()  did not have a return 
value. Then, the only thing that would change on each loop is the value of  num . You could use 
the value of  num  to terminate the loop, using, say,  num > 0  ( num  greater than  0 ) or  num != 0  
( num  not equal to  0 ) as a test condition, but this prevents you from entering certain values, 
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such as  –3  or  0 , as input. Instead, you could add new code to the loop,  such as asking “Do you 
wish to continue? <y/n>” at each cycle, and then test to see whether the user entered  y . This is 
a bit clunky and slows down input. Using the return value of  scanf()  avoids these problems.  

 Now let’s take a closer look at the program structure. We can summarize it as follows:  

   initialize sum to 0 

   prompt user 

   read input 

   while the input is an integer, 

        add the input to sum, 

        prompt user, 

        then read next input 

   after input completes, print sum    

 This, incidentally, is an example of  pseudocode , which is the art of expressing a program in 
simple English that parallels the forms of a computer language. Pseudocode is useful for 
working out the logic of a program. After the logic seems right, you can translate the pseudo-
code to the actual programming code. One advantage of pseudocode is that it enables you to 
concentrate on the logic and organization of a program and spares you from simultaneously 
worrying about how to express the ideas in a computer language. Here, for example, you can 
use indentation to indicate a block of code  and not worry about C syntax requiring braces. 
Another advantage is that pseudocode is not tied to a particular language, so the same pseudo-
code can be translated into different computer languages.  

 Anyway, because the  while  loop is an entry-condition loop, the program must get the input 
and check the value of  status   before  it goes to the body of the loop. That is why the program 
has a  scanf()  before the  while . For the loop to continue, you need a read statement inside 
the loop so that it can find out the status of the next input. That is why the program also has a 
 scanf()  statement at the end of the  while  loop; it readies the loop for its next iteration. You 
can think of the following as a standard format for a loop:  

   get first value to be tested 

   while the test is successful 

        process value 

        get next value     

  C-Style Reading Loop  

  Listing   6.1    could be written in Pascal, BASIC, or FORTRAN along the same design displayed in 
the pseudocode. C, however, offers a shortcut. The construction  

  status = scanf("%ld", &num);

  while (status == 1)

  {

          /* loop actions */

          status = scanf("%ld", &num);

  }   
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 can be replaced by the following:  

  while (scanf("%ld", &num) == 1)

  {

          /* loop actions */

  }   

 The second form uses  scanf()  in two different ways simultaneously. First, the function call, 
if successful, places a value in  num . Second, the function’s return value (which is  1  or  0  and 
not the value of  num ) controls the loop. Because the loop condition is tested at each iteration, 
 scanf()  is called at each iteration, providing a new  num  and a new test. In other words, C’s 
syntax features let you replace the standard loop format with the following condensed version:  

  while getting and testing the value succeeds

      process the value   

 Now let’s take a more formal look at the  while  statement.    

  The  while  Statement  

 This is the general form of the  while  loop:  

  while ( expression )

         statement    

 The   statement   part can be a simple statement with a terminating semicolon, or it can be a 
compound statement enclosed in braces.  

 So far, the examples have used relational expressions for the expression part; that is,   
expression   has been a comparison of values. More generally, you can use any expression. 
If   expression   is true (or, more generally, nonzero), the statement is executed once and then 
the expression is tested again. This cycle of test and execution is repeated until   expression   
becomes false (zero). Each cycle is called an  iteration  (see  Figure   6.1   ).  

 

while

false

true

count++<limit

printf("Tra la la la!\n");

next

statement

 Figure 6.1   Structure of the  while  loop.         
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  Terminating a  while  Loop  

 Here is a  crucial  point about  while  loops: When you construct a  while  loop, it must include 
something that changes the value of the test expression so that the expression eventually 
becomes false. Otherwise, the loop never terminates. (Actually, you can use  break  and an  if  
statement to terminate a loop, but you haven’t learned about them yet.) Consider this example:  

  index = 1;

  while (index < 5)

     printf("Good morning!\n");   

 The preceding fragment prints its cheerful message indefinitely. Why? Because nothing within 
the loop changes the value of  index  from its initial value of  1 . Now consider this:  

  index = 1;

  while (--index < 5)

     printf("Good morning!\n");   

 This last fragment isn’t much better. It changes the value of  index , but in the wrong direc-
tion! At least this version will terminate eventually when  index  drops below the most nega-
tive number that the system can handle and becomes the largest possible positive value. (The 
 toobig.c  program in  Chapter   3   , “Data and C,” illustrates how adding 1 to the largest positive 
number typically produces a negative number; similarly, subtracting 1 from the most negative 
number typically yields a positive value.)   

  When a Loop Terminates  

 It is important to realize that the decision to terminate the loop or to continue takes place only 
when the test condition is evaluated. For example, consider the program shown in  Listing   6.2   .  

  Listing 6.2   The  when.c  Program  

 // when.c -- when a loop quits

  #include <stdio.h>

  int main(void)

  {

      int n = 5;

  

      while (n < 7)                    // line 7

      {

          printf("n = %d\n", n);

          n++;                         // line 10

          printf("Now n = %d\n", n);   // line 11

      }

      printf("The loop has finished.\n");

  

      return 0;

  }   
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 Running  Listing   6.2    produces the following output:  

  n = 5

  Now n = 6

  n = 6

  Now n = 7

  The loop has finished.   

 The variable  n  first acquires the value  7  on line 10 during the second cycle of the loop. 
However, the program doesn’t quit then. Instead, it completes the loop (line 11) and quits the 
loop only when the test condition on line 7 is evaluated for the third time. (The variable  n  was 
 5  for the first test and  6  for the second test.)   

   while : An Entry-Condition Loop  

 The  while  loop is a  conditional  loop using an entry condition. It is called “conditional” because 
the execution of the statement portion depends on the condition described by the test expres-
sion, such as  (index < 5) . The expression is an  entry condition  because the condition must be 
met before the body of the loop is entered. In a situation such as the following, the body of the 
loop is never entered because the condition is false to begin with:  

  index = 10;

  while (index++ < 5)

      printf("Have a fair day or better.\n");   

 Change the first line to  

  index = 3;   

 and the loop will execute.   

  Syntax Points  

 When using  while , keep in mind that only the single statement, simple or compound, follow-
ing the test condition is part of the loop. Indentation is an aid to the reader, not the computer. 
 Listing   6.3    shows what can happen if you forget this.  

  Listing 6.3   The  while1.c  Program  

 /* while1.c -- watch your braces       */

  /* bad coding creates an infinite loop */

  #include <stdio.h>

  int main(void)

  {

      int n = 0;

  

      while (n < 3)
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          printf("n is %d\n", n);

          n++;

      printf("That's all this program does\n");

  

      return 0;

  }   

  Listing   6.3    produces the following output:  

  n is 0

  n is 0

  n is 0

  n is 0

  n is 0   

 ...and so on, until you kill the program.  

 Although this example indents the  n++;  statement, it doesn’t enclose it and the preceding 
statement within braces. Therefore, only the single print statement immediately following the 
test condition is part of the loop. The variable  n  is never updated, the condition  n < 3  remains 
eternally true, and you get a loop that goes on printing  n is 0  until you kill the program. This 
is an example of an  infinite loop , one that does not quit without outside intervention.  

 Always remember that the  while  statement itself, even if it uses compound statements, counts 
syntactically as a single statement. The statement runs from the  while  to the first semicolon 
or, in the case of using a compound statement, to the terminating brace.  

 Be careful where you place your semicolons. For instance, consider the program in  Listing   6.4   .  

  Listing 6.4   The  while2.c  Program  

 /* while2.c -- watch your semicolons */

  #include <stdio.h>

  int main(void)

  {

      int n = 0;

  

      while (n++ < 3);             /* line 7 */

          printf("n is %d\n", n);  /* line 8 */

      printf("That's all this program does.\n");

  

      return 0;

  }   

  Listing   6.4    produces the following output:  

  n is 4

  That's all this program does.   
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 As we said earlier, the loop ends with the first statement, simple or compound, following the 
test condition. Because there is a semicolon immediately after the test condition on line 7, the 
loop ends there, because a lone semicolon counts as a statement. The print statement on line 8 
is not part of the loop, so  n  is incremented on each loop, but it is printed only after the loop is 
exited.  

 In this example, the test condition is followed with the  null statement , one that does nothing. 
In C, the lone semicolon represents the null statement. Occasionally, programmers intention-
ally use the  while  statement with a null statement because all the work gets done in the test. 
For example, suppose you want to skip over input to the first character that isn’t whitespace or 
a digit. You can use a loop like this:  

  while (scanf("%d", &num) == 1)

    ;    /* skip integer input */   

 As long as  scanf()  reads an integer, it returns  1 , and the loop continues. Note that, for clarity, 
you should put the semicolon (the null statement) on the line below instead of on the same 
line. This makes it easier to see the null statement when you read a program and also reminds 
you that the null statement is there deliberately. Even better, use the  continue  statement 
discussed in the next chapter.    

  Which Is Bigger: Using Relational Operators and 

Expressions  

  While  loops often rely on test expressions that make comparisons, comparison expressions 
merit a closer look. Such expressions are termed  relational expressions , and the operators that 
appear in them are called  relational operators . You have used several already, and  Table   6.1    gives 
a complete list of C relational operators. This table pretty much covers all the possibilities for 
numerical relationships. (Numbers, even complex ones, are less complex than humans.)  

  Table 6.1   Relational Operators  

  Operator     Meaning   

  <    Is less than  

  <=    Is less than or equal to  

  ==    Is equal to  

  >=    Is greater than or equal to  

  >    Is greater than  

  !=    Is not equal to  
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 The relational operators are used to form the relational expressions used in  while  statements 
and in other C statements that we’ll discuss later. These statements check to see whether the 
expression is true or false. Here are three unrelated statements containing examples of rela-
tional expressions. The meaning, we hope, is clear.  

  while (number < 6)

  {

      printf("Your number is too small.\n");

      scanf("%d", &number);

  }

  

  while (ch != '$')

  {

       count++;

       scanf("%c", &ch);

  }

  

  while (scanf("%f", &num) == 1)

      sum = sum + num;   

 Note in the second example that the relational expressions can be used with characters, too. 
The machine character code (which we have been assuming is ASCII) is used for the compari-
son. However, you can’t use the relational operators to compare strings.  Chapter   11   , “Character 
Strings and String Functions,” will show you what to use for strings.  

 The relational operators can be used with floating-point numbers, too. Beware, though: You 
should limit yourself to using only  <  and  >  in floating-point comparisons. The reason is that 
round-off errors can prevent two numbers from being equal, even though logically they 
should be. For example, certainly the product of 3 and 1/3 is 1.0. If you express 1/3 as a six-
place decimal fraction, however, the product is .999999, which is not quite equal to 1. The 
 fabs()  function, declared in the  math.h  header file, can be handy for floating-point tests. This 
function returns the absolute value of a floating-point value—that is, the value  without the 
algebraic sign. For example, you could test whether a number is close to a desired result with 
something like  Listing   6.5   .  

  Listing 6.5   The  cmpflt.c  Program  

 // cmpflt.c -- floating-point comparisons

  #include <math.h>

  #include <stdio.h>

  int main(void)

  {

      const double ANSWER = 3.14159;

      double response;

  

      printf("What is the value of pi?\n");

      scanf("%lf", &response);
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      while (fabs(response - ANSWER) > 0.0001)

      {

          printf("Try again!\n");

          scanf("%lf", &response);

      }

      printf("Close enough!\n");

  

      return 0;

  }   

 This loop continues to elicit a response until the user gets within 0.0001 of the correct value:  

  What is the value of pi?

   3.14 
  Try again!

   3.1416 
  Close enough!   

 Each relational expression is judged to be true or false (but never maybe). This raises an inter-
esting question.  

  What Is Truth?  

 You can answer this age-old question, at least as far as C is concerned. Recall that an expression 
in C always has a value. This is true even for relational expressions, as the example in  Listing 
  6.6    shows. That example prints the values of two relational expressions—one true and one 
false.  

  Listing 6.6   The  t_and_f.c  Program  

 /* t_and_f.c -- true and false values in C */

  #include <stdio.h>

  int main(void)

  {

      int true_val, false_val;

  

      true_val = (10 > 2);    // value of a true relationship

      false_val = (10 == 2);  // value of a false relationship

      printf("true = %d; false = %d \n", true_val, false_val);

  

      return 0;

  }   
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  Listing   6.6    assigns the values of two relational expressions to two variables. Being straightfor-
ward, it assigns  true_val  the value of a true expression, and  false_val  the value of a false 
expression. Running the program produces the following simple output:  

  true = 1; false = 0   

 Aha! For C, a true expression has the value  1 , and a false expression has the value  0 . Indeed, 
some C programs use the following construction for loops that are meant to run forever 
because  1  always is true:  

  while (1)

  {

    ...

  }    

  What Else Is True?  

 If you can use a  1  or a  0  as a  while  statement test expression, can you use other numbers? If 
so, what happens? Let’s experiment by trying the program in  Listing   6.7   .  

  Listing 6.7   The  truth.c  Program  

 // truth.c -- what values are true?

  #include <stdio.h>

  int main(void)

  {

      int n = 3;

  

      while (n)

          printf("%2d is true\n", n--);

      printf("%2d is false\n", n);

  

      n = -3;

      while (n)

          printf("%2d is true\n", n++);

      printf("%2d is false\n", n);

  

      return 0;

  }   

 Here are the results:  

   3 is true

   2 is true

   1 is true

   0 is false

  -3 is true
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  -2 is true

  -1 is true

   0 is false   

 The first loop executes when  n  is  3 ,  2 , and  1 , but terminates when  n  is  0 . Similarly, the second 
loop executes when  n  is  -3 ,  -2 , and  -1 , but terminates when  n  is  0 . More generally,  all  nonzero 
values are regarded as true, and only  0  is recognized as false. C has a very tolerant notion of 
truth!  

 Alternatively, you can say that a  while  loop executes as long as its test condition evaluates to 
nonzero. This puts test conditions on a numeric basis instead of a true/false basis. Keep in mind 
that relational expressions evaluate to  1  if true and to  0  if false, so such expressions really are 
numeric.  

 Many C programmers make use of this property of test conditions. For example, the phrase 
 while (goats != 0)  can be replaced by  while (goats)  because the expression  (goats 
!= 0)  and the expression  (goats)  both become  0 , or false, only when  goats  has the value  0 . 
The first form probably is clearer to those just learning the language, but the second form is the 
idiom most often used by C programmers. You should try to become sufficiently familiar with 
the  while (goats)  form so that it seems natural to   you.   

  Troubles with Truth  

 C’s tolerant notion of truth can lead to trouble. For example, let’s make one subtle change to 
the program from  Listing   6.1   , producing the program shown in  Listing   6.8   .  

  Listing 6.8   The  trouble.c  Program  

 // trouble.c -- misuse of =

  // will cause infinite loop

  #include <stdio.h>

  int main(void)

  {

      long num;

      long sum = 0L;

      int status;

  

      printf("Please enter an integer to be summed ");

      printf("(q to quit): ");

      status = scanf("%ld", &num);

      while (status = 1)

      {

          sum = sum + num;

          printf("Please enter next integer (q to quit): ");

          status = scanf("%ld", &num);

      }
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      printf("Those integers sum to %ld.\n", sum);

  

      return 0;

  }   

  Listing   6.8    produces output like the following:  

  Please enter an integer to be summed (q to quit):  20 
  Please enter next integer (q to quit):  5 
  Please enter next integer (q to quit):  30 
  Please enter next integer (q to quit):  q 
  Please enter next integer (q to quit):

  Please enter next integer (q to quit):

  Please enter next integer (q to quit):

  Please enter next integer (q to quit):   

 ...and so on until you kill the program—so perhaps you shouldn’t actually try running this 
example.  

 This troublesome example made a change in the  while  test condition, replacing  status == 
1  with  status = 1 . The second statement is an assignment statement, so it gives  status  the 
value  1 . Furthermore, the value of an assignment statement is the value of the left side, so 
 status = 1  has the same numerical value of  1 . So for all practical purposes, the  while  loop is 
the same as using  while (1) ; that is, it is a loop that never quits. You enter  q , and  status  is 
set to  0 , but the loop test resets  status  to  1  and starts another cycle.  

 You might wonder why, because the program keeps looping, the user doesn’t get a chance 
to type in any more input after entering  q . When  scanf()  fails to read the specified form of 
input, it leaves the nonconforming input in place to be read the next time. When  scanf()  
tries to read the  q  as an integer and fails, it leaves the  q  there. During the next loop cycle, 
 scanf()  attempts to read where it left off the last time—at the  q . Once again,  scanf()  fails to 
read the  q  as an integer, so not only does this example set up an infinite loop, it also creates  a 
loop of infinite failure, a daunting concept. It is fortunate that computers, as yet, lack feelings. 
Following stupid instructions eternally is no better or worse to a computer than successfully 
predicting the stock market for the next 10 years.  

 Don’t use  =  for  == . Some computer languages (BASIC, for example) do use the same symbol for 
both the assignment operator and the relational equality operator, but the two operations are 
quite different (see  Figure   6.2   ). The assignment operator assigns a value to the left variable. The 
relational equality operator, however, checks to see whether the left and right sides are already 
equal. It doesn’t change the value of the left-hand variable, if one is present. Here’s an example:  

  canoes = 5    Assigns the value  5  to  canoes   

  canoes == 5    Checks to see whether  canoes  has the value  5   
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 Be careful about using the correct operator. A compiler will let you use the wrong form, yield-
ing results other than what you expect. (However, so many people have misused  =  so often 
that most compilers today will issue a warning to the effect that perhaps you didn’t mean to 
use this.) If one of the values being compared is a constant, you can put it on the left side of 
the comparison to help catch errors:  

  5 = canoes    syntax error  

  5 == canoes    Checks to see whether  canoes  has the value  5   

 The point is that it is illegal to assign to a constant, so the compiler will tag the use of 
the assignment operator as a syntax error. Many practitioners put the constant first when 
constructing expressions that test for equality.  

 

canoes == 5

comparison

canoes = 5

assignment

== checks to see if the
value of canoes is 5

= gives canoes
the value of 5

 Figure 6.2   The relational operator  ==  and the assignment operator  = .         

 To sum up, the relational operators are used to form relational expressions. Relational expres-
sions have the value 1 if true and 0 if false. Statements (such as  while  and  if ) that normally 
use relational expressions as tests can use any expression as a test, with nonzero values recog-
nized as “true” and zero values as “false.”   

  The New  _Bool  Type  

 Variables intended to represent true/false values traditionally have been represented by type 
 int  in C. C99 adds the  _Bool  type specifically for variables of this sort. The type is named after 
George Boole, the English mathematician who developed a system of algebra to represent and 
solve problems in logic. In programming, variables representing true or false have come to be 
known as  Boolean variables , so  _Bool  is the C type name for a Boolean variable. A  _Bool  vari-
able can only have a value of 1 (true) or 0 (false). If you try to assign a nonzero numeric value 
to a  _Bool  variable, the variable is  set to 1, reflecting that C considers any nonzero value to be 
true.  
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  Listing   6.9    fixes the test condition in  Listing   6.8    and replaces the  int  variable  status  with the 
 _Bool  variable  input_is_good . It’s a common practice to give Boolean variables names that 
suggest  true or false values.  

  Listing 6.9   The  boolean.c  Program  

 // boolean.c -- using a _Bool variable

  #include <stdio.h>

  int main(void)

  {

      long num;

      long sum = 0L;

      _Bool input_is_good;

  

      printf("Please enter an integer to be summed ");

      printf("(q to quit): ");

      input_is_good = (scanf("%ld", &num) == 1);

      while (input_is_good)

      {

          sum = sum + num;

          printf("Please enter next integer (q to quit): ");

          input_is_good = (scanf("%ld", &num) == 1);

      }

      printf("Those integers sum to %ld.\n", sum);

  

      return 0;

  }   

 Note how the code assigns the result of a comparison to the variable:  

  input_is_good = (scanf("%ld", &num) == 1);   

 This makes sense, because the  ==  operator returns either a value of 1 or 0. Incidentally, the 
parentheses enclosing the  ==  expression are not needed because the  ==  operator has higher 
precedence than  = ; however, they may make the code easier to read. Also note how the choice 
of name for the variable makes the  while  loop test easy to understand:  

  while (input_is_good)   

 C99 also provides for a  stdbool.h  header file. This header file makes  bool  an alias for  _Bool  
and defines  true  and  false  as symbolic constants for the values 1 and 0. Including this header 
file allows you to write code that is compatible with C++, which defines  bool ,  true , and  false  
as keywords.  

 If your system does not yet support the  _Bool  type, you can replace  _Bool  with  int , and the 
example will work  the same.   
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  Precedence of Relational Operators  

 The precedence of the relational operators is less than that of the arithmetic operators, includ-
ing  +  and  - , and greater than that of assignment operators. This means, for example, that  

  x > y + 2   

 means the same as  

  x > (y + 2)   

 It also means that  

  x = y > 2   

 means  

  x = (y > 2)   

 In other words,  x  is assigned  1  if  y  is greater than  2  and is  0  otherwise;  x  is not assigned the 
value of  y .  

 The relational operators have a greater precedence than the assignment operator. Therefore,  

  x_bigger = x > y;   

 means  

  x_bigger = (x > y);   

 The relational operators are themselves organized into two different precedences.  

 Higher precedence group:    < <= > >=   

 Lower precedence group:    == !=   

 Like most other operators, the relational operators associate from left to right. Therefore,  

  ex != wye == zee   

 is the same as  

  (ex != wye) == zee   

 First, C checks to see whether  ex  and  wye  are unequal. Then, the resulting value of  1  or  0  (true 
or false) is compared to the value of  zee . We don’t anticipate using this sort of construction, 
but we feel it is our duty to point out such sidelights.  

  Table   6.2    shows the priorities of the operators introduced so far, and Reference Section II, “C 
Operators,” in  Appendix   B    has a complete precedence ranking of all operators.      
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  Table 6.2   Operator Precedence  

  Operators (From High to Low Precedence)     Associativity   

 ( )   L–R  

  -   +   ++   –– sizeof    R–L  (   type   )  (all unary)  

  * /   %    L–R  

  + -    L–R  

  < > <= >=    L–R  

  == !=    L–R  

  =    R–L  

  Summary: The   while   Statement  

  Keyword:   

  while   

  General Comments:   

 The  while  statement creates a loop that repeats until the test expression becomes false, or 
zero. The  while  statement is an entry-condition loop—that is, the decision to go through one 
more pass of the loop is made before the loop is traversed. Therefore, it is possible that the 
loop is never traversed. The statement part of the form can be a simple statement or a com-
pound statement.  

  Form:   

  while ( expression )

           statement    

 The   statement   portion is repeated until the   expression   becomes false or 0.  

  Examples:   

  while (n++ < 100)

     printf(" %d %d\n",n, 2 * n + 1); // single statement

  

  while (fargo < 1000)

  {                                   // compound statement

     fargo = fargo + step;

     step = 2 * step;

  }    
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  Summary: Relational Operators and Expressions  

  Relational Operators:   

 Each relational operator compares the value at its left to the value at its right.  

  <    Is less than  

  <=    Is less than or equal to  

  ==    Is equal to  

  >=    Is greater than or equal to  

  >    Is greater than  

  !=    Is unequal to  

  Relational Expressions:   

 A simple relational expression consists of a relational operator with an operand on each side. 
If the relation is true, the relational expression has the value  1 . If the relation is false, the rela-
tional expression has the value  0 .  

  Examples:   

  5 > 2  is true and has the value  1 .  

  (2 + a) == a  is false and has the value  0 .     

  Indefinite Loops and Counting Loops  

 Some of the  while  loop examples have been  indefinite  loops. That means we don’t know in 
advance how many times the loop will be executed before the expression becomes false. For 
example, when  Listing   6.1    used an interactive loop to sum integers, we didn’t know beforehand 
how many integers would be entered. Other examples, however, have been  counting  loops. 
They execute a predetermined number of repetitions.  Listing   6.10    is a short example of a  while  
counting loop.  

  Listing 6.10   The  sweetie1.c  Program  

 // sweetie1.c -- a counting loop

  #include <stdio.h>

  int main(void)

  {

      const int NUMBER = 22;

      int count = 1;                     // initialization

  

      while (count <= NUMBER)            // test

      {

          printf("Be my Valentine!\n");  // action

          count++;                       // update count

      }
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      return 0;

  }   

 Although the form used in  Listing   6.10    works fine, it is not the best choice for this situation 
because the actions defining the loop are not all gathered together. Let’s elaborate on that 
point.  

 Three actions are involved in setting up a loop that is to be repeated a fixed number of times:  

    1.   A counter must be initialized.   

   2.   The counter is compared with some limiting value.   

   3.   The counter is incremented each time the loop is traversed.    

 The  while  loop condition takes care of the comparison. The increment operator takes care of 
the incrementing. In  Listing   6.10   , the incrementing is done at the end of the loop. This choice 
makes it possible to omit the incrementing accidentally. So it would be better to combine the 
test and update actions into one expression by using  count++ <= NUMBER , but the initializa-
tion of the counter is still done outside the loop, making it possible to forget to initialize a 
counter. Experience teaches us that what might happen  will  happen eventually, so let’s look at 
a control statement that avoids these problems.   

  The  for  Loop  

 The  for  loop gathers all three actions (initializing, testing, and updating) into one place. By 
using a  for  loop, you can replace the preceding program with the one shown in  Listing   6.11   .  

  Listing 6.11   The  sweetie2.c  Program  

 // sweetie2.c -- a counting loop using for

  #include <stdio.h>

  int main(void)

  {

      const int NUMBER = 22;

      int count;

  

      for (count = 1; count <= NUMBER; count++)

          printf("Be my Valentine!\n");

  

      return 0;

  }   

 The parentheses following the keyword  for  contain three expressions separated by two semi-
colons. The first expression is the initialization. It is done just once, when the  for  loop first 
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starts. The second expression is the test condition; it is evaluated before each potential execu-
tion of a loop. When the expression is false (when  count  is greater than  NUMBER ), the loop is 
terminated. The third expression, the change or update, is evaluated at the end of each loop. 
 Listing   6.10    uses it to increment the value of  count , but it needn’t be restricted to that use. The 
 for  statement is completed by following it with a  single simple or compound statement. Each 
of the three control expressions is a full expression, so any side effects in a control expression, 
such as incrementing a variable, take place before the program evaluates another expression. 
 Figure   6.3    summarizes the structure of a  for  loop.  

 To show another example,  Listing   6.12    uses the  for  loop in a program that prints a table of 
cubes.  

 

for

false

true

count<=number;

printf("Be my Valentine!\n");

count=1;

count++;

initialize expression once
before loop begins

this expression is done
at end of each loop

 Figure 6.3   Structure of a  for  loop.         

  Listing 6.12   The  for_cube.c  Program  

 /* for_cube.c -- using a for loop to make a table of cubes */

  #include <stdio.h>

  int main(void)

  {

      int num;

  

      printf("    n   n cubed\n");

      for (num = 1; num <= 6; num++)

          printf("%5d %5d\n", num, num*num*num);

  

      return 0;

  }   
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  Listing   6.12    prints the integers 1 through 6 and their cubes.  

  n   n cubed

  1     1

  2     8

  3    27

  4    64

  5   125

  6   216   

 The first line of the  for  loop tells us immediately all the information about the loop param-
eters: the starting value of  num , the final value of  num , and the amount that  num  increases on 
each looping.  

  Using  for  for Flexibility  

 Although the  for  loop looks similar to the FORTRAN  DO  loop, the Pascal  FOR  loop, and the 
BASIC  FOR...NEXT  loop, it is much more flexible than any of them. This flexibility stems from 
how the three expressions in a  for  specification can be used. The examples so far have used 
the first expression to initialize a counter, the second expression to express the limit for the 
counter, and the third expression to increase the value of the counter by 1. When used this 
way, the C  for  statement is very much like the others we have mentioned. However, there are 
many more possibilities; here are nine  variations:  

    ■   You can use the decrement operator to count down instead of up:  

  /* for_down.c */

  #include <stdio.h>

  int main(void)

  {

      int secs;

  

      for (secs = 5; secs > 0; secs--)

          printf("%d seconds!\n", secs);

      printf("We have ignition!\n");

      return 0;

  }   

 Here is the output:  

  5 seconds!

  4 seconds!

  3 seconds!

  2 seconds!

  1 seconds!

  We have ignition!    
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   ■   You can count by twos, tens, and so on, if you want:  

  /* for_13s.c */

  #include <stdio.h>

  int main(void)

  {

      int n;        // count by 13s from 2

  

      for (n = 2;  n < 60; n = n + 13)

          printf("%d \n", n);

      return 0;

  }   

 This would increase  n  by 13 during each cycle, printing the following:  

   2

  15

  28

  41

  54    

   ■   You can count by characters instead of by numbers:  

  /* for_char.c */

  #include <stdio.h>

  int main(void)

  {

      char ch;

  

      for (ch = 'a'; ch <= 'z'; ch++)

          printf("The ASCII value for %c is %d.\n", ch, ch);

      return 0;

  }   

 The program assumes the system uses ASCII code for characters. Here’s the abridged 
output:  

  The ASCII value for a is 97.

  The ASCII value for b is 98.

  ...

  The ASCII value for x is 120.

  The ASCII value for y is 121.

  The ASCII value for z is 122.   

 The program works because characters are stored as integers, so this loop really counts by 
integers anyway.   

   ■   You can test some condition other than the number of iterations. In the  for_cube  
program, you can replace  

  for (num = 1; num <= 6; num++)   
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 with  

  for (num = 1; num*num*num <= 216; num++)   

 You would use this test condition if you were more concerned with limiting the size of 
the cube than with limiting the number of iterations.   

   ■   You can let a quantity increase geometrically instead of arithmetically; that is, instead of 
adding a fixed amount each time, you can multiply by a fixed amount:  

  /* for_geo.c */

  #include <stdio.h>

  int main(void)

  {

      double debt;

  

      for (debt = 100.0; debt < 150.0; debt = debt * 1.1)

          printf("Your debt is now $%.2f.\n", debt);

      return 0;

  }   

 This program fragment multiplies  debt  by 1.1 for each cycle, increasing it by 10% each 
time. The output looks like this:  

  Your debt is now $100.00.

  Your debt is now $110.00.

  Your debt is now $121.00.

  Your debt is now $133.10.

  Your debt is now $146.41.    

   ■   You can use any legal expression you want for the third expression. Whatever you put in 
will be updated for each iteration.  

  /* for_wild.c */

  #include <stdio.h>

  int main(void)

  {

      int x;

      int y = 55;

  

      for (x = 1; y <= 75; y = (++x * 5) + 50)

          printf("%10d %10d\n", x, y);

      return 0;

  }   

 This loop prints the values of  x  and of the algebraic expression  ++x * 5 + 50 . The 
output looks like this:  

  1         55

  2         60

  3         65
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  4         70

  5         75   

 Notice that the test involves  y , not  x . Each of the three expressions in the  for  loop 
control can use different variables. (Note that although this example is valid, it does not 
show good style. The program would have been clearer if we hadn’t mixed the updating 
process with an algebraic calculation.)   

   ■   You can even leave one or more expressions blank (but don’t omit the semicolons). Just 
be sure to include within the loop itself some statement that eventually causes the loop 
to terminate.  

  /* for_none.c */

  #include <stdio.h>

  int main(void)

  {

      int ans, n;

  

      ans = 2;

      for (n = 3; ans <= 25; )

          ans = ans * n;

      printf("n = %d; ans = %d.\n", n, ans);

      return 0;

  }   

 Here is the output:  

  n = 3; ans = 54.   

 The loop keeps the value of  n  at 3. The variable  ans  starts with the value 2, and then 
increases to 6 and 18 and obtains a final value of 54. (The value 18 is less than 25, so the 
 for  loop goes through one more iteration, multiplying 18 by 3 to get 54.) Incidentally, 
an empty middle control expression is considered to be true, so the following loop goes 
on forever:  

  for (; ; )

       printf("I want some action\n");    

   ■   The first expression need not initialize a variable. It could, instead, be a  printf()  
statement of some sort. Just remember that the first expression is evaluated or executed 
only once, before any other parts of the loop are executed.  

  /* for_show.c */

  #include <stdio.h>

  int main(void)

  {

      int num = 0;

  

      for (printf("Keep entering numbers!\n"); num != 6;  )

          scanf("%d", &num);
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      printf("That's the one I want!\n");

      return 0;

  }   

 This fragment prints the first message once and then keeps accepting numbers until you 
enter 6:  

  Keep entering numbers!

   3 
   5 
   8 
   6 
  That's the one I want!    

   ■   The parameters of the loop expressions can be altered by actions within the loop. For 
example, suppose you have the loop set up like this:  

  for (n = 1; n < 10000; n = n + delta)   

 If after a few iterations your program decides that  delta  is too small or too large, an  
if  statement (see  Chapter   7   , “C Control Statements: Branching and Jumps”) inside the 
loop can change the size of  delta . In an interactive program,  delta  can be changed 
by the user as the loop runs. This sort of adjustment is a bit on the dangerous side; for 
example, setting  delta  to  0  gets you (and the loop) nowhere.    

 In short, the freedom you have in selecting the expressions that control a  for  loop makes this 
loop able to do much more than just perform a fixed number of iterations. The usefulness of 
the  for  loop is enhanced further by the operators we will discuss shortly.    

  Summary: The   for   Statement  

  Keyword:     for   

  General Comments:   

 The  for  statement uses three control expressions, separated by semicolons, to control a 
looping process. The  initialize  expression is executed once, before any of the loop state-
ments are executed. Then the  test  expression is evaluated and, if it is true (or nonzero), the 
loop is cycled through once. Then the  update  expression is evaluated, and it is time to check 
the  test  expression again. The  for  statement is an entry-condition loop—the decision to go 
through one more pass of the loop is made before the loop is traversed. Therefore, it is pos-
sible that the loop is never traversed. The  statement  part of the form can be a  simple state-
ment or a compound statement.  

  Form:   

  for  (initialize  ;  test  ;  update )

        statement    

 The loop is repeated until  test  becomes false or zero.  
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  Example:   

  for (n = 0;  n < 10 ; n++)

        printf(" %d %d\n", n, 2 * n + 1);      

  More Assignment Operators:  += ,  -= ,  *= ,  /= ,  %=   

 C has several assignment operators. The most basic one, of course, is  = , which simply assigns 
the value of the expression at its right to the variable at its left. The other assignment operators 
update variables. Each is used with a variable name to its left and an expression to its right. The 
variable is assigned a new value equal to its old value adjusted by the value of the expression at 
the right. The exact adjustment depends on the operator. For example,  

    scores += 20  is the same as  scores = scores + 20 .   

   dimes -= 2  is the same as  dimes = dimes - 2 .   

   bunnies *= 2  is the same as  bunnies = bunnies * 2 .   

   time /= 2.73  is the same as  time = time / 2.73 .   

   reduce %= 3  is the same as  reduce = reduce % 3 .    

 The preceding list uses simple numbers on the right, but these operators also work with more 
elaborate expressions, such as the following:  

    x *= 3 * y + 12  is the same as  x = x * (3 * y + 12) .    

 The assignment operators we’ve just discussed have the same low priority that  =  does—that is, 
less than that of  +  or  * . This low priority is reflected in the last example in which  12  is added 
to  3 * y  before the result is multiplied by  x .  

 You are not required to use these forms. They are, however, more compact, and they may 
produce more efficient machine code than the longer form. The combination assignment oper-
ators are particularly useful when you are trying to squeeze something complex into a  
for  loop specification.   

  The Comma Operator  

 The comma operator extends the flexibility of the  for  loop by enabling you to include more 
than one initialization or update expression in a single  for  loop specification. For example, 
 Listing   6.13    shows a program that prints first-class postage rates. (At the time of this writing, 
the rate is 46 cents for the first ounce and 20 cents for each additional ounce. You can check 
the Internet for the current  rates.)  
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  Listing 6.13   The  postage.c  Program  

 // postage.c -- first-class postage rates

  #include <stdio.h>

  int main(void)

  {

      const int FIRST_OZ = 46; // 2013 rate

      const int NEXT_OZ = 20;  // 2013 rate

      int ounces, cost;

  

      printf(" ounces  cost\n");

      for (ounces=1, cost=FIRST_OZ; ounces <= 16; ounces++,

           cost += NEXT_OZ)

          printf("%5d   $%4.2f\n", ounces, cost/100.0);

  

      return 0;

  }   

 The first five lines of the output look like this:  

  ounces  cost

      1   $0.46

      2   $0.66

      3   $0.86

      4   $1.06   

 The program uses the comma operator in the initialize and the update expressions. Its presence 
in the first expression causes  ounces  and  cost  to be initialized. Its second occurrence causes 
 ounces  to be increased by 1 and  cost  to be increased by 20 (the value of  NEXT_OZ ) for each 
iteration. All the calculations are done in the  for  loop specifications (see  Figure   6.4   ).  

 

for

false

true

ounces<=16;

do this;

ounces++,

cost+=NEXT_02

ounces=1,

cost=FIRST_02;

 Figure 6.4   The comma operator and the  for  loop.         
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 The comma operator is not restricted to  for  loops, but that’s where it is most often used. The 
operator has two further properties. First, it guarantees that the expressions it separates are eval-
uated in a left-to-right order. (In other words, the comma is a sequence point, so all side effects 
to the left of the comma take place before the program moves to the right of the comma.) 
Therefore,  ounces  is initialized before  cost . The order is not important for this example, but 
it would be important if the expression for  cost  contained  ounces . Suppose, for instance, that 
you had this expression:  

  ounces++, cost = ounces * FIRST_OZ   

 This would increment  ounces  and then use the new value for  ounces  in the second subexpres-
sion. The comma being a sequence point guarantees that the side effects of the left subexpres-
sion occur before the right subexpression is evaluated.  

 Second, the value of the whole comma expression is the value of the right-hand member. The 
effect of the statement  

  x = (y = 3, (z = ++y + 2) + 5);   

 is to first assign  3  to  y , increment  y  to  4 , and then add  2  to  4  and assign the resulting value of 
 6  to  z , next add  5  to  z , and finally assign the resulting value of  11  to  x . Why anyone would 
do this is beyond the scope of this book. On the other hand, suppose you get careless and use 
comma notation in writing a number:  

  houseprice = 249,500;   

 This is not a syntax error. Instead, C interprets this as a comma expression, with  houseprice 
= 249  being the left subexpression and  500  the right subexpression. Therefore, the value of 
the whole comma expression is the value of the right-hand expression, and the left substate-
ment assigns the value  249  to the  houseprice  variable. Therefore,  the effect is the same as the 
following code:  

  houseprice = 249;

  500;   

 Remember that any expression becomes a statement with the addition of a semicolon, so  500;  
is a statement that does nothing.  

 On the other hand, the statement  

  houseprice = (249,500);   

 assigns 500, the value of the right subexpression, to  houseprice .  

 The comma also is used as a separator, so the commas in  

  char ch, date;   

 and  

  printf("%d %d\n", chimps, chumps);   
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 are separators, not comma  operators.    

  Summary: The New Operators  

  Assignment Operators:   

 Each of these operators updates the variable at its left by the value at its right, using the indi-
cated operation:  

  +=    Adds the right-hand quantity to the left-hand variable  

  -=    Subtracts the right-hand quantity from the left-hand variable  

  *=    Multiplies the left-hand variable by the right-hand quantity  

  /=    Divides the left-hand variable by the right-hand quantity  

  %=    Gives the remainder obtained from dividing the left-hand variable by the right-hand 
quantity  

  Example:   

  rabbits *= 1.6;   

 is the same as  

  rabbits = rabbits * 1.6;   

 These combination assignment operators have the same low precedence as the regular assign-
ment operator, lower than arithmetic operators. Therefore, a statement such as  

  contents *= old_rate + 1.2;   

 has the same final effect as this:  

  contents = contents * (old_rate + 1.2);   

  The Comma Operator:   

 The comma operator links two expressions into one and guarantees that the leftmost expres-
sion is evaluated first. It is typically used to include more information in a  for  loop control 
expression. The value of the whole expression is the value of the right-hand expression.  

  Example:   

  for (step = 2, fargo = 0; fargo < 1000; step *= 2)

       fargo += step;    

  Zeno Meets the  for  Loop  

 Let’s see how the  for  loop and the comma operator can help solve an old paradox. The Greek 
philosopher Zeno once argued that an arrow will never reach its target. First, he said, the arrow 
covers half the distance to the target. Then it has to cover half of the remaining distance. Then 
it still has half of what’s left to cover, ad infinitum. Because the journey has an infinite number 
of parts, Zeno argued, it would take the arrow an infinite amount of time to reach its journey’s 
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end. We doubt, however, that Zeno would have volunteered to be a target on  the strength of 
this argument.  

 Let’s take a quantitative approach and suppose that it takes the arrow 1 second to travel the 
first half. Then it would take 1/2 second to travel half of what was left, 1/4 second to travel 
half of what was left next, and so on. You can represent the total time by the following infinite 
series:  

  1 + 1/2 + 1/4 + 1/8 + 1/16 +....   

 The short program in  Listing   6.14    finds the sum of the first few terms. The variable  
power_of_two  takes on the values  1.0 ,  2.0 ,  4.0 ,  8.0 , and so on.  

  Listing 6.14   The  zeno.c  Program  

 /* zeno.c -- series sum */

  #include <stdio.h>

  

  int main(void)

  {

      int t_ct;       // term count

      double time, power_of_2;

      int limit;

  

      printf("Enter the number of terms you want: ");

      scanf("%d", &limit);

      for (time=0, power_of_2=1, t_ct=1; t_ct <= limit;

                              t_ct++, power_of_2 *= 2.0)

      {

          time += 1.0/power_of_2;

          printf("time = %f when terms = %d.\n", time, t_ct);

      }

  

      return 0;

  }   

 Here is the output for 15 terms:  

  Enter the number of terms you want:  15 
  time = 1.000000 when terms = 1.

  time = 1.500000 when terms = 2.

  time = 1.750000 when terms = 3.

  time = 1.875000 when terms = 4.

  time = 1.937500 when terms = 5.

  time = 1.968750 when terms = 6.

  time = 1.984375 when terms = 7.

  time = 1.992188 when terms = 8.

  time = 1.996094 when terms = 9.
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  time = 1.998047 when terms = 10.

  time = 1.999023 when terms = 11.

  time = 1.999512 when terms = 12.

  time = 1.999756 when terms = 13.

  time = 1.999878 when terms = 14.

  time = 1.999939 when terms = 15.   

 You can see that although you keep adding more terms, the total seems to level out. Indeed, 
mathematicians have proven that the total approaches 2.0 as the number of terms approaches 
infinity, just as this program suggests. Here’s one demonstration. Suppose you let  S  represent 
the sum:  

  S = 1 + 1/2 + 1/4 + 1/8 + ...   

 Here the ellipsis mean “and so on.” Then dividing by 2 gives  

  S/2 = 1/2 + 1/4 + 1/8 + 1/16 + ...   

 Subtracting the second expression from the first gives  

  S - S/2 = 1 +1/2 -1/2 + 1/4 -1/4 +...   

 Except for the initial value of  1 , each other value occurs in pairs, one positive and one negative, 
so those terms cancel each other, leaving  

  S/2 = 1.   

 Then, multiplying both sides by 2 gives  

  S = 2.   

 One possible moral to draw from this is that before doing an involved calculation, check to see 
whether mathematicians have an easier way to do it.  

 What about the program itself? It shows that you can use more than one comma operator in 
an expression. You initialized  time ,  power_of_2 , and  count . After you set up the conditions 
for the loop, the program itself is extremely brief.    

  An Exit-Condition Loop:  do while   

 The  while  loop and the  for  loop are both entry-condition loops. The test condition is checked 
 before  each iteration of the loop, so it is possible for the statements in the loop to never 
execute. C also has an  exit-condition  loop, in which the condition is checked after each iteration 
of the loop, guaranteeing that statements are executed at least once. This variety is called a  
do while  loop.  Listing   6.15    shows an example.  
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  Listing 6.15   The  do_while.c  Program  

 /* do_while.c -- exit condition loop */

  #include <stdio.h>

  int main(void)

  {

      const int secret_code = 13;

      int code_entered;

  

      do

      {

          printf("To enter the triskaidekaphobia therapy club,\n");

          printf("please enter the secret code number: ");

          scanf("%d", &code_entered);

      } while (code_entered != secret_code);

      printf("Congratulations! You are cured!\n");

  

      return 0;

  }   

 The program in   Listing   6.15    reads input values until the user enters  13 . The following is a 
sample run:  

  To enter the triskaidekaphobia therapy club,

  please enter the secret code number:  12 
  To enter the triskaidekaphobia therapy club,

  please enter the secret code number:  14 
  To enter the triskaidekaphobia therapy club,

  please enter the secret code number:  13 
  Congratulations! You are cured!   

 An equivalent program using a  while  loop would be a little longer, as shown in   Listing   6.16   .  

  Listing 6.16   The  entry.c  Program  

 /* entry.c -- entry condition loop */

  #include <stdio.h>

  int main(void)

  {

      const int secret_code = 13;

      int code_entered;

  

      printf("To enter the triskaidekaphobia therapy club,\n");

      printf("please enter the secret code number: ");

      scanf("%d", &code_entered);

      while (code_entered != secret_code)

      {
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          printf("To enter the triskaidekaphobia therapy club,\n");

          printf("please enter the secret code number: ");

          scanf("%d", &code_entered);

      }

      printf("Congratulations! You are cured!\n");

  

      return 0;

  }   

 Here is the general form of the  do while  loop:  

  do

       statement 

  while (  expression  );   

 The statement can be simple or compound. Note that the  do while  loop itself counts as a 
statement and, therefore, requires a terminating semicolon. Also, see  Figure   6.5   .  

 

while

false

do

true

count++<limit

printf("Fa la la la!\n");

next

statement

 Figure 6.5   Structure of a  do while  loop.         

 A  do while  loop is always executed at least once because the test is made after the body of the 
loop has been executed. A  for  loop or a  while  loop, on the other hand, can be executed zero 
times because the test is made before execution. You should restrict the use of  do while  loops 
to cases that require at least one iteration. For example, a password program could include a 
loop along these pseudocode lines:  

   do 

   { 

       prompt for password 

       read user input 

   } while (input not equal to password);    
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 Avoid a  do while  structure of the type shown in the following pseudocode:  

   do 

   { 

      ask user if he or she wants to continue 

      some clever stuff 

   } while (answer is yes);    

 Here, after the user answers “no,” some clever stuff gets done anyway because the test comes 
too  late.    

  Summary: The   do while   Statement  

  Keywords:   

  do while   

  General Comments:   

 The  do while  statement creates a loop that repeats until the test   expression   becomes false 
or zero. The  do while  statement is an exit-condition loop—the decision to go through one 
more pass of the loop is made after the loop has been traversed. Therefore, the loop must be 
executed at least once. The   statement   part of the form can be a simple statement or a com-
pound statement.  

  Form:   

  do

       statement 

  while ( expression );   

 The   statement   portion is repeated until the   expression   becomes false or zero.  

  Example:   

  do

      scanf("%d", &number);

  while (number != 20);     

  Which Loop?  

 When you decide you need a loop, which one should you use? First, decide whether you need 
an entry-condition loop or an exit-condition loop. Your answer should usually be an entry-
condition loop. There are several reasons computer scientists consider an entry-condition loop 
to be superior. One is the general principle that it is better to look before you leap (or loop) 
than after. A second is that a program is easier to read if the loop test is found at the beginning 
of the loop. Finally, in many uses, it is important that the loop be skipped entirely if the  test is 
not initially met.  
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 Assume that you need an entry-condition loop. Should it be a  for  or a  while ? This is partly a 
matter of taste, because what you can do with one, you can do with the other. To make a  for  
loop like a  while , you can omit the first and third expressions. For example,  

  for ( ; test ; )   

 is the same as  

  while ( test )   

 To make a  while  like a  for , preface it with an initialization and include update statements. For 
example,  

   initialize; 

  while ( test )

  {

     body ;

     update ;

  }   

 is the same as  

  for ( initialize ;  test ;  update )

      body ;   

 In terms of prevailing style, a  for  loop is appropriate when the loop involves initializing and 
updating a variable, and a  while  loop is better when the conditions are otherwise. A  while  
loop is natural for the following condition:  

  while (scanf("%ld", &num) == 1)   

 The  for  loop is a more natural choice for loops involving counting with an index:  

  for (count = 1; count <= 100; count++)    

  Nested Loops  

 A  nested loop  is one loop inside another loop. A common use for nested loops is to display data 
in rows and columns. One loop can handle, say, all the columns in a row, and the second loop 
handles the rows.  Listing   6.17    shows a simple example.  

  Listing 6.17   The  rows1.c  Program  

 /* rows1.c -- uses nested loops */

  #include <stdio.h>

  #define ROWS  6

  #define CHARS 10

  int main(void)

  {



ptg11524036

225Nested Loops

      int row;

      char ch;

  

      for (row = 0; row < ROWS; row++)              /* line 10 */

      {

          for (ch = 'A'; ch < ('A' + CHARS); ch++)  /* line 12 */

              printf("%c", ch);

          printf("\n");

      }

  

      return 0;

  }   

 Running the program produces this output:  

  ABCDEFGHIJ

  ABCDEFGHIJ

  ABCDEFGHIJ

  ABCDEFGHIJ

  ABCDEFGHIJ

  ABCDEFGHIJ   

  Program Discussion  

 The  for  loop beginning on line 10 is called an  outer  loop, and the loop beginning on line 12 
is called an  inner  loop because it is inside the other loop. The outer loop starts with  row  having 
a value of  0  and terminates when  row  reaches  6 . Therefore, the outer loop goes through six 
cycles, with  row  having the values  0  through  5 . The first statement in each cycle is the inner 
 for  loop. This loop goes through 10 cycles, printing the characters  A  through  J  on the same 
line. The second statement of the outer loop is  printf("\n"); . This statement starts a new 
line so that the next time  the inner loop is run, the output is on a new line.  

 Note that, with a nested loop, the inner loop runs through its full range of iterations for each 
single iteration of the outer loop. In the last example, the inner loop prints 10 characters to a 
row, and the outer loop creates six rows.   

  A Nested Variation  

 In the preceding example, the inner loop did the same thing for each cycle of the outer loop. 
You can make the inner loop behave differently each cycle by making part of the inner loop 
depend on the outer loop.  Listing   6.18   , for example, alters the last program slightly by making 
the starting character of the inner loop depend on the cycle number of the outer loop. It also 
uses the newer comment style and  const  instead of  #define  to help you get comfortable with 
both approaches.  
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  Listing 6.18   The  rows2.c  Program  

 // rows2.c -- using dependent nested loops

  #include <stdio.h>

  int main(void)

  {

      const int ROWS = 6;

      const int CHARS = 6;

      int row;

      char ch;

  

      for (row = 0; row < ROWS; row++)

      {

          for (ch = ('A' + row);  ch < ('A' + CHARS); ch++)

              printf("%c", ch);

          printf("\n");

      }

  

      return 0;

  }   

 Here’s the output this time:  

  ABCDEF

  BCDEF

  CDEF

  DEF

  EF

  F   

 Because  row  is added to  'A'  during each cycle of the outer loop,  ch  is initialized in each row to 
one character later in the alphabet. The test condition, however, is unaltered, so each row still 
ends on  F . This results in one fewer character being printed in each row.    

  Introducing Arrays  

 Arrays are important features in many programs. They enable you to store several items of 
related information in a convenient fashion. We will devote all of  Chapter   10   , “Arrays and 
Pointers,” to arrays, but because arrays are often used with loops, we want to introduce them 
now.  

 An  array  is a series of values of the same type, such as 10  char s or 15  int s, stored sequentially. 
The whole array bears a single name, and the individual items, or  elements , are accessed by 
using an integer index. For example, the declaration  

  float debts[20];   
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 announces that  debts  is an array with 20 elements, each of which can hold a type  float  
value. The first element of the array is called  debts[0] , the second element is called  debts[1] , 
and so on, up to  debts[19] . Note that the numbering of array elements starts with 0, not 1. 
Each element can be assigned a  float  value. For example, you can have the following:  

  debts[5] = 32.54;

  debts[6] = 1.2e+21;   

 In fact, you can use an array element the same way you would use a variable of the same type. 
For example, you can read a value into a particular element:  

  scanf("%f", &debts[4]);  // read a value into the 5th element   

 One potential pitfall is that, in the interest of speed of execution, C doesn’t check to see 
whether you use a correct subscript. Each of the following, for example, is bad code:  

  debts[20] = 88.32;   // no such array element

  debts[33] = 828.12;  // no such array element   

 However, the compiler doesn’t look for such errors. When the program runs, these statements 
would place data in locations possibly used for other data, potentially corrupting the output of 
the program or even causing it to abort.  

 An array can be of any data type.  

  int nannies[22];   /* an array to hold 22 integers        */

  char actors[26];   /* an array to hold 26 characters      */

  long big[500];     /* an array to hold 500 long integers  */   

 Earlier, for example, we talked about strings, which are a special case of what can be stored in 
a  char  array. (A  char  array, in general, is one whose elements are assigned  char  values.) The 
contents of a  char  array form a string if the array contains the null character,  \0 , which marks 
the end of the string (see  Figure   6.6   ).  

 

character array but not a string

y o u c a n s e e i t .

character array and a string

null character

y o u c a n s e e i t . \0

 Figure 6.6   Character arrays and strings.         
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 The numbers used to identify the array elements are called  subscripts ,  indices , or  offsets . The 
subscripts must be integers, and, as mentioned, the subscripting begins with 0. The array 
elements are stored next to each other in memory, as shown in  Figure   6.7   .  

 

348161980

int boo[4] (note: 2 bytes per int)

46

boo[3]boo[2]boo[0] boo[1]

plh e

char foo[4] (note: 1-byte char)

foo[3]foo[2]foo[0] foo[1]

 Figure 6.7   The  char  and  int  arrays in memory.         

  Using a  for  Loop with an Array  

 There are many, many uses for arrays.  Listing   6.19    is a relatively simple one. It’s a program that 
reads in 10 golf scores that will be processed later. By using an array, you avoid the need to 
invent 10 different variable names, one for each score. Also, you can use a  for  loop to do the 
reading. The program goes on to report the sum of the scores and their average and a handicap, 
which is the difference between the average and a standard score, or par.  

  Listing 6.19   The  scores_in.c  Program  

 // scores_in.c -- uses loops for array processing

  #include <stdio.h>

  #define SIZE 10

  #define PAR 72

  int main(void)

  {

      int index, score[SIZE];

      int sum = 0;

      float average;

  

      printf("Enter %d golf scores:\n", SIZE);

      for (index = 0; index < SIZE; index++)

          scanf("%d", &score[index]);  // read in the ten scores

      printf("The scores read in are as follows:\n");

      for (index = 0; index < SIZE; index++)

          printf("%5d", score[index]); // verify input

      printf("\n");
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      for (index = 0; index < SIZE; index++)

          sum += score[index];         // add them up

      average = (float) sum / SIZE;    // time-honored method

      printf("Sum of scores = %d, average = %.2f\n", sum, average);

      printf("That's  a handicap of %.0f.\n", average - PAR);

  

      return 0;

  }   

 Let’s see if  Listing   6.19    works; then we can make a few comments. Here is the output:  

  Enter 10 golf scores:

   99 95 109 105 100 
   96 98 93 99 97 98 
  The scores read in are as follows:

     99   95  109  105  100   96   98   93   99   97

  Sum of scores = 991, average = 99.10

  That's a handicap of 27.   

 It works, so let’s check out some of the details. First, note that although the example shows 
11 numbers typed, only 10 were read because the reading loop reads just 10 values. Because 
 scanf()  skips over whitespace, you can type all 10 numbers on one line, place each number 
on its own line, or, as in this case, use a mixture of newlines and spaces to separate the input. 
(Because input is buffered, the numbers are sent to the program only when you press the Enter 
key.)  

 Next, using arrays and loops is much more convenient than using 10 separate  scanf()  
statements and 10 separate  printf()  statements to read in and verify the 10 scores. The 
 for  loop offers a simple and direct way to use the array subscripts. Notice that an element 
of an  int  array is handled like an  int  variable. To read the  int  variable  fue , you would 
use  scanf("%d", &fue) .  Listing   6.19    is reading the  int  element  score[index] , so it uses 
 scanf("%d", &score[index]) .  

 This example illustrates several style points. First, it’s a good idea to use a  #define  directive to 
create a manifest constant ( SIZE ) to specify the size of the array. You use this constant in defin-
ing the array and in setting the loop limits. If you later need to expand the program to handle 
20 scores, simply redefine  SIZE  to be 20. You don’t have to change every part of the program 
that uses the array size. Second, the idiom  

  for (index = 0; index < SIZE; index++)   

 is a handy one for processing an array of size  SIZE . It’s important to get the right array limits. 
The first element has index  0 , and the loop starts by setting  index  to  0 . Because the numbering 
starts with  0 , the element index for the last element is  SIZE - 1 . That is, the tenth element is 
 score[9] . Using the test condition  index < SIZE  accomplishes this, making the last value of 
 index  used in the loop  SIZE - 1 .  
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 Third, a good practice is to have a program repeat or “echo” the values it has just read in. This 
helps ensure that the program is processing the data you think it is.  

 Finally, note that  Listing   6.19    uses three separate  for  loops. You might wonder if this is really 
necessary. Could you have combined some of the operations in one loop? The answer is yes, 
you could have done so. That would have made the program more compact. However, you 
should be swayed by the principle of  modularity . The idea behind this term is that a program 
should be broken into separate units, with each unit having one task to perform. This makes 
a program easier to read. Perhaps even more important, modularity makes it much easier to 
update or modify a program if  different parts of the program are not intermingled. When 
you know enough about functions, you could make each unit into a function, enhancing the 
modularity of the program.    

  A Loop Example Using a Function Return Value  

 The last example in this chapter uses a function that calculates the result of raising a number to 
an integer power. (For the serious number-cruncher, the  math.h  library provides a more power-
ful power function called  pow()  that allows floating-point exponents.) The three main tasks in 
this exercise are devising the algorithm for calculating the answer, expressing the algorithm in 
a function that returns the answer, and providing a convenient way of testing the function.  

 First, let’s look at an algorithm. We’ll keep the function simple by restricting it to positive 
integer powers. Then, to raise  n  to the  p  power, just multiply  n  times itself  p  times. This is a 
natural task for a loop. You can set the variable  pow  to  1  and then repeatedly multiply it by  n :  

  for(i = 1; i <= p; i++)

       pow *= n;   

 Recall that the  *=  operator multiplies the left side by the right side. After the first loop cycle, 
 pow  is  1  times  n , or  n . After the second cycle,  pow  is its previous value ( n ) times  n , or  n  squared, 
and so on. The  for  loop is natural in this context because the loop is executed a predetermined 
(after  p  is known) number of times.  

 Now that we have an algorithm, we can decide which data types to use. The exponent  p , being 
an integer, should be type  int . To allow ample range in values for  n  and its power, make  n  and 
 pow  type  double .  

 Next, let’s consider how to put the function together. We need to give the function two values, 
and the function should give back one. To get information to the function, we can use two 
arguments, one  double  and one  int , specifying which number to raise to what power. How do 
we arrange for the function to return a value to the calling program? To write a function with a 
return value, do the following:  

    1.   When you define a function, state the type of value it returns.   

   2.   Use the keyword  return  to indicate the value to be returned.    
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 For example, we can do this:  

  double power(double n, int p)  // returns a double

  {

      double pow = 1;

      int i;

  

      for (i = 1; i <= p; i++)

          pow *= n;

  

      return pow;                // return the value of pow

  }   

 To declare the function type, preface the function name with the type, just as you do when 
declaring a variable. The keyword  return  causes the function to return the following value 
to the calling function. Here the function returns the value of a variable, but it can return the 
value of expressions, too. For instance, the following is a valid statement:  

  return 2 * x + b;   

 The function would compute the value of the expression and return it. In the calling function, 
the return value can be assigned to another variable, can be used as a value in an expression, 
can be used as an argument to another function—as in  printf("%f", power(6.28, 3)) —or 
can be ignored.  

 Now let’s use the function in a program. To test the function, it would be convenient to be 
able to feed several values to the function to see how it reacts. This suggests setting up an input 
loop. The natural choice is the  while  loop. You can use  scanf()  to read in two values at a 
time. If successful in reading two values,  scanf()  returns the value  2 , so you can control the 
loop by comparing the  scanf()  return value to 2. One more point: To use the  power()  func-
tion in your program, you need to declare it, just as you declare variables that the  program 
uses.  Listing   6.20    shows the program.  

  Listing 6.20   The  power.c  Program  

 // power.c -- raises numbers to integer powers

  #include <stdio.h>

  double power(double n, int p); // ANSI prototype

  int main(void)

  {

      double x, xpow;

      int exp;

  

      printf("Enter a number and the positive integer power");

      printf(" to which\nthe number will be raised. Enter q");

      printf(" to quit.\n");

      while (scanf("%lf%d", &x, &exp) == 2)

      {
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          xpow = power(x,exp);   // function call

          printf("%.3g to the power %d is %.5g\n", x, exp, xpow);

          printf("Enter next pair of numbers or q to quit.\n");

      }

      printf("Hope you enjoyed this power trip -- bye!\n");

  

      return 0;

  }

  

  double power(double n, int p)  // function definition

  {

      double pow = 1;

      int i;

  

      for (i  = 1; i <= p; i++)

          pow *= n;

  

      return pow;                // return the value of pow

  }   

 Here is a sample run:  

  Enter a number and the positive integer power to which

  the number will be raised. Enter q to quit.

   1.2 12 
  1.2 to the power 12 is 8.9161

  Enter next pair of numbers or q to quit.

   2 
   16 
  2 to the power 16 is 65536

  Enter next pair of numbers or q to quit.

   q 
  Hope you enjoyed this power trip -- bye!    

  Program Discussion  

 The  main()  program is an example of a  driver , a short program designed to test a function.  

 The  while  loop is a generalization of a form we’ve used before. Entering  1.2 12  causes 
 scanf()  to read two values successfully and to return  2 , and the loop continues. Because 
 scanf()  skips over whitespace, input can be spread over more than one line, as the sample 
output shows, but entering  q  produces a return value of  0  because  q  can’t be read using the  %lf  
specifier. This causes  scanf()  to return  0 , thus terminating the loop. Similarly, entering  2.8 q  
would produce a  scanf()  return value of  1 ; that, too, would terminate the loop.  
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 Now let’s look at the function-related matters. The  power()  function appears three times in 
this program. The first appearance is this:  

  double power(double n, int p); // ANSI prototype   

 This statement announces, or  declares , that the program will be using a function called 
 power() . The initial keyword  double  indicates that the  power()  function returns a type 
 double  value. The compiler needs to know what kind of value  power()  returns so that it will 
know how many bytes of data to expect and how to interpret them; this is why you have to 
declare the function. The  double n, int p  within the parentheses means that  power()  takes 
two arguments. The first should be a type  double  value, and the second should be type  int .  

 The second appearance is this:  

  xpow = power(x,exp);           // function call   

 Here the program calls the function, passing it two values. The function calculates  x  to the  exp  
power and returns the result to the calling program, where the return value is assigned to the 
variable  xpow .  

 The third appearance is in the head of the function definition:  

  double power(double n, int p)  // function definition   

 Here  power()  takes two parameters, a  double  and an  int , represented by the variables  n  and  p . 
Note that  power()  is not followed by a semicolon when it appears in a function definition, but 
is followed by a semicolon when in a function declaration. After the function heading comes 
the code that specifies what  power()  does.  

 Recall that the function uses a  for  loop to calculate the value of  n  to the  p  power and assign it 
to  pow . The following line makes the value of  pow  the function return value:  

  return pow;                    // return the value of pow    

  Using Functions with Return Values  

 Declaring the function, calling the function, defining the function, using the  return  
keyword—these are the basic elements in defining and using a function with a return value.  

 At this point, you might have some questions. For example, if you are supposed to declare 
functions before you use their return values, how come you used the return value of  scanf()  
without declaring  scanf() ? Why do you have to declare  power()  separately when your defini-
tion of it says it is type  double ?  

 Let’s take the second question first. The compiler needs to know what type  power()  is when 
it first encounters  power()  in the program. At this point, the compiler has not yet encoun-
tered the definition of  power() , so it doesn’t know that the definition says the return type is 
 double . To help out the compiler, you preview what is to come by using a  forward declaration . 
This declaration informs the compiler that  power()  is defined elsewhere and that it will return 
type  double . If you place the  power()  function definition ahead of  main()  in the file, you can 
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omit the forward declaration because the compiler will  know all about  power()  before reach-
ing  main() . However, that is not standard C style. Because  main()  usually provides the overall 
framework for a program, it’s best to show  main()  first. Also, functions often are kept in sepa-
rate files, so a forward declaration is essential.  

 Next, why didn’t you declare  scanf() ? Well, you did. The  stdio.h  header file has function 
declarations for  scanf() ,  printf() , and several other I/O functions. The  scanf()  declaration 
states that it returns type  int .    

  Key Concepts  

 The loop is a powerful programming tool. You should pay particular attention to three aspects 
when setting up a loop:  

    ■   Clearly defining the condition that causes the loop to terminate   

   ■   Making sure the values used in the loop test are initialized before the first use   

   ■   Making sure the loop does something to update the test each cycle    

 C handles test conditions by evaluating them numerically. A result of  0  is false, and any other 
value is true. Expressions using the relational operators often are used as tests, and they are a 
bit more specific. Relational expressions evaluate to  1  if true and to  0  if false, which is consis-
tent with the values allowed for the new  _Bool  type.  

 Arrays consist of adjacent memory locations all of the same type. You need to keep in mind 
that array element numbering starts with 0 so that the subscript of the last element is always 
one less than the number of elements. C doesn’t check to see if you use valid subscript values, 
so the responsibility is yours.  

 Employing a function involves three separate steps:  

    1.   Declare the function with a function prototype.   

   2.   Use the function from within a program with a function call.   

   3.   Define the function.    

 The prototype allows the compiler to see whether you’ve used the function correctly, and the 
definition sets down how the function works. The prototype and definition are examples of the 
contemporary programming practice of separating a program element into an interface and an 
implementation. The interface describes how a feature is used, which is what a prototype does, 
and the implementation sets forth the particular actions taken, which is what the definition 
does.   



ptg11524036

235Summary

  Summary  

 The main topic of this chapter has been program control. C offers you many aids for structur-
ing your programs. The  while  and the  for  statements provide entry-condition loops. The  for  
statements are particularly suited for loops that involve initialization and updating. The comma 
operator enables you to initialize and update more than one variable in a  for  loop. For the less 
common occasion when an exit-condition loop is needed, C has the  do while  statement.  

 A typical  while  loop design looks like this:  

  get first value

  while (value meets test)

  {

      process the value

      get next value

  }   

 A  for  loop doing the same thing would look like this:  

  for (get first value; value meets test; get next value)

      process the value   

 All these loops use a test condition to determine whether another loop cycle is to be executed. 
In general, the loop continues if the test expression evaluates to a nonzero value; otherwise, it 
terminates. Often, the test condition is a relational expression, which is an expression formed 
by using a relational operator. Such an expression has a value of  1  if the relation is true and a 
value of  0  otherwise. Variables of the  _Bool  type, introduced by C99, can only hold the value  1  
or  0 , signifying true or false.  

 In addition to relational operators, this chapter looked at several of C’s arithmetic assignment 
operators, such as  +=  and  *= . These operators modify the value of the left-hand operand by 
performing an arithmetic operation on it.  

 Arrays were the next subject. Arrays are declared using brackets to indicate the number of 
elements. The first element of an array is numbered 0; the second is numbered 1, and so forth. 
For example, the declaration  

  double hippos[20];   

 creates an array of 20 elements, and the individual elements range from  hippos[0 ] through 
 hippos[19] . The subscripts used to number arrays can be manipulated conveniently by using 
loops.  

 Finally, the chapter showed how to write and use a function with a return value.    
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     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    Find the value of  quack  after each line; each of the final five statements uses the value of 
 quack  produced by the preceding statement.  

  int quack = 2;

  quack += 5;

  quack *= 10;

  quack -= 6;

  quack /= 8;

  quack %= 3;     

   2.    Given that  value  is an  int , what output would the following loop produce?  

  for ( value = 36; value > 0; value /= 2)

        printf("%3d", value);   

 What problems would there be if  value  were  double  instead of  int ?    

   3.    Represent each of the following test conditions:  

    a.    x  is greater than  5 .   

   b.    scanf()  attempts to read a single  double  (called  x ) and fails.   

   c.    x  has the value  5 .      

   4.    Represent each of the following test conditions:  

    a.    scanf()  succeeds in reading a single integer.   

   b.    x  is not  5 .   

   c.    x  is  20  or greater.      

   5.    You suspect that the following program is not perfect. What errors can you find?  

  #include <stdio.h>

  int main(void)

  {                                          /* line 3  */

    int i, j, list(10);                      /* line 4  */

  

    for (i = 1, i <= 10,  i++)               /* line 6  */

    {                                        /* line 7  */

        list[i] = 2*i + 3;                   /* line 8  */

        for (j = 1, j > = i, j++)            /* line 9  */

            printf(" %d", list[j]);          /* line 10 */
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        printf("\n");                        /* line 11 */

  }                                          /* line 12 */     

   6.    Use nested loops to write a program that produces this pattern:  

  $$$$$$$$

  $$$$$$$$

  $$$$$$$$

  $$$$$$$$     

   7.    What will each of the following programs print?  

    a.   

  #include <stdio.h>

  int main(void)

  {

      int i = 0;

  

      while (++i < 4)

         printf("Hi! ");

      do

         printf("Bye! ");

      while (i++ < 8);

      return 0;

  }     

   b.   

  #include <stdio.h>

  int main(void)

  {

       int i;

       char ch;

  

       for (i = 0, ch = 'A'; i < 4; i++, ch += 2 * i)

              printf("%c", ch);

       return 0;

  }        

   8.    Given the input  Go west, young man! , what would each of the following programs 
produce for output? (The  !  follows the space character in the ASCII sequence.)  

    a.   

  #include <stdio.h>
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  int main(void)

  {

      char ch;

  

      scanf("%c", &ch);

      while ( ch != 'g' )

      {

           printf("%c", ch);

           scanf("%c", &ch);

      }

      return 0;

  }     

   b.   

  #include <stdio.h>

  int main(void)

  {

      char ch;

  

      scanf("%c", &ch);

      while ( ch != 'g' )

      {

           printf("%c", ++ch);

           scanf("%c", &ch);

      }

      return 0;

  }     

   c.   

  #include <stdio.h>

  int main(void)

  {

      char ch;

  

      do {

           scanf("%c", &ch);

           printf("%c", ch);

      } while ( ch != 'g' );

      return 0;

  }     

   d.   

  #include <stdio.h>

  int main(void)
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  {

      char ch;

  

      scanf("%c", &ch);

      for ( ch = '$'; ch != 'g'; scanf("%c", &ch) )

            printf("%c", ch);

      return 0;

  }        

   9.    What will the following program print?  

  #include <stdio.h>

  int main(void)

  {

       int n, m;

  

       n = 30;

       while (++n <= 33)

            printf("%d|",n);

  

       n = 30;

       do

            printf("%d|",n);

       while (++n <= 33);

  

       printf("\n***\n");

  

       for (n = 1; n*n < 200; n += 4)

            printf("%d\n", n);

  

       printf("\n***\n");

  

       for (n = 2, m = 6; n < m; n *= 2, m+= 2)

            printf("%d %d\n", n, m);

  

       printf("\n***\n");

  

       for (n = 5; n > 0; n--)

       {

            for (m = 0; m <= n; m++)

                 printf("=");

            printf("\n");

       }

       return 0;

  }     
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   10.    Consider the following declaration:  

  double mint[10];   

    a.   What is the array name?   

   b.   How many elements does the array have?   

   c.   What kind of value can be stored in each element?   

   d.   Which of the following is a correct usage of  scanf()  with this array?  

    i.    scanf("%lf", mint[2])    

   ii.    scanf("%lf", &mint[2])    

   iii.    scanf("%lf", &mint)         

   11.    Mr. Noah likes counting by twos, so he’s written the following program to create an array 
and to fill it with the integers 2, 4, 6, 8, and so on. What, if anything, is wrong with this 
program?  

  #include <stdio.h>

  #define SIZE 8

  int main(void)

  {

    int by_twos[SIZE];

    int index;

  

    for (index = 1; index <= SIZE; index++)

         by_twos[index] = 2 * index;

    for (index = 1; index <= SIZE; index++)

         printf("%d ", by_twos);

    printf("\n");

    return 0;

  }     

   12.    You want to write a function that returns a  long  value. What should your definition of 
the function include?    

   13.    Define a function that takes an  int  argument and that returns, as a  long , the square of 
that value.    

   14.    What will the following program print?  

  #include <stdio.h>

  int main(void)

  {

     int k;
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     for(k = 1, printf("%d: Hi!\n", k); printf("k = %d\n",k),

         k*k < 26; k+=2, printf("Now k is %d\n", k) )

             printf("k is %d in the loop\n",k);

     return 0;

  }       

  Programming Exercises  

    1.    Write a program that creates an array with 26 elements and stores the 26 lowercase 
letters in it. Also have it show the array contents.    

   2.    Use nested loops to produce the following pattern:  

  $

  $$

  $$$

  $$$$

  $$$$$     

   3.    Use nested loops to produce the following pattern:  

  F

  FE

  FED

  FEDC

  FEDCB

  FEDCBA   

   Note: If your system doesn’t use ASCII or some other code that encodes letters in 
numeric order, you can use the following to initialize a character array to the letters of 
the alphabet:  

  char lets[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";   

 Then you can use the array index to select individual letters; for example,  lets[0]  is 
 'A' , and so on.    

   4.    Use nested loops to produce the following pattern:  

  A

  BC

  DEF

  GHIJ

  KLMNO

  PQRSTU   



ptg11524036

242 Chapter 6 C Control Statements: Looping

 If your system doesn’t encode letters in numeric order, see the suggestion in 
programming exercise 3.    

   5.    Have a program request the user to enter an uppercase letter. Use nested loops to produce 
a pyramid pattern like this:  

      A

     ABA

    ABCBA

   ABCDCBA

  ABCDEDCBA   

 The pattern should extend to the character entered. For example, the preceding pattern 
would result from an input value of  E . Hint: Use an outer loop to handle the rows. Use 
three inner loops in a row, one to handle the spaces, one for printing letters in ascending 
order, and one for printing letters in descending order. If your system doesn’t use ASCII 
or a similar system that represents letters in strict number order, see the suggestion in 
programming exercise 3.    

   6.    Write a program that prints a table with each line giving an integer, its square, and its 
cube. Ask the user to input the lower and upper limits for the table. Use a  for  loop.    

   7.    Write a program that reads a single word into a character array and then prints the word 
backward. Hint: Use  strlen()  ( Chapter   4   ) to compute the index of the last character in 
the array.    

   8.    Write a program that requests two floating-point numbers and prints the value of their 
difference divided by their product. Have the program loop through pairs of input values 
until the user enters nonnumeric input.    

   9.    Modify exercise 8 so that it uses a function to return the value of the calculation.    

   10.    Write a program that requests lower and upper integer limits, calculates the sum of all 
the integer squares from the square of the lower limit to the square of the upper limit, 
and displays the answer. The program should then continue to prompt for limits and 
display answers until the user enters an upper limit that is equal to or less than the lower 
limit. A sample run should look something like this:  

  Enter lower and upper integer limits:  5 9 
  The sums of the squares from 25 to 81 is 255

  Enter next set of limits:  3 25 
  The sums of the squares from 9 to 625 is 5520

  Enter next set of limits:  5 5 
  Done     
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   11.    Write a program that reads eight integers into an array and then prints them in reverse 
order.    

   12.    Consider these two infinite series:  

  1.0 + 1.0/2.0 + 1.0/3.0 + 1.0/4.0 + ...

  1.0 - 1.0/2.0 + 1.0/3.0 - 1.0/4.0 + ...   

 Write a program that evaluates running totals of these two series up to some limit of 
number of terms. Hint: –1 times itself an odd number of times is –1, and –1 times itself 
an even number of times is 1. Have the user enter the limit interactively; let a zero or 
negative value terminate input. Look at the running totals after 100 terms, 1000 terms, 
10,000 terms. Does either series appear to be converging to some value?    

   13.    Write a program that creates an eight-element array of  int s and sets the elements to the 
first eight powers of 2 and then prints the values. Use a  for  loop to set the values, and, 
for variety, use a  do while  loop to display the values.    

   14.    Write a program that creates two eight-element arrays of  double s and uses a loop to let 
the user enter values for the eight elements of the first array. Have the program set the 
elements of the second array to the cumulative totals of the elements of the first array. 
For example, the fourth element of the second array should equal the sum of the first 
four elements of the first array, and the fifth element of the second array should equal 
the sum of the first five elements of the first array. (It’s possible to do this with nested 
loops,  but by using the fact that the fifth element of the second array equals the fourth 
element of the second array plus the fifth element of the first array, you can avoid 
nesting and just use a single loop for this task.) Finally, use loops to display the contents 
of the two arrays, with the first array displayed on one line and with each element of the 
second array displayed below the corresponding element of the first array.    

   15.    Write a program that reads in a line of input and then prints the line in reverse order. 
You can store the input in an array of  char ; assume that the line is no longer than 255 
characters. Recall that you can use  scanf()  with the  %c  specifier to read a character at 
a time from input and that the newline character ( \n ) is generated when you press the 
Enter key.    

   16.    Daphne invests $100 at 10% simple interest. (That is, every year, the investment earns 
an interest equal to 10% of the original investment.) Deirdre invests $100 at 5% interest 
compounded annually. (That is, interest is 5% of the current balance, including previous 
addition of interest.) Write a program that finds how many years it takes for the value 
of Deirdre’s investment to exceed the value of Daphne’s investment. Also show the two 
values at that time.    



ptg11524036

244 Chapter 6 C Control Statements: Looping

   17.    Chuckie Lucky won a million dollars (after taxes), which he places in an account that 
earns 8% a year. On the last day of each year, Chuckie withdraws $100,000. Write a 
program that finds out how many years it takes for Chuckie to empty his account.    

   18.    Professor Rabnud joined a social media group. Initially he had five friends. He noticed 
that his friend count grew in the following fashion. The first week one friend dropped 
out and the remaining number of friends doubled. The second week two friends dropped 
out and the remaining number of friends doubled. In general, in the Nth week, N friends 
dropped out and the remaining number doubled. Write a program that computes and 
displays the number of friends each week. The program should continue until the count 
exceeds Dunbar’s number. Dunbar’s number is a rough estimate of the maximum size of  
a cohesive social group in which each member knows every other member and how they 
relate to one another. Its approximate value is 150.        
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  7 
 C Control Statements: 
Branching and Jumps  

    You will learn about the following in this chapter:  

    ■   Keywords  

  if ,  else ,  switch ,  continue   

  break ,  case ,  default ,  goto    

   ■   Operators  

  && || ?:    

   ■   Functions  

  getchar() ,  putchar() , the  ctype.h  family   

   ■   How to use the  if  and  if else  statements and how to nest them   

   ■   Using logical operators to combine relational expressions into more involved test 
expressions   

   ■   C’s conditional operator   

   ■   The  switch  statement   

   ■   The  break ,  continue , and  goto  jumps   

   ■   Using C’s character I/O functions— getchar()  and  putchar()    

   ■   The family of character-analysis functions provided by the  ctype.h  header file    

 As you grow more comfortable with C, you will probably want to tackle more complex tasks. 
When you do, you’ll need ways to control and organize these projects. C has the tools to meet 
these needs. You’ve already learned to use loops to program repetitive tasks. In this chapter, 
you’ll learn about branching structures such as  if  and  switch , which allow a program to base 
its actions on conditions it checks. Also, you are introduced to C’s logical operators, which 
enable you to test for more than one relationship in a  while  or  if  condition, and you look at 
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C’s jump statements, which  shift the program flow to another part of a program. By the end of 
this chapter, you’ll have all the basic information you need to design a program that behaves 
the way you want.   

     The  if  Statement  

 Let’s start with a simple example of an  if  statement, shown in  Listing   7.1   . This program reads 
in a list of daily low temperatures (in Celsius) and reports the total number of entries and the 
percentage that were below freezing (that is, below zero degrees Celsius). It uses  scanf()  in a 
loop to read in the values. Once during each loop cycle, it increments a counter to keep track 
of the number of entries. An  if  statement identifies temperatures below freezing and keeps 
track of the number of below-freezing days separately.  

  Listing 7.1   The  colddays.c  Program  

 // colddays.c -- finds percentage of days below freezing

  #include <stdio.h>

  int main(void)

  {

      const int FREEZING = 0;

      float temperature;

      int cold_days = 0;

      int all_days = 0;

  

      printf("Enter the list of daily low temperatures.\n");

      printf("Use Celsius, and enter q to quit.\n");

      while (scanf("%f", &temperature) == 1)

      {

          all_days++;

          if (temperature < FREEZING)

              cold_days++;

      }

      if (all_days != 0)

          printf("%d days total: %.1f%% were below freezing.\n",

                 all_days, 100.0 * (float) cold_days / all_days);

      if (all_days == 0)

          printf("No data entered!\n");

  

      return 0;

  }   

 Here is a sample run:  

  Enter the list of daily low temperatures.

  Use Celsius, and enter q to quit.
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   12 5 -2.5 0 6 8 -3 -10 5 10 q 
  10 days total: 30.0% were below freezing.   

 The  while  loop test condition uses the return value of  scanf()  to terminate the loop when 
 scanf()  encounters nonnumeric input. By using  float  instead of  int  for  temperature , the 
program is able to accept input such as  -2.5  as well as  8 .  

 Here is the new statement in the  while  block:  

  if (temperature < FREEZING)

      cold_days++;   

 This  if  statement instructs the computer to increase  cold_days  by 1  if  the value just read 
( temperature ) is less than zero. What happens if  temperature  is not less than zero? Then the 
 cold_days++;  statement is skipped, and the  while  loop moves on to read the next tempera-
ture value.  

 The program uses the  if  statement two more times to control the output. If there is data, the 
program prints the results. If there is no data, the program reports that fact. (Soon you’ll see a 
more elegant way to handle this part of the program.)  

 To avoid integer division, the example uses the cast to  float  when the percentage is being 
calculated. You don’t really need the type cast because in the expression  100.0 * cold_days 
/ all_days , the subexpression  100.0 * cold_days  is evaluated first and is forced into float-
ing point by the automatic type conversion rules. Using the type cast documents your intent, 
however, and helps protect the program against misguided revisions. The  if  statement is called 
a  branching statement  or  selection statement  because it provides a junction where the program has 
to select which of two paths to follow. The general form is this:  

  if ( expression )

         statement    

 If   expression   evaluates to true (nonzero),   statement   is executed. Otherwise, it is skipped. As 
with a  while  loop,   statement   can be either a single statement or a single block (also termed 
a compound statement). The structure is very similar to that of a  while  statement. The chief 
difference is that in an  if  statement, the test and (possibly) the execution are done just once, 
but in the  while  loop, the test and execution can be repeated several times.  

 Normally,   expression   is a relational expression; that is, it compares the magnitude of two 
quantities, as in the expressions  x > y  and  c == 6 . If   expression   is true ( x  is greater than  y , 
or  c  does equal  6 ), the statement is executed. Otherwise, the statement is ignored. More gener-
ally, any expression can be used, and an expression with a  0  value is taken to be false.  

 The statement portion can be a simple statement, as in the example, or it can be a compound 
statement or block, marked off by braces:  

  if (score > big)

      printf("Jackpot!\n");  // simple statement

  

  if (joe > ron)
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  {                          // compound statement

      joecash++;

      printf("You lose, Ron.\n");

  }   

 Note that the entire  if  structure counts as a single statement, even when it uses a compound 
statement.   

  Adding  else  to the  if  Statement  

 The simple form of an  if  statement gives you the choice of executing a statement (possibly 
compound) or skipping it. C also enables you to choose between two statements by using the 
 if else  form. Let’s use the  if else  form to fix an awkward segment from  Listing   7.1   .  

  if (all_days != 0)

      printf("%d days total: %.1f%% were below freezing.\n",

             all_days, 100.0 * (float) cold_days / all_days);

  if (all_days == 0)

      printf("No data entered!\n");   

 If the program finds that  all_days  is not equal to  0 , it should know that  days  must be  0  
without retesting, and it does. With  if else , you can take advantage of that knowledge by 
rewriting the fragment this way:  

  if (all_days!= 0)

      printf("%d days total: %.1f%% were below freezing.\n",

             all_days, 100.0 * (float) cold_days / all_days);

  else

      printf("No data entered!\n");   

 Only one test is made. If the  if  test expression is true, the temperature data is printed. If it’s 
false, the warning message is printed.  

 Note the general form of the  if else  statement:  

  if ( expression )

       statement1 

  else

       statement2    

 If   expression   is true (nonzero),   statement1   is executed. If   expression   is false or zero, the 
single statement following the  else  is executed. The statements can be simple or compound. C 
doesn’t require indentation, but it is the standard style. Indentation shows at a glance the state-
ments that depend on a test for execution.  

 If you want more than one statement between the  if  and the  else , you must use braces 
to create a single block. The following construction violates C syntax, because the compiler 
expects just one statement (single or compound) between the  if  and the  else :  
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  if (x > 0)

      printf("Incrementing x:\n");

      x++;

  else           // will generate an error

      printf("x <= 0 \n");   

 The compiler sees the  printf()  statement as part of the  if  statement, and it sees the  x++;  
statement as a separate statement, not as part of the  if  statement. It then sees the  else  as 
being unattached to an  if , which is an error. Instead, use this:  

  if (x > 0)

  {

      printf("Incrementing x:\n");

      x++;

  }

  else

      printf("x <= 0 \n");   

 The  if  statement enables you to choose whether to do one action. The  if else  statement 
enables you to choose between two actions.  Figure   7.1    compares the two statements.  

 

if

truefalse

(num>10)

num=2*num;

printf("%d\n",num);

if

true

next statement

else

(num>10)

num=2*num;printf("%d\n",num);

 Figure 7.1    if  versus  if else .         
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  Another Example: Introducing  getchar()  and  putchar()   

 Most of the examples so far have used numeric input. To give you practice with other types, 
let’s look at a character-oriented example. You already know how to use  scanf()  and 
 printf()  with the  %c  specifier to read and write characters; but now you’ll meet a pair of C 
functions specifically designed for character-oriented I/O— getchar()  and  putchar() .  

 The  getchar()  function takes no arguments, and it returns the next character from input. For 
example, the following statement reads the next input character and assigns its value to the 
variable  ch :  

  ch = getchar();   

 This statement has the same effect as the following statement:  

  scanf("%c", &ch);   

 The  putchar()  function prints its argument. For example, the next statement prints as a char-
acter the value previously assigned to  ch :  

  putchar(ch);   

 This statement has the same effect as the following:  

  printf("%c", ch);   

 Because these functions deal only with characters, they are faster and more compact than the 
more general  scanf()  and  printf()  functions. Also, note that they don’t need format speci-
fiers; that’s because they work with characters only. Both functions are typically defined in the 
 stdio.h  file. (Also, typically, they are preprocessor  macros  rather than true functions; we’ll talk 
about function-like macros in  Chapter   16   , “The C Preprocessor and the C Library.”)  

 Let’s see how these functions work by writing a program that repeats an input line but replaces 
each non-space character with the character that follows it in the ASCII code sequence. Spaces 
will be reproduced as spaces. You can state the desired response as, “If the character is a space, 
print it; otherwise, print the next character in the ASCII sequence.”  

 The C code looks much like this statement, as you can see in  Listing   7.2   .  

  Listing 7.2   The  cypher1.c  Program  

 // cypher1.c -- alters input, preserving spaces

  #include <stdio.h>

  #define SPACE ' '             // that's quote-space-quote

  int main(void)

  {

      char ch;

  

      ch = getchar();           // read a character

      while (ch != '\n')        // while not end of line

      {
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          if (ch == SPACE)      // leave the space

              putchar(ch);      // character unchanged

          else

              putchar(ch + 1);  // change other characters

          ch = getchar();       // get next character

      }

      putchar(ch);              // print the newline

  

      return 0;

  }   

 (If your compiler complains about possible data loss due to conversion, don’t worry.  Chapter   8   , 
“Character Input/Output and Input Validation,” will explain all when it introduces  EOF .)  

 Here is a sample run:  

   CALL ME HAL. 
  DBMM NF IBM/   

 Compare this loop to the one from  Listing   7.1   .  Listing   7.1    uses the status returned by  scanf()  
instead of the value of the input item to determine when to terminate the loop.  Listing   7.2   , 
however, uses the value of the input item itself to decide when to terminate the loop. This 
difference results in a slightly different loop structure, with one read statement before the loop 
and one read statement at the end of each loop. C’s flexible syntax, however, enables you to 
emulate  Listing   7.1    by combining reading and testing into a single expression. That is, you can 
replace a loop of  the form  

  ch = getchar();            /* read a character         */

  while (ch != '\n')         /* while not end of line    */

  {

      ...                      /* process character        */

      ch = getchar();        /* get next character       */

  }   

 with one that looks like this:  

  while ((ch = getchar()) != '\n')

  {

      ...                      /* process character        */

  }   

 The critical line is  

  while ((ch = getchar()) != '\n')   

 It demonstrates a characteristic C programming style—combining two actions in one expres-
sion. C’s free-formatting facility can help to make the separate components of the line clearer:  
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  while (

         (ch = getchar())             // assign a value to ch

                           != '\n')   // compare ch to \n   

 The actions are assigning a value to  ch  and comparing this value to the newline character. The 
parentheses around  ch = getchar()  make it the left operand of the  !=  operator. To evaluate 
this expression, the computer must first call the  getchar()  function and then assign its return 
value to  ch . Because the value of an assignment expression is the value of the left member, the 
value of  ch = getchar()  is just the new value of  ch . Therefore, after  ch  is read, the test condi-
tion boils down to  ch != '\n'  (that is, to  ch   not  being the newline character).  

 This particular idiom is very common in C programming, so you should be familiar with it. 
You also should make sure you remember to use parentheses to group the subexpressions 
properly.  

 All the parentheses are necessary. Suppose that you mistakenly used this:  

  while (ch = getchar() != '\n')   

 The  !=  operator has higher precedence than  = , so the first expression to be evaluated is 
 getchar() != '\n' . Because this is a relational expression, its value is  1  or  0  (true or false). 
Then this value is assigned to  ch . Omitting the parentheses means that  ch  is assigned  0  or  1  
rather than the return value of  getchar() ; this is not desirable.  

 The statement  

  putchar(ch + 1);   /* change other characters  */   

 illustrates once again that characters really are stored as integers. In the expression  ch + 1 , 
 ch  is expanded to type  int  for the calculation, and the resulting  int  is passed to  putchar() , 
which takes an  int  argument but only uses the final byte to determine which character to 
display.   

  The  ctype.h  Family of Character Functions  

 Notice that the output for  Listing   7.2    shows a period being converted to a slash; that’s because 
the ASCII code for the slash character is one greater than the code for the period character. 
But if the point of the program is to convert only letters, it would be nice to leave all non-
letters, not just spaces, unaltered. The logical operators, discussed later in this chapter, provide 
a way to test whether a character is not a space, not a comma, and so on, but it would be 
rather cumbersome to list all the possibilities. Fortunately, C has a standard set  of functions 
for analyzing characters; the  ctype.h  header file contains the prototypes. These functions take 
a character as an argument and return nonzero (true) if the character belongs to a particular 
category and zero (false) otherwise. For example, the  isalpha()  function returns a nonzero 
value if its argument is a letter.  Listing   7.3    generalizes  Listing   7.2    by using this function; it also 
incorporates the shortened loop structure we just discussed.  
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  Listing 7.3   The  cypher2.c  Program  

 // cypher2.c -- alters input, preserving non-letters

  #include <stdio.h>

  #include <ctype.h>            // for isalpha()

  int main(void)

  {

      char ch;

  

      while ((ch = getchar()) != '\n')

      {

          if (isalpha(ch))      // if a letter,

              putchar(ch + 1);  // display next letter

          else                  // otherwise,

              putchar(ch);      // display as is

      }

      putchar(ch);              // display the newline

  

      return 0;

  }   

 Here is a sample run; note how both lowercase and uppercase letters are enciphered, but spaces 
and punctuation are not:  

   Look! It's a programmer! 
  Mppl! Ju't b qsphsbnnfs!   

  Tables   7.1    and    7.2    list several functions provided when you include the  ctype.h  header file. 
Some mention a locale; this refers to C’s facility for specifying a locale that modifies or extends 
basic C usage. (For example, many nations use a comma instead of a decimal point when 
writing decimal fractions, and a particular locale could specify that C use the comma in the 
same way for floating-point output, thus displaying  123.45  as  123,45 .) Note that the mapping 
functions don’t modify the original argument; instead, they return the modified value. That is,  

  tolower(ch);       // no effect on ch   

 doesn’t change  ch . To change  ch , do this:  

  ch = tolower(ch);  // convert ch to lowercase   

  Table 7.1   The  ctype.h  Character-Testing Functions  

  Name     True If the Argument Is   

  isalnum()    Alphanumeric (alphabetic or numeric)  

  isalpha()    Alphabetic  
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  Name     True If the Argument Is   

  isblank()    A standard blank character (space, horizontal tab, or newline) or any additional 
locale-specific character so specified  

  iscntrl()    A control character, such as Ctrl+B  

  isdigit()    A digit  

  isgraph()    Any printing character other than a space  

  islower()    A lowercase character  

  isprint()    A printing character  

  ispunct()    A punctuation character (any printing character other than a space or an alpha-
numeric character)  

  isspace()    A whitespace character (a space, newline, formfeed, carriage return, vertical 
tab, horizontal tab, or, possibly, other locale-defined character)  

  isupper()    An uppercase character  

  isxdigit()    A hexadecimal-digit character  

  Table 7.2   The  ctype.h  Character-Mapping Functions  

  Name     Action   

  tolower()    If the argument is an uppercase character, this function returns the low-
ercase version; otherwise, it just returns the original argument.  

  toupper()    If the argument is a lowercase character, this function returns the upper-
case version; otherwise, it just returns the original argument.  

  Multiple Choice  else if   

 Life often offers us more than two choices. You can extend the  if else  structure with  else 
if  to accommodate this fact. Let’s look at a particular example. Utility companies often 
have charges that depend on the amount of energy the customer uses. Here are the rates one 
company charges for electricity, based on kilowatt-hours (kWh):  

 First 360 kWh:   $0.13230 per kWh  

 Next 108 kWh:   $0.15040 per kWh  

 Next 252 kWh:   $0.30025 per kWh  

 Over 720 kWh:   $0.34025 per kWh  



ptg11524036

255Adding else to the if Statement

 If you worry about your energy management, you might want to prepare a program to calcu-
late your energy costs. The program in  Listing   7.4    is a first step in that direction.  

  Listing 7.4   The  electric.c  Program  

 // electric.c -- calculates electric bill

  #include <stdio.h>

  #define RATE1   0.13230       // rate for first 360 kwh

  #define RATE2   0.15040       // rate for next 108 kwh

  #define RATE3   0.30025       // rate for next 252 kwh

  #define RATE4   0.34025       // rate for over 720 kwh

  #define BREAK1  360.0         // first breakpoint for rates

  #define BREAK2  468.0         // second breakpoint for rates

  #define BREAK3  720.0         // third breakpoint for rates

  #define BASE1   (RATE1 * BREAK1)

  // cost for 360 kwh

  #define BASE2  (BASE1 + (RATE2 * (BREAK2 - BREAK1)))

  // cost for 468 kwh

  #define BASE3   (BASE1 + BASE2 + (RATE3 *(BREAK3 - BREAK2)))

  //cost for 720 kwh

  int main(void)

  {

      double kwh;               // kilowatt-hours used

      double bill;               // charges

  

      printf("Please enter the kwh used.\n");

      scanf("%lf", &kwh);       // %lf for type double

      if (kwh <= BREAK1)

          bill = RATE1 * kwh;

      else if (kwh <= BREAK2)   // kwh between 360 and 468

          bill = BASE1 + (RATE2 * (kwh - BREAK1));

      else if (kwh <= BREAK3)   // kwh betweent 468 and 720

          bill = BASE2 + (RATE3 * (kwh - BREAK2));

      else                      // kwh above 680

          bill = BASE3 + (RATE4 * (kwh - BREAK3));

      printf("The charge for %.1f kwh is $%1.2f.\n", kwh, bill);

  

      return 0;

  }   

 Here’s some sample output:  

  Please enter the kwh used.

   580 
  The charge for 580.0 kwh is $97.50.   
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  Listing   7.4    uses symbolic constants for the rates so that the constants are conveniently gath-
ered in one place. If the power company changes its rates (it’s possible), having the rates in 
one place makes them easy to update. The listing also expresses the rate breakpoints symboli-
cally. They, too, are subject to change.  BASE1  and  BASE2  are expressed in terms of the rates 
and breakpoints. Then, if the rates or breakpoints change, the bases are updated automatically. 
You may recall that the preprocessor does not do calculations. Where  BASE1  appears in the 
program, it will be replaced by 0.13230  * 360.0 . Don’t worry; the compiler  does evaluate this 
expression to its numerical value ( 47.628 ) so that the final program code uses  47.628  rather 
than a calculation.  

 The flow of the program is straightforward. The program selects one of three formulas, depend-
ing on the value of  kwh . You should pay particular attention to the fact that the only way 
the program can reach the first  else  is if  kwh  is equal to or greater than  360 . Therefore, the 
 else if (kwh <= BREAK2)  line really is equivalent to demanding that  kwh  be between  360  
and  482 , as the program comment notes. Similarly, the final  else  can be reached only if  kwh  
exceeds  720 . Finally, note that  BASE1 ,  BASE2 , and  BASE3  represent the total charges for the first 
360, 468, and 720 kilowatt-hours, respectively. Therefore, you  need to add on only the addi-
tional charges for electricity in excess of those amounts.  

 Actually, the  else if  is a variation on what you already knew. For example, the core of the 
program is just another way of writing  

  if (kwh <= BREAK1)

      bill = RATE1 * kwh;

  else

      if (kwh <= BREAK2)   // kwh between 360 and 468

          bill = BASE1 + (RATE2 * (kwh - BREAK1));

      else

          if (kwh <= BREAK3)   // kwh betweent 468 and 720

              bill = BASE2 + (RATE3 * (kwh - BREAK2));

          else                      // kwh above 680

              bill = BASE3 + (RATE4 * (kwh - BREAK3));   

 That is, the program consists of an  if else  statement for which the statement part of the 
 else  is another  if else  statement. The second  if else  statement is said to be  nested  inside 
the first and the third inside the second. Recall that the entire  if else  structure counts as a 
single statement, which is why we didn’t have to enclose the nested  if else  statements in 
braces. However, using braces would clarify the intent of this particular format.  

 These two forms are perfectly equivalent. The only differences are in where you put spaces and 
newlines, and these differences are ignored by the compiler. Nonetheless, the first form is better 
because it shows more clearly that you are making a four-way choice. This form makes it easier 
to skim the program and see what the choices are. Save the nested forms of indentation for 
when they are needed—for example, when you must test two separate quantities. An example 
of such a situation is having a 10% surcharge for kilowatt-hours in excess of 720 during the 
summer only.  
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 You can string together as many  else if  statements as you need (within compiler limits, of 
course), as illustrated by this fragment:  

  if (score < 1000)

       bonus = 0;

  else if (score < 1500)

       bonus = 1;

  else if (score < 2000)

       bonus = 2;

  else if (score < 2500)

       bonus = 4;

  else

       bonus = 6;   

 (This might be part of a game program, in which  bonus  represents how many additional 
photon bombs or food pellets you get for the next round.)  

 Speaking of compiler limits, the C99 standard requires that a compiler support a minimum of 
127 levels of nesting.   

  Pairing  else  with  if   

 When you have a lot of  if s and  else s, how does the computer decide which  if  goes with 
which  else ? For example, consider the following program fragment:  

  if (number > 6)

      if (number < 12)

         printf("You're close!\n");

  else

      printf("Sorry, you lose a turn!\n");   

 When is  Sorry, you lose a turn!  printed? When  number  is less than or equal to  6 , 
or when  number  is greater than  12 ? In other words, does the  else  go with the first  if  or 
the second? The answer is, the  else  goes with the second  if . That is, you would get these 
responses:  

  Number     Response   

  5    None  

  10    You’re close!  

  15    Sorry, you lose a turn!  

 The rule is that an  else  goes with the most recent  if  unless braces indicate otherwise (see 
 Figure   7.2   ).  
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else goes with the most
recent if

if (condition)

  do this;

if (condition)

  do this;

else

  do this;

else goes with the first if
since braces enclose inner
if statements

if (condition)

{

  do this;

  if (condition)

    do this;

}

else

  do this;

 Figure 7.2   The rule for  if else  pairings.         

 Note: Indent the next-to-last “do this;” two spaces and terminate the last “do this” with a semi-
colon. Move the } and { two spaces to the left.  

 The indentation of the first example makes it look as though the  else  goes with the first  if , 
but remember that the compiler ignores indentation. If you really want the  else  to go with the 
first  if , you could write the fragment this way:  

  if (number > 6)

  {

       if (number < 12)

           printf("You're close!\n");

  }

  else

     printf("Sorry, you lose a turn!\n");   

 Now you would get these responses:  
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  Number     Response   

  5    Sorry, you lose a turn!  

  10    You’re close!  

  15    None  

  More Nested  if s  

 You’ve already seen that the  if...else if...else  sequence is a form of nested  if , one that 
selects from a series of alternatives. Another kind of nested  if  is used when choosing a particu-
lar selection leads to an additional choice. For example, a program could use an  if else  to 
select between males and females. Each branch within the  if else  could then contain another 
 if else  to distinguish between different income groups.  

 Let’s apply this form of nested  if  to the following problem. Given an integer, print all the inte-
gers that divide into it evenly; if there are no divisors, report that the number is prime.  

 This problem requires some forethought before you whip out the code. First, you need an 
overall design for the program. For convenience, the program should use a loop to enable you 
to input numbers to be tested. That way, you don’t have to run the program again each time 
you want to examine a new number. We’ve already developed a model for this kind of loop:  

   prompt user 

   while the scanf() return value is 1 

      analyze the number and report results 

      prompt user    

 Recall that by using  scanf()  in the loop test condition, the program attempts both to read a 
number and to check to see whether the loop should be terminated.  

 Next, you need a plan for finding divisors. Perhaps the most obvious approach is something 
like this:  

  for (div = 2; div < num; div++)

    if (num % div == 0)

         printf("%d is divisible by %d\n", num, div);   

 The loop checks all the numbers between  2  and  num  to see whether they divide evenly into 
 num . Unfortunately, this approach is wasteful of computer time. You can do much better. 
Consider, for example, finding the divisors of 144. You find that 144 % 2 is 0, meaning 2 goes 
into 144 evenly. If you then actually divide 2 into 144, you get 72, which also is a divisor, so 
you can get two divisors instead of one divisor out of a successful  num % div  test. The real 
payoff, however, comes in changing the limits of the loop test. To see how  this works, look 
at the pairs of divisors you get as the loop continues: 2,72, 3,48, 4,36, 6,24, 8,18, 9,16, 12,12, 
16,9, 18,8, and so on. Ah! After you get past the 12,12 pair, you start getting the same divisors 
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(in reverse order) that you already found. Instead of running the loop to 143, you can stop after 
reaching 12. That saves a lot of cycles!  

 Generalizing this discovery, you see that you have to test only up to the square root of  num  
instead of to  num . For numbers such as 9, this is not a big savings, but the difference is enor-
mous for a number such as 10,000. Instead of messing with square roots, however, you can 
express the test condition as follows:  

  for (div = 2; (div * div) <= num; div++)

      if (num % div == 0)

           printf("%d is divisible by %d and %d.\n",

                     num, div, num / div);   

 If  num  is  144 , the loop runs through  div = 12 . If  num  is  145 , the loop runs through  div = 13 .  

 There are two reasons for using this test rather than a square root test. First, integer multipli-
cation is faster than extracting a square root. Second, the square root function hasn’t been 
formally introduced yet.  

 We need to address just two more problems, and then you’ll be ready to program. First, what 
if the test number is a perfect square? Reporting that 144 is divisible by 12 and 12 is a little 
clumsy, but you can use a nested  if  statement to test whether  div  equals  num / div . If so, the 
program will print just one divisor instead of two.  

  for (div = 2; (div * div) <= num; div++)

  {

     if (num % div == 0)

     {

        if (div * div != num)

           printf("%d is divisible by %d and %d.\n",

               num, div, num / div);

        else

           printf("%d is divisible by %d.\n", num, div);

     }

  }   

  Note 

 Technically, the  if else  statement counts as a single statement, so the braces around it are 
not needed. The outer  if  is a single statement also, so the braces around it are not needed. 
However, when statements get long, the braces make it easier to see what is happening, and 
they offer protection if later you add another statement to an  if  or to the loop.   

 Second, how do you know if a number is prime? If  num  is prime, program flow never gets inside 
the  if  statement. To solve this problem, you can set a variable to some value, say  1 , outside the 
loop and reset the variable to  0  inside the  if  statement. Then, after the loop is completed, you 
can check to see whether the variable is still  1 . If it is, the  if  statement was never entered, and 
the number is prime. Such a variable is often called a  flag .  
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 Traditionally, C has used the  int  type for flags, but the new  _Bool  type matches the require-
ments perfectly. Furthermore, by including the  stdbool.h  header file, you can use  bool  
instead of the keyword  _Bool  for the type and use the identifiers  true  and  false  instead of  1  
and  0 .  

  Listing   7.5    incorporates all these ideas. To extend the range, the program uses type  long  
instead of type  int . (If your system doesn’t support the  _Bool  type, you can use the  int  type 
for  isPrime  and use  1  and  0  instead of  true  and  false .)  

  Listing 7.5   The  divisors.c  Program  

 // divisors.c -- nested ifs display divisors of a number

  #include <stdio.h>

  #include <stdbool.h>

  int main(void)

  {

      unsigned long num;          // number to be checked

      unsigned long div;          // potential divisors

      bool isPrime;               // prime flag

  

      printf("Please enter an integer for analysis; ");

      printf("Enter q to quit.\n");

      while (scanf("%lu", &num) == 1)

      {

          for (div = 2, isPrime = true; (div * div) <= num; div++)

          {

              if (num % div == 0)

              {

                  if ((div * div) != num)

                  printf("%lu is divisible by %lu and %lu.\n",

                          num, div, num / div);

                  else

                      printf("%lu is divisible by %lu.\n",

                             num, div);

                  isPrime= false; // number  is not prime

              }

          }

          if (isPrime)

              printf("%lu is prime.\n", num);

          printf("Please enter another integer for analysis; ");

          printf("Enter q to quit.\n");

      }

      printf("Bye.\n");

  

      return 0;

  }   
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 Note that the program uses the comma operator in the  for  loop control expression to enable 
you to initialize  isPrime  to  true  for each new input number.  

 Here’s a sample run:  

  Please enter an integer for analysis; Enter q to quit.

   123456789 
  123456789 is divisible by 3 and 41152263.

  123456789 is divisible by 9 and 13717421.

  123456789 is divisible by 3607 and 34227.

  123456789 is divisible by 3803 and 32463.

  123456789 is divisible by 10821 and 11409.

  Please enter another integer for analysis; Enter q to quit.

   149 
  149 is prime.

  Please enter another integer for analysis; Enter q to quit.

   2013 
  2013 is divisible by 3 and 671.

  2013 is divisible by 11 and 183.

  2013 is divisible by 33 and 61.

  Please enter another integer for analysis; Enter q to quit.

   q 
  Bye.   

 The program will identify 1 as prime, which, technically, it isn’t. The logical operators, coming 
up in the next section, would let you exclude 1 from the prime list.    

  Summary: Using  if  Statements for Making Choices  

  Keywords:   

  if ,  else   

  General Comments:   

 In each of the following forms, the statement can be either a simple statement or a compound 
statement. A true expression means one with a nonzero value.  

  Form 1:   

  if ( expression )

        statement    

 The   statement   is executed if the   expression   is true.  

  Form 2:   

  if ( expression )

        statement1 

  else

        statement2    
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 If the   expression   is true,   statement1   is executed. Otherwise,   statement2   is executed.  

  Form 3:   

  if ( expression1 )

        statement1 

  else if ( expression2 )

        statement2 

  else

        statement3    

 If   expression1   is true,   statement1   is executed. If   expression1   is false but   expression2   
is true,   statement2   is executed. Otherwise, if both expressions are false,   statement3   is 
executed.  

  Example:   

  if (legs == 4)

       printf("It might be a horse.\n");

  else if (legs > 4)

       printf("It is not a horse.\n");

  else    /* case of legs < 4 */

  {

       legs++;

       printf("Now it has one more leg.\n");

  }      

  Let’s Get Logical  

 You’ve seen how  if  and  while  statements often use relational expressions as tests. Sometimes 
you will find it useful to combine two or more relational expressions. For example, suppose you 
want a program that counts how many times the characters other than single or double quotes 
appear in an input sentence. You can use logical operators to meet this need, and you can use 
the period character ( . ) to identify the end of a sentence.  Listing   7.6    presents a short program 
illustrating this method.  

  Listing 7.6   The  chcount.c  Program  

 // chcount.c  -- use the logical AND operator

  #include <stdio.h>

  #define PERIOD '.'

  int main(void)

  {

      char ch;

      int charcount = 0;

  

      while ((ch = getchar()) != PERIOD)
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      {

          if (ch != '"' && ch != '\'')

              charcount++;

      }

      printf("There are %d non-quote characters.\n", charcount);

  

      return 0;

  }   

 The following is a sample run:  

   I didn't read the "I'm a Programming Fool" best seller. 
  There are 50 non-quote characters.   

 The action begins as the program reads a character and checks to see whether it is a period, 
because the period marks the end of a sentence. Next comes something new, a statement using 
the logical AND operator,  && . You can translate the  if  statement as, “If the character is not a 
double quote AND if it is not a single quote, increase  charcount  by 1.”  

 Both conditions must be true if the whole expression is to be true. The logical operators have 
a lower precedence than the relational operators, so it is not necessary to use additional paren-
theses to group the subexpressions.  

 C has three logical operators:  

  Operator     Meaning   

  &&    and  

  ||    or  

  !    not  

 Suppose  exp1  and  exp2  are two simple relational expressions, such as  cat > rat  and  debt == 
1000 . Then you can state the following:  

    ■    exp1 && exp2  is true only if both  exp1  and  exp2  are true.   

   ■    exp1 || exp2  is true if either  exp1  or  exp2  is true or if both are true.   

   ■    !exp1  is true if  exp1  is false, and it’s false if  exp1  is true.    

 Here are some concrete examples:  

    5 > 2 && 4 > 7  is false because only one subexpression is true.   

   5 > 2 || 4 > 7  is true because at least one of the subexpressions is true.   

   !(4 > 7)  is true because  4  is not greater than  7 .    
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 The last expression, incidentally, is equivalent to the following:  

  4 <= 7   

 If you are unfamiliar or uncomfortable with logical operators, remember that  

  (practice && time) == perfection   

  Alternate Spellings: The  iso646.h  Header File  

 C was developed in the United States on systems using the standard U.S. keyboards. But in the 
wider world, not all keyboards have the same symbols as U.S. keyboards do. Therefore, the C99 
standard added alternative spellings for the logical operators. They are defined in the  iso646.h  
header file. If you use this header file, you can use  and  instead of  && ,  or  instead of  || , and  not  
instead of  ! . For example, you can rewrite  

  if (ch != '"' && ch != '\'')

      charcount++;   

 this way:  

  if (ch != '"' and ch != '\'')

      charcount++;   

  Table   7.3    lists your choices; they are pretty easy to remember. In fact, you might wonder why 
C didn’t simply use the new terms. The answer probably is that C historically has tried to keep 
the number of keywords small. Reference Section V, “The Standard ANSI C Library with C99 
and C11 Additions,” lists additional alternative spellings for some operators you haven’t met 
yet.  

  Table 7.3   Alternative Representations of Logical Operators  

  Traditional      iso646.h    

  &&     and   

  ||     or   

 !   not  

  Precedence  

 The  !  operator has a very high precedence—higher than multiplication, the same as the incre-
ment operators, and just below that of parentheses. The  &&  operator has higher precedence 
than  || , and both rank below the relational operators and above assignment in precedence. 
Therefore, the expression  

  a > b && b > c || b > d   
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 would be interpreted as  

  ((a > b) && (b > c)) || (b > d)   

 That is,  b  is between  a  and  c , or  b  is greater than  d .  

 Many programmers would use parentheses, as in the second version, even though they are not 
needed. That way, the meaning is clear even if the reader doesn’t quite remember the prece-
dence of the logical operators.   

  Order of Evaluation  

 Aside from those cases in which two operators share an operand, C ordinarily does not guar-
antee which parts of a complex expression are evaluated first. For example, in the following 
statement, the expression  5 + 3  might be evaluated before  9 + 6 , or it might be evaluated 
afterward:  

  apples = (5 + 3) * (9 + 6);   

 This ambiguity was left in the language so that compiler designers could make the most effi-
cient choice for a particular system. One exception to this rule (or lack of rule) is the treatment 
of logical operators. C guarantees that logical expressions are evaluated from left to right. The 
 &&  and  ||  operators are sequence points, so all side effects take place before a program moves 
from one operand to the next. Furthermore, it guarantees that as soon as an element is found 
that invalidates the expression as a whole, the evaluation stops. These guarantees make it possi-
ble to use constructions such as  the following:  

  while ((c = getchar()) != ' ' && c != '\n')   

 This construction sets up a loop that reads characters up to the first space or newline charac-
ter. The first subexpression gives a value to  c , which then is used in the second subexpression. 
Without the order guarantee, the computer might try to test the second expression before 
finding out what value  c  has.  

 Here is another example:  

  if (number != 0 && 12/number == 2)

       printf("The number is 5 or 6.\n");   

 If  number  has the value  0 , the first subexpression is false, and the relational expression is not 
evaluated any further. This spares the computer the trauma of trying to divide by zero. Many 
languages do not have this feature. After seeing that  number  is 0, they still plunge ahead to 
check the next condition.  

 Finally, consider this example:  

  while ( x++ < 10 && x + y < 20)   

 The fact that the  &&  operator is a sequence point guarantees that  x  is incremented before the 
expression on the right is evaluated.    
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  Summary: Logical Operators and Expressions  

  Logical Operators:   

 Logical operators normally take relational expressions as operands. The  !  operator takes one 
operand. The rest take two—one to the left, one to the right.  

  Operator     Meaning   

  &&    and  

  ||    or  

  !    not  

  Logical Expressions:   

  expression1 && expression2  is true if and only if both expressions are true.  expression1 
|| expression2  is true if either one or both expressions are true.  !expression  is true if the 
expression is false, and vice versa.  

  Order of Evaluation:   

 Logical expressions are evaluated from left to right. Evaluation stops as soon as something is 
discovered that renders the expression false.  

  Examples:   

  6 > 2 && 3 == 3    True.  

  ! (6 > 2 && 3 == 3)    False.  

  x != 0 && (20 / x) < 5    The second expression is evaluated only if  x  is nonzero.  

  Ranges  

 You can use the  &&  operator to test for ranges. For example, to test for  score  being in the range 
90 to 100, you can do this:  

  if (range >= 90 && range <= 100)

      printf("Good show!\n");   

 It’s important to avoid imitating common mathematical notation, as in the following:  

  if (90 <= range <= 100)    // NO! Don't do it!

      printf("Good show!\n");   

 The problem is that the code is a semantic error, not a syntax error, so the compiler will not 
catch it (although it might issue a warning). Because the order of evaluation for the  <=  operator 
is left-to-right, the test expression is interpreted as follows:  

  (90 <= range) <= 100   
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 The subexpression  90 <= range  either has the value  1  (for true) or  0  (for false). Either value is 
less than 100, so the whole expression is always true, regardless of the value of  range . So use 
 &&  for testing for ranges.  

 A lot of code uses range tests to see whether a character is, say, a lowercase letter. For instance, 
suppose  ch  is a  char  variable:  

  if (ch >= 'a' && ch <= 'z')

      printf("That's a lowercase character.\n");   

 This works for character codes such as ASCII, in which the codes for consecutive letters are 
consecutive numbers. However, this is not true for some codes, including EBCDIC. The more 
portable way of doing this test is to use the  islower()  function from the  ctype.h  family (refer 
to  Table   7.1   ):  

  if (islower(ch))

      printf("That's a lowercase character.\n");   

 The  islower()  function works regardless of the particular character code used. (However, some 
ancient implementations lack the  ctype.h  family.)    

  A Word-Count Program  

 Now you have the tools to make a word-counting program (that is, a program that reads input 
and reports the number of words it finds). You may as well count characters and lines while 
you are at it. Let’s see what such a program involves.  

 First, the program should read input character-by-character, and it should have some way of 
knowing when to stop. Second, it should be able to recognize and count the following units: 
characters, lines, and words. Here’s a pseudocode representation:  

   read a character 

   while there is more input 

        increment character count 

        if a line has been read, increment line count 

        if a word has been read, increment word count 

        read next character    

 You already have a model for the input loop:  

  while ((ch = getchar()) != STOP)

  {

    ...

  }   

 Here,  STOP  represents some value for  ch  that signals the end of the input. The examples so far 
have used the newline character and a period for this purpose, but neither is satisfactory for 
a general word-counting program. For the present, choose a character (such as  | ) that is not 
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common in text. In  Chapter   8   , “Character Input/Output and Input Validation,” we’ll present a 
better solution that also allows the program to be used with text files as well as keyboard input.  

 Now let’s consider the body of the loop. Because the program uses  getchar()  for input, it 
can count characters by incrementing a counter during each loop cycle. To count lines, the 
program can check for newline characters. If a character is a newline, the program should incre-
ment the line count. One question to decide is what to do if the  STOP  character comes in the 
middle of a line. Should that count as a line or not? One answer is to count it as a partial line—
that is, a line with characters but no newline. You can identify this case by keeping  track of the 
previous character read. If the last character read before the  STOP  character isn’t a newline, you 
have a partial line.  

 The trickiest part is identifying words. First, you have to define what you mean by a word. Let’s 
take a relatively simple approach and define a word as a sequence of characters that contains 
no whitespace (that is, no spaces, tabs, or newlines). Therefore, “glymxck” and “r2d2” are 
words. A word starts when the program first encounters non-whitespace, and then it ends 
when the next whitespace character shows up. Here is the most straightforward test expression 
for detecting non-whitespace:  

  c != ' ' && c != '\n' && c != '\t'   /* true if c is not whitespace */   

 And the most straightforward test for detecting whitespace is  

  c == ' ' || c == '\n' || c == '\t'   /* true if c is whitespace */   

 However, it is simpler to use the  ctype.h  function  isspace() , which returns true if its argu-
ment is a whitespace character. So  isspace(c)  is true if  c  is whitespace, and  !isspace(c)  is 
true if  c  isn’t whitespace.  

 To keep track of whether a character is in a word, you can set a flag (call it  inword ) to  1  when 
the first character in a word is read. You can also increment the word count at that point. 
Then, as long as  inword  remains  1  (or true), subsequent non-whitespace characters don’t mark 
the beginning of a word. At the next whitespace character, you must reset the flag to  0  (or 
false) and then the program will be ready to find the next word. Let’s put that into pseudocode:  

   if c is not whitespace and inword is false 

        set inword to true and count the word 

   if c is whitespace and inword is true 

        set inword to false    

 This approach sets  inword  to  1  (true) at the beginning of each word and to  0  (false) at the end 
of each word. Words are counted only at the time the flag setting is changed from  0  to  1 . If 
you have the  _Bool  type available, you can include the  stdbool.h  header file and use  bool  for 
the  inword  type and  true  and  false  for the values. Otherwise, use the  int  type and  1  and  0  
as the values.  

 If you do use a Boolean variable, the usual idiom is to use the value of the variable itself as a 
test condition. That is, use  

  if (inword)   
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 instead of  

  if (inword == true)   

 and use  

  if (!inword)   

 instead of  

  if (inword == false)   

 The reasoning is that the expression  inword == true  evaluates to  true  if  inword  is  true  and 
to  false  if  inword  is  false , so you may as well just use  inword  as the test. Similarly,  !inword  
has the same value as the expression  inword == false  (not true is  false , and not false is 
 true ).  

  Listing   7.7    translates these ideas (identifying lines, identifying partial lines, and  identifying 
words) into C.  

  Listing 7.7   The  wordcnt.c  Program  

 // wordcnt.c -- counts characters, words, lines

  #include <stdio.h>

  #include <ctype.h>         // for isspace()

  #include <stdbool.h>       // for bool, true, false

  #define STOP '|'

  int main(void)

  {

      char c;                 // read in character

      char prev;              // previous character read

      long n_chars = 0L;      // number of characters

      int n_lines = 0;        // number of lines

      int n_words = 0;        // number of words

      int p_lines = 0;        // number of partial lines

      bool inword = false;    // == true if c is in a word

  

      printf("Enter text to be analyzed (| to terminate):\n");

      prev = '\n';            // used to identify complete lines

      while ((c = getchar())  != STOP)

      {

          n_chars++;          // count characters

          if (c == '\n')

              n_lines++;      // count lines

          if (!isspace(c) && !inword)

          {

              inword = true;  // starting a new word

              n_words++;      // count word

          }
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          if (isspace(c) && inword)

              inword = false; // reached end of word

          prev = c;           // save character value

      }

  

      if (prev != '\n')

          p_lines = 1;

      printf("characters = %ld, words = %d, lines = %d, ",

            n_chars, n_words, n_lines);

      printf("partial lines = %d\n", p_lines);

  

      return 0;

  }   

 Here is a sample run:  

  Enter text to be analyzed (| to terminate):

   Reason is a 
   powerful servant but 
   an inadequate master. 
   | 
  characters = 55, words = 9, lines = 3, partial lines = 0   

 The program uses logical operators to translate the pseudocode to C. For example,  

  if c is not whitespace and inword is false   

 gets translated into the following:  

  if (!isspace(c) && !inword)   

 Note again that  !inword  is  equivalent to  inword == false . The entire test condition 
certainly is more readable than testing for each whitespace character individually:  

  if (c != ' ' && c != '\n' && c != '\t' && !inword)   

 Either form says, “If  c  is  not  whitespace  and  if you are  not  in a word.” If both conditions are 
met, you must be starting a new word, and  n_words  is incremented. If you are in the middle 
of a word, the first condition holds, but  inword  will be  true , and  n_words  is not incremented. 
When you reach the next whitespace character,  inword  is set equal to  false  again. Check the 
coding to see whether the program gets confused when there are several spaces between one 
word and the next.  Chapter   8    shows how to modify this program to count words in a  file.   

  The Conditional Operator:  ?:   

 C offers a shorthand way to express one form of the  if else  statement. It is called a  condi-
tional expression  and uses the  ?:  conditional operator. This is a two-part operator that has three 
operands. Recall that operators with one operand are called  unary  operators and that operators 
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with two operands are called  binary  operators. In that tradition, operators with three operands 
are called  ternary  operators, and the conditional operator is C’s only example in that category. 
Here is an example that yields the absolute value of a number:  

  x = (y < 0) ? -y : y;   

 Everything between the  =  and the semicolon is the conditional expression. The meaning of the 
statement is “If  y  is less than zero,  x = -y ; otherwise,  x = y .” In  if else  terms, the meaning 
can be expressed as follows:  

  if (y < 0)

      x = -y;

  else

      x = y;   

 The following is the general form of the conditional expression:  

   expression1  ?  expression2  :  expression3    

 If   expression1   is true (nonzero), the whole conditional expression has the same value as 
  expression2  . If   expression1   is  false  (zero), the whole conditional expression has the same 
value as   expression3  .  

 You can use the conditional expression when you have a variable to which you want to assign 
one of two possible values. A typical example is setting a variable equal to the maximum of two 
values:  

  max = (a > b) ? a : b;   

 This sets  max  to  a  if it is greater than  b , and to  b  otherwise.  

 Usually, an  if else  statement can accomplish the same thing as the conditional operator. The 
conditional operator version, however, is more compact and, depending on the compiler, may 
result in more compact program code.  

 Let’s look at a paint program example, shown in  Listing   7.8   . The program calculates how many 
cans of paint are needed to paint a given number of square feet. The basic algorithm is simple: 
Divide the square footage by the number of square feet covered per can. However, suppose the 
answer is 1.7 cans. Stores sell whole cans, not fractional cans, so you would have to buy two 
cans. Therefore, the program should round up to the next integer when a fractional paint can 
is involved. The conditional operator is used to handle that situation,  and it’s also used to  
print  cans  or  can , as appropriate.  

  Listing 7.8   The  paint.c  Program  

 /* paint.c -- uses conditional operator */

  #include <stdio.h>

  #define COVERAGE 350       // square feet per paint can

  int main(void)

  {
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      int sq_feet;

      int cans;

  

      printf("Enter number of square feet to be painted:\n");

      while (scanf("%d", &sq_feet) == 1)

      {

          cans = sq_feet / COVERAGE;

          cans += ((sq_feet % COVERAGE == 0)) ? 0 : 1;

          printf("You need %d %s of paint.\n", cans,

                  cans == 1 ? "can" : "cans");

          printf("Enter next value (q to quit):\n");

      }

  

      return 0;

  }   

 Here’s a sample run:  

  Enter number of square feet to be painted:

   349 
  You need 1 can of paint.

  Enter next value (q to quit):

   351 
  You need 2 cans of paint.

  Enter next value (q to quit):

   q    

 Because the program is using type  int , the  division is truncated; that is,  351/350  becomes  1 . 
Therefore,  cans  is rounded down to the integer part. If  sq_feet % COVERAGE  is 0,  COVERAGE  
divides evenly into  sq_feet  and  cans  is left unchanged. Otherwise, there is a remainder, so  1  
is added. This is accomplished with the following statement:  

  cans += ((sq_feet % COVERAGE == 0)) ? 0 : 1;   

 It adds the value of the expression to the right of  +=  to  cans . The expression to the right is 
a conditional expression having the value  0  or  1 , depending on whether  COVERAGE  divides 
evenly into  sq_feet .  

 The final argument to the  printf()  function is also a conditional expression:  

  cans == 1 ? "can" : "cans");   

 If the value of  cans  is  1 , the string  "can"  is used. Otherwise,  "cans"  is used. This demonstrates 
that the conditional operator can use strings for its second and third operands.    
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  Summary: The Conditional Operator  

  The Conditional Operator:   

  ?:   

  General Comments:   

 This operator takes three operands, each of which is an expression. They are arranged as fol-
lows:  

   expression1  ?  expression2  :  expression3    

 The value of the whole expression equals the value of   expression2   if   expression1   is true. 
Otherwise, it equals the value of   expression3  .  

  Examples:   

  (5 > 3) ? 1 : 2  has the value  1 .  

  (3 > 5) ? 1 : 2  has the value  2 .  

  (a > b) ? a : b  has the value of the larger of  a  or  b .    

  Loop Aids:  continue  and  break   

 Normally, after the body of a loop has been entered, a program executes all the statements in 
the body before doing the next loop test. The  continue  and  break  statements enable you to 
skip part of a loop or even terminate it, depending on tests made in the body of the loop.  

  The  continue  Statement  

 This statement can be used in the three loop forms. When encountered, it causes the rest of an 
iteration to be skipped and the next iteration to be started. If the  continue  statement is inside 
nested structures, it affects only the innermost structure containing it. Let’s try  continue  in 
the short program in  Listing   7.9   .  

  Listing 7.9   The  skippart.c  Program  

 /* skippart.c  -- uses continue to skip part of loop */

  #include <stdio.h>

  int main(void)

  {

      const float MIN = 0.0f;

      const float MAX = 100.0f;

  

      float score;

      float total = 0.0f;

      int n = 0;

      float min = MAX;
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      float max = MIN;

  

      printf("Enter the first score (q to quit): ");

      while (scanf("%f", &score) == 1)

      {

          if (score < MIN || score > MAX)

          {

              printf("%0.1f is an invalid value. Try again: ",

                      score);

              continue;  // jumps to while loop test condition

          }

          printf("Accepting %0.1f:\n", score);

          min = (score < min)? score: min;

          max = (score > max)? score: max;

          total  += score;

          n++;

          printf("Enter next score (q to quit): ");

      }

      if (n > 0)

      {

          printf("Average of %d scores is %0.1f.\n", n, total / n);

          printf("Low = %0.1f, high = %0.1f\n", min, max);

      }

      else

          printf("No valid scores were entered.\n");

      return 0;

  }   

 In  Listing   7.9   , the  while  loop reads input until you enter nonnumeric data. The  if  statement 
within the loop screens out invalid score values. If, say, you enter  188 , the program tells you 
 188 is an invalid value . Then the  continue  statement causes the program to skip over 
the rest of the loop, which is devoted to processing valid input. Instead, the program starts the 
next loop cycle by attempting to read the next input value.  

 Note that there are two ways you could have avoided using  continue . One way is omitting the 
 continue  and making the remaining part of the loop an  else  block:  

  if (score < 0 || score > 100)

      /* printf() statement */

  else

  {

      /* statements */

  }   

 Alternatively, you could have used this format instead:  

  if (score >= 0 && score <= 100)

  {
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     /* statements */

  }   

 An advantage of using  continue  in this case is that you can eliminate one level of indentation 
in the main group of statements. Being concise can enhance readability when the statements 
are long or are deeply nested already.  

 Another use for  continue  is as a placeholder. For example, the following loop reads and 
discards input up to, and including, the end of a line:  

  while (getchar() != '\n')

      ;   

 Such a technique is handy when a program has already read some input from a line and needs 
to skip to the beginning of the next line. The problem is that the lone semicolon is hard to 
spot. The code is much more readable if you use  continue :  

  while (getchar() != '\n')

      continue;   

 Don’t use  continue  if it complicates rather than simplifies the code. Consider the following 
fragment, for example:  

  while ((ch = getchar() ) != '\n')

  {

      if (ch == '\t')

          continue;

      putchar(ch);

  }   

 This loop skips over the tabs and quits only when a newline character is encountered. The loop 
could have been expressed more economically as this:  

  while ((ch = getchar()) != '\n')

      if (ch != '\t')

          putchar(ch);   

 Often, as in this case, reversing an  if  test eliminates the need for a  continue .  

 You’ve seen that the  continue  statement causes the remaining body of a loop to be skipped. 
Where exactly does the loop resume? For the  while  and  do while  loops, the next action taken 
after the  continue  statement is to evaluate the loop test expression. Consider the following 
loop, for example:  

  count = 0;

  while (count < 10)

  {

      ch = getchar();

      if (ch == '\n')
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          continue;

      putchar(ch);

      count++;

  }   

 It reads 10 characters (excluding newlines, because the  count++;  statement gets skipped when 
 ch  is a newline) and echoes them, except for newlines. When the  continue  statement is 
executed, the next expression evaluated is the loop test condition.  

 For a  for  loop, the next actions are to evaluate the update expression and then the loop test 
expression. Consider the following loop, for example:  

  for (count = 0; count < 10; count++)

  {

      ch = getchar();

      if (ch == '\n')

          continue;

      putchar(ch);

  }   

 In this case, when the  continue  statement is executed, first  count  is incremented and then it’s 
compared to  10 . Therefore, this loop behaves slightly differently from the  while  example. As 
before, only non-newline characters are displayed. However, this time, newline characters are 
included in the count, so it reads 10 characters, including newlines.   

  The  break  Statement  

 A  break  statement in a loop causes the program to break free of the loop that encloses it and 
to proceed to the next stage of the program. In  Listing   7.9   , replacing  continue  with  break  
would cause the loop to quit when, say, 188 is entered, instead of just skipping to the next 
loop cycle.  Figure   7.3    compares  break  and  continue . If the  break  statement is inside nested 
loops, it affects only the innermost loop containing it.   

 Sometimes  break  is used to leave a loop when there are two separate reasons to leave.  Listing 
  7.10    uses a loop that calculates the area of a rectangle. The loop terminates if you respond with 
nonnumeric input for the rectangle’s length or width.  

  Listing 7.10   The  break.c  Program  

 /* break.c -- uses break to exit a loop */

  #include <stdio.h>

  int main(void)

  {

      float length, width;

  

      printf("Enter the length of the rectangle:\n");

      while (scanf("%f", &length) == 1)
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      {

          printf("Length = %0.2f:\n", length);

          printf("Enter its width:\n");

          if (scanf("%f", &width) != 1)

              break;

          printf("Width = %0.2f:\n", width);

          printf("Area = %0.2f:\n", length * width);

          printf("Enter the length of the rectangle:\n");

      }

      printf("Done.\n");

  

      return 0;

  }   

while ( (ch = getchar() ) !=EOF)

{

   blahblah(ch);

   if (ch == '\n')

      break;

   yakyak(ch);

}

blunder(n,m);

while ( (ch = getchar() ) !=EOF)

{

   blahblah(ch);

   if (ch == '\n')

      continue;

   yakyak(ch);

}

blunder(n,m);

 Figure 7.3   Comparing  break  and  continue .        
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 You could have controlled the loop this way:  

  while (scanf("%f %f", &length, &width) == 2)   

 However, using  break  makes it simple to echo each input value individually.  

 As with  continue , don’t use  break  when it complicates code. For example, consider the 
following loop:  

  while ((ch = getchar()) != '\n')

  {

     if (ch == '\t')

           break;

     putchar(ch);

  }   

 The logic is clearer if both tests are in the same place:  

  while ((ch = getchar() ) != '\n' && ch != '\t')

        putchar(ch);   

 The  break  statement is an essential adjunct to the  switch  statement, which is coming up next.  

 A  break  statement takes execution directly to the first statement following the loop; unlike the 
case for  continue  in a  for  loop, the update part of the control section is skipped. A  break  in a 
nested loop just takes the program out of the inner loop; to get out of the outer loop requires a 
second  break :  

  int p, q;

  

  scanf("%d", &p);

  while ( p > 0)

  {

      printf("%d\n", p);

      scanf("%d", &q);

      while( q > 0)

      {

          printf("%d\n",p*q);

          if (q > 100)

              break;           // break from inner loop

          scanf("%d", &q);

      }

      if (q > 100)

          break;               // break from outer loop

      scanf("%d", &p); 

  }     
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  Multiple Choice:  switch  and  break   

 The conditional operator and the  if else  construction make it easy to write programs that 
choose between two alternatives. Sometimes, however, a program needs to choose one of 
several alternatives. You can do this by using  if else if...else . However, in many cases, it 
is more convenient to use the C  switch  statement.  Listing   7.11    shows how the  switch  state-
ment works. This program reads in a letter and then responds by printing an animal  name that 
begins with that letter.  

  Listing 7.11   The  animals.c  Program  

 /* animals.c -- uses a switch statement */

  #include <stdio.h>

  #include <ctype.h>

  int main(void)

  {

      char ch;

  

      printf("Give me a letter of the alphabet, and I will give ");

      printf("an animal name\nbeginning with that letter.\n");

      printf("Please type in a letter; type # to end my act.\n");

      while ((ch = getchar()) != '#')

      {

          if('\n' == ch)

              continue;

          if (islower(ch))     /* lowercase only          */

              switch (ch)

              {

                  case 'a' :

                        printf("argali, a wild sheep of Asia\n");

                        break;

                  case 'b' :

                        printf("babirusa, a wild pig of Malay\n");

                        break;

                  case 'c' :

                        printf("coati, racoonlike mammal\n");

                        break;

                  case 'd' :

                        printf("desman, aquatic, molelike critter\n");

                        break;

                  case 'e' :

                         printf("echidna, the spiny anteater\n");

                        break;

                  case 'f' :

                        printf("fisher, brownish marten\n");

                        break;
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                  default :

                        printf("That's a stumper!\n");

              }                /* end of switch           */

          else

              printf("I recognize only lowercase letters.\n");

          while (getchar() != '\n')

                continue;      /* skip rest of input line */

          printf("Please type another letter or a #.\n");

      }                        /* while loop end          */

      printf("Bye!\n");

  

      return 0;

  }   

 We got a little lazy and stopped at  f , but we could have continued in the same manner. Let’s 
look at a sample run before  explaining the program further:  

  Give me a letter of the alphabet, and I will give an animal name

  beginning with that letter.

  Please type in a letter; type # to end my act.

   a [enter] 
  argali, a wild sheep of Asia

  Please type another letter or a #.

   dab [enter] 
  desman, aquatic, molelike critter

  Please type another letter or a #.

   r [enter] 
  That's a stumper!

  Please type another letter or a #.

   Q [enter] 
  I recognize only lowercase letters.

  Please type another letter or a #.

   # [enter] 
  Bye!   

 The program’s  two main features are its use of the  switch  statement and its handling of input. 
We’ll look first at how  switch  works.  

  Using the  switch  Statement  

 The expression in the parentheses following the word  switch  is evaluated. In this case, it has 
whatever value you last entered for  ch . Then the program scans the list of  labels  (here,  case 
'a' : ,  case 'b' : , and so on) until it finds one matching that value. The program then 
jumps to that line. What if there is no match? If there is a line labeled  default : , the program 
jumps there. Otherwise, the program proceeds to the statement following the  switch .  
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 What about the  break  statement? It causes the program to break out of the  switch  and skip to 
the next statement after the  switch  (see  Figure   7.4   ). Without the  break  statement, every state-
ment from the matched label to the end of the  switch  would be processed. For example, if you 
removed all the  break  statements from the program and then ran the program using the letter 
 d , you would get this exchange:  

  Give me a letter of the alphabet, and I will give an animal name

  beginning with that letter.

  Please type in a letter; type # to end my act.

   d [enter] 
  desman, aquatic, molelike critter

  echidna, the spiny anteater

  fisher, a brownish marten

  That's a stumper!

  Please type another letter or a #.

   # [enter] 
  Bye!   

  

switch(number)

{

case 1: statement 1;

        break;

case 2: statement 2;

        break;

case 3: statement 3;

        break

default: statement 4;

}

statement 5;

switch(number)

{

case 1: statement 1;

case 2: statement 2;

case 3: statement 3;

default: statement 4;

}

statement 5;

 Figure 7.4   Program flow in  switch es, with and without  break s.        
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 All the statements from  case 'd' :  to the end of the  switch  were executed.   

 Incidentally, a  break  statement works with loops and with  switch , but  continue  works just 
with loops. However,  continue  can be used as part of a  switch  statement if the statement is in 
a loop. In that situation, as with other loops,  continue  causes the program to skip over the rest 
of the loop, including other parts of the  switch .  

 If you are familiar with Pascal, you will recognize the  switch  statement as being similar to the 
Pascal  case  statement. The most important difference is that the  switch  statement requires 
the use of a  break  if you want only the labeled statement to be processed. Also, you can’t use a 
range as a C case.  

 The  switch  test expression in the parentheses should be one with an integer value (including 
type  char ). The  case  labels must be integer-type (including  char ) constants or integer constant 
expressions (expressions containing only integer constants). You can’t use a variable for a  case  
label. Here, then, is the structure of a  switch :  

  switch ( integer expression )

  {

       case  constant1 :

                 statements     <--optional

       case  constant2 :

                 statements     <--optional

       default :              <--optional

                 statements     <--optional

  }    

  Reading Only the First Character of a Line  

 The other new feature incorporated into  animals.c  is how it reads input. As you might have 
noticed in the sample run, when  dab  was entered, only the first character was processed. This 
behavior of disposing of the rest of the line is often desirable in interactive programs looking 
for single-character responses. The following code produced this behavior:  

  while (getchar() != '\n')

      continue;         /* skip rest of input line */   

 This loop reads characters from input up to and including the newline character generated by 
the Enter key. Note that the function return value is not assigned to  ch , so the characters are 
merely read and discarded. Because the last character discarded is the newline character, the 
next character to be read is the first character of the next line. It gets read by  getchar()  and 
assigned to  ch  in the outer  while  loop.  

 Suppose a user starts out by pressing Enter so that the first character encountered is a newline. 
The following code takes care of that possibility:  

  if (ch == '\n')

      continue;    
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  Multiple Labels  

 You can use multiple  case  labels for a given statement, as shown in  Listing   7.12   .  

  Listing 7.12   The  vowels.c  Program  

 // vowels.c -- uses multiple labels

  #include <stdio.h>

  int main(void)

  {

      char ch;

      int a_ct, e_ct, i_ct, o_ct, u_ct;

  

      a_ct = e_ct = i_ct = o_ct = u_ct = 0;

  

      printf("Enter some text; enter # to quit.\n");

      while ((ch = getchar()) != '#')

      {

          switch (ch)

          {

              case 'a' :

              case 'A' :  a_ct++;

                          break;

              case 'e' :

              case 'E' :  e_ct++;

                          break;

              case 'i' :

              case 'I' :  i_ct++;

                          break;

              case 'o' :

              case 'O' :  o_ct++;

                          break;

              case 'u' :

              case 'U' :  u_ct++;

                          break;

              default :   break;

            }                    // end of switch

      }                          // while loop end

      printf("number of vowels:    A    E    I    O    U\n");

      printf("                 %4d %4d %4d %4d %4d\n",

            a_ct, e_ct, i_ct, o_ct, u_ct);

  

      return 0;

  }   
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 If  ch  is, say, the letter  i , the  switch  statement goes to the location labeled  case 'i' : . 
Because there is no  break  associated with that label, program flow goes to the next statement, 
which is  i_ct++; . If  ch  is  I , program flow goes directly to that statement. In essence, both 
labels refer to the same statement.  

 Strictly speaking, the  break  statement for  case 'U'  isn’t needed, because in its absence, 
program flow goes to the next statement in the  switch , which is the  break  for the  default  
case. So the  case 'U'  break could be dropped, thus shortening the code. On the other hand, if 
other cases might be added later (you might want to count the letter  y  as a sometimes vowel), 
having the  break  already in place protects you from forgetting to add one.  

 Here’s a sample run:  

  Enter some text; enter # to quit.

   I see under the overseer.# 
  number of vowels:   A    E    I    O    U

                      0    7    1    1    1   

 In this particular case, you can avoid multiple labels by using the  toupper()  function from the 
 ctype.h  family (refer to  Table   7.2   ) to convert all letters to uppercase before testing:  

  while ((ch = getchar()) != '#')

  {

      ch = toupper(ch);

      switch (ch)

      {

        case 'A' :  a_ct++;

                    break;

        case 'E' :  e_ct++;

                    break;

        case 'I' :  i_ct++;

                    break;

        case 'O' :  o_ct++;

                    break;

        case 'U' :  u_ct++;

                    break;

        default :   break;

      }                          // end of switch

  }                              // while loop end   

 Or, if you want to, you could leave  ch  unchanged and use  toupper(ch ) as the test condition:     

  switch(toupper(ch))   
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  Summary: Multiple Choice with   switch    
  Keyword:   

  switch   

  General Comments:   

 Program control jumps to the  case  label bearing the value of   expression  . Program flow then 
proceeds through all the remaining statements unless redirected again with a  break  state-
ment. Both   expression   and  case  labels must have integer values (type  char  is included), 
and the labels must be constants or expressions formed solely from constants. If no  case  
label matches the expression value, control goes to the statement labeled  default , if present. 
Otherwise, control passes to the next statement following the  switch  statement.  

  Form:   

  switch ( expression )

  {

      case  label1  :  statement1  // use break to skip to end

      case  label2  :  statement2 

      default     :  statement3 

  }   

 There can be more than two labeled statements, and the  default  case is optional.  

  Example:   

  switch (choice)

      {

      case 1  :

      case 2  : printf("Darn tootin'!\n");  break;

      case 3  : printf("Quite right!\n");

      case 4  : printf("Good show!\n"); break;

      default : printf("Have a nice day.\n");

      }   

 If  choice  has the integer value  1  or  2 , the first message is printed. If it is  3 , the second and 
third messages are printed. (Flow continues to the following statement because there is no 
 break  statement after  case 3 .) If it is  4 , the third message is printed. Other values print only 
the last message.    

   switch  and  if else   

 When should you use a  switch  and when should you use the  if else  construction? Often 
you don’t have a choice. You can’t use a  switch  if your choice is based on evaluating a float-
ing-point variable or expression. Nor can you conveniently use a  switch  if a variable must fall 
into a certain range. It is simple to write the following:  

  if (integer < 1000 && integer > 2)   
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 Unhappily, covering this range with a  switch  would involve setting up  case  labels for each 
integer from 3 to 999. However, if you can use a  switch , your program often runs a little faster 
and takes less code.    

  The  goto  Statement  

 The  goto  statement, bulwark of the older versions of BASIC and FORTRAN, is available in C. 
However, C, unlike those two languages, can get along quite well without it. Kernighan and 
Ritchie refer to the  goto  statement as “infinitely abusable” and suggest that it “be used spar-
ingly, if at all.” First, we will show you how to use  goto . Then, we will show why you usually 
don’t need to.  

 The  goto  statement has two parts—the  goto  and a label name. The label is named following 
the same convention used in naming a variable, as in this example:  

  goto part2;   

 For the preceding statement to work, the function must contain another statement bearing the 
 part2  label. This is done by beginning a statement with the label name followed by a colon:  

  part2: printf("Refined analysis:\n");   

  Avoiding  goto   

 In principle, you never need to use the  goto  statement in a C program, but if you have a 
background in older versions of FORTRAN or BASIC, both of which require its use, you might 
have developed programming habits that depend on using  goto . To help you get over that 
dependence, we will outline some familiar  goto  situations and then show you a more C-like 
approach:  

    ■   Handling an  if  situation that requires more than one statement:  

  if (size > 12)

      goto a;

  goto b;

  a: cost = cost * 1.05;

  flag = 2;

  b: bill = cost * flag;   

 In old-style BASIC and FORTRAN, only the single statement immediately following 
the  if  condition is attached to the  if . No provision is made for blocks or compound 
statements. We have translated that pattern into the equivalent C. The standard C 
approach of using a compound statement or block is much easier to follow:  

  if (size > 12)

  {

      cost = cost * 1.05;

      flag = 2;
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  }

  bill = cost * flag;    

   ■   Choosing from two alternatives:  

  if (ibex > 14)

      goto a;

  sheds = 2;

  goto b;

  a: sheds= 3;

  b: help = 2 * sheds;   

 Having the  if else  structure available allows C to express this choice more cleanly:  

  if (ibex > 14)

      sheds = 3;

  else

      sheds = 2;

  help = 2 * sheds;   

 Indeed, newer versions of BASIC and FORTRAN have incorporated  else  into their 
syntax.   

   ■   Setting up an indefinite loop:  

  readin: scanf("%d", &score);

  if (score < O)

      goto stage2;

  lots of statements

  goto readin;

  stage2: more stuff;   

 Use a  while  loop instead:  

  scanf("%d", &score);

  while (score <= 0)

  {

      lots of statements

      scanf("%d", &score);

  }

  more stuff;    

   ■   Skipping to the end of a loop and starting the next cycle. Use  continue  instead.   

   ■   Leaving a loop. Use  break  instead. Actually,  break  and  continue  are specialized forms 
of  goto . The advantages of using them are that their names tell you what they are 
supposed to do and that, because they don’t use labels, there is no danger of putting a 
label in the wrong place.   

   ■   Leaping madly about to different parts of a program. In a word,  don’t!     
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 There is a use of  goto  tolerated by many C practitioners—getting out of a nested set of loops if 
trouble shows up (a single  break  gets you out of the innermost loop only):  

  while (funct > 0)

      {

      for (i = 1, i <= 100; i++)

          {

          for (j = 1; j <= 50; j++)

              {

              statements galore;

              if (bit trouble)

                  goto help;

              statements;

              }

          more statements;

          }

      yet more statements;

      }

  and more statements;

  help : bail out;   

 As you can see from the other examples, the alternative forms are clearer than the  goto  forms. 
This difference grows even greater when you mix several of these situations. Which  goto s are 
helping  if s, which are simulating  if else s, which are controlling loops, which are just there 
because you have programmed yourself into a corner? By using  goto s excessively, you create a 
labyrinth of program flow. If you aren’t familiar with  goto s, keep it that way. If you are used to 
using them, try to train yourself not to. Ironically, C, which doesn’t need a  goto , has a better 
 goto  than most  languages because it enables you to use descriptive words for labels instead of 
numbers.    

  Summary: Program Jumps  

  Keywords:   

  break ,  continue ,  goto   

  General Comments:   

 These three instructions cause program flow to jump from one location of a program to another 
location.  

  The  break  Command:   

 The  break  command can be used with any of the three loop forms and with the  switch  state-
ment. It causes program control to skip the rest of the loop or the  switch  containing it and to 
resume with the next command following the loop or  switch .  

  Example:   

  switch (number)

  {

       case 4:  printf("That's a good choice.\n");
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                break;

       case 5:  printf("That's a fair choice.\n");

                break;

       default: printf("That's a poor choice.\n");

  }   

  The  continue  Command:   

 The  continue  command can be used with any of the three loop forms but not with a  switch . 
It causes program control to skip the remaining statements in a loop. For a  while  or  for  loop, 
the next loop cycle is started. For a  do while  loop, the exit condition is tested and then, if 
necessary, the next loop cycle is started.  

  Example:   

  while ((ch = getchar())  != '\n')

  {

      if (ch == ' ')

          continue;

      putchar(ch);

      chcount++;

  }   

 This fragment echoes and counts non-space characters.  

  The  goto  Command:   

 A  goto  statement causes program control to jump to a statement bearing the indicated label. A 
colon is used to separate a labeled statement from its label. Label names follow the rules for 
variable names. The labeled statement can come either before or after the  goto .  

  Form:   

  goto  label ;

      .

      .

      .

  label :  statement    

 Example:  

  top : ch = getchar();

        .

        .

        .

  if (ch != 'y')

      goto top;      
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  Key Concepts  

 One aspect of intelligence is the ability to adjust one’s responses to the circumstances. 
Therefore, selection statements are the foundation for developing programs that behave intel-
ligently. In C, the  if ,  if else , and  switch  statements, along with the conditional operator 
( ?: ), implement selection.  

 The  if  and  if else  statements use a test condition to determine which statements are 
executed. Any nonzero value is treated as  true , whereas zero is treated as  false . Typically, 
tests involve relational expressions, which compare two values, and logical expressions, which 
use logical operators to combine or modify other expressions.  

 One general principle to keep in mind is that if you want to test for two conditions, you should 
use a logical operator together with two complete test expressions. For instance, the following 
two attempts are faulty:  

  if (a < x < z)           // wrong --no logical operator

  ...

  if (ch != 'q' && != 'Q') // wrong -- missing a complete test

  ...   

 Remember, the correct way is to join two relational expressions with a logical operator:  

  if (a < x && x < z)          // use && to combine two expressions

  ...

  if (ch != 'q' && ch != 'Q')  // use && to combine two expressions

  ...   

 The control statements presented in these last two chapters will enable you to tackle programs 
that are much more powerful and ambitious than those you worked with before. For evidence, 
just compare some of the examples in these chapters to those of the earlier chapters.   

  Summary  

 This chapter has presented quite a few topics to review, so let’s get to it. The  if  statement uses 
a test condition to control whether a program executes the single simple statement or block 
following the test condition. Execution occurs if the test expression has a nonzero value and 
doesn’t occur if the value is zero. The  if else  statement enables you to select from two alter-
natives. If the test condition is nonzero, the statement before the  else  is executed. If the test 
expression evaluates to zero, the statement following the  else  is executed. By using another  if  
statement to immediately follow the  else , you  can set up a structure that chooses between a 
series of alternatives.  

 The test condition is often a  relational expression —that is, an expression formed by using one of 
the relational operators, such as  <  or  == . By using C’s logical operators, you can combine rela-
tional expressions to create more complex tests.  
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 The  conditional operator  ( ? : ) creates an expression that, in many cases, provides a more 
compact alternative to an  if else  statement.  

 The  ctype.h  family of character functions, such as  isspace()  and  isalpha() , offers conve-
nient tools for creating test expressions based on classifying characters.  

 The  switch  statement enables you to select from a series of statements labeled with integer 
values. If the integer value of the test condition following the  switch  keyword matches a label, 
execution goes to the statement bearing that label. Execution then proceeds through the state-
ments following the labeled statement unless you use a  break  statement.  

 Finally,  break ,  continue , and  goto  are jump statements that cause program flow to jump to 
another location in the program. A  break  statement causes the program to jump to the next 
statement following the end of the loop or  switch  containing the  break . The  continue  state-
ment causes the program to skip the rest of the containing loop and to start the next cycle.    

     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    Determine which expressions are  true  and which are  false .  

    a.    100 > 3 && 'a'>'c'    

   b.    100 > 3 || 'a'>'c'    

   c.    !(100>3)       

   2.    Construct an expression to express the following conditions:  

    a.    number  is equal to or greater than 90 but smaller than 100.   

   b.    ch  is not a  q  or a  k  character.   

   c.    number  is between 1 and 9 (including the end values) but is not a 5.   

   d.    number  is not between 1 and 9.      

   3.    The following program has unnecessarily complex relational expressions as well as some 
outright errors. Simplify and correct it.  

  #include <stdio.h>

  int main(void)                                      /* 1  */

  {                                                   /* 2  */

    int weight, height;  /* weight in lbs, height in inches */

                                                      /* 4  */

    scanf("%d , weight, height);                      /* 5  */

    if (weight < 100 && height > 64)                  /* 6  */

       if (height >= 72)                              /* 7  */

          printf("You are very tall for your weight.\n");
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       else if (height < 72 &&  > 64)                 /* 9  */

          printf("You are tall for your weight.\n");  /* 10 */

    else if (weight > 300 && ! (weight <= 300)        /* 11 */

             && height < 48)                          /* 12 */

       if (!(height >= 48) )                           /* 13 */

           printf(" You are quite short for your weight.\n");

    else                                              /* 15 */

       printf("Your weight is ideal.\n");             /* 16 */

                                                      /* 17 */

    return 0;

  }     

   4.    What is the numerical value of each of the following expressions?  

    a.    5 > 2    

   b.    3 + 4 > 2 && 3 < 2    

   c.    x >= y || y > x    

   d.    d = 5 + ( 6 > 2 )    

   e.    'X' > 'T' ? 10 : 5    

   f.    x > y ? y > x : x > y       

   5.    What will the following program print?  

  #include <stdio.h>

  int main(void)

  {

    int num;

    for (num = 1; num <= 11; num++)

    {

         if (num % 3 == 0)

              putchar('$');

         else

              putchar('*');

              putchar('#');

         putchar('%');

    }

    putchar('\n');

    return 0;

  }     

   6.    What will the following program print?  

  #include <stdio.h>

  int main(void)
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  {

      int i = 0;

      while ( i < 3) {

         switch(i++) {

             case 0 : printf("fat ");

             case 1 : printf("hat ");

             case 2 : printf("cat ");

             default: printf("Oh no!");

         }

         putchar('\n');

      }

      return 0;

  }     

   7.    What’s wrong with this program?  

  #include <stdio.h>

  int main(void)

  {

    char ch;

    int lc = 0;    /* lowercase char count

    int uc = 0;    /* uppercase char count

    int oc = 0;    /* other char count

  

    while ((ch = getchar()) != '#')

    {

         if ('a' <= ch >= 'z')

              lc++;

         else if (!(ch < 'A') || !(ch > 'Z')

              uc++;

         oc++;

    }

    printf(%d lowercase, %d uppercase, %d other, lc, uc, oc);

    return 0;

  }     

   8.    What will the following program print?  

  /* retire.c   */

  #include <stdio.h>

  int main(void)

  {

    int age = 20;
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    while (age++ <= 65)

    {

       if (( age % 20) == 0) /* is age divisible by 20? */

           printf("You are %d. Here is a raise.\n", age);

       if (age = 65)

           printf("You are %d. Here is your gold watch.\n", age);

    }

    return 0;

  }     

   9.    What will the following program print when given this input?  

  q

  c

  h

  b

  #include <stdio.h>

  int main(void)

  {

    char ch;

  

    while ((ch = getchar()) != '#')

    {

         if (ch == '\n')

              continue;

         printf("Step 1\n");

         if (ch == 'c')

              continue;

         else if (ch == 'b')

              break;

         else if (ch == 'h')

              goto laststep;

         printf("Step 2\n");

    laststep:  printf("Step 3\n");

    }

    printf("Done\n");

    return 0;

  }     

   10.    Rewrite the program in Review Question 9 so that it exhibits the same behavior but does 
not use a  continue  or a  goto .      
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  Programming Exercises  

    1.    Write a program that reads input until encountering the  #  character and then reports 
the number of spaces read, the number of newline characters read, and the number of all 
other characters read.    

   2.    Write a program that reads input until encountering  # . Have the program print each 
input character and its ASCII decimal code. Print eight character-code pairs per line. 
Suggestion: Use a character count and the modulus operator ( % ) to print a newline 
character for every eight cycles of the loop.    

   3.    Write a program that reads integers until 0 is entered. After input terminates, the 
program should report the total number of even integers (excluding the 0) entered, the 
average value of the even integers, the total number of odd integers entered, and the 
average value of the odd integers.    

   4.    Using  if else  statements, write a program that reads input up to  # , replaces each period 
with an exclamation mark, replaces each exclamation mark initially present with two 
exclamation marks, and reports at the end the number of substitutions it has made.    

   5.    Redo exercise 4 using a  switch .    

   6.    Write a program that reads input up to  #  and reports the number of times that the 
sequence  ei  occurs.  

  Note 

 The program will have to “remember” the preceding character as well as the current character. 
Test it with input such as “Receive your eieio award.”     

   7.    Write a program that requests the hours worked in a week and then prints the gross pay, 
the taxes, and the net pay. Assume the following:  

    a.   Basic pay rate = $10.00/hr   

   b.   Overtime (in excess of 40 hours) = time and a half   

   c.   Tax rate: #15% of the first $300  

 20% of the next $150  

 25% of the rest    

 Use  #define  constants, and don’t worry if the example does not conform to current 
tax law.    
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   8.    Modify assumption a. in exercise 7 so that the program presents a menu of pay rates 
from which to choose. Use a  switch  to select the pay rate. The beginning of a run 
should look something like this:  

  *****************************************************************

  Enter the number corresponding to the desired pay rate or action:

  1) $8.75/hr                         2) $9.33/hr

  3) $10.00/hr                        4) $11.20/hr

  5) quit

  *****************************************************************   

 If choices 1 through 4 are selected, the program should request the hours worked. The 
program should recycle until 5 is entered. If something other than choices 1 through 5 
is entered, the program should remind the user what the proper choices are and then 
recycle. Use  #defined  constants for the various earning rates and tax rates.    

   9.    Write a program that accepts a positive integer as input and then displays all the prime 
numbers smaller than or equal to that number.    

   10.    The 1988 United States Federal Tax Schedule was the simplest in recent times. It had 
four categories, and each category had two rates. Here is a summary (dollar amounts are 
taxable income):  

  Category     Tax   

 Single   15% of first $17,850 plus 28% of excess  

 Head of Household   15% of first $23,900 plus 28% of excess  

 Married, Joint   15% of first $29,750 plus 28% of excess  

 Married, Separate   15% of first $14,875 plus 28% of excess  

 For example, a single wage earner with a taxable income of $20,000 owes 0.15 × $17,850 
+ 0.28 × ($20,000−$17,850). Write a program that lets the user specify the tax category 
and the taxable income and that then calculates the tax. Use a loop so that the user can 
enter several tax cases.    

   11.    The ABC Mail Order Grocery sells artichokes for $2.05 per pound, beets for $1.15 per 
pound, and carrots for $1.09 per pound. It gives a 5% discount for orders of $100 or 
more prior to adding shipping costs. It charges $6.50 shipping and handling for any 
order of 5 pounds or under, $14.00 shipping and handling for orders over 5 pounds 
and under 20 pounds, and $14.00 plus $0.50 per pound for shipments of 20 pounds or 
more. Write a program that uses a  switch  statement in a loop such that a response of  a  
lets the user enter the pounds of  artichokes desired,  b  the pounds of beets,  c  the pounds 
of carrots, and  q  allows the user to exit the ordering process. The program should keep 
track of cumulative totals. That is, if the user enters 4 pounds of beets and later enters 
5 pounds of beets, the program should use report 9 pounds of beets. The program then 
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should compute the total charges, the discount, if any, the shipping charges, and the 
grand total. The program then should display all the purchase information: the cost per 
pound, the pounds ordered, and the cost for that order for each vegetable, the total cost  
of the order, the discount (if there is one), the shipping charge, and the grand total of all 
the charges.        



ptg11524036

  8 
 Character Input/Output and 

Input Validation  

    You will learn about the following in this chapter:  

    ■   More about input, output, and the differences between buffered and unbuffered input   

   ■   How to simulate the end-of-file condition from the keyboard   

   ■   How to use redirection to connect your programs to files   

   ■   Making the user interface friendlier    

 In the computing world, we use the words  input  and  output  in several ways. We speak of input 
and output devices, such as keyboards, USB drives, scanners, and laser printers. We talk about 
the data used for input and output. We discuss the functions that perform input and output. 
This chapter concentrates on the functions used for input and output (or  I/O , for short).   

    I/O functions transport information to and from your program;  printf() ,  scanf() , 
 getchar() , and  putchar()  are examples. You’ve seen these functions in previous chapters, 
and now you’ll be able to look at their conceptual basis. Along the way, you’ll see how to 
improve the program-user interface.  

 Originally, input/output functions were not part of the definition of C. Their development was 
left to C implementations. In practice, the Unix implementation of C has served as a model for 
these functions. The ANSI C library, recognizing past practice, contains a large number of these 
Unix I/O functions, including the ones we’ve used. Because such standard functions must work 
in a wide variety of computer environments, they seldom take advantage of features peculiar to 
a particular system. Therefore, many C vendors supply additional I/O functions that do make 
use of special features of the hardware. Other functions or families  of functions tap into partic-
ular operating systems that support, for example, specific graphical interfaces, such as those 
provided by Windows or Macintosh OS. These specialized, nonstandard functions enable you 
to write programs that use a particular computer more effectively. Unfortunately, they often 
can’t be used on other computer systems. Consequently, we’ll concentrate on the standard I/O 
functions available on all systems, because they enable you to write portable programs that can 
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be moved easily from one system to another. They also generalize to programs using files for 
input and output.  

 One important task many programs face is that of validating input; that is, determining 
whether the user has entered input that matches the expectations of a program. This chapter 
illustrates some of the problems and solutions associated with input validation.  

  Single-Character I/O:  getchar()  and  putchar()   

 As you saw in  Chapter   7   , “C Control Statements: Branching and Jumps,”  getchar()  and 
 putchar()  perform input and output one character at a time. That method might strike you as 
a rather silly way of doing things. After all, you can easily read groupings larger than a single 
character, but this method does suit the capability of a computer. Furthermore, this approach 
is the heart of most programs that deal with text—that is, with ordinary words. To remind 
yourself of how these functions work, examine  Listing   8.1   , a very simple example. All it does is 
fetch characters from keyboard input and send  them to the screen. This process is called  echoing 
the input . It uses a  while  loop that terminates when the  #  character is encountered.  

  Listing 8.1   The  echo.c  Program  

 /* echo.c -- repeats input */

  #include <stdio.h>

  int main(void)

  {

      char ch;

  

      while ((ch = getchar()) != '#')

          putchar(ch);

  

      return 0;

  }   

 Since the ANSI standard, C associates the  stdio.h  header file with using  getchar()  and 
 putchar() , which is why we have included that file in the program. (Typically,  getchar()  
and  putchar()  are not true functions, but are defined using preprocessor macros, a topic we’ll 
cover in  Chapter   16   , “The C Preprocessor and the C Library.”) Using this program produces 
exchanges like this:  

   Hello, there. I would[enter] 

  Hello, there. I would

   like a #3 bag of potatoes.[enter] 

  like a   



ptg11524036

301Buffers

 After watching this program run, you might wonder why you must type a whole line before 
the input is echoed. You might also wonder if there is a better way to terminate input. Using 
a particular character, such as  # , to terminate input prevents you from using that character in 
the text. To answer these questions, let’s look at how C programs handle keyboard input. In 
particular, let’s examine buffering and the concept of a standard input file.   

  Buffers  

 If you ran the previous program on some older systems, the text you input would be echoed 
immediately. That is, a sample run would look like this:  

  HHeelllloo,,  tthheerree..  II  wwoouulldd[enter]

  

  lliikkee  aa  #   

 The preceding behavior is the exception. On most systems, nothing happens until you press 
Enter, as in the first example. The immediate echoing of input characters is an instance of 
 unbuffered  (or  direct ) input, meaning that the characters you type are immediately made avail-
able to the waiting program. The delayed echoing, on the other hand, illustrates  buffered  input, 
in which the characters you type are collected and stored in an area of temporary storage called 
a  buffer.  Pressing Enter causes the block of characters you typed to be made available to your 
program.  Figure   8.1    compares these two kinds of input.  

 Why have buffers? First, it is less time-consuming to transmit several characters as a block 
than to send them one by one. Second, if you mistype, you can use your keyboard correction 
features to fix your mistake. When you finally press Enter, you can transmit the corrected 
version.  

 Unbuffered input, on the other hand, is desirable for some interactive programs. In a game, for 
instance, you would like each command to take place as soon as you press a key. Therefore, 
both buffered and unbuffered input have their uses.   

 Buffering comes in two varieties:  fully buffered  I/O and  line-buffered  I/O. For fully buffered input, 
the buffer is flushed (the contents are sent to their destination) when it is full. This kind of 
buffering usually occurs with file input. The buffer size depends on the system, but 512 bytes 
and 4096 bytes are common values. With line-buffered I/O, the buffer is flushed whenever a 
newline character shows up. Keyboard input is normally line buffered, so that pressing Enter 
flushes the buffer.  

 Which kind of input do you have: buffered or unbuffered? ANSI C and subsequent C standards 
specify that input should be buffered, but K&R originally left the choice open to the compiler 
writer. You can find out by running the  echo.c  program and seeing which behavior results.  
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 The reason ANSI C settled on buffered input as the standard is that some computer designs 
don’t permit unbuffered input. If your particular computer does allow unbuffered input, 
most likely your C compiler offers unbuffered input as an option. Many compilers for IBM 
PC compatibles, for example, supply a special family of functions, supported by the  conio.h  
header file, for unbuffered input. These functions include  getche()  for echoed unbuffered 
input and  getch()  for unechoed unbuffered input. ( Echoed input  means the character you 
type shows onscreen, and  unechoed input  means the keystrokes don’t show.) Unix systems use 
a different approach, for Unix itself controls buffering. With Unix,  you use the  ioctl()  func-
tion (part of the Unix library but not part of standard C) to specify the type of input you want, 
and  getchar()  behaves accordingly. In ANSI C, the  setbuf()  and  setvbuf()  functions (see 
 Chapter   13   , “File Input/Output”) supply some control over buffering, but the inherent limita-
tions of some systems can restrict the effectiveness of these functions. In short, there is no stan-
dard ANSI way of invoking unbuffered input; the means depend on the computer system. In 
this book, with apologies to our unbuffered friends, we assume you are using buffered input.   

  Terminating Keyboard Input  

 The  echo.c  program halts when  #  is entered, which is convenient as long as you exclude that 
character from normal input. As you’ve seen, however,  #  can show up in normal input. Ideally, 
you’d like a terminating character that normally does not show up in text. Such a character 
won’t pop up accidentally in the middle of some input, stopping the program before you 
want it to stop. C has an answer to this need, but, to understand it, you need to know how C 
handles files.  

HI!

HI!

type HI!

type HI!
buffer

!IH

contents made immediately
available to program

characters sent
one by one to buffer as typed

buffer contents made
available to program

unbuffered input

buffered input

H I !

 Figure 8.1   Buffered versus unbuffered input.        
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  Files, Streams, and Keyboard Input  

 A  file  is an area of memory in which information is stored. Normally, a file is kept in some sort 
of permanent memory, such as a hard disk, USB flash drive, or optical disc, such as a DVD. 
You are doubtless aware of the importance of files to computer systems. For example, your C 
programs are kept in files, and the programs used to compile your programs are kept in files. 
This last example points out that some programs need to be able to access particular files. 
When you compile a program stored in a file called  echo.c , the compiler opens the   echo.c  file 
and reads its contents. When the compiler finishes, it closes the file. Other programs, such as 
word processors, not only open, read, and close files, they also write to them.  

 C, being powerful, flexible, and so on, has many library functions for opening, reading, writing, 
and closing files. On one level, it can deal with files by using the basic file tools of the host 
operating system. This is called  low-level I/O . Because of the many differences among computer 
systems, it is impossible to create a standard library of universal low-level I/O functions, and 
ANSI C does not attempt to do so; however, C also deals with files on a second level called the 
 standard I/O package.  This involves creating a standard model and a standard set of I/O func-
tions for dealing with  files. At this higher level, differences between systems are handled by 
specific C implementations so that you deal with a uniform interface.  

 What sort of differences are we talking about? Different systems, for example, store files differ-
ently. Some store the file contents in one place and information about the file elsewhere. Some 
build a description of the file into the file itself. In dealing with text, some systems use a single 
newline character to mark the end of a line. Others might use the combination of the carriage 
return and linefeed characters to represent the end of a line. Some systems measure file sizes to 
the nearest byte; some measure in blocks of bytes.  

 When you use the standard I/O package, you are shielded from these differences. Therefore, to 
check for a newline, you can use  if (ch == '\n') . If the system actually uses the carriage-
return/linefeed combination, the I/O functions automatically translate back and forth between 
the two representations.  

 Conceptually, the C program deals with a stream instead of directly with a file. A  stream  is an 
idealized flow of data to which the actual input or output is mapped. That means various kinds 
of input with differing properties are represented by streams with more uniform properties. The 
process of opening a file then becomes one of associating a stream with the file, and reading 
and writing take place via the stream.  

  Chapter   13    discusses files in greater detail. For this chapter, simply note that C treats input 
and output devices the same as it treats regular files on storage devices. In particular, the 
keyboard and the display device are treated as files opened automatically by every C program. 
Keyboard input is represented by a stream called  stdin , and output to the screen (or teletype 
or other output device) is represented by a stream called  stdout . The  getchar() ,  putchar() , 
 printf() , and  scanf()  functions are all members of the standard I/O package, and they deal 
with these two streams.  

 One implication of all this is that you can use the same techniques with keyboard input as you 
do with files. For example, a program reading a file needs a way to detect the end of the file so 
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that it knows where to stop reading. Therefore, C input functions come equipped with a built-
in, end-of-file detector. Because keyboard input is treated like a file, you should be able to use 
that end-of-file detector to terminate keyboard input, too. Let’s see how this is done, beginning 
with files.   

  The End of File  

 A computer operating system needs some way to tell where each file begins and ends. One 
method to detect the end of a file is to place a special character in the file to mark the end. This 
is the method once used, for example, in CP/M, IBM-DOS, and MS-DOS text files. Today, these 
operating systems may use an embedded Ctrl+Z character to mark the ends of files. At one 
time, this was the sole means these operating systems used, but there are other options now, 
such as keeping track of the file size. So a modern text file may  or may not have an embedded 
Ctrl+Z, but if it does, the operating system will treat it as an end-of-file marker.  Figure   8.2    illus-
trates this approach.  

 
Ishphat the robot\n slid open the hatch\n and shouted his challenge.\n^Z

Ishphat the robot
slid open the hatch
and shouted his challenge.

prose:

prose in a file:

 Figure 8.2   A file with an end-of-file marker.         

 A second approach is for the operating system to store information on the size of the file. If 
a file has 3000 bytes and a program has read 3000 bytes, the program has reached the end. 
MS-DOS and its relatives use this approach for binary files because this method allows the files 
to hold all characters, including Ctrl+Z. Newer versions of DOS also use this approach for text 
files. Unix uses this approach for all files.  

 C handles this variety of methods by having the  getchar()  function return a special value 
when the end of a file is reached, regardless of how the operating system actually detects the 
end of file. The name given to this value is   EOF  (end of file). Therefore, the return value for 
 getchar()  when it detects an end of file is  EOF . The  scanf()  function also returns  EOF  on 
detecting the end of a file. Typically,  EOF  is defined in the  stdio.h  file as follows:  

  #define EOF (-1)   

 Why  -1 ? Normally,  getchar()  returns a value in the range  0  through  127 , because those are 
values corresponding to the standard character set, but it might return values from  0  through 
 255  if the system recognizes an extended character set. In either case, the value  -1  does not 
correspond to any character, so it can be used to signal the end of a file.  
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 Some systems may define  EOF  to be a value other than  -1 , but the definition is always different 
from a return value produced by a legitimate input character. If you include the  stdio.h  file 
and use the  EOF  symbol, you don’t have to worry about the numeric definition. The important 
point is that  EOF  represents a value that signals the end of a file was detected; it is not a symbol 
actually found in the file.  

 Okay, how can you use  EOF  in a program? Compare the return value of  getchar()  with  EOF . 
If they are different, you have not yet reached the end of a file. In other words, you can use an 
expression like this:  

  while ((ch = getchar()) != EOF)   

 What if you are reading keyboard input and not a file? Most systems (but not all) have a way to 
simulate an end-of-file condition from the keyboard. Knowing that, you can rewrite the basic 
read and echo program, as shown in  Listing   8.2   .  

  Listing 8.2   The  echo_eof.c  Program  

 /* echo_eof.c -- repeats input to end of file */

  #include <stdio.h>

  int main(void)

  {

      int ch;

  

      while ((ch = getchar()) != EOF)

          putchar(ch);

  

      return 0;

  }   

 Note these points:  

    ■   You don’t have to define  EOF  because  stdio.h  takes care of that.   

   ■   You don’t have to worry about the actual value of  EOF , because the  #define  statement 
in  stdio.h  enables you to use the symbolic representation  EOF . You shouldn’t write code 
that assumes  EOF  has a particular value.   

   ■   The variable  ch  is changed from type  char  to type  int  because  char  variables may be 
represented by unsigned integers in the range  0  to  255 , but  EOF  may have the numeric 
value  -1 . That is an impossible value for an unsigned  char  variable, but not for an 
 int . Fortunately,  getchar()  is actually type  int  itself, so it can read the  EOF  character. 
Implementations that use a signed  char  type may get by with declaring  ch  as type  char , 
but it is better to use the more general form.   

   ■   The fact that  getchar()  is type  int  is why some compilers warn of possible data loss if 
you assign the  getchar()  return value to a type  char  variable.   
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   ■   The fact that  ch  is an integer doesn’t faze  putchar() . It still prints the character 
equivalent.   

   ■   To use this program on keyboard input, you need a way to type the  EOF  character. 
No, you can’t just type the letters  E O F , and you can’t just type  –1 . (Typing  -1  would 
transmit two characters: a hyphen and the digit 1.) Instead, you have to find out what 
your system requires. On most Unix and Linux systems, for example, pressing Ctrl+D 
at the  beginning  of a line causes the end-of-file signal to be transmitted. Many micro-
computing systems recognize Ctrl+Z at the beginning of a line as an end-of-file signal; 
some interpret a Ctrl+Z anywhere as an end-of-file signal.    

 Here is a buffered example of running  echo_eof.c  on a Unix system:  

   She walks in beauty, like the night 

  She walks in beauty, like the night

     Of cloudless climes and starry skies... 

    Of cloudless climes and starry skies...

                         Lord Byron 

                        Lord Byron

   [Ctrl+D]    

 Each time you press Enter, the characters stored in the buffer are processed, and a copy of the 
line is printed. This continues until you simulate the end of file, Unix-style. On a PC, you 
would press Ctrl+Z instead.  

 Let’s stop for a moment and think about the possibilities for  echo_eof.c . It copies onto the 
screen whatever input you feed it. Suppose you could somehow feed a file to it. Then it would 
print the contents of the file onscreen, stopping when it reached the end of the file, on finding 
an  EOF  signal. Suppose, instead, that you could find a way to direct the program’s output to a 
file. Then you could enter data from the keyboard and use  echo_eof.c  to store what you type 
in a file. Suppose you could do both simultaneously: Direct input from one file into  echo_
eof.c  and  send the output to another file. Then you could use  echo_eof.c  to copy files. This 
little program has the potential to look at the contents of files, to create new files, and to make 
copies of files—pretty good for such a short program! The key is to control the flow of input 
and output, and that is the next topic.  

  Note   Simulated  EOF  and Graphical Interfaces  

 The concept of simulated  EOF  arose in a command-line environment using a text interface. In 
such an environment, the user interacts with a program through keystrokes, and the operating 
system generates the  EOF  signal. Some practices don’t translate particularly well to graphical 
interfaces, such as Windows and the Macintosh, with more complex user interfaces that incor-
porate mouse movement and button clicks. The program behavior on encountering a simulated 
EOF depends on the compiler and project type. For example, a Ctrl+Z may terminate input or it 
may terminate the entire program, depending on the particular settings.     
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  Redirection and Files  

 Input and output involve functions, data, and devices. Consider, for instance, the  echo_eof.c  
program. It uses the input function  getchar() . The input device (we have assumed) is a 
keyboard, and the input data stream consists of individual characters. Suppose you want 
to keep the same input function and the same kind of data, but want to change where the 
program looks for data. A good question to ask is, “How does a program know where to look 
for its input?”  

 By default, a C program using the standard I/O package looks to the standard input as its 
source for input. This is the stream identified earlier as  stdin . It is whatever has been set up as 
the usual way for reading data into the computer. It could be an old-fashioned device, such as 
magnetic tape, punched cards, or a teletype, or (as we will continue to assume) your keyboard, 
or some upcoming technology, such as voice input. A modern computer is a suggestible tool, 
however, and you can influence it to look elsewhere for input. In particular, you can tell  a 
program to seek its input from a file instead of from a keyboard.  

 There are two ways to get a program to work with files. One way is to explicitly use special 
functions that open files, close files, read files, write in files, and so forth. That method we’ll 
save for  Chapter   13   . The second way is to use a program designed to work with a keyboard 
and screen, but to  redirect  input and output along different channels—to and from files, for 
example. In other words, you reassign the  stdin  stream to a file. The  getchar()  program 
continues to get its data from the stream, not really caring from where the stream gets its 
data. This  approach (redirection) is more limited in some respects than the first, but it is much 
simpler to use, and it allows you to gain familiarity with common file-processing techniques.  

 One major problem with redirection is that it is associated with the operating system, not C. 
However, the many C environments, including Unix, Linux, and the Windows Command-
Prompt mode, feature redirection, and some C implementations simulate it on systems lacking 
the feature. Apple OS X runs on top of Unix, and you can use the Unix command-line mode 
by starting the Terminal application. We’ll look at the Unix, Linux, and Windows versions or 
redirection.  

  Unix, Linux, and Windows Command Prompt Redirection  

 Unix (when run in command-line mode), Linux (ditto), and the Windows Command Prompt 
(which mimics the old DOS command-line environment) enable you to redirect both input and 
output. Redirecting input enables your program to use a file instead of the keyboard for input, 
and redirecting output enables it to use a file instead of the screen for output.  

  Redirecting Input  

 Suppose you have compiled the  echo_eof.c  program and placed the executable version in a 
file called  echo_eof  (or  echo_eof.exe  on a Windows system). To run the program, type the 
executable file’s name:  

  echo_eof   
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 The program runs as described earlier, taking its input from the keyboard. Now suppose you 
want to use the program on a text file called  words . A  text file  is one containing text—that is, 
data stored as human-readable characters. It could be an essay or a program in C, for example. 
A file containing machine language instructions, such as the file holding the executable version 
of a program, is not a text file. Because the program works with characters, it should be used 
with text files. All you need to do is enter this command instead of the previous one:  

  echo_eof < words   

 The  <  symbol is a Unix and Linux and DOS/Windows redirection operator. It causes the  words  
file to be associated with the  stdin  stream, channeling the file contents into the  echo_eof  
program. The  echo_eof  program itself doesn’t know (or care) that the input is coming from a 
file instead of the keyboard. All it knows is that a stream of characters is being fed to it, so it 
reads them and prints them one character at a time until the end of file shows up. Because C 
puts files and I/O devices on the same footing, the file is now the I/O  device . Try it!  

  Note   Redirection Sidelights  

 With Unix, Linux, and Windows Command Prompt, the spaces on either side of the  <  are 
optional. Some systems, such as AmigaDOS (for those who still play in the good old days), sup-
port redirection but don’t allow a space between the redirection symbol and the filename.   

 Here is a sample run for one particular  words  file; the  $  is one of the standard Unix and Linux 
prompts. On a Windows/DOS system, you would see the DOS prompt, perhaps an  A>  or  C> .  

  $  echo_eof < words 

  The world is too much with us: late and soon,

  Getting and spending, we lay waste our powers:

  Little we see in Nature that is ours;

  We have given our hearts away, a sordid boon!

  $   

 Well, that time we got our words’ worth.   

  Redirecting Output  

 Now suppose you want to have  echo_eof  send your keyboard input to a file called  mywords . 
Then you can enter the following and begin typing:  

  echo_eof > mywords   

 The  >  is a second redirection operator. It causes a new file called  mywords  to be created for your 
use, and then it redirects the output of  echo_eof  (that is, a copy of the characters you type) to 
that file. The redirection reassigns  stdout  from the display device (your screen) to the  mywords  
file instead. If you already have a file with the name  mywords , normally it would be erased 
and then replaced by the new one. (Many operating systems, however, give you the option of 
protecting existing files by making them read-only.) All that appears on your screen are the 
letters as you type  them, and the copies go to the file instead. To end the program, press Ctrl+D 
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(Unix) or Ctrl+Z (DOS) at the beginning of a line. Try it. If you can’t think of anything to type, 
just imitate the next example. In it, we use the  $  Unix prompt. Remember to end each line by 
pressing Enter to send the buffer contents to the program.  

  $  echo_eof > mywords 

   You should have no problem recalling which redirection 

   operator does what. Just remember that each operator points 

   in the direction the information flows. Think of it as 

   a funnel. 

   [Ctrl+D] 

  $   

 After the Ctrl+D or Ctrl+Z is processed, the program terminates and your system prompt 
returns. Did the program work? The Unix  ls  command or Windows Command Prompt  dir  
command, which lists filenames, should show you that the file  mywords  now exists. You can 
use the Unix and Linux  cat  or DOS  type  command to check the contents, or you can use 
 echo_eof  again, this time redirecting the file to the program:  

  $  echo_eof < mywords 

  You should have no problem recalling which redirection

  operator does what. Just remember that each operator points

  in the direction the information flows. Think of it as a

  funnel.

  $    

  Combined Redirection  

 Now suppose you want to make a copy of the file  mywords  and call it  savewords . Just issue 
this next command,  

  echo_eof < mywords > savewords   

 and the deed is done. The following command would have worked as well, because the order of 
redirection operations doesn’t matter:  

  echo_eof > savewords < mywords   

 Beware: Don’t use the same file for both input and output to the same command.  

  echo_eof < mywords > mywords....<--WRONG   

 The reason is that  > mywords  causes the original  mywords  to be truncated to zero length before 
it is ever used as input.  

 In brief, here are the rules governing the use of the two redirection operators ( <  and  > ) with 
Unix, Linux, or Windows/DOS:  

    ■   A redirection operator connects an  executable  program (including standard operating 
system commands) with a data file. It cannot be used to connect one data file to another, 
nor can it be used to connect one program to another program.   
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   ■   Input cannot be taken from more than one file, nor can output be directed to more than 
one file by using these operators.   

   ■   Normally, spaces between the names and operators are optional, except occasionally 
when some characters with special meaning to the Unix shell or Linux shell or the 
Windows Command Prompt mode are used. We could, for example, have used  echo_
eof<words .    

 You have already seen several proper examples. Here are some wrong examples, with  addup  
and  count  as executable programs and  fish  and  beets  as text files:  

  fish > beets       Violates the first rule  

  addup < count       Violates the first rule  

  addup < fish < beets       Violates the second rule  

  count > beets fish       Violates the second rule  

 Unix, Linux, and Windows/DOS also feature the  >>  operator, which enables you to add data to 
the end of an existing file, and the pipe operator ( | ), which enables you to connect the output 
of one program to the input of a second program. See a Unix book, such as  UNIX Primer Plus, 
Third Edition  (Wilson, Pierce, and Wessler; Sams Publishing), for more information on all these 
operators.   

  Comments  

 Redirection enables you to use keyboard-input programs with files. For this to work, the 
program has to test for the end of file. For example,  Chapter   7    presents a word-counting 
program that counts words up to the first  |  character. Change  ch  from type  char  to type  int , 
and replace  '|'  with  EOF  in the loop test, and you can use the program to count words in text 
files.  

 Redirection is a command-line concept, because you indicate it by typing special symbols on 
the command line. If you are not using a command-line environment, you might still be able 
to try the technique. First, some integrated environments have menu options that let you indi-
cate redirection. Second, for Windows systems, you can open the Command Prompt window 
and run the executable file from the command line. Microsoft Visual Studio, by default, puts 
the executable file in a subfolder, called  Debug , of the project folder. The filename will have 
the same base name as the project name and use the  .exe  extension.  By default Xcode also 
names the executable file after the project name and places it in a Debug folder. You can run 
the executable from the Terminal utility, which runs a version of Unix. However, if you use 
Terminal, it’s probably simpler to use one of the command-line compilers (GCC or Clang) that 
can be downloaded from Apple.  

 If redirection doesn’t work for you, you can try having the program open a file directly.  Listing 
  8.3    shows an example with minimal explanation. You’ll have to wait until  Chapter   13    for the 
details. The file to be read should be in the same directory as the executable file.    
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  Listing 8.3   The  file_eof.c  Program  

 // file_eof.c --open a file and display it

  #include <stdio.h>

  #include <stdlib.h>  // for exit()

  int main()

  {

      int ch;

      FILE * fp;

      char fname[50];         // to hold the file name

  

      printf("Enter the name of the file: ");

      scanf("%s", fname);

      fp = fopen(fname, "r"); // open file for reading

      if (fp == NULL)         // attempt failed

      {

          printf("Failed to open file. Bye\n");

          exit(1);            // quit program

      }

  // getc(fp) gets a character from the open file

      while ((ch = getc(fp)) != EOF)

          putchar(ch);

      fclose(fp);             // close the file

  

      return 0; 

  }   

  Summary: How to Redirect Input and Output  

 With most C systems, you can use redirection, either for all programs through the operating 
system or else just for C programs, courtesy of the C compiler. In the following, let  prog  be the 
name of the executable program and let  file1  and  file2  be names of files.  

  Redirecting Output to a File: >   

  prog >file1   

  Redirecting Input from a File:  <    

  prog <file2   

  Combined Redirection:   

  prog <file2 >file1

  prog >file1 <file2   

 Both forms use  file2  for input and  file1  for output.  

  Spacing:   

 Some systems require a space to the left of the redirection operator and no space to the right. 
Other systems (Unix, for example) accept either spaces or no spaces on either side.      
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  Creating a Friendlier User Interface  

 Most of us have on occasion written programs that are awkward to use. Fortunately, C gives 
you the tools to make input a smoother, more pleasant process. Unfortunately, learning these 
tools could, at first, lead to new problems. The goal in this section is to guide you through 
some of these problems to a friendlier user interface, one that eases interactive data entry and 
smoothes over the effects of faulty input.  

  Working with Buffered Input  

 Buffered input is often a convenience to the user, providing an opportunity to edit input before 
sending it on to a program, but it can be bothersome to the programmer when character input 
is used. The problem, as you’ve seen in some earlier examples, is that buffered input requires 
you to press the Enter key to transmit your input. This act also transmits a newline character 
that the program must handle. Let’s examine this and other problems with a guessing program. 
You pick a number, and the program tries to guess it. The program uses a plodding method, 
but we  are concentrating on I/O, not algorithms. See  Listing   8.4    for the starting version of the 
program, one that will need further work.  

  Listing 8.4   The  guess.c  Program  

 /* guess.c -- an inefficient and faulty number-guesser */

  #include <stdio.h>

  int main(void)

  {

      int guess = 1;

  

      printf("Pick an integer from 1 to 100. I will try to guess ");

      printf("it.\nRespond with a y if my guess is right and with");

      printf("\nan n if it is wrong.\n");

      printf("Uh...is your number %d?\n", guess);

      while (getchar() != 'y')      /* get response, compare to y */

          printf("Well, then, is it %d?\n", ++guess);

      printf("I knew I could do it!\n");

  

      return 0;

  }   

 Here’s a sample run:  

  Pick an integer from 1 to 100. I will try to guess it.

  Respond with a y if my guess is right and with

  an n if it is wrong.

  Uh...is your number 1?

   n 

  Well, then, is it 2?
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  Well, then, is it 3?

   n 

  Well, then, is it 4?

  Well, then, is it 5?

   y 

  I knew I could do it!   

 Out of consideration for the program’s pathetic guessing algorithm, we chose a small number. 
Note that the program makes two guesses every time you enter  n . What’s happening is that the 
program reads the  n  response as a denial that the number is 1 and then reads the newline char-
acter as a denial that the number is 2.  

 One solution is to use a  while  loop to discard the rest of the input line, including the newline 
character. This has the additional merit of treating responses such as  no  and  no way  the same 
as a simple  n . The version in  Listing   8.4    treats  no  as two responses. Here is a revised loop that 
fixes the problem:  

  while (getchar() != 'y')   /* get response, compare to y */

  {

      printf("Well, then, is it %d?\n", ++guess);

      while (getchar() != '\n')

          continue;          /* skip rest of input line    */

  }   

 Using this loop produces responses such as the following:  

  Pick an integer from 1 to 100. I will try to guess it.

  Respond with a y if my guess is right and with

  an n if it is wrong.

  Uh...is your number 1?

   n 

  Well, then, is it 2?

   no 

  Well, then, is it 3?

   no sir 

  Well, then, is it 4?

   forget it 

  Well, then, is it 5?

   y 

  I knew I could do it!   

 That takes care of the problems with the newline character. However, as a purist, you might 
not like  f  being treated as meaning the same as  n . To eliminate that defect, you can use an  if  
statement to screen out other responses. First, add a  char  variable to store the response:  

  char response;   
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 Then change the loop to this:  

  while ((response = getchar()) != 'y')     /* get response */

  {

     if (response == 'n')

        printf("Well, then, is it %d?\n", ++guess);

     else

        printf("Sorry, I understand only y or n.\n");

     while (getchar() != '\n')

        continue;                 /* skip rest of input line */

  }   

 Now the program’s response looks like this:  

  Pick an integer from 1 to 100. I will try to guess it.

  Respond with a y if my guess is right and with

  an n if it is wrong.

  Uh...is your number 1?

   n 

  Well, then, is it 2?

   no 

  Well, then, is it 3?

   no sir 

  Well, then, is it 4?

   forget it 

  Sorry, I understand only y or n.

   n 

  Well, then, is it 5?

   y 

  I knew I could do it!   

 When you write interactive programs, you should try to anticipate ways in which users might 
fail to follow instructions. Then you should design your program to handle user failures grace-
fully. Tell them when they are wrong, and give them another chance.  

 You should, of course, provide clear instructions to the user, but no matter how clear you make 
them, someone will always misinterpret them and then blame you for poor instructions.   

  Mixing Numeric and Character Input  

 Suppose your program requires both character input using  getchar()  and numeric input 
using  scanf() . Each of these functions does its job well, but the two don’t mix together well. 
That’s because  getchar()  reads every character, including spaces, tabs, and newlines, whereas 
 scanf() , when reading numbers, skips over spaces, tabs, and newlines.  

 To illustrate the sort of problem this causes,  Listing   8.5    presents a program that reads in a 
character and two numbers as input. It then prints the character using the number of rows and 
columns specified in the  input.  
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  Listing 8.5   The  showchar1.c  Program  

 /* showchar1.c -- program with a BIG I/O problem */

  #include <stdio.h>

  void display(char cr, int lines, int width);

  int main(void)

  {

      int ch;             /* character to be printed    */

      int rows, cols;     /* number of rows and columns */

      printf("Enter a character and two integers:\n");

      while ((ch = getchar()) != '\n')

      {

          scanf("%d %d", &rows, &cols);

          display(ch, rows, cols);

          printf("Enter another character and two integers;\n");

          printf("Enter a newline to quit.\n");

      }

      printf("Bye.\n");

  

      return 0;

  }

  

  void display(char cr, int lines, int width)

  {

      int row, col;

  

      for (row = 1; row <= lines; row++)

      {

          for (col = 1; col <= width; col++)

              putchar(cr);

          putchar('\n');  /*  end line and start a new one */

      }

  }   

 Note that the program reads a character as type  int  to enable the  EOF  test. However, it passes 
the character as type  char  to the  display()  function. Because  char  is smaller than  int , some 
compilers will warn about the conversion. In this case, you can ignore the warning. Or you can 
eliminate the warning by using a typecast:  

  display(char(ch), rows, cols);   

 The program is set up so that  main()  gets the data and the  display()  function does the print-
ing. Let’s look at a sample run to see what the problem is:  

  Enter a character and two integers:

   c 2 3 

  ccc

  ccc
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  Enter another character and two integers;

  Enter a newline to quit.

  Bye.   

 The program starts off fine. Enter  c 2 3 , and it prints two rows of three  c  characters, as 
expected. Then the program prompts you to enter a second set of data and quits before you 
have a chance to respond! What’s wrong? It’s that newline character again, this time the one 
immediately following the  3  on the first input line. The  scanf()  function leaves it in the input 
queue. Unlike  scanf() ,  getchar()  doesn’t skip over newline characters, so this newline char-
acter is read by  getchar()  during the next cycle of the loop before you have a chance to enter 
anything else. Then it’s assigned  to  ch , and  ch  being the newline character is the condition 
that terminates the loop.  

 To clear up this problem, the program has to skip over any newlines or spaces between the last 
number typed for one cycle of input and the character typed at the beginning of the next line. 
Also, it would be nice if the program could be terminated at the  scanf()  stage in addition to 
the  getchar()  test. The next version, shown in   Listing   8.6   , accomplishes this.  

  Listing 8.6   The  showchar2.c  Program  

 /* showchar2.c -- prints characters in rows and columns */

  #include <stdio.h>

  void display(char cr, int lines, int width);

  int main(void)

  {

      int ch;             /* character to be printed      */

      int rows, cols;     /* number of rows and columns   */

  

      printf("Enter a character and two integers:\n");

      while ((ch = getchar()) != '\n')

      {

          if (scanf("%d %d",&rows, &cols) != 2)

              break;

          display(ch, rows, cols);

          while (getchar() !=  '\n')

              continue;

          printf("Enter another character and two integers;\n");

          printf("Enter a newline to quit.\n");

      }

      printf("Bye.\n");

  

      return 0;

  }

  

  void display(char cr, int lines, int width)

  {
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      int row, col;

  

      for (row = 1; row <= lines; row++)

      {

          for (col =  1; col <= width; col++)

              putchar(cr);

          putchar('\n');  /* end line and start a new one */

      }

  }   

 The  while  statement causes the program to dispose of all characters following the  scanf()  
input, including the newline. This prepares the loop to read the first character at the beginning 
of the next line. This means you can enter data fairly freely:  

  Enter a character and two integers:

   c 1 2 

  cc

  Enter another character and two integers;

  Enter a newline to quit.

   ! 3 6 

  !!!!!!

  !!!!!!

  !!!!!!

  Enter another character and two integers;

  Enter a newline to quit.

  

  Bye.   

 By using an  if  statement with a  break , we terminate the program if the return value of 
 scanf()  is not  2 . This occurs if one or both input values are not integers or if end-of-file is 
encountered.    

  Input Validation  

 In practice, program users don’t always follow instructions, and you can get a mismatch 
between what a program expects as input and what it actually gets. Such conditions can cause 
a program to fail. However, often you can anticipate likely input errors, and, with some extra 
programming effort, have a program detect and work around them.  

 Suppose, for instance, that you had a loop that processes nonnegative numbers. One kind of 
error the user can make is to enter a negative number. You can use a relational expression to 
test for that:  

  long n;

  scanf("%ld", &n);      // get first value

  while (n >= 0)        // detect out-of-range value
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  {

      // process n

      scanf("%ld", &n);  // get next value

  }   

 Another potential pitfall is that the user might enter the wrong type of value, such as the 
character  q . One way to detect this kind of misuse is to check the return value of  scanf() . 
This function, as you’ll recall, returns the number of items it successfully reads; therefore, the 
expression  

  scanf("%ld", &n) == 1   

 is true only if the user inputs an integer. This suggests the following revision of the code:  

  long n;

  while (scanf("%ld", &n) == 1 && n >= 0)

  {

      // process n

  }   

 In words, the  while  loop condition is “while input is an integer and the integer is positive.”  

 The last example terminates input if the user enters the wrong type of value. You can, however, 
choose to make the program a little more user friendly and give the user the opportunity 
to try to enter the correct type of value. In that case, you need to dispose of the input that 
caused  scanf()  to fail in the first place, for  scanf()  leaves the bad input in the input queue. 
Here, the fact that input really is a stream of characters comes in handy, because you can use 
 getchar()  to read the input character-by-character. You could even incorporate all these ideas 
into  a function such as the following:  

  long get_long(void)

  {

      long input;

      char ch;

  

      while (scanf("%ld", &input) != 1)

      {

          while ((ch = getchar()) != '\n')

              putchar(ch);  // dispose of bad input

          printf(" is not an integer.\nPlease enter an ");

          printf("integer value, such as 25, -178, or 3: ");

      }

  

      return input;

  }   

 This function attempts to read an  int  value into the variable  input . If it fails to do so, the 
function enters the body of the outer  while  loop. The inner  while  loop then reads the 
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offending input character-by-character. Note that this function chooses to discard all the 
remaining input on the line. Other possible choices are to discard just the next character or 
word. Then the function prompts the user to try again. The outer loop keeps going until the 
user successfully enters an integer, causing  scanf()  to return the value  1 .  

 After the user clears the hurdle of entering integers, the program can check to see whether the 
values are valid. Consider an example that requires the user to enter a lower limit and an upper 
limit defining a range of values. In this case, you probably would want the program to check 
that the first value isn’t greater than the second (usually ranges assume that the first value is 
the smaller one). It may also need to check that the values are within acceptable limits. For 
example, the archive search may not work with year values less than 1958 or  greater than 2014. 
This checking, too, can be accomplished with a function.  

 Here’s one possibility; the following function assumes that the  stdbool.h  header file has been 
included. If you don’t have  _Bool  on your system, you can substitute  int  for  bool ,  1  for  true , 
and  0  for  false . Note that the function returns  true  if the input is invalid; hence the name 
 bad_limits() :  

  bool bad_limits(long begin, long end,

                  long low, long high)

  {

      bool not_good = false;

  

      if (begin > end)

      {

          printf("%ld isn't smaller than %ld.\n", begin, end);

          not_good = true;

      }

      if (begin < low || end < low)

      {

          printf("Values must be %ld or greater.\n", low);

          not_good = true;

      }

      if (begin > high || end > high)

      {

          printf("Values must be %ld or less.\n", high);

          not_good = true;

      }

  

      return not_good;

  }   

  Listing   8.7    uses these two functions to feed integers to an arithmetic function that calculates 
the sum of the squares of all the integers in a specified range. The program limits the upper and 
lower bounds of the range to 1000 and −1000, respectively.  
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  Listing 8.7   The  checking.c  Program  

 // checking.c -- validating input

  #include <stdio.h>

  #include <stdbool.h>

  // validate that input is an integer

  long get_long(void);

  // validate that range limits are valid

  bool bad_limits(long begin, long end,

                  long low, long high);

  // calculate the sum of the squares of the integers

  // a through b

  double sum_squares(long a, long b);

  int main(void)

  {

      const long MIN = -10000000L;  // lower limit to range

      const long MAX = +10000000L;  // upper limit to range

      long start;                   // start of range

      long stop;                    // end of range

      double answer;

  

      printf("This program computes the sum of the squares of "

             "integers in a range.\nThe lower bound should not "

             "be less  than -10000000 and\nthe upper bound "

             "should not be more than +10000000.\nEnter the "

             "limits (enter 0 for both limits to quit):\n"

             "lower limit: ");

      start = get_long();

      printf("upper limit: ");

      stop = get_long();

      while (start !=0 || stop != 0)

      {

          if (bad_limits(start, stop, MIN, MAX))

              printf("Please try again.\n");

          else

          {

              answer = sum_squares(start, stop);

              printf("The sum of the squares of the integers ");

              printf("from %ld to %ld is %g\n",

                      start, stop, answer);

          }

          printf("Enter the limits (enter 0 for both "

                 "limits to quit):\n");

          printf("lower limit: ");

          start = get_long();

          printf("upper limit: ");

          stop = get_long();



ptg11524036

321Input Validation

      }

      printf("Done.\n");

  

       return 0;

  }

  

  long get_long(void)

  {

      long input;

      char ch;

  

      while (scanf("%ld", &input) != 1)

      {

          while ((ch = getchar()) != '\n')

              putchar(ch);  // dispose of bad input

          printf(" is not an integer.\nPlease enter an ");

          printf("integer value, such as 25, -178, or 3: ");

      }

  

      return input;

  }

  

  double sum_squares(long a, long b)

  {

      double total = 0;

      long i;

  

      for (i = a; i <= b; i++)

          total += (double)i * (double)i;

  

      return total;

  }

  

  bool bad_limits(long begin, long end,

                  long low, long high)

  {

      bool not_good = false;

  

      if (begin > end)

      {

          printf("%ld isn't smaller than %ld.\n", begin, end);

          not_good = true;

      }

      if (begin  < low || end < low)

      {

          printf("Values must be %ld or greater.\n", low);

          not_good = true;
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      }

      if (begin > high || end > high)

      {

          printf("Values must be %ld or less.\n", high);

          not_good = true;

      }

  

      return not_good;

  }   

 Here’s a sample run:  

  This program computes the sum of the squares of integers in a range.

  The lower bound should not be less than -10000000 and

  the upper bound should not be more than +10000000.

  Enter the limits (enter 0 for both limits to quit):

  lower limit:  low 

  low is not an integer.

  Please enter an integer value, such as 25, -178, or 3:  3 

  upper limit:  a big number 

  a big number is not an integer.

  Please enter an integer value, such as 25, -178, or 3:  12 

  The sum of the squares of the integers from 3 to 12 is 645

  Enter the limits (enter 0 for both limits to quit):

  lower limit:   80 

  upper limit:  10 

  80 isn't smaller than 10.

  Please try again.

  Enter the limits (enter 0 for both limits to quit):

  lower limit:  0 

  upper limit:  0 

  Done.   

  Analyzing the Program  

 The computational core (the function  sum_squares() ) of the  checking.c  program is short, 
but the input validation support makes it more involved than the examples we have given 
before. Let’s look at some of its elements, first focusing on overall program structure.  

 We’ve followed a modular approach, using separate functions (modules) to verify input and to 
manage the display. The larger a program is, the more vital it is to use modular programming.  

 The  main()  function manages the flow, delegating tasks to the other functions. It uses  get_
long()  to obtain values, a  while  loop to process them, the  badlimits()  function to check for 
valid values, and the  sum_squares()  function to do the actual calculation:  

  start = get_long();

  printf("upper limit: ");
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  stop = get_long();

  while (start !=0 || stop != 0)

  {

      if (bad_limits(start, stop, MIN, MAX))

          printf("Please try again.\n");

      else

      {

          answer = sum_squares(start, stop);

          printf("The sum of the squares of the integers ");

          printf("from %ld to %ld is %g\n", start, stop, answer);

      }

      printf("Enter the limits (enter 0 for both "

             "limits to quit):\n");

      printf("lower limit: ");

      start = get_long();

      printf("upper limit: ");

      stop = get_long();

  }    

  The Input Stream and Numbers  

 When writing code to handle bad input, such as that used in  Listing   8.7   , you should have a 
clear picture of how C input works. Consider a line of input like the following:  

   is  28 12.4    

 To our eyes, it looks like a string of characters followed by an integer followed by a floating-
point value. To a C program it looks like a stream of bytes. The first byte is the character code 
for the letter  i , the second is the character code for the letter  s , the third is the character 
code for the space character, the fourth is the character code for the digit  2 , and so on. So if 
 get_long()  encounters this line, which begins with a nondigit, the following code reads and 
discards the entire line, including the numbers, which just are other  characters on the line:  

  while ((ch = getchar()) != '\n')

     putchar(ch);  // dispose of bad input   

 Although the input stream consists of characters, the  scanf()  function can convert them to a 
numeric value if you tell it to. For example, consider the following input:  

   42    

 If you use  scanf()  with a  %c  specifier, it will just read the  4  character and store it in a  char  
variable. If you use the  %s  specifier, it will read two characters, the  4  character and the  2  char-
acter, and store them in a character string. If you use the  %d  specifier,  scanf()  reads the same 
two characters, but then proceeds to calculate that the integer value corresponding to them is 4 
× 10 + 2, or 42. It then stores the integer binary representation of that value in an  int  variable. 
If you use an  %f  specifier,  scanf()  reads the two characters, calculates that they correspond to 
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the numeric value  42.0, expresses that value in the internal floating-point representation, and 
stores the result in a  float  variable.  

 In short, input consists of characters, but  scanf()  can convert that input to an integer or 
floating-point value. Using a specifier such as  %d  or  %f  restricts the types of characters that are 
acceptable input, but  getchar()  and  scanf()  using  %c  accept any character.    

  Menu Browsing  

 Many computer programs use menus as part of the user interface. Menus make programs easier 
for the user, but they do pose some problems for the programmer. Let’s see what’s involved.  

 A menu offers the user a choice of responses. Here’s a hypothetical example:  

  Enter the letter of your choice:

  a. advice           b. bell

  c. count            q. quit   

 Ideally, the user then enters one of these choices, and the program acts on that choice. As a 
programmer, you want to make this process go smoothly. The first goal is for the program to 
work smoothly when the user follows instructions. The second goal is for the program to work 
smoothly when the user fails to follow instructions. As you might expect, the second goal is 
the more difficult because it’s hard to anticipate all the possible mistreatment that might come 
your program’s way.  

 Modern applications typically use graphical interfaces—buttons to click, boxes to check, icons 
to touch—instead of the command-line approach of our examples, but the general process 
remains much the same: Offer the user choices, detect and act upon the user’s response, and 
protect against possible misuse. The underlying program structure would be much the same 
for these different interfaces. However, using a graphical interface can make it easier to control 
input by limiting choices.  

  Tasks  

 Let’s get more specific and look at the tasks a menu program needs to perform. It needs to get 
the user’s response, and it needs to select a course of action based on the response. Also, the 
program should provide a way to return to the menu for further choices. C’s  switch  statement 
is a natural vehicle for choosing actions because each user choice can be made to correspond to 
a particular  case  label. You can use a  while  statement to provide repeated access to the menu. 
In pseudocode, you can describe the process this way:  

   get choice 

   while choice is not 'q' 

       switch to desired choice and execute it 

       get next   choice     
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  Toward a Smoother Execution  

 The goals of program smoothness (smoothness when processing correct input and smooth-
ness when handling incorrect input) come into play when you decide how to implement this 
plan. One thing you can do, for example, is have the “get choice” part of the code screen 
out inappropriate responses so that only correct responses are passed on to the  switch . That 
suggests representing the input process with a function that can return only correct responses. 
Combining that with a  while  loop and a  switch  leads to the following program structure:  

  #include <stdio.h>

  char get_choice(void);

  void count(void);

  int main(void)

  {

      int choice;

  

      while ( (choice = get_choice()) != 'q')

      {

          switch (choice)

          {

              case 'a' :  printf("Buy low, sell high.\n");

                          break;

              case 'b' :  putchar('\a');  /* ANSI */

                          break;

              case 'c' :  count();

                          break;

              default  :  printf("Program error!\n");

                          break;

          }

      }

      return 0;

  }   

 The  get_choice()  function is defined so that it can return only the values  'a' ,  'b' ,  'c' , 
and  'q' . You use it much as you use  getchar() —getting a value and comparing it to a termi-
nation value ( 'q' , in this case). We’ve kept the actual menu choices simple so that you can 
concentrate on the program structure; we’ll get to the  count()  function soon. The  default  
case is handy for debugging. If the  get_choice()  function fails to limit its return value to the 
intended values, the  default  case lets you know something fishy is going on.  

  The  get_choice()  Function  

 Here, in pseudocode, is one possible design for this function:  

   show choices 

   get response 

   while response is not acceptable 

       prompt for more response 

       get response    



ptg11524036

326 Chapter 8 Character Input/Output and Input Validation

 And here is a simple, but awkward, implementation:  

  char get_choice(void)

  {

      int ch;

  

      printf("Enter the letter of your choice:\n");

      printf("a. advice           b. bell\n");

      printf("c. count            q. quit\n");

      ch = getchar();

      while (  (ch < 'a' || ch > 'c') && ch != 'q')

      {

          printf("Please respond with a, b, c, or q.\n");

          ch = getchar();

      }

      return ch;

  }   

 The problem is that with buffered input, every newline generated by the Return key is treated 
as an erroneous response. To make the program interface smoother, the function should skip 
over newlines.  

 There are several ways to do that. One is to replace  getchar()  with a new function called 
 get_first()  that reads the first character on a line and discards the rest. This method also has 
the advantage of treating an input line consisting of, say,  act , as being the same as a simple  a , 
instead of treating it as one good response followed by  c  for  count . With this goal in mind, we 
can rewrite the input function as follows:  

  char get_choice(void)

  {

      int ch;

  

      printf("Enter the letter of your choice:\n");

      printf("a. advice           b. bell\n");

      printf("c. count            q. quit\n");

      ch = get_first();

      while (  (ch < 'a' || ch > 'c') && ch != 'q')

      {

          printf("Please respond with a, b, c, or q.\n");

          ch = getfirst();

      }

      return ch;

  }

  

  char get_first(void)

  {

      int ch;
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      ch = getchar();           /* read next character */

      while (getchar() != '\n')

          continue;             /* skip rest of line */

      return ch;

  }     

  Mixing Character and Numeric Input  

 Creating menus provides another illustration of how mixing character input with numeric 
input can cause problems. Suppose, for example, the  count()  function (choice  c ) were to look 
like this:  

  void count(void)

  {

      int n,i;

  

      printf("Count how far? Enter an integer:\n");

      scanf("%d", &n);

      for (i = 1; i <= n; i++)

          printf("%d\n", i);

  }   

 If you then responded by entering  3 ,  scanf()  would read the  3  and leave a newline character 
as the next character in the input queue. The next call to  get_choice()  would result in  get_
first()  returning this newline character, leading to undesirable behavior.  

 One way to fix that problem is to rewrite  get_first()  so that it returns the next non-
whitespace character rather than just the next character encountered. We leave that as an 
exercise for the reader. A second approach is having the  count()  function tidy up and clear the 
newline itself. This is the approach this example takes:  

  void count(void)

  {

      int n,i;

  

      printf("Count how far? Enter an integer:\n");

      n = get_int();

      for (i = 1; i <= n; i++)

          printf("%d\n", i);

      while ( getchar() != '\n')

          continue;

  }   

 This function also uses the  get_long()  function from  Listing   8.7   , but changes it to  get_int()  
to fetch type  int  instead of type  long ; recall that the original checks for valid input and gives 
the user a chance to try again.  Listing   8.8    shows the final menu  program.  
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  Listing 8.8   The  menuette.c  Program  

 /* menuette.c -- menu techniques */

  #include <stdio.h>

  char get_choice(void);

  char get_first(void);

  int get_int(void);

  void count(void);

  int main(void)

  {

      int choice;

      void count(void);

  

      while ( (choice = get_choice()) != 'q')

      {

          switch (choice)

          {

              case 'a' :  printf("Buy low, sell high.\n");

                          break;

              case 'b' :  putchar('\a');  /* ANSI */

                          break;

              case 'c' :  count();

                          break;

              default  :  printf("Program error!\n");

                          break;

          }

      }

      printf("Bye.\n");

  

      return 0;

  }

  

  void count(void)

  {

      int n,i;

  

      printf("Count how far? Enter an integer:\n"); 

      n = get_int();

      for (i = 1; i <= n; i++)

          printf("%d\n", i);

      while ( getchar() != '\n')

          continue;

  }

  

  char get_choice(void)

  {

      int ch;
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      printf("Enter the letter of your choice:\n");

      printf("a. advice           b. bell\n");

      printf("c.  count            q. quit\n");

      ch = get_first();

      while (  (ch < 'a' || ch > 'c') && ch != 'q')

      {

          printf("Please respond with a, b, c, or q.\n");

          ch = get_first();

      }

  

      return ch;

  }

  

  char get_first(void)

  {

      int ch;

  

      ch = getchar();

      while (getchar() != '\n')

          continue;

  

      return ch;

  }

  

  int get_int(void)

  {

      int input;

      char ch;

  

      while (scanf("%d", &input) != 1)

      {

          while ((ch = getchar()) != '\n')

              putchar(ch);  // dispose of bad input

          printf(" is not an integer.\nPlease enter an ");

          printf("integer value, such as 25, -178, or 3: ");

      }

  

      return input;

  }   

 Here is a sample run:  

  Enter the letter of your choice:

  a. advice           b. bell

  c. count            q. quit

   a 
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  Buy low, sell high.

  Enter the letter of your choice:

  a. advice           b. bell

  c. count            q. quit

   count 

  Count how far? Enter an integer:

  two

  two is not an integer.

  Please enter an integer value, such as 25, -178, or 3:  5 

  

  1

  2

  3

  4

  5

  Enter the letter of your choice:

  a. advice           b. bell

  c. count            q. quit

   d 

  Please  respond with a, b, c, or q.

   q    

 It can be hard work getting a menu interface to work as smoothly as you might want, but after 
you develop a viable approach, you can reuse it in a variety of situations.  

 Another point to notice is how each function, when faced with doing something a bit compli-
cated, delegated the task to another function, thus making  the program much more modular.    

  Key Concepts  

 C programs see input as a stream of incoming bytes. The  getchar()  function interprets each 
byte as being a character code. The  scanf()  function sees input the same way, but, guided 
by its conversion specifiers, it can convert character input to numeric values. Many operating 
systems provide redirection, which allows you to substitute a file for a keyboard for input and 
to substitute a file for a monitor for output.  

 Programs often expect a particular form of input. You can make a program much more robust 
and user friendly by anticipating entry errors a user might make and enabling the program to 
cope with them.  

 With a small program, input validation might be the most involved part of the code. It also 
opens up many choices. For example, if the user enters the wrong kind of information, you can 
terminate the program, you can give the user a fixed number of chances to get the input right, 
or you give the user an unlimited number of chances.   
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  Summary  

 Many programs use  getchar()  to read input character-by-character. Typically, systems use  line-
buffered input,  meaning that input is transmitted to the program when you press Enter. Pressing 
Enter also transmits a newline character that may require programming attention. ANSI C 
requires buffered input as the standard.  

 C features a family of functions, called the  standard I/O package , that treats different file forms 
on different systems in a uniform manner. The  getchar()  and  scanf()  functions belong to 
this family. Both functions return the value  EOF  (defined in the  stdio.h  header) when they 
detect the end of a file. Unix systems enable you to simulate the end-of-file condition from the 
keyboard by pressing Ctrl+D at the beginning of a line; DOS systems use Ctrl+Z for the same 
purpose.  

 Many operating systems, including Unix and DOS, feature  redirection,  which enables you to use 
files instead of the keyboard and screen for input and output. Programs that read input up to 
 EOF  can then be used either with keyboard input and simulated end-of-file signals or with redi-
rected files.  

 Interspersing calls to  getchar()  with calls to  scanf()  can cause problems when  scanf()  
leaves a newline character in the input just before a call to  getchar() . By being aware of this 
problem, however, you can program around it.  

 When you are writing a program, plan the user interface thoughtfully. Try to anticipate the sort 
of errors users are likely to make and then design your program to handle them.    

     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.     putchar(getchar())  is a valid expression; what does it do? Is  getchar(putchar())  
also valid?    

   2.    What would each of the following statements accomplish?  

    a.    putchar('H');    

   b.    putchar('\007');    

   c.    putchar('\n');    

   d.    putchar('\b');       

   3.    Suppose you have an executable program named  count  that counts the characters in its 
input. Devise a command-line command using the  count  program to count the number 
of characters in the file  essay  and to store the result in a file named  essayct .    
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   4.    Given the program and files in question 3, which of the following are valid commands?  

    a.    essayct <essay    

   b.    count essay    

   c.    essay >count       

   5.    What is  EOF ?    

   6.    What is the output of each of the following fragments for the indicated input (assume 
that  ch  is type  int  and that the input is buffered)?  

    a.   The input is as follows:  

  If you quit, I will.[enter]   

 The fragment is as follows:  

  while ((ch = getchar()) != 'i')

      putchar(ch);    

   b.   The input is as follows:  

  Harhar[enter]   

 The fragment is as follows:  

  while ((ch = getchar()) != '\n')

  {

     putchar(ch++);

     putchar(++ch);

  }       

   7.    How does C deal with different computers systems having different file and newline 
conventions?    

   8.    What potential problem do you face when intermixing numeric input with character 
input on a buffered system?      

  Programming Exercises  

 Several of the following programs ask for input to be terminated by  EOF . If your operating 
system makes redirection awkward or impossible, use some other test for terminating input, 
such as reading the  &  character.  

    1.    Devise a program that counts the number of characters in its input up to the end of file.    
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   2.    Write a program that reads input as a stream of characters until encountering  EOF . Have 
the program print each input character and its ASCII decimal value. Note that characters 
preceding the space character in the ASCII sequence are nonprinting characters. 
Treat them specially. If the nonprinting character is a newline or tab, print  \n  or  \t , 
respectively. Otherwise, use control-character notation. For instance, ASCII 1 is Ctrl+A, 
which can be displayed as  ̂ A . Note that the ASCII value for  A  is the value for Ctrl+A 
plus 64. A similar relation holds for the other nonprinting characters. Print 10 pairs per 
line, except  start a fresh line each time a newline character is encountered. (Note: The 
operating system may have special interpretations for some control characters and keep 
them from reaching the program.)    

   3.    Write a program that reads input as a stream of characters until encountering  EOF . 
Have it report the number of uppercase letters, the number of lowercase letters, and the 
number of other characters in the input. You may assume that the numeric values for the 
lowercase letters are sequential and assume the same for uppercase. Or, more portably, 
you can use appropriate classification functions from the  ctype.h  library.    

   4.    Write a program that reads input as a stream of characters until encountering  EOF . Have 
it report the average number of letters per word. Don’t count whitespace as being letters 
in a word. Actually, punctuation shouldn’t be counted either, but don’t worry about that 
now. (If you do want to worry about it, consider using the  ispunct()  function from the 
 ctype.h  family.)    

   5.    Modify the guessing program of  Listing   8.4    so that it uses a more intelligent guessing 
strategy. For example, have the program initially guess 50, and have it ask the user 
whether the guess is high, low, or correct. If, say, the guess is low, have the next guess 
be halfway between 50 and 100, that is, 75. If that guess is high, let the next guess be 
halfway between 75 and 50, and so on. Using this  binary search  strategy, the program 
quickly zeros in on the correct answer, at least if the user does not cheat.    

   6.    Modify the  get_first()  function of  Listing   8.8    so that it returns the first non-
whitespace character encountered. Test it in a simple program.    

   7.    Modify Programming Exercise 8 from  Chapter   7    so that the menu choices are labeled by 
characters instead of by numbers; use  q  instead of  5  as the cue to terminate input.    

   8.    Write a program that shows you a menu offering you the choice of addition, subtraction, 
multiplication, or division. After getting your choice, the program asks for two numbers, 
then performs the requested operation. The program should accept only the offered 
menu choices. It should use type  float  for the numbers and allow the user to try again 
if he or she fails to enter a number. In the case of division, the program should prompt 
the user to enter a new value if  0  is entered as the value for the second number. A typical 
program run should look like this:  
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  Enter the operation of your choice:

  a. add           s. subtract

  m. multiply      d. divide

  q. quit

   a 

  Enter first number:  22 .4

  Enter second number:  one 

  one is not an number.

  Please enter a number, such as 2.5, -1.78E8, or 3:  1 

  22.4 + 1 = 23.4

  Enter the operation of your choice:

  a. add           s. subtract

  m. multiply      d. divide

  q. quit

   d 

  Enter first number:  18.4 

  Enter second number:  0 

  Enter a number other than 0:  0.2 

  18.4 / 0.2 = 92

  Enter the operation of your choice:

  a. add           s. subtract

  m. multiply      d. divide

  q. quit

   q 

  Bye.         
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 Functions  

    You will learn about the following in this chapter:  

    ■   Keyword:  

  return    

   ■   Operators:  

  *  (unary)  &  (unary)   

   ■   Functions and how to define them   

   ■   How to use arguments and return values   

   ■   How to use pointer variables as function arguments   

   ■   Function types   

   ■   ANSI C prototypes   

   ■   Recursion    

 How do you organize a program? C’s design philosophy is to use functions as building blocks. 
We’ve already relied on the standard C library for functions such as  printf() ,  scanf() , 
 getchar() ,  putchar() , and  strlen() . Now we’re ready for a more active role—creating our 
own functions. You’ve previewed several aspects of that process in earlier chapters, and this 
chapter consolidates your earlier information and expands on it.   

     Reviewing Functions  

 First, what is a function? A  function  is a self-contained unit of program code designed to accom-
plish a particular task. Syntax rules define the structure of a function and how it can be used. 
A function in C plays the same role that functions, subroutines, and procedures play in other 
languages, although the details might differ. Some functions cause an action to take place. For 
example,  printf()  causes data to be printed on your screen. Some functions find a value for a 
program to use. For instance,  strlen()  tells a program how long a certain string is. In general, 
a function can both  produce actions and provide values.  
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 Why should you use functions? For one, they save you from repetitious programming. If you 
have to do a certain task several times in a program, you only need to write an appropriate 
function once. The program can then use that function wherever needed, or you can use the 
same function in different programs, just as you have used  putchar()  in many programs. Also, 
even if you do a task just once in just one program, using a function is worthwhile because it 
makes a program more modular, hence easier to read and easier to change or fix. Suppose, for 
example,  that you want to write a program that does the following:  

    ■   Read in a list of numbers   

   ■   Sort the numbers   

   ■   Find their average   

   ■   Print a bar graph    

 You could use this program:  

  #include <stdio.h>

  #define SIZE 50

  int main(void)

  {

    float list[SIZE];

  

    readlist(list, SIZE);

    sort(list, SIZE);

    average(list, SIZE);

    bargraph(list, SIZE);

    return 0;

  }   

 Of course, you would also have to write the four functions  readlist() ,  sort() ,  average() , 
and  bargraph() —mere details. Descriptive function names make it clear what the program 
does and how it is organized. You can then work with each function separately until it does 
its job right, and, if you make the functions general enough, you can reuse them in other 
programs.  

 Many programmers like to think of a function as a “black box” defined in terms of the infor-
mation that goes in (its input) and the value or action it produces (its output). What goes on 
inside the black box is not your concern, unless you are the one who has to write the function. 
For example, when you use  printf() , you know that you have to give it a control string and, 
perhaps, some arguments. You also know what output  printf()  should produce. You don’t 
have to think about the programming that went into creating  printf() . Thinking of functions 
in this  manner helps you concentrate on the program’s overall design rather than the details. 
Think carefully about what the function should do and how it relates to the program as a 
whole before worrying about writing the code.  

 What do you need to know about functions? You need to know how to define them properly, 
how to call them up for use, and how to set up communication between functions. To refresh 
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your memory on these points, we will begin with a very simple example and then bring in 
more features until you have the full story.  

  Creating and Using a Simple Function  

 Our modest first goal is to create a function that types 40 asterisks in a row. To give the func-
tion a context, let’s use it in a program that prints a simple letterhead.  Listing   9.1    presents the 
complete program. It consists of the functions  main()  and  starbar() .  

  Listing 9.1   The  lethead1.c  Program  

 /* lethead1.c */

  #include <stdio.h>

  #define NAME "GIGATHINK, INC."

  #define ADDRESS "101 Megabuck Plaza"

  #define PLACE "Megapolis, CA 94904"

  #define WIDTH 40

  

  void starbar(void);  /* prototype the function */

  

  int main(void)

  {

      starbar();

      printf("%s\n", NAME);

      printf("%s\n", ADDRESS);

      printf("%s\n", PLACE);

      starbar();       /* use the function       */

  

      return 0;

  }

  

  void starbar(void)   /* define the function    */

  {

      int count;

  

      for (count = 1; count <= WIDTH; count++)

          putchar('*');

      putchar('\n');

  }   

 The output is as follows:  

  ****************************************

  GIGATHINK, INC.

  101 Megabuck Plaza

  Megapolis, CA 94904

  ****************************************    
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  Analyzing the Program  

 Here are several major points to note about this program:  

    ■   It uses the  starbar  identifier in three separate contexts: a  function prototype  that tells the 
compiler what sort of function  starbar()  is, a  function call  that causes the function to 
be executed, and a  function definition  that specifies exactly what the function does.   

   ■   Like variables, functions have types. Any program that uses a function should declare the 
type for that function before it is used. Consequently, this ANSI C prototype precedes the 
 main()  function definition:  

  void starbar(void);   

 The parentheses indicate that  starbar  is a function name. The first  void  is a function 
type; the  void  type indicates that the function does not return a value. The second 
 void  (the one in the parentheses) indicates that the function takes no arguments. The 
semicolon indicates that you are declaring the function, not defining it. That is, this 
line announces that the program uses a function called  starbar() , that the function 
has no return value and has no arguments, and that the compiler should expect to find 
the definition for this function elsewhere. For compilers that don’t recognize ANSI C 
prototyping, just declare the type, as follows:  

  void starbar();   

 Note that some very old compilers don’t recognize the  void  type. In that case, use type 
 int  for functions that don’t have return values. And look into getting a compiler from 
the current century.   

   ■   In general, a prototype specifies both the type of value a function returns and the types 
of arguments it expects. Collectively, this information is called the  signature  of the 
function. In this particular case, the signature is that the function has no return value 
and has no arguments.   

   ■   The program places the  starbar()  prototype before  main() ; instead, it can go inside 
 main() , at the same location you would place any variable declarations. Either way is 
fine.   

   ■   The program calls ( invokes ,  summons ) the function  starbar()  from  main()  by using its 
name followed by parentheses and a semicolon, thus creating the statement  

  starbar();   

 This is the form for calling up a type  void  function. Whenever the computer reaches a 
 starbar();  statement, it looks for the  starbar()  function and follows the instructions 
there. When finished with the code within  starbar() , the computer returns to the 
next line of the  calling function — main() , in this case (see  Figure   9.1   ). (More exactly, 
the compiler translates the C program to machine-language code that behaves in this 
fashion.)  
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each function may "call" 
other functions
each function is "run" in turn

starbar()

starbar()

main()

printf()

putchar()

{

}

putchar()

printf()

printf()

 Figure 9.1   Control flow for  lethead1.c  ( Listing   9.1   ).          

   ■   The program follows the same form in defining  starbar()  as it does in defining  main() . 
It starts with the type, name, and parentheses. Then it supplies the opening brace, a 
declaration of variables used, the defining statements of the function, and then the 
closing brace (see  Figure   9.2   ). Note that this instance of  starbar()  is not followed by a 
semicolon. The lack of a semicolon tells the compiler that you are defining  starbar()  
instead of calling or prototyping it.   

   ■   The program includes  starbar()  and  main()  in the same file. You can use two separate 
files. The single-file form is slightly easier to compile. Two separate files make it simpler 
to use the same function in different programs. If you do place the function in a separate 
file, you would also place the necessary  #define  and  #include  directives in that file. We 
will discuss using two or more files later. For now, we will keep all the functions together 
in one file. The closing brace of  main()  tells the compiler where that function ends, and 
the following  starbar()  header tells the compiler that  starbar()  is a function.   
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   ■   The variable  count  in  starbar()  is a  local  variable. This means it is known only to 
 starbar() . You can use the name  count  in other functions, including  main() , and 
there will be no conflict. You simply end up with separate, independent variables having 
the same name.    

 

preprocessor instructions

function name

#include <stdio.h>

#define LIMIT 65

void starbar (void)

header

{

int count;

for (count=1;---)

    putchar ('*');

putchar('\n');

}

body

declaration statement

function statement

control loop statement
function statement

 Figure 9.2   Structure of a simple function.         

 If you think of  starbar()  as a black box, its action is printing a line of stars. It doesn’t have 
any input because it doesn’t need to use any information from the calling function. It doesn’t 
provide (or  return ) any information to  main() , so  starbar()  doesn’t have a return value. In 
short,  starbar()  doesn’t require any communication with the calling function.  

 Let’s create a case where communication is needed.   

  Function Arguments  

 The letterhead shown earlier would look nicer if the text were centered. You can center text 
by printing the correct number of leading spaces before printing the text. This is similar to the 
 starbar()  function, which printed a certain number of asterisks, but now you want to print 
a certain number of spaces. Instead of writing separate functions for each task, we’ll write a 
single, more general function that does both. We’ll call the new function  show_n_char()  (to 
suggest displaying a character  n  times). The only change is that instead of using built-in values 
for the display character and number of repetitions,  show_n_char()  will  use function argu-
ments to convey those values.  

 Let’s get more specific. Think of the available space being exactly 40 characters wide. The bar 
of stars is 40 characters wide, fitting exactly, and the function call  show_n_char('*', 40)  
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should print that, just as  starbar()  did earlier. What about spaces for centering  GIGATHINK, 
INC ?  GIGATHINK, INC.  is 15 spaces wide, so in the first version, there were 25 spaces following 
the heading. To center it, you should lead off with 12 spaces, which will result in 12 spaces on 
one side of the phrase and 13 spaces on the other. Therefore, you could use the call  show_n_
char(' ', 12) .  

 Aside from using arguments, the  show_n_char()  function will be quite similar to  starbar() . 
One difference is that it won’t add a newline the way  starbar()  does because you might want 
to print other text on the same line.  Listing   9.2    shows the revised program. To emphasize how 
arguments work, the program uses a variety of argument forms.  

  Listing 9.2   The  lethead2.c  Program  

 /* lethead2.c */

  #include <stdio.h>

  #include <string.h>            /* for strlen() */

  #define NAME "GIGATHINK, INC."

  #define ADDRESS "101 Megabuck Plaza"

  #define PLACE "Megapolis, CA 94904"

  #define WIDTH 40

  #define SPACE ' '

  

  void show_n_char(char ch, int num);

  

  int main(void)

  {

      int spaces;

  

      show_n_char('*', WIDTH);   /* using constants as arguments */

      putchar('\n');

      show_n_char(SPACE, 12);    /* using constants as arguments */

      printf("%s\n", NAME);

      spaces = (WIDTH - strlen(ADDRESS)) / 2;

                                 /* Let the program calculate    */

                                 /* how many spaces to skip      */

      show_n_char(SPACE, spaces);/* use a variable as argument   */

      printf("%s\n", ADDRESS);

      show_n_char(SPACE, (WIDTH - strlen(PLACE)) / 2);

                                 /* an expression as argument    */

      printf("%s\n", PLACE);

      show_n_char('*', WIDTH);

      putchar('\n');

  

      return 0;

  }

  

  /*  show_n_char() definition */
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  void show_n_char(char ch, int num)

  {

      int count;

  

      for (count = 1; count <= num; count++)

          putchar(ch);

  }   

 Here is the result of running the program:  

  ****************************************

              GIGATHINK, INC.

             101 Megabuck Plaza

            Megapolis, CA 94904

  ****************************************   

 Now let’s review how to set up a function that takes arguments. After that, you’ll look at how 
the function is used.   

  Defining a Function with an Argument: Formal Parameters  

 The function definition begins with the following ANSI C function header:  

  void show_n_char(char ch, int num)   

 This line informs the compiler that  show_n_char()  uses two arguments called  ch  and  num , 
that  ch  is type  char , and that  num  is type  int . Both the  ch  and  num  variables are called  formal 
arguments  or (the phrase currently in favor)  formal   parameters . Like variables defined inside the 
function, formal parameters are local variables, private to the function. That means you don’t 
have to worry if the names duplicate variable names used in other functions. These variables 
will be assigned values each time the function is called.  

 Note that the ANSI C form requires that each variable be preceded by its type. That is, unlike 
the case with regular declarations, you can’t use a list of variables of the same type:  

  void dibs(int x, y, z)          /* invalid function header */

  void dubs(int x, int y, int z)  /* valid function header   */   

 ANSI C also recognizes the pre-ANSI C form but characterizes it as obsolescent:  

  void show_n_char(ch, num)

  char ch;

  int num;   

 Here, the parentheses contain the list of argument names, but the types are declared afterward. 
Note that the arguments are declared before the brace that marks the start of the function’s 
body, but ordinary local variables are declared after the brace. This form does enable you to use 
comma-separated lists of variable names if the variables are of the same type, as shown here:  
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  void dibs(x, y, z)

  int x, y, z;          /* valid */   

 The intent of the standard is to phase out the pre-ANSI C form. You should be aware of it so 
that you can understand older code, but you should use the modern form for new programs. 
(C99 and C11 continue to warn of impending obsolescence.)  

 Although the  show_n_char()  function accepts values from  main() , it doesn’t return a value. 
Therefore,  show_n_char()  is type  void .  

 Now let’s see how this function is used.   

  Prototyping a Function with Arguments  

 We used an ANSI C prototype to declare the function before it is used:  

  void show_n_char(char ch, int num);   

 When a function takes arguments, the prototype indicates their number and type by using a 
comma-separated list of the types. If you like, you can omit variable names in the prototype:  

  void show_n_char(char, int);   

 Using variable names in a prototype doesn’t actually create variables. It merely clarifies the fact 
that  char  means a  char  variable, and so on.  

 Again, ANSI C also recognizes the older form of declaring a function, which is without an argu-
ment list:  

  void show_n_char();   

 This form eventually will be dropped from the standard. Even if it weren’t, the prototype 
format is a much better design, as you’ll see later. The main reason you need to know this form 
is so that you’ll recognize and understand it if you encounter it in older code.   

  Calling a Function with an Argument: Actual Arguments  

 You give  ch  and  num  values by using  actual arguments  in the function call. Consider the first use 
of  show_n_char() :  

  show_n_char(SPACE, 12);   

 The actual arguments are the space character and  12 . These values are assigned to the corre-
sponding formal parameters in  show_n_char() —the variables  ch  and  num . In short, the formal 
parameter is a variable in the called function, and the actual argument is the particular value 
assigned to the function variable by the calling function. As the example shows, the actual 
argument can be a constant, a variable, or an even more elaborate expression. Regardless of 
which it is, the actual argument is evaluated, and its value is copied to the corresponding 
formal parameter for the function. For instance, consider the final use  of  show_n_char() :  

  show_n_char(SPACE, (WIDTH - strlen(PLACE)) / 2);   
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 The long expression forming the second actual argument is evaluated to  10 . Then the value 
 10  is assigned to the variable  num . The function neither knows nor cares whether that number 
came from a constant, a variable, or a more general expression. Once again, the actual argu-
ment is a specific value that is assigned to the variable known as the formal parameter (see 
 Figure   9.3   ). Because the called function works with data copied from the calling function, the 
original data in the calling function is protected from whatever manipulations the called func-
tion applies to the copies.  

  Note   Actual Arguments and Formal Parameters  

 The actual argument is an expression that appears in the parentheses of a function call. The 
formal parameter is a variable declared in the header of a function definition. When a func-
tion is called, the variables declared as formal parameters are created and initialized to the 
values obtained by evaluating the actual arguments. In  Listing   9.2   ,  '*'  and  WIDTH  are actual 
arguments for the first time  show_n_char()  is called, and  SPACE  and  11  are actual argu-
ments the second time that function is called. In the function definition,  ch  and  num  are formal 
parameters.   

 

actual argument =25 passed by
main() to space() and assigned
to number

 int main(void)

{

   ---

   ---

space(25);

   ---

}

formal parameter = name
created by function definition

•

•

•

void space (int number)

{

   ---

   ---

   ---

}

 Figure 9.3   Formal parameters and actual arguments.          
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  The Black-Box Viewpoint  

 Taking a black-box viewpoint of  show_n_char() , the input is the character to be displayed and 
the number of spaces to be skipped. The resulting action is printing the character the specified 
number of times. The input is communicated to the function via arguments. This information 
is enough to tell you how to use the function in  main() . Also, it serves as a design specification 
for writing the function.  

 The fact that  ch ,  num , and  count  are local variables private to the  show_n_char()  function is 
an essential aspect of the black box approach. If you were to use variables with the same names 
in  main() , they would be separate, independent variables. That is, if  main()  had a  count  vari-
able, changing its value wouldn’t change the value of  count  in  show_n_char() , and vice versa. 
What goes on inside the black box is hidden from the calling function.   

  Returning a Value from a Function with  return   

 You have seen how to communicate information from the calling function to the called func-
tion. To send information in the other direction, you use the function return value. To refresh 
your memory on how that works, we’ll construct a function that returns the smaller of its two 
arguments. We’ll call the function  imin()  because it’s designed to handle  int  values. Also, 
we will create a simple  main()  whose sole purpose is to check to see whether  imin()  works. 
A program designed to test functions this way is sometimes called a  driver . The driver takes a 
function for a spin. If the function pans out,  it can be installed in a more noteworthy program. 
 Listing   9.3    shows the driver and the minimum value function.  

  Listing 9.3   The  lesser.c  Program  

 /* lesser.c -- finds the lesser of two evils */

  #include <stdio.h>

  int imin(int, int);

  

  int main(void)

  {

      int evil1, evil2;

  

      printf("Enter a pair of integers (q to quit):\n");

      while (scanf("%d %d", &evil1, &evil2) == 2)

      {

          printf("The lesser of %d and %d is %d.\n",

              evil1, evil2, imin(evil1,evil2));

          printf("Enter a pair of integers (q to quit):\n");

      }

      printf("Bye.\n");

  

      return 0;

  }
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  int imin(int n,int m)

  {

      int min;

  

      if (n < m)

          min = n;

      else

          min = m;

  

      return min;

  }   

 Recall that  scanf()  returns the number of items successfully read, so input other than two 
integers will cause the while loop to terminate. Here is a sample run:  

  Enter a pair of integers (q to quit):

   509 333 

  The lesser of 509 and 333 is 333.

  Enter a pair of integers (q to quit):

   -9393 6 

  The lesser of -9393 and 6 is -9393.

  Enter a pair of integers (q to quit):

   q 

  Bye.   

 The keyword  return  causes the value of the following expression to be the return value of the 
function. In this case, the function returns the value that was assigned to  min . Because  min  is 
type  int , so is the  imin()  function.  

 The variable  min  is private to  imin() , but the value of  min  is communicated back to the calling 
function with  return . The effect of a statement such as the next one is to assign the value of 
 min  to  lesser :  

  lesser = imin(n,m);   

 Could you say the following instead?  

  imin(n,m);

  lesser = min;   

 No, because the calling function doesn’t even know that  min  exists. Remember that  imin() ’s 
variables are local to  imin() . The function call  imin(evil1,evil2)  copies the values of one 
set of variables to another set.  

 Not only can the returned value be assigned to a variable, it can also be used as part of an 
expression. You can do this, for example:  

  answer = 2 * imin(z, zstar) + 25;

  printf("%d\n", imin(-32 + answer, LIMIT));   
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 The return value can be supplied by any expression, not just a variable. For example, you can 
shorten the program to the following:  

  /* minimum value function, second version */

  imin(int n,int m)

  {

       return (n < m) ? n : m;

  }   

 The conditional expression is evaluated to either  n  or  m , whichever is smaller, and that value is 
returned to the calling function. If you prefer, for clarity or style, to enclose the return value in 
parentheses, you may, although parentheses are not required.  

 What if the function returns a type different from the declared type?  

  int what_if(int n)

  {

      double z = 100.0 / (double) n;

      return z;  // what happens?

  }   

 Then the actual return value is what you would get if you assigned the indicated return value 
to a variable of the declared return type. So, in this example, the net effect would be the same 
as if you assigned the value of  z  to an  int  variable and then returned that value. For example, 
suppose we have the following function call:  

  result = what_if(64);   

 Then  z  is assigned  1.5625 . The return statement, however, returns the  int  value  1 .  

 Using  return  has one other effect. It terminates the function and returns control to the next 
statement in the calling function. This occurs even if the  return  statement is not the last in 
the function. Therefore, you can write  imin()  this way:  

  /* minimum value function, third version */

  imin(int n,int m)

  {

      if (n < m)

          return n;

      else

          return m;

  }   

 Many, but not all, C practitioners deem it better to use  return  just once and at the end of 
a function to make it easier for someone to follow the control flow through the function. 
However, it’s no great sin to use multiple  return s in a function as short as this one. Anyway, 
to the user, all three versions are the same, because all take the same input and produce the 
same output. Just the innards are different. Even this version works the same:  

  /* minimum value function, fourth version */

  imin(int n, int m)
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  {

      if (n < m)

          return n;

      else

          return m;

      printf("Professor Fleppard is like totally a fopdoodle.\n");

  }   

 The  return  statements prevent the  printf()  statement from ever being reached. Professor 
Fleppard can use the compiled version of this function in his own programs and never learn 
the true feelings of his student programmer.  

 You can also use a statement like this:  

  return;   

 It causes the function to terminate and return control to the calling function. Because no 
expression follows  return , no value is returned, and this form should be used only in a type 
 void  function.   

  Function Types  

 Functions should be declared by type. A function with a return value should be declared the 
same type as the return value. Functions with no return value should be declared as type  void . 
If no type is given for a function, older versions of C assume that the function is type  int . 
This convention stems from the early days of C when most functions were type  int  anyway. 
However, the C99 standard drops support for this implicit assumption of type  int .  

 The type declaration is part of the function definition. Keep in mind that it refers to the return 
value, not to the function arguments. For example, the following function heading indicates 
that you are defining a function that takes two type  int  arguments but that returns a type 
 double  value:  

  double klink(int a, int b)   

 To use a function correctly, a program needs to know the function type before the function is 
used for the first time. One way to accomplish this is to place the complete function definition 
ahead of its first use. However, this method could make the program harder to read. Also, the 
functions might be part of the C library or in some other file. Therefore, you generally inform 
the compiler about functions by declaring them in advance. For example, the  main()  function 
in  Listing   9.3    contains these lines:  

  #include <stdio.h>

  int imin(int, int);

  int main(void)

  {

      int evil1, evil2, lesser;   
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 The second line establishes that  imin  is the name of a function that has two  int  parameters 
and returns a type  int  value. Now the compiler will know how to treat  imin()  when it appears 
later in the program.  

 We’ve placed the advance function declarations outside the function using them. They can 
also be placed inside the function. For example, you can rewrite the beginning of  lesser.c  as 
follows:  

  #include <stdio.h>

  int main(void)

  {

      int imin(int, int);      /* imin() declaration */

      int evil1, evil2, lesser;   

 In either case, your chief concern should be that the function declaration appears before the 
function is used.  

 In the ANSI C standard library, functions are grouped into families, each having its own header 
file. These header files contain, among other things, the declarations for the functions in the 
family. For example, the  stdio.h  header contains function declarations for the standard I/O 
library functions, such as  printf()  and  scanf() . The  math.h  header contains function decla-
rations for a variety of mathematical functions. For example, it contains  

  double sqrt(double);   

 to tell the compiler that the  sqrt()  function has a  double  parameter and returns a type 
 double  value. Don’t confuse these declarations with definitions. A function declaration 
informs the compiler which type the function is, but the function definition supplies the actual 
code. Including the  math.h  header file tells the compiler that  sqrt()  returns type  double , but 
the code for  sqrt()  resides in a separate file of library functions.    

  ANSI C Function Prototyping  

 The traditional, pre-ANSI C scheme for declaring functions was deficient in that it declared 
a function’s return type but not its arguments. Let’s look at the kinds of problems that arise 
when the old form of function declaration is used.  

 The following pre-ANSI C declaration informs the compiler that  imin()  returns a type  int  
value:  

  int imin();   

 However, it says nothing about the number or type of  imin() ’s arguments. Therefore, if you 
use  imin()  with the wrong number or type of arguments, the compiler doesn’t catch the error.  



ptg11524036

350 Chapter 9 Functions

  The Problem  

 Let’s look at some examples involving  imax() , a close relation to  imin() .  Listing   9.4    shows a 
program that declares  imax()  the old-fashioned way and then uses  imax()  incorrectly.  

  Listing 9.4   The  misuse.c  Program  

 /* misuse.c -- uses a function incorrectly */

  #include <stdio.h>

  int imax();      /* old-style declaration */

  

  int main(void)

  {

      printf("The maximum of %d and %d is %d.\n",

              3, 5, imax(3));

      printf("The maximum of %d and %d is %d.\n",

              3, 5, imax(3.0, 5.0));

      return 0;

  }

  

  int imax(n, m)

  int n, m;

  {

      return (n > m ? n : m);

  }   

 The first call to  printf()  omits an argument to  imax() , and the second call uses floating-
point arguments instead of integers. Despite these errors, the program compiles and runs.  

 Here’s a sample output using Xcode 4.6:  

  The maximum of 3 and 5 is 1606416656.

  The maximum of 3 and 5 is 3886.   

 A sample run using gcc produced values of 1359379472 and 1359377160. The two compilers 
work fine; they are merely victims of the program’s failure to use function prototypes.  

 What’s happening? The mechanics may differ among systems, but here’s what goes on with 
a PC or VAX. The calling function places its arguments in a temporary storage area called the 
 stack , and the called function reads those arguments off the stack. These two processes are  not  
coordinated with one another. The calling function decides which type to pass based on the 
actual arguments in the call, and the called function reads values based on the types of its 
formal arguments. Therefore, the call  imax(3)  places  one  integer on the stack. When the  imax()  
function starts up, it reads  two  integers off the stack. Only  one was actually placed on the stack, 
so the second value read is whatever value happened to be sitting in the stack at the time.  

 The second time the example uses  imax() , it passes  float  values to  imax() . This places two 
 double  values on the stack. (Recall that a  float  is promoted to  double  when passed as an 
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argument.) On our system, that’s two 64-bit values, so 128 bits of data are placed on the stack. 
When  imax()  reads two  int s from the stack, it reads the first 64 bits on the stack because, on 
our system, each  int  is 32 bits. These bits happened to correspond to two integer values, the 
larger of which was 3886.   

  The ANSI C Solution  

 The ANSI C standard’s solution to the problems of mismatched arguments is to permit the 
function declaration to declare the variable types, too. The result is a  function prototype —a decla-
ration that states the return type, the number of arguments, and the types of those arguments. 
To indicate that  imax()  requires two  int  arguments, you can declare it with either of the 
following prototypes:  

  int imax(int, int);

  int imax(int a, int b);   

 The first form uses a comma-separated list of types. The second adds variable names to the 
types. Remember that the variable names are dummy names and don’t have to match the 
names used in the function definition.  

 With this information at hand, the compiler can check to see whether the function call 
matches the prototype. Are there the right number of arguments? Are they the correct type? 
If there is a type mismatch and if both types are numbers, the compiler converts the values of 
the actual arguments to the same type as the formal arguments. For example,  imax(3.0, 5.0)  
becomes  imax(3, 5) . We’ve modified  Listing   9.4    to use a function prototype. The result is 
shown in  Listing   9.5   .  

  Listing 9.5   The  proto.c  Program  

 /* proto.c -- uses a function prototype */

  #include <stdio.h>

  int imax(int, int);        /* prototype */

  int main(void)

  {

      printf("The maximum of %d and %d is %d.\n",

              3, 5, imax(3));

      printf("The maximum of %d and %d is %d.\n",

              3, 5, imax(3.0, 5.0));

      return 0;

  }

  

  int imax(int n, int m)

  {

      return (n > m ? n : m);

  }   
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 When we tried to compile  Listing   9.5   , our compiler gave an error message stating that the call 
to imax() had too few parameters.  

 What about the type errors? To investigate those, we replaced  imax(3)  with  imax(3, 5)  and 
tried compilation again. This time there were no error messages, and we ran the program. Here 
is the resulting output:  

  The maximum of 3 and 5 is 5.

  The maximum of 3 and 5 is 5.   

 As promised, the  3.0  and  5.0  of the second call were converted to  3  and  5  so that the function 
could handle the input properly.  

 Although it gave no error message, our compiler did give a warning to the effect that a  double  
was converted to  int  and that there was a possible loss of data. For example, the call  

  imax(3.9, 5.4)   

 becomes equivalent to the following:  

  imax(3, 5)   

 The difference between an error and a warning is that an error prevents compilation and a 
warning permits compilation. Some compilers make this type cast without telling you. That’s 
because the standard doesn’t require warnings. However, many compilers enable you to select a 
warning level that controls how verbose the compiler will be in issuing warnings.   

  No Arguments and Unspecified Arguments  

 Suppose you give a prototype like this:  

  void print_name();   

 An ANSI C compiler will assume that you have decided to forego function prototyping, and it 
will not check arguments. To indicate that a function really has no arguments, use the  void  
keyword within the parentheses:  

  void print_name(void);   

 ANSI C interprets the preceding expression to mean that  print_name()  takes no arguments. It 
then checks to see that you, in fact, do not use arguments when calling this function.  

 A few functions, such as  printf()  and  scanf() , take a variable number of arguments. In 
 printf() , for example, the first argument is a string, but the remaining arguments are fixed 
in neither type nor number. ANSI C allows partial prototyping for such cases. You could, for 
example, use this prototype for  printf() :  

  int printf(const char *, ...);   
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 This prototype says that the first argument is a string ( Chapter   11   , “Character Strings and String 
Functions,” elucidates that point) and that there may be further arguments of an unspecified 
nature.  

 The C library, through the  stdarg.h  header file, provides a standard way for defining a func-
tion with a variable number of parameters;  Chapter   16   , “The C Preprocessor and the C Library,” 
covers the details.   

  Hooray for Prototypes  

 Prototypes are a strong addition to the language. They enable the compiler to catch many 
errors or oversights you might make using a function. These are problems that, if not caught, 
might be hard to trace. Do you have to use them? No, you can use the old type of function 
declaration (the one showing no parameters) instead, but there is no advantage and many 
disadvantages to that.  

 There is one way to omit a prototype yet retain the advantages of prototyping. The reason for 
the prototype is to show the compiler how the function should be used before the compiler 
reaches the first actual use. You can accomplish the same end by placing the entire func-
tion definition before the first use. Then the definition acts as its own prototype. This is most 
commonly done with short functions:  

  // the following is a definition and a prototype

  int imax(int a, int b) { return a > b ? a : b; }

  

  int main()

  {

      int x, z;

  ...

      z = imax(x, 50);

  ...

  }     

  Recursion  

 C permits a function to call itself. This process is termed  recursion . Recursion is a sometimes 
tricky, sometimes convenient tool. It’s tricky to get recursion to end because a function that 
calls itself tends to do so indefinitely unless the programming includes a conditional test to 
terminate recursion.  

 Recursion often can be used where loops can be used. Sometimes the loop solution is more 
obvious; sometimes the recursive solution is more obvious. Recursive solutions tend to be more 
elegant and less efficient than loop solutions.  
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  Recursion Revealed  

 To see what’s involved, let’s look at an example. The function  main()  in  Listing   9.6    calls the 
 up_and_down()  function. We’ll term this the “first level of recursion.” Then  up_and_down()  
calls itself; we’ll call that the “second level of recursion.” The second level calls the third 
level, and so on. This example is set up to go four levels. To provide an inside look at what is 
happening, the program not only displays the value of the variable  n , it also displays  &n , which 
is the memory address at which the variable  n  is stored. (This chapter discusses the  &  opera-
tor more fully later. The  printf()  function uses  the  %p  specifier for addresses. If your system 
doesn’t support that format, try  %u  or  %lu .)  

  Listing 9.6   The  recur.c  Program  

 /* recur.c -- recursion illustration */

  #include <stdio.h>

  void up_and_down(int);

  

  int main(void)

  {

      up_and_down(1);

      return 0;

  }

  

  void up_and_down(int n)

  {

      printf("Level %d: n location %p\n", n, &n); // 1

      if (n < 4)

           up_and_down(n+1);

      printf("LEVEL %d: n location %p\n", n, &n); // 2

  

  }   

 The output on one system looks like this:  

  Level 1: n location 0x0012ff48

  Level 2: n location 0x0012ff3c

  Level 3: n location 0x0012ff30

  Level 4: n location 0x0012ff24

  LEVEL 4: n location 0x0012ff24

  LEVEL 3: n location 0x0012ff30

  LEVEL 2: n location 0x0012ff3c

  LEVEL 1: n location 0x0012ff48   

 Let’s trace through the program to see how recursion works. First,  main()  calls  up_and_down()  
with an argument of  1 . As a result, the formal parameter  n  in  up_and_down()  has the value  1 , 
so print statement #1 prints  Level 1 . Then, because  n  is less than  4 ,  up_and_down()  (Level 
1) calls  up_and_down()  (Level 2) with an actual argument of  n + 1 , or  2 . This causes  n  in the 
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Level 2 call to be assigned the value  2 , so print statement #1 prints  Level 2 . Similarly, the 
next two calls lead to printing  Level 3  and  Level 4 .  

 When Level 4 is reached,  n  is  4 , so the  if  test fails. The  up_and_down()  function is not called 
again. Instead, the Level 4 call proceeds to print statement #2, which prints  LEVEL 4 , because 
 n  is  4 . Then it reaches the  return  statement. At this point, the Level 4 call ends, and control 
passes back to the function that called it (the Level 3 call). The last statement executed in the 
Level 3 call was the call to Level 4 in the  if  statement. Therefore, Level 3 resumes with the 
following statement, which is print statement #2. This causes  LEVEL 3  to be printed. Then 
Level  3 ends, passing control to Level 2, which prints  LEVEL 2 , and so on.  

 Note that each level of recursion uses its own private  n  variable. You can tell this is so by 
looking at the address values. (Of course, different systems, in general, will report different 
addresses, possibly in a different format. The critical point is that the address on the  Level 1  
line is the same as the address on the  LEVEL 1  line, and so on.)  

 If you find this a bit confusing, think about when you have a chain of function calls, with 
 fun1()  calling  fun2() ,  fun2()  calling  fun3() , and  fun3()  calling  fun4() . When  fun4()  
finishes, it passes control back to  fun3() . When  fun3()  finishes, it passes control back to 
 fun2() . And when  fun2()  finishes, it passes control back to  fun1() . The recursive case works 
the same, except that  fun1() ,  fun2() ,  fun3() , and  fun4()  are all the same function.   

  Recursion Fundamentals  

 Recursion can be confusing at first, so let’s look at a few basic points that will help you under-
stand the process.  

 First, each level of function call has its own variables. That is, the  n  of Level 1 is a different 
variable from the  n  of Level 2, so the program created four separate variables, each called  n , 
but each having a distinct value. When the program finally returned to the first-level call of 
 up_and_down() , the original  n  still had the value  1  it started with (see  Figure   9.4   ).  

 

1
1     2
1     2     3
1     2     3      4
1     2     3
1     2
1

(all gone)

after level 1 call
after level 2 call
after level 3 call
after level 4 call

after return from level 4
after return from level 3
after return from level 2
after return from level 1

variables: n     n     n     n

 Figure 9.4   Recursion variables.         
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 Second, each function call is balanced with a return. When program flow reaches the  return  at 
the end of the last recursion level, control passes to the previous recursion level. The program 
does not jump all the way back to the original call in  main() . Instead, the program must move 
back through each recursion level, returning from one level of  up_and_down()  to the level of 
 up_and_down()  that called it.  

 Third, statements in a recursive function that come before the recursive call are executed in the 
same order that the functions are called. For example, in  Listing   9.6   , print statement #1 comes 
before the recursive call. It was executed four times in the order of the recursive calls: Level 1, 
Level 2, Level 3, and Level 4.  

 Fourth, statements in a recursive function that come after the recursive call are executed in the 
opposite order from which the functions are called. For example, print statement #2 comes 
after the recursive call, and it was executed in the order: Level 4, Level 3, Level 2, Level 1. This 
feature of recursion is useful for programming problems involving reversals of order. You’ll see 
an example soon.  

 Fifth, although each level of recursion has its own set of variables, the code itself is not dupli-
cated. The code is a sequence of instructions, and a function call is a command to go to the 
beginning of that set of instructions. A recursive call, then, returns the program to the begin-
ning of that instruction set. Aside from recursive calls creating new variables on each call, they 
are much like a loop. Indeed, sometimes recursion can be used instead of loops, and vice versa.  

 Finally, it’s vital that a recursive function contain something to halt the sequence of recursive 
calls. Typically, a recursive function uses an  if  test, or equivalent, to terminate recursion when 
a function parameter reaches a particular value. For this to work, each call needs to use a differ-
ent value for the parameter. For example, in the last example,  up_and_down(n)  calls  up_and_
down(n+1) . Eventually, the actual argument reaches the value  4 , causing the  if (n < 4)  test 
to fail.   

  Tail Recursion  

 In the simplest form of recursion, the recursive call is at the end of the function, just before the 
 return  statement. This is called  tail recursion , or  end recursion , because the recursive call comes 
at the end. Tail recursion is the simplest form because it acts like a loop.  

 Let’s look at both a loop version and a tail recursion version of a function to calculate facto-
rials. The  factorial  of an integer is the product of the integers from 1 through that number. 
For example, 3 factorial (written  3! ) is  1*2*3 . Also,  0!  is taken to be 1, and factorials are not 
defined for negative numbers.  Listing   9.7    presents one function that uses a  for  loop to calcu-
late factorials and a second that uses recursion.  

  Listing 9.7   The  factor.c  Program  

 // factor.c -- uses loops and recursion to calculate factorials

  #include <stdio.h>

  long fact(int n);
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  long rfact(int n);

  int main(void)

  {

      int num;

  

      printf("This program calculates factorials.\n");

      printf("Enter a value in the range 0-12 (q to quit):\n");

      while (scanf("%d", &num) == 1)

      {

          if (num < 0)

              printf("No negative numbers, please.\n");

          else if (num > 12)

              printf("Keep input under 13.\n");

          else

          {

              printf("loop: %d factorial = %ld\n",

                      num, fact(num));

              printf("recursion: %d factorial = %ld\n",

                      num, rfact(num));

          }

          printf("Enter a value in the range 0-12 (q to quit):\n");

      }

      printf("Bye.\n");

  

      return 0;

  }

  

  long fact(int n)     // loop-based function

  {

      long ans;

  

      for (ans = 1; n > 1;  n--)

          ans *= n;

  

      return ans;

  }

  

  long rfact(int n)    // recursive version

  {

      long ans;

      if (n > 0)

          ans= n * rfact(n-1);

      else

          ans = 1;

  

      return ans;

  }   
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 The test driver program limits input to the integers 0–12. It turns out that  12!  is slightly under 
half a billion, which makes  13!  much larger than  long  on our system. To go beyond  12! , you 
would have to use a type with greater range, such as  double  or  long long .  

 Here’s a sample run:  

  This program calculates factorials.

  Enter a value in the range 0-12 (q to quit):

   5 

  loop: 5 factorial = 120

  recursion: 5 factorial = 120

  Enter a value in the range 0-12 (q to quit):

   10 

  loop: 10 factorial = 3628800

  recursion: 10 factorial = 3628800

  Enter a value in the range 0-12 (q to quit):

   q 

  Bye.   

 The loop version initializes  ans  to 1 and then multiplies it by the integers from  n  down to  2 . 
Technically, you should multiply by  1 , but that doesn’t change the value.  

 Now consider the recursive version. The key is that  n! = n  ×  (n-1)! . This follows because 
 (n-1)!  is the product of all the positive integers through  n-1 . Therefore, multiplying by 
 n  gives the product through  n . This suggests a recursive approach. If you call the function 
 rfact() ,  rfact(n)  is  n * rfact(n-1) . You can thus evaluate  rfact(n)  by having it call 
 rfact(n-1) , as in  Listing   9.7   . Of course, you have to end the recursion at some point, and you 
can do this by setting the return value to  1  when  n  is  0 .  

 The recursive version of  Listing   9.7    produces the same output as the loop version. Note that 
although the recursive call to  rfact()  is not the last line in the function, it is the last state-
ment executed when  n > 0 , so it is tail recursion.  

 Given that you can use either a loop or recursion to code a function, which should you use? 
Normally, the loop is the better choice. First, because each recursive call gets its own set of 
variables, recursion uses more memory; each recursive call places a new set of variables on the 
stack. And space restrictions in the stack can limit the number of recursive calls. Second, recur-
sion is slower because each function call takes time. So why show this example? Because tail 
recursion is the simplest form of recursion to understand, and recursion is worth understanding 
because in some cases,  there is no simple loop alternative.   

  Recursion and Reversal  

 Now let’s look at a problem in which recursion’s ability to reverse order is handy. (This is a 
case for which recursion is simpler than using a loop.) The problem is this: Write a function 
that prints the binary equivalent of an integer. Binary notation represents numbers in terms of 
powers of 2. Just as 234 in decimal means 2 × 10 2  + 3 × 10 1  + 4 × 10 0 , so 101 in binary means 
1 × 2 2  + 0 × 2 1  + 1 × 2 0 . Binary numbers use only the digits 0 and 1.  
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 You need a method, or  algorithm . How can you, say, find the binary equivalent of 5? Well, odd 
numbers must have a binary representation ending in 1. Even numbers end in 0, so you can 
determine whether the last digit is a 1 or a 0 by evaluating  5 % 2 . If the result is 1, 5 is odd, 
and the last digit is 1. In general, if  n  is a number, the final digit is  n % 2 , so the first digit you 
find is the last digit you want to print. This suggests using a recursive function in which   n % 
2  is calculated before the recursive call but in which it is printed after the recursive call. That 
way, the first value calculated is the last value printed.  

 To get the next digit, divide the original number by 2. This is the binary equivalent of moving 
the decimal point one place to the left so that you can examine the next binary digit. If this 
value is even, the next binary digit is 0. If it is odd, the binary digit is 1. For example, 5/2 is 
2 (integer division), so the next digit is 0. This gives 01 so far. Now repeat the process. Divide 
2 by 2 to get 1. Evaluate  1 % 2  to get 1, so the next digit is 1. This gives 101. When  do you 
stop? You stop when the result of dividing by 2 is less than 2 because as long as it is 2 or 
greater, there is one more binary digit. Each division by 2 lops off one more binary digit until 
you reach the end. (If this seems confusing to you, try working through the decimal analogy. 
The remainder of 628 divided by 10 is 8, so 8 is the last digit. Integer division by 10 yields 62, 
and the remainder from dividing 62 by 10 is 2, so that’s the next digit, and so on.)  Listing   9.8    
implements this approach.  

  Listing 9.8   The  binary.c  Program  

 /* binary.c -- prints integer in binary form */

  #include <stdio.h>

  void to_binary(unsigned long n);

  

  int main(void)

  {

      unsigned long number;

      printf("Enter an integer (q to quit):\n");

      while (scanf("%lu", &number) == 1)

      {

          printf("Binary equivalent: ");

          to_binary(number);

          putchar('\n');

          printf("Enter an integer (q to quit):\n");

      }

      printf("Done.\n");

  

     return 0;

  }

  

  void to_binary(unsigned long n)   /* recursive function */

  {

      int r;
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      r = n % 2;

      if (n >= 2)

         to_binary(n / 2);

      putchar(r == 0 ? '0' : '1');

  

      return;

  }   

 The  to_binary()  should display the character  '0'  if  r  has the numeric value  0  and  '1'  if 
 r  has the numeric value  1 . The conditional expression  r == 0 ? '0' : '1'  provides this 
conversion of a numeric to character values.  

 Here’s a sample run:  

  Enter an integer (q to quit):

   9 

  Binary equivalent: 1001

  Enter an integer (q to quit):

   255 

  Binary equivalent: 11111111

  Enter an integer (q to quit):

   1024 

  Binary equivalent: 10000000000

  Enter an integer (q to quit):

   q 

  done.   

 Could you use this algorithm for calculating a binary representation without using recursion? 
Yes, you could. But because the algorithm calculates the final digit first, you’d have to store all 
the digits somewhere (in an array, for example) before displaying the result.  Chapter   15   , “Bit 
Fiddling,” shows an example of a nonrecursive approach.   

  Recursion Pros and Cons  

 Recursion has its good points and bad points. One good point is that recursion offers the 
simplest solution to some programming problems. One bad point is that some recursive algo-
rithms can rapidly exhaust a computer’s memory resources. Also, recursion can be difficult 
to document and maintain. Let’s look at an example that illustrates both the good and bad 
aspects.  

 Fibonacci numbers can be defined as follows: The first Fibonacci number is 1, the second 
Fibonacci number is 1, and each subsequent Fibonacci number is the sum of the preceding two. 
Therefore, the first few numbers in the sequence are 1, 1, 2, 3, 5, 8, 13. Fibonacci numbers are 
among the most beloved in mathematics; there even is a journal devoted to them. But let’s not 
get into that. Instead, let’s create a function that, given a positive integer  n , returns the corre-
sponding Fibonacci number.  
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 First, the recursive strength: Recursion supplies a simple definition. If we name the function 
 Fibonacci() ,  Fibonacci(n ) should return  1  if  n  is  1  or  2,  and it should return the sum 
 Fibonacci(n-1)  +  Fibonacci(n-2)  otherwise:  

  unsigned long Fibonacci(unsigned n)

  {

      if (n > 2)

          return Fibonacci(n-1) + Fibonacci(n-2);

      else

          return 1;

  }   

 The recursive C function merely restates the recursive mathematical definition. This function 
uses  double recursion ; that is, the function calls itself twice. And that leads to a weakness.  

 To see the nature of that weakness, suppose you use the function call  Fibonacci(40) . 
That would be the first level of recursion, and it allocates a variable called  n . It then evokes 
 Fibonacci()  twice, creating two more variables called  n  at the second level of recursion. 
Each of those two calls generates two more calls, requiring four more variables called  n  at the 
third level of recursion, for a total of seven variables. Each level requires twice the number of 
variables as the preceding level, and the number of variables grows exponentially! As you saw 
in the grains-of-wheat example in  Chapter   5   , “Operators,  Expressions, and Statements,” expo-
nential growth rapidly leads to large values. In this case, exponential growth soon leads to the 
computer requiring an enormous amount of memory, most likely causing the program to crash.  

 Well, this is an extreme example, but it does illustrate the need for caution when using recur-
sion, particularly when efficiency is important.    

  All C Functions Are Created Equal  

 Each C function in a program is on equal footing with the others. Each can call any other func-
tion or be called by any other function. This makes the C function somewhat different from 
Pascal and Modula-2 procedures because those procedures can be nested within other proce-
dures. Procedures in one nest are ignorant of procedures in another nest.  

 Isn’t the function  main()  special? Yes, it is a little special in that when a program of several 
functions is put together, execution starts with the first statement in  main() , but that is the 
limit of its preference. Even  main()  can be called by itself recursively or by other functions, 
although this is rarely done.     

  Compiling Programs with Two or More Source Code Files  

 The simplest approach to using several functions is to place them in the same file. Then just 
compile that file as you would a single-function file. Other approaches are more system depen-
dent, as the next few sections illustrate.  
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  Unix  

 This assumes the Unix system has the Unix C compiler  cc  installed. (The original  cc  has 
been retired, but many Unix systems make the  cc  command an alias for some other compiler 
command, typically  gcc  or  clang .) Suppose that  file1.c  and  file2.c  are two files contain-
ing C functions. Then the following command will compile both files and produce an execut-
able file called  a.out :  

  cc file1.c file2.c   

 In addition, two object files called  file1.o  and  file2.o  are produced. If you later change 
 file1.c  but not  file2.c , you can compile the first and combine it with the object code 
version of the second file by using this command:  

  cc file1.c file2.o   

 Unix has a  make  command that automates management of multifile programs, but that’s 
beyond the scope of this book.  

 Note that the OS X Terminal utility opens a command-line Unix environment, but you have to 
download the command-line compilers (GCC and Clang) from Apple.   

  Linux  

 This assumes the Linux system has the GNU C compiler GCC installed. Suppose that  file1.c  
and  file2.c  are two files containing C functions. Then the following command will compile 
both files and produce an executable file called  a.out :  

  gcc file1.c file2.c   

 In addition, two object files called  file1.o  and  file2.o  are produced. If you later change 
 file1.c  but not  file2.c , you can compile the first and combine it with the object code 
version of the second file by using this command:  

  gcc file1.c file2.o    

  DOS Command-Line Compilers  

 Most DOS command-line compilers work similarly to the Unix  cc  command, but using a differ-
ent name. One difference is that object files wind up with an  .obj  extension instead of an  .o  
extension. Some compilers produce intermediate files in assembly language or in some other 
special code, instead of object code files.   

  Windows and Apple IDE Compilers  

 Integrated development environment compilers for Windows and Macintosh are  project oriented . 
A  project  describes the resources a particular program uses. The resources include your source 
code files. If you’ve been using one of these compilers, you’ve probably had to create projects 
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to run one-file programs. For multiple-file programs, find the menu command that lets you add 
a source code file to a project. You should make sure all your source code files (the ones with 
the  .c  extension) are listed as part of the project. With many IDEs, you don’t list your header 
files (the ones with the  .h  extension) in a project list. The  idea is that the project manages 
which source code files are used, and  #include  directives in the source code files manage 
which header files get used. However, with Xcode, you do add header files to the project.   

  Using Header Files  

 If you put  main()  in one file and your function definitions in a second file, the first file still 
needs the function prototypes. Rather than type them in each time you use the function file, 
you can store the function prototypes in a header file. That is what the standard C library 
does, placing I/O function prototypes in  stdio.h  and math function prototypes in  math.h , for 
example. You can do the same for your function files.  

 Also, you will often use the C preprocessor to define constants used in a program. Such defini-
tions hold only for the file containing the  #define  directives. If you place the functions of a 
program into separate files, you also have to make the  #define  directives available to each file. 
The most direct way is to retype the directives for each file, but this is time-consuming and 
increases the possibility for error. Also, it poses a maintenance problem: If you revise a  #define  
value, you have to remember to do so for each file. A better solution is to place the  #define  
directives in a  header file and then use the  #include  directive in each source code file.  

 So it’s good programming practice to place function prototypes and defined constants in a 
header file. Let’s examine an example. Suppose you manage a chain of four hotels. Each hotel 
charges a different room rate, but all the rooms in a given hotel go for the same rate. For 
people who book multiple nights, the second night goes for 95% of the first night, the third 
night goes for 95% of the second night, and so on. (Don’t worry about the economics of such 
a policy.) You want a program that enables you to specify the hotel and the number  of nights 
and gives you the total charge. You’d like the program to have a menu that enables you to 
continue entering data until you choose to quit.  

  Listings   9.9   ,    9.10   , and    9.11    show what you might come up with. The first listing contains the 
 main()  function, which provides the overall organization for the program. The second listing 
contains the supporting functions, which we assume are kept in a separate file. Finally,  Listing 
  9.11    shows a header file that contains the defined constants and function prototypes for all the 
program’s source files. Recall that in the Unix and DOS environments, the double quotes in the 
directive  #include "hotels.h"  indicate that the  include  file is in the current working direc-
tory (typically the directory containing the source code). If you use an IDE, you’ll need to know  
how it incorporates header files into a project.  

  Listing 9.9   The  usehotel.c  Control Module  

 /* usehotel.c -- room rate program */

  /* compile with   Listing   9.10         */

  #include <stdio.h>
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  #include "hotel.h" /* defines constants, declares functions */

  

  int main(void)

  {

     int nights;

     double hotel_rate;

     int code;

  

     while ((code = menu()) != QUIT)

     {

        switch(code)

        {

        case 1 : hotel_rate = HOTEL1;

                 break;

        case 2 : hotel_rate = HOTEL2;

                 break;

        case 3 : hotel_rate = HOTEL3;

                 break;

        case 4 : hotel_rate = HOTEL4;

                 break;

        default: hotel_rate = 0.0;

                 printf("Oops!\n");

                 break;

        }

        nights = getnights();

        showprice(hotel_rate, nights);

     }

     printf("Thank you and goodbye.\n");

  

     return 0;

  }   

  Listing 9.10   The  hotel.c  Function Support Module  

 /* hotel.c -- hotel management functions */

  #include <stdio.h>

  #include "hotel.h"

  int menu(void)

  {

      int code, status;

  

      printf("\n%s%s\n", STARS, STARS);

      printf("Enter the number of the desired hotel:\n");

      printf("1) Fairfield Arms           2) Hotel Olympic\n");

      printf("3) Chertworthy Plaza        4) The Stockton\n");

      printf("5) quit\n");
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      printf("%s%s\n", STARS, STARS);

      while ((status = scanf("%d", &code)) != 1  ||

               (code < 1 || code > 5))

     {

          if (status != 1)

              scanf("%*s");   // dispose of non-integer input

          printf("Enter an integer from 1 to 5, please.\n");

      }

  

      return code;

  }

  

  int getnights(void)

  {

      int nights;

  

      printf("How many nights are needed? ");

      while (scanf("%d", &nights) != 1)

      {

          scanf("%*s");       // dispose of non-integer input

          printf("Please enter  an integer, such as 2.\n");

      }

  

      return nights;

  }

  

  void showprice(double rate, int nights)

  {

      int n;

      double total = 0.0;

      double factor = 1.0;

  

      for (n = 1; n <= nights; n++, factor *= DISCOUNT)

          total += rate * factor;

      printf("The total cost will be $%0.2f.\n", total); 

  }   

  Listing 9.11   The  hotel.h  Header File  

 /* hotel.h -- constants and declarations for hotel.c */

  #define QUIT       5

  #define HOTEL1   180.00

  #define HOTEL2   225.00

  #define HOTEL3   255.00

  #define HOTEL4   355.00

  #define DISCOUNT   0.95
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  #define STARS "**********************************"

  

  // shows list of choices

  int menu(void);

  

  // returns number of nights desired

  int getnights(void);

  

  // calculates price from rate, nights

  // and displays result

  void showprice(double rate, int nights);   

 Here’s a sample run:  

  ********************************************************************

  Enter the number of the desired hotel:

  1) Fairfield Arms           2) Hotel Olympic

  3) Chertworthy Plaza        4) The Stockton

  5) quit

  ********************************************************************

   3 

  How many nights are needed?  1 

  The total cost will be $255.00.

  

  ********************************************************************

  Enter the number of the desired hotel:

  1) Fairfield Arms           2) Hotel Olympic

  3) Chertworthy Plaza        4) The Stockton

  5) quit

  ********************************************************************

   4 

  How many nights are needed?  3 

  The total cost will be $1012.64.

  

  ********************************************************************

  Enter the number of the desired hotel:

  1) Fairfield Arms           2) Hotel Olympic

  3) Chertworthy Plaza        4) The Stockton

  5) quit

  ********************************************************************

   5 

  Thank you and goodbye.   

 Incidentally, the program itself has some interesting features. In particular, the  menu()  and 
 getnights()  functions skip over nonnumeric data by testing the return value of  scanf()  and 
by using the  scanf("%*s")  call to skip to the next whitespace. Note how the following excerpt 
from  menu()  checks for both nonnumeric input and out-of-limits numerical input:  
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  while ((status = scanf("%d", &code)) != 1  ||

         (code < 1 || code > 5))   

 This code fragment uses C’s guarantee that logical expressions are evaluated from left to right 
and that evaluation ceases the moment the statement is clearly false. In this instance, the 
values of  code  are checked only after it is determined that  scanf()  succeeded in reading an 
integer value.  

 Assigning separate tasks to separate functions encourages this sort of refinement. A first pass at 
 menu()  or  getnights()  might use a simple  scanf()  without the data-verification features that 
have been added. Then, after the basic version works, you can begin improving each module.    

  Finding Addresses: The  &  Operator  

 One of the most important C concepts (and sometimes one of the most perplexing) is the 
 pointer , which is a variable used to store an address. You’ve already seen that  scanf()  uses 
addresses for arguments. More generally, any C function that modifies a value in the calling 
function without using a  return  value uses addresses. We’ll cover functions using addresses 
next, beginning with the unary  &  operator. (The next chapter continues the exploration and 
exploitation of pointers.)  

 The unary  &  operator gives you the address where a variable is stored. If  pooh  is the name of 
a variable,  &pooh  is the address of the variable. You can think of the address as a location in 
memory. Suppose you have the following statement:  

  pooh = 24;   

 Suppose that the address where  pooh  is stored is  0B76 . (PC addresses often are given as hexa-
decimal values.) Then the statement  

  printf("%d %p\n", pooh, &pooh);   

 would produce this ( %p  is the specifier for addresses):  

  24 0B76   

  Listing   9.12    uses this operator to see where variables of the same name—but in different func-
tions—are kept.  

  Listing 9.12   The  loccheck.c  Program  

 /* loccheck.c  -- checks to see where variables are stored  */

  #include <stdio.h>

  void mikado(int);                      /* declare function  */

  int main(void)

  {

      int pooh = 2, bah = 5;             /* local to main()   */
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      printf("In main(), pooh = %d and &pooh = %p\n",

              pooh, &pooh);

      printf("In main(), bah = %d and &bah = %p\n",

              bah, &bah);

      mikado(pooh);

  

      return 0;

  }

  

  void mikado(int bah)                   /* define function   */

  {

      int pooh = 10;                     /* local to mikado() */

  

      printf("In mikado(), pooh = %d and &pooh = %p\n",

              pooh, &pooh);

      printf("In mikado(), bah = %d and &bah = %p\n",

              bah, &bah);

  }   

  Listing   9.12    uses the ANSI C  %p  format for printing the addresses. Our system produced the 
following output for this little exercise:  

  In main(), pooh = 2 and &pooh = 0x7fff5fbff8e8

  In main(), bah = 5 and &bah = 0x7fff5fbff8e4

  In mikado(), pooh = 10 and &pooh = 0x7fff5fbff8b8

  In mikado(), bah = 2 and &bah = 0x7fff5fbff8bc   

 The way that  %p  represents addresses varies among implementations. However, many imple-
mentations, such as one used for this example, display the address in hexadecimal form. 
Incidentally, given that each hexadecimal digit corresponds to four bits, these 12-digit address 
correspond to 48-bit addresses.  

 What does this output show? First, the two  pooh s have different addresses. The same is true 
for the two  bah s. So, as promised, the computer considers them to be four separate vari-
ables. Second, the call  mikado(pooh)  did convey the value ( 2 ) of the actual argument ( pooh  
of  main() ) to the formal argument ( bah  of  mikado() ). Note that just the value was trans-
ferred. The two variables involved ( pooh  of  main()  and  bah  of  mikado() ) retain their distinct 
identities.  

 We raise the second point because it is not true for all languages. In FORTRAN, for example, 
the subroutine affects the original variable in the calling routine. The subroutine’s variable 
might have a different name, but the address is the same. C doesn’t do this. Each function uses 
its own variables. This is preferable because it prevents the original variable from being altered 
mysteriously by some side effect of the called function. However, it can make for some difficul-
ties, too, as the next section shows.   
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  Altering Variables in the Calling Function  

 Sometimes you want one function to make changes in the variables of a different function. 
For example, a common task in sorting problems is interchanging the values of two variables. 
Suppose you have two variables called  x  and  y  and you want to swap their values. The simple 
sequence  

  x = y;

  y = x;   

 does not work because by the time the second line is reached, the original value of  x  has 
already been replaced by the original  y  value. An additional line is needed to temporarily store 
the original value of  x .  

  temp = x;

  x = y;

  y = temp;   

 Now that the method works, you can put it into a function and construct a driver to test it. To 
make clear which variables belong to  main()  and which belong to the  interchange()  func-
tion,  Listing   9.13    uses  x  and  y  for the first, and  u  and  v  for the second.  

  Listing 9.13   The  swap1.c  Program  

 /* swap1.c -- first attempt at a swapping function */

  #include <stdio.h>

  void interchange(int u, int v); /* declare function */

  

  int main(void)

  {

      int x = 5, y = 10;

  

      printf("Originally x = %d and y = %d.\n", x , y);

      interchange(x, y);

      printf("Now x = %d and y = %d.\n", x, y);

  

      return 0;

  }

  

  void interchange(int u, int v)  /* define function  */

  {

      int temp;

  

      temp = u;

      u = v;

      v = temp;

  }   
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 Running the program gives these results:  

  Originally x = 5 and y = 10.

  Now x = 5 and y = 10.   

 Oops! The values didn’t get switched! Let’s put some print statements into  interchange()  to 
see what has gone wrong (see Listing 9.14).  

  Listing 9.14   The  swap2.c  Program  

 /* swap2.c -- researching swap1.c */

  #include <stdio.h>

  void interchange(int u, int v);

  

  int main(void)

  {

      int x = 5, y = 10;

  

      printf("Originally x = %d and y = %d.\n", x , y);

      interchange(x, y);

      printf("Now x = %d and y = %d.\n", x, y);

  

      return 0;

  }

  

  void interchange(int u, int v)

  {

      int temp;

  

      printf("Originally u = %d and v = %d.\n", u , v);

      temp = u;

      u = v;

      v = temp;

      printf("Now u = %d and v = %d.\n", u, v);

  }   

 Here is the new output:  

  Originally x = 5 and y = 10.

  Originally u = 5 and v = 10.

  Now u = 10 and v = 5.

  Now x = 5 and y = 10.   

 Nothing is wrong with  interchange() ; it does swap the values of  u  and  v . The problem is in 
communicating the results to  main() . As we pointed out,  interchange()  uses different vari-
ables from  main() , so interchanging the values of  u  and  v  has no effect on  x  and  y ! Can you 
somehow use  return ? Well, you could finish  interchange()  with the line  
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  return(u);   

 and then change the call in  main()  to this:  

  x = interchange(x,y);   

 This change gives  x  its new value, but it leaves  y  in the cold. With  return , you can send just 
one value back to the calling function, but you need to communicate two values. It can be 
done! All you have to do is use pointers.   

  Pointers: A First Look  

 Pointers? What are they? Basically, a  pointer  is a variable (or, more generally, a data object) 
whose value is a memory address. Just as a  char  variable has a character as a value and an  int  
variable has an integer as a value, the pointer variable has an address as a value. Pointers have 
many uses in C; in this chapter, you’ll see how and why they are used as function parameters.  

 If you give a particular pointer variable the name  ptr , you can have statements such as the 
following:  

  ptr = &pooh;  // assigns pooh's address to ptr   

 We say that  ptr  “points to”  pooh . The difference between  ptr  and  &pooh  is that  ptr  is a vari-
able, and  &pooh  is a constant. Or,  ptr  is a modifiable lvalue and  &pooh  is an rvalue. If you 
want, you can make  ptr  point elsewhere:  

  ptr = &bah;  // make ptr point to bah instead of to pooh   

 Now the value of  ptr  is the address of  bah .  

 To create a pointer variable, you need to be able to declare its type. Suppose you want to 
declare  ptr  so that it can hold the address of an  int . To make this declaration, you need to use 
a new operator. Let’s examine that operator now.  

  The Indirection Operator:  *   

 Suppose you know that  ptr  points to  bah , as shown here:  

  ptr = &bah;   

 Then you can use the  indirection  operator  *  (also called the  dereferencing  operator) to find the 
value stored in  bah  (don’t confuse this unary indirection operator with the binary  *  operator of 
multiplication—same symbol, different syntax):  

  val = *ptr;  // finding the value ptr points to   

 The statements  ptr = &bah;  and  val = *ptr;  taken together amount to the following 
statement:  

  val = bah;   
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 Using the address and indirection operators is a rather indirect way of accomplishing this 
result, hence the name “indirection operator.”    

  Summary: Pointer-Related Operators  

  The Address Operator:   

  &    

  General Comments:   

 When followed by a variable name,  &  gives the address of that variable.  

  Example:   

  &nurse  is the address of the variable  nurse .  

  The Indirection Operator:     *   

  General Comments:   

 When followed by a pointer name or an address,  *  gives the value stored at the pointed-to 
address.  

  Example:   

  nurse = 22;

  ptr = &nurse;  // pointer to nurse

  val = *ptr;    // assigns value at location ptr to val   

 The net effect is to assign the value  22  to  val .    

  Declaring Pointers  

 You already know how to declare  int  variables and other fundamental types. How do you 
declare a pointer variable? You might guess that the form is like this:  

  pointer ptr;     // not the way to declare a pointer/   

 Why not? Because it is not enough to say that a variable is a pointer. You also have to specify 
the kind of variable to which the pointer points. The reason is that different variable types take 
up different amounts of storage, and some pointer operations require knowledge of that storage 
size. Also, the program has to know what kind of data is stored at the address. A  long  and a 
 float  might use the same amount of storage, but they store numbers quite differently. Here’s 
how pointers are declared:  

  int * pi;         // pi is a pointer to an integer variable

  char * pc;        // pc is a pointer to a character variable

  float * pf, * pg; // pf, pg are pointers to float variables   

 The type specification identifies the type of variable pointed to, and the asterisk ( * ) identifies 
the variable itself as a pointer. The declaration  int * pi;  says that  pi  is a pointer and that 
 *pi  is type  int  (see  Figure   9.5   ).  
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 Figure 9.5   Declaring and using pointers.         

 The space between the  *  and the pointer name is optional. Often, programmers use the space 
in a declaration and omit it when dereferencing a variable.  

 The value ( *pc ) of what  pc  points to is of type  char . What of  pc  itself? We describe it as being 
of type “pointer to  char .” The value of  pc  is an address, and it is represented internally as an 
unsigned integer on most systems. However, you shouldn’t think of a pointer as an integer 
type. There are things you can do with integers that you can’t do with pointers, and vice versa. 
For example, you can multiply one integer by another, but you can’t multiply one pointer by 
another. So a pointer really is a new type, not an integer type. Therefore,  as mentioned before, 
ANSI C provides the  %p  form specifically for pointers.   

  Using Pointers to Communicate Between Functions  

 We have touched only the surface of the rich and fascinating world of pointers, but our 
concern here is using pointers to solve our communication problem.  Listing   9.15    shows a 
program that uses pointers to make the  interchange()  function work. Let’s look at it, run it, 
and then try to understand how it works.  

  Listing 9.15   The  swap3.c  Program  

 /* swap3.c -- using pointers to make swapping work */

  #include <stdio.h>

  void interchange(int * u, int * v);

  

  int main(void)

  {

      int x = 5, y = 10;
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      printf("Originally x = %d and y = %d.\n", x, y);

      interchange(&x, &y);  // send addresses to function

      printf("Now x = %d and y = %d.\n", x, y);

  

      return 0;

  }

  

  void interchange(int * u, int * v)

  {

      int temp;

  

      temp = *u;       // temp gets value that u points to

      *u = *v;

      *v = temp;

  }   

 After all this build-up, does  Listing   9.15    really work?  

  Originally x = 5 and y = 10.

  Now x = 10 and y = 5.   

 Yes, it works.  

 Now, let’s see how  Listing   9.15    works. First, the function call looks like this:  

  interchange(&x, &y);   

 Instead of transmitting the  values  of  x  and  y , the function transmits their  addresses . That means 
the formal arguments  u  and  v , appearing in the prototype and in the definition of  
interchange() , will have addresses as their values. Therefore, they should be declared as 
pointers. Because  x  and  y  are integers,  u  and  v  are pointers to integers, so declare them as 
follows:  

  void interchange (int * u, int * v)   

 Next, the body of the function declares  

  int temp;   

 to provide the needed temporary storage. To store the value of  x  in  temp , use  

  temp = *u;   

 Remember,  u  has the value  &x , so  u  points to  x . This means that  *u  gives you the value of  x , 
which is what we want. Don’t write  

  temp = u;   /* NO */   

 because that would assign  temp  the address of  x  rather than its value, and we are trying to 
interchange values, not addresses.  
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 Similarly, to assign the value of  y  to  x , use  

  *u = *v;   

 which ultimately has this effect:  

  x = y;   

 Let’s summarize what this example does. We want a function that alters the values  x  and  y . By 
passing the function the addresses of  x  and  y , we give  interchange()  access to those variables. 
Using pointers and the  *  operator, the function can examine the values stored at those loca-
tions and change them.  

 You can omit the variable names in the ANSI C prototype. Then the prototype declaration 
looks like this:  

  void interchange(int *, int *);   

 In general, you can communicate two kinds of information about a variable to a function. If 
you use a call of the form  

  function1(x);   

 you transmit the value of  x . If you use a call of the form  

  function2(&x);   

 you transmit the address of  x . The first form requires that the function definition includes a 
formal argument of the same type as  x :  

  int function1(int num)   

 The second form requires the function definition to include a formal parameter that is a 
pointer to the right type:  

  int function2(int * ptr)   

 Use the first form if the function needs a value for some calculation or action. Use the second 
form if the function needs to alter variables in the calling function. You have been doing this 
all along with the  scanf()  function. When you want to read in a value for a variable ( num , for 
example), you use  scanf("%d", &num) . That function reads a value and then uses the address 
you give it to store the value.  

 Pointers enable you to get around the fact that the variables of  interchange()  are local. They 
let that function reach out into  main()  and alter what is stored there.  

 Pascal and Modula-2 users might recognize the first form as being the same as Pascal’s value 
parameter and the second form as being similar (but not identical) to Pascal’s variable param-
eter. C++ users will recognize pointer variables and wonder if C, like C++, also has reference 
variables. The answer to that question is no. BASIC users might find the whole setup a bit 
unsettling. If this section seems strange to you, be assured that a little practice will make at 
least some uses of pointers seem simple, normal, and convenient (see  Figure   9.6   ).      
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  Variables: Names, Addresses, and Values  

 The preceding discussion of pointers has hinged on the relationships between the names, 
addresses, and values of variables. Let’s discuss these matters further.  

 When you write a program, you can think of a variable as having two attributes: a name and a 
value. (There are other attributes, including type, but that’s another matter.) After the program 
has been compiled and loaded, the computer also thinks of the same variable as having two 
attributes: an address and a value. An address is the computer’s version of a name.  

 In many languages, the address is the computer’s business, concealed from the programmer. 
In C, however, you can access the address through the  &  operator.  

 For example,  &barn  is the address of the variable  barn .  

 You can get the value from the name just by using the name.  

 For example,  printf("%d\n", barn)  prints the value of  barn .  

 You can get the value from the address by using the  *  operator.  

 Given  pbarn = &barn; ,  *pbarn  is the value stored at address  &barn .  

 In short, a regular variable makes the value the primary quantity and the address a derived 
quantity, via the  &  operator. A pointer variable makes the address the primary quantity and the 
value a derived quantity via the  *  operator.  

 Although you can print an address to satisfy your curiosity, that is not the main use for the  &  
operator. More important, using  & ,  * , and pointers enables you to manipulate addresses and 
their contents symbolically, as in  swap3.c  ( Listing   9.15   ).   
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 Figure 9.6   Names, addresses, and values in a byte-addressable system, such as a PC.         
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  Summary: Functions  

  Form:   

 A typical ANSI C function definition has this form:  

   return-type name ( parameter declaration list )

   function body    

 The argument declaration list is a comma-separated list of variable declarations. Variables 
other than the function parameters are declared within the body, which is bounded by braces.  

  Example:   

  int diff(int x, int y)     // ANSI C

  {                          // begin function body

      int z;                 // declare local variable

  

      z = x - y;

  

      return z;              // return a value

  }                          // end function body   

  Communicating Values:   

 Arguments are used to convey values from the calling function to the function. If variables  a  
and  b  have the values  5  and  2 , the call  

  c = diff(a,b);   

 transmits  5  and  2  to the variables  x  and  y . The values  5  and  2  are called  actual arguments , 
and the  diff()  variables  x  and  y  are called  formal parameters . The keyword  return  communi-
cates one value from the function to the calling function. In this example,  c  receives the value 
of  z , which is  3 . A function ordinarily has no effect on the variables in a calling function. To 
directly affect variables in the calling function, use pointers as arguments. This might be neces-
sary if you want to communicate more than one value back to the calling function.  

  Function Return Type:   

 The function return type indicates the type of value the function returns. If the returned value is 
of a type different from the declared return type, the value is type cast to the declared type.  

  Function Signature:   

 The function return type together with the function parameter list constitute the function sig-
nature. Thus, it specifies the types for values that go into the function and for the value that 
comes out of the function.  

  Example:   

  double duff(double, int);  // function prototype

  int main(void)

  {

      double q, x;

      int n;
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  ...

       q = duff(x,n);     // function call

  

  

  ...

   }

  

  double duff(double u, int k)  // function definition

  {

      double tor;

  ...

      return tor;  // returns a double value

  }      

  Key Concepts  

 If you want to program successfully and efficiently in C, you need to understand functions. 
It’s useful, even essential, to organize larger programs into several functions. If you follow the 
practice of giving one function one task, your programs will be easier to understand and debug. 
Make sure that you understand how functions communicate information to one another—that 
is, that you understand how function arguments and return values work. Also, be aware how 
function parameters and other local variables are private to a function; thus, declaring two vari-
ables of the same name in different functions creates two distinct variables. Also,  one function 
does not have direct access to variables declared in another function. This limited access helps 
preserve data integrity. However, if you do need one function to access another function’s data, 
you can use pointer function arguments.   

  Summary  

 Use functions as building blocks for larger programs. Each function should have a single, well-
defined purpose. Use arguments to communicate values to a function, and use the keyword 
 return  to communicate back a value. If the function returns a value not of type  int , you must 
specify the function type in the function definition and in the declaration section of the calling 
function. If you want the function to affect variables in the calling function, use addresses and 
pointers.  

 ANSI C offers  function prototyping , a powerful C enhancement that allows compilers to verify 
that the proper number and types of arguments are used in a function call.  

 A C function can call itself; this is called  recursion . Some programming problems lend them-
selves to recursive solutions, but recursion can be inefficient in its use of memory and time.    
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     Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    What is the difference between an actual argument and a formal parameter?    

   2.    Write ANSI C function headings for the following functions described. Note we are 
asking just for the headings, not the body.  

    a.    donut()  takes an  int  argument and prints that number of  0 s.   

   b.    gear()  takes two  int  arguments and returns type  int .   

   c.    guess()  takes no arguments and returns an  int  value.   

   d.    stuff_it()  takes a  double  and the address of a  double  variable and stores the 
first value in the given location.      

   3.    Write ANSI C function headings for the following functions described. Note that you 
need write only the headings, not the body.  

    a.    n_to_char()  takes an  int  argument and returns a  char .   

   b.    digits()  takes a  double  argument and an  int  argument and returns an  int .   

   c.    which()  takes two addresses of double as arguments and returns the address of a 
 double .   

   d.    random()  takes no argument and returns an  int .      

   4.    Devise a function that returns the sum of two integers.    

   5.    What changes, if any, would you need to make to have the function of question 4 add 
two  double  numbers instead?    

   6.    Devise a function called  alter()  that takes two  int  variables,  x  and  y , and changes their 
values to their sum and their difference, respectively.    

   7.    Is anything wrong with this function definition?  

  void salami(num)

  {

     int num, count;

  

     for (count = 1; count <= num; num++)

         printf(" O salami mio!\n");

  }     
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   8.    Write a function that returns the largest of three integer arguments.    

   9.    Given the following output:  

  Please choose one of the following:

  1) copy files            2) move files

  3) remove files          4) quit

  Enter the number of your choice:   

    a.   Write a function that displays a menu of four numbered choices and asks you to 
choose one. (The output should look like the preceding.)   

   b.   Write a function that has two  int  arguments: a lower limit and an upper limit. 
The function should read an integer from input. If the integer is outside the limits, 
the function should print a menu again (using the function from part “a” of this 
question) to reprompt the user and then get a new value. When an integer in 
the proper limits is entered, the function should return that value to the calling 
function. Entering a noninteger should cause the function to return the quit value 
of  4 .   

   c.   Write a minimal program using the functions from parts “a” and “b” of this 
question. By  minimal , we mean it need not actually perform the actions promised 
by the menu; it should just show the choices and get a valid response.        

  Programming Exercises  

    1.    Devise a function called  min(x,y)  that returns the smaller of two  double  values. Test 
the function with a simple driver.    

   2.    Devise a function  chline(ch,i,j)  that prints the requested character in columns  i  
through  j . Test it in a simple driver.    

   3.    Write a function that takes three arguments: a character and two integers. The character 
is to be printed. The first integer specifies the number of times that the character is to 
be printed on a line, and the second integer specifies the number of lines that are to be 
printed. Write a program that makes use of this function.    

   4.    The harmonic mean of two numbers is obtained by taking the inverses of the two 
numbers, averaging them, and taking the inverse of the result. Write a function that 
takes two  double  arguments and returns the harmonic mean of the two numbers.    

   5.    Write and test a function called  larger_of()  that replaces the contents of two  double  
variables with the maximum of the two values. For example,  larger_of(x,y)  would 
reset both  x  and  y  to the larger of the two.    
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   6.    Write and test a function that takes the addresses of three  double  variables as arguments 
and that moves the value of the smallest variable into the first variable, the middle value 
to the second variable, and the largest value into the third variable.    

   7.    Write a program that reads characters from the standard input to end-of-file. For each 
character, have the program report whether it is a letter. If it is a letter, also report 
its numerical location in the alphabet. For example,  c  and  C  would both be letter 3. 
Incorporate a function that takes a character as an argument and returns the numerical 
location if the character is a letter and that returns  –1  otherwise.    

   8.     Chapter   6   , “C Control Statements: Looping,” ( Listing   6.20   ) shows a  power()  function 
that returned the result of raising a type  double  number to a positive integer value. 
Improve the function so that it correctly handles negative powers. Also, build into the 
function that 0 to any power other than 0 is 0 and that any number to the 0 power is 1. 
(It should report that 0 to the 0 is undefined, then say it’s using a value of 1.) Use a loop. 
Test the function in a program.    

   9.    Redo Programming Exercise 8, but this time use a recursive function.    

   10.    Generalize the  to_binary()  function of  Listing   9.8    to a  to_base_n()  function that 
takes a second argument in the range 2–10. It then should print the number that is its 
first argument to the number base given by the second argument. For example,  to_
base_n(129,8)  would display  201 , the base-8 equivalent of  129 . Test the function in a 
complete program.    

   11.    Write and test a  Fibonacci()  function that uses a loop instead of recursion to calculate 
Fibonacci numbers.        
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 Arrays and Pointers  

    You will learn about the following in this chapter:  

    ■   Keyword:  

  static    

   ■   Operators:  

  & *  (unary)   

   ■   How to create and initialize arrays   

   ■   Pointers (building on the basics you already know) and see how they relate to arrays   

   ■   Writing functions that process arrays   

   ■   Two-dimensional arrays    

 People turn to computers for tasks such as tracking monthly expenses, daily rainfall, quarterly 
sales, and weekly weights. Enterprises turn to computers to manage payrolls, inventory, and 
customer transactions. As a programmer, you inevitably have to deal with large quantities of 
related data. Often, arrays offer the best way to handle such data in an efficient, convenient 
manner.  Chapter   6   , “C Control Statements: Looping,” introduced arrays, and this chapter takes 
a more thorough look. In particular, it examines how to write array-processing functions. Such 
functions enable you to extend the advantages of modular programming to arrays. In doing so, 
you  can see the intimate relationship between arrays and pointers.   

     Arrays  

 Recall that an  array  is composed of a series of elements of one data type. You use  declarations  
to tell the compiler when you want an array. An  array declaration  tells the compiler how many 
elements the array contains and what the type is for these elements. Armed with this informa-
tion, the compiler can set up the array properly. Array elements can have the same types as 
ordinary variables. Consider the following example of array declarations:  

  /* some array declarations */

  int main(void)



ptg11524036

384 Chapter 10 Arrays and Pointers

  {

     float candy[365];      /* array of 365 floats */

     char code[12];         /* array of 12 chars   */

     int states[50];        /* array of 50 ints    */

     ...

  }   

 The brackets ( [] ) identify  candy  and the rest as arrays, and the number enclosed in the brack-
ets indicates the number of elements in the array.  

 To access elements in an array, you identify an individual element by using its subscript 
number, also called its  index . The numbering starts with 0. Hence,  candy[0]  is the first element 
of the  candy  array, and  candy[364]  is the 365th and last element.  

 This is rather old hat; let’s learn something new.  

  Initialization  

 Arrays are often used to store data needed for a program. For example, a 12-element array can 
store the number of days in each month. In cases such as these, it’s convenient to initialize the 
array at the beginning of a program. Let’s see how it is done.  

 You know you can initialize single-valued variables (sometimes called  scalar  variables) in a 
declaration with expressions such as  

  int fix = 1;

  float flax = PI * 2;   

 where, one hopes,  PI  was defined earlier as a macro. C extends initialization to arrays with a 
new syntax, as shown next:  

  int main(void)

  {

      int powers[8] = {1,2,4,6,8,16,32,64}; /* ANSI C and later */

      ...

  }   

 As you can see, you initialize an array by using a comma-separated list of values enclosed in 
braces. You can use spaces between the values and the commas, if you want. The first element 
( powers[0] ) is assigned the value  1 , and so on. (If your compiler rejects this form of initial-
ization as a syntax error, you may be suffering from a pre-ANSI compiler. Prefixing the array 
declaration with the keyword  static  should solve the problem.  Chapter   12   , “Storage Classes, 
Linkage, and Memory Management,” discusses the meaning of this keyword.)  

  Listing   10.1    presents a short program that prints the number of days per month.  
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  Listing 10.1   The  day_mon1.c  Program  

 /* day_mon1.c -- prints the days for each month */

  #include <stdio.h>

  #define MONTHS 12

  

  int main(void)

  {

      int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};

      int index;

  

      for (index = 0; index < MONTHS; index++)

          printf("Month %d has %2d days.\n", index +1,

                 days[index]);

  

      return 0;

  }   

 The output looks like this:  

  Month  1 has 31 days.

  Month  2 has 28 days.

  Month  3 has 31 days.

  Month  4 has 30 days.

  Month  5 has 31 days.

  Month  6 has 30 days.

  Month  7 has 31 days.

  Month  8 has 31 days.

  Month  9 has 30 days.

  Month 10 has 31 days.

  Month 11 has 30 days.

  Month 12 has 31 days.   

 Not quite a superb program, but it’s wrong only one month in every four years. The program 
initializes  days[]  with a list of comma-separated values enclosed in braces.  

 Note that this example used the symbolic constant  MONTHS  to represent the array size. This is a 
common and recommended practice. For example, if the world switched to a 13-month calen-
dar, you just have to modify the  #define  statement and don’t have to track down every place 
in the program that uses the array size.  

  Note   Using  const  with Arrays  

 Sometimes you might use an array that’s intended to be a read-only array. That is, the program 
will retrieve values from the array, but it won’t try to write new values into the array. In such 
cases, you can, and should, use the  const  keyword when you declare and initialize the array. 
Therefore, a better choice for  Listing   10.1    would be  
  const int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};   
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 This makes the program treat each element in the array as a constant. Just as with regular 
variables, you should use the declaration to initialize  const  data because once it’s declared 
 const , you can’t assign values later. Now that you know about this, we can use  const  in sub-
sequent examples.   

 What if you fail to initialize an array?  Listing   10.2    shows what happens.  

  Listing 10.2   The  no_data.c  Program  

 /* no_data.c -- uninitialized array */

  #include <stdio.h>

  #define SIZE 4

  int main(void)

  {

      int no_data[SIZE];  /* uninitialized array */

      int i;

  

      printf("%2s%14s\n",

             "i", "no_data[i]");

      for (i = 0; i < SIZE; i++)

          printf("%2d%14d\n", i, no_data[i]);

  

      return 0;

  }   

 Here is some sample output (your results may vary):  

  i    no_data[i]

  0             0

  1       4204937

  2       4219854

  3    2147348480   

 The array members are like ordinary variables—if you don’t initialize them, they might have 
any value. The compiler is allowed to just use whatever values were already present at those 
memory locations, which is why your results may vary from these.  

  Note   Storage Class Caveat  

 Arrays, like other variables, can be created using different  storage classes .  Chapter   12    inves-
tigates this topic, but for now, you should be aware that the current chapter describes arrays 
that belong to the automatic storage class. That means they are declared inside of a function 
and without using the keyword  static . All the variables and arrays used in this book, so far, 
are of the automatic kind.  

 The reason for mentioning storage classes at this point is that occasionally the different stor-
age classes have different properties, so you can’t generalize everything in this chapter to other 
storage classes. In particular, variables and arrays of some of the other storage classes have 
their contents set to  0  if they are not initialized.   
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 The number of items in the list should match the size of the array. But what if you count 
wrong? Let’s try the last example again, as shown in  Listing   10.3   , with a list that is two too 
short.  

  Listing 10.3   The  somedata.c  Program  

 /* some_data.c -- partially initialized array */

  #include <stdio.h>

  #define SIZE 4

  int main(void)

  {

      int some_data[SIZE] = {1492, 1066};

      int i;

  

      printf("%2s%14s\n",

             "i", "some_data[i]");

      for (i = 0; i < SIZE; i++)

          printf("%2d%14d\n", i, some_data[i]);

  

      return 0;

  }   

 This time the output looks like this:  

  i  some_data[i]

  0          1492

  1          1066

  2             0

  3             0   

 As you can see, the compiler had no problem. When it ran out of values from the list, it initial-
ized the remaining elements to  0 . That is, if you don’t initialize an array at all, its elements, like 
uninitialized ordinary variables, get garbage values, but if you partially initialize an array, the 
remaining elements are set to  0 .  

 The compiler is not so forgiving if you have too many list values. This overgenerosity is consid-
ered an error. However, there is no need to subject yourself to the ridicule of your compiler. 
Instead, you can let the compiler match the array size to the list by omitting the size from the 
braces (see  Listing   10.4   ).  

  Listing 10.4   The  day_mon2.c  Program  

 /* day_mon2.c -- letting the compiler count elements */

  #include <stdio.h>

  int main(void)

  {

      const int days[] = {31,28,31,30,31,30,31,31,30,31};

      int index;
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      for (index = 0; index < sizeof days / sizeof days[0]; index++)

          printf("Month %2d has %d days.\n", index +1,

                 days[index]);

  

      return 0;

  }   

 There are two main points to note in  Listing   10.4   :  

    ■   When you use empty brackets to initialize an array, the compiler counts the number of 
items in the list and makes the array that large.   

   ■   Notice what we did in the  for  loop control statement. Lacking faith (justifiably) in our 
ability to count correctly, we let the computer give us the size of the array. The  sizeof  
operator gives the size, in bytes, of the object, or  type , following it. So  sizeof days  is 
the size, in bytes, of the whole array, and  sizeof days[0]  is the size, in bytes, of one 
element. Dividing the size of the entire array by the size of one element tells us how 
many elements are in the array.    

 Here is the result of running this program:  

  Month  1 has 31 days.

  Month  2 has 28 days.

  Month  3 has 31 days.

  Month  4 has 30 days.

  Month  5 has 31 days.

  Month  6 has 30 days.

  Month  7 has 31 days.

  Month  8 has 31 days.

  Month  9 has 30 days.

  Month 10 has 31 days.   

 Oops! We put in just 10 values, but our method of letting the program find the array size kept 
us from trying to print past the end of the array. This points out a potential disadvantage of 
automatic counting: Errors in the number of elements could pass unnoticed.  

 There is one more short method of initializing arrays. Because it works only for character 
strings, however, we will save it for the next chapter.   

  Designated Initializers (C99)  

 C99 added a new capability:  designated initializers . This feature allows you to pick and choose 
which elements are initialized. Suppose, for example, that you just want to initialize the last 
element in an array. With traditional C initialization syntax, you also have to initialize every 
element preceding the last one:  

  int arr[6] = {0,0,0,0,0,212};  // traditional syntax   
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 With C99, you can use an index in brackets in the initialization list to specify a particular 
element:  

  int arr[6] = {[5] = 212}; // initialize arr[5] to 212   

 As with regular initialization, after you initialize at least one element, the uninitialized 
elements are set to  0 .  Listing   10.5    shows a more involved example.  

  Listing 10.5   The  designate.c  Program  

 // designate.c -- use designated initializers

  #include <stdio.h>

  #define MONTHS 12

  int main(void)

  {

      int days[MONTHS] = {31,28, [4] = 31,30,31, [1] = 29};

      int i;

  

      for (i = 0; i < MONTHS; i++)

          printf("%2d  %d\n", i + 1, days[i]);

  

      return 0;

  }   

 Here’s the output if the compiler supports this C99 feature:  

   1  31

   2  29

   3  0

   4  0

   5  31

   6  30

   7  31

   8  0

   9  0

  10  0

  11  0

  12  0   

 The output reveals a couple important features of designated initializers. First, if the code 
follows a designated initializer with further values, as in the sequence  [4] = 31,30,31 , these 
further values are used to initialize the subsequent elements. That is, after initializing  days[4]  
to  31 , the code initializes  days[5]  and  days[6]  to  30  and  31 , respectively. Second, if the code 
initializes a particular element to a value more than once, the last initialization is the one that 
takes effect. For example, in  Listing   10.5   , the start of the initialization list initializes  days[1]  to 
 28 , but that is overridden by the  [1] = 29  designated initialization later.  
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 Suppose you don’t specify the array size?  

  int stuff[] = {1, [6] = 23};       // what happens?

  int staff[] = {1, [6] = 4, 9, 10}; // what happens?   

 The compiler will make the array big enough to accommodate the initialization values. So 
 stuff  will have seven elements, numbered 0-6, and  staff  will have two more elements, or 9.   

  Assigning Array Values  

 After an array has been declared, you can  assign  values to array members by using an array 
index, or  subscript . For example, the following fragment assigns even numbers to an array:  

  /* array assignment */

  #include <stdio.h>

  #define SIZE 50

  int main(void)

  {

      int counter, evens[SIZE];

  

      for (counter = 0; counter < SIZE; counter++)

          evens[counter] = 2 * counter;

    ...

  }   

 Note that the code uses a loop to assign values element by element. C doesn’t let you assign 
one array to another as a unit. Nor can you use the list-in-braces form except when initializing. 
The following code fragment shows some forms of assignment that are not allowed:  

  /* nonvalid array assignment */

  #define SIZE 5

  int main(void)

  {

      int oxen[SIZE] = {5,3,2,8};      /* ok here     */

      int yaks[SIZE];

  

      yaks = oxen;                     /*  not allowed  */

      yaks[SIZE] = oxen[SIZE];         /* out of range  */

      yaks[SIZE] = {5,3,2,8};          /* doesn't work  */   

 Recall that the last element of  oxen  is  oxen[SIZE-1] , so  oxen[SIZE]  and  yaks[SIZE]  refer to 
data past the ends of the two arrays.   

  Array Bounds  

 You have to make sure you use array indices that are within bounds; that is, you have to 
make sure they have values valid for the array. For instance, suppose you make the following 
declaration:  

  int doofi[20];   
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 Then it’s your responsibility to make sure the program uses indices only in the range 0 through 
19, because the compiler isn’t required to check for you. (However, some compilers will warn 
you of the problem, but continue on to compile the program anyway.)  

 Consider the program in  Listing   10.6   . It creates an array with four elements and then carelessly 
uses index values ranging from −1 to 6.  

  Listing 10.6   The  bounds.c  Program  

 // bounds.c -- exceed the bounds of an array

  #include <stdio.h>

  #define SIZE 4

  int main(void)

  {

      int value1 = 44;

      int arr[SIZE];

      int value2 = 88;

      int i;

  

      printf("value1 = %d, value2 = %d\n", value1, value2);

      for (i = -1; i <= SIZE; i++)

          arr[i] = 2 * i + 1;

  

      for (i = -1; i < 7; i++)

          printf("%2d  %d\n", i , arr[i]);

      printf("value1 = %d, value2 = %d\n", value1, value2);

      printf("address of arr[-1]: %p\n", &arr[-1]);

      printf("address of arr[4]:  %p\n", &arr[4]);

      printf("address of value1:  %p\n", &value1);

      printf("address of value2:  %p\n", &value2);

  

      return 0;

  }   

 The compiler doesn’t check to see whether the indices are valid. The result of using a bad index 
is, in the language of the C standard, undefined. That means when you run the program, it 
might seem to work, it might work oddly, or it might abort. Here is sample output using GCC:  

  value1 = 44, value2 = 88

  -1  -1

   0  1

   1  3

   2  5

   3  7

   4  9

   5  1624678494

   6  32767

  value1 = 9, value2 = -1
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  address of arr[-1]: 0x7fff5fbff8cc

  address of arr[4]:  0x7fff5fbff8e0

  address of value1:  0x7fff5fbff8e0

  address of value2:  0x7fff5fbff8cc   

 Note that this compiler appears to have stored  value1  just after the array and  value2  just 
ahead of it. (Other compilers might store the data in a different order in memory.) In this case, 
as shown in the output,  arr[-1]  corresponded to the same memory location as  value2 , and 
 arr[4]  corresponded to the same memory location as  value1 . Therefore, using out-of-bounds 
array indices resulted in the program altering the value of other variables. Another compiler 
might produce different results, including a program that aborts.  

 You might wonder why C allows nasty things like that to happen. It goes back to the C 
philosophy of trusting the programmer. Not checking bounds allows a C program to run faster. 
The compiler can’t necessarily catch all index errors because the value of an index might not 
be determined until after the resulting program begins execution. Therefore, to be safe, the 
compiler would have to add extra code to check the value of each index during runtime, and 
that would slow things down. So C trusts the programmer to do the coding correctly and 
rewards the programmer with  a faster program. Of course, not all programmers deserve that 
trust, and then problems can arise.  

 One simple thing to remember is that array numbering begins with 0. One simple habit to 
develop is to use a symbolic constant in the array declaration and in other places the array size 
is used:  

  #define SIZE 4

  int main(void)

  {

      int arr[SIZE];

      for (i = 0; i < SIZE; i++)

      ....   

 This helps ensure that you use the same array size consistently throughout the program.   

  Specifying an Array Size  

 So far, the examples have used integer constants when declaring arrays:  

  #define SIZE 4

  int main(void)

  {

      int arr[SIZE];     // symbolic integer constant

      double lots[144];  // literal integer constant

      ...   

 What else is allowed? Until the C99 standard, the answer has been that you have to use a 
 constant integer expression  between the brackets when declaring an array. A constant integer 
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expression is one formed from integer constants. For this purpose, a  sizeof  expression is 
considered an integer constant, but (unlike the case in C++) a  const  value isn’t. Also, the value 
of the expression must be greater than 0:  

  int n = 5;

  int m = 8;

  float a1[5];                // yes

  float a2[5*2 + 1];          // yes

  float a3[sizeof(int) + 1];  // yes

  float a4[-4];               // no, size must be > 0

  float a5[0];                // no, size must be > 0

  float a6[2.5];              // no, size must be an integer

  float a7[(int)2.5];         // yes, typecast float to int constant

  float a8[n];                // not allowed before C99

  float a9[m];                // not allowed before C99   

 As the comments indicate, C compilers following the C90 standard would not allow the last 
two declarations. As of C99, however, C does allow them, but they create a new breed of array, 
something called a  variable-length array , or  VLA  for short. (C11 retreats from this bold initiative, 
making VLAs an optional rather than mandatory language feature.)  

 C99 introduced variable-length arrays primarily to allow C to become a better language 
for numerical computing. For instance, VLAs make it easier to convert existing libraries of 
FORTRAN numerical calculation routines to C. VLAs have some restrictions; for example, you 
can’t initialize a VLA in its declaration. This chapter will return to VLAs later, after you’ve 
learned enough to understand more about the limitations of the classic C array.    

  Multidimensional Arrays  

 Tempest Cloud, a weather person who takes her subject “cirrusly,” wants to analyze five years 
of monthly rainfall data. One of her first decisions is how to represent the data. One choice is 
to use 60 variables, one for each data item. (We mentioned this choice once before, and it is as 
senseless now as it was then.) Using an array with 60 elements would be an improvement, but 
it would be even nicer still if she could keep each year’s data separate. She could use five arrays, 
each with 12 elements, but that is clumsy and could get really awkward  if Tempest decides to 
study 50 years’ worth of rainfall instead of five. She needs something better.  

 The better approach is to use an array of arrays. The master array would have five elements, 
one for each year. Each of those elements, in turn, would be a 12-element array, one for each 
month. Here is how to declare such an array:  

  float rain[5][12];  // array of 5 arrays of 12 floats   

 One way to view this declaration is to first look at the inner portion (the part in bold):  

  float  rain[5] [12];             // rain is an array of 5 somethings   
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 It tells us that  rain  is an array with five elements. But what is each of those elements? Now 
look at the remaining part of the declaration (now in bold):  

   float  rain[5]  [12] ;  // an array of 12 floats   

 This tells us that each element is of type  float[12] ; that is, each of the five elements of  rain  
is, in itself, an array of 12  float  values.  

 Pursuing this logic,  rain[0] , being the first element of  rain , is an array of 12  float  values. 
So are  rain[1] ,  rain[2] , and so on. If  rain[0]  is an array, its first element is  rain[0][0] , its 
second element is  rain[0][1] , and so on. In short,  rain  is a five-element array of 12-element 
arrays of  float ,  rain[0]  is an array of 12  float s, and  rain[0][0]  is a  float . To access, say, 
the value in row 2, column 3, use  rain[2][3] . (Remember, array counting starts at 0, so row 2 
is the third row.)  

 You can also visualize this  rain  array as a two-dimensional array consisting of five rows, each 
of 12 columns, as shown in  Figure   10.1   . By changing the second subscript, you move along a 
row, month by month. By changing the first subscript, you move vertically along a column, 
year by year.  

 

const float rain[5][12]

5

12

rain[0][0] rain[0][1] rain[0][2] rain[0][3]

rain[1][0] rain[1][1] rain[1][2] rain[1][3]

rain[2][0] rain[2][1] rain[2][2] rain[2][3]

ra

 Figure 10.1   Two-dimensional array.         

 The two-dimensional view is merely a convenient way of visualizing an array with two indices. 
Internally, such an array is stored sequentially, beginning with the first 12-element array, 
followed by the second 12-element array, and so on.  

 Let’s use this two-dimensional array in a weather program. The program goal is to find the 
total rainfall for each year, the average yearly rainfall, and the average rainfall for each month. 
To find the total rainfall for a year, you have to add all the data in a given row. To find the 
average rainfall for a given month, you have to add all the data in a given column. The two-
dimensional array makes it easy to visualize and execute these activities.  Listing   10.7    shows the 
program.  
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  Listing 10.7   The  rain.c  Program  

 /* rain.c  -- finds yearly totals, yearly average, and monthly

                   average for several years of rainfall data */

  #include <stdio.h>

  #define MONTHS 12    // number of months in a year

  #define YEARS   5    // number of years of data

  int main(void)

  {

   // initializing rainfall data for 2010 - 2014

      const float rain[YEARS][MONTHS] =

      {

          {4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6},

          {8.5,8.2,1.2,1.6,2.4,0.0,5.2,0.9,0.3,0.9,1.4,7.3},

          {9.1,8.5,6.7,4.3,2.1,0.8,0.2,0.2,1.1,2.3,6.1,8.4},

          {7.2,9.9,8.4,3.3,1.2,0.8,0.4,0.0,0.6,1.7,4.3,6.2},

          {7.6,5.6,3.8,2.8,3.8,0.2,0.0,0.0,0.0,1.3,2.6,5.2}

      };

      int year, month;

      float subtot, total;

  

      printf(" YEAR    RAINFALL  (inches)\n");

      for (year = 0, total = 0; year < YEARS; year++)

      {             // for each year, sum rainfall for each month

          for (month = 0, subtot = 0; month < MONTHS; month++)

              subtot +=  rain[year][month];

          printf("%5d %15.1f\n", 2010 + year, subtot);

          total += subtot; // total for all years

       }

      printf("\nThe yearly average is %.1f inches.\n\n",

              total/YEARS);

      printf("MONTHLY AVERAGES:\n\n");

      printf(" Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct ");

      printf(" Nov  Dec\n");

  

      for (month = 0; month < MONTHS; month++)

      {             // for each month, sum rainfall over years

          for (year = 0, subtot =0; year < YEARS; year++)

              subtot += rain[year][month];

          printf("%4.1f ", subtot/YEARS);

      }

      printf("\n");

  

      return 0;

  }   
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 Here is the output:  

    YEAR    RAINFALL  (inches)

   2010            32.4

   2011            37.9

   2012            49.8

   2013            44.0

   2014            32.9

  

  The yearly average is 39.4 inches.

  

  MONTHLY AVERAGES:

  

   Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec

   7.3  7.3  4.9  3.0  2.3  0.6  1.2  0.3  0.5  1.7  3.6  6.7   

 As you study this program, concentrate on the initialization and on the computation scheme. 
The initialization is the more involved of the two, so let’s look at the simpler part (the compu-
tation) first.  

 To find the total for a given year, keep  year  constant and let  month  go over its full range. This 
is the inner  for  loop of the first part of the program. Then repeat the process for the next value 
of  year . This is the outer loop of the first part of the program. A nested loop structure like this 
one is natural for handling a two-dimensional array. One loop handles the first subscript, and 
the other loop handles the second subscript:  

  for (year = 0, total = 0; year < YEARS; year++)

  {             // process each year

      for (month = 0, subtot = 0; month < MONTHS; month++)

          ...   // process each month

      ...       // process each year

  }   

 The second part of the program has the same structure, but now it changes  year  with the inner 
loop and  month  with the outer. Remember, each time the outer loop cycles once, the inner 
loop cycles its full allotment. Therefore, this arrangement cycles through all the years before 
changing months. You get a five-year average for the first month, and so on:  

  for (month = 0; month < MONTHS; month++)

  {             // process each month

      for (year = 0, subtot =0; year < YEARS; year++)

          ...   // process each year

      ...       // process each month

  }   
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  Initializing a Two-Dimensional Array  

 Initializing a two-dimensional array builds on the technique for initializing a one-dimensional 
array. First, recall that initializing a one-dimensional array looks like this:  

  sometype ar1[5] = {val1, val2, val3, val4, val5};   

 Here  val1 ,  val2 , and so on are each a value appropriate for  sometype . For example, if  
sometype  were  int ,  val1  might be  7 , or if  sometype  were  double ,  val1  might be  11.34 . But 
 rain  is a five-element array for which each element is of type array-of-12- float . So, for  rain , 
 val1  would be a value appropriate for initializing a one-dimensional array of  float , such as 
the following:  

  {4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6}   

 That is, if  sometype  is array-of-12- double ,  val1  is a list of 12  double  values. Therefore, we 
need a comma-separated list of five of these things to initialize a two-dimensional array, such 
as  rain :  

  const float rain[YEARS][MONTHS] =

  {

      {4.3,4.3,4.3,3.0,2.0,1.2,0.2,0.2,0.4,2.4,3.5,6.6},

      {8.5,8.2,1.2,1.6,2.4,0.0,5.2,0.9,0.3,0.9,1.4,7.3},

      {9.1,8.5,6.7,4.3,2.1,0.8,0.2,0.2,1.1,2.3,6.1,8.4},

      {7.2,9.9,8.4,3.3,1.2,0.8,0.4,0.0,0.6,1.7,4.3,6.2},

      {7.6,5.6,3.8,2.8,3.8,0.2,0.0,0.0,0.0,1.3,2.6,5.2}

  };   

 This initialization uses five embraced lists of numbers, all enclosed by one outer set of braces. 
The data in the first interior set of braces is assigned to the first row of the array, the data in the 
second interior set goes to the second row, and so on. The rules we discussed about mismatches 
between data and array sizes apply to each row. That is, if the first inner set of braces encloses 
10 numbers, only the first 10 elements of the first row are affected. The last two elements in 
that row are then initialized by default to zero.  If there are too many numbers, it is an error; 
the numbers do not get shoved into the next row.  

 You could omit the interior braces and just retain the two outermost braces. As long as you 
have the right number of entries, the effect is the same. If you are short of entries, however, the 
array is filled sequentially, row by row, until the data runs out. Then the remaining elements 
are initialized to  0 .  Figure   10.2    shows both ways of initializing an array.  

 int sq[2][3] = {{5,6},{7,8}}; int sq[2][3] = {5,6,7, 8};

5 6 0

7 8 0

5 6 7

8 0 0

 Figure 10.2   Two methods of initializing an array.         
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 Because the  rain  array holds data that should not be modified, the program uses the  const  
modifier when declaring the array.   

  More Dimensions  

 Everything we have said about two-dimensional arrays can be generalized to three-dimensional 
arrays and further. You can declare a three-dimensional array this way:  

  int box[10][20][30];   

 You can visualize a one-dimensional array as a row of data, a two-dimensional array as a table 
of data, and a three-dimensional array as a stack of data tables. For example, you can visualize 
the  box  array as 10 two-dimensional arrays (each 20×30) stacked atop each other.  

 The other way to think of  box  is as an array of arrays of arrays. That is, it is a 10-element array, 
each element of which is a 20-element array. Each 20-element array then has elements that 
are 30-element arrays. Or, you can simply think of arrays in terms of the number of indices 
needed.  

 Typically, you would use three nested loops to process a three-dimensional array, four nested 
loops to process a four-dimensional array, and so on. We’ll stick to two dimensions in our 
examples.    

  Pointers and Arrays  

 Pointers, as you might recall from  Chapter   9   , “Functions,” provide a symbolic way to use 
addresses. Because the hardware instructions of computing machines rely heavily on addresses, 
pointers enable you to express yourself in a way that is close to how the machine expresses 
itself. This correspondence makes programs with pointers efficient. In particular, pointers offer 
an efficient way to deal with arrays. Indeed, as you will see, array notation is simply a disguised 
use of pointers.  

 An example of this disguised use is that an array name is also the address of the first element of 
the array. That is, if  flizny  is an array, the following is true:  

  flizny == &flizny[0];     // name of array is the address of the first element   

 Both  flizny  and  &flizny[0]  represent the memory address of that first element. (Recall that 
 &  is the address operator.) Both are  constants  because they remain fixed for the duration of the 
program. However, they can be assigned as values to a pointer  variable , and you can change the 
value of a variable, as  Listing   10.8    shows. Notice what happens to the value of a pointer when 
you add a number to it. (Recall that the  %p  specifier for pointers typically displays hexadecimal 
values.)  
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  Listing 10.8   The  pnt_add.c  Program  

 // pnt_add.c -- pointer addition

  #include <stdio.h>

  #define SIZE 4

  int main(void)

  {

      short dates [SIZE];

      short * pti;

      short index;

      double bills[SIZE];

      double * ptf;

  

      pti = dates;    // assign address of array to pointer

      ptf = bills;

      printf("%23s %15s\n", "short", "double");

      for (index = 0; index < SIZE; index ++)

          printf("pointers + %d: %10p %10p\n",

                  index, pti + index, ptf + index);

  

      return 0;

  }   

 Here is sample output:  

                    short          double

  pointers + 0: 0x7fff5fbff8dc 0x7fff5fbff8a0

  pointers + 1: 0x7fff5fbff8de 0x7fff5fbff8a8

  pointers + 2: 0x7fff5fbff8e0 0x7fff5fbff8b0

  pointers + 3: 0x7fff5fbff8e2 0x7fff5fbff8b8   

 The second line prints the beginning addresses of the two arrays, and the next line gives the 
result of adding 1 to the address, and so on. Keep in mind that the addresses are in hexadeci-
mal, so dd is 1 more than dc and a1 is 1 more than a0. But what do we have here?  

  0x7fff5fbff8dc + 1 is 0x7fff5fbff8de?

  0x7fff5fbff8a0 + 1 is 0x7fff5fbff8a8?   

 Pretty dumb? Like a fox! Our system is addressed by individual bytes, but type  short  uses 2 
bytes and type  double  uses 8 bytes. What is happening here is that when you say “add 1 to a 
pointer,” C adds one  storage unit . For arrays, that means the address is increased to the address 
of the next  element , not just the next byte (see  Figure   10.3   ). This is one reason why you have 
to declare the sort of object to which a pointer points. The address is not enough because the 
computer needs to know how many bytes are used to store the  object. (This is true even for 
pointers to scalar variables; otherwise, the  *pt  operation to fetch the value wouldn’t work 
correctly.)  
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pti + 2

56014 56015

dates[0]

int dates[y], *pti;

pti = dates; (or pti = & dates[0];) 

dates[1] dates[2] dates[3]

56016 56017 56018 56019 56020 56021

pointer variable pti is assigned the
address of the first element of the array dates

machine address

pointer addition increase by 2
since pti is type int

pti + 3pti + 1pti

array elements

 Figure 10.3   An array and pointer addition.         

 Now we can define more clearly what is meant by pointer-to- int , pointer-to- float , or pointer-
to–any other data object:  

    ■   The value of a pointer is the address of the object to which it points. How the address 
is represented internally is hardware dependent. Many computers, including PCs and 
Macintoshes, are  byte addressable , meaning that each byte in memory is numbered 
sequentially. Here, the address of a large object, such as type  double  variable, typically is 
the address of the first byte of the object.   

   ■   Applying the  *  operator to a pointer yields the value stored in the pointed-to object.   

   ■   Adding 1 to the pointer increases its value by the size, in bytes, of the pointed-to type.    

 As a result of C’s cleverness, we have the following equalities:  

  dates + 2 == &date[2]         // same address

  *(dates + 2) == dates[2]      // same value   

 These relationships sum up the close connection between arrays and pointers. They mean that 
you can use a pointer to identify an individual element of an array and to obtain its value. In 
essence, we have two different notations for the same thing. Indeed, the C language standard 
describes array notation in terms of pointers. That is, it defines  ar[n]  to mean  *(ar + n) . You 
can think of the second expression as meaning, “Go to memory location  ar , move over  n  units, 
and retrieve the value there.”  
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 Incidentally, don’t confuse  *(dates+2)  with  *dates+2 . The indirection operator ( * ) binds 
more tightly (that is, has higher precedence) than  + , so the latter means  (*dates)+2 :  

  *(dates + 2)       // value of the 3rd element of dates

  *dates + 2         // 2 added to the value of the 1st element   

 The relationship between arrays and pointers means that you can often use either approach 
when writing a program.  Listing   10.9   , for instance, produces the same output as  Listing   10.1    
when compiled and run.  

  Listing 10.9   The  day_mon3.c  Program  

 /* day_mon3.c -- uses pointer notation */

  #include <stdio.h>

  #define MONTHS 12

  

  int main(void)

  {

      int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};

      int index;

  

      for (index = 0; index < MONTHS; index++)

          printf("Month %2d has %d days.\n", index +1,

                 *(days + index));   // same as days[index]

  

      return 0;

  }   

 Here,  days  is the address of the first element of the array,  days + index  is the address 
of element  days[index] , and  *(days + index)  is the value of that element, just as 
 days[index]  is. The loop references each element of the array, in turn, and prints the contents 
of what it finds.  

 Is there an advantage to writing the program this way? Not really—the compiler produces the 
same code for either. The point to  Listing   10.9    is that pointer notation and array notation are 
two equivalent methods. This example shows that you can use pointer notation with arrays. 
The reverse is also true; you can use array notation with pointers. This turns out to be impor-
tant when you have a function with an array as an argument.   

  Functions, Arrays, and Pointers  

 Suppose you want to write a function that operates on an array. For example, suppose you 
want a function that returns the sum of the elements of an array. Suppose  marbles  is the name 
of an array of  int . What would the function call look like? A reasonable guess would be this:  

  total = sum(marbles); // possible function call   
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 What would the prototype be? Remember, the name of an array is the address of its first 
element, so the actual argument  marbles , being the address of an  int , should be assigned to a 
formal parameter that is a pointer-to- int :  

  int sum(int * ar);  // corresponding prototype   

 What information does  sum()  get from this argument? It gets the address of the first element 
of the array, and it learns that it will find an  int  at that location. Note that this information 
says nothing about the number of elements in the array. We’re left with a couple choices of 
how to get that information to the function. The first choice is to code a fixed array size into 
the function:  

  int sum(int * ar)     // corresponding definition

  {

      int i;

      int total = 0;

  

      for( i = 0; i < 10; i++)   // assume 10 elements

          total += ar[i];    // ar[i] the same as *(ar + i)

      return total;

  }   

 Here, we make use of the fact that just as you can use pointer notation with array names, you 
can use array notation with a pointer. Also, recall that the  +=  operator adds the value of the 
operand on its right to the operand on its left. Therefore,  total  is a running sum of the array 
elements.  

 This function definition is limited; it will work only with  int  arrays of 10 elements. A more 
flexible approach is to pass the array size as a second argument:  

  int sum(int * ar, int n)  // more general approach

  {

      int i;

      int total = 0;

  

      for( i = 0; i < n; i++)   // use n elements

          total += ar[i];       // ar[i] the same as *(ar + i)

      return total;

  }   

 Here, the first parameter tells the function where to find the array and the type of data in the 
array, and the second parameter tells the function how many elements are present.  

 There’s one more thing to tell about function parameters. In the context of a function proto-
type or function definition header, and  only  in that context, you can substitute  int ar[]  for 
 int * ar :  

  int sum (int ar[], int n);   
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 The form  int * ar  always means that  ar  is type pointer-to- int . The form  int ar[]  also 
means that  ar  is type pointer-to- int , but  only  when used to declare formal parameters. The 
idea is that the second form reminds the reader that not only does  ar  point to an  int , it points 
to an  int  that’s an element of an array.  

  Note   Declaring Array Parameters  

 Because the name of an array is the address of the first element, an actual argument of an 
array name requires that the matching formal argument be a pointer. In this context, and only 
in this context, C interprets  int ar[]  to mean the same as  int * ar ; that is,  ar  is type 
pointer-to- int . Because prototypes allow you to omit a name, all four of the following proto-
types are equivalent:  
  int sum(int *ar, int n);

  int sum(int *, int);

  int sum(int ar[], int n);

  int sum(int [], int);   

 You can’t omit names in function definitions, so, for definitions, the following two forms are 
equivalent:  
  int sum(int *ar, int n)

  {

      // code goes here

  }

  

  int sum(int ar[], int n);

  {

      // code goes here

  }   

 You should be able to use any of the four prototypes with either of the two definitions shown 
here.   

  Listing   10.10    shows a program using the  sum()  function. To point out an interesting fact about 
array arguments, the program also prints the size of the original array and the size of the func-
tion parameter representing the array. (Use  %u  or perhaps  %lu  if your compiler doesn’t support 
the  %zd  specifier for printing  sizeof  quantities.)  

  Listing 10.10   The  sum_arr1.c  Program  

 // sum_arr1.c -- sums the elements of an array

  // use %u or %lu if %zd doesn't work

  #include <stdio.h>

  #define SIZE 10

  int sum(int ar[], int n);

  int main(void)

  {
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      int marbles[SIZE] = {20,10,5,39,4,16,19,26,31,20};

      long answer;

  

      answer = sum(marbles, SIZE);

      printf("The total number of marbles is %ld.\n", answer);

      printf("The size of marbles is %zd bytes.\n",

            sizeof marbles);

  

      return 0;

  }

  

  int sum(int ar[], int n)     // how big an array?

  {

      int i;

      int total = 0;

  

      for( i = 0; i < n; i++)

          total += ar[i];

      printf("The size of ar is %zd bytes.\n", sizeof ar);

  

      return total;

  }   

 The output on our system looks like this:  

  The size of ar is 8 bytes.

  The total number of marbles is 190.

  The size of marbles is 40 bytes.   

 Note that the size of  marbles  is 40 bytes. This makes sense because  marbles  contains 10 
 int s, each 4 bytes, for a total of 40 bytes. But the size of  ar  is just 8 bytes. That’s because  ar  is 
not an array itself; it is a pointer to the first element of  marbles . Our system uses 8 bytes for 
storing addresses, so the size of a pointer variable is 8 bytes. (Other systems might use a differ-
ent number of bytes.) In short, in  Listing   10.10   ,  marbles  is an array,  ar  is a pointer to the first 
element of  marbles , and the C connection between arrays and  pointers lets you use array nota-
tion with the pointer  ar .  

  Using Pointer Parameters  

 A function working on an array needs to know where to start and stop. The  sum()  function 
uses a pointer parameter to identify the beginning of the array and an integer parameter to 
indicate how many elements to process. (The pointer parameter also identifies the type of data 
in the array.) But this is not the only way to tell a function what it needs to know. Another 
way to describe the array is by passing two pointers, with the first indicating where the array 
starts (as before) and the second where the array ends.  Listing   10.11    illustrates this approach. It 
also uses  the fact that a pointer parameter is a variable, which means that instead of using an 
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index to indicate which element in the array to access, the function can alter the value of the 
pointer itself, making it point to each array element in turn.  

  Listing 10.11   The  sum_arr2.c  Program  

 /* sum_arr2.c -- sums the elements of an array */

  #include <stdio.h>

  #define SIZE 10

  int sump(int * start, int * end);

  int main(void)

  {

      int marbles[SIZE] = {20,10,5,39,4,16,19,26,31,20};

      long answer;

  

      answer = sump(marbles, marbles + SIZE);

      printf("The total number of marbles is %ld.\n", answer);

  

      return 0;

  }

  

  /* use pointer arithmetic   */

  int sump(int * start, int * end)

  {

      int total = 0;

  

      while (start < end)

      {

          total += *start; // add value to total

          start++;         // advance pointer to next element

      }

  

      return total;

  }   

 The pointer  start  begins by pointing to the first element of  marbles , so the assignment 
expression  total +=*start  adds the value of the first element (20) to  total . Then the expres-
sion  start++  increments the pointer variable  start  so that it points to the next element in 
the array. Because  start  points to type  int , C increments the value of  start  by the size of 
 int .  

 Note that the  sump()  function uses a different method from  sum()  to end the summation 
loop. The  sum()  function uses the number of elements as a second argument, and the loop 
uses that value as part of the loop test:  

  for( i = 0; i < n; i++)   
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 The  sump()  function, however, uses a second pointer to end the loop:  

  while (start < end)   

 Because the test is for inequality, the last element processed is the one just before the element 
pointed to by  end . This means that  end  actually points to the location after the final element 
in the array. C guarantees that when it allocates space for an array, a pointer to the first loca-
tion after the end of the array is a valid pointer. That makes constructions such as this one 
valid, because the final value that  start  gets in the loop is  end . Note that using this “past-the-
end” pointer makes the function call neat:  

  answer = sump(marbles, marbles + SIZE);   

 Because indexing starts at  0 ,  marbles + SIZE  points to the next element after the end. If  end  
pointed to the last element instead of to one past the end, you would have to use the following 
code instead:  

  answer = sump(marbles, marbles + SIZE - 1);   

 Not only is this code less elegant in appearance, it’s harder to remember, so it is more likely to 
lead to programming errors. By the way, although C guarantees that the pointer  marbles + 
SIZE  is a valid pointer, it makes no guarantees about  marbles[SIZE] , the value stored at that 
location, so a program should not attempt to access that location.  

 You can also condense the body of the loop to one line:  

  total += *start++;   

 The unary operators  *  and  ++  have the same precedence but associate from right to left. This 
means the  ++  applies to  start , not to  *start . That is, the pointer is incremented, not the 
value pointed to. The use of the postfix form ( start++  rather than  ++start ) means that the 
pointer is not incremented until after the pointed-to value is added to  total . If the program 
used  *++start , the order would be increment the pointer, then use the value pointed to. If 
the program used  (*start)++ , however, it would use the value of  start  and then increment 
the value, not the pointer. That would leave  the pointer pointing to the same element, but the 
element would contain a new number. Although the  *start++  notation is commonly used, 
the  *(start++)  notation is clearer.  Listing   10.12    illustrates these niceties of precedence.  

  Listing 10.12   The  order.c  Program  

 /* order.c -- precedence in pointer operations */

  #include <stdio.h>

  int data[2] = {100, 200};

  int moredata[2] = {300, 400};

  int main(void)

  {

      int * p1, * p2, * p3;

  

      p1 = p2 = data;
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      p3 = moredata;

      printf("  *p1 = %d,   *p2 = %d,     *p3 = %d\n",

                *p1     ,   *p2     ,     *p3);

      printf("*p1++ = %d, *++p2 = %d, (*p3)++ = %d\n",

              *p1++     , *++p2     , (*p3)++);

      printf("  *p1 = %d,   *p2 = %d,     *p3 = %d\n",

                *p1     ,   *p2     ,     *p3);

  

      return 0;

  }   

 Here is its output:  

    *p1 = 100,   *p2 = 100,     *p3 = 300

  *p1++ = 100, *++p2 = 200, (*p3)++ = 300

    *p1 = 200,   *p2 = 200,     *p3 = 301   

 The only operation that altered an array value is  (*p3)++ . The other two operations caused  p1  
and  p2  to advance to point to the next array element.   

  Comment: Pointers and Arrays  

 As you have seen, functions that process arrays actually use pointers as arguments, but you do 
have a choice between array notation and pointer notation for writing array-processing func-
tions. Using array notation, as in  Listing   10.10   , makes it more obvious that the function is 
working with arrays. Also, array notation has a more familiar look to programmers versed in 
other languages, such as FORTRAN, Pascal, Modula-2, or BASIC. Other programmers might be 
more accustomed to working with pointers and might find the pointer notation, such as that 
in  Listing   10.11   , more natural.  

 As far as C goes, the two expressions  ar[i]  and  *(ar+i)  are equivalent in meaning. Both 
work if  ar  is the name of an array, and both work if  ar  is a pointer variable. However, using an 
expression such as  ar++  only works if  ar  is a pointer variable.  

 Pointer notation, particularly when used with the increment operator, is closer to machine 
language and, with some compilers, leads to more efficient code. However, many programmers 
believe that the programmer’s main concerns should be correctness and clarity and that code 
optimization should be left to the compiler.    

  Pointer Operations  

 Just what can you do with pointers? C offers several basic operations you can perform on 
pointers, and the next program demonstrates eight of these possibilities. To show the results of 
each operation, the program prints the value of the pointer (which is the address to which it 
points), the value stored in the pointed-to address, and the address of the pointer itself. (If your 
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compiler doesn’t support the  %p  specifier, try  %u  or perhaps  %lu  for printing the addresses. If it 
doesn’t support the  %td  specifier, used for address differences, try  %d  or perhaps  %ld .)  

  Listing   10.13    shows eight basic operations that can be performed with pointer variables. In 
addition to these operations, you can use the relational operators to compare pointers.  

  Listing 10.13   The  ptr_ops.c  Program  

 // ptr_ops.c -- pointer operations

  #include <stdio.h>

  int main(void)

  {

      int urn[5] = {100,200,300,400,500};

      int * ptr1, * ptr2, *ptr3;

  

      ptr1 = urn;         // assign an address to a pointer

      ptr2 = &urn[2];     // ditto

                          // dereference a pointer and take

                          // the address of a pointer

      printf("pointer value, dereferenced pointer, pointer address:\n");

      printf("ptr1 = %p, *ptr1 =%d, &ptr1 = %p\n",

             ptr1, *ptr1, &ptr1);

  

      // pointer addition

      ptr3 = ptr1 + 4;

      printf("\nadding an int to a pointer:\n");

      printf("ptr1 + 4 = %p, *(ptr4 + 3) = %d\n",

              ptr1 + 4, *(ptr1 + 3));

      ptr1++;            // increment a pointer

      printf("\nvalues after ptr1++:\n");

      printf("ptr1  = %p, *ptr1 =%d, &ptr1 = %p\n",

             ptr1, *ptr1, &ptr1);

      ptr2--;            // decrement a pointer

      printf("\nvalues after --ptr2:\n");

      printf("ptr2 = %p, *ptr2 = %d, &ptr2 = %p\n",

             ptr2, *ptr2, &ptr2);

      --ptr1;            // restore to original value

      ++ptr2;            // restore to original value

      printf("\nPointers reset to original values:\n");

      printf("ptr1 = %p, ptr2 = %p\n", ptr1, ptr2);

                          // subtract one pointer from another

      printf("\nsubtracting one pointer from another:\n");

      printf("ptr2 = %p, ptr1 = %p, ptr2 - ptr1 = %td\n",

              ptr2, ptr1, ptr2 - ptr1);

                         // subtract an integer from a pointer

      printf("\nsubtracting an int from a pointer:\n");

      printf("ptr3 = %p, ptr3 -  2 = %p\n",
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              ptr3,  ptr3 - 2);

  

      return 0;

  }   

 Here is the output on one system:  

  pointer value, dereferenced pointer, pointer address:

  ptr1 = 0x7fff5fbff8d0, *ptr1 =100, &ptr1 = 0x7fff5fbff8c8

  

  adding an int to a pointer:

  ptr1 + 4 = 0x7fff5fbff8e0, *(ptr4 + 3) = 400

  

  values after ptr1++:

  ptr1 = 0x7fff5fbff8d4, *ptr1 =200, &ptr1 = 0x7fff5fbff8c8

  

  values after --ptr2:

  ptr2 = 0x7fff5fbff8d4, *ptr2 = 200, &ptr2 = 0x7fff5fbff8c0

  

  Pointers reset to original values:

  ptr1 = 0x7fff5fbff8d0, ptr2 = 0x7fff5fbff8d8

  

  subtracting one pointer from another:

  ptr2 = 0x7fff5fbff8d8, ptr1 = 0x7fff5fbff8d0, ptr2 - ptr1 = 2

  

  subtracting an int from a pointer:

  ptr3 = 0x7fff5fbff8e0, ptr3 - 2 = 0x7fff5fbff8d8   

 The following list describes the basic operations that can be performed with or on pointer 
variables:  

    ■    Assignment—    You can assign an address to a pointer. The assigned value can be, for 
example, an array name, a variable preceded by address operator ( & ), or another second 
pointer. In the example,  ptr1  is assigned the address of the beginning of the array  urn . 
This address happens to be memory cell number  0x7fff5fbff8d0 . The variable  ptr2  
gets the address of the third and last element,  urn[2] . Note that the address should be 
compatible with the pointer type. That is, you can’t assign the address of a  double  to a 
pointer-to- int , at least not without making an ill-advised type cast. C99/C11 enforces 
this rule.   

   ■    Value finding (dereferencing)—    The  *  operator gives the value stored in the pointed-to 
location. Therefore,  *ptr1  is initially  100 , the value stored at location  0x7fff5fbff8d0 .   

   ■    Taking a pointer address—    Like all variables, a pointer variable has an address and a 
value. The  &  operator tells you where the pointer itself is stored. In this example,  ptr1  
is stored in memory location  0x7fff5fbff8c8 . The content of that memory cell is 
 0x7fff5fbff8d0 , the address of  urn . So  &pt1  is a pointer to  pt1 , which, in turn, is a 
pointer to  urn[0] .   
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   ■    Adding an integer to a pointer—    You can use the  +  operator to add an integer to a 
pointer or a pointer to an integer. In either case, the integer is multiplied by the number 
of bytes in the pointed-to type, and the result is added to the original address. This 
makes  ptr1 + 4  the same as  &urn[4] . The result of addition is undefined if it lies 
outside of the array into which the original pointer points, except that the address one 
past the end element of the array is guaranteed to be valid.   

   ■    Incrementing a pointer—    Incrementing a pointer to an array element makes it move to 
the next element of the array. Therefore,  ptr1++  increases the numerical value of  ptr1  
by  4  (4 bytes per  int  on our system) and makes  ptr1  point to  urn[1]  (see  Figure   10.4   , 
which uses simplified addresses). Now  ptr1  has the value  0x7fff5fbff8d4  (the next 
array address), and  *ptr1  has the value  200  (the value of  urn[1] ). Note that the address 
of  ptr1  itself remains  0x7fff5fbff8c8 . After all, a variable doesn’t move around just 
because it changes value!  
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 Figure 10.4   Incrementing a type  int  pointer.          

   ■    Subtracting an integer from a pointer—    You can use the  -  operator to subtract an 
integer from a pointer; the pointer has to be the first operand and the integer value the 
second operand. The integer is multiplied by the number of bytes in the pointed-to type, 
and the result is subtracted from the original address. This makes  ptr3 - 2  the same as 
 &urn[2]  because  ptr3  points to  &urn[4] . The result of subtraction is undefined if it lies 
outside of the array into which the original pointer points, except that the address one 
past the end element of the array is guaranteed to be valid.   

   ■    Decrementing a pointer—    Of course, you can also decrement a pointer. In this example, 
decrementing  ptr2  makes it point to the second array element instead of the third. Note 
that you can use both the prefix and postfix forms of the increment and decrement 
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operators. Also note that both  ptr1  and  ptr2  wind up pointing to the same element, 
 urn[1] , before they get reset.   

   ■    Differencing—    You can find the difference between two pointers. Normally, you do this 
for two pointers to elements that are in the same array to find out how far apart the 
elements are. The result is in the same units as the type size. For example, in the output 
from  Listing   10.13   ,  ptr2 - ptr1  has the value  2 , meaning that these pointers point 
to objects separated by two  int s, not by 2 bytes. Subtraction is guaranteed to be a valid 
operation as long as both pointers point into the same array (or possibly to a position 
one past the end). Applying  the operation to pointers to two different arrays might 
produce a value or could lead to a runtime error.   

   ■    Comparisons—    You can use the relational operators to compare the values of two 
pointers, provided the pointers are of the same type.    

 Note that there are two forms of subtraction. You can subtract one pointer from another to get 
an integer, and you can subtract an integer from a pointer and get a pointer.  

 There are some cautions to remember when incrementing or decrementing a pointer. The 
computer does not keep track of whether a pointer still points to an array element. C guar-
antees that, given an array, a pointer to any array element, or to the position after the last 
element, is a valid pointer. But the effect of incrementing or decrementing a pointer beyond 
these limits is undefined. Also, you can dereference a pointer to any array element. However, 
even though a pointer to one past the end element is valid, it’s not guaranteed that such a one-
past-the-end pointer can be dereferenced.    

  Dereferencing an Uninitialized Pointer  

 Speaking of cautions, there is one rule you should burn into your memory: Do not dereference 
an uninitialized pointer. For example, consider the following:  

  int * pt;  // an uninitialized pointer

  *pt = 5;   // a terrible error   

 Why is this so bad? The second line means store the value  5  in the location to which  pt  
points. But  pt , being uninitialized, has a random value, so there is no knowing where the  5  will 
be placed. It might go somewhere harmless, it might overwrite data or code, or it might cause 
the program to crash. Remember, creating a pointer only allocates memory to store the pointer 
itself; it doesn’t allocate memory to store data. Therefore, before you use a pointer, it should 
be assigned a memory location that has already been allocated. For example, you can assign 
the address of  an existing variable to the pointer. (This is what happens when you use a func-
tion with a pointer parameter.) Or you can use the  malloc()  function, as discussed in  Chapter 
  12   , to allocate memory first. Anyway, to drive the point home, do not dereference an uninitial-
ized pointer!  

  double * pd;  // uninitialized pointer

  *pd = 2.4;    // DON'T DO IT    



ptg11524036

412 Chapter 10 Arrays and Pointers

 Given  

  int urn[3];

  int * ptr1, * ptr2;   

 the following are some valid and invalid statements:  

  Valid     Invalid   

  ptr1++;     urn++;   

  ptr2 = ptr1 + 2;     ptr2 = ptr2 + ptr1;   

  ptr2 = urn + 1;     ptr2 = urn * ptr1;   

 The valid operations open many possibilities. C programmers create arrays of pointers, pointers 
to functions, arrays of pointers to pointers, arrays of pointers to functions, and so on. Relax, 
though—we’ll stick to the basic uses we have already unveiled. The first basic use for pointers 
is to communicate information to and from functions. You already know that you must use 
pointers if you want a function to affect variables in the calling function. The second use is in 
functions designed to manipulate arrays. Let’s look at another programming example using 
functions and arrays.   

  Protecting Array Contents  

 When you write a function that processes a fundamental type, such as  int , you have a choice 
of passing the  int  by value or of passing a pointer-to- int . The usual rule is to pass quantities 
by value unless the program needs to alter the value, in which case you pass a pointer. Arrays 
don’t give you that choice; you  must  pass a pointer. The reason is efficiency. If a function 
passed an array by value, it would have to allocate enough space to hold a copy of the original 
array and then copy all the data from the original array to the new  array. It is much quicker to 
pass the address of the array and have the function work with the original data.  

 This technique can cause problems. The reason C ordinarily passes data by value is to preserve 
the integrity of the data. If a function works with a copy of the original data, it won’t acciden-
tally modify the original data. But, because array-processing functions do work with the origi-
nal data, they  can  modify the array. Sometimes that’s desirable. For example, here’s a function 
that adds the same value to each member of an array:  

  void add_to(double ar[], int n, double val)

  {

      int i;

      for( i = 0; i < n; i++)

          ar[i] += val;

  }   
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 Therefore, the function call  

  add_to(prices, 100, 2.50);   

 causes each element in the  prices  array to be replaced by a value larger by 2.5; this function 
modifies the contents of the array. It can do so because, by working with pointers, the function 
uses the original data.  

 Other functions, however, do not have the intent of modifying data. The following function, 
for example, is intended to find the sum of the array’s contents; it shouldn’t change the array. 
However, because  ar  is really a pointer, a programming error could lead to the original data 
being corrupted. Here, for example, the expression  ar[i]++  results in each element having 1 
added to its value:  

  int sum(int ar[], int n)  // faulty code

  {

      int i;

      int total = 0;

  

      for( i = 0; i < n; i++)

          total += ar[i]++;   // error increments each element

      return total;

  }   

  Using  const  with Formal Parameters  

 With K&R C, the only way to avoid this sort of error is to be vigilant. Since ANSI C, there is 
an alternative. If a function’s intent is that it not change the contents of the array, use the 
keyword  const  when declaring the formal parameter in the prototype and in the function defi-
nition. For example, the prototype and definition for  sum()  should look like this:  

  int sum(const int ar[], int n);  /* prototype  */

  

  int sum(const int ar[], int n)   /* definition */

  {

      int i;

      int total = 0;

  

      for( i = 0; i < n; i++)

          total += ar[i];

      return total;

  }   

 This tells the compiler that the function should treat the array pointed to by  ar  as though the 
array contains constant data. Then, if you accidentally use an expression such as  ar[i]++ , the 
compiler can catch it and generate an error message, telling you that the function is attempting 
to alter constant data.  
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 It’s important to understand that using  const  this way does not require that the original array 
 be  constant; it just says that the function has to treat the array  as though  it were constant. Using 
 const  this way provides the protection for arrays that passing by value provides for fundamen-
tal types; it prevents a function from modifying data in the calling function. In general, if you 
write a function intended to modify an array, don’t use  const  when declaring the array param-
eter. If you write a function not intended to modify an array, do use  const  when declaring the 
array parameter.  

 In the program shown in  Listing   10.14   , one function displays an array and one function multi-
plies each element of an array by a given value. Because the first function should not alter 
the array, it uses  const . Because the second function has the intent of modifying the array, it 
doesn’t use  const .  

  Listing 10.14   The  arf.c  Program  

 /* arf.c -- array functions */

  #include <stdio.h>

  #define SIZE 5

  void show_array(const double ar[], int n);

  void mult_array(double ar[], int n, double mult);

  int main(void)

  {

      double dip[SIZE] = {20.0, 17.66, 8.2, 15.3, 22.22};

  

      printf("The original dip array:\n");

      show_array(dip, SIZE);

      mult_array(dip, SIZE, 2.5);

      printf("The dip array after calling mult_array():\n");

      show_array(dip, SIZE);

  

      return 0;

  }

  

  /* displays array contents */

  void show_array(const double ar[], int n)

  {

      int i;

  

      for (i = 0; i < n; i++)

          printf("%8.3f ", ar[i]);

      putchar('\n');

  }

  

  /* multiplies each array member by the same multiplier */

  void mult_array(double ar[], int n, double mult)

  {

      int i;
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      for (i = 0; i < n; i++)

          ar[i] *= mult;

  }   

 Here is the output:  

  The original dip array:

    20.000   17.660    8.200   15.300   22.220

  The dip array after calling mult_array():

    50.000   44.150   20.500   38.250   55.550   

 Note that both functions are type  void . The  mult_array()  function does provide new values 
to the  dip  array, but not by using the  return  mechanism.   

  More About  const   

 Earlier, you saw that you can use  const  to create symbolic constants:  

  const double PI = 3.14159;   

 That was something you could do with the  #define  directive, too, but  const  additionally lets 
you create constant arrays, constant pointers, and pointers to constants.  

  Listing   10.4    showed how to use the  const  keyword to protect an array:  

  #define MONTHS 12

  ...

  const int days[MONTHS] = {31,28,31,30,31,30,31,31,30,31,30,31};   

 If the program code subsequently tries to alter the array, you’ll get a compile-time error 
message:  

  days[9] = 44;    /* compile error */   

 Pointers to constants can’t be used to change values. Consider the following code:  

  double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

  const double * pd = rates;    // pd points to beginning of the array   

 The second line of code declares that the type  double  value to which  pd  points is a  const . 
That means you can’t use  pd  to change pointed-to values:  

  *pd = 29.89;      // not allowed

  pd[2] = 222.22;   // not allowed

  rates[0] = 99.99; // allowed because rates is not const   

 Whether you use pointer notation or array notation, you are not allowed to use  pd  to change 
the value of pointed-to data. Note, however, that because  rates  was not declared as a constant, 
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you can still use  rates  to change values. Also, note that you can make  pd  point somewhere 
else:  

  pd++;       /* make pd point to rates[1] -- allowed */   

 A pointer-to-constant is normally used as a function parameter to indicate that the function 
won’t use the pointer to change data. For example, the  show_array()  function from  Listing 
  10.14    could have been prototyped as  

  void show_array(const double *ar, int n);   

 There are some rules you should know about pointer assignments and  const . First, it’s valid to 
assign the address of either constant data or non-constant data to a pointer-to-constant:  

  double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

  const double locked[4] = {0.08, 0.075, 0.0725, 0.07};

  const double * pc = rates;    // valid

  pc = locked;                  // valid

  pc = &rates[3];               // valid   

 However, only the addresses of non-constant data can be assigned to regular pointers:  

  double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

  const double locked[4] = {0.08, 0.075, 0.0725, 0.07};

  double * pnc = rates;          // valid

  pnc = locked;                  // not valid

  pnc = &rates[3];               // valid   

 This is a reasonable rule. Otherwise, you could use the pointer to change data that was 
supposed to be constant.  

 A practical consequence of these rules is that a function such as  show_array()  can accept 
the names of regular arrays  and  of constant arrays as actual arguments, because either can be 
assigned to a pointer-to-constant:  

  show_array(rates, 5);    // valid

  show_array(locked, 4);   // valid   

 Therefore, using  const  in a function parameter definition not only protects data, it also allows 
the function to work with arrays that have been declared  const .  

 A function such as  mult_array() , however, shouldn’t be passed the name of a constant array 
as an argument:  

  mult_array(rates, 5, 1.2);    // valid

  mult_array(locked, 4, 1.2);   // bad idea   

 What the C standard says is that an attempt to modify  const  data, such as  locked , using a 
non- const  identifier, such as the  mult_array()  formal argument  ar , results in undefined 
behavior.  
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 There are more possible uses of  const . For example, you can declare and initialize a pointer so 
that it can’t be made to point elsewhere. The trick is the placement of the keyword  const :  

  double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

  double * const pc = rates;    // pc points to beginning of the array

  pc = &rates[2];               // not allowed to point elsewhere

  *pc = 92.99;                  // ok -- changes rates[0]   

 Such a pointer can still be used to change values, but it can point only to the location origi-
nally assigned to it.  

 Finally, you can use  const  twice to create a pointer that can neither change where it’s pointing 
nor change the value to which it points:  

  double rates[5] = {88.99, 100.12, 59.45, 183.11, 340.5};

  const double * const pc = rates;

  pc = &rates[2];               // not allowed

  *pc = 92.99;                  // not allowed     

  Pointers and Multidimensional Arrays  

 How do pointers relate to multidimensional arrays? And why would you want to know? 
Functions that work with multidimensional arrays do so with pointers, so you need some 
further pointer background before working with such functions. As to the first question, let’s 
look at some examples now to find the answer. To simplify the discussion, let’s use a small 
array. Suppose you have this declaration:  

  int zippo[4][2];  /* an array of arrays of ints */   

 Then  zippo , being the name of an array, is the address of the first element of the array. In this 
case, the first element of  zippo  is itself an array of two  int s, so  zippo  is the address of an array 
of two  int s. Let’s analyze that further in terms of pointer properties:  

    ■   Because  zippo  is the address of the array’s first element,  zippo  has the same value as 
 &zippo[0] . Next,  zippo[0]  is itself an array of two integers, so  zippo[0]  has the same 
value as  &zippo[0][0] , the address of its first element, an  int . In short,  zippo[0]  is 
the address of an  int -sized object, and  zippo  is the address of a two- int -sized object. 
Because both the integer and the array of two integers begin at the same location, both 
 zippo  and  zippo[0]  have the same numeric value.   

   ■   Adding 1 to a pointer or address yields a value larger by the size of the referred-to object. 
In this respect,  zippo  and  zippo[0]  differ, because  zippo  refers to an object two  int s 
in size, and  zippo[0]  refers to an object one  int  in size. Therefore,  zippo + 1  has a 
different value from  zippo[0] + 1 .   

   ■   Dereferencing a pointer or an address (applying the  *  operator or else the  []  operator 
with an index) yields the value represented by the referred-to object. Because  zippo[0]  is 
the address of its first element, ( zippo[0][0] ),  *(zippo[0])  represents the value stored 
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in  zippo[0][0] , an  int  value. Similarly,  *zippo  represents the value of its first element, 
 zippo[0] , but  zippo[0]  itself is the address of an  int . It’s the address  &zippo[0][0] , 
so  *zippo  is  &zippo[0][0] . Applying the dereferencing operator to both expressions 
implies that  **zippo  equals  *&zippo[0][0] , which reduces to  zippo[0][0] , an  int . 
In short,  zippo  is the address of an address and must be dereferenced twice to get an 
ordinary value.  An address of an address or a pointer of a pointer is an example of  double 
indirection .    

 Clearly, increasing the number of array dimensions increases the complexity of the pointer 
view. At this point, most students of C begin realizing why pointers are considered one of the 
more difficult aspects of the language. You might want to study the preceding points carefully 
and see how they are illustrated in  Listing   10.15   , which displays some address values and array 
contents.  

  Listing 10.15   The  zippo1.c  Program  

 /* zippo1.c --  zippo info */

  #include <stdio.h>

  int main(void)

  {

      int zippo[4][2] = { {2,4}, {6,8}, {1,3}, {5, 7} };

  

      printf("   zippo = %p,    zippo + 1 = %p\n",

                 zippo,         zippo + 1);

      printf("zippo[0] = %p, zippo[0] + 1 = %p\n",

              zippo[0],      zippo[0] + 1);

      printf("  *zippo = %p,   *zippo + 1 = %p\n",

                *zippo,        *zippo + 1);

      printf("zippo[0][0] = %d\n", zippo[0][0]);

      printf("  *zippo[0] = %d\n", *zippo[0]);

      printf("    **zippo = %d\n", **zippo);

      printf("      zippo[2][1] = %d\n", zippo[2][1]);

      printf("*(*(zippo+2) + 1) = %d\n", *(*(zippo+2) + 1));

  

      return 0;

  }   

 Here is the output for one system:  

     zippo = 0x0064fd38,    zippo + 1 = 0x0064fd40

  zippo[0] = 0x0064fd38, zippo[0] + 1 = 0x0064fd3c

    *zippo = 0x0064fd38,   *zippo + 1 = 0x0064fd3c

  zippo[0][0] = 2

    *zippo[0] = 2
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      **zippo = 2

        zippo[1][2] = 3

  *(*(zippo+1) + 2) = 3   

 Other systems might display different address values and address formats, but the relationships 
will be the same as described here. The output shows that the address of the two-dimensional 
array,  zippo , and the address of the one-dimensional array,  zippo[0] , are the same. Each 
is the address of the corresponding array’s first element, and this is the same numerically as 
 &zippo[0][0] .  

 Nonetheless, there is a difference. On our system,  int  is 4 bytes. As discussed earlier,  zippo[0]  
points to a 4-byte data object. Adding 1 to  zippo[0]  should produce a value larger by 4, which 
it does. (In hex,  38 + 4  is  3c .) The name  zippo  is the address of an array of two  int s, so it 
identifies an 8-byte data object. Therefore, adding 1 to  zippo  should produce an address 8 
bytes larger, which it does. (In hex,  40  is  8  larger than  38 .)  

 The program shows that  zippo[0]  and  *zippo  are identical, and they should be. Next, it 
shows that the name of a two-dimensional array has to be dereferenced twice to get a value 
stored in the array. This can be done by using the indirection operator ( * ) twice or by using the 
bracket operator ( [ ] ) twice. (It also can be done by using one  *  and one set of  [ ] , but let’s 
not get carried away by all the possibilities.)  

 In particular, note that the pointer notation equivalent of  zippo[2][1]  is  *(*(zippo+2) + 
1) . You probably should make the effort at least once in your life to break this down. Let’s 
build up the expression in steps:  

  zippo    the address of the first two- int  element  

  zippo+2    the address of the third two- int  element  

  *(zippo+2)    the third element, a two- int  array, hence the address of its first ele-
ment, an  int   

  *(zippo+2) + 1    the address of the second element of the two- int  array, also an  int   

  *(*(zippo+2) + 1)    the value of the second  int  in the third row ( zippo[2][1] )  

 The point of the baroque display of pointer notation is not that you can use it instead of the 
simpler  zippo[2][1]  but that, if you happen to have a pointer to a two-dimensional array and 
want to extract a value, you can use the simpler array notation rather than pointer notation.  

  Figure   10.5    provides another view of the relationships among array addresses, array contents, 
and pointers.  
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 Figure 10.5   An array of arrays.         

  Pointers to Multidimensional Arrays  

 How would you declare a pointer variable  pz  that can point to a two-dimensional array such as 
 zippo ? Such a pointer could be used, for example, in writing a function to deal with  zippo -like 
arrays. Will the type pointer-to- int  suffice? No. That type is compatible with  zippo[0] , which 
points to a single  int . But  zippo  is the address of its first element, which is an array of two 
 int s. Hence,  pz  must point to an array of two  int s, not to a single  int . Here is what you can 
do:  

  int (* pz)[2];  // pz points to an array of 2 ints   

 This statement says that  pz  is a pointer to an array of two  int s. Why the parentheses? Well,  []  
has a higher precedence than  * . Therefore, with a declaration such as  

  int * pax[2];  // pax is an array of two pointers-to-int   

 you apply the brackets first, making  pax  an array of two somethings. Next, you apply the  * , 
making  pax  an array of two pointers. Finally, use the  int , making  pax  an array of two pointers 
to  int . This declaration creates  two  pointers to single  int s, but the original version uses paren-
theses to apply the  *  first, creating  one  pointer to an array of two  int s.  Listing   10.16    shows 
how you can use such a pointer just like the original array.  

  Listing 10.16   The  zippo2.c  Program  

 /* zippo2.c --  zippo info via a pointer variable */

  #include <stdio.h>

  int main(void)

  {

      int zippo[4][2] = { {2,4}, {6,8}, {1,3}, {5, 7} };

      int (*pz)[2];

      pz = zippo;

  

      printf("   pz = %p,    pz + 1 = %p\n",
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                 pz,         pz + 1);

      printf("pz[0] = %p, pz[0] + 1 = %p\n",

              pz[0],      pz[0] + 1);

      printf("  *pz = %p,   *pz + 1 = %p\n",

                *pz,        *pz + 1);

      printf("pz[0][0] = %d\n", pz[0][0]);

      printf("  *pz[0] = %d\n", *pz[0]);

      printf("    **pz = %d\n", **pz);

      printf("      pz[2][1] = %d\n", pz[2][1]);

      printf("*(*(pz+2) + 1) = %d\n", *(*(pz+2) + 1));

  

      return 0;

  }   

 Here is the new output:  

  pz = 0x0064fd38,    pz + 1 = 0x0064fd40

  pz[0] = 0x0064fd38, pz[0] + 1 = 0x0064fd3c

    *pz = 0x0064fd38,   *pz + 1 = 0x0064fd3c

  pz[0][0] = 2

    *pz[0] = 2

      **pz = 2

        pz[2][1] = 3

  *(*(pz+2) + 1) = 3   

 Again, you might get different addresses, but the relationships will be the same. As promised, 
you can use notation such as  pz[2][1] , even though  pz  is a pointer, not an array name. More 
generally, you can represent individual elements by using array notation or pointer notation 
with either an array name or a pointer:  

  zippo[m][n] == *(*(zippo + m) + n)

  pz[m][n] == *(*(pz + m) + n)    

  Pointer Compatibility  

 The rules for assigning one pointer to another are tighter than the rules for numeric types. For 
example, you can assign an  int  value to a  double  variable without using a type conversion, 
but you can’t do the same for pointers to these two types:  

  int n = 5;

  double x;

  int * p1 = &n;

  double * pd    = &x;

  x = n;                // implicit type conversion

  pd = p1;              // compile-time error   
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 These restrictions extend to more complex types. Suppose we have the following declarations:  

  int * pt;

  int (*pa)[3];

  int ar1[2][3];

  int ar2[3][2];

  int **p2;       // a pointer to a pointer   

 Then we have the following:  

  pt = &ar1[0][0];  // both pointer-to-int

  pt = ar1[0];      // both pointer-to-int

  pt = ar1;         // not valid

  pa = ar1;         // both pointer-to-int[3]

  pa = ar2;         // not valid

  p2 = &pt;         // both pointer-to-int *

  *p2 = ar2[0];     // both pointer-to-int

  p2 = ar2;         // not valid   

 Notice that the nonvalid assignments all involve two pointers that don’t point to the same 
type. For example,  pt  points to a single  int , but  ar1  points to an array of three  int s. Similarly, 
 pa  points to an array of two  int s, so it is compatible with  ar1 , but not with  ar2 , which points 
to an array of two  int s.  

 The last two examples are somewhat tricky. The variable  p2  is a pointer-to-pointer-to- int , 
whereas  ar2  is a pointer-to-array-of-two- int s (or, more concisely, pointer-to- int[2] ). So  p2  
and  ar2  are of different types, and you can’t assign  ar2  to  p2 . But  *p2  is type pointer-to- int , 
making it compatible with  ar2[0] . Recall that  ar2[0]  is a pointer to its first element,  ar2[0]
[0] , making  ar2[0]  type pointer-to- int  also.  

 In general, multiple indirection is tricky. For instance, consider the next snippet of code:  

  int x = 20;

  const int y = 23;

  int * p1 = &x;

  const int * p2 = &y;

  const int ** pp2;

  p1 = p2;   // not safe -- assigning const to non-const

  p2 = p1;   // valid    -- assigning non-const to const

  pp2 = &p1; // not safe -- assigning nested pointer types   

 As we saw earlier, assigning a  const  pointer to a non- const  pointer is not safe, because you 
could use the new pointer to alter  const  data. While the code would compile, perhaps with a 
warning, the effect of executing the code is undefined. But assigning a non- const  pointer to a 
 const  pointer is okay, provided that you’re dealing with just one level of indirection:  

  p2 = p1;   // valid     -- assigning non-const to const   
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 But such assignments no longer are safe when you go to two levels of indirection. For instance, 
you could do something like this:  

  const int **pp2;

  int *p1;

  const int n = 13;

  pp2 = &p1; // allowed, but const qualifier disregarded

  *pp2 = &n; // valid, both const, but sets p1 to point at n

  *p1 = 10;  // valid, but tries to change const n   

 What happens? As mentioned before, the standard says the effect of altering const data using 
a non-const pointer is undefined. For instance, compiling a short program with this code 
using gcc in Terminal (OS X’s access to the underlying Unix system) led to n ending up with 
the value 13, but using clang in the same environment led to a value of 10. Both compilers did 
warn about incompatible pointer types. You can, of course, ignore the warnings, but you’d best 
not rely upon the results of running the program.    

  C  const  and C++  const   

 C and C++ use  const  similarly, but not identically. One difference is that C++ allows using a 
 const  integer value to declare an array size and C is more restrictive. Another is that C++ has 
stricter rules about pointer assignments:  

  const int y;

  const int * p2 = &y;

  int * p1;

  p1 = p2;   // error in C++, possible warning in C   

 In C++ you are not allowed to assign a  const  pointer to a non- const  pointer. In C, you can 
make this assignment, but the behavior is undefined if you try to use  p1  to alter  y .    

  Functions and Multidimensional Arrays  

 If you want to write functions that process two-dimensional arrays, you need to understand 
pointers well enough to make the proper declarations for function arguments. In the function 
body itself, you can usually get by with array notation.  

 Let’s write a function to deal with two-dimensional arrays. One possibility is to use a  for  loop 
to apply a one-dimensional array function to each row of the two-dimensional array. That is, 
you could do something like the following:  

  int junk[3][4] = { {2,4,5,8}, {3,5,6,9}, {12,10,8,6} };

  int i, j;

  int total = 0;

  for (i = 0; i < 3 ; i++)

      total += sum(junk[i], 4);  // junk[i] -- one-dimensional array   
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 Remember, if  junk  is a two-dimensional array,  junk[i]  is a one-dimensional array, which you 
can visualize as being one row of the two-dimensional array. Here, the  sum()  function calcu-
lates the subtotal of each row of the two-dimensional array, and the  for  loop adds up these 
subtotals.  

 However, this approach loses track of the column-and-row information. In this application 
(summing all), that information is unimportant, but suppose each row represented a year and 
each column a month. Then you might want a function to, say, total up individual columns. 
In that case, the function should have the row and column information available. This can be 
accomplished by declaring the right kind of formal variable so that the function can pass the 
array properly. In this case, the array  junk  is an array of three arrays of four  int s. As the earlier 
discussion pointed out, that means  junk  is a  pointer to an array of four  int s. You can declare a 
function parameter of this type like this:  

  void somefunction( int (* pt)[4] );   

 Alternatively, if (and only if)  pt  is a formal parameter to a function, you can declare it as 
follows:  

  void somefunction( int pt[][4] );   

 Note that the first set of brackets is empty. The empty brackets identify  pt  as being a pointer. 
Such a variable can then be used in the same way as  junk . That is what we have done in the 
next example, shown in  Listing   10.17   . Notice that the listing exhibits three equivalent alterna-
tives for the prototype syntax.  

  Listing 10.17   The  array2d.c  Program  

 // array2d.c -- functions for 2d arrays

  #include <stdio.h>

  #define ROWS 3

  #define COLS 4

  void sum_rows(int ar[][COLS], int rows);

  void sum_cols(int [][COLS], int );    // ok to omit names

  int sum2d(int (*ar)[COLS], int rows); // another syntax

  int main(void)

  {

       int junk[ROWS][COLS] = {

              {2,4,6,8},

              {3,5,7,9},

              {12,10,8,6}

       };

  

       sum_rows(junk, ROWS);

       sum_cols(junk, ROWS);

       printf("Sum of all elements = %d\n", sum2d(junk, ROWS));

  

       return 0;
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  }

  

  void sum_rows(int ar[][COLS], int rows)

  {

      int r;

      int c;

      int tot;

  

      for (r = 0; r < rows; r++)

      {

          tot = 0;

          for (c = 0; c < COLS; c++)

              tot += ar[r][c];

          printf("row %d: sum = %d\n", r, tot);

      }

  }

  

  void sum_cols(int ar[][COLS], int rows)

  {

       int r;

      int c;

      int tot;

  

      for (c = 0; c < COLS; c++)

      {

          tot = 0;

          for (r = 0; r < rows; r++)

              tot += ar[r][c];

          printf("col %d: sum = %d\n", c, tot);

      }

  }

  

  int sum2d(int ar[][COLS], int rows)

  {

      int r;

      int c;

      int tot = 0;

  

      for (r = 0; r < rows; r++)

          for (c = 0; c < COLS; c++)

              tot += ar[r][c];

  

      return tot;

  }   
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 Here is the output:  

  row 0: sum = 20

  row 1: sum = 24

  row 2: sum = 36

  col 0: sum = 17

  col 1: sum = 19

  col 2: sum = 21

  col 3: sum = 23

  Sum of all elements = 80   

 The program in  Listing   10.17    passes as arguments the name  junk , which is a pointer to the 
first element, a subarray, and the symbolic constant  ROWS , representing  3 , the number of rows. 
Each function then treats  ar  as an array of arrays of four  int s. The number of columns is built 
in to the function, but the number of rows is left open. The same function will work with, 
say, a 12×4 array if 12 is passed as the number of rows. That’s because  rows  is the number of 
elements; however, because each element is an array, or row,  rows  becomes the number of  
rows.  

 Note that  ar  is used in the same fashion as  junk  is used in  main() . This is possible because  ar  
and  junk  are the same type: pointer-to-array-of-four- int s.  

 Be aware that the following declaration will not work properly:  

  int sum2(int ar[][], int rows); // faulty declaration   

 Recall that the compiler converts array notation to pointer notation. This means, for example, 
that  ar[1]  will become  ar+1 . For the compiler to evaluate this, it needs to know the size object 
to which  ar  points. The declaration  

  int sum2(int ar[][4], int rows); // valid declaration   

 says that  ar  points to an array of four  int s (hence, to an object 16 bytes long on our system), 
so  ar+1  means “add 16 bytes to the address.” With the empty-bracket version, the compiler 
would not know what to do.  

 You can also include a size in the other bracket pair, as shown here, but the compiler ignores it:  

  int sum2(int ar[3][4], int rows); // valid declaration, 3 ignored   

 This is convenient for those who use  typedef s (mentioned in  Chapter   5   , “Operators, 
Expressions, and Statements,” and discussed in  Chapter   14   , “Structures and Other Data 
Forms”):  

  typedef int arr4[4];              // arr4 array of 4 int

  typedef arr4 arr3x4[3];           // arr3x4 array of 3 arr4

  int sum2(arr3x4 ar, int rows);    // same as next declaration

  int sum2(int ar[3][4], int rows); // same as next declaration

  int sum2(int ar[][4], int rows);  // standard form   
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 In general, to declare a pointer corresponding to an  N -dimensional array, you must supply 
values for all but the leftmost set of brackets:  

  int sum4d(int ar[][12][20][30], int rows);   

 That’s because the first set of brackets indicates a pointer, whereas the rest of the brack-
ets describe the type of data object being pointed to, as the following equivalent prototype 
illustrates:  

  int sum4d(int (*ar)[12][20][30], int rows);  // ar a pointer   

 Here,  ar  points to a 12×20×30 array of  int s.    

  Variable-Length Arrays (VLAs)  

 You might have noticed an oddity about functions dealing with two-dimensional arrays: You 
can describe the number of rows with a function parameter, but the number of columns is built 
in to the function. For example, look at this definition:  

  #define COLS 4

  int sum2d(int ar[][COLS], int rows)

  {

      int r;

      int c;

      int tot = 0;

  

      for (r = 0; r < rows; r++)

          for (c = 0; c < COLS; c++)

              tot += ar[r][c];

      return tot;

  }   

 Next, suppose the following arrays have been declared:  

  int array1[5][4];

  int array2[100][4];

  int array3[2][4];   

 You can use the  sum2d()  function with any of these arrays:  

  tot = sum2d(array1, 5);   // sum a 5 x 4 array

  tot = sum2d(array2, 100); // sum a 100 x 4 array

  tot = sum2d(array3, 2);   // sum a 2 x 4 array   

 That’s because the number of rows is passed to the  rows  parameter, a variable. But if you 
wanted to sum a 6×5 array, you would need to use a new function, one for which  COLS  is 
defined to be  5 . This behavior is a result of the fact that you have to use constants for array 
dimensions; therefore, you can’t replace  COLS  with a variable.  
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 If you really want to create a single function that will work with any size two-dimensional 
array, you can, but it’s awkward to do. (You have to pass the array as a one-dimensional array 
and have the function calculate where each row starts.) Furthermore, this technique doesn’t 
mesh smoothly with FORTRAN subroutines, which do allow one to specify both dimensions in 
a function call. FORTRAN might be a hoary old programming language, but over the decades 
experts in the field of numerical calculations have developed many useful computational librar-
ies in FORTRAN. C is being positioned to take over from FORTRAN,  so the ability to convert 
FORTRAN libraries with a minimum of fuss is useful.  

 This need was the primary impulse for C99 introducing variable-length arrays, which allow you 
to use variables when dimensioning an array. For example, you can do this:  

  int quarters = 4;

  int regions = 5;

  double sales[regions][quarters]; // a VLA   

 As mentioned earlier, VLAs have some restrictions. They need to have the automatic storage 
class, which means they are declared either in a function without using the  static  or  extern  
storage class modifiers ( Chapter   12   ) or as function parameters. Also, you can’t initialize them in 
a declaration. Finally, under C11, VLAs are an optional feature rather than a mandatory feature, 
as they were under C99.  

  Note   VLAs Do Not Change Size  

 The term  variable  in variable-length array does not mean that you can modify the length of the 
array after you create it. Once created, a VLA keeps the same size. What the term  variable  
does mean is that you can use a variable when specifying the array dimensions when first cre-
ating the array.   

 Because VLAs are a new addition to the language, support for them is incomplete at the 
present. Let’s look at a simple example that shows how to write a function that will sum the 
contents of any two-dimensional array of  int s.  

 First, here’s how to declare a function with a two-dimensional VLA argument:  

  int sum2d(int rows, int cols, int ar[rows][cols]);  // ar a VLA   

 Note that the first two parameters ( rows  and  cols ) are used as dimensions for declaring the 
array parameter  ar . Because the  ar  declaration uses  rows  and  cols , they have to be declared 
before  ar  in the parameter list. Therefore, the following prototype is in error:  

  int sum2d(int ar[rows][cols], int rows, int cols); // invalid order   

 The C99/C11 standard says you can omit names from the prototype; but in that case, you need 
to replace the omitted dimensions with asterisks:  

  int sum2d(int, int, int ar[*][*]);  // ar a VLA, names omitted   
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 Second, here’s how to define the function:  

  int sum2d(int rows, int cols, int ar[rows][cols])

  {

      int r;

      int c;

      int tot = 0;

  

      for (r = 0; r < rows; r++)

          for (c = 0; c < cols; c++)

              tot += ar[r][c];

      return tot;

  }   

 Aside from the new function header, the only difference from the classic C version of this func-
tion ( Listing   10.17   ) is that the constant  COLS  has been replaced with the variable  cols . The 
presence of the variable length array in the function header is what makes this change possible. 
Also, having variables that represent both the number of rows and columns lets us use the new 
 sum2d()  with any size of two-dimensional array of  int s.  Listing   10.18    illustrates this point. 
However, it does require a C compiler that implements the VLA feature. It also demonstrates 
that this VLA-based function can be used with either  traditional C arrays or with a variable-
length array.  

  Listing 10.18   The  vararr2d.c  Program  

 //vararr2d.c -- functions using VLAs

  #include <stdio.h>

  #define ROWS 3

  #define COLS 4

  int sum2d(int rows, int cols, int ar[rows][cols]);

  int main(void)

  {

       int i, j;

       int rs = 3;

       int cs = 10;

       int junk[ROWS][COLS] = {

              {2,4,6,8},

              {3,5,7,9},

              {12,10,8,6}

       };

  

       int morejunk[ROWS-1][COLS+2] = {

              {20,30,40,50,60,70},

              {5,6,7,8,9,10}

       };

  

       int varr[rs][cs];  // VLA
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       for (i = 0; i < rs; i++)

           for (j = 0; j < cs; j++)

               varr[i][j] = i * j + j;

  

       printf("3x5 array\n");

       printf("Sum of all elements = %d\n",

               sum2d(ROWS, COLS, junk));

  

       printf("2x6 array\n");

       printf("Sum of all elements = %d\n",

               sum2d(ROWS-1, COLS+2, morejunk));

  

       printf("3x10 VLA\n");

       printf("Sum of all elements = %d\n",

                sum2d(rs, cs, varr));

  

       return 0;

  }

  

  // function with a VLA parameter

  int sum2d(int rows, int cols, int ar[rows][cols])

  {

      int r;

      int c;

      int tot = 0;

  

      for (r = 0; r < rows; r++)

          for (c = 0; c < cols; c++)

              tot += ar[r][c];

  

      return tot;

  }   

 Here is the output:  

  3x5 array

  Sum of all elements = 80

  2x6 array

  Sum of all elements = 315

  3x10 VLA

  Sum of all elements = 270   

 One point to note is that a VLA declaration in a function definition parameter list doesn’t actu-
ally create an array. Just as with the old syntax, the VLA name really is a pointer. This means a 
function with a VLA parameter actually works with the data in the original array, and therefore 
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has the ability to modify the array passed as an argument. The following snippet points out 
when a pointer is declared and when an actual array is declared:  

      int thing[10][6];

      twoset(10,6,thing);

      ...

  }

  void twoset (int n, int m, int ar[n][m])  // ar a pointer to

                                            // an array of m ints

  {

      int temp[n][m];     // temp an n x m array of int

      temp[0][0] = 2;     // set an element of temp to 2

      ar[0][0] = 2;       // set thing[0][0] to 2

  }   

 When  twoset()  is called as shown,  ar  becomes a pointer to  thing[0] , and  temp  is created 
as a 10×6 array. Because both  ar  and  thing  are pointers to  thing[0] ,  ar[0][0]  accesses the 
same data location as  thing[0][0] .  

 Variable-length arrays also allow for dynamic memory allocation. This means you can specify 
the size of the array while the program is running. Regular C arrays have static memory allo-
cation, meaning the size of the array is determined at compile time. That’s because the array 
sizes, being constants, are known to the compiler.  Chapter   12    looks at dynamic memory 
allocation.    

   const  and Array Sizes  

 Can you use a  const  symbolic constant when declaring an array?  

  const int SZ = 80;

  ...

  double ar[SZ];    // permitted?   

 For C90, the answer is no (probably). The size has to be given by an integer constant expres-
sion, which can be a combination of integer constants, such as  20 ,  sizeof  expressions, and 
a few other things, none of which are  const . An implementation can expand the range of what 
is considered an integer constant expression, so it could permit using  const , but the code 
wouldn’t be portable.  

 For C99/C11, the answer is yes, if the array could otherwise be a VLA. So the definition would 
have to be for an automatic storage class array declared inside a block.    

  Compound Literals  

 Suppose you want to pass a value to a function with an  int  parameter; you can pass an  int  
variable, but you also can pass an  int  constant, such as  5 . Before C99, the situation for a func-
tion with an array argument was different; you could pass an array, but there was no equivalent 
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to an array constant. C99 changed that with the addition of  compound literals . Literals are 
constants that aren’t symbolic. For example,  5  is a type  int  literal,  81.3  is a type  double  
literal,  'Y'  is a type  char  literal, and  "elephant"  is a string literal. The committee that devel-
oped the C99 standard concluded that it would  be convenient to have compound literals that 
could represent the contents of arrays and of structures.  

 For arrays, a compound literal looks like an array initialization list preceded by a type name 
that is enclosed in parentheses. For example, here’s an ordinary array declaration:  

  int diva[2] = {10, 20};   

 And here’s a compound literal that creates a nameless array containing the same two  int  
values:  

  (int [2]){10, 20}     // a compound literal   

 Note that the type name is what you would get if you removed  diva  from the earlier declara-
tion, leaving  int [2]  behind.  

 Just as you can leave out the array size if you initialize a named array, you can omit it from a 
compound literal, and the compiler will count how many elements are present:  

  (int []){50, 20, 90}     // a compound literal with 3 elements   

 Because these compound literals are nameless, you can’t just create them in one statement and 
then use them later. Instead, you have to use them somehow when you make them. One way 
is to use a pointer to keep track of the location. That is, you can do something like this:  

  int * pt1;

  pt1 = (int [2]) {10, 20};   

 Note that this literal constant is identified as an array of  int s. Like the name of an array, this 
translates to the address of the first element, so it can be assigned to a pointer-to- int . You then 
can use the pointer later. For example,  *pt1  would be 10 in this case, and  pt1[1]  would be 20.  

 Another thing you could do with a compound literal is pass it as an actual argument to a func-
tion with a matching formal parameter:  

  int sum(const int ar[], int n);

  ...

  int total3;

  total3 = sum((int []){4,4,4,5,5,5}, 6);   

 Here, the first argument is a six-element array of  int s that acts like the address of the first 
element, just as an array name does. This kind of use, in which you pass information to a func-
tion without having to create an array first, is a typical use for compound literals.  

 You can extend the technique to two-dimensional arrays, and beyond. Here, for example, is 
how to create a two-dimensional array of  int s and store the address:  

  int (*pt2)[4];     // declare a pointer to an array of 4-int arrays

  pt2 = (int [2][4]) { {1,2,3,-9}, {4,5,6,-8} };   
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 Here, the type is  int [2][4] , a 2×4 array of  int s.  

  Listing   10.19    incorporates these examples into a complete program.  

  Listing 10.19   The  flc.c  Program  

 // flc.c -- funny-looking constants

  #include <stdio.h>

  #define COLS 4

  int sum2d(const int ar[][COLS], int rows);

  int sum(const int ar[], int n);

  int main(void)

  {

       int total1, total2, total3;

       int * pt1;

       int (*pt2)[COLS];

  

       pt1 = (int [2]) {10, 20};

       pt2 = (int [2][COLS]) { {1,2,3,-9}, {4,5,6,-8} };

  

       total1 = sum(pt1, 2);

       total2 = sum2d(pt2, 2);

       total3 = sum((int []){4,4,4,5,5,5}, 6);

       printf("total1 = %d\n", total1);

       printf("total2 = %d\n", total2);

       printf("total3 = %d\n", total3);

  

       return 0;

  }

  

  int sum(const int ar[], int n)

  {

      int i;

      int total = 0;

  

      for( i = 0; i < n; i++)

          total += ar[i];

  

      return total;

  }

  

  int sum2d(const int ar[][COLS], int rows)

  {

      int r;

       int c;

      int tot = 0;
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      for (r = 0; r < rows; r++)

          for (c = 0; c < COLS; c++)

              tot += ar[r][c];

  

      return tot;

  }   

 You’ll need a compiler that accepts this C99 addition (not all do). Here is the output:  

  total1 = 30

  total2 = 4

  total3 = 27   

 Keep in mind that a compound literal is a means for providing values that are needed only 
temporarily. It has block scope, a concept covered in  Chapter   12   . That means its existence is 
not guaranteed once program execution leaves the block in which the compound literal is 
defined, that is, the innermost pair of braces containing the definition.   

  Key Concepts  

 When you need to store many items, all of the same kind, an array might be the answer. C 
refers to arrays as  derived types  because they are built on other types. That is, you don’t simply 
declare an array. Instead, you declare an array-of- int  or an array-of- float , or an array of some 
other type. That other type can itself be an array type, in which case, you get an array of arrays, 
or a two-dimensional array.  

 It’s often advantageous to write functions to process arrays; that helps modularize a program 
by locating specific tasks in specific functions. It’s important to realize that when you use an 
array name as an actual argument, you’re not passing the entire array to the function; you are 
just passing the address of the array (hence, the corresponding formal parameter is a pointer). 
To process the array, the function has to know where the array is and how many elements the 
array has. The array address provides the “where”; the “how many” either has to be built in to 
the function  or be passed as a separate argument. The second approach is more general so that 
the same function can work with arrays of different sizes.  

 The connection between arrays and pointers is an intimate one, and you can often represent 
the same operation using either array notation or pointer notation. It’s this connection that 
allows you to use array notation in an array-processing function even though the formal 
parameter is a pointer, not an array.  

 You must specify the size of a conventional C array with a constant expression, so the size is 
determined at compile time. C99/C11 offers the variable-length array alternative for which the 
size specifier can be a variable. This allows you to delay specifying the size of a VLA until the 
program is running.    
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     Summary  

 An  array  is a set of elements that all have the same data type. Array elements are stored sequen-
tially in memory and are accessed by using an integer index (or  offset ). In C, the first element 
of an array has an index of  0 , so the final element in an array of  n  elements has an index of  n 
- 1 . It’s your responsibility to use array indices that are valid for the array, because neither the 
compiler nor the running program need check for this.  

 To declare a simple  one-dimensional  array, use this form:  

   type name [ size ];   

 Here,   type   is the data type for each and every element,   name   is the name of the array, and 
  size   is the number of elements. Traditionally, C has required that   size   be a constant integer 
expression. C99/C11 allows you to use a nonconstant integer expression; in that case, the array 
is termed a variable-length array.  

 C interprets the name of an array to be the address of the first element of the array. In other 
terms, the name of an array is equivalent to a pointer to the first element. In general, arrays 
and pointers are closely connected. If  ar  is an array, then the expressions  ar[i]  and  *(ar + 
i)  are equivalent.  

 C does not enable entire arrays to be passed as function arguments, but you can pass the 
address of an array. The function can then use this address to manipulate the original array. 
If the intent of the function is not to modify the original array, you should use the  const  
keyword when declaring the formal parameter representing the array. You can use either array 
notation or pointer notation in the called function. In either case, you’re actually using a 
pointer variable.  

 Adding an integer to a pointer or incrementing a pointer changes the value of the pointer by 
the number of bytes of the object being pointed to. That is, if  pd  points to an 8-byte  double  
value in an array, adding 1 to  pd  increases its value by 8 so that it will point to the next 
element of the array.  

  Two-dimensional  arrays  represent an array of arrays. For instance, the declaration  

  double sales[5][12];   

 creates an array called  sales  having five elements, each of which is an array of 12  double s. 
The first of these one-dimensional arrays can be referred to as  sales[0] , the second as 
 sales[1] , and so on, with each being an array of 12  double s. Use a second index to access a 
particular element in these arrays. For example,  sales[2][5]  is the sixth element of  sales[2] , 
and  sales[2]  is the third element of  sales .  

 The traditional C method for passing a multidimensional array to a function is to pass the 
array name, which is an address, to a suitably typed pointer parameter. The declaration for this 
pointer should specify all the dimensions of the array aside from the first; the dimension of the 
first parameter typically is passed as a second argument. For example, to process the previously 
mentioned  sales  array, the function prototype and function call would look like this:  
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  void display(double ar[][12], int rows);

  ...

  display(sales, 5);   

 Variable-length arrays provide a second syntax in which both array dimensions are passed as 
arguments. In this case, the function prototype and function call would look like this:  

  void display(int rows, int cols, double ar[rows][cols]);

  ...

  display(5, 12, sales);   

 We’ve used  int  arrays and  double  arrays in this discussion, but the same concepts apply to 
other types. Character strings, however, have many special rules. This stems from the fact 
that the terminal null character in a string provides a way for functions to detect the end of 
a string without being passed a size. We will look at character strings in detail in  Chapter   11   , 
“Character Strings and String Functions.”   

  Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    What will this program print?  

  #include <stdio.h>

  int main(void)

  {

    int ref[] = {8, 4, 0, 2};

    int *ptr;

    int index;

  

    for (index = 0, ptr = ref; index < 4; index++, ptr++)

       printf("%d %d\n", ref[index], *ptr);

    return 0;

  }     

   2.    In question 1, how many elements does  ref  have?    

   3.    In question 1,  ref  is the address of what? What about  ref + 1 ? What does  ++ref  
point to?    

   4.    What is the value of  *ptr  and of  *(ptr + 2)  in each case?  

    a.  

  int *ptr;

  int torf[2][2] = {12, 14, 16};

  ptr = torf[0];    
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   b.  

  int * ptr;
  int fort[2][2] = { {12}, {14,16} };

  ptr = fort[0];       

   5.    What is the value of  **ptr  and of  **(ptr + 1)  in each case?  

    a.  

  int (*ptr)[2];
  int torf[2][2] = {12, 14, 16};

  ptr = torf;    

   b.  

  int (*ptr)[2];
  int fort[2][2] = { {12}, {14,16} };

  ptr = fort;       

   6.    Suppose you have the following declaration:  

  int grid[30][100];.   

    a.   Express the address of  grid[22][56]  one way.   

   b.   Express the address of  grid[22][0]  two ways.   

   c.   Express the address of  grid[0][0]  three ways.      

   7.    Create an appropriate declaration for each of the following variables:  

    a.    digits  is an array of 10  ints .   

   b.    rates  is an array of six  floats .   

   c.    mat  is an array of three arrays of five integers.   

   d.    psa  is an array of 20 pointers to  char .   

   e.    pstr  is a pointer to an array of 20  chars .      

   8.      

 a.   Declare an array of six  int s and initialize it to the values  1 ,  2 ,  4 ,  8 ,  16 , and  32 .   

   b.   Use array notation to represent the third element (the one with the value  4 ) of the 
array in part a.   

   c.   Assuming C99/C11 rules are in effect, declare an array of 100  int s and initialize it 
so that the last element is  -1 ; don’t worry about the other elements.   

   d.   Assuming C99/C11 rules are in effect, declare an array of 100  int s and initialize 
it so that elements 5, 10, 11, 12, and 3 are  101 ; don’t worry about the other 
elements.      
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   9.    What is the index range for a 10-element array?    

   10.    Suppose you have these declarations:  

  float rootbeer[10], things[10][5], *pf, value = 2.2;

  int i = 3;   

 Identify each of the following statements as valid or invalid:  

    a.    rootbeer[2] = value;    

   b.    scanf("%f", &rootbeer );    

   c.    rootbeer = value;    

   d.    printf("%f", rootbeer);    

   e.    things[4][4] = rootbeer[3];    

   f.    things[5] = rootbeer;    

   g.    pf = value;    

   h.    pf = rootbeer;       

   11.    Declare an 800×600 array of  int .    

   12.    Here are three array declarations:  

  double trots[20];

  short clops[10][30];

  long shots[5][10][15];   

    a.   Show a function prototype and a function call for a traditional  void  function that 
processes  trots  and also for a C function using a VLA.   

   b.   Show a function prototype and a function call for a traditional  void  function that 
processes  clops  and also for a C function using a VLA.   

   c.   Show a function prototype and a function call for a traditional  void  function that 
processes  shots  and also for a C function using a VLA.      

   13.    Here are two function prototypes:  

  void show(const double ar[], int n);   // n is number of elements

  void show2(const double ar2[][3], int n);  // n is number of rows   

    a.   Show a function call that passes a compound literal containing the values  8 ,  3 ,  9 , 
and  2  to the  show()  function.   

   b.   Show a function call that passes a compound literal containing the values  8 ,  3 , 
and  9  as the first row and the values  5 ,  4 , and  1  as the second row to the  show2()  
function.        
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  Programming Exercises  

    1.    Modify the rain program in  Listing   10.7    so that it does the calculations using pointers 
instead of subscripts. (You still have to declare and initialize the array.)    

   2.    Write a program that initializes an array-of- double  and then copies the contents of the 
array into three other arrays. (All four arrays should be declared in the main program.) To 
make the first copy, use a function with array notation. To make the second copy, use a 
function with pointer notation and pointer incrementing. Have the first two functions 
take as arguments the name of the target array, the name of the source array, and the 
number of elements to be copied. Have the third function take as arguments the name 
of the target, the name of the source, and a  pointer to the element following the last 
element of the source. That is, the function calls would look like this, given the following 
declarations:  

  double source[5] = {1.1, 2.2, 3.3, 4.4, 5.5};

  double target1[5];

  double target2[5];

  double target3[5];

  copy_arr(target1, source, 5);

  copy_ptr(target2, source, 5);

  

  copy_ptrs(target3, source, source + 5);     

   3.    Write a function that returns the largest value stored in an array-of- int . Test the function 
in a simple program.    

   4.    Write a function that returns the index of the largest value stored in an array-of- double . 
Test the function in a simple program.    

   5.    Write a function that returns the difference between the largest and smallest elements of 
an array-of- double . Test the function in a simple program.    

   6.    Write a function that reverses the contents of an array of  double  and test it in a simple 
program.    

   7.    Write a program that initializes a two-dimensional array-of- double  and uses one of the 
copy functions from exercise 2 to copy it to a second two-dimensional array. (Because a 
two-dimensional array is an array of arrays, a one-dimensional copy function can be used 
with each subarray.)    

   8.    Use a copy function from Programming Exercise 2 to copy the third through fifth 
elements of a seven-element array into a three-element array. The function itself need 
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not be altered; just choose the right actual arguments. (The actual arguments need not be 
an array name and array size. They only have to be the address of an array element and a 
number of elements to be processed.)    

   9.    Write a program that initializes a two-dimensional 3×5 array-of- double  and uses a VLA-
based function to copy it to a second two-dimensional array. Also provide a VLA-based 
function to display the contents of the two arrays. The two functions should be capable, 
in general, of processing arbitrary N×M arrays. (If you don’t have access to a VLA-capable 
compiler, use the traditional C approach of functions that can process an N×5 array).    

   10.    Write a function that sets each element in an array to the sum of the corresponding 
elements in two other arrays. That is, if array 1 has the values  2 ,  4 ,  5 , and  8  and array 2 
has the values  1 ,  0 ,  4 , and  6 , the function assigns array 3 the values  3 ,  4 ,  9 , and  14 . The 
function should take three array names and an array size as arguments. Test the function 
in a simple program.    

   11.    Write a program that declares a 3×5 array of  int  and initializes it to some values of 
your choice. Have the program print the values, double all the values, and then display 
the new values. Write a function to do the displaying and a second function to do the 
doubling. Have the functions take the array name and the number of rows as arguments.    

   12.    Rewrite the rain program in  Listing   10.7    so that the main tasks are performed by 
functions instead of in  main() .    

   13.    Write a program that prompts the user to enter three sets of five  double  numbers each. 
(You may assume the user responds correctly and doesn’t enter non-numeric data.) The 
program should accomplish all of the following:  

    a.   Store the information in a 3×5 array.   

   b.   Compute the average of each set of five values.   

   c.   Compute the average of all the values.   

   d.   Determine the largest value of the 15 values.   

   e.   Report the results.    

 Each major task should be handled by a separate function using the traditional C 
approach to handling arrays. Accomplish task “b” by using a function that computes 
and returns the average of a one-dimensional array; use a loop to call this function three 
times. The other tasks should take the entire array as an argument, and the functions 
performing tasks “c” and “d” should return the answer to the calling program.    

   14.    Do Programming Exercise 13, but use variable-length array function parameters.        
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 Character Strings and String 

Functions  

    You will learn about the following in this chapter:  

    ■   Functions:  

  gets() ,  gets_s() ,  fgets() ,  puts() ,  fputs() ,  strcat() ,  strncat() ,  strcmp() , 
 strncmp() ,  strcpy() ,  strncpy() ,  sprintf() ,  strchr()    

   ■   Creating and using strings   

   ■   Using several string and character functions from the C library and creating your own 
string functions   

   ■   Using command-line arguments    

 The character string is one of the most useful and important data types in C. You have been 
using character strings all along, but there still is much to learn about them. The C library 
provides a wide range of functions for reading and writing strings, copying strings, comparing 
strings, combining strings, searching strings, and more. This chapter will add these capabilities 
to your programming skills.   

     Representing Strings and String I/O  

 Of course, you already know the most basic fact: A  character string  is a  char  array terminated 
with a null character ( \0 ). Therefore, what you’ve learned about arrays and pointers carries 
over to character strings. But because character strings are so commonly used, C provides many 
functions specifically designed to work with strings. This chapter discusses the nature of strings, 
how to declare and initialize strings, how to get them into and out of programs, and how to 
manipulate strings.  

 Let’s look at a short program (see  Listing   11.1   ) that illustrates some of the ways to represent 
strings in a program.  
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  Listing 11.1   The  strings1.c  Program  

 //  strings1.c

  #include <stdio.h>

  #define MSG "I am a symbolic string constant."

  #define MAXLENGTH 81

  int main(void)

  {

      char words[MAXLENGTH] = "I am a string in an array.";

      const char * pt1 = "Something is pointing at me.";

      puts("Here are some strings:");

      puts(MSG);

      puts(words);

      puts(pt1);

      words[8] = 'p';

      puts(words);

  

      return 0;

  }   

 The  puts()  function, like  printf() , belongs to the the  stdio.h  family of input/output func-
tions. It only displays strings, and, unlike  printf() , it automatically appends a newline to the 
string it displays. Here’s the output:  

  Here are some strings:

  I am an old-fashioned symbolic string constant.

  I am a string in an array.

  Something is pointing at me.

  I am a spring in an array.   

 Rather than going through  Listing   11.1    line-by-line, let’s take a more encompassing approach. 
First, we will look at ways of defining a string within a program. Then we will see what is 
involved in reading a string into a program. Finally, we will study ways to output a string.  

  Defining Strings Within a Program  

 As you probably noticed when you read  Listing   11.1   , there are many ways to define a string. 
The principal ways are using string constants, using  char  arrays, and using  char  pointers. A 
program should make sure there is a place to store a string, and we will cover that topic, too.  

  Character String Literals (String Constants)  

 A  string literal , also termed a  string constant , is anything enclosed in double quotation 
marks. The enclosed characters, plus a terminating  \0  character automatically provided by 
the compiler, are stored in memory as a character string. So  "I am a symbolic string 
constant." ,  "I am a string in an array." ,  "Something is pointed at me." , and 
 "Here are some strings:"  all are string literals.  
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 Recall that, beginning with the ANSI C standard, C concatenates string literals if they are sepa-
rated by nothing or by whitespace. For example,  

  char greeting[50] = "Hello, and"" how are"  " you"

                   " today!";   

 is equivalent to this:  

  char greeting[50] = "Hello, and how are you today!";   

 If you want to use a double quotation mark within a string, precede the quotation mark with a 
backslash, as follows:  

  printf("\"Run, Spot, run!\" exclaimed Dick.\n");   

 This produces the following output:  

  "Run, Spot, run!" exclaimed Dick.   

 Character string constants are placed in the  static storage  class, which means that if you use 
a string constant in a function, the string is stored just once and lasts for the duration of the 
program, even if the function is called several times. The entire quoted phrase acts as a pointer 
to where the string is stored. This action is analogous to the name of an array acting as a 
pointer to the array’s location. If this is true, what kind of output should the program in  Listing 
  11.2    produce?  

  Listing 11.2   The  strptr.c  Program  

 /* strptr.c -- strings as pointers */

  #include <stdio.h>

  int main(void)

  {

      printf("%s, %p, %c\n", "We", "are", *"space farers");

  

      return 0;

  }   

 The  %s  format should print the string  We . The  %p  format produces an address. So if the phrase 
 "are"  is an address, then  %p  should print the address of the first character in the string. 
(Pre-ANSI implementations might have to use  %u  or  %lu  instead of  %p .) Finally,  *"space 
farers"  should produce the value to which the address points, which should be the first char-
acter of the string  "space farers" . Does this really happen? Well, here is the output:  

  We, 0x100000f61, s    
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  Character String Arrays and Initialization  

 When you define a character string array, you must let the compiler know how much space 
is needed. One way is to specify an array size large enough to hold the string. The following 
declaration initializes the array  m1  to the characters of the indicated string:  

  const char m1[40] = "Limit yourself to one line's worth.";   

 The  const  indicates the intent to not alter this string.  

 This form of initialization is short for the standard array initialization form:  

  const char m1[40] = {  'L',

  'i', 'm', 'i', 't', ' ', 'y', 'o', 'u', 'r', 's', 'e', 'l',

  'f', ' ', 't', 'o', ' ', 'o', 'n', 'e', ' ',

  'l', 'i', 'n', 'e', '\", 's', ' ', 'w', 'o', 'r',

  't', 'h', '.', '\0'

  };   

 Note the closing null character. Without it, you have a character array, but not a string.  

 When you specify the array size, be sure that the number of elements is at least one more (that 
null character again) than the string length. Any unused elements are automatically initialized 
to  0  (which in  char  form is the null character, not the zero digit character). See  Figure   11.1   .  

 const char pets[12] = "nice cat.";

n i c e c a t . \0 \0 \0

extra elements initialized to \0

 Figure 11.1   Initializing an array.         

 Often, it is convenient to let the compiler determine the array size; recall that if you omit the 
size in an initializing declaration, the compiler determines the size for you:  

  const char m2[] = "If you can't think of anything, fake it.";   

 Initializing character arrays is one case when it really does make sense to let the compiler deter-
mine the array size. That’s because string-processing functions typically don’t need to know the 
size of the array because they can simply look for the null character to mark the end.  

 Letting the compiler compute the size of the array works only if you initialize the array. If you 
create an array you intend to fill later, you need to specify the size when you declare it. When 
you do declare an array size, the array size must evaluate to an integer. Prior to the advent of 
variable length arrays (VLAs) with C99, the size had to be an integer constant, which includes 
the possibility of an expression formed from constant integer values.  
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  int n = 8;

  char cookies[1];    // valid

  char cakes[2 + 5];  // valid, size is a constant expression

  char pies[2*sizeof(long double) + 1];  // valid

  char crumbs[n];     // invalid prior to C99, a VLA after C99   

 The name of a character array, like any array name, yields the address of the first element of 
the array. Therefore, the following holds:  

  char car[10] = "Tata";

  car == &car[0] , *car == 'T', and *(car+1) == car[1] == 'a'   

 Indeed, you can use pointer notation to set up a string. For example,  Listing   11.1    uses the 
following declaration:  

  const char * pt1 = "Something is pointing at me.";   

 This declaration is very nearly the same as this one:  

  const char ar1[] = "Something is pointing at me.";   

 The declarations amount to saying that both  pt1  and  ar1  are addresses of strings. In both 
cases, the quoted string itself determines the amount of storage set aside for the string. 
Nonetheless, the forms are not identical.   

  Array Versus Pointer  

 What is the difference, then, between an array and a pointer form? The array form ( ar1[] ) 
causes an array of 29 elements (one for each character plus one for the terminating  '\0' ) to 
be allocated in the computer memory. Each element is initialized to the corresponding char-
acter of the string literal. Typically, what happens is that the quoted string is stored in a data 
segment that is part of the executable file; when the program is loaded into memory, so is that 
string. The quoted string is said to be in  static memory . But the memory for the array is  allo-
cated only after the program begins running. At that time, the quoted string is copied into the 
array. ( Chapter   12   , “Storage Classes, Linkage, and Memory Management,” will discuss memory 
management more fully.) Note that, at this time, there are two copies of the string. One is the 
string literal in static memory, and one is the string stored in the  ar1  array.  

 Hereafter, the compiler will recognize the name  ar1  as a synonym for the address of the first 
array element,  &ar1[0] . One important point here is that in the array form,  ar1  is an address 
 constant . You can’t change  ar1 , because that would mean changing the location (address) 
where the array is stored. You can use operations such as  ar1+1  to identify the next element in 
an array, but  ++ar1  is not allowed. The increment operator can be used only with the names of 
variables (or, more generally, modifiable lvalues), not with constants.  

 The pointer form ( *pt1 ) also causes 29 elements in static storage to be set aside for the string. 
In addition, once the program begins execution, it sets aside one more storage location for the 
pointer  variable   pt1  and stores the address of the string in the pointer variable. This variable 
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initially points to the first character of the string, but the value can be changed. Therefore, you 
can use the increment operator. For instance,  ++pt1  would point to the second character ( o ).  

 A string literal is considered to be  const  data. Because  pt1  points to that data, it should be 
declared as pointing to  const  data. This doesn’t mean you can’t change the value of  pt1  (i.e., 
where it points), but it does mean you can’t use  pt1  to change the data itself. If you copy a 
string literal to an array, on the other hand, you are free to change the data unless you choose 
to declare the array as  const .  

 In short, initializing the array copies a string from static storage to the array, whereas initializ-
ing the pointer merely copies the address of the string.  Listing   11.3    illustrates these points.  

  Listing 11.3   The  addresses.c  Program  

 //  addresses.c  -- addresses of strings

  #define MSG "I'm special."

  

  #include <stdio.h>

  int main()

  {

      char ar[] = MSG;

      const char *pt = MSG;

      printf("address of \"I'm special\": %p \n", "I'm special");

      printf("              address ar: %p\n", ar);

      printf("              address pt: %p\n", pt);

      printf("          address of MSG: %p\n", MSG);

      printf("address of \"I'm special\": %p \n", "I'm special");

  

      return 0;

  }   

 Here’s the output from one system:  

  address of "I'm special": 0x100000f0c

                address ar: 0x7fff5fbff8c7

                address pt: 0x100000ee0

            address of MSG: 0x100000ee0

  address of "I'm special": 0x100000f0c   

 What does this show? First,  pt  and  MSG  are the same address, while  ar  is a different address, 
just as promised. Second, although the string literal  "I'm special."  occurs twice in the 
 printf()  statements, the compiler chose to use one storage location, but not the same address 
as  MSG . The compiler has the freedom to store a literal that’s used more than once in one or 
more locations. Another compiler might choose to represent all three occurrences of  "I'm 
special."  with a single storage location. Third, the part of memory used for static data is 
different from that used for dynamic memory, the memory used for   ar . Not only are the values 
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different, but this particular compiler even uses a different number of bits to represent the two 
kinds of memory.  

 Are the differences between array and pointer representations of strings important? Often they 
are not, but it depends on what you try to do. Let’s look further into the matter.   

  Array and Pointer Differences  

 Let’s examine the differences between initializing a character array to hold a string and initial-
izing a pointer to point to a string. (By “pointing to a string,” we really mean pointing to the 
first character of a string.) For example, consider these two declarations:  

  char heart[] = "I love Tillie!";

  const char *head = "I love Millie!";   

 The chief difference is that the array name  heart  is a constant, but the pointer  head  is a vari-
able. What practical difference does this make?  

 First, both can use array notation:  

  for (i = 0; i < 6; i++)

      putchar(heart[i]);

  putchar('\n');

  for (i = 0; i < 6; i++)

      putchar(head[i]));

  putchar('\n');   

 This is the output:  

  I love

  I love   

 Next, both can use pointer addition:  

  for (i = 0; i < 6; i++)

      putchar(*(heart + i));

  putchar('\n');

  for (i = 0; i < 6; i++)

      putchar(*(head + i));

  putchar('\n');   

 Again, the output is as follows:  

  I love

  I love   

 Only the pointer version, however, can use the increment operator:  

  while (*(head) != '\0')  /* stop at end of string            */

      putchar(*(head++));  /* print character, advance pointer */   
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 This produces the following output:  

  I love Millie!   

 Suppose you want  head  to agree with  heart . You can say  

  head = heart;  /* head now points to the array heart */   

 This makes the  head  pointer point to the first element of the  heart  array.  

 However, you cannot say  

  heart = head;  /* illegal construction */   

 The situation is analogous to  x = 3;  versus  3 = x; . The left side of the assignment statement 
must be a variable or, more generally, a modifiable  lvalue , such as  *p_int . Incidentally,  head 
= heart;  does not make the Millie string vanish; it just changes the address stored in  head . 
Unless you’ve saved the address of  "I love Millie!"  elsewhere, however, you won’t be able 
to access that string when  head  points to another location.  

 There is a way to alter the  heart  message—go to the individual array elements:  

  heart[7]= 'M';   

 or  

  *(heart + 7) = 'M';   

 The  elements  of an array are variables (unless the array was declared as  const ), but the  name  is 
not a variable.  

 Let’s go back to a pointer initialization that doesn’t use the  const  modifier:  

  char * word = "frame";   

 Can you use the pointer to change this string?  

  word[1] = 'l';  // allowed??   

 Your compiler may allow this, but, under the current C standard, the behavior for such an 
action is undefined. Such a statement could, for example, lead to memory access errors. The 
reason is that, as mentioned before, a compiler can choose to represent all identical string liter-
als with a single copy in memory. For example, the following statements could all refer to a 
single memory location of string  "Klingon" :  

  char * p1 = "Klingon";

  p1[0] = 'F';    // ok?

  printf("Klingon");

  printf(": Beware the %ss!\n", "Klingon");   

 That is, the compiler can replace each instance of  "Klingon"  with the same address. If the 
compiler uses this single-copy representation and allows changing  p1[0]  to  'F' , that would 
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affect all uses of the string, so statements printing the string literal  "Klingon"  would actually 
display  "Flingon" :  

  Flingon: Beware the Flingons!   

 In fact, in the past, several compilers did behave this rather confusing way, whereas others 
produced programs that abort. Therefore, the recommended practice for initializing a pointer to 
a string literal is to use the  const  modifier:  

  const char * pl = "Klingon";  // recommended usage   

 Initializing a non- const  array with a string literal, however, poses no such problems, because 
the array gets a copy of the original string.  

 In short, don’t use a pointer to a string literal if you plan to alter the string.   

  Arrays of Character Strings  

 It is often convenient to have an array of character strings. Then you can use a subscript to 
access several different strings.  Listing   11.4    shows two approaches: an array of pointers to 
strings and an array of  char  arrays.  

  Listing 11.4   The  arrchar.c  Program  

 //  arrchar.c -- array of pointers, array of strings

  #include <stdio.h>

  #define SLEN 40

  #define LIM 5

  int main(void)

  {

      const char *mytalents[LIM] = {

          "Adding numbers swiftly",

          "Multiplying accurately", "Stashing data",

          "Following instructions to the letter",

          "Understanding the C language"

      };

      char yourtalents[LIM][SLEN] = {

          "Walking in a straight line",

          "Sleeping", "Watching television",

          "Mailing letters", "Reading email"

      };

      int i;

  

      puts("Let's compare talents.");

      printf ("%-36s  %-25s\n", "My Talents", "Your Talents");

      for (i = 0; i < LIM; i++)

          printf("%-36s  %-25s\n", mytalents[i], yourtalents[i]);
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     printf("\nsizeof mytalents: %zd, sizeof yourtalents: %zd\n",

             sizeof(mytalents), sizeof(yourtalents));

  

      return 0;

  }   

 Here is the output:  

  Let's compare talents.

  My Talents                            Your Talents

  Adding numbers swiftly                Walking in a straight line

  Multiplying accurately                Sleeping

  Stashing data                         Watching television

  Following instructions to the letter  Mailing letters

  Understanding the C language          Reading email

  

  sizeof mytalents: 40, sizeof yourtalents: 200   

 In some ways,  mytalents  and  yourtalents  are much alike. Each represents five strings. When 
used with one index, as in  mytalents[0]  and  yourtalents[0] , the result is a single string. 
And, just as  mytalents[1][2]  is  'l' , the third character of the second string represented by 
 mytalents ,  yourtalents[1][2]  is  'e' , the third character of the second string represented by 
 yourtalents . Both are initialized in the same fashion.  

 But there are differences, too. The  mytalents  array is an array of five pointers, taking up 40 
bytes on our system. But  yourtalents  is an array of five arrays, each of 40  char  values, occu-
pying 200 bytes on our system. So  mytalents  is a different type from  yourtalents , even 
though  mytalents[0]  and  yourtalents[0]  both are strings. The pointers in  mytalents  point 
to the locations of the string literals used for initialization, which are stored in static memory. 
The arrays in  yourtalents , however, contain copies of the string literals, so each string is 
stored twice. Furthermore, the allocation of memory in the arrays is inefficient, for each 
element  of  yourtalents  has to be the same size, and that size has to be at least large enough 
to hold the longest string.  

 One way of visualizing this difference is to think of  yourtalents  as a rectangular two-dimen-
sional array, with each row being of the same length, 40 bytes, in this case. Next, think of 
 mytalents  as a ragged array, one in which the row length varies.  Figure   11.2    shows the two 
kinds of arrays. (Actually, the strings pointed to by the  mytalents  array elements don’t neces-
sarily have to be stored consecutively in memory, but the figure does illustrate the difference in 
storage requirements.)  
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char fruit1[3][7]=

  {"Apple",

  "Pear",

  "Orange"

  };

const char * fruit2[3]=

  {"Apple",

  "Pear",

  "Orange"

  };

A p p l e \0 \0

P e a r \0 \0 \0

O r a n g e \0

A p p l e \0

P e a r \0

\0O r a n g e

differences in
declarations

 Figure 11.2   Rectangular versus ragged array.         

 The upshot is that, if you want to use an array to represent a bunch of strings to be displayed, 
an array of pointers is more efficient than an array of character arrays. There is, however, a 
catch. Because the pointers in  mytalents  point to string literals, these strings shouldn’t be 
altered. The contents of  yourtalents , however, can be changed. So if you want to alter strings 
or set aside space for string input, don’t use pointers to string literals.    

  Pointers and Strings  

 Perhaps you noticed an occasional reference to pointers in this discussion of strings. Most 
C operations for strings actually work with pointers. Consider, for example, the instructive 
program shown in  Listing   11.5   .  
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  Listing 11.5   The  p_and_s.c  Program  

 /* p_and_s.c -- pointers and strings */

  #include <stdio.h>

  int main(void)

  {

      const char * mesg = "Don't be a fool!";

      const char * copy;

  

      copy = mesg;

      printf("%s\n", copy);

      printf("mesg = %s; &mesg = %p; value = %p\n",

              mesg, &mesg, mesg);

      printf("copy = %s; &copy = %p; value = %p\n",

              copy, &copy, copy);

  

      return 0;

  }   

  Note 

 Use  %u  or  %lu  instead of  %p  if your compiler doesn’t support  %p .   

 Looking at this program, you might think that it makes a copy of the string  "Don't be a 
fool!" , and your first glance at the output might seem to confirm this guess:  

  Don't be a fool!

  mesg = Don't be a fool!; &mesg = 0x0012ff48; value = 0x0040a000

  copy = Don't be a fool!; &copy = 0x0012ff44; value = 0x0040a000   

 But study the  printf()  output more carefully. First,  mesg  and  copy  are printed as strings ( %s ). 
No surprises here; all the strings are  "Don't be a fool!" .  

 The next item on each line is the address of the specified pointer. For this particular run, the 
two pointers  mesg  and  copy  are stored in locations  0x0012ff48  and  0x0012ff44 , respectively.  

 Now notice the final item, the one we called  value . It is the value of the specified pointer. 
The value of the pointer is the address it contains. You can see that  mesg  points to location 
 0x0040a000 , and so does  copy . Therefore, the string itself was never copied. All that  copy = 
mesg;  does is produce a second pointer pointing to the very same string.  

 Why all this pussyfooting around? Why not just copy the whole string? Well, ask yourself 
which is more efficient: copying one address or copying, say, 50 separate elements? Often, the 
address is all that is needed to get the job done. If you truly require a copy that is a duplicate, 
you can use the  strcpy()  or  strncpy()  function, discussed later in this chapter.  

 Now that we have discussed defining strings within a program, let’s turn to strings provided by 
keyboard input.    
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  String Input  

 If you want to read a string into a program, you must first set aside space to store the string and 
then use an input function to fetch the string.  

  Creating Space  

 The first order of business is setting up a place to put the string after it is read. As mentioned 
earlier, this means you need to allocate enough storage to hold whatever strings you expect to 
read. Don’t expect the computer to count the string length as it is read and then allot space for 
it. The computer won’t (unless you write a function to do so). For example, suppose you try 
something like this:  

  char *name;

  

  scanf("%s", name);   

 It will probably get by the compiler, most likely with a warning, but when the name is read, 
the name might be written over data or code in your program, and it might cause a program 
abort. That’s because  scanf()  copies information to the address given by the argument, and in 
this case, the argument is an uninitialized pointer;  name  might point anywhere. Most program-
mers regard this as highly humorous, but only in other people’s programs.  

 The simplest course is to include an explicit array size in the declaration:  

  char name[81];   

 Now  name  is the address of an allocated block of 81 bytes. Another possibility is to use the C 
library functions that allocate memory, and we’ll touch on those in  Chapter   12   .  

 After you have set aside space for the string, you can read the string. The C library supplies a 
trio of functions that can read strings:  scanf() ,  gets() , and  fgets() . The most commonly 
used one has been  gets() , which we discuss first.   

  The Unfortunate  gets()  Function  

 Recall that, when reading a string,  scanf()  and the  %s  specifier read just a single word. Often 
it’s useful if a program can read an entire line of input at a time instead of a single word. For 
many years, the  gets()  function has served that purpose. It’s a simple function, easy to use. It 
reads an entire line up through the newline character, discards the newline character, stores the 
remaining characters, adding a null character to create a C string. It’s often paired with  puts() , 
which displays a string, adding a newline.  Listing   11.6    presents a modest example.  

  Listing 11.6   The  getsputs.c  Program  

 /*  getsputs.c  -- using gets() and puts() */

  #include <stdio.h>
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  #define STLEN 81

  int main(void)

  {

      char words[STLEN];

  

  

      puts("Enter a string, please.");

      gets(words);

      printf("Your string twice:\n");

      printf("%s\n", words);

      puts(words);

      puts("Done.");

  

      return 0;

  }   

 Here’s a sample run, or, at least what once would have been a sample run:  

  Enter a string, please.

   I want to learn about string theory! 

  Your string twice:

  I want to learn about string theory!

  I want to learn about string theory!

  Done.   

 Note that the entire line of input, aside from the newline, is stored in  words  and that 
 puts(words)  has the same effect as  printf("%s\n", words) .  

 Next, here is a more contemporary sample run:  

  Enter a string, please.

  warning: this program uses gets(), which is unsafe.

   Oh, no! 

  Your string twice:

  Oh, no!

  Oh, no!

  Done.   

 The compiler has taken the rather unusual action of inserting a warning into the program 
output! So this message gets displayed every time you or anyone else runs the program. Not all 
compilers will do this. Others may issue a warning during the compiling process, but that isn’t 
quite as attention getting.  

 So what’s the problem? The problem is that  gets()  doesn’t check to see if the input line actu-
ally fits into the array. Given that its only argument here is  words ,  gets()  can’t check. Recall 
that the name of an array is converted to the address of the first element. Thus  gets()  only 
knows where the array begins, not how many elements it has.  
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 If the input string is too long, you get  buffer overflow , meaning the excess characters overflow 
the designated target. The extra characters might just go into unused memory and cause no 
immediate problems, or they may overwrite other data in your program, but those certainly 
aren’t the only possibilities. Here’s a sample run for which  SLEN  was reset to 5 to make it easier 
to overflow the buffer:  

  Enter a string, please.

  warning: this program uses gets(), which is unsafe.

   I think I'll be just fine. 

  Your string twice:

  I think I'll be just fine.

  I think I'll be just fine.

  Done.

  Segmentation fault: 11   

 “Segmentation fault” doesn’t sound healthy, and it isn’t. On a Unix system, this message indi-
cates the program attempted to access memory not allocated to it.  

 But C provides many paths for poor programming to lead to embarrassing and difficult to trace 
failures. Why, then, single out  gets()  for special mention? Probably because its unsafe behav-
ior poses a security risk. In the past, people have taken advantage of system programming that 
uses  gets()  to insert and run code that compromised system security.  

 For a while, many in the C programming community have recommended banishing  gets()  
from the programming vocabulary. The committee that created the C99 standard also 
published a rationale for the standard. This rationale acknowledged the problems with  gets()  
and discouraged its use. However, it justified keeping  gets()  as part of the standard because it 
was a convenient function, in the right circumstances, and because it was part of much existing 
code.  

 The C11 committee, however, has taken a tougher view and has dropped  gets()  from the 
standard. However, a standard establishes what a compiler must support, not what it must not 
support. In practice, most compilers will continue to provide the function in the interests of 
backwards compatibility. But, as with the compiler we used, they don’t have to be happy about 
it.   

  The Alternatives to  gets()   
 The traditional alternative to  gets()  is  fgets() , which has a slightly more complex interface 
and which handles input slightly differently. The C11 standard adds  gets_s()  to the mix. 
It’s a bit more like  gets()  and is more easily substituted into existing code as a replacement. 
However, it’s part of an optional extension to the  stdio.h  family of input/output functions, so 
C11 C compilers need not support it.  
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  The  fgets()  Function (and  fputs() )  

 The  fgets()  function meets the possible overflow problem by taking a second argument 
that limits the number of characters to be read. This function is designed for file input, which 
makes it a little more awkward to use. Here is how  fgets()  differs from  gets() :  

    ■   It takes a second argument indicating the maximum number of characters to read. If this 
argument has the value  n ,  fgets()  reads up to  n-1  characters or through the newline 
character, whichever comes first.   

   ■   If  fgets()  reads the newline, it stores it in the string, unlike  gets() , which discards it.   

   ■   It takes a third argument indicating which file to read. To read from the keyboard, use 
 stdin  (for  standard input ) as the argument; this identifier is defined in  stdio.h .    

 Because the  fgets()  function includes the newline as part of the string (assuming the input 
line fits), it’s often paired with  fputs() , which works like  puts() , except that it doesn’t auto-
matically append a newline. It takes a second argument to indicate which file to write to. For 
the computer monitor we can use  stdout  (for standard output) as an argument.  Listing   11.7    
illustrates how  fgets()  and  fputs()  behave.  

  Listing 11.7   The  fgets1.c  Program  

 /*  fgets1.c  -- using fgets() and fputs() */

  #include <stdio.h>

  #define STLEN 14

  int main(void)

  {

      char words[STLEN];

  

      puts("Enter a string, please.");

      fgets(words, STLEN, stdin);

      printf("Your string twice (puts(), then fputs()):\n");

      puts(words);

      fputs(words, stdout);

      puts("Enter another string, please.");

      fgets(words, STLEN, stdin);

      printf("Your string twice (puts(), then fputs()):\n");

      puts(words);

      fputs(words, stdout);

      puts("Done.");

  

      return 0;

  }   

 Here’s a sample run:  

  Enter a string, please.

   apple pie 
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  Your string twice (puts(), then fputs()):

  apple pie

  

  apple pie

  Enter another string, please.

   strawberry shortcake 

  Your string twice (puts(), then fputs()):

  strawberry sh

  strawberry shDone.   

 The first input,  apple pie , is short enough that  fgets()  reads the whole input line and stores 
 apple pie\n\0  in the array. So when  puts()  displays the string and adds its own newline to 
the output, it produces a blank output line after  apple pie . Because  fputs()  doesn’t add a 
newline, it doesn’t produce a blank line.  

 The second input line,  strawberry shortcake , exceeds the size limit, so  fgets()  reads the 
first 13 characters and stores  strawberry sh\0  in the array. Again,  puts()  adds a newline to 
the output and  fputs()  doesn’t.  

 The  fgets()  function returns a pointer to  char . If all goes well, it just returns the same address 
that was passed to it as the first argument. If the function encounters end-of-file, however, 
it returns a special pointer called the  null pointer . This is a pointer guaranteed not to point to 
valid data so it can be used to indicate a special case. In code it can be represented by the digit 
 0  or, more commonly in C, by the macro  NULL . (The function also returns  NULL  if there is some 
sort of read error.)  Listing   11.8    shows a simple loop that reads and  echoes text until  fgets()  
encounters end-of-file or until it reads a blank line, indicated by the first character being a 
newline character.  

  Listing 11.8   The  fgets2.c  Program  

 /*  fgets2.c  -- using fgets() and fputs() */

  #include <stdio.h>

  #define STLEN 10

  int main(void)

  {

      char words[STLEN];

  

      puts("Enter strings (empty line to quit):");

      while (fgets(words, STLEN, stdin) != NULL && words[0] != '\n')

          fputs(words, stdout);

      puts("Done.");

  

      return 0;

  }   
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 Here’s a sample run:  

  Enter strings (empty line to quit):

   By the way, the gets() function 

  By the way, the gets() function

   also returns a null pointer if it 

  also returns a null pointer if it

   encounters end-of-file. 

  encounters end-of-file.

  

  Done.   

 Interesting—even though  STLEN  is 10, the program seems to have no problem processing input 
lines much longer than that. What’s happening is that, in this program,  fgets()  reads in 
input  STLEN – 1  (i.e., 9) characters at a time. So it begins by reading “By the wa”, storing it 
as  By the wa\0 . Then  fputs()  displays this string and does not advance to the next output 
line. Next,  fgets()  resumes where it left off on the original input, that is, it reads “y, the ge” 
and stores it as  y, the ge\0 . Then  fputs()  displays it on the same line it used before. Then 
 fgets()  resumes reading  the input, and so on, until all that’s left is “tion\n”;  fgets()  stores 
 tion\n\0 ,  fputs()  displays it, and the embedded newline character moves the cursor to the 
next line.  

 The system uses buffered I/O. This means the input is stored in temporary memory (the buffer) 
until the Return key is pressed; this adds a newline character to the input and sends the whole 
line on to  fgets() . On output,  fputs()  sends characters to another buffer, and when a 
newline is sent, the buffer contents are sent on to the display.  

 The fact that  fgets()  stores the newline presents a problem and an opportunity. The problem 
is that you might not want the newline as part of the string you store. The opportunity is the 
presence or absence of a newline character in the stored string can be used to tell whether the 
whole line was read. If it wasn’t, then you can decide what to do with the rest of the line.  

 First, how can you get rid of a newline? One way is to search the stored string for a newline 
and to replace it with a null character:  

  while (words[i] != '\n') // assuming \n in words

      i++;

  words[i] = '\0';   

 Second, what if there are still characters left in the input line? One reasonable choice if the 
whole line doesn’t fit into the destination array is to discard the part that doesn’t fit:  

  while (getchar() != '\n')  // read but don't store

      continue;              // input including \n   

  Listing   11.9    adds a little more testing to these basic ideas to produce code that reads lines of 
inputs, removes the stored newlines, if any, and discards the part of a line that doesn’t fit.  
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  Listing 11.9   The  fgets3.c  Program  

 /*  fgets3.c  -- using fgets() */

  #include <stdio.h>

  #define STLEN 10

  int main(void)

  {

      char words[STLEN];

      int i;

  

      puts("Enter strings (empty line to quit):");

      while (fgets(words, STLEN, stdin) != NULL

                            && words[0] != '\n')

      {

          i = 0;

          while (words[i] != '\n' && words[i] != '\0')

              i++;

          if (words[i] == '\n')

              words[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

          puts(words);

      }

      puts("done");

      return 0;

  }   

 The loop  

  while (words[i] != '\n' && words[i] != '\0')

      i++;   

 marches through the string until reaching a newline or null character, whichever comes first. 
If that character is a newline, the following  if  statement replaces it with a null character. 
Otherwise, the  else  part disposes of the rest of the input line. Here is sample run:    

  Enter strings (empty line to quit):

   This 

  This

   program seems 

  program s

   unwilling to accept long lines. 

  unwilling

   But it doesn't get stuck on long 

  But it do
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   lines either. 

  lines eit

  

  done   

  Null and Null  

 Null character and null pointer both appear in  Listing   11.9   . Conceptually, these two nulls are 
different from one another. The null character, or  '\0' , is the character used to mark the end 
of a C string. It’s the character whose code is zero. Because that isn’t the code of any charac-
ter, it won’t show up accidentally in some other part of the string.  

 The null pointer, or  NULL , has a value that doesn’t correspond to a valid address of data. It’s 
often used by functions that otherwise return valid addresses to indicate some special occur-
rence, such as encountering end-of-file or failing to perform as expected.  

 So the null character is an integer type, while the null pointer is a pointer type. What some-
times causes confusion is that both can be represented numerically by the value 0. But, con-
ceptually, they are different types of 0. Also, while the null character, being a character, is one 
byte, the null pointer, being an address, typically is four bytes.    

  The  gets_s()  Function  

 C11’s optional  gets_s()  function, like  fgets() , uses an argument to limit the number of 
characters read. Given the same definitions used in  Listing   11.9   , the following code would read 
a line of input into the  words  array providing the newline shows up in the first 9 characters of 
input:  

  gets_s(words, STLEN);   

 The three main differences from  fgets()  are these:  

    ■    gets_s()  just reads from the standard input, so it doesn’t need a third argument.   

   ■   If  gets_s()  does read a newline; it discards it rather than storing it.   

   ■   If  gets_s()  reads the maximum number of characters and fails to read a newline, it 
takes several steps. It sets the first character of the destination array to the null character. 
It reads and discards subsequent input until a newline or end-of-file is encountered. It 
returns the null pointer. It invokes an implementation-dependent “handler” function (or 
else one you’ve selected), which may cause the program to exit or abort.    

 The second feature means that, as long as the input line isn’t too long,  gets_s()  behaves like 
 gets() , making it easier to replace  gets()  with  gets_s()  rather than with  fgets() . The third 
feature means there’s a learning curve to using this function.  

 Let’s compare the suitability of  gets() ,  fgets() , and  gets_s() . If the input line fits into the 
target storage, all three work fine. But  fgets()  does include the newline as part of the string, 
and you may need to provide code to replace it with a null character.  
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 What if the input line doesn’t fit? Then  gets()  isn’t safe; it can corrupt your data and compro-
mise security. The  gets_s()  function is safe, but, if you don’t want the program to abort or 
otherwise exit, you’ll need to learn how to write and register special “handlers.” Also, if you 
manage to keep the program running,  gets_s()  disposes of the rest of the input line whether 
you want to or not. The  fgets()  function is the easiest to work with if the line doesn’t fit, and 
it leaves more choices up to you. If you want the program to process the rest of the  input line, 
you can, as  Listing   11.8    shows. If, instead, you want to dispose of the rest of the input line, you 
can do that, too, as  Listing   11.9    shows.  

 So  gets_s() , when input fails to meet expectations, is less convenient and flexible than 
 fgets() . Perhaps that’s one reason that  gets_s()  is just an optional extension of the C 
library. And given that  gets_s()  is optional, using  fgets()  usually is the better choice.   

  The  s _ gets()  Function  

  Listing   11.9    presented one way to use  fgets() : Read a whole line and replace the newline 
character with a null character, or read the part of a line that fits and discard the rest—sort of 
a  gets_s()  function without the extra baggage. No standard function meets that description, 
but we can create one. It’ll come in handy in later examples.  Listing   11.10    shows one approach.  

  Listing 11.10   The  s_gets()  Function  

 char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)  // i.e., ret_val != NULL

      {

          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   

 If  fgets()  returns  NULL , indicating end-of-file or a read error,  s_gets()  skips the rest of the 
processing. Otherwise, it imitates  Listing   11.9   , replacing the newline character with a null char-
acter if the former is present in the string, and discarding the rest of the line otherwise. It then 
returns the same value  fgets()  returned. We’ll use this function in later examples.  
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 Perhaps you are wondering what’s the rationale for discarding the rest of a too-long line. The 
problem is that if the remainder of the line is left in place, it becomes the input for the next 
read statement. This can, for example, cause the program to crash if the next read statement 
is looking for a type  double  value. Discarding the rest of the line keeps the read statements 
synchronized with the keyboard input.  

 Our  s_gets()  function isn’t perfect. Its most serious flaw is that it is silent about encountering 
input that doesn’t fit. It discards the extra input with neither the program nor the user being 
informed, thus closing off other options, such as having the user try again or finding more 
storage space. Another flaw is that it doesn’t cope with misuse such as being passed a size of 1 
or less. But it’s good enough to serve as a  gets()  substitute for our examples.    

  The  scanf()  Function  

 Let’s visit  scanf()  again. We’ve used  scanf()  with the  %s  format before to read a string. The 
chief difference between  scanf()  and  gets()  or  fgets()  lies in how they decide when they 
have reached the end of the string:  scanf()  is more of a “get word” than a “get string” func-
tion. The  gets()  function, as you’ve seen, takes in all the characters up to the first newline, as 
does  fgets() , if the string is short enough. The  scanf()  function has two choices for termi-
nating input. For either choice, the string starts at the first non-whitespace character encoun-
tered. If you use the  %s  format, the string runs up to (but not  including) the next whitespace 
character (blank, tab, or newline). If you specify a field width, as in  %10s , the  scanf()  
collects up to 10 characters or up to the first whitespace character, whichever comes first (see 
 Figure   11.3   ).  

 

Input
Statement

Original Input
Queue*

Name
Contents

Remaining
Queue

scanf('%s", name); Fleebert  Hup Fleebert Hup

scanf('%5s", name); Fleebert  Hup Fleeb ert  Hup

scanf('%5s", name); Ann  Ular Ann Ular

*the     represents the space character

 Figure 11.3   Field widths and  scanf() .         

 Recall that the  scanf()  function returns an integer value that equals the number of items 
successfully read or returns  EOF  if it encounters the end of file.  

  Listing   11.11    illustrates how  scanf()  works when you specify a field width.  

  Listing 11.11   The  scan_str.c  Program  

 /* scan_str.c -- using scanf() */

  #include <stdio.h>
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  int main(void)

  {

      char name1[11], name2[11];

      int count;

  

      printf("Please enter 2 names.\n");

      count = scanf("%5s %10s",name1, name2);

      printf("I read the %d names %s and %s.\n",

             count, name1, name2);

  

      return 0;

  }   

 Here are three runs:  

  Please enter 2 names.

   Jesse Jukes 

  I read the 2 names Jesse and Jukes.

  Please enter 2 names.

   Liza Applebottham 

  I read the 2 names Liza and Applebotth.

  Please enter 2 names.

   Portensia Callowit 

  I read the 2 names Porte and nsia.   

 In the first example, both names fell within the allowed size limits. In the second example, 
only the first 10 characters of  Applebottham  were read because we used a  %10s  format. In the 
third example, the last four letters of  Portensia  went into  name2  because the second call to 
 scanf()  resumed reading input where the first ended; in this case, that was still inside the 
word  Portensia .  

 Depending on the nature of the desired input, you may be better off using f gets()  to read 
text from the keyboard. For example,  scanf()  wouldn’t be that useful for entering the name 
of book or song, unless the name were a single word. The typical use for  scanf()  is reading 
and converting a mixture of data types in some standard form. For example, if each input line 
contains the name of a tool, the number in stock, and the cost of the item, you might use 
 scanf() , or you might throw together a function of your own that does some entry error-
checking. If  you want to process input a word at a time, you can use  scanf() .  

 The  scanf()  function has the same potential defect as  gets() ; it can create an overflow if the 
input word doesn’t fit the destination. But you can use the field-width option in the  %s  speci-
fier to prevent overflow.    
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  String Output  

 Now let’s move from string input to string output. Again, we will use library functions. C has 
three standard library functions for printing strings:  puts() ,  fputs() , and  printf() .  

  The  puts()  Function  

 The  puts()  function is very easy to use. Just give it the address of a string for an argument. 
 Listing   11.12    illustrates some of the many ways to do this.  

  Listing 11.12   The  put_out.c  Program  

 /* put_out.c -- using puts() */

  #include <stdio.h>

  #define DEF "I am a #defined string."

  int main(void)

  {

      char str1[80] = "An array was initialized to me.";

      const char * str2 = "A pointer was initialized to me.";

  

      puts("I'm an argument to puts().");

      puts(DEF);

      puts(str1);

      puts(str2);

      puts(&str1[5]);

      puts(str2+4);

  

      return 0;

  }   

 The output is this:  

  I'm an argument to puts().

  I am a #defined string.

  An array was initialized to me.

  A pointer was initialized to me.

  ray was initialized to me.

  inter was initialized to me.   

 As with previous examples, each string appears on its own line because  puts()  automatically 
appends a newline when it displays a string.  

 This example reminds you that phrases in double quotation marks are string constants and 
are treated as addresses. Also, the names of character array strings are treated as addresses. 
The expression  &str1[5]  is the address of the sixth element of the array  str1 . That element 
contains the character  'r' , and that is what  puts()  uses for its starting point. Similarly, 
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 str2+4  points to the memory cell containing the  'i'  of  "pointer" , and the printing starts 
there.  

 How does  puts()  know when to stop? It stops when it encounters the null character, so there 
had better be one. Don’t emulate the program in  Listing   11.13   !  

  Listing 11.13   The  nono.c  Program  

 /* nono.c -- no! */

  #include <stdio.h>

  int main(void)

  {

      char side_a[] = "Side A";

      char dont[] = {'W', 'O', 'W', '!' };

      char side_b[] = "Side B";

  

      puts(dont);   /* dont is not a string */

  

      return 0;

  }   

 Because  dont  lacks a closing null character, it is not a string, so  puts()  won’t know where to 
stop. It will just keep printing from memory following  dont  until it finds a null somewhere. 
To ensure that a null character is not too distant, the program stores  dont  between two true 
strings. Here’s a sample run:  

  WOW!Side A   

 The particular compiler used here stored the  side_a  array after the  dont  array in memory, so 
 puts()  kept going until hitting the null character in  side_a . You may get different results, 
depending on how your compiler arranges data in memory. What if the program had omitted 
the arrays  side_a  and  side_b ? There are usually lots of nulls in memory, and if you’re lucky, 
 puts()  might find one soon, but don’t count on it.   

  The  fputs()  Function  

 The  fputs()  function is the file-oriented version of  puts() . The main differences are these:  

    ■   The  fputs()  function takes a second argument indicating the file to which to write. You 
can use  stdout  (for  standard output ), which is defined in  stdio.h , as an argument to 
output to your display.   

   ■   Unlike  puts() ,  fputs()  does not automatically append a newline to the output.    

 Note that  gets()  discards a newline on input, but  puts()  adds a newline on output. On the 
other hand,  fgets()  stores the newline on input, and  fputs()  doesn’t add a newline on 
output. Suppose you want to write a loop that reads a line and echoes it on the next line. You 
can do this:  
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  char line[81];

  while (gets(line))  // same as while (gets(line) != NULL)

      puts(line);   

 Recall that  gets()  returns the null pointer if it encounters end-of-file. The null pointer evalu-
ates as zero, or false, so that terminates the loop. Or you can do this:  

  char line[81];

  while (fgets(line, 81, stdin))

      fputs(line, stdout);   

 With the first loop, the string in the  line  array is displayed on a line of its own because 
 puts()  adds a newline. With the second loop, the string in the  line  array is displayed on a 
line of its own because  fgets()  stores a newline. Note that if you mix  fgets()  input with 
 puts()  output, you’d get two newlines displayed for each string. The point is that  puts()  is 
designed to work with  gets() , and  fputs()  is designed to work with  fgets() .  

 Of course we mention  gets()  only so that you’ll know how it works if you run across it in 
code and not to encourage you to use it.   

  The  printf()  Function  

 We discussed  printf()  pretty thoroughly in  Chapter   4   , “Character Strings and Formatted 
Input/Output.” Like  puts() , it takes a string address as an argument. The  printf()  function 
is less convenient to use than  puts() , but it is more versatile because it formats various data 
types.  

 One difference is that  printf()  does not automatically print each string on a new line. 
Instead, you must indicate where you want new lines. Therefore,  

  printf("%s\n", string);   

 has the same effect as  

  puts(string);   

 As you can see, the first form takes more typing. It also takes longer for the computer to 
execute (not that you would notice). On the other hand,  printf()  makes it simple to combine 
strings for one line of printing. For example, the following statement combines  Well,  with the 
user’s name and a  #defined  character string, all on one line:  

  printf("Well, %s, %s\n", name, MSG);     

  The Do-It-Yourself Option  

 You aren’t limited to the standard C library options for input and output. If you don’t have 
these options or don’t like them, you can prepare your own versions, building on  getchar()  
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and  putchar() . Suppose you want a function like  puts()  that doesn’t automatically add a 
newline.  Listing   11.14    shows one way to create it.  

  Listing 11.14   The  put1()  Function  

 /* put1.c -- prints a string  without adding \n */

  #include <stdio.h>

  void put1(const char * string) /* string not altered */

  {

      while (*string != '\0')

          putchar(*string++);

  }   

 The  char  pointer  string  initially points to the first element of the called argument. Because 
this function doesn’t change the string, use the  const  modifier. After the contents of that 
element are printed, the pointer increments and points to the next element. This goes on until 
the pointer points to an element containing the null character. Remember, the higher prece-
dence of  ++  compared to  *  means that  putchar(*string++)  prints the value pointed to by 
 string  but increments  string  itself, not the character to which it points.  

 You can regard  put1.c  as a model for writing string-processing functions. Because each string 
has a null character marking its end, you don’t have to pass a size to the function. Instead, the 
function processes each character in turn until it encounters the null character.  

 A somewhat longer way of writing the function is to use array notation:  

  int i = 0;

  while (string[i]!= '\0')

          putchar(string[i++]);   

 This involves an additional variable for the index.  

 Many C programmers would use the following test for the  while  loop:  

  while (*string)   

 When  string  points to the null character,  *string  has the value  0 , which terminates the 
loop. This approach certainly takes less typing than the previous version. If you are not familiar 
with C practice, it is less obvious. However, this idiom is widespread, and C programmers are 
expected to be familiar with it.  

  Note 

 Why does  Listing   11.14    use  const char * string  rather than  const char string[]  as 
the formal argument? Technically, the two are equivalent, so either form will work. One reason 
to use bracket notation is to remind the user that the function processes an array. With strings, 
however, the actual argument can be the name of an array, a quoted string, or a variable that 
has been declared as type  char * . Using  const char * string  reminds you that the actual 
argument isn’t necessarily an array.   
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 Suppose you want a function like  puts()  that also tells you how many characters are printed. 
As  Listing   11.15    demonstrates, it’s easy to add that feature.  

  Listing 11.15   The  put2()  Function  

 /* put2.c -- prints a string and counts characters */

  #include <stdio.h>

  int put2(const char * string)

  {

      int count = 0;

      while (*string)         /* common idiom       */

      {

          putchar(*string++);

          count++;

      }

      putchar('\n');          /* newline not counted */

  

      return(count);

  }   

 The following call prints the string  pizza :  

  put1("pizza");   

 The next call also returns a character count that is assigned to  num  (in this case, the value  5 ):  

  num = put2("pizza");   

 Listing 11.16 presents a driver using  put1()  and  put2()  and showing nested function calls.  

  Listing 11.16   The  put_put.c  Program  

 //put_put.c -- user-defined output functions

  #include <stdio.h>

  void put1(const char *);

  int put2(const char *);

  

  int main(void)

  {

      put1("If I'd as much money");

      put1(" as I could spend,\n");

      printf("I count %d characters.\n",

             put2("I never would cry old chairs to mend."));

  

      return 0;

  }

  

  void put1(const char * string)



ptg11524036

469String Functions

  {

      while (*string)  /* same as *string != '\0' */

          putchar(*string++);

  }

  

  int put2(const char * string)

  {

      int count = 0;

      while (*string)

      {

          putchar(*string++);

          count++;

      }

      putchar('\n');

  

      return(count);

  }   

 Hmmm, we are using  printf()  to print the value of  put2() , but in the act of finding the 
value of  put2() , the computer first must execute that function, causing the string to be 
printed. Here’s the output:  

  If I'd as much money as I could spend,

  I never would cry old chairs to mend.

  I count 37 characters.    

  String Functions  

 The C library supplies several string-handling functions; ANSI C uses the  string.h  header file 
to provide the prototypes. We’ll look at some of the most useful and common ones:  strlen() , 
 strcat() ,  strncat() ,  strcmp() ,  strncmp() ,  strcpy() , and  strncpy() . We’ll also examine 
 sprintf() , supported by the  stdio.h  header file. For a complete list of the  string.h  family 
of functions, see Reference Section V, “The Standard ANSI C Library with C99 Additions,” in 
 Appendix   B   .  

  The  strlen()  Function  

 The  strlen()  function, as you already know, finds the length of a string. It’s used in the next 
example, a function that shortens lengthy strings:  

  void fit(char *string, unsigned int size)

  {

      if (strlen(string) > size)

          string[size] = '\0';

  }   
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 This function does change the string, so the function header doesn’t use  const  in declaring the 
formal parameter  string .  

 Try the  fit()  function in the test program of  Listing   11.17   . Note that the code uses C’s string 
literal concatenation feature.  

  Listing 11.17   The  test_fit.c  Program  

 /* test_fit.c -- try the string-shrinking function */

  #include <stdio.h>

  #include <string.h> /* contains string function prototypes */

  void fit(char *, unsigned int);

  

  int main(void)

  {

      char mesg[] = "Things should be as simple as possible,"

      " but not simpler.";

  

      puts(mesg);

      fit(mesg,38);

      puts(mesg);

      puts("Let's look at some more of the string.");

      puts(mesg + 39);

  

      return 0;

  }

  

  void fit(char *string, unsigned int size)

  {

      if (strlen(string) > size)

          string[size] = '\0';

  }   

 The output is this:  

  Things should be as simple as possible, but not simpler.

  Things should be as simple as possible

  Let's look at some more of the string.

   but not simpler.   

 The  fit()  function placed a  '\0'  character in the 39th element of the array, replacing a 
comma. The  puts()  function stops at the first null character and ignores the rest of the array. 
However, the rest of the array is still there, as shown by the following call:  

  puts(mesg + 8);   
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 The expression  mesg + 39  is the address of  mesq[39] , which is a space character. So  puts()  
displays that character and keeps going until it runs into the original null character.  Figure   11.4    
illustrates (with a shorter string) what’s happening in this program.  

 (Variations of the quotation in the  mesg  array are attributed to Albert Einstein, but it appears 
more likely to be a representation of his philosophy than a direct quote.)  

 puts(mesg);

start stop

Original string:

H o l o u r h a t s , h a c k e r s . \0d o n o yt

String after fit(mesg, 7):

H o l o u r h a t s , h a c k e r s . \0\0d o n o yt

puts(mesg + 8);

start stop

 Figure 11.4   The  puts()  function and the null character.         

 The  string.h  file contains function prototypes for the C family of string functions, which is 
why this example includes it.  

  Note 

 Some pre-ANSI systems use  strings.h  instead, and others might lack a string header file 
entirely.    

  The  strcat()  Function  

 The  strcat()  (for  string concatenation ) function takes two strings for arguments. A copy of the 
second string is tacked onto the end of the first, and this combined version becomes the new 
first string. The second string is not altered. The  strcat()  function is type  char *  (that is, a 
pointer-to- char ). It returns the value of its first argument—the address of the first character of 
the string to which the second string is appended.  

 Listing 11.18 illustrates what  strcat()  can do. It also uses the  s_gets()  function we defined 
in  Listing   11.10   ; recall that it uses  fgets()  to read a line, and then removes the newline char-
acter, if present.  
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  Listing 11.18   The  str_cat.c  Program  

 /* str_cat.c -- joins two strings */

  #include <stdio.h>

  #include <string.h>  /* declares the strcat() function */

  #define SIZE 80

  char * s_gets(char * st, int n);

  int main(void)

  {

      char flower[SIZE];

      char addon[] = "s smell like old shoes.";

  

      puts("What is your favorite flower?");

      if (s_gets(flower, SIZE))

      {

          strcat(flower, addon);

          puts(flower);

          puts(addon);

      }

      else

          puts("End of file encountered!");

      puts("bye");

  

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

               while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   
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 This is a sample output:  

  What is your favorite flower?

   wonderflower 

  wonderflowers smell like old shoes.

  s smell like old shoes.

  bye   

 The output illustrates that  flower  is altered while  addon  is not.   

  The  strncat()  Function  

 The  strcat()  function does not check to see whether the second string will fit in the first 
array. If you fail to allocate enough space for the first array, you will run into problems as 
excess characters overflow into adjacent memory locations. Of course, you can use  strlen()  to 
look before you leap, as shown in  Listing   11.15   . Note that it adds  1  to the combined lengths to 
allow space for the null character. Alternatively, you can use  strncat() , which takes a second 
argument indicating the maximum number of characters to add. For example,  strncat(bugs, 
addon, 13)  will add the contents of the  addon  string  to  bugs , stopping when it reaches 13 
additional characters or the null character, whichever comes first. Therefore, counting the null 
character (which is appended in either case), the  bugs  array should be large enough to hold 
the original string (not counting the null character), a maximum of 13 additional characters, 
and the terminal null character.  Listing   11.19    uses this information to calculate a value for the 
 available  variable, which is used as the maximum number of additional characters allowed.  

  Listing 11.19   The  join_chk.c  Program  

 /* join_chk.c -- joins two strings, check size first */

  #include <stdio.h>

  #include <string.h>

  #define SIZE 30

  #define BUGSIZE 13

  char * s_gets(char * st, int n);

  int main(void)

  {

      char flower[SIZE];

      char addon[] = "s smell like old shoes.";

      char bug[BUGSIZE];

      int available;

  

      puts("What is your favorite flower?");

      s_gets(flower, SIZE);

      if ((strlen(addon) + strlen(flower) + 1) <= SIZE)

          strcat(flower, addon);

      puts(flower);

      puts("What is your favorite bug?");
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      s_gets(bug, BUGSIZE);

      available = BUGSIZE - strlen(bug) - 1;

      strncat(bug, addon, available);

      puts(bug);

  

      return 0;

  }

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (st[i] != '\n'  && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   

 Here is a sample run:  

  What is your favorite flower?

   Rose 

  Roses smell like old shoes.

  What is your favorite bug?

   Aphid 

  Aphids smell   

 You may have noticed that  strcat() , like  gets() , can lead to buffer overflows. Why, then, 
doesn’t the C11 standard dump  strcat()  and just offer  strncat() ? One reason may be 
that  gets()  exposes a program to dangers from those who use the program, while  strcat()  
exposes the program to the dangers of a careless programmer. You can’t control what some 
user will do in the future, but you can control what goes in your program. The C philosophy 
of trust the programmer brings with it the responsibility of recognizing when you can use 
 strcat()  safely.   



ptg11524036

475String Functions

  The  strcmp()  Function  

 Suppose you want to compare someone’s response to a stored string, as shown in  Listing   11.20   .  

  Listing 11.20   The  nogo.c  Program  

 /* nogo.c -- will this work? */

  #include <stdio.h>

  #define ANSWER "Grant"

  #define SIZE 40

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      char try[SIZE];

  

      puts("Who is buried in Grant's tomb?");

      s_gets(try, SIZE);

      while (try != ANSWER)

      {

          puts("No, that's wrong. Try again.");

          s_gets(try, SIZE);

      }

      puts("That's right!");

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   
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 As nice as this program might look, it will not work correctly.  ANSWER  and  try  really are point-
ers, so the comparison  try != ANSWER  doesn’t check to see whether the two strings are the 
same. Rather, it checks to see whether the two strings have the same address. Because  ANSWER  
and  try  are stored in different locations, the two addresses are never the same, and the user is 
forever told that he or she is wrong. Such programs tend to discourage people.  

 What you need is a function that compares string  contents , not string  addresses . You could 
devise one, but the job has been done for you with  strcmp()  (for  string comparison ). This func-
tion does for strings what relational operators do for numbers. In particular, it returns  0  if its 
two string arguments are the same and nonzero otherwise. The revised program is shown in 
 Listing   11.21   .  

  Listing 11.21   The  compare.c  Program  

 /* compare.c -- this will work */

  #include <stdio.h>

  #include <string.h>   // declares strcmp()

  

  #define ANSWER "Grant"

  #define SIZE 40

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      char try[SIZE];

  

      puts("Who is buried in Grant's tomb?");

      s_gets(try, SIZE);

      while (strcmp(try,ANSWER) != 0)

      {

          puts("No, that's wrong. Try again.");

          s_gets(try, SIZE);

      }

      puts("That's right!");

  

      return 0;

  }

  

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {
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          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

       return ret_val;

  }   

  Note 

 Because any nonzero value is “true,” most experienced C programmers would abbreviate the 
 while  statement to  while (strcmp(try,ANSWER)) .   

 One of the nice features of  strcmp()  is that it compares strings, not arrays. Although the array 
 try  occupies 40 memory cells and  "Grant"  only six (one for the null character), the compari-
son looks only at the part of  try  up to its first null character. Therefore,  strcmp()  can be used 
to compare strings stored in arrays of different sizes.  

 What if the user answers  "GRANT"  or  "grant"  or  "Ulysses S. Grant" ? The user is told that 
he or she is wrong. To make a friendlier program, you have to anticipate all possible correct 
answers. There are some tricks you can use. For example, you can use  #define  to define the 
answer as  "GRANT"  and write a function that converts all input to uppercase. That eliminates 
the problem of capitalization, but you still have the other forms to worry about, as well as the 
fact that his wife Julia is entombed there, too. We leave these concerns as exercises for you.  

  The  strcmp()  Return Value  

 What value does  strcmp()  return if the strings are not the same? Listing 11.22 shows an 
example.  

  Listing 11.22   The  compback.c  Program  

 /* compback.c -- strcmp returns */

  #include <stdio.h>

  #include <string.h>

  int main(void)

  {

  

      printf("strcmp(\"A\", \"A\") is ");

      printf("%d\n", strcmp("A", "A"));

  

      printf("strcmp(\"A\", \"B\") is ");

      printf("%d\n", strcmp("A", "B"));
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      printf("strcmp(\"B\", \"A\") is ");

      printf("%d\n", strcmp("B", "A"));

  

      printf("strcmp(\"C\", \"A\") is ");

      printf("%d\n", strcmp("C", "A"));

  

      printf("strcmp(\"Z\", \"a\") is ");

      printf("%d\n", strcmp("Z", "a"));

  

      printf("strcmp(\"apples\", \"apple\") is ");

      printf("%d\n", strcmp("apples", "apple"));

  

      return 0;

  }   

 Here is the output on one system:  

  strcmp("A", "A") is 0

  strcmp("A", "B") is -1

  strcmp("B", "A") is 1

  strcmp("C", "A") is 1

  strcmp("Z", "a") is -1

  strcmp("apples", "apple") is 1   

 Comparing  "A"  to itself returns  0 . Comparing  "A"  to  "B"  returns  -1 , and reversing the 
comparison returns  1 . These results suggest that  strcmp()  returns a negative number if the 
first string precedes the second alphabetically and that it returns a positive number if the 
order is the other way. Therefore, comparing  "C"  to  "A"  gives a  1 . Other systems might return 
 2 —the difference in ASCII code values. The ANSI standard says that  strcmp()  returns a nega-
tive number if the first string comes before the second alphabetically, returns  0  if they are the 
same, and returns a positive number if the first string follows the second alphabetically. The 
exact  numerical values, however, are left open to the implementation. Here, for example, is 
the output for another implementation, one that returns the difference between the character 
codes:  

  strcmp("A", "A") is 0

  strcmp("A", "B") is -1

  strcmp("B", "A") is 1

  strcmp("C", "A") is 2

  strcmp("Z", "a") is -7

  strcmp("apples", "apple") is 115   

 What if the initial characters are identical? In general,  strcmp()  moves along until it finds 
the first pair of disagreeing characters. It then returns the corresponding code. For instance, in 
the very last example,  "apples"  and  "apple"  agree until the final  s  of the first string. This 
matches up with the sixth character in  "apple" , which is the null character, ASCII 0. Because 
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the null character is the very first character in the ASCII sequence,  s  comes after it, and the 
function returns a positive value.  

 The last comparison points out that  strcmp()  compares all characters, not just letters, so 
instead of saying the comparison is alphabetic, we should say that  strcmp()  goes by the 
machine  collating sequence . That means characters are compared according to their numeric 
representation, typically the ASCII values. In ASCII, the codes for uppercase letters precede 
those for lowercase letters. Therefore,  strcmp("Z", "a")  is negative.  

 Most often, you won’t care about the exact value returned. You just want to know if it is zero 
or nonzero—that is, whether there is a match or not—or you might be trying to sort the strings 
alphabetically, in which case you want to know if the comparison is positive, negative, or zero.  

  Note 

 The  strcmp()  function is for comparing  strings , not  characters . So you can use arguments 
such as  "apples"  and  "A" , but you cannot use character arguments, such as  'A' . However, 
recall that the  char  type is an integer type, so you can use the relational operators for charac-
ter comparisons. Suppose  word  is a string stored in an array of  char  and that  ch  is a  char  
variable. Then the following statements are valid:  
  if (strcmp(word, "quit") == 0)  // use strcmp() for strings

      puts("Bye!");

  if (ch == 'q')                  // use == for chars

      puts("Bye!");   

 However, don’t use  ch  or  'q'  as arguments for  strcmp() .   

  Listing   11.23    uses the  strcmp()  function for checking to see whether a program should stop 
reading input.  

  Listing 11.23   The  quit_chk.c  Program  

 /* quit_chk.c -- beginning of some program */

  #include <stdio.h>

  #include <string.h>

  #define SIZE 80

  #define LIM 10

  #define STOP "quit"

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      char input[LIM][SIZE];

      int ct = 0;

  

      printf("Enter up to %d lines (type quit to quit):\n", LIM);

      while (ct < LIM && s_gets(input[ct], SIZE) != NULL &&
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             strcmp(input[ct],STOP) != 0)

      {

          ct++;

      }

      printf("%d strings entered\n", ct);

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else //  must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   

 This program quits reading input when it encounters an  EOF  character ( s_gets()  returns  NULL  
in that case), when you enter the word  quit,  or when you reach the limit  LIM .  

 Incidentally, sometimes it is more convenient to terminate input by entering an empty line—
that is, by pressing the Enter key or Return key without entering anything else. To do so, you 
can modify the  while  loop control statement so that it looks like this:  

  while (ct < LIM && s_gets(input[ct], SIZE) != NULL

                  && input[ct][0] != '\0')   

 Here,  input[ct]  is the string just entered and  input[ct][0]  is the first character of that 
string. If the user enters an empty line,  s_gets()  places the null character in the first element, 
so the expression  

  input[ct][0] != '\0'   

 tests for an empty input line.   
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  The  strncmp()  Variation  

 The  strcmp()  function compares strings until it finds corresponding characters that differ, 
which could take the search to the end of one of the strings. The  strncmp()  function 
compares the strings until they differ or until it has compared a number of characters specified 
by a third argument. For example, if you wanted to search for strings that begin with  "astro" , 
you could limit the search to the first five characters.  Listing   11.24    shows how.  

  Listing 11.24   The  starsrch.c  Program  

 /* starsrch.c -- use strncmp() */

  #include <stdio.h>

  #include <string.h>

  #define LISTSIZE 6

  int main()

  {

      const char * list[LISTSIZE] =

      {

          "astronomy", "astounding",

          "astrophysics", "ostracize",

          "asterism", "astrophobia"

      };

      int count = 0;

      int i;

  

      for (i = 0; i < LISTSIZE; i++)

          if (strncmp(list[i],"astro", 5) == 0)

          {

              printf("Found: %s\n", list[i]);

              count++;

          }

      printf("The list contained %d words beginning"

             " with astro.\n", count);

  

      return 0;

  }   

 Here is the output:  

  Found: astronomy

  Found: astrophysics

  Found: astrophobia

  The list contained 3 words beginning with astro.     
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  The  strcpy()  and  strncpy()  Functions  

 We’ve said that if  pts1  and  pts2  are both pointers to strings, the expression  

  pts2 = pts1;   

 copies only the address of a string, not the string itself. Suppose, though, that you do want to 
copy a string. Then you can use the  strcpy()  function.  Listing   11.25    asks the user to enter 
words beginning with  q . The program copies the input into a temporary array, and if the 
first letter is a  q , the program uses  strcpy()  to copy the string from the temporary array to 
a permanent destination. The  strcpy()  function is the string equivalent of the assignment 
operator.  

  Listing 11.25   The  copy1.c  Program  

 /* copy1.c -- strcpy() demo */

  #include <stdio.h>

  #include <string.h>  // declares strcpy()

  #define SIZE 40

  #define LIM 5

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      char qwords[LIM][SIZE];

      char temp[SIZE];

      int i = 0;

  

      printf("Enter %d words beginning with q:\n", LIM);

      while (i < LIM && s_gets(temp, SIZE))

      {

          if (temp[0] != 'q')

              printf("%s doesn't begin with q!\n", temp);

          else

          {

              strcpy(qwords[i], temp);

              i++;

          }

      }

      puts("Here are the words accepted:");

      for (i = 0; i < LIM; i++)

          puts(qwords[i]);

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {



ptg11524036

483String Functions

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while  (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   

 Here is a sample run:  

  Enter 5 words beginning with q:

   quackery 

   quasar 

   quilt 

   quotient 

   no more 

  no more doesn't begin with q!

   quiz 

  Here are the words accepted:

  quackery

  quasar

  quilt

  quotient

  quiz   

 Note that the counter  i  is incremented only when the word entered passes the  q  test. Also note 
that the program uses a character-based test:  

  if (temp[0] != 'q')   

 That is, is the first character in the  temp  array not a  q ? Another possibility is using a string-
based test:  

  if (strncmp(temp, "q", 1) != 0)   

 That is, are the strings  temp  and  "q"  different from each other in the first element?  

 Note that the string pointed to by the second argument ( temp ) is copied into the array pointed 
to by the first argument ( qword[i] ). The copy is called the  target , and the original string is 
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called the  source . You can remember the order of the arguments by noting that it is the same as 
the order in an assignment statement (the target string is on the left):  

  char target[20];

  int x;

  x = 50;                    /* assignment for numbers */

  strcpy(target, "Hi ho!");  /* assignment for strings */

  target = "So long";        /* syntax error           */   

 It is your responsibility to make sure the destination array has enough room to copy the source. 
The following is asking for trouble:  

  char * str;

  strcpy(str, "The C of Tranquility"); // a problem   

 The function will copy the string  "The C of Tranquility"  to the address specified by  str , 
but  str  is uninitialized, so the copy might wind up anywhere!  

 In short,  strcpy()  takes two string pointers as arguments. The second pointer, which points 
to the original string, can be a declared pointer, an array name, or a string constant. The first 
pointer, which points to the copy, should point to a data object, such as an array, roomy 
enough to hold the string. Remember, declaring an array allocates storage space for data; 
declaring a pointer only allocates storage space for one address.  

  Further  strcpy()  Properties  

 The  strcpy()  function has two more properties that you might find useful. First, it is type 
 char * . It returns the value of its first argument—the address of a character. Second, the first 
argument need not point to the beginning of an array; this lets you copy just part of an array. 
 Listing   11.26    illustrates both these points.  

  Listing 11.26   The  copy2.c  Program  

 /* copy2.c -- strcpy() demo */

  #include <stdio.h>

  #include <string.h>    // declares strcpy()

  #define WORDS  "beast"

  #define SIZE 40

  

  int main(void)

  {

      const char * orig = WORDS;

      char copy[SIZE] = "Be the best that you can be.";

      char * ps;

  

      puts(orig);

      puts(copy);

      ps = strcpy(copy + 7, orig);
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      puts(copy);

      puts(ps);

  

      return 0;

  }   

 Here is the output:  

  beast

  Be the best that you can be.

  Be the beast

  beast   

 Note that  strcpy()  copies the null character from the source string. In this example, the null 
character overwrites the first  t  in  that  in  copy  so that the new string ends with  beast  (see 
 Figure   11.5   ). Also note that  ps  points to the eighth element (index of 7) of  copy  because the 
first argument is  copy + 7 . Therefore,  puts(ps)  prints the string starting at that point.  

 

B e h e sb e t t h a t y o u c a n b e . \0t

copy copy + 7

the command
strcpy ( copy + 7, orig );

means "copy string from orig to here"

b e a t \0s

orig

B e h e sb e t \0 h aa t y o u c a n b e . \0t

 Figure 11.5   The  strcpy()  function uses pointers.          

  The Careful Choice:  strncpy()   

 The  strcpy()  function shares a problem with  strcat() —neither checks to see whether the 
source string actually fits in the target string. The safer way to copy strings is to use  strncpy() . 
It takes a third argument, which is the maximum number of characters to copy.  Listing   11.27    is 
a rewrite of  Listing   11.25   , using  strncpy()  instead of  strcpy() . To illustrate what happens if 
the source string is too large, it uses a rather small size (seven elements, six characters) for the 
target strings.  
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  Listing 11.27   The  copy3.c  Program  

 /* copy3.c -- strncpy() demo */

  #include <stdio.h>

  #include <string.h>  /* declares strncpy() */

  #define SIZE 40

  #define TARGSIZE 7

  #define LIM 5

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      char qwords[LIM][TARGSIZE];

      char temp[SIZE];

      int i = 0;

  

      printf("Enter %d words beginning with q:\n", LIM);

      while (i < LIM && s_gets(temp, SIZE))

      {

          if (temp[0] != 'q')

              printf("%s doesn't begin with q!\n", temp);

          else

          {

              strncpy(qwords[i], temp, TARGSIZE - 1);

              qwords[i][TARGSIZE - 1] = '\0';

              i++;

          }

      }

      puts("Here are the words accepted:");

      for (i = 0; i < LIM; i++)

          puts(qwords[i]);

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i  = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';
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          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   

 Here is a sample run:  

  Enter 5 words beginning with q:

   quack 

   quadratic 

   quisling 

   quota 

   quagga 

  Here are the words accepted:

  quack

  quadra

  quisli

  quota

  quagga   

 The function call  strncpy(target, source, n)  copies up to  n  characters or up through the 
null character (whichever comes first) from  source  to  target . Therefore, if the number of 
characters in  source  is less than  n , the entire string is copied, including the null character. The 
function never copies more than  n  characters, so if it reaches the limit before reaching the end 
of the source string, no null character is added. As a result, the final product may or may not 
have a null character. For this reason, the program sets  n  to one less than the size of the target 
array and then sets  the final element in the array to the null character:  

  strncpy(qwords[i], temp, TARGSIZE - 1);

  qwords[i][TARGSIZE - 1] = '\0';   

 This ensures that you’ve stored a string. If the source string actually fits, the null character 
copied with it marks the true end of the string. If the source string doesn’t fit, this final null 
character marks the end of the string.    

  The  sprintf()  Function  

 The  sprintf()  function is declared in  stdio.h  instead of  string.h . It works like  printf() , 
but it writes to a string instead of writing to a display. Therefore, it provides a way to combine 
several elements into a single string. The first argument to  sprintf()  is the address of the 
target string. The remaining arguments are the same as for  printf() —a conversion specifica-
tion string followed by a list of items to be written.  
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  Listing   11.28    uses  sprintf()  to combine three items (two strings and a number) into a single 
string. Note that it uses  sprintf()  the same way you would use  printf() , except that the 
resulting string is stored in the array  formal  instead of being displayed onscreen.  

  Listing 11.28   The  format.c  Program  

 /* format.c -- format a string */

  #include <stdio.h>

  #define MAX 20

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      char first[MAX];

      char last[MAX];

      char formal[2 * MAX + 10];

      double prize;

  

      puts("Enter your first name:");

      s_gets(first, MAX);

      puts("Enter your last name:");

      s_gets(last, MAX);

      puts("Enter your prize money:");

      scanf("%lf", &prize);

      sprintf(formal, "%s, %-19s: $%6.2f\n", last, first, prize);

      puts(formal);

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] ==  '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   
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 Here’s a sample run:  

  Enter your first name:

   Annie 

  Enter your last name:

   von Wurstkasse 

  Enter your prize money:

   25000 

  von Wurstkasse, Annie              : $25000.00   

 The  sprintf()  command took the input and formatted it into a standard form, which it then 
stored in the string  formal .   

  Other String Functions  

 The ANSI C library has more than 20 string-handling functions, and the following list summa-
rizes some of the more commonly used ones:  

    ■    char *strcpy(char * restrict s1, const char * restrict s2);   

 This function copies the string (including the null character) pointed to by  s2  to the 
location pointed to by  s1 . The return value is  s1 .   

   ■    char *strncpy(char * restrict s1, const char * restrict s2, size_t n);   

 This function copies to the location pointed to by  s1  no more than  n  characters from the 
string pointed to by  s2 . The return value is  s1 . No characters after a null character are 
copied and, if the source string is shorter than  n  characters, the target string is padded 
with null characters. If the source string has  n  or more characters, no null character is 
copied. The return value is  s1 .   

   ■    char *strcat(char * restrict s1, const char * restrict s2);   

 The string pointed to by  s2  is copied to the end of the string pointed to by  s1 . The first 
character of the  s2  string is copied over the null character of the  s1  string. The return 
value is  s1 .   

   ■    char *strncat(char * restrict s1, const char * restrict s2, size_t n);   

 No more than the first  n  characters of the  s2  string are appended to the  s1  string, with 
the first character of the  s2  string being copied over the null character of the  s1  string. 
The null character and any characters following it in the  s2  string are not copied, and a 
null character is appended to the result. The return value is  s1 .   

   ■    int strcmp(const char * s1, const char * s2);   

 This function returns a positive value if the  s1  string follows the  s2  string in the 
machine collating sequence, the value  0  if the two strings are identical, and a negative 
value if the first string precedes the second string in the machine collating sequence.   

   ■    int strncmp(const char * s1, const char * s2, size_t n);   

 This function works like  strcmp() , except that the comparison stops after  n  characters or 
when the first null character is encountered, whichever comes first.   
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   ■    char *strchr(const char * s, int c);   

 This function returns a pointer to the first location in the string  s  that holds the 
character  c . (The terminating null character is part of the string, so it can be searched 
for.) The function returns the null pointer if the character is not found.   

   ■    char *strpbrk(const char * s1, const char * s2);   

 This function returns a pointer to the first location in the string  s1  that holds any 
character found in the  s2  string. The function returns the null pointer if no character is 
found.   

   ■    char *strrchr(const char * s, int c);   

 This function returns a pointer to the last occurrence of the character  c  in the string 
 s . (The terminating null character is part of the string, so it can be searched for.) The 
function returns the null pointer if the character is not found.   

   ■    char *strstr(const char * s1, const char * s2);   

 This function returns a pointer to the first occurrence of string  s2  in string  s1 . The 
function returns the null pointer if the string is not found.   

   ■    size_t strlen(const char * s);   

 This function returns the number of characters, not including the terminating null 
character, found in the string  s .    

 Note that these prototypes use the keyword  const  to indicate which strings are not altered by a 
function. For example, consider the following:  

  char *strcpy(char * restrict s1, const char * restrict s2);   

 It means  s2  points to a string that can’t be changed, at least not by the  strcpy()  function, 
but  s1  points to a string that can be changed. This makes sense, because  s1  is the target string, 
which gets altered, and  s2  is the source string, which should be left unchanged.  

 The keyword  restrict , discussed in  Chapter   12   , indicates restrictions on how the function 
arguments should be used, for example, not copying a string into itself.  

 The  size_t  type, as discussed in  Chapter   5   , “Operators, Expressions, and Statements,” is what-
ever type the  sizeof  operator returns. C states that the  sizeof  operator returns an integer 
type, but it doesn’t specify which integer type, so  size_t  can be  unsigned int  on one system 
and  unsigned long  on another. The  string.h  file defines  size_t  for a particular system or 
else refers to another header file having the definition.  

 As mentioned earlier, Reference Section V lists all the functions in the  string.h  family. Many 
implementations provide additional functions beyond those required by the ANSI standard. 
You should check the documentation for your implementation to see what is available.  
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 Let’s look at a simple use of one of these functions. Earlier we saw that  fgets() , when it 
reads a line of input, stores the newline in the destination string. Our  s_gets()  function used 
a  while  loop to detect that newline character, but we can use  strchr()  instead. First, use 
 strchr()  to find the newline, if any. If the function finds the newline, it returns the address of 
the newline, and you then can place a null character at that address:  

  char line[80];

  char * find;

  

  fgets(line, 80, stdin);

  find = strchr(line, '\n');   // look for newline

  if (find)                    // if the address is not NULL,

      *find = '\0';            // place a null character there   

 If  strchr()  fails to find a newline,  fgets()  ran into the size limit before reaching the end of 
the line. You can add an  else , as we did in  s_gets() , to the  if  to process that circumstance.  

 Next, let’s look at a full program that handles strings.    

  A String Example: Sorting Strings  

 Let’s tackle the practical problem of sorting strings alphabetically. This task can show up in 
preparing name lists, in making up an index, and in many other situations. One of the main 
tools in such a program is  strcmp()  because it can be used to determine the order of two 
strings. The general plan will be to read an array of strings, sort them, and print them. Earlier, 
we presented a scheme for reading strings, and we will start the program that way. Printing 
the strings is no problem. We’ll use a standard sorting algorithm that we’ll explain later. We 
will  also do one slightly tricky thing; see whether you can spot it.  Listing   11.29    presents the 
program.  

  Listing 11.29   The  sort_str.c  Program  

 /* sort_str.c -- reads in strings and sorts them */

  #include <stdio.h>

  #include <string.h>

  #define SIZE 81        /* string length limit, including \0  */

  #define LIM 20         /* maximum number of lines to be read */

  #define HALT ""        /* null string to stop input          */

  void stsrt(char *strings[], int num);/* string-sort function */

  char * s_gets(char * st, int n);

  

  int main(void)

  {
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      char input[LIM][SIZE];     /* array to store input       */

      char *ptstr[LIM];          /* array of pointer variables */

      int ct = 0;                /* input count                */

      int k;                     /* output count               */

  

      printf("Input up to %d lines, and I will sort them.\n",LIM);

      printf("To stop, press the Enter  key at a line's start.\n");

      while (ct < LIM && s_gets(input[ct], SIZE) != NULL

             && input[ct][0] != '\0')

      {

          ptstr[ct] = input[ct];  /* set ptrs to strings        */

          ct++;

      }

      stsrt(ptstr, ct);          /* string sorter              */

      puts("\nHere's the sorted list:\n");

      for (k = 0; k < ct; k++)

          puts(ptstr[k]) ;       /* sorted pointers            */

  

      return 0;

  }

  

  /* string-pointer-sorting function */

  void stsrt(char *strings[], int num)

  {

      char *temp;

      int top, seek;

  

      for (top = 0; top < num-1; top++)

          for (seek = top + 1; seek < num; seek++)

              if (strcmp(strings[top],strings[seek]) > 0)

              {

                  temp = strings[top];

                  strings[top] = strings[seek];

                  strings[seek] = temp;

               }

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {
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          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   

 We fed Listing 11.29 an obscure nursery rhyme to test it:  

  Input up to 20 lines, and I will sort them.

  To stop, press the Enter key at a line's start.

   O that I was where I would be, 

   Then would I be where I am not; 

   But where I am I must be, 

   And where I would be I can not. 

  

  Here's the sorted list:

  

  And where I would be I can not.

  But where I am I must be,

  O that I was where I would be,

  Then would I be where I am not;   

 Hmm, the nursery rhyme doesn’t seem to suffer much from being alphabetized.  

  Sorting Pointers Instead of Strings  

 The tricky part of the program is that instead of rearranging the strings themselves, we just 
rearranged  pointers  to the strings. Let’s see what that means. Originally,  ptrst[0]  is set to 
 input[0] , and so on. That means the pointer  ptrst[i]  points to the first character in the 
array  input[i] . Each  input[i]  is an array of 81 elements, and each  ptrst[i]  is a single 
variable. The sorting procedure rearranges  ptrst , leaving  input  untouched. If, for example, 
 input[1]  comes before  input[0]  alphabetically, the program switches  ptrsts , causing 
 ptrst[0]  to point to the beginning of  input[1]  and causing  ptrst[1]  to point to the begin-
ning of  input[0] . This is much easier than using, say,  strcpy()  to  interchange the contents 
of the two  input  strings. See  Figure   11.6    for another view of this process. It also has the advan-
tage of preserving the original order in the  input  array.  
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before sorting:

0

[0][0] [0][80][0][1] ...

t hinput[0]

ptrst[0] points to input[0]

ptrst[1] points to input[1]

etc

after sorting:

ptrst[0] points to input[3]

ptrst[1] points to input[2]

etc

T

[1][0] [1][80][1][1] ...

e nhinput[1]

B

[2][0] [2][80][2][1] ...

tinput[2]

A

[3][0] [3][80][3][1] ...

dninput[3]

u

 Figure 11.6   Sorting string pointers.          

  The Selection Sort Algorithm  

 To sort the pointers, we use the  selection sort  algorithm. The idea is to use a  for  loop to 
compare each element in turn with the first element. If the compared element precedes the 
current first element, the program swaps the two. By the time the program reaches the end of 
the loop, the first element contains a pointer to whichever string is first in the machine collat-
ing sequence. Then the outer  for  loop repeats the process, this time starting with the second 
element of  input . When the inner loop completes, the pointer to the second-ranking string 
ends up in the second element  of  ptrst . The process continues until all the elements have 
been sorted.  
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 Now let’s take a more detailed look at the selection sort. Here is an outline in pseudocode:  

   for n = first to n = next-to-last element, 

        find largest remaining number and place it in the nth element    

 The plan works like this: First, start with  n = 0 . Scan the entire array, find the largest number, 
and swap it with the first element. Next, set  n = 1  and then scan all but the first element of 
the array. Find the largest remaining number and swap it with the second element. Continue 
this process until reaching the next-to-last element. Now only two elements are left. Compare 
them and place the larger in the next-to-last position. This leaves the smallest element of all in 
the final position.  

 It looks like a  for  loop task, but we still have to describe the “find and place” process in 
more detail. One way to select the largest remaining value is to compare the first and second 
elements of the remaining array. If the second is larger, swap the two values. Now compare the 
first element with the third. If the third is larger, swap those two. Each swap moves a larger 
element to the top. Continue this way until you have compared the first with the last element. 
When you finish, the largest value is now in the first element of  the remaining array. You have 
sorted the array for the first element, but the rest of the array is in a jumble. Here is the proce-
dure in pseudocode:  

   for n - second element to last element, 

     compare nth element with first element; if nth is greater, swap values    

 This process looks like another  for  loop. It will be nested in the first  for  loop. The outer loop 
indicates which array element is to be filled, and the inner loop finds the value to put there. 
Putting the two parts of the pseudocode together and translating them into C, we get the 
function in  Listing   11.29   . Incidentally, the C library includes a more advanced sorting func-
tion called  qsort() . Among other things, it uses a pointer to a function to make the sorting 
comparison.  Chapter   16   , “The C Preprocessor and the C Library,” gives examples of its use.    

  The  ctype.h  Character Functions and Strings  

  Chapter   7   , “C Control Statements: Branching and Jumps,” introduced the  ctype.h  family of 
character-related functions. These functions can’t be applied to a string as a whole, but they 
can be applied to the individual characters in a string.  Listing   11.30   , for example, defines a 
function that applies the  toupper()  function to each character in a string, thus converting the 
whole string to uppercase. It also defines a function that uses  ispunct()  to count the number 
of punctuation characters in a string. Finally, the program uses  strchr() , as described earlier, 
to handle the newline, if any, in the string read by  fgets() .  

  Listing 11.30   The  mod_str.c  Program  

 /* mod_str.c -- modifies a string */

  #include <stdio.h>

  #include <string.h>
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  #include <ctype.h>

  #define LIMIT 81

  void ToUpper(char *);

  int PunctCount(const char *);

  

  int main(void)

  {

      char line[LIMIT];

      char * find;

  

      puts("Please enter a line:");

      fgets(line, LIMIT, stdin);

      find = strchr(line, '\n');   // look for newline

      if (find)                    // if the address is not NULL,

          *find = '\0';            // place a null character there

      ToUpper(line);

      puts(line);

      printf("That line has %d punctuation characters.\n",

             PunctCount(line));

  

      return 0;

  }

  

  void ToUpper(char * str)

  {

      while (*str)

      {

          *str = toupper(*str);

          str++;

      }

  }

  

  int PunctCount(const char * str)

  {

      int ct = 0;

      while (*str)

      {

          if (ispunct(*str))

              ct++;

          str++;

      }

  

      return ct;

  }   
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 The  while (*str ) loop processes each character in the string pointed to by  str  until the null 
character is reached. At that point, the value of  *str  becomes 0 (the code for the null charac-
ter), or false, and the loop terminates. Here is a sample run:  

  Please enter a line:

   Me? You talkin' to me? Get outta here! 

  ME? YOU TALKIN' TO ME? GET OUTTA HERE!

  That line has 4 punctuation characters.   

 The  ToUpper()  function applies  toupper()  to each character in a string. (The fact that C 
distinguishes between uppercase and lowercase makes these two function names different from 
one another.) As defined by ANSI C, the  toupper()  function alters only characters that are 
lowercase. However, very old implementations of C don’t do that check automatically, so old 
code normally does something like this:  

  if (islower(*str))         /* pre-ANSI C -- check before converting */

      *str = toupper(*str);   

 Incidentally, the  ctype.h  functions are usually implemented as  macros . These are C prepro-
cessor constructions that act much like functions but have some important differences. We’ll 
cover macros in  Chapter   16   .  

 This program used a combination of  fgets()  and  strchr()  to read a line of input and replace 
the newline with a null character. The main difference between this approach and using 
 s_gets()  is that the latter disposes of the rest of the input line, if any, preparing the program 
for the next input statement. In this case, there is only one input statement, so that extra step 
isn’t needed.  

 Next, let’s try to fill an old emptiness in our lives, namely, the void between the parentheses in 
 main() .   

  Command-Line Arguments  

 Before the modern graphical interface, there was the command-line interface. DOS and Unix 
are examples, and Linux terminal provides a Unix-like command-line environment. The 
 command line  is the line you type to run your program in a command-line environment. 
Suppose you have a program in a file named  fuss . Then the command line to run it might 
look like this in Unix:  

  $ fuss   

 Or it might look like this in the Windows Command Prompt mode:  

  C> fuss   

  Command-line arguments  are additional items on the same line. Here’s an example:  

  $ fuss -r Ginger   
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 A C program can read those additional items for its own use (see  Figure   11.7   ).  

 

run program with

command-line
arguments

/* repeat.c */

int main(int argc,char*argv[])

{

•

•

•

}

repeat I'm fine

argv[0] argv[1] argv[2]

executable file
called "repeat"

three strings

argc = 3

 Figure 11.7   Command-line arguments.         

 A C program reads these items by using arguments to  main() .  Listing   11.31    shows a typical 
example.  

  Listing 11.31   The  repeat.c  Program  

 /* repeat.c -- main() with arguments */

  #include <stdio.h>

  int main(int argc, char *argv[])

  {

      int count;

  

      printf("The command line has %d arguments:\n", argc - 1);

      for (count = 1; count < argc; count++)

          printf("%d: %s\n", count, argv[count]);

      printf("\n");

  

      return 0;

  }   

 Compile this program into an executable file called  repeat . Here is what happens when you 
run it from a command line:  

  C> repeat Resistance is futile 
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  The command line has 3 arguments:

  1: Resistance

  2: is

  3: futile   

 You can see why it is called  repeat , but you might wonder how it works. We’ll explain now.  

 C compilers allow  main()  to have no arguments or else to have two arguments. (Some imple-
mentations allow additional arguments, but that would be an extension of the standard.) With 
two arguments, the first argument is the number of strings in the command line. By tradition 
(but not by necessity), this  int  argument is called  argc  for  argument count . The system uses 
spaces to tell when one string ends and the next begins. Therefore, the  repeat  example has 
four strings, including the command name, and the  fuss  example has three. The program 
stores the command line strings in memory and stores the address of each string  in an array 
of pointers. The address of this array is stored in the second argument. By convention, this 
pointer to pointers is called  argv , for  argument values . When possible (some operating systems 
don’t allow this),  argv[0]  is assigned the name of the program itself. Then  argv[1]  is assigned 
the first following string, and so on. For our example, we have the following relationships:  

    argv[0]  points to  repeat  (for most systems)   

   argv[1]  points to  Resistance    

   argv[2]  points to  is    

   argv[3]  points to  futile     

 The program in  Listing   11.31    uses a  for  loop to print each string in turn. Recall that the  %s  
specifier for  printf()  expects the address of a string to be provided as an argument. Each 
element— argv[0] ,  argv[1] , and so on—is just such an address.  

 The form is the same as for any other function having formal arguments. Many programmers 
use a different declaration for  argv :  

  int main(int argc, char **argv)   

 This alternative declaration for  argv  really is equivalent to  char *argv[] . It says that  argv  
is a pointer to a pointer to  char . The example comes down to the same thing. It had an array 
with seven elements. The name of the array is a pointer to the first element, so  argv  points to 
 argv[0] , and  argv[0]  is a pointer to  char . Hence, even with the original definition,  argv  is a 
pointer to a pointer to  char . You can use either form, but we think that the first more clearly 
suggests that  argv  represents a set of strings.  

 Incidentally, many environments, including Unix and DOS, allow the use of quotation marks 
to lump several words into a single argument. For example, the command  

  repeat "I am hungry" now   

 would assign the string  "I am hungry"  to  argv[1]  and the string  "now"  to  argv[2] .  



ptg11524036

500 Chapter 11 Character Strings and String Functions

  Command-Line Arguments in Integrated Environments  

 Integrated Windows environments, such as Apple’s Xcode, Microsoft Visual C++, and 
Embarcadero C++ Builder, don’t use command lines to run programs. However, some have 
a project dialog box that enables you to specify a command-line argument for a particular 
project. In other cases, you may be able to compile the program in the IDE and then open an 
MS-DOS window to run the program in command-line mode. But it’s simpler if your system 
has the option of running a command-line compiler such as GCC.   

  Command-Line Arguments with the Macintosh  

 If you are using Xcode 4.6 (or similar version), you can provide command-line arguments 
by going to the Products menu and selecting Scheme, Edit Scheme, Run. Then select the 
Arguments tab and enter arguments in the Arguments Pass on Launch.  

 Or you can enter the Mac’s Terminal mode and the world of command-line Unix. Then 
you can either locate the directory (Unix for folder) containing the executable code for your 
program, or, if you have downloaded the command-line tools, use  gcc  or  clang  to compile the 
program.    

  String-to-Number Conversions  

 Numbers can be stored either as strings or in numeric form. Storing a number as a string means 
storing the digit characters. For example, the number 213 can be stored in a character string 
array as the digits  '2' ,  '1' ,  '3' ,  '\0' . Storing 213 in numeric form means storing it as, say, an 
 int .  

 C requires numeric forms for numeric operations, such as addition and comparison, but 
displaying numbers on your screen requires a string form because a screen displays charac-
ters. The  printf()  and  sprintf()  functions, through their  %d  and other specifiers, convert 
numeric forms to string forms, and  scanf()  can convert input strings into numeric forms.. C 
also has functions whose sole purpose is to convert string forms to numeric forms.  

 Suppose, for example, that you want a program to use a numeric command-line argument. 
Unfortunately, command-line arguments are read as strings. Therefore, to use the numeric 
value, you must first convert the string to a number. If the number is an integer, you can use 
the  atoi()  function (for  alphanumeric to integer ). It takes a string as an argument and returns 
the corresponding integer value.  Listing   11.32    shows a sample use.  

  Listing 11.32   The  hello.c  Program  

 /* hello.c -- converts command-line argument to number */

  #include <stdio.h>

  #include <stdlib.h>

  

  int main(int argc, char *argv[])
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  {

      int i, times;

  

      if (argc < 2 || (times = atoi(argv[1])) < 1)

          printf("Usage: %s positive-number\n", argv[0]);

      else

          for (i = 0; i < times; i++)

              puts("Hello, good looking!");

  

      return 0;

  }   

 Here’s a sample run:  

  $  hello 3 

  Hello, good looking!

  Hello, good looking!

  Hello, good looking!   

 The  $  is a Unix and Linux prompt. (Some Unix systems use  % .)The command-line argument of 
 3  was stored as the string  3\0 . The  atoi()  function converted this string to the integer value  3 , 
which was assigned to  times . This then determined the number of  for  loop cycles executed.  

 If you run the program without a command-line argument, the  argc < 2  test aborts the 
program and prints a usage message. The same thing happens if  times  is 0 or negative. C’s 
order-of-evaluation rule for logical operators guarantees that if  argc < 2 ,  atoi(argv[1])  is 
not evaluated.  

 The  atoi()  function still works if the string only begins with an integer. In that case, it 
converts characters until it encounters something that is not part of an integer. For example, 
 atoi("42regular")  returns the integer  42 . What if the command line is something like  hello 
what ? On the implementations we’ve used, the  atoi()  function returns a value of  0  if its argu-
ment is not recognizable as a number. However, the C standard says the behavior in that case 
is undefined. The  strtol()  function, discussed shortly, provides error checking that is more 
reliable.  

 We include the  stdlib.h  header because, since ANSI C, it contains the function declaration 
for  atoi() . That header file also includes declarations for  atof()  and  atol() . The  atof()  
function converts a string to a type  double  value, and the  atol()  function converts a string 
to a type  long  value. They work analogously to  atoi() , so they are type  double  and  long , 
respectively.  

 ANSI C has supplied more sophisticated versions of these functions:  strtol()  converts a string 
to a  long ,  strtoul()  converts a string to an  unsigned long , and  strtod()  converts a string 
to  double . The more sophisticated aspect is that the functions identify and report the first 
character in the string that is not part of a number. Also,  strtol()  and  strtoul()  allow you 
to specify a number base.  
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 Let’s look at an example involving  strtol( ). Its prototype is as follows:  

  long strtol(const char * restrict nptr, char ** restrict endptr, int base);   

 Here,  nptr  is a pointer to the string you want to convert,  endptr  is the address of a pointer 
that gets set to the address of the character terminating the input number, and  base  is the 
number base the number is written in. An example, given in  Listing   11.33   , makes this clearer.  

  Listing 11.33   The  strcnvt.c  Program  

 /* strcnvt.c -- try strtol()  */

  #include <stdio.h>

  #include <stdlib.h>

  #define LIM 30

  char * s_gets(char * st, int n);

  

  int main()

  {

      char number[LIM];

      char * end;

      long value;

  

      puts("Enter a number (empty line to quit):");

      while(s_gets(number, LIM) && number[0] != '\0')

      {

          value = strtol(number, &end, 10);  /* base 10 */

          printf("base 10 input, base 10 output: %ld, stopped at %s (%d)\n",

                 value, end, *end);

          value = strtol(number, &end, 16);  /* base 16 */

          printf("base 16 input, base 10 output: %ld, stopped at %s (%d)\n",

                 value, end, *end);

          puts("Next number:");

      }

      puts("Bye!\n");

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int  i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (st[i] != '\n' && st[i] != '\0')
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              i++;

          if (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   

 Here is some sample output:  

  Enter a number (empty line to quit):

   10 

  base 10 input, base 10 output: 10, stopped at  (0)

  base 16 input, base 10 output: 16, stopped at  (0)

  Next number:

   10atom 

  base 10 input, base 10 output: 10, stopped at atom (97)

  base 16 input, base 10 output: 266, stopped at tom (116)

  Next number:

  

  Bye!   

 First, note that the string  "10"  is converted to the number 10 when  base  is 10 and to 16 when 
 base  is 16. Also note that if  end  points to a character,  *end  is a character. Therefore, the first 
conversion ended when the null character was reached, so  end  pointed to the null character. 
Printing  end  displays an empty string, and printing  *end  with the  %d  format displays the ASCII 
code for the null character.  

 For the second input string (base-10 interpretation),  end  is given the address of the  'a'  charac-
ter. So printing  end  displays the string  "atom" , and printing  *end  displays the ASCII code for 
the  'a'  character. When the base is changed to 16, however, the  'a'  character is recognized as 
a valid hexadecimal digit, and the function converts the hexadecimal number  10a  to  266 , base 
10.  

 The  strtol()  function goes up to base 36, using the letters through  'z'  as digits. The 
 strtoul()  function does the same, but converts unsigned values. The  strtod()  function does 
only base 10, so it uses just two arguments.  

 Many implementations have  itoa()  and  ftoa()  functions for converting integers and 
floating-point values to strings. However, they are not part of the standard C library; use 
 sprintf() , instead, for greater compatibility.   
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  Key Concepts  

 Many programs deal with text data. A program may ask you to enter your name, a list of 
corporations, an address, the botanical name for a type of fern, the cast of a musical, or...well, 
because we interact with the world using words, there’s really no end to examples using text. 
And strings are the means a C program uses to handle strings.  

 A C  string —whether it be identified by a character array, a pointer, or a string literal—is stored 
as a series of bytes containing character codes, and the sequence is terminated by the null char-
acter. C recognizes the usefulness of strings by providing a library of functions for manipulat-
ing them, searching them, and analyzing them. In particular, keep in mind that you should 
use  strcmp()  instead of relational operators when comparing strings, and you should use 
 strcpy()  or  strncpy()  instead of the assignment operator to assign a string to a character 
array.    

     Summary  

 A C  string  is a series of  char s terminated by the null character,  '\0' . A string can be stored in a 
character array. A string can also be represented with a  string constant , in which the characters, 
aside from the null character, are enclosed in double quotation marks. The compiler supplies 
the null character. Therefore,  "joy"  is stored as the four characters  j ,  o ,  y , and  \0 . The length 
of a string, as measured by  strlen() , doesn’t count the null character.  

 String constants, also known as  string literals , can be used to initialize character arrays. The 
array size should be at least one greater than the string length to accommodate the terminating 
null character. String constants can also be used to initialize pointers of type pointer-to- char .  

 Functions use pointers to the first character of a string to identify on which string to act. 
Typically, the corresponding actual argument is an array name, a pointer variable, or a quoted 
string. In each case, the address of the first character is passed. In general, it is not necessary 
to pass the length of the string, because the function can use the terminating null character to 
locate the end of a string.  

 The f gets()  function fetches a line of input, and the  puts()  and  fputs()  functions display a 
line of output. They are part of the  stdio.h  family of functions, as once was the now disgraced 
and abandoned function  gets() .  

 The C library includes several  string-handling  functions. Under ANSI C, these functions are 
declared in the  string.h  file. The library also has several  character-processing  functions; they are 
declared in the  ctype.h  file.  

 You can give a program access to  command-line arguments  by providing the proper two formal 
variables to the  main()  function. The first argument, traditionally called  argc , is an  int  and is 
assigned the count of command-line words. The second argument, traditionally called  argv , is 
a pointer to an array of pointers to  char . Each pointer-to- char  points to one of the command-
line argument strings, with  argv[0]  pointing to the command name,  argv[1]  pointing to the 
first command-line argument, and so on.  
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 The  atoi() ,  atol() , and  atof()  functions convert string representations of numbers to type 
 int ,  long , and  double  forms, respectively. The  strtol() ,  strtoul() , and  strtod()  func-
tions convert string representations of numbers to type  long ,  unsigned long , and  double  
forms, respectively.   

  Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    What’s wrong with this attempted declaration of a character string?  

  int main(void)

  {

     char name[] = {'F', 'e', 's', 's' };

    ...

  }     

   2.    What will this program print?  

  #include <stdio.h>

  int main(void)

  {

     char note[] = "See you at the snack bar.";

     char *ptr;

  

     ptr = note;

     puts(ptr);

     puts(++ptr);

     note[7] = '\0';

     puts(note);

     puts(++ptr);

     return 0;

  }     

   3.    What will this program print?  

  #include <stdio.h>

  #include <string.h>

  int main(void)

  {

     char food[] = "Yummy";

     char *ptr;

  

     ptr = food + strlen(food);

     while (--ptr >= food)
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          puts(ptr);

     return 0;

  }     

   4.    What will the following program print?  

  #include <stdio.h>

  #include <string.h>

  int main(void)

  {

      char goldwyn[40] = "art of it all ";

      char samuel[40] = "I read p";

      const char * quote = "the way through.";

  

      strcat(goldwyn, quote);

      strcat( samuel, goldwyn);

      puts(samuel);

      return 0;

  }     

   5.    The following provides practice with strings, loops, pointers, and pointer incrementing. 
First, suppose you have this function definition:  

  #include <stdio.h>

  char *pr (char *str)

  {

    char *pc;

  

    pc = str;

    while (*pc)

       putchar(*pc++);

    do {

       putchar(*--pc);

       } while (pc - str);

    return (pc);

  }   

 Consider the following function call:  

  x = pr("Ho Ho Ho!");   

    a.   What is printed?   

   b.   What type should  x  be?   

   c.   What value does  x  get?   

   d.   What does the expression  *--pc  mean, and how is it different from  --*pc ?   
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   e.   What would be printed if  *--pc  were replaced with  *pc-- ?   

   f.   What do the two  while  expressions test for?   

   g.   What happens if  pr()  is supplied with a null string as an argument?   

   h.   What must be done in the calling function so that  pr()  can be used as shown?      

   6.    Assume this declaration:  

  char sign = '$';   

 How many bytes of memory does  sign  use? What about  '$' ? What about  "$" ?    

   7.    What does the following program print?  

  #include <stdio.h>

  #include <string.h>

  #define M1   "How are ya, sweetie? "

  char M2[40] = "Beat the clock.";

  char * M3  = "chat";

  int main(void)

  {

       char words[80];

       printf(M1);

       puts(M1);

       puts(M2);

       puts(M2 + 1);

       strcpy(words,M2);

       strcat(words, " Win a toy.");

       puts(words);

       words[4] = '\0';

       puts(words);

       while (*M3)

          puts(M3++);

       puts(--M3);

       puts(--M3);

       M3 = M1;

       puts(M3);

       return 0;

  }     

   8.    What does the following program print?  

  #include <stdio.h>

  int main(void)

  {

      char str1[] = "gawsie";     // plump and cheerful

      char str2[] = "bletonism";
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      char *ps;

      int i = 0;

  

      for (ps = str1; *ps != '\0'; ps++) {

           if ( *ps == 'a' || *ps == 'e')

                  putchar(*ps);

           else

                  (*ps)--;

           putchar(*ps);

          }

      putchar('\n');

      while (str2[i] != '\0' ) {

         printf("%c", i % 3 ? str2[i] : '*');

         ++i;

         }

      return 0;

  }     

   9.    The  s_gets()  function defined in this chapter can be written in pointer notation instead 
of array notation so as to eliminate the variable  i . Do so.    

   10.    The  strlen()  function takes a pointer to a string as an argument and returns the length 
of the string. Write your own version of this function.    

   11.    The  s_gets()  function defined in this chapter can be written using  strchr()  instead of 
a  while  loop to find the newline. Do so.    

   12.    Design a function that takes a string pointer as an argument and returns a pointer to the 
first space character in the string on or after the pointed-to position. Have it return a null 
pointer if it finds no spaces.    

   13.    Rewrite  Listing   11.21    using  ctype.h  functions so that the program recognizes a correct 
answer regardless of the user’s choice of uppercase or lowercase.      

  Programming Exercises  

    1.    Design and test a function that fetches the next  n  characters from input (including 
blanks, tabs, and newlines), storing the results in an array whose address is passed as an 
argument.    

   2.    Modify and test the function in exercise 1 so that it stops after  n  characters or after the 
first blank, tab, or newline, whichever comes first. (Don’t just use  scanf() .)    
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   3.    Design and test a function that reads the first word from a line of input into an array and 
discards the rest of the line. It should skip over leading whitespace. Define a word as a 
sequence of characters with no blanks, tabs, or newlines in it. Use  getchar() , not    

   4.    Design and test a function like that described in Programming Exercise 3 except that it 
accepts a second parameter specifying the maximum number of characters that can be 
read.    

   5.    Design and test a function that searches the string specified by the first function 
parameter for the first occurrence of a character specified by the second function 
parameter. Have the function return a pointer to the character if successful, and a null 
if the character is not found in the string. (This duplicates the way that the library 
 strchr()  function works.) Test the function in a complete program that uses a loop to 
provide input values for feeding to the function.    

   6.    Write a function called  is_within()  that takes a character and a string pointer as its two 
function parameters. Have the function return a nonzero value (true) if the character is 
in the string and zero (false) otherwise. Test the function in a complete program that uses 
a loop to provide input values for feeding to the function.    

   7.    The  strncpy(s1,s2,n)  function copies exactly  n  characters from  s2  to  s1 , truncating 
 s2  or padding it with extra null characters as necessary. The target string may not be 
null-terminated if the length of  s2  is  n  or more. The function returns  s1 . Write your own 
version of this function; call it  mystrncpy() . Test the function in a complete program 
that uses a loop to provide input values for feeding to the function.    

   8.    Write a function called  string_in()  that takes two string pointers as arguments. If 
the second string is contained in the first string, have the function return the address 
at which the contained string begins. For instance,  string_in("hats", "at")  would 
return the address of the  a  in  hats . Otherwise, have the function return the null pointer. 
Test the function in a complete program that uses a loop to provide input values for 
feeding to the function.    

   9.    Write a function that replaces the contents of a string with the string reversed. Test the 
function in a complete program that uses a loop to provide input values for feeding to 
the function.    

   10.    Write a function that takes a string as an argument and removes the spaces from the 
string. Test it in a program that uses a loop to read lines until you enter an empty line. 
The program should apply the function to each input string and display the result.    

   11.    Write a program that reads in up to 10 strings or to  EOF , whichever comes first. Have it 
offer the user a menu with five choices: print the original list of strings, print the strings 
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in ASCII collating sequence, print the strings in order of increasing length, print the 
strings in order of the length of the first word in the string, and quit. Have the menu 
recycle until the user enters the quit request. The program, of course, should actually 
perform the promised tasks.    

   12.    Write a program that reads input up to  EOF  and reports the number of words, the 
number of uppercase letters, the number of lowercase letters, the number of punctuation 
characters, and the number of digits. Use the  ctype.h  family of functions.    

   13.    Write a program that echoes the command-line arguments in reverse word order. That 
is, if the command-line arguments are  see you later , the program should print  later 
you see .    

   14.    Write a power-law program that works on a command-line basis. The first command-line 
argument should be the type  double  number to be raised to a certain power, and the 
second argument should be the integer power.    

   15.    Use the character classification functions to prepare an implementation of  atoi() ; have 
this version return the value of 0 if the input string is not a pure number.    

   16.    Write a program that reads input until end-of-file and echoes it to the display. Have the 
program recognize and implement the following command-line arguments:  

  -p    Print input as is  

  -u    Map input to all uppercase  

  -l    Map input to all lowercase  

 Also, if there are no command-line arguments, let the program behave as if the  –p  
argument had been used.        
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 Storage Classes, Linkage, 

and Memory Management  

    You will learn about the following in this chapter:  

    ■   Keywords:  

  auto ,  extern ,  static ,  register ,  const ,  volatile ,  restricted ,  _Thread_local , 
 _Atomic    

   ■   Functions:  

  rand() ,  srand() ,  time() ,  malloc() ,  calloc() ,  free()    

   ■   How C allows you to determine the scope of a variable (how widely known it is) and the 
lifetime of a variable (how long it remains in existence)   

   ■   Designing more complex programs    

 One of C’s strengths is that it enables you to control a program’s fine points. C’s memory 
management system exemplifies that control by letting you determine which functions know 
which variables and for how long a variable persists in a program. Using memory storage is one 
more element of program design.   

     Storage Classes  

 C provides several different models, or  storage classes , for storing data in memory. To under-
stand the options, it’s helpful to go over a few concepts and terms first.  

 Every programming example in this book stores data in memory. There is a hardware aspect 
to this—each stored value occupies physical memory. C literature uses the term  object  for such 
a chunk of memory. An object can hold one or more values. An object might not yet actually 
have a stored value, but it will be of the right size to hold an appropriate value. (The phrase 
 object-oriented programming  uses the word  object  in a more developed sense to indicate class 
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objects, whose definitions encompass both data and permissible operations on the data; C is 
not an object-oriented programming language.)  

 There also is a software aspect—the program needs a way to access the object. This can be 
accomplished, for instance, by declaring a variable:  

  int entity = 3;   

 This declaration creates an  identifier  called  entity . An identifier is a name, in this case one 
that can be used to designate the contents of a particular object. Identifiers satisfy the naming 
conventions for variables discussed in  Chapter   2   , “Introducing C.” In this case, the identifier 
 entity  is how the software (the C program) designates the object that’s stored in hardware 
memory. This declaration also provides a value to be stored in the object.  

 A variable name isn’t the only way to designate an object. For instance, consider the following 
declarations:  

  int * pt = &entity;

  int ranks[10];   

 In the first case,  pt  is an identifier. It designates an object that holds an address. Next, the 
expression  *pt  is not an identifier because it’s not a name. However, it does designate an 
object, in this case the same object that  entity  designates. In general, as you may recall from 
 Chapter   3   , “Data and C,” an expression that designates an object is called an lvalue. So  entity  
is an identifier that is an lvalue, and  *pt  is an expression that is an lvalue. Along the same 
lines, the expression  ranks + 2 * entity  is neither an identifier (not a name) nor an lvalue 
(doesn’t  designate the contents of a memory location). But the expression  *(ranks + 2 * 
entity)  is an lvalue because it does designate the value of a particular memory location, the 
seventh element of the  ranks  array. The declaration of  ranks , by the way, creates an object 
capable of holding ten  ints , and each member of the array also is an object.  

 If, as with all these examples, you can use the lvalue to change the value in an object, it’s a 
 modifiable lvalue . Now consider this declaration:  

  const char * pc = "Behold a string literal!";   

 This causes the program to store the string literal contents in memory, and that array of char-
acter values is an object. Each character in the array also is an object, as it can be accessed 
individually. The declaration also creates an object having the identifier  pc  and holding the 
address of that string. The identifier  pc  is a modifiable lvalue because it can be reset to point to 
a different string. The  const  prevents you from altering the contents of a pointed-to string but 
not from changing which string is pointed to. So  *pc , which designates the data object holding 
the  'B'  character, is  an lvalue, but not a modifiable lvalue. Similarly, the string literal itself, 
because it designates the object holding the character string, is an lvalue, but not a modifiable 
one.  

 You can describe an object in terms of its  storage duration , which is how long it stays in 
memory. You can describe an identifier used to access the object by its  scope  and its  linkage , 
which together indicate which parts of a program can use it. The different storage classes offer 
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different combinations of scope, linkage, and storage duration. You can have identifiers that 
can be shared over several files of source code, identifiers that can be used by any function in 
one particular file, identifiers that can be used only within a particular function, and even iden-
tifiers that can be  used only within a subsection of a function. You can have objects that exist 
for the duration of a program and objects that exist only while the function containing them is 
executing. With concurrent programming, you can have objects that exist for the duration of 
a particular thread. You also can store data in memory that is allocated and freed explicitly by 
means of function calls.  

 Next, let’s investigate the meaning of the terms  scope ,  linkage , and  storage duration . After that, 
we’ll return to specific storage classes.  

  Scope  

  Scope  describes the region or regions of a program that can access an identifier. A C variable 
has one of the following scopes: block scope, function scope, function prototype scope, or file 
scope .  The program examples to date have used block scope almost exclusively for variables. A 
 block , as you’ll recall, is a region of code contained within an opening brace and the matching 
closing brace. For instance, the entire body of a function is a block. Any compound statement 
within a function also is a block. A variable defined inside a block has  block scope , and it is 
visible from the point  it is defined until the end of the block containing the definition. Also, 
formal function parameters, even though they occur before the opening brace of a function, 
have block scope and belong to the block containing the function body. So the local variables 
we’ve used to date, including formal function parameters, have block scope. Therefore, the vari-
ables  cleo  and  patrick  in the following code both have block scope extending to the closing 
brace:  

  double blocky(double cleo)

  {

      double patrick = 0.0;

      ...

      return patrick;

  }   

 Variables declared in an inner block have scope restricted just to that block:  

  double blocky(double cleo)

  {

      double patrick = 0.0;

      int i;

      for (i = 0; i < 10; i++)

      {

          double q = cleo * i; // start of scope for q

          ...

          patrick *= q;

      }                        // end of scope for q

      ...
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       return patrick;

  }   

 In this example, the scope of  q  is limited to the inner block, and only code within that block 
can access  q .  

 Traditionally, variables with block scope had to be declared at the beginning of a block. C99 
relaxed that rule, allowing you to declare variables anywhere in a block. One new possibility is 
in the control section of a  for  loop. That is, you now can do this:  

  for (int i = 0; i < 10; i++)

      printf("A C99 feature: i = %d", i);   

 As part of this new feature, C99 expanded the concept of a block to include the code controlled 
by a  for  loop,  while  loop,  do while  loop, or  if  statement, even if no brackets are used. So in 
the previous  for  loop, the variable  i  is considered to be part of the  for  loop block. Therefore, 
its scope is limited to the  for  loop. After execution leaves the  for  loop, the program will no 
longer see that  i .  

  Function scope  applies just to labels used with  goto  statements. This means that even if a label 
first appears inside an inner block in a function, its scope extends to the whole function. It 
would be confusing if you could use the same label inside two separate blocks, and function 
scope for labels prevents this from happening.  

  Function prototype scope  applies to variable names used in function prototypes, as in the 
following:  

  int mighty(int mouse, double large);   

 Function prototype scope runs from the point the variable is defined to the end of the proto-
type declaration. What this means is that all the compiler cares about when handling a func-
tion prototype argument is the types; the names you use, if any, normally don’t matter, and 
they needn’t match the names you use in the function definition. One case in which the 
names matter a little is with variable-length array parameters:  

  void use_a_VLA(int n, int m, ar[n][m]);   

 If you use names in the brackets, they have to be names declared earlier in the prototype.  

 A variable with its definition placed outside of any function has  file scope . A variable with file 
scope is visible from the point it is defined to the end of the file containing the definition. Take 
a look at this example:  

  #include <stdio.h>

  int units = 0;         /* a variable with file scope */

  void critic(void);

  int main(void)

  {

     ...

  }
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  void critic(void)

  {

     ...

  }   

 Here, the variable  units  has file scope, and it can be used in both  main()  and  critic() . 
(More exactly,  units  has file scope with external linkage, a distinction we’ll cover in the next 
section.) Because they can be used in more than one function, file scope variables are also 
called  global variables .  

  Note   Translation Units and Files  

 What you view as several files may appear to the compiler as a single file. For example, sup-
pose that, as often is the case, you include one or more header files ( .h  extension) in a source 
code file ( .c  sextension). A header file, in turn, may include other header files. So several 
separate physical files may be involved. However, C preprocessing essentially replaces an 
 #include  directive with the contents of the header file. Thus the compiler sees a single file 
containing information from your source code file and all the header files. This single file is 
called a  translation unit . When we describe  a variable as having file scope, it’s actually visible 
to the whole translation unit. If your program consists of several source code files, then it will 
consist of several translation units, with each translation unit corresponding to a source code 
file and its included files.    

  Linkage  

 Next, let’s  look at linkage. A C variable has one of the following linkages: external linkage, 
internal linkage, or no linkage .  Variables with block scope, function scope, or function proto-
type scope have no linkage. That means they are private to the block, function, or prototype in 
which they are defined. A variable with file scope can have either internal or external linkage. 
A variable with external linkage can be used anywhere in a multifile program. A variable with 
internal linkage can be used anywhere in a single translation unit.  

  Note   Formal and Informal Terms  

 The C Standard uses “file scope with internal linkage” to describe scope limited to one transla-
tion unit (a source code file plus its included header files) and “file scope with external linkage” 
to describe scope that, at least potentially, extends to other translation units. But programmers 
don’t always have the time or patience to use those terms. Some common short cuts are to 
use “file scope” for “file scope with internal linkage” and “global scope” or “program scope” 
for “file scope with external linkage.”   

 So how can you tell whether a file scope variable has internal or external linkage? You look to 
see if the storage class specifier  static  is used in the external definition:  
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  int giants = 5;          // file scope, external linkage

  static int dodgers = 3;  // file scope, internal linkage

  int main()

  {

      ...

  }

  ...   

 The variable  giants  can be used by other files that are part of the same program. The  dodgers  
variable is private to this particular file, but can be used by any function in the file.   

  Storage Duration  

 Scope and linkage describe the visibility of identifiers. Storage duration describes the persistence 
of the objects accessed by these identifiers. A C object has one of the following four storage 
durations: static storage duration, thread storage duration, automatic storage duration, or allo-
cated storage duration .   

 If an object has static storage duration, it exists throughout program execution. Variables with 
file scope have static storage duration. Note that for file scope variables, the keyword  static  
indicates the linkage type, not the storage duration. A file scope variable declared using  static  
has internal linkage, but all file scope variables, using internal linkage or external linkage, have 
static storage duration.  

 Thread storage duration comes into play in concurrent programming, in which program execu-
tion can be divided into multiple threads. An object with thread storage duration exists from 
when it’s declared until the thread terminates. Such an object is created when a declaration 
that would otherwise create a file scope object is modified with the keyword  _Thread_local . 
When a variable is declared with this specifier, each thread gets its own private copy of that 
variable.  

 Variables with block scope normally have automatic storage duration. These variables have 
memory allocated for them when the program enters the block in which they are defined, and 
the memory is freed when the block is exited. The idea is that memory used for automatic vari-
ables is a workspace or scratch pad that can be reused. For example, after a function call termi-
nates, the memory it used for its variables can be used to hold variables for the next function 
that is called.  

 Variable-length arrays provide a slight exception in that they exist from the point of declara-
tion to the end of the block rather than from the beginning of the block to the end.  

 The local variables we’ve used so far fall into the automatic category. For example, in the 
following code, the variables  number  and  index  come into being each time the  bore()  func-
tion is called and pass away each time the function completes:  

  void bore(int number)

  {

       int index;
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       for (index = 0; index < number; index++)

            puts("They don't make them the way they used to.\n");

       return 0;

  }   

 It is possible, however, for a variable to have block scope but static storage duration. To create 
such a variable, declare it inside a block and add the keyword  static  to the declaration:  

  void more(int number)

  {

       int index;

       static int ct = 0;

       ...

       return 0;

  }   

 Here the variable  ct  is stored in static memory; it exists from the time the program is loaded 
until the program terminates. But its scope is confined to the  more()  function block. Only 
while this function executes can the program use  ct  to access the object it designates. 
(However, one can allow indirect access by enabling the function to provide the address of the 
storage to other functions, for example, by a pointer parameter or return value.)  

 C uses scope, linkage, and storage duration to define several storage schemes for variables. This 
book doesn’t cover concurrent programming, so we won’t go into that aspect. And we’ll discuss 
allocated storage later in this chapter. That leaves five storage classes: automatic, register, static 
with block scope, static with external linkage, and static with internal linkage.  Table   12.1    lists 
the combinations. Now that we’ve covered scope, linkage, and storage duration, we can discuss 
these storage classes in more detail.  

  Table 12.1   Five Storage Classes  

  Storage Class     Duration     Scope     Linkage     How Declared   

 automatic   Automatic   Block   None   In a block  

 register   Automatic   Block   None   In a block with the 
keyword  register   

 static with 
external linkage   

 Static   File   External   Outside of all func-
tions  

 static with 
internal linkage   

 Static   File   Internal   Outside of all func-
tions with the key-
word  static   

 static with no 
linkage   

 Static   Block   None   In a block with the 
keyword  static   
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  Automatic Variables  

 A variable belonging to the automatic storage class has automatic storage duration, block scope, 
and no linkage. By default, any variable declared in a block or function header belongs to the 
automatic storage class. You can, however, make your intentions perfectly clear by explicitly 
using the keyword  auto , as shown here:  

  int main(void)

  {

    auto int plox;   

 You might do this, for example, to document that you are intentionally overriding an external 
variable definition or that it is important not to change the variable to another storage class. 
The keyword  auto  is termed a  storage-class specifier . C++ has repurposed the  auto  keyword for 
a quite different use, so simply not using  auto  as a storage-class specifier is better for C/C++ 
compatibility.  

 Block scope and no linkage imply that only the block in which the variable is defined can 
access that variable by name. (Of course, arguments can be used to communicate the variable’s 
value and address to another function, but that is indirect knowledge.) Another function can 
use a variable with the same name, but it will be an independent variable stored in a different 
memory location.  

 Recall that automatic storage duration means that the variable comes into existence when the 
program enters the block that contains the variable declaration. When the program exits the 
block, the automatic variable disappears. Its memory location now can be used for something 
else, although not necessarily.  

 Let’s look more closely at nested blocks. A variable is known only to the block in which it is 
declared and to any block inside that block:  

  int loop(int n)

  {

       int m;          // m in scope

       scanf("%d", &m);

       {

            int i;    // both m and i in scope

            for (i = m; i < n; i++)

                 puts("i is local to a sub-block\n");

       }

       return m;     // m in scope, i gone

  }   

 In this code,  i  is visible only within the inner braces. You’d get a compiler error if you tried to 
use it before or after the inner block. Normally, you wouldn’t use this feature when designing 
a program. Sometimes, however, it is useful to define a variable in a sub-block if it is not used 
elsewhere. In that way, you can document the meaning of a variable close to where it is used. 
Also, the variable doesn’t sit unused, occupying memory when it is no longer needed. The 
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variables  n  and  m , being defined in the function head and in the outer  block, are in scope for 
the whole function and exist until the function terminates.  

 What if you declare a variable in an inner block that has the same name as one in the outer 
block? Then the name defined inside the block is the variable used inside the block. We say it 
 hides  the outer definition. However, when execution exits the inner block, the outer variable 
comes back into scope.  Listing   12.1    illustrates these points and more.  

  Listing 12.1   The  hiding.c  Program  

 // hiding.c -- variables in blocks

  #include <stdio.h>

  int main()

  {

      int x = 30;      // original x

  

      printf("x in outer block: %d at %p\n", x, &x);

      {

          int x = 77;  // new x, hides first x

          printf("x in inner block: %d at %p\n", x, &x);

      }

      printf("x in outer block: %d at %p\n", x, &x);

      while (x++ < 33) // original x

      {

          int x = 100; // new x, hides first x

          x++;

          printf("x in while loop: %d at %p\n", x, &x);

      }

      printf("x in outer block: %d at %p\n", x, &x);

  

      return 0;

  }   

 Here’s the output:  

  x in outer block: 30 at 0x7fff5fbff8c8

  x in inner block: 77 at 0x7fff5fbff8c4

  x in outer block: 30 at 0x7fff5fbff8c8

  x in while loop: 101 at 0x7fff5fbff8c0

  x in while loop: 101 at 0x7fff5fbff8c0

  x in while loop: 101 at 0x7fff5fbff8c0

  x in outer block: 34 at 0x7fff5fbff8c8   

 First, the program creates an  x  variable with the value  30 , as the first  printf()  statement 
shows. Then it defines a new  x  variable with the value  77 , as the second  printf()  statement 
shows. That it is a new variable hiding the first  x  is shown by the address and also by the third 
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 printf()  statement. It is located after the first inner block, and it displays the original  x  value, 
showing that the original  x  variable never went away and never got changed.  

 Perhaps the most intriguing part of the program is the  while  loop. The  while  loop test uses 
the original  x :  

  while(x++ < 33)   

 Inside the loop, however, the program sees a third  x  variable, one defined just inside the  while  
loop block. So when the code uses  x++  in the body of the loop, it is the new  x  that is incre-
mented to  101  and then displayed. When each loop cycle is completed, that new  x  disappears. 
Then the loop test condition uses and increments the original  x , the loop block is entered 
again, and the new  x  is created again. In this example, that  x  is created and destroyed three 
times. Note that, to terminate, this loop had to increment  x  in the test condition because incre-
menting  x  in the body increments  a different  x  than the one used for the test.  

 This particular compiler didn’t reuse the inner block memory location of  x  for the  while  loop 
version of  x , but some compilers do.  

 The intent of this example is not to encourage you to write code like this. Rather, it is to illus-
trate what happens when you define variables inside a block. (Given the variety of names avail-
able via C’s naming rules, it shouldn’t be too difficult to come up with names other than  x .)  

  Blocks Without Braces  

 A C99 feature, mentioned earlier, is that statements that are part of a loop or  if  statement 
qualify as a block even if braces (that is,  { } ) aren’t used. More completely, an entire loop is a 
sub-block to the block containing it, and the loop body is a sub-block to the entire loop block. 
Similarly, an  if  statement is a block, and its associated sub-statement is a sub-block to the  if  
statement. These rules affect where you can declare a variable and the scope of that variable. 
 Listing   12.2    shows how this works in a  for  loop.  

  Listing 12.2   The  forc99.c  Program  

 // forc99.c -- new C99 block rules

  #include <stdio.h>

  int main()

  {

      int n = 8;

  

      printf("   Initially, n = %d at %p\n", n, &n);

      for (int n = 1; n < 3; n++)

          printf("      loop 1: n = %d at %p\n", n, &n);

      printf("After loop 1, n = %d at %p\n", n, &n);

      for (int n = 1; n < 3; n++)

      {

          printf(" loop 2 index n = %d at %p\n", n, &n);

          int n = 6;
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          printf("      loop 2: n = %d at %p\n", n, &n);

          n++;

      }

      printf("After loop 2, n = %d at %p\n", n, &n);

  

      return 0;

  }   

 Here is the output, assuming the compiler supports this modern C feature:  

     Initially, n = 8 at 0x7fff5fbff8c8

        loop 1: n = 1 at 0x7fff5fbff8c4

        loop 1: n = 2 at 0x7fff5fbff8c4

  After loop 1, n = 8 at 0x7fff5fbff8c8

   loop 2 index n = 1 at 0x7fff5fbff8c0

        loop 2: n = 6 at 0x7fff5fbff8bc

   loop 2 index n = 2 at 0x7fff5fbff8c0

        loop 2: n = 6 at 0x7fff5fbff8bc

  After loop 2, n = 8 at 0x7fff5fbff8c8   

  Note   C99 and C11 Support  

 Some compilers may not support these C99/C11 scope rules. (At this time Microsoft Visual 
Studio 2012 is one of those compilers.) Others may provide an option for activating these 
rules. For example, at the time of this writing, GCC supports many C99 features by default but 
requires using the  –std=c99  option to activate the features used in  Listing   12.2   :  
  gcc –std=c99 forc99.c   

 Similarly, versions of GCC or Clang may require using the  –std=c1x  or  -std=c11  options to 
recognize C11 features.   

 The  n  declared in the control section of the first  for  loop is in scope to the end of the loop and 
hides the initial  n . But after execution leaves the loop, the original  n  comes into scope.  

 In the second  for  loop, the  n  declared as a loop index hides the initial  n . Then, the  n  declared 
inside the loop body hides the loop index  n . When the program finishes executing the body, 
the  n  declared in the body disappears, and the loop test uses the index  n . When the entire loop 
terminates, the original  n  comes back into scope. Again, there’s no need to keep reusing the 
same variable name, but this is what happens if you do.   

  Initialization of Automatic Variables  

 Automatic variables are not initialized unless you do so explicitly. Consider the following 
declarations:  

  int main(void)

  {
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    int repid;

    int tents = 5;   

 The  tents  variable is initialized to  5 , but the  repid  variable ends up with whatever value 
happened to previously occupy the space assigned to  repid . You cannot rely on this value 
being  0 . You can initialize an automatic variable with a non-constant expression, provided any 
variables used have been defined previously:  

  int main(void)

  {

    int ruth = 1;

    int rance = 5 * ruth;   // use previously defined variable     

  Register Variables  

 Variables are normally stored in computer memory. With luck, register variables are stored 
in the CPU registers or, more generally, in the fastest memory available, where they can be 
accessed and manipulated more rapidly than regular variables. Because a register variable may 
be in a register rather than in memory, you can’t take the address of a register variable. In most 
other respects, register variables are the same as automatic variables. That is, they have block 
scope, no linkage, and automatic storage duration. A variable is declared by using the storage 
class specifier  register :  

  int main(void)

  {

     register int quick;   

 We say “with luck” because declaring a variable as a  register  class is more a request than 
a direct order. The compiler has to weigh your demands against the number of registers or 
amount of fast memory available, or it can simply ignore the request, so you might not get 
your wish. In that case, the variable becomes an ordinary automatic variable; however, you still 
can’t use the address operator with it.  

 You can request that formal parameters be register variables. Just use the keyword in the func-
tion heading:  

  void macho(register int n)   

 The types that can be declared  register  may be restricted. For example, the registers in a 
processor might not be large enough to hold type  double .   

  Static Variables with Block Scope  

 The name  static variable  sounds like a contradiction, like a variable that can’t vary. Actually, 
 static  means that the variable stays put in memory, not necessarily in value. Variables with 
file scope automatically (and necessarily) have static storage duration. As mentioned earlier, 
you also can create local variables having block scope but static duration. These variables have 
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the same scope as automatic variables, but they don’t vanish when the containing function 
ends its job. That is, such variables have block scope, no linkage, but static storage duration. 
The computer remembers their values from one function call to the next—such variables are 
created  by declaring them in a block (which provides the block scope and lack of linkage) with 
the storage-class specifier  static  (which provides the static storage duration). The example in 
 Listing   12.3    illustrates this technique.  

  Listing 12.3   The  loc_stat.c  Program  

 /* loc_stat.c -- using a local static variable */

  #include <stdio.h>

  void trystat(void);

  

  int main(void)

  {

      int count;

  

      for (count = 1; count <= 3; count++)

      {

          printf("Here comes iteration %d:\n", count);

          trystat();

      }

  

      return 0;

  }

  

  void trystat(void)

  {

      int fade = 1;

      static int stay = 1;

  

      printf("fade = %d and stay = %d\n", fade++, stay++);

  }   

 Note that  trystat()  increments each variable after printing its value. Running the program 
returns this output:  

  Here comes iteration 1:

  fade = 1 and stay = 1

  Here comes iteration 2:

  fade = 1 and stay = 2

  Here comes iteration 3:

  fade = 1 and stay = 3   

 The static variable  stay  remembers that its value was increased by 1, but the  fade  variable 
starts anew each time. This points out a difference in initialization:  fade  is initialized each time 
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 trystat()  is called, but  stay  is initialized just once, when  trystat()  is compiled. Static vari-
ables are initialized to zero if you don’t explicitly initialize them to some other value.  

 The two declarations look similar:  

  int fade = 1;

  static int stay = 1;   

 However, the first statement is really part of the  trystat()  function and is executed each 
time the function is called. It is a runtime action. The second statement isn’t actually part of 
the  trystat()  function. If you use a debugger to execute the program step-by-step, you’ll 
see that the program seems to skip that step. That’s because static variables and external vari-
ables are already in place after a program is loaded into memory. Placing the statement in the 
 trystat()  function tells the compiler that only the  trystat()  function is allowed to see the 
variable; it’s not a statement that’s executed during runtime.  

 You can’t use  static  for function parameters:  

  int wontwork(static int flu);   // not allowed   

 Another term for a static variable with block scope is a “local static variable.” Also, if you read 
some of the older C literature, you’ll find this storage class referred to as the  internal static 
storage class . However, the word  internal  was used to indicate internal to a function, not inter-
nal linkage.   

  Static Variables with External Linkage  

 A static variable with external linkage has file scope, external linkage, and static storage dura-
tion. This class is sometimes termed the  external storage class , and variables of this type are 
called  external variables . You create an external variable by placing a defining declaration 
outside of any function. As a matter of documentation, an external variable can additionally 
be declared inside a function that uses it by using the  extern  keyword. If a particular external 
variable is defined in one source code file and is used in a second source code file, declaring the 
variable in the second file with  extern  is mandatory.  Declarations look like this:  

  int Errupt;           /* externally defined variable    */

  double Up[100];       /* externally defined array       */

  extern char Coal;     /* mandatory declaration if       */

                        /* Coal defined in another file   */

  void next(void);

  int main(void)

  {

    extern int Errupt;  /* optional declaration           */

  

    extern double Up[]; /* optional declaration           */

    ...

  }

  void next(void)
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  {

    ...

  }   

 Note that you don’t have to give the array size in the optional declaration of  double Up . 
That’s because the original declaration already supplied that information. The group of  extern  
declarations inside  main()  can be omitted entirely because external variables have file scope, so 
they are known from the point of declaration to the end of the file. They do serve, however, to 
document your intention that  main()  use these variables.  

 If only  extern  is omitted from the declaration inside a function, a separate automatic variable 
is set up. That is, replacing  

  extern int Errupt;   

 with  

  int Errupt;   

 in  main()  causes the compiler to create an automatic variable named  Errupt . It would be a 
separate, local variable, distinct from the original  Errupt . The local variable would be in scope 
while the program executes  main() , but the external  Errupt  would be in scope for other func-
tions, such as  next() , in the same file. In short, a variable in block scope “hides” a variable of 
the same name in file scope while the program executes statements in the block. If, for some 
improbable reason, you actually need to use a local variable with the same name as a global 
variable, you might  opt to use the  auto  storage-specifier in the local declaration to document 
your choice.  

 External variables have static storage duration. Therefore, the array  Up  maintains its existence 
and values regardless of whether the program is executing  main() ,  next() , or some other 
function.  

 The following three examples show four possible combinations of external and automatic 
variables. Example 1 contains one external variable:  Hocus . It is known to both  main()  and 
 magic() .  

  /* Example 1 */

  int Hocus;

  int magic();

  int main(void)

  {

     extern int Hocus;  // Hocus declared external

     ...

  }

  int magic()

  {

     extern int Hocus;  // same Hocus as above

     ...

  }   
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 Example 2 has one external variable,  Hocus , known to both functions. This time,  magic()  
knows it by default.  

  /* Example 2 */

  int Hocus;

  int magic();

  int main(void)

  {

     extern int Hocus;  // Hocus declared external

     ...

  }

  int magic()

  {

                        // Hocus not declared but is known

     ...

  }   

 In Example 3, four separate variables are created. The  Hocus  variable in  main()  is automatic 
by default and is local to  main . The  Hocus  variable in  magic()  is automatic explicitly and is 
known only to  magic() . The external  Hocus  variable is not known to  main()  or  magic()  
but would be known to any other function in the file that did not have its own local  Hocus . 
Finally,  Pocus  is an external variable known to  magic()  but not to  main()  because  Pocus  
follows  main() .  

  /* Example 3 */

  int Hocus;

  int magic();

  int main(void)

  {

    int Hocus;        // Hocus declared, is auto by default

     ...

  }

  int Pocus;

  int magic()

  {

     auto int Hocus;  // local Hocus declared automatic

     ...

  }   

 These examples illustrate the scope of external variables: from the point of declaration to the 
end of the file. They also illustrate the lifetimes of variables. The external  Hocus  and  Pocus  
variables persist as long as the program runs, and, because they aren’t confined to any one 
function, they don’t fade away when a particular function returns.  
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  Initializing External Variables  

 Like automatic variables, external variables can be initialized explicitly. Unlike automatic vari-
ables, external variables are initialized automatically to zero if you don’t initialize them. This 
rule applies to elements of an externally defined array, too. Unlike the case for automatic vari-
ables, you can use only constant expressions to initialize file scope variables:  

  int x = 10;              // ok, 10 is constant

  int y = 3 + 20;          // ok, a constant expression

  size_t z = sizeof(int);  // ok, a constant expression

  int x2 = 2 * x;          // not ok, x is a variable   

 (As long as the type is not a variable array, a  sizeof  expression is considered a constant 
expression.)   

  Using an External Variable  

 Let’s look at a simple example that involves an external variable. Specifically, suppose you want 
two functions, call them  main()  and  critic() , to have access to the variable  units . You can 
do this by declaring  units  outside of and above the two functions, as shown in Listing 12.4. 
(Note: The intent of this example is to show how an external variable works, not to show a 
typical use.)  

  Listing 12.4   The  global.c  Program  

 /* global.c  -- uses an external variable */

  #include <stdio.h>

  int units = 0;         /* an external variable      */

  void critic(void);

  int main(void)

  {

      extern int units;  /* an optional redeclaration */

  

      printf("How many pounds to a firkin of butter?\n");

      scanf("%d", &units);

      while ( units != 56)

          critic();

      printf("You must have looked it up!\n");

  

      return 0;

  }

  

  void critic(void)

  {

      /* optional redeclaration omitted */

      printf("No luck, my friend. Try again.\n");

      scanf("%d", &units);

  }   
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 Here is some sample output:  

  How many pounds to a firkin of butter?

   14 

  No luck, my friend. Try again.

   56 

  You must have looked it up!   

 (We did.)  

 Note how the second value for  units  was read by the  critic()  function, yet  main()  also 
knew the new value when it finished the  while  loop. So both the  main()  function and the 
 critic()  function use the identifier  units  to access the same variable. In C terminology, we 
say that  units  has file scope, external linkage, and static storage duration.  

 We made  units  an external variable by defining it outside of (that is, external to) any function 
definition. That’s all you need to do to make  units  available to all the subsequent functions in 
the file.  

 Let’s look at some of the details. First, declaring  units  where it is declared makes it available to 
the functions below it without any further action taken. Therefore,  critics()  uses the  units  
variable.  

 Similarly, nothing needed to be done to give  main()  access to  units . However,  main()  does 
have the following declaration in it:  

  extern int units;   

 In the example, this declaration is mainly a matter of documentation. The storage class speci-
fier  extern  tells the compiler that any mention of  units  in this particular function refers to 
a variable defined outside the function, perhaps even outside the file. Again, both  main()  and 
 critic()  use the externally defined  units .   

  External Names  

 The C99 and C11 standards require compilers to recognize the first 63 characters for local iden-
tifiers and the first 31 characters for external identifiers. This revises the previous requirement 
of recognizing the first 31 characters for local identifiers and the first six characters for external 
identifiers. It’s possible that you may be working with the old rules. The reason the rules for 
names of external variables are more restrictive than for local variables is that external names 
need to comply with the rules of the local environment, which may be more limiting.   

  Definitions and Declarations  

 Let’s take a longer look at the difference between defining a variable and declaring it. Consider 
the following example:  

  int tern = 1;            /* tern defined                 */

  main()

  {

       external int tern;  /* use a tern defined elsewhere */   
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 Here,  tern  is declared twice. The first declaration causes storage to be set aside for the vari-
able. It constitutes a definition of the variable. The second declaration merely tells the compiler 
to use the  tern  variable that has been created previously, so it is not a definition. The first 
declaration is called a  defining declaration , and the second is called a  referencing declaration.  The 
keyword  extern  indicates that a declaration is not a definition because it instructs the compiler 
to look elsewhere.  

 Suppose you do this:  

  extern int tern;

  int main(void)

  {   

 The compiler will assume that the actual definition of  tern  is somewhere else in your program, 
perhaps in another file. This declaration does not cause space to be allocated. Therefore, don’t 
use the keyword  extern  to create an external definition; use it only to  refer  to an existing exter-
nal definition.  

 An external variable can be initialized only once, and that must occur when the variable is 
defined. Suppose you have this:  

  // file one.c

  char permis = 'N';

  ...

  // file two.c

  extern char permis = 'Y';   /* error */   

 This is an error because the defining declaration in  file_one.c  already has created and initial-
ized  permis .    

  Static Variables with Internal Linkage  

 Variables of this storage class have static storage duration, file scope, and internal linkage. You 
create one by defining it outside of any function (just as with an external variable) with the 
storage class specifier  static :  

  static int svil = 1;  // static variable, internal linkage

  int main(void)

  {   

 Such variables were once termed  external static  variables, but that’s a bit confusing because they 
have internal linkage. Unfortunately, no new compact term has taken the place of  external 
static , so we’re left with  static variable with internal linkage . The ordinary external variable can 
be used by functions in any file that’s part of the program, but the static variable with internal 
linkage can be used only by functions in the same file. You can redeclare any file scope variable 
within a function by using the storage class specifier  extern . Such a declaration doesn’t change 
the linkage. Consider the following code:  
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  int traveler = 1;        // external linkage

  static int stayhome = 1; // internal linkage

  int main()

  {

      extern int traveler;  // use global traveler

      extern int stayhome;  // use global stayhome

      ...   

 Both  traveler  and  stayhome  are global for this particular translation unit, but only  traveler  
can be used by code in other translation units. The two declarations using  extern  document 
that  main()  is using the two global variables, but  stayhome  continues to have internal linkage.   

  Multiple Files  

 The difference between internal linkage and external linkage is important only when you have 
a program built from multiple translation units, so let’s take a quick look at that topic.  

 Complex C programs often use several separate files of source code. Sometimes these files 
might need to share an external variable. The C way to do this is to have a defining declaration 
in one file and referencing declarations in the other files. That is, all but one declaration (the 
defining declaration) should use the  extern  keyword, and only the defining declaration should 
be used to initialize the variable.  

 Note that an external variable defined in one file is not available to a second file unless it is 
also declared (by using  extern ) in the second file. An external declaration by itself only makes 
a variable potentially available to other files.  

 Historically, however, many compilers have followed different rules in this regard. Many Unix 
systems, for example, enable you to declare a variable in several files without using the  extern  
keyword, provided that no more than one declaration includes an initialization. If there is a 
declaration with an initialization, it is taken to be the definition.   

  Storage-Class Specifier Roundup  

 You may have noticed that the meaning of the keywords  static  and  extern  depends on the 
context. The C language has six keywords that are grouped together as storage-class specifi-
ers. They are  auto ,  register ,  static ,  extern ,  _Thread_local , and  typedef . The  typedef  
keyword doesn’t say anything about memory storage, but it is thrown in for syntax reasons. In 
particular, in most cases you can use no more than one storage-class specifier in a declaration, 
so that means you can’t use one of the other storage-class specifiers as part of a  typedef . The 
one exception is that  _Thread_local  may be used together with  static  and  extern .  

 The  auto  specifier indicates a variable with automatic storage duration. It can be used only in 
declarations of variables with block scope, which already have automatic storage duration, so 
its main use is documenting intent.  
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 The  register  specifier also can be used only with variables of block scope. It puts a variable 
into the register storage class, which amounts to a request to minimize the access time for that 
variable. It also prevents you from taking the address of the variable.  

 The  static  specifier creates an object with static duration, one that’s created when the 
program is loaded and ends when the program terminates. If  static  is used with a file scope 
declaration, scope is limited to that one file. If  static  is used with a block scope declara-
tion, scope is limited to that block. Thus, the object exists and retains its value as long as the 
program is running, but it can be accessed by the identifier only when code within the block 
is being executed. A static variable with block scope has no linkage. A static variable with file 
scope has internal  linkage.  

 The  extern  specifier indicates that you are declaring a variable that has been defined else-
where. If the declaration containing  extern  has file scope, the variable referred to must have 
external linkage. If the declaration containing  extern  has block scope, the referred-to variable 
can have either external linkage or internal linkage, depending on the defining declaration for 
that variable.    

  Summary: Storage Classes  

 Automatic variables have block scope, no linking, and automatic storage duration. They are 
local and private to the block (typically a function) in which they are defined. Register variables 
have the same properties as automatic variables, but the compiler may use faster memory or a 
register to store them. You can’t take the address of a register variable.  

 Variables with static storage duration can have external linkage, internal linkage, or no linkage. 
When a variable is declared external to any function in a file, it’s an external variable and has 
file scope, external linkage, and static storage duration. If you add the keyword  static  to such 
a declaration, you get a variable with static storage duration, file scope, and internal linkage. 
If you declare a variable inside a function and use the keyword  static , the variable has static 
storage duration, block scope, and no linkage.  

 Memory for a variable with automatic storage duration is allocated when program execution 
enters the block containing the variable declaration and is freed when the block is exited. If 
uninitialized, such a variable has a garbage value. Memory for a variable with static storage 
duration is allocated at compile time and lasts as long as the program runs. If uninitialized, 
such a variable is set to 0.  

 A variable with block scope is local to the block containing the declaration. A variable with file 
scope is known to all functions in a file (or translation unit) following its declaration. If a file 
scope variable has external linkage, it can be used by other translation units in the program. 
If a file scope variable has internal linkage, it can be used just within the file in which it is 
declared.   

 Here’s a short program that uses all five storage classes. It’s spread over two files ( Listing   12.5    
and  Listing   12.6   ), so you will have to do a multiple-file compile. (See  Chapter   9   , “Functions,” 
or your compiler manual for guidance.) Its main goal is to use all five storage types, not to offer 
a design model; a better design wouldn’t need the file-scope variables.  
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  Listing 12.5   The  parta.c  File  

 // parta.c --- various storage classes

  // compile with partb.c

  #include <stdio.h>

  void report_count();

  void accumulate(int k);

  int count = 0;       // file scope, external linkage

  

  int main(void)

  {

      int value;       // automatic variable

      register int i;  // register variable

  

      printf("Enter a positive integer (0 to quit): ");

      while (scanf("%d", &value) == 1 && value > 0)

      {

          ++count;     // use file scope variable

          for (i = value; i >= 0; i--)

              accumulate(i);

          printf("Enter a positive integer (0 to quit): ");

      }

      report_count();

  

      return 0;

  }

  

  void report_count()

  {

      printf("Loop executed %d times\n", count);

  }   

  Listing 12.6   The  partb.c  File  

 // partb.c -- rest of the program

  // compile with parta.c

  #include <stdio.h>

  

  extern int count;       // reference declaration, external linkage

  

  static int total = 0;   // static definition, internal linkage

  void accumulate(int k); // prototype

  

  

  void accumulate(int k)  // k has block scope, no linkage

  {

      static int subtotal = 0;  // static, no linkage
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      if (k <= 0)

      {

          printf("loop cycle: %d\n", count);

          printf("subtotal: %d; total: %d\n", subtotal, total);

          subtotal = 0;

      }

      else

      {

          subtotal += k;

          total += k;

      }

  }   

 In this program, the block scope static variable  subtotal  keeps a running subtotal of the 
values passed to the  accumulate()  function, and the file scope, internal linkage variable  total  
keeps a running total. The  accumulate()  function reports  total  and  subtotal  whenever a 
nonpositive value is passed to it; when the function reports, it resets  subtotal  to 0. 
The  accumulate()  prototype in  parta.c  is mandatory because the file contains an  
accumulate()  function call. For  partb.c , the prototype is optional because the function is 
defined, but not called in that file. The function also uses the external variable  count  to keep 
track of how many times the  while  loop in  main()  has been executed. (Incidentally,  this is a 
good example of how not to use an external variable, because it unnecessarily intertwines the 
code of  parta.c  with the code of  partb.c .) In  parta.c ,  main()  and  report_count()  share 
access to  count .  

 Here’s a sample run:  

  Enter a positive integer (0 to quit):  5 

  loop cycle: 1

  subtotal: 15; total: 15

  Enter a positive integer (0 to quit):  10 

  loop cycle: 2

  subtotal: 55; total: 70

  Enter a positive integer (0 to quit):  2 

  loop cycle: 3

  subtotal: 3; total: 73

  Enter a positive integer (0 to quit):  0 

  Loop executed 3 times    

  Storage Classes and Functions  

 Functions, too, have storage classes. A function can be either external (the default) or static. 
(C99 adds a third possibility, the inline function, discussed in  Chapter   16   , “The C Preprocessor 
and the C Library.”) An external function can be accessed by functions in other files, but a 
static function can be used only within the defining file. Consider, for example, a file contain-
ing these function prototypes:  
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  double gamma(double);         /* external by default */

  static double beta(int, int);

  extern double delta(double, int);   

 The functions  gamma()  and  delta()  can be used by functions in other files that are part of the 
program, but  beta()  cannot. Because this  beta()  is restricted to one file, you can use a differ-
ent function having the same name in the other files. One reason to use the  static  storage 
class is to create functions that are private to a particular module, thereby avoiding the possibil-
ity of name conflicts.  

 The usual practice is to use the  extern  keyword when declaring functions defined in other 
files. This practice is mostly a matter of clarity because a function declaration is assumed to be 
 extern  unless the keyword  static  is used.   

  Which Storage Class?  

 The answer to the question “Which storage class?” is most often “automatic.” After all, why 
else was automatic selected as the default? Yes, we know that at first glance external storage is 
quite alluring. Just make all your variables external, and you never have to worry about using 
arguments and pointers to communicate between functions. There is a subtle pitfall, however. 
You will have to worry about function  A()  sneakily altering the variables used in function  B() , 
despite your intentions to the contrary. The unquestionable evidence of untold years of collec-
tive computer experience is that this one subtle danger far outweighs  the superficial attraction 
of using external storage indiscriminately.  

 One common exception are  const  data. Because they can’t be altered, you don’t have to worry 
about inadvertent alterations:  

  const int DAYS = 7;

  const char * MSGS[3] = {"Yes", "No", Maybe"};   

 One of the golden rules of protective programming is the “need to know” principle. Keep the 
inner workings of each function as private to that function as possible, sharing only those vari-
ables that need to be shared. The other classes are useful, and they are available. Before using 
one, though, ask yourself whether it is necessary.    

  A Random-Number Function and a Static Variable  

 Now that you have some background on the different storage classes, let’s look at a couple 
programs that use some of them. First, let’s look at a function that makes use of a static vari-
able with internal linkage: a random-number function. The ANSI C library provides the  rand()  
function to generate random numbers. There are a variety of algorithms for generating random 
numbers, and ANSI C enables implementations to use the best algorithm for a particular 
machine. However, the ANSI C standard also supplies a standard, portable algorithm that 
produces the same random numbers on different systems. Actually,  rand()  is a “pseudorandom  
number generator,” meaning that the actual sequence of numbers is predictable (computers 
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are not known for their spontaneity), but the numbers are spread pretty uniformly over the 
possible range of values.  

 Instead of using your compiler’s built-in  rand()  function, we’ll use the portable ANSI version 
so that you can see what goes on inside. The scheme starts with a number called the “seed.” 
The function uses the seed to produce a new number, which becomes the new seed. Then 
the new seed can be used to produce a newer seed, and so on. For this scheme to work, the 
random-number function must remember the seed it used the last time it was called. Aha! This 
calls for a static variable.  Listing   12.7    is version 0. (Yes, version 1 comes soon.)  

  Listing 12.7   The  rand0.c  Function File  

 /* rand0.c -- produces random numbers            */

  /*               uses ANSI C portable algorithm  */

  static unsigned long int next = 1;  /* the seed  */

  

  int rand0(void)

  {

  /* magic formula to generate pseudorandom number */

       next = next * 1103515245 + 12345;

       return (unsigned int) (next/65536) % 32768;

  }   

 In  Listing   12.7   , the static variable  next  starts with the value  1  and is altered by the magic 
formula each time the function is called. The result is a return value somewhere in the range 
of  0  to  32767 . Note that  next  is static with internal linkage, rather than merely static with no 
linkage. That’s because the example will be expanded later so that  next  is shared between two 
functions in the same file.  

 Let’s try the  rand0()  function with the simple driver shown in Listing 12.8.  

  Listing 12.8   The  r_drive0.c  Driver  

 /* r_drive0.c -- test the rand0() function */

  /* compile with rand0.c                    */

  #include <stdio.h>

  extern int rand0(void);

  

  int main(void)

  {

      int count;

  

      for (count = 0; count < 5; count++)

          printf("%d\n", rand0());

  

      return 0;

  }   
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 Here’s another chance to practice using multiple files. Use one file for  Listing   12.7    and one for 
 Listing   12.8   . The  extern  keyword reminds you that  rand0()  is defined in a separate file, but 
it’s not required.  

 The output is this:  

  16838

  5758

  10113

  17515

  31051   

 The output looks random, but let’s run it again. This time the result is as follows:  

  16838

  5758

  10113

  17515

  31051   

 Hmmm, that looks familiar; this is the “pseudo” aspect. Each time the main program is run, 
you start with the same seed of 1. You can get around this problem by introducing a second 
function called  srand1()  that enables you to reset the seed. The trick is to make  next  a static 
variable with internal linkage known only to  rand1()  and  srand1() . (The C library equivalent 
to  srand1()  is called  srand() .) Add  srand1()  to the file containing  rand1() .  Listing   12.9    is 
the modification.  

  Listing 12.9   The  s_and_r.c  Program  

 /* s_and_r.c -- file for rand1() and srand1()    */

  /*                uses ANSI C portable algorithm */

  static unsigned long int next = 1;  /* the seed  */

  

  int rand1(void)

  {

  /* magic formula to generate pseudorandom number */

      next = next * 1103515245 + 12345;

      return (unsigned int) (next/65536) % 32768;

  }

  

  void srand1(unsigned int seed)

  {

      next = seed;

  }   
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 Notice that  next  is a file-scope static variable with internal linkage. That means it can be used 
by both  rand1()  and  srand1() , but not by functions in other files. To test these functions, use 
the driver in  Listing   12.10   .  

  Listing 12.10   The  r_drive1.c  Program  

 /* r_drive1.c -- test rand1() and srand1() */

  /* compile with s_and_r.c                  */

  #include <stdio.h>

  extern void srand1(unsigned int x);

  extern int rand1(void);

  

  int main(void)

  {

      int count;

      unsigned seed;

  

      printf("Please enter your choice for seed.\n");

      while (scanf("%u", &seed) == 1)

      {

          srand1(seed);    /* reset seed */

          for (count = 0; count < 5; count++)

              printf("%d\n", rand1());

          printf("Please enter next seed (q to quit):\n");

      }

      printf("Done\n");

  

      return 0;

  }   

 Again, use two files, and run the program.  

  Please enter your choice for seed.

   1 

  16838

  5758

  10113

  17515

  31051

  Please enter next seed (q to quit):

   513 

  20067

  23475

  8955

  20841

  15324
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  Please enter next seed (q to quit):

   q 

  Done   

 Using a value of  1  for  seed  yields the same values as before, but a  seed  value of  3  gives new 
results.  

  Note   Automated Reseeding  

 If your C implementation gives you access to some changing quantity, such as the system 
clock, you can use that value (possibly truncated) to initialize the seed value. For instance, 
ANSI C has a  time()  function that returns the system time. The time units are system depen-
dent, but what matters here is that the return value is an arithmetic type and that its value 
changes with time. The exact type is system dependent and is given the label  time_t , but you 
can use a type cast. Here’s the basic setup:  
  #include <time.h>   /* ANSI prototype for time() */

      srand1((unsigned int) time(0));   /* initialize seed */   

 In general,  time()  takes an argument that is the address of a type  time_t  object. In that 
case, the time value is also stored at that address. However, you can pass the null pointer ( 0 ) 
as an argument, in which case the value is supplied only through the return value mechanism.   

 You can use the same technique with the standard ANSI C functions  srand()  and  rand() . If 
you do use these functions, include the  stdlib.h  header file. In fact, now that you’ve seen 
how  srand1()  and  rand1()  use a static variable with internal linkage, you might as well use 
the versions your compiler supplies. We’ll do that for the next example.   

  Roll ’Em  

 We are going to simulate that very popular random activity, dice-rolling. The most popular 
form of dice-rolling uses two six-sided dice, but there are other possibilities. Many adventure-
fantasy games use all of the five geometrically possible dice: 4, 6, 8, 12, and 20 sides. Those 
clever ancient Greeks proved that there are but five regular solids having all faces the same 
shape and size, and these solids are the basis for the dice varieties. You could make dice with 
other numbers of sides, but the faces would not all be the same, so they wouldn’t all necessarily 
have equal odds of  turning up.  

 Computer calculations aren’t limited by these geometric considerations, so we can devise an 
electronic die that has any number of sides. Let’s start with six sides and then generalize.  

 We want a random number from 1 to 6. However,  rand()  produces an integer in the range 
0 to  RAND_MAX ;  RAND_MAX  is defined in  stdlib.h . It is typically  INT_MAX . Therefore, we have 
some adjustments to make. Here’s one approach:  

    1.   Take the random number modulus 6. It produces an integer in the range 0 through 5.   
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   2.   Add 1. The new number is in the range 1 through 6.   

   3.   To generalize, just replace the number 6 in step 1 by the number of sides.    

 The following code implements these ideas:  

  #include <stdlib.h>   /* for rand() */

  int rollem(int sides)

  {

      int roll;

  

      roll = rand() % sides + 1;

      return roll;

  }   

 Let’s get a bit more ambitious and ask for a function that lets you roll an arbitrary number of 
dice and returns the total count.  Listing   12.11    does this.  

  Listing 12.11   The  diceroll.c  File  

 /* diceroll.c -- dice role simulation */

  /* compile with mandydice.c           */

   #include "diceroll.h"

  #include <stdio.h>

  #include <stdlib.h>           /* for library rand()   */

  

  int roll_count  = 0;          /* external linkage     */

  

  static int rollem(int sides)  /* private to this file */

  {

      int roll;

  

      roll = rand() % sides + 1;

      ++roll_count;             /* count function calls */

  

      return roll;

  }

  

  int roll_n_dice(int dice, int sides)

  {

      int d;

      int total = 0;

      if (sides < 2)

      {

          printf("Need at least 2 sides.\n");

          return -2;

      }
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      if (dice < 1)

      {

          printf("Need at least 1 die.\n");

          return -1;

      }

  

      for (d = 0; d < dice; d++)

          total += rollem(sides);

  

       return total;

  }   

 This file adds some wrinkles. First, it turns  rollem()  into a function private to this file. It’s 
there as a helper function for  roll_n_dice() . Second, to illustrate how external linkage works, 
the file declares an external variable called  roll_count . This variable keeps track of how many 
times the  rollem()  function is called. The example is a little contrived, but it shows how the 
external variable feature works.  

 Third, the file contains the following statement:  

  #include "diceroll.h"   

 When you use standard library functions, such as  rand() , you include the standard header file 
( stdlib.h  for  rand() ) instead of declaring the function. That’s because the header file already 
contains the correct declaration. We’ll emulate that approach by providing a  diceroll.h  
header file to be used with the  roll_n_dice()  function. Enclosing the filename in double 
quotation marks instead of in angle brackets instructs the compiler to look locally for the 
file instead of in the standard locations the compiler uses for the standard header files. The 
meaning of “look locally” depends on the implementation. Some common interpretations are 
placing the header file in the  same directory or folder as the source code files or in the same 
directory or folder as the project file (if your compiler uses them).  Listing   12.12    shows the 
contents of the header file.  

  Listing 12.12   The  diceroll.h  File  

 //diceroll.h

  extern int roll_count;

  

  int roll_n_dice(int dice, int sides);   

 This header file contains function prototypes and an  extern  declaration. Because the 
 diceroll.c  file includes this header,  diceroll.c  actually contains two declarations of 
 roll_count :  

  extern int roll_count;  // from header file

  int roll_count = 0;     // from source code file   
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 This is fine. You can have only one defining declaration of a variable. But the declaration with 
 extern  is a reference declaration, and you can have as many of those as you want.  

 The program using  roll_n_dice()  should also include this header file. Not only does this 
provide the prototype for  roll_n_dice() , it also makes  roll_count  available to that program. 
 Listing   12.13    illustrates these points.  

  Listing 12.13   The  manydice.c  File  

 /* manydice.c -- multiple dice rolls                    */

  /* compile with diceroll.c                              */

  #include <stdio.h>

  #include <stdlib.h>              /* for library srand() */

  #include <time.h>                /* for time()          */

  #include "diceroll.h"            /* for roll_n_dice()   */

  /* and for roll_count  */

  int main(void)

  {

      int dice,roll;

      int sides;

  

      srand((unsigned int) time(0)); /* randomize seed      */

      printf("Enter the number of sides per die, 0 to stop.\n");

      while (scanf("%d", &sides) == 1 && sides > 0 )

      {

          printf("How many dice?\n");

          if ((status =scanf("%d", &dice)) != 1)

          {

              if (status == EOF)

                  break;             /* exit loop           */

              else

              {

                  printf("You should have entered an integer.");

                  printf(" Let's begin again.\n");

                  while (getchar() != '\n')

                       continue;     /* dispose of bad input */

                  printf("How many sides? Enter 0 to stop.\n");

                  continue;         /* new loop cycle       */

               }

          }

         roll = roll_n_dice(dice, sides);

          printf("You have rolled a %d using %d %d-sided dice.\n",

                 roll, dice, sides);

          printf("How many sides? Enter 0 to stop.\n");

      }

      printf("The rollem() function was called %d times.\n",

             roll_count);           /* use extern variable */
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      printf("GOOD FORTUNE TO YOU!\n");

  

      return 0;

  }   

 Compile  Listing   12.13    with the file containing  Listing   12.11   . To simplify matters, have  Listings 
  12.11   ,    12.12   , and    12.13    all in the same folder or directory. Run the resulting program. The 
output should look something like this:  

  Enter the number of sides per die, 0 to stop.

   6 

  How many dice?

   2 

  You have rolled a 12 using 2 6-sided dice.

  How many sides? Enter 0 to stop.

   6 

  How many dice?

   2 

  You have rolled a 4 using 2 6-sided dice.

  How many sides? Enter 0 to stop.

   6 

  How many dice?

   2 

  You have rolled a 5 using 2 6-sided dice.

  How many sides? Enter 0 to stop.

   0 

  The rollem() function was called 6 times.

  GOOD FORTUNE TO YOU!   

 Because the program uses  srand()  to randomize the random-number seed, you most likely 
won’t get the same output even with the same input. Note that  main()  in  manydice.c  does 
have access to the  roll_count  variable defined in  diceroll.c .  

 The outer  while  loop can terminate for three reasons:  sides  is less than 1, there is a type 
mismatch for input ( scanf()  return value is  0 ), or end-of-file is encountered (return value is 
 EOF ). For reading the number of dice, the program handles end-of-file differently from how it 
handles a type mismatch; it exits the  while  loop in the former case and initiates a new loop 
cycle in the latter case.  

 You can use  roll_n_dice()  in many ways. With  sides  equal to 2, the program simulates a 
coin toss with “heads” being 2 and “tails” being 1 (or vice versa, if you really prefer it). You 
can easily modify the program to show the individual results as well as the total, or you can 
construct a craps simulator. If you require a large number of rolls, as in some role-playing 
games, you can easily modify the program to produce output like this:  

  Enter the number of sets; enter q to stop.

   18 
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  How many sides and how many dice?

   6 3 

  Here are 18 sets of 3 6-sided throws.

    12  10   6   9   8  14   8  15   9  14  12  17  11   7  10

    13   8  14

  How many sets? Enter q to stop.

   q    

 Another use for  rand1()  or  rand()  (but not of  rollem() ) is creating a number-guessing 
program so that the computer chooses and you guess. You can try that yourself.   

  Allocated Memory:  malloc()  and  free()   

 The storage classes we discussed have one thing in common. After you decide which storage 
class to use, the decisions about scope and storage duration follow automatically. Your choices 
obey the prepackaged memory management rules. There is, however, one more choice, one 
that gives you more flexibility. That choice is using library functions to allocate and manage 
memory.  

 First, let’s review some facts about memory allocation. All programs have to set aside enough 
memory to store the data they use. Some of this memory allocation is done automatically. For 
example, you can declare  

  float x;

  char place[] = "Dancing Oxen Creek";   

 and enough memory to store that  float  or  string  is set aside, or you can be more explicit 
and ask for a certain amount of memory:  

  int plates[100];   

 This declaration sets aside 100 memory locations, each fit to store an  int  value. In all these 
cases, the declaration also provides an identifier for the memory, so you can use  x  or  place  
to identify data. Static data, recall, is allocated when the program is loaded into memory, and 
automatic data is allocated when program execution enters a block and deallocated when 
execution leaves the block.  

 C goes beyond this. You can allocate more memory as a program runs. The main tool is the 
 malloc()  function, which takes one argument: the number of bytes of memory you want. 
Then  malloc()  finds a suitable block of free memory. The memory is anonymous; that is, 
 malloc()  allocates memory but it doesn’t assign a name to it. However, it does return the 
address of the first byte of that block. Therefore, you can assign that address to a pointer vari-
able and use the pointer to access the memory. Because  char  represents a byte,  malloc()  has 
traditionally been defined as type pointer-to- char . Since the ANSI  C standard, however, C uses 
a new type: pointer-to- void . This type is intended to be a “generic pointer.” The  malloc()  
function can be used to return pointers to arrays, structures, and so forth, so normally the 
return value is typecast to the proper value. Under ANSI C, you should still typecast for clarity, 
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but assigning a pointer-to- void  value to a pointer of another type is not considered a type 
clash. If  malloc()  fails to find the required space, it returns the null pointer.  

 Let’s apply  malloc()  to the task of creating an array. You can use  malloc()  to request a block 
of storage as the program is running. You also need a pointer to keep track of where the block 
is in memory. For example, consider this code:  

  double * ptd;

  ptd = (double *) malloc(30 * sizeof(double));   

 This code requests space for 30 type  double  values and sets  ptd  to point to the location. Note 
that  ptd  is declared as a pointer to a single  double  and not to a block of 30  double  values. 
Remember that the name of an array is the address of its first element. Therefore, if you make 
 ptd  point to the first element of the block, you can use it just like an array name. That is, you 
can use the expression  ptd[0]  to access the first element of the block,  ptd[1]  to access the 
second element, and so on. As you’ve learned earlier, you can use pointer notation  with array 
names, and you can use array notation with pointers.  

 You now have three ways to create an array:  

    ■   Declare an array using constant expressions for the array dimensions and use the array 
name to access elements. Such an array can be created using either static or automatic 
memory.   

   ■   Declare a variable-length array using variable expressions for the array dimensions and 
use the array name to access elements. (Recall that this is a C99 feature.) This feature is 
available only for automatic memory.   

   ■   Declare a pointer, call  malloc() , assign the return value to the pointer, and use the 
pointer to access elements. The pointer can be either static or automatic.    

 You can use the second and third methods to do something you can’t do with an ordinary 
declared array—create a  dynamic array , one that’s allocated while the program runs and that 
you can choose a size for while the program runs. Suppose, for example, that  n  is an integer 
variable. Prior to C99, you couldn’t do the following:  

  double item[n];    /* pre C99: not allowed if n is a variable */   

 However, you can do the following, even with a pre-C99 compiler:  

  ptd = (double *) malloc(n * sizeof(double)); /* okay */   

 This works, and, as you’ll see, it’s a bit more flexible than the variable-length array.  

 Normally, you should balance each use of  malloc()  with a use of  free() . The  free()  func-
tion takes as its argument an address returned earlier by  malloc()  and frees up the memory 
that had been allocated. Thus, the duration of allocated memory is from when  malloc()  is 
called to allocate the memory until  free()  is called to free up the memory so that it can be 
reused. Think of  malloc()  and  free()  as managing a pool of memory. Each call to  malloc()  
allocates memory for program use, and each call to  free()  restores memory to the pool so it 
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can be reused. The argument to  free()  should be a pointer to  a block of memory allocated by 
 malloc() ; you can’t use  free()  to free memory allocated by other means, such as declaring an 
array. Both  malloc()  and  free()  have prototypes in the  stdlib.h  header file.  

 By using  malloc() , then, a program can decide what size array is needed and create it while 
the program runs.  Listing   12.14    illustrates this possibility. It assigns the address of the block of 
memory to the pointer  ptd , and then it uses  ptd  in the same fashion you would use an array 
name. Also, the  exit()  function, prototyped in  stdlib.h , is called to terminate the program 
if memory allocation fails. The value  EXIT_FAILURE  also is defined in that header file. The 
standard provides for two return values that are guaranteed to work with all operating systems: 
 EXIT_SUCCESS  (or, equivalently, the value  0 ) to indicate normal program  termination, and 
 EXIT_FAILURE  to indicate abnormal termination. Some operating systems, including Unix, 
Linux, and Windows, can accept additional integer values denoting particular forms of failure.  

  Listing 12.14   The  dyn_arr.c  Program  

 /* dyn_arr.c -- dynamically allocated array */

  #include <stdio.h>

  #include <stdlib.h> /* for malloc(), free() */

  

  int main(void)

  {

      double * ptd;

      int max = 0;

      int number;

      int i = 0;

  

      puts("What is the maximum number of type double entries?");

      if (scanf("%d", &max) != 1)

      {

          puts("Number not correctly entered -- bye.");

          exit(EXIT_FAILURE);

      }

      ptd = (double *) malloc(max * sizeof (double));

      if (ptd == NULL)

      {

          puts("Memory allocation failed. Goodbye.");

          exit(EXIT_FAILURE);

      }

      /* ptd now points to an array of max elements */

      puts("Enter the values (q to quit):");

      while (i < max && scanf("%lf", &ptd[i]) == 1)

          ++i;

      printf("Here are your  %d entries:\n", number = i);

      for (i = 0; i < number; i++)

      {

          printf("%7.2f ", ptd[i]);



ptg11524036

546 Chapter 12 Storage Classes, Linkage, and Memory Management

          if (i % 7 == 6)

              putchar('\n');

      }

      if (i % 7 != 0)

          putchar('\n');

      puts("Done.");

      free(ptd);

  

      return 0;

  }   

 Here’s a sample run. In it, we entered six numbers, but the program processes just five of them 
because we limited the array size to 5.  

  What is the maximum number of entries?

   5 

  Enter the values (q to quit):

   20 30 35 25 40 80 

  Here are your 5 entries:

    20.00   30.00   35.00   25.00   40.00

  Done.   

 Let’s look at the code. The program finds the desired array size with the following lines:  

  if (scanf("%d", &max) != 1)

  {

      puts("Number not correctly entered -- bye.");

      exit(EXIT_FAILURE);

  }   

 Next, the following line allocates enough space to hold the requested number of entries and 
then assigns the address of the block to the pointer  ptd :  

  ptd = (double *) malloc(max * sizeof (double));   

 The typecast to  (double *)  is optional in C but required in C++, so using the typecast makes 
it simpler to move a program from C to C++.  

 It’s possible that  malloc()  can fail to procure the desired amount of memory. In that case, the 
function returns the null pointer, and the program terminates:  

  if (ptd == NULL)

  {

       puts("Memory allocation failed. Goodbye.");

       exit(EXIT_FAILURE);

  }   

 If the program clears this hurdle, it can treat  ptd  as though it were the name of an array of  max  
elements, and so it does.  
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 Note the  free()  function near the end of the program. It frees memory allocated by  malloc() . 
The  free()  function frees only the block of memory to which its argument points. Some oper-
ating systems will free allocated memory automatically when a program finishes, but others 
may not. So use  free()  and don’t rely on the operating system to clean up for you.  

 What have you gained by using a dynamic array? In this case, you’ve gained program flex-
ibility. Suppose you know that most of the time the program will need no more than 100 
elements, but sometimes it will need 10,000 elements. If you declare an array, you would have 
to allow for the worst case and declare it with 10,000 elements. Most of the time, that program 
would be wasting memory. Then, the one time you need 10,001 elements, the program will 
fail. You can use a dynamic array to adjust the program to fit the circumstances.  

  The Importance of  free()   

 The amount of static memory is fixed at compile time; it does not change while the program is 
running. The amount of memory used for automatic variables grows and shrinks automatically 
as the program executes. But the amount of memory used for allocated memory just grows 
unless you remember to use  free() . For example, suppose you have a function that creates a 
temporary copy of an array as sketched in the following code:  

  ...

  int main()

  {

  double glad[2000];

  int i;

  ...for (i = 0; i < 1000; i++)

      gobble(glad, 2000);

  ...}

  

  void gobble(double ar[], int n)

  {

      double * temp = (double *) malloc( n * sizeof(double));

  ...    /* free(temp);  // forgot to use free()  */

  }   

 The first time  gobble()  is called, it creates the pointer  temp , and it uses  malloc()  to allocate 
16,000 bytes of memory (assuming  double  is 8 bytes). Suppose, as indicated, we don’t use 
 free() . When the function terminates, the pointer  temp , being an automatic variable, disap-
pears. But the 16,000 bytes of memory it pointed to still exists. It can’t be accessed because we 
no longer have the address. It can’t be reused because we didn’t call  free() .  

 The second time  gobble()  is called, it creates  temp  again, and again it uses  malloc()  to allo-
cate 16,000 bytes. The first block of 16,000 bytes is no longer available, so  malloc()  has to 
find a second block of 16,000 bytes. When the function terminates, this block of memory also 
becomes inaccessible and not reusable.  
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 But the loop executes 1,000 times, so by the time the loop finishes, 16,000,000 bytes of 
memory have been removed from the memory pool. In fact, the program may have run out of 
memory before getting this far. This sort of problem is called a  memory leak , and it could have 
been prevented by having a call to  free()  at the end of the function.   

  The  calloc()  Function  

 Another option for memory allotment is to use  calloc() . A typical use looks like this:  

  long * newmem;

  

  newmem = (long *)calloc(100, sizeof (long));   

 Like  malloc() ,  calloc()  returns a pointer-to- char  in its pre-ANSI version and a pointer-to-
 void  under ANSI. You should use the cast operator if you want to store a different type. This 
new function takes two arguments, both of which should be unsigned integers (type  size_t  
since ANSI). The first argument is the number of memory cells you want. The second argument 
is the size of each cell in bytes. In our case,  long  uses 4 bytes, so this instruction sets up 100 
4-byte units, using 400 bytes in all for storage.  

 Using  sizeof (long)  instead of  4  makes this coding more portable. It will work on those 
systems where  long  is some size other than 4.  

 The  calloc()  function throws in one more feature: It sets all the bits in the block to zero. 
(Note, however, that on some hardware systems, a floating-point value of  0  is not represented 
by all bits set to 0.)  

 The  free()  function can also be used to free memory allocated by  calloc() .  

 Dynamic memory allocation is the key to many advanced programming techniques. We’ll 
examine some in  Chapter   17   , “Advanced Data Representation.” Your own C library probably 
offers several other memory-management functions—some portable, some not. You might 
want to take a moment to look them over.   

  Dynamic Memory Allocation and Variable-Length Arrays  

 There’s some overlap in functionality between variable-length arrays (VLAs) and the use of 
 malloc() . Both, for example, can be used to create an array whose size is determined during 
runtime:  

  int vlamal()

  {

      int n;

      int * pi;

      scanf("%d", &n);

      pi = (int *) malloc (n * sizeof(int));

      int ar[n];   // vla

      pi[2] = ar[2] = -5;
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  ...

  }   

 One difference is that the VLA is automatic storage. One consequence of automatic storage is 
that the memory space used by the VLA is freed automatically when the execution leaves the 
defining block—in this case, when the  vlamal()  function terminates. Therefore, you don’t 
have to worry about using  free() . On the other hand, the array created using  malloc()  
needn’t have its access limited to one function. For example, one function could create an array 
and return the pointer, giving the calling function access. Then the calling function could call 
 free()  when it is finished. It’s okay to use a different pointer variable with   free()  than with 
 malloc() ; what must agree are the addresses stored in the pointers. However, you should not 
try to free the same block of memory twice.  

 VLAs are more convenient for multidimensional arrays. You can create a two-dimensional array 
using  malloc() , but the syntax is awkward. If a compiler doesn’t support the VLA feature, one 
of the dimensions has to be fixed, just like in function calls:  

  int n = 5;

  int m = 6;

  int ar2[n][m];     // n x m VLA

  int (* p2)[6];     // works pre-C99

  int (* p3)[m];     // requires VLA support

  p2 = (int (*)[6]) malloc(n * 6 * sizeof(int));  // n * 6 array

  p3 = (int (*)[m]) malloc(n * m * sizeof(int));  // n * m array

  // above expression also requires VLA support

  ar2[1][2] = p2[1][2] = 12;   

 It’s worth reviewing the pointer declarations. The  malloc()  function returns a pointer, so  p2  
has to be a pointer of a suitable type. The declaration  

  int (* p2)[6];    // works pre-C99   

 says that  p2  points to an array of six  int s. This means that  p2[i]  would be interpreted as an 
element consisting of six  int s and that  p2[i][j]  would be a single  int .  

 The second pointer declaration uses a variable to specify the size of the array to which  p3  
points. This means that  p3  is considered to be a pointer to a VLA, which is why the code won’t 
work with the C90 standard.   

  Storage Classes and Dynamic Memory Allocation  

 You might be wondering about the connection between storage classes and dynamic memory 
allocation. Let’s look at an idealized model. You can think of a program as dividing its avail-
able memory into three separate sections: one for static variables with external linkage, inter-
nal linkage, and no linkage; one for automatic variables; and one for dynamically allocated 
memory.  
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 The amount of memory needed for the static duration storage classes is known at compile time, 
and the data stored in this section is available as long as the program runs. Each variable of 
these classes comes into being when the program starts and expires when the program ends.  

 An automatic variable, however, comes into existence when a program enters the block of code 
containing the variable’s definition and expires when its block of code is exited. Therefore, as a 
program calls functions and as functions terminate, the amount of memory used by automatic 
variables grows and shrinks. This section of memory is typically handled as a stack. That means 
new variables are added sequentially in memory as they are created and then are removed in 
the opposite order as they pass away.  

 Dynamically allocated memory comes into existence when  malloc()  or a related function is 
called, and it’s freed when  free()  is called. Memory persistence is controlled by the program-
mer, not by a set of rigid rules, so a memory block can be created in one function and disposed 
of in another function. Because of this, the section of memory used for dynamic memory 
allocation can end up fragmented—that is, unused chunks could be interspersed among active 
blocks of memory. Also, using dynamic memory tends to be a slower process than using stack 
memory.  

 Typically, a program uses different regions of memory for static objects, automatic objects, and 
dynamically allocated objects.  Listing   12.15    illustrates this point.  

  Listing 12.15   The  where.c  Program  

 //  where.c  -- where's the memory?

  

  #include <stdio.h>

  #include <stdlib.h>

  #include <string.h>

  

  int static_store = 30;

  const char * pcg = "String Literal";

  int main()

  {

      int auto_store = 40;

      char auto_string[] = "Auto char Array";

      int * pi;

      char * pcl;

  

      pi = (int *) malloc(sizeof(int));

      *pi = 35;

      pcl = (char *) malloc(strlen("Dynamic String") + 1);

      strcpy(pcl, "Dynamic String");

  

      printf("static_store: %d at %p\n", static_store, &static_store);

      printf("  auto_store: %d at %p\n", auto_store, &auto_store);

      printf("         *pi: %d at %p\n", *pi, pi);
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      printf("  %s at %p\n", pcg, pcg);

      printf(" %s at %p\n", auto_string, auto_string);

      printf("  %s at %p\n", pcl, pcl);

      printf("   %s at %p\n", "Quoted String", "Quoted String");

       free(pi);

      free(pcl);

  

      return 0;

  }   

 Here is the output for one system:  

  static_store: 30 at 00378000

    auto_store: 40 at 0049FB8C

           *pi: 35 at 008E9BA0

    String Literal at 00375858

   Auto char Array at 0049FB74

    Dynamic String at 008E9BD0

     Quoted String at 00375908   

 As you can see, static data, including string literals occupies one region, automatic data a 
second region, and dynamically allocated data a third region (often called a  memory heap  or  free 
store ).    

  ANSI C Type Qualifiers  

 You’ve seen that a variable is characterized by both its type and its storage class. C90 added 
two more properties: constancy and volatility. These properties are declared with the keywords 
 const  and  volatile , which create  qualified types . The C99 standard added a third qualifier, 
 restrict , designed to facilitate compiler optimizations. And C11 adds a fourth,  _Atomic . C11 
provides an optional library, managed by  stdatomic.h , to support concurrent programming, 
and  _Atomic  is part of that optional support.  

 C99 granted type qualifiers a new property—they now are idempotent! Although this sounds 
like a powerful claim, all it really means is that you can use the same qualifier more than once 
in a declaration, and the superfluous ones are ignored:  

  const const const int n = 6; // same as const int n = 6;   

 This makes it possible, for example, for the following sequence to be accepted:  

  typedef const int zip;

  const zip q = 8;   
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  The  const  Type Qualifier  

  Chapter   4   , “Character Strings and Formatted Input/Output,” and  Chapter   10   , “Arrays and 
Pointers,” have already introduced  const . To review, the  const  keyword in a declaration estab-
lishes a variable whose value cannot be modified by assignment or by incrementing or decre-
menting. On an ANSI-compliant compiler, the code  

  const int nochange;   /* qualifies m as being constant */

  nochange = 12;        /* not allowed                   */   

 should produce an error message. You can, however, initialize a  const  variable. Therefore, the 
following code is fine:  

  const int nochange = 12;  /* ok */   

 The preceding declaration makes  nochange  a read-only variable. After it is initialized, it cannot 
be changed.  

 You can use the  const  keyword to, for example, create an array of data that the program can’t 
alter:  

  const int days1[12] = {31,28,31,30,31,30,31,31,30,31,30,31};   

  Using  const  with Pointers and Parameter Declarations  

 Using the  const  keyword when declaring a simple variable and an array is pretty easy. Pointers 
are more complicated because you have to distinguish between making the pointer itself  const  
and making the value that is pointed to  const . The declaration  

  const float * pf;  /* pf points to a constant float value */   

 establishes that  pf  points to a value that must remain constant. The value of  pf  itself can 
be changed. For example, it can be set to point at another  const  value. In contrast, the 
declaration  

  float * const pt;    /* pt is a const pointer */   

 says that the pointer  pt  itself cannot have its value changed. It must always point to the same 
address, but the pointed-to value can change. Finally, the declaration  

  const float * const ptr;   

 means both that  ptr  must always point to the same location and that the value stored at the 
location must not change.  

 There is a third location in which you can place  const :  

  float const * pfc;   // same as const float * pfc;   

 As the comment indicates, placing  const  after the type name and before the  *  means that the 
pointer can’t be used to change the pointed-to value. In short, a  const  anywhere to the left 
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of the  *  makes the data constant; and a  const  to the right of the  *  makes the pointer itself 
constant.  

 One common use for this new keyword is declaring pointers that serve as formal function 
parameters. For example, suppose you have a function called  display()  that displays the 
contents of an array. To use it, you would pass the name of the array as an actual argument, 
but the name of an array is an address. That would enable the function to alter data in the 
calling function. But the following prototype prevents this from happening:  

  void display(const int array[], int limit);   

 In a prototype and a function header, the parameter declaration  const int array[]  is the 
same as  const int * array , so the declaration says that the data to which  array  points 
cannot be changed.  

 The ANSI C library follows this practice. If a pointer is used only to give a function access to 
values, the pointer is declared as a pointer to a  const -qualified type. If the pointer is used to 
alter data in the calling function, the  const  keyword isn’t used. For example, the ANSI C decla-
ration for  strcat()  is this:  

  char *strcat(char * restrict s1, const char * restrict s2);   

 Recall that  strcat()  adds a copy of the second string to the end of the first string. This modi-
fies the first string, but leaves the second string unchanged. The declaration reflects this. We’ll 
get back to the role of  restrict  in a short while.   

  Using  const  with Global Data  

 Recall that using global variables is considered a risky approach because it exposes data to being 
mistakenly altered by any part of a program. That risk disappears if the data is constant, so it is 
perfectly reasonable to use global variables with the  const  qualifier. You can have  const  vari-
ables,  const  arrays, and  const  structures. (Structures are a compound data type discussed in 
the next chapter.)  

 One area that requires care, however, is sharing  const  data across files. There are two strategies 
you can use. The first is to follow the usual rules for external variables—use defining declara-
tions in one file and reference declarations (using the keyword  extern ) in the other files:  

  /* file1.c -- defines some global constants */

  const double PI = 3.14159;

  const char * MONTHS[12] =

       {"January", "February", "March", "April", "May", "June", "July",

        "August", "September", "October", "November", "December"};

  

  /* file2.c -- use global constants defined elsewhere */

  extern const double PI;

  extern const * MONTHS[];   



ptg11524036

554 Chapter 12 Storage Classes, Linkage, and Memory Management

 The second approach is to place the constants in an  include  file. Here, you must take the addi-
tional step of using the static external storage class:  

  /* constant.h -- defines some global constants */

  static const double PI = 3.14159;

  static const char * MONTHS[12] =

       {"January", "February", "March", "April", "May", "June", "July",

        "August", "September", "October", "November", "December"};

  

  /* file1.c -- use global constants defined elsewhere */

  #include "constant.h"

  

  /* file2.c -- use global constants defined elsewhere */

  #include "constant.h"   

 If you don’t use the keyword  static , including  constant.h  in  file1.c  and in  file2.c  
would result in each file having a defining declaration of the same identifier, which is not 
supported by the C standard. (Some compilers, however, do allow it.) By making each identifier 
static external, you actually give each file a separate copy of the data. That wouldn’t work if the 
files are supposed to use the data to communicate with one another because each file would see 
only its own copy. Because the data is constant (by using the  const  keyword) and identical (by 
having both files include the same header  file), however, that’s not a problem.  

 The advantage of the header file approach is that you don’t have to remember to use defining 
declarations in one file and reference declarations in the next; all files simply include the same 
header file. The disadvantage is that the data is duplicated. For the preceding examples, that’s 
not a real problem, but it might be one if your constant data includes enormous arrays.    

  The  volatile  Type Qualifier  

 The  volatile  qualifier tells the compiler that a variable can have its value altered by agencies 
other than the program. It is typically used for hardware addresses and for data shared with 
other programs or threads running simultaneously. For example, an address might hold the 
current clock time. The value at that address changes as time changes, regardless of what your 
program is doing. Or an address could be used to receive information transmitted from, say, 
another computer.  

 The syntax is the same as for  const :  

  volatile int loc1;   /* loc1 is a volatile location        */

  volatile int * ploc; /* ploc points to a volatile location */   

 These statements declare  loc1  to be a  volatile  value and  ploc  to point to a  volatile  value.  

 You may think that  volatile  is an interesting concept, but you might be wondering why the 
ANSI committee felt it necessary to make  volatile  a keyword. The reason is that it facilitates 
compiler optimization. Suppose, for example, you have code like this:  



ptg11524036

555ANSI C Type Qualifiers

  val1 = x;

   /* some code not using x */

  val2 = x;   

 A smart (optimizing) compiler might notice that you use  x  twice without changing its value. It 
would temporarily store the  x  value in a register. Then, when  x  is needed for  val2 , it can save 
time by reading the value from a register instead of from the original memory location. This 
procedure is called  caching . Ordinarily, caching is a good optimization, but not if  x  is changed 
between the two statements by some other agency. If there were no  volatile  keyword, a 
compiler would have no way of knowing whether this might happen. Therefore, to be safe, 
the compiler couldn’t cache. That was the pre-ANSI  situation. Now, however, if the  volatile  
keyword is not used in the declaration, the compiler can assume that a value hasn’t changed 
between uses, and it can then attempt to optimize the code.  

 A value can be both  const  and  volatile . For example, the hardware clock setting normally 
should not be changed by the program, making it  const , but it is changed by an agency other 
than the program, making it  volatile . Just use both qualifiers in the declaration, as shown 
here; the order doesn’t matter:  

  volatile const int loc;

  const volatile int * ploc;    

  The  restrict  Type Qualifier  

 The  restrict  keyword enhances computational support by giving the compiler permission 
to optimize certain kinds of code. It can be applied only to pointers, and it indicates that a 
pointer is the sole initial means of accessing a data object. To see why this is useful, we need to 
look at a few examples. Consider the following:  

  int ar[10];

  int * restrict restar = (int *) malloc(10 * sizeof(int));

  int * par = ar;   

 Here, the pointer  restar  is the sole initial means of access to the memory allocated by 
 malloc() . Therefore, it can be qualified with the keyword  restrict . The pointer  par , 
however, is neither the initial nor the sole means of access to the data in the  ar  array, so it 
cannot be qualified as  restrict .  

 Now consider the following rather artificial example, in which  n  is an  int :  

  for (n = 0; n < 10; n++)

  {

      par[n] += 5;

      restar[n] += 5;

      ar[n] *= 2;

      par[n] += 3;

      restar[n] += 3;

  }   
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 Knowing that  restar  is the sole initial means of access to the block of data it points to, the 
compiler can replace the two statements involving  restar  with a single statement having the 
same effect:  

  restar[n] += 8;   /* ok replacement */   

 It would be a computational error, however, to condense the two statements involving  par  
into one:  

  par[n] += 8;    / * gives wrong answer */   

 The reason it gives the wrong answer is that the loop uses  ar  to change the value of the data 
between the two times  par  accesses the same data.  

 Without the  restrict  keyword, the compiler has to assume the worse case; namely, that 
some other identifier might have changed the data in between two uses of a pointer. With the 
 restrict  keyword used, the compiler is free to look for computational shortcuts.  

 You can use the  restrict  keyword as a qualifier for function parameters that are pointers. 
This means that the compiler can assume that no other identifiers modify the pointed-to data 
within the body of the function and that the compiler can try optimizations it might not 
otherwise use. For example, the C library has two functions for copying bytes from one loca-
tion to another. Under C99, they have these prototypes:  

  void * memcpy(void * restrict s1, const void * restrict s2, size_t n);

  void * memmove(void * s1, const void * s2, size_t n);   

 Each one copies  n  bytes from location  s2  to location  s1 . The  memcpy()  function requires that 
there be no overlap between the two locations, but  memmove()  doesn’t have that requirement. 
Declaring  s1  and  s2  as  restrict  means each pointer is a sole means of access, so they can’t 
access the same block of data. This matches the requirement that there be no overlap. The 
 memmove()  function, which does allow overlap, has to be more careful about copying data so 
that it doesn’t overwrite data before it is used.  

 The keyword  restrict  has two audiences. One is the compiler, and it tells the compiler it is 
free to make certain assumptions concerning optimization. The other audience is the user, and 
it tells the user to use only arguments that satisfy the  restrict  requirements. In general, the 
compiler can’t check whether you obey this restriction, but you flout it at your own risk.   

  The  _Atomic  Type Qualifier (C11)  

 Concurrent programming divides program execution into threads that may be executed in 
parallel. This creates several programming challenges, including how to manage different 
threads that access the same data. C11 provides, as an option and not a requirement, manage-
ment methods set up by the optional header files  stdatomic.h  and  threads.h . One aspect is 
the concept of an atomic type for which access is controlled by various macro functions. While 
a thread performs an atomic operation on an object of atomic type, other threads won’t access 
that object. For instance, something like  
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  int hogs;   // regular declaration

  hogs = 12;   // regular assignment   

 could be replaced by the following:  

  _Atomic int hogs;         // hogs an atomic variable

  atomic_store(&hogs, 12);  // macro from stdatomic.h   

 Here, the storing of the value  12  in  hogs  is an atomic process during which other threads 
won’t access  hogs .  

 At the time of this writing, compiler support for this feature is anticipated.   

  New Places for Old Keywords  

 C99 allows you to place the type qualifiers and the storage class qualifier  static  inside the 
initial brackets of a formal parameter in a function prototype and function header. In the case 
of the type qualifiers, this provides an alternative syntax for an existing capability. For example, 
here is a declaration with the older syntax:  

  void ofmouth(int * const a1, int * restrict a2, int n);  // older style   

 It says that  a1  is a  const  pointer to  int , which, as you’ll recall, means that the pointer is 
constant, not the data to which it points. It also indicates that  a2  is a restricted pointer, as 
described in the preceding section. The new and equivalent syntax is  

  void ofmouth(int a1[const], int a2[restrict], int n);   // allowed by C99   

 Basically, the new rule allows you to use these two qualifiers with either pointer or array nota-
tion in declaring function parameters.  

 The case for  static  is different because it introduces a new and unrelated use for this keyword. 
Instead of indicating the scope or linkage of a static storage variable, the new use is to tell the 
compiler how a formal parameter will be used. For example, consider this prototype:  

  double stick(double ar[static 20]);   

 This use of  static  indicates that the actual argument in a function call will be a pointer to 
the first element of an array having at least 20 elements. The purpose of this is to enable the 
compiler to use that information to optimize its coding of the function. Why use the keyword 
in such a different fashion? The C standards committee is reluctant to create a new keyword 
because that would invalidate old programs that use that word as an identifier, so if they can 
squeeze a new use out of an old keyword, they will.  

 As with  restrict , the keyword  static  has two audiences. One is the compiler, and it tells the 
compiler it is free to make certain assumptions concerning optimization. The other audience is 
the user, and it tells the user to only provide arguments that satisfy the  static  requirements.    
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  Key Concepts  

 C provides several models for managing memory. You should become familiar with the various 
choices. You also need to develop a sense of when to choose the various types. Most of the 
time, the automatic variable is the best choice. If you decide to use another type, you should 
have a good reason. For communicating between functions, it’s usually better to use automatic 
variables, function parameters, and return values rather than global variables. On the other 
hand, global variables are particularly useful for constant data.  

 You should try to understand the properties of static memory, automatic memory, and allo-
cated memory. In particular, be aware that the amount of static memory used is determined 
at compile time, and that static data is loaded into memory when the program is loaded into 
memory. Automatic variables are allocated and freed as the program runs, so the amount of 
memory used by automatic variables changes while a program executes. You can think of auto-
matic memory as a rewriteable workspace. Allocated memory also grows and shrinks, but, in 
this case, the process is controlled by function calls rather than happening  automatically.    

     Summary  

 The memory used to store data in a program can be characterized by storage duration, scope, 
and linkage. Storage duration can be static, automatic, or allocated. If static, memory is allo-
cated at the start of program execution and persists as long as the program is running. If auto-
matic, memory for a variable is allocated when program execution enters the block in which 
the variable is defined and is freed when the block is exited. If allocated, memory is allocated 
by calling  malloc()  (or a related function) and freed by calling the  free()  function.  

 Scope determines which parts of a program can access the data. A variable defined outside of 
any function has file scope and is visible to any function defined after the variable’s declara-
tion. A variable defined inside a block or as a function parameter has block scope and is visible 
just in that block and any blocks nested in it.  

 Linkage describes the extent to which a variable defined in one unit of a program can be linked 
to elsewhere. Variables with block scope, being local, have no linkage. Variables with file scope 
can have internal linkage or external linkage. Internal linkage means the variable can be used 
only in the file containing the definition. External linkage means the variable also can be used 
in other files.  

 The following are C’s five storage classes (excluding thread concepts):  

    ■    Automatic—    A variable declared in a block (or as a parameter in a function header) 
with no storage class modifier, or with the  auto  storage class modifier, belongs to the 
automatic storage class. It has automatic storage duration, block scope, and no linkage. 
Its value, if uninitialized, is not undetermined.   

   ■    Register—    A variable declared in a block (or as a parameter in a function header) with 
the  register  storage class modifier belongs to the register storage class. It has automatic 
storage duration, block scope, and no linkage, and its address cannot be taken. Declaring 
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a variable as a register variable is a hint to the compiler to provide the fastest access 
possible. Its value, if uninitialized, is not undetermined.   

   ■    Static, no linkage—    A variable declared in a block with the  static  storage class modifier 
belongs to the “static, no linkage” storage class. It has static storage duration, block 
scope, and no linkage. It is initialized just once, at compile time. If not initialized 
explicitly, its bytes are set to 0.   

   ■    Static, external linkage—    A variable defined external to any function and without using 
the  static  storage class modifier belongs to the “static, external linkage” storage class. 
It has static storage duration, file scope, and external linkage. It is initialized just once, at 
compile time. If not initialized explicitly, its bytes are set to 0.   

   ■    Static, internal linkage—    A variable defined external to any function and using the 
 static  storage class modifier belongs to the “static, internal linkage” storage class. It 
has static storage duration, file scope, and internal linkage. It is initialized just once, at 
compile time. If not initialized explicitly, its bytes are set to 0.    

 Allocated memory is provided by using the  malloc()  (or related) function, which returns a 
pointer to a block of memory having the requested number of bytes. This memory can be made 
available for reuse by calling the  free()  function, using the address as the argument.  

 The type qualifiers are  const ,  volatile , and  restrict . The  const  specifier qualifies data as 
being constant. When used with pointers,  const  can indicate that the pointer itself is constant 
or that the data it points to is constant, depending on the placement of  const  in the declara-
tion. The  volatile  specifier indicates that data may be altered by processes other than the 
program. Its purpose is to warn the compiler to avoid optimizations that assume otherwise. 
The  restrict  specifier is also provided for reasons of optimization. A pointer qualified with 
 restrict  is identified as providing the only access to a block of data.   

  Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    Which storage classes create variables local to the function containing them?    

   2.    Which storage classes create variables that persist for the duration of the containing 
program?    

   3.    Which storage class creates variables that can be used across several files? Restricted to 
just one file?    

   4.    What kind of linkage do block scope variables have?    

   5.    What is the  extern  keyword used for?    
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   6.    Consider this code fragment:  

  int * p1 = (int *) malloc(100 * sizeof(int));   

 In terms of the final outcome, how does the following statement differ?  

  int * p1 = (int *) calloc(100, sizeof(int));     

   7.    Which functions know each variable in the following? Are there any errors?  

  /* file 1 */

  int daisy;

  int main(void)

  {

    int lily;

    ...;

  }

  int petal()

  {

    extern int daisy, lily;

    ...;

  }

  /* file 2 */

  extern int daisy;

  static int lily;

  int rose;

  int stem()

  {

    int rose;

    ...;

  }

  void root()

  {

    ...;

  }     

   8.    What will the following program print?  

  #include <stdio.h>

  char color= 'B';

  void first(void);

  void second(void);

  

  int main(void)

  {

    extern char color;

  

    printf("color in main() is %c\n", color);
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    first();

    printf("color in main() is %c\n", color);

    second();

    printf("color in main() is %c\n", color);

    return 0;

  }

  

  void first(void)

  {

    char color;

  

    color = 'R';

    printf("color in first() is %c\n", color);

  }

  

  void second(void)

  {

    color = 'G';

    printf("color in second() is %c\n", color);

  }     

   9.    A file begins with the following declarations:  

  static int plink;

  int value_ct(const int arr[], int value, int n);   

    a.   What do these declarations tell you about the programmer’s intent?   

   b.   Will replacing  int value  and  int n  with  const int value  and  const int n  
enhance the protection of values in the calling program?        

  Programming Exercises  

    1.    Rewrite the program in  Listing   12.4    so that it does not use global variables.    

   2.    Gasoline consumption commonly is computed in miles per gallon in the U.S. and in 
liters per 100 kilometers in Europe. What follows is part of a program that asks the user 
to choose a mode (metric or U.S.) and then gathers data and computes fuel consumption:  

  // pe12-2b.c

  // compile with pe12-2a.c

  #include <stdio.h>

  #include "pe12-2a.h"

  int main(void)

  {
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    int mode;

  

    printf("Enter 0 for metric mode, 1 for US mode: ");

    scanf("%d", &mode);

    while (mode >= 0)

    {

       set_mode(mode);

       get_info();

       show_info();

       printf("Enter 0 for metric mode, 1 for US mode");

       printf(" (-1 to quit): ");

       scanf("%d", &mode);

    }

    printf("Done.\n");

    return 0;

  }   

   Here is some sample output:  

  Enter 0 for metric mode, 1 for US mode: 0

  Enter distance traveled in kilometers: 600

  Enter fuel consumed in liters: 78.8

  Fuel consumption is 13.13 liters per 100 km.

  Enter 0 for metric mode, 1 for US mode (-1 to quit): 1

  Enter distance traveled in miles: 434

  Enter fuel consumed  in gallons: 12.7

  Fuel consumption is 34.2 miles per gallon.

  Enter 0 for metric mode, 1 for US mode (-1 to quit): 3

  Invalid mode specified. Mode 1(US) used.

  Enter distance traveled in miles: 388

  Enter fuel consumed  in gallons: 15.3

  Fuel consumption is 25.4 miles per gallon.

  Enter 0 for metric mode, 1 for US mode (-1 to quit): -1

  Done.   

 If the user enters an incorrect mode, the program comments on that and uses the most 
recent mode. Supply a  pe12-2a.h  header file and a  pe12-2a.c  source code file to make 
this work. The source code file should define three file-scope, internal-linkage variables. 
One represents the mode, one represents the distance, and one represents the fuel 
consumed. The  get_info()  function prompts for data according to the mode setting 
and stores the responses in the file-scope variables. The  show_info()  function calculates 
and displays the fuel consumption based on the mode setting. You can assume the user 
responds with numeric input.    

   3.    Redesign the program described in Programming Exercise 2 so that it uses only automatic 
variables. Have the program offer the same user interface—that is, it should prompt the 
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user to enter a mode, and so on. You’ll have to come up with a different set of function 
calls, however.    

   4.    Write and test in a loop a function that returns the number of times it has been called.    

   5.    Write a program that generates a list of 100 random numbers in the range 1–10 
in sorted decreasing order. (You can adapt the sorting algorithm from  Chapter   11   , 
“Character Strings and String Functions,” to type  int . In this case, just sort the numbers 
themselves.)    

   6.    Write a program that generates 1,000 random numbers in the range 1–10. Don’t save or 
print the numbers, but do print how many times each number was produced. Have the 
program do this for 10 different seed values. Do the numbers appear in equal amounts? 
You can use the functions from this chapter or the ANSI C  rand()  and  srand()  
functions, which follow the same format that our functions do. This is one way to 
examine the randomness of a particular random-number generator.    

   7.    Write a program that behaves like the modification of  Listing   12.13   , which we discussed 
after showing the output of  Listing   12.13   . That is, have the program produce output like 
the following:  

  Enter the number of sets; enter q to stop : 18 

  How many sides and how many dice?  6 3 

  Here are 18 sets of 3 6-sided throws.

    12  10   6   9   8  14   8  15   9  14  12  17  11   7  10

    13   8  14

  How many sets? Enter q to stop:  q      

   8.    Here’s part of a program:  

  // pe12-8.c

  #include <stdio.h>

  int * make_array(int elem, int val);

  void show_array(const int ar[], int n);

  int main(void)

  {

    int * pa;

    int size;

    int value;

  

    printf("Enter the number of elements: ");

    while (scanf("%d", &size) == 1 && size > 0)

    {

        printf("Enter the initialization value: ");

        scanf("%d", &value);
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        pa = make_array(size, value);

        if (pa)

        {

            show_array(pa, size);

            free(pa);

        }

        printf("Enter the number of elements (<1 to quit): ");

    }

    printf("Done.\n");

    return 0;

  }   

 Complete the program by providing function definitions for  make_array()  and  show_
array() . The  make_array()  function takes two arguments. The first is the number 
of elements of an  int  array, and the second is a value that is to be assigned to each 
element. The function uses  malloc()  to create an array of a suitable size, sets each 
element to the indicated value, and returns a pointer to the array. The  show_array()  
function displays the contents, eight numbers to a line.    

   9.    Write a program with the following behavior. First, it asks you how many words you 
wish to enter. Then it has you enter the words, and then it displays the words. Use 
 malloc()  and the answer to the first question (the number of words) to create a dynamic 
array of the corresponding number of pointers-to- char . (Note that because each element 
in the array is a pointer-to- char , the pointer used to store the return value of  malloc()  
should be a pointer-to-a-pointer-to- char .) When reading the string, the program should 
read the word into a temporary array of  char , use  malloc()  to allocate enough storage 
to  hold the word, and store the address in the array of  char  pointers. Then it should 
copy the word from the temporary array into the allocated storage. Thus, you wind up 
with an array of character pointers, each pointing to an object of the precise size needed 
to store the particular word. A sample run could look like this:  

  How many words do you wish to enter?  5 

  Enter 5 words now:

   I enjoyed doing this exerise 

  Here are your words:

  I

  enjoyed

  doing

  this

  exercise         
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    You will learn about the following in this chapter:  

    ■   Functions:  

  fopen() ,  getc() ,  putc() ,  exit() ,  fclose()   

  fprintf() ,  fscanf() ,  fgets() ,  fputs()   

  rewind() ,  fseek() ,  ftell() ,  fflush()   

  fgetpos() ,  fsetpos() ,  feof() ,  ferror()   

  ungetc() ,  setvbuf() ,  fread() ,  fwrite()    

   ■   How to process files using C’s standard I/O family of functions   

   ■   Text modes and binary modes, text and binary formats, and buffered and nonbuffered 
I/O   

   ■   Using functions that can access files both sequentially and randomly    

 Files are essential to today’s computer systems. They are used to store programs, documents, 
data, correspondence, forms, graphics, photos, music, videos, and myriad other kinds of infor-
mation. As a programmer, you will have to write programs that create files, write into files, and 
read from files. In this chapter, we show you how.   

     Communicating with Files  

 Often you need programs that can read information from files or can write results into a 
file. One such form of program-file communication is file redirection, as you saw in  Chapter 
  8   , “Character Input/Output and Input Validation.” This method is simple but limited. For 
example, suppose you want to write an interactive program that asks you for book titles and 
then saves the complete listing in a file. If you use redirection, as in  

  books > bklist   
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 your interactive prompts are redirected into  bklist . Not only does this put unwanted text into 
 bklist , it prevents you from seeing the questions you are supposed to answer.  

 C, as you might expect, offers more powerful methods of communicating with files. It enables 
you to open a file from within a program and then use special I/O functions to read from or 
write to that file. Before investigating these methods, however, let’s briefly review the nature of 
a file.  

  What Is a File?  

 A  file  is a named section of storage, usually on a disk, or, more recently, on a solid-state device. 
You think of  stdio.h , for instance, as the name of a file containing some useful information. 
To the operating system, however, a file is a bit more complicated. A large file, for example, 
could wind up stored in several scattered fragments, or it might contain additional data that 
allows the operating system to determine what kind of file it is. However, these are the operat-
ing system’s concerns, not yours (unless you are writing operating systems). Your concern is 
how files appear to  a C program.  

 C views a file as a continuous sequence of bytes, each of which can be read individually. This 
corresponds to the file structure in the Unix environment, where C grew up. Because other 
environments may not correspond exactly to this model, C provides two ways to view files: the 
text view and the binary view.   

  The Text Mode and the Binary Mode  

 First, let’s distinguish between text and binary content, text and binary file formats, and text 
and binary modes for files.  

 All file content is in binary form (zeros and ones). But if a file primarily uses the binary codes 
for characters (for instance, ASCII or Unicode) to represent text, much as a C string does, then 
it is a text file; it has text content. If, instead, the binary values in the file represent machine-
language code or numeric data (using the same internal representation as, say, used for  long  or 
 double  values) or image or music encoding, the content is binary.  

 Unix uses the same file format for both kinds of content. Not surprisingly, given that C was 
created as tool for developing Unix, both C and Unix use  \n  (the line-feed character) to indi-
cate a line break in text. Unix directories maintain a file-size count that programs can use 
to determine when end-of-file is reached. However, other systems have had other ways of 
handling files specifically intended to hold text. That is, they have a format for text files differ-
ent from the Unix model. For example, pre-OS X Macintosh files used  \r  (the carriage-return 
character) to indicate a new line. Early MS-DOS  files used the combination  \r\n  to indicate 
a newline and an imbedded Ctrl+Z character to denote end-of-file, even though the actual 
file would be padded with additional null characters to make the total size a multiple of 256. 
(In Windows, Notepad still produces MS-DOS format text files, but newer editors may use a 
more Unix-like format.) Other systems might make every line in a text file of the same length, 
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padding each line with null characters, if necessary, to make the length come out right. Or a 
system might encode the length of each line at the beginning of each line.  

 To bring some regularity to the handling of text files, C provides two ways of accessing a 
file:  binary  mode and  text  mode. In the binary mode, each and every byte of the file is acces-
sible to a program. In the text mode, however, what the program sees can differ from what 
is in the file. With the text view, the local environment’s representation of such things as 
the end of a line or end-of-file are mapped to the C view when a file is read. Similarly, the C 
view is mapped to the local representation of output. For example, a C  program compiled on 
an older Macintosh and using text mode would convert  \r  to  \n  when reading a file in text 
mode and convert  \n  to  \r  when writing to a file. Or a C text-mode program compiled on 
an MS-DOS platform would convert  \r\n  to  \n  when reading from a file and convert  \n  to 
 \r\n  when writing to a file. Text-mode programs written for other environments make similar 
adjustments.  

 You aren’t restricted to using only the text view for a text file. You can also use the binary view 
of the same file. If you do for an old MS-DOS text file, your program sees both the  \r  and the 
 \n  characters in the file; no mapping takes place. ( Figure   13.1    illustrates this with some nautical 
text.) If you want to write a text-viewing program that works for, say, old Mac formats, MS-DOS 
formats, and Unix/Linux formats, you would use binary mode so that the program could deter-
mine the actual file contents and act accordingly.  

 

the way it looks to a C
program when opened in 
the binary mode

the way it looks to a C program when
opened in the text mode

an MS-DOS
text file

Rebecca clutched the\r\n

jewel-encrusted scarab\r\n

to her heaving bosun.\r\n

^Z

Rebecca clutched the\r\n

jewel-encrusted scarab\r\n

to her heaving bosun.\r\n

^Z

Rebecca clutched the\n

jewel-encrusted scarab\n

to her heaving bosun.\n

 Figure 13.1   Binary view and text view.         
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 Although C provides for both a binary view and a text view, these views can be implemented 
identically. As mentioned, because Unix uses just one file structure, both views are the same for 
Unix implementations. And this is true for Linux, too.   

  Levels of I/O  

 In addition to selecting the view of a file, you can, in most cases, choose between two levels of 
I/O (that is, between two levels of handling access to files).  Low-level I/O  uses the fundamental 
I/O services provided by the operating system.  Standard high-level I/O  uses a standard package 
of C library functions and  stdio.h  header file definitions. The C standard supports only the 
standard I/O package because there is no way to guarantee that all operating systems can be 
represented by the same low-level I/O model. Particular implementations may also provide low-
level libraries, but, because the C standard establishes a portable I/O model,  we will concentrate 
on it.   

  Standard Files  

 C programs automatically open three files on your behalf. They are termed the  standard input , 
the  standard output , and the  standard error output . The standard input, by default, is the normal 
input device for your system, usually your keyboard. Both the standard output and the stan-
dard error output, by default, are the normal output device for your system, usually your 
display screen.  

 The standard input, naturally, provides input to your program. It’s the file that is read by 
 getchar()  and  scanf() . The standard output is where normal program output goes. It is used 
by  putchar() ,  puts() , and  printf() . Redirection, as you learned in  Chapter   8   , causes other 
files to be recognized as the standard input or standard output. The purpose of the standard 
error output file is to provide a logically distinct place to send error messages. If, for example, 
you use redirection to send output to a file instead of to the screen, output sent to the standard 
error output still goes  to the screen. This is good because if the error messages were routed to 
the file, you would not see them until you viewed the file.    

  Standard I/O  

 The standard I/O package has two advantages, besides portability, over low-level I/O. First, it 
has many specialized functions that simplify handling different I/O problems. For example, 
 printf()  converts various forms of data to string output suitable for terminals. Second, input 
and output are  buffered . That is, information is transferred in large chunks (typically 512 
bytes at a time or more) instead of a byte at a time. When a program reads a file, for example, 
a chunk of data is copied to a buffer—an intermediate storage area. This buffering greatly 
increases the data transfer rate. The program can then examine individual  bytes in the buffer. 
The buffering is handled behind the scenes, so you have the illusion of character-by-character 
access. (You can also buffer low-level I/O, but you have to do much of the work yourself.) 
 Listing   13.1    shows how to use standard I/O to read a file and count the number of characters 



ptg11524036

569Standard I/O

in the file. We’ll discuss the features of  Listing   13.1    in the next several sections. (This program 
uses command-line arguments. If you’re a Windows user, you might have to run the program 
in a command-prompt window after compiling. If you’re a Macintosh user, the simplest 
approach is to compile  and run the program in command-line form using Terminal. Or, as 
described in  Chapter   11   , “Character Strings and String Functions,” you can use the Xcode 
Product menu to provide command-line arguments for a program run in the IDE. Alternatively, 
you can alter the program to use  puts()  and  fgets()  instead of command-line  arguments to 
get the filename.)  

  Listing 13.1   The  count.c  Program  

 /* count.c -- using standard I/O */

  #include <stdio.h>

  #include <stdlib.h> // exit() prototype

  

  int main(int argc, char *argv[])

  {

      int ch;         // place to store each character as read

      FILE *fp;       // "file pointer"

      unsigned long count = 0;

      if (argc != 2)

      {

          printf("Usage: %s filename\n", argv[0]);

          exit(EXIT_FAILURE);

      }

      if ((fp = fopen(argv[1], "r")) == NULL)

      {

          printf("Can't open %s\n", argv[1]);

          exit(EXIT_FAILURE);

      }

      while ((ch = getc(fp)) != EOF)

      {

          putc(ch,stdout);  // same as putchar(ch);

          count++;

      }

      fclose(fp);

      printf("File %s has %lu characters\n", argv[1], count);

  

      return 0;

  }   

  Checking for Command-Line Arguments  

 First, the program in  Listing   13.1    checks the value of  argc  to see if there is a command-line 
argument. If there isn’t, the program prints a usage message and exits. The string  argv[0]  is 
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the name of the program. Using  argv[0]  instead of the program name explicitly causes the 
error message to change automatically if you change the name of the executable file. This 
feature is also handy in environments such as Unix that permit multiple names for a single 
file. But beware—some operating systems may not recognize  argv[0] , so this usage is not 
completely portable.  

 The  exit()  function causes the program to terminate, closing any open files. The argument 
to  exit()  is passed on to some operating systems, including Unix, Linux, Windows, and 
MS-DOS, where it can be used by other programs. The usual convention is to pass a value of 
 0  for programs that terminate normally and to pass nonzero values for abnormal termination. 
Different exit values can be used to distinguish between different causes of failure, and this is 
the usual practice in Unix and DOS programming. However, not all operating systems recog-
nize the same range of possible return values. Therefore, the C standard mandates a rather  
restricted minimum range. In particular, the standard requires that the value  0  or the macro 
 EXIT_SUCCESS  be used to indicate successful termination, and the macro  EXIT_FAILURE  be 
used to indicate unsuccessful termination. These macros, along with the  exit()  prototype, are 
found in the  stdlib.h  header file.  

 Under ANSI C, using  return  in the initial call to  main()  has the same effect as calling  exit() . 
Therefore, in  main() , the statement  

  return 0;   

 which you’ve been using all along, is equivalent in effect to this statement:  

  exit(0);   

 Note, however, the qualifying phrase “the initial call.” If you make  main()  into a recursive 
program,  exit()  still terminates the program, but  return  passes control to the previous level 
of recursion until the original level is reached. Then  return  terminates the program. Another 
difference between  return  and  exit()  is that  exit()  terminates the program even if called in 
a function other than  main() .   

  The  fopen()  Function  

 Next, the program uses  fopen()  to open the file. This function is declared in  stdio.h . Its 
first argument is the name of the file to be opened; more exactly, it is the address of a string 
containing that name. The second argument is a string identifying the mode in which the file 
is to be opened. The C library provides for several possibilities, as shown in  Table   13.1   .  

  Table 13.1   Mode Strings for  fopen()   

  Mode String     Meaning   

  "r"    Open a text file for reading.  

  "w"    Open a text file for writing, truncating an existing file to zero length, or creat-
ing the file if it does not exist.  
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  Mode String     Meaning   

  "a"    Open a text file for writing, appending to the end of an existing file, or creat-
ing the file if it does not exist.  

  "r+"    Open a text file for update (that is, for both reading and writing).  

  "w+"    Open a text file for update (reading and writing), first truncating the file to 
zero length if it exists or creating the file if it does not exist.  

  "a+"    Open a text file for update (reading and writing), appending to the end of an 
existing file, or creating the file if it does not yet exist; the whole file can be 
read, but writing can only be appended.  

  "rb" ,  "wb" ,  "ab" , 
 "ab+" ,  "a+b" , 
 "wb+" ,  "w+b" , 
 "ab+" ,  "a+b"   

 Like the preceding modes, except they use binary mode instead of  text 
mode.  

  "wx" ,  "wbx" , 
 "w+x" ,  "wb+x"  or 
 "w+bx"   

 (C11) Like the non-x modes, except they fail if the file already exists and they 
open a file in exclusive mode, if possible.  

 For systems such as Unix and Linux that have just one file type, the modes with the  b  are 
equivalent to the corresponding modes lacking the  b .  

 The new C11 write modes with  x  provide a couple of features compared to the older write 
modes. First, if you try to open an existing file in one of the traditional write modes,  fopen()  
truncates the file to zero length, thus losing the file contents. But the modes with  x  cause 
 fopen()  to fail instead, leaving the file unharmed. Second, to the extent that the environment 
allows, the exclusivity feature of the  x  modes keeps other programs or threads from accessing 
the file until the current process closes the file.  

  Caution! 

 If you use any of the  "w"  modes without an  x  for an existing file, the file contents are trun-
cated so that your program can start with a clean slate. However, if you attempt to open an 
existing file with one of the C11 modes with an  x , the attempt fails.   

 After your program successfully opens a file,  fopen()  returns a  file pointer , which the other 
I/O functions can then use to specify the file. The file pointer ( fp  in this example) is of type 
pointer-to- FILE ;  FILE  is a derived type defined in  stdio.h . The pointer  fp  doesn’t point to the 
actual file. Instead, it points to a data object containing information about the file, including 
information about the buffer used for the file’s I/O. Because the I/O functions in the standard 
library use a buffer, they need to know where the buffer is. They also need to know how full 
the buffer is and  which file is being used. This enables the functions to refill or empty the 
buffer when necessary. The data object pointed to by  fp  has all that information. (This data 
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object is an example of a C structure, a topic we discuss in  Chapter   14   , “Structures and Other 
Data Forms.”)  

 The  fopen()  function returns the null pointer (also defined in  stdio.h ) if it cannot open the 
file. This program exits if  fp  is  NULL . The  fopen()  function can fail because the disk is full, 
because the file is not in the searched directory, because the name is illegal, because access is 
restricted, or because of a hardware problem, to name just a few reasons, so check for trouble; a 
little error-trapping can go a long way.   

  The  getc()  and  putc()  Functions  

 The two functions  getc()  and  putc()  work very much like  getchar()  and  putchar() . The 
difference is that you must tell these newcomers which file to use. So the following old standby 
means “get a character from the standard input”:  

  ch = getchar();   

 However, this statement means “get a character from the file identified by  fp ”:  

  ch = getc(fp);   

 Similarly, this statement means “put the character  ch  into the file identified by the  FILE  
pointer  fpout ”:  

  putc(ch, fpout);   

 In the  putc()  argument list, the character comes first, and then the file pointer.  

  Listing   13.1    uses  stdout  for the second argument of  putc() . It is defined in  stdio.h  as being 
the file pointer associated with the standard output, so  putc(ch,stdout)  is the same as 
 putchar(ch) . Indeed, the latter function is normally defined as being the former. Similarly, 
 getchar()  is defined as being  getc()  using the standard input.  

 You may wonder why this example uses  putc()  instead of  putchar() . One reason is to intro-
duce the  putc()  function. The other is that you can easily convert this program to produce file 
output by using an argument other than  stdout .   

  End-of-File  

 A program reading data from a file needs to stop when it reaches the end of the file. How can 
a program tell if it has reached the end? The  getc()  function returns the special value  EOF  if it 
tries to read a character and discovers it has reached the end of the file. So a C program discov-
ers it has reached the end of a file only after it tries to read past the end of the file. (This is 
unlike the behavior of some languages, which use a special function to test for end-of-file  before  
attempting a read.)  

 To avoid problems attempting to read an empty file, you should use an entry-condition loop 
(not a  do while  loop) for file input. Because of the design of  getc()  (and other C input 
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functions), a program should attempt the first read before entering the body of the loop. So the 
following design is good:  

  // good design #1

  int ch;             // int to hold EOF

  FILE * fp;

  fp = fopen("wacky.txt", "r");

  ch = getc(fp);      // get initial input

  while (ch != EOF)

  {

      putchar(ch);    // process input

      ch = getc(fp);  // get next input

  }   

 This can be condensed to the following design:  

  // good design #2

  int ch;

  FILE * fp;

  fp = fopen("wacky.txt", "r");

  while (( ch = getc(fp)) != EOF)

  {

      putchar(ch);  // process input

  }   

 Because the input statement is part of the  while  test condition, it is executed before the 
program enters the body of the loop.  

 You should avoid a design of this sort:  

  // bad design (two problems)

  int ch;

  FILE * fp;

  fp = fopen("wacky.txt", "r");

  while (ch != EOF)    // ch undetermined value first use

  {

      ch = getc(fp);   // get input

      putchar(ch);     // process input

  }   

 The first problem is that the first time  ch  is compared with  EOF , it has not yet been assigned a 
value. The second problem is that if  getc()  does return  EOF , the loop tries to process  EOF  as 
if it were a valid character. These defects are fixable. For example, you could initialize  ch  to a 
dummy value and stick an  if  statement inside the loop, but why bother when good designs 
are already available.  

 These cautions carry over to the other input functions. They also return an error signal (either 
 EOF  or the  NULL  pointer) after running into the end of a file.   
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  The  fclose()  Function  

 The  fclose(fp)  function closes the file identified by  fp , flushing buffers as needed. For a 
program less casual than this one, you would check to see whether the file had been closed 
successfully. The function  fclose()  returns a value of  0  if successful, and  EOF  if not:  

  if (fclose(fp) != 0)

      printf("Error in closing file %s\n", argv[1]);   

 The  fclose()  function can fail if, for example, the disk is full, a removable storage device has 
been removed, or there has been an I/O error.   

  Pointers to the Standard Files  

 The  stdio.h  file associates three file pointers with the three standard files automatically 
opened by C programs:  

  Standard File     File Pointer     Normally   

 Standard input    stdin    Your keyboard  

 Standard output    stdout    Your screen  

 Standard error    stderr    Your screen  

 These pointers are all type pointer-to- FILE , so they can be used as arguments to the standard 
I/O functions, just as  fp  was in the example. Let’s move on to an example that creates a new 
file and writes to it.    

  A Simple-Minded File-Condensing Program  

 This next program copies selected data from one file to another. It opens two files simultane-
ously, using the  "r"  mode for one and the  "w"  mode for the other. The program (shown in 
 Listing   13.2   ) condenses the contents of the first file by the brutal expedient of retaining only 
every third character. Finally, it places the condensed text into the second file. The name for 
the second file is the old name with  .red  (for reduced) appended. Using command-line argu-
ments, opening more than one file simultaneously, and filename appending are generally quite 
useful techniques. This particular form of condensing is of more limited appeal,  but it can have 
its uses, as you will see. (Again, it is a simple matter to modify this program to use standard I/O 
techniques instead of command-line arguments to provide filenames.)  

  Listing 13.2   The  reducto.c  Program  

 // reducto.c -- reduces your files by two-thirds!

  #include <stdio.h>

  #include <stdlib.h>    // for exit()
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  #include <string.h>

  

  int main(int argc, char *argv[])

  {

      FILE  *in, *out;   // declare two FILE pointers

      int ch;

      char name[LEN];    // storage for output filename

      int count = 0;

  

      // check for command-line arguments

      if (argc < 2)

      {

          fprintf(stderr, "Usage: %s filename\n", argv[0]);

          exit(EXIT_FAILURE);

      }

      // set up input

      if ((in = fopen(argv[1], "r")) == NULL)

      {

          fprintf(stderr, "I couldn't open the file \"%s\"\n",

                  argv[1]);

          exit(EXIT_FAILURE);

      }

      // set up output

      strncpy(name,argv[1], LEN - 5); // copy filename

      name[LEN - 5] = '\0';

      strcat(name,".red");            // append .red

      if ((out  = fopen(name, "w")) == NULL)

      {                       // open file for writing

          fprintf(stderr,"Can't create output file.\n");

          exit(3);

      }

      // copy data

      while ((ch = getc(in)) != EOF)

          if (count++ % 3 == 0)

              putc(ch, out);  // print every 3rd char

      // clean up

      if (fclose(in) != 0 || fclose(out) != 0)

          fprintf(stderr,"Error in closing files\n");

  

      return 0;

  }   

 Suppose the executable file is named  reducto  and that we apply it to a file called  Eddy , which 
contains this single line:  

  So even Eddy came oven ready.   
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 The command would be as follows:  

  reducto eddy   

 The output is written to a file called  eddy.red . The program doesn’t produce any onscreen 
output, but displaying the  eddy.red  file should reveal the following:  

  Send money   

 This example illustrates several programming techniques. Let’s examine some of them now.  

 The  fprintf()  function is like  printf() , except that it requires a file pointer as its first argu-
ment. We’ve used the  stderr  pointer to send error messages to the standard error; this is a 
standard C practice.  

 To construct the new name for the output file, the program uses  strncpy()  to copy the name 
 eddy  into the array  name . The  LEN - 5  argument leaves room for the  .red  suffix and the final 
null character. No null character is copied if the  argv[2]  string is longer than  LEN – 5 , so the 
program adds a null character just in case. The first null character in  name  after the  strncpy()  
call then is overwritten by the period in  .red  when the  strcat()  function appends that 
string, producing, in this case,  eddy.red . We also checked to see whether the program 
succeeded in opening a file by that name.  This is particularly important in some environments 
because a filename such as, say,  strange.c.red , may be invalid. For example, you can’t add 
extensions to extensions under traditional DOS. (The proper MS-DOS approach is to replace 
any existing extension with  .red , so the reduced version of  strange.c  would be  strange.
red . You could use the  strchr()  function, for example, to locate the period, if any, in a name 
and copy only the part of the string before the period.)  

 This program had two files open simultaneously, so we declared two  FILE  pointers. Note that 
each file is opened and closed independently of the other. There are limits to how many files 
you can have open at one time. The limit depends on your system and implementation; the 
range is often 10 to 20. You can use the same file pointer for different files, provided those files 
are not open at the same time.   

  File I/O:  fprintf() ,  fscanf() ,  fgets() , and 

 fputs()   

 For each of the I/O functions in the preceding chapters, there is a similar file I/O function. The 
main distinction is that you need to use a  FILE  pointer to tell the new functions with which 
file to work. Like  getc()  and  putc() , these functions require that you identify a file by using a 
pointer-to- FILE , such as  stdout , or that you use the return value of  fopen() .  

  The  fprintf()  and  fscanf()  Functions  

 The file I/O functions  fprintf()  and  fscanf()  work just like  printf()  and  scanf() , except 
that they require an additional first argument to identify the proper file. You’ve already used 
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 fprintf() .  Listing   13.3    illustrates both of these file I/O functions, along with the  rewind()  
function.  

  Listing 13.3   The  addaword.c  Program  

 /* addaword.c -- uses fprintf(), fscanf(), and rewind() */

  #include <stdio.h>

  #include <stdlib.h>

  #include <string.h>

  #define MAX 41

  

  int main(void)

  {

      FILE *fp;

      char words[MAX];

  

      if ((fp = fopen("wordy", "a+")) == NULL)

      {

          fprintf(stdout,"Can't open \"wordy\" file.\n");

          exit(EXIT_FAILURE);

      }

  

      puts("Enter words to add to the file; press the #");

      puts("key at the beginning of a line to terminate.");

      while ((fscanf(stdin,"%40s", words) == 1)  && (words[0] != '#'))

          fprintf(fp, "%s\n", words);

  

      puts("File contents:");

      rewind(fp);           /* go back to beginning of file */

      while (fscanf(fp,"%s",words) == 1)

          puts(words);

      puts("Done!");

      if (fclose(fp) != 0)

          fprintf(stderr,"Error closing file\n");

  

      return 0;

  }   

 This program enables you to add words to a file. By using the  "a+"  mode, the program can 
both read and write in the file. The first time the program is used, it creates the  wordy  file and 
enables you to place words in it, one word per line. When you use the program subsequently, 
it enables you to add (append) words to the previous contents. The append mode only enables 
you to add material to the end of the file, but the  "a+"  mode does enable you to read the 
whole file. The  rewind()  command takes the program to the file beginning so  that the final 
 while  loop can print the file contents. Note that  rewind()  takes a file pointer argument.  
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 Here’s a sample run from a Unix environment (the executable program has been renamed 
 addaword ):  

  $  addaword 

  Enter words to add to the file; press the Enter

  key at the beginning of a line to terminate.

   The fabulous programmer 

   # 

  File contents:

  The

  fabulous

  programmer

  Done!

  $  addaword 

  Enter words to add to the file; press the Enter

  key at the beginning of a line to terminate.

   enchanted the 

   large 

   # 

  File contents:

  The

  fabulous

  programmer

  enchanted

  the

  large

  Done!   

 As you can see,  fprintf()  and  fscanf()  work like  printf()  and  scanf() . Unlike  putc() , 
the  fprintf()  and  fscanf()  functions take the  FILE  pointer as the first argument instead of 
as the last argument.   

  The  fgets()  and  fputs()  Functions  

 You met  fgets()  in  Chapter   11   . The first argument, as with the banished  gets() , is the 
address (type  char * ) where input should be stored. The second argument is an integer repre-
senting the maximum size of the input string. The final argument is the file pointer identifying 
the file to be read. A function call, then, looks like this:  

  fgets(buf, STLEN, fp);   

 Here,  buf  is the name of a  char  array,  STLEN  is the maximum size of the string, and  fp  is the 
pointer-to- FILE .  

 As we saw earlier, the  fgets()  function reads input through the first newline character, until 
one fewer than the upper limit of characters is read, or until the end-of-file is found;  fgets()  
then adds a terminating null character to form a string. Therefore, the upper limit represents 
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the maximum number of characters plus the null character. If  fgets()  reads in a whole line 
before running into the character limit, it places the newline character, marking the end of the 
line into the string, just before the null character. The  fgets()  function returns the value  NULL  
when it encounters  EOF . You can use this to check  for the end of a file. Otherwise, it returns 
the address passed to it.  

 The  fputs()  function takes two arguments: first, an address of a string and then a file pointer. 
It writes the string found at the pointed-to location into the indicated file. Unlike  puts() , 
 fputs()  does not append a newline when it prints. A function call looks like this:  

  fputs(buf, fp);   

 Here,  buf  is the string address, and  fp  identifies the target file.  

 Because  fgets()  keeps the newline and  fputs()  doesn’t add one, they work well in tandem. 
As  Listing   11.8    showed, they work well together even if  STLEN  is smaller than the input line 
length.    

  Adventures in Random Access:  fseek()  and  ftell()   

 The   fseek()  function enables you to treat a file like an array and move directly to any partic-
ular byte in a file opened by  fopen() . To see how it works, let’s create a program (see  Listing 
  13.4   ) that displays a file in reverse order. Note that  fseek()  has three arguments and returns 
an  int  value. The  ftell()  function returns the current position in a file as a  long    value.  

  Listing 13.4   The  reverse.c  Program  

 /* reverse.c -- displays a file in reverse order */

  #include <stdio.h>

  #include <stdlib.h>

  #define CNTL_Z '\032'   /* eof marker in DOS text files */

  #define SLEN 81

  int main(void)

  {

      char file[SLEN];

      char ch;

      FILE *fp;

      long count, last;

  

      puts("Enter the name of the file to be processed:");

      scanf("%80s", file);

      if ((fp = fopen(file,"rb")) == NULL)

      {                               /* read-only mode   */

          printf("reverse can't open %s\n", file);

          exit(EXIT_FAILURE);

      }
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      fseek(fp, 0L, SEEK_END);        /* go to end of file */

      last = ftell(fp);

      for (count = 1L; count <= last; count++)

      {

          fseek(fp, -count, SEEK_END); /* go backward      */

          ch = getc(fp);

          if (ch != CNTL_Z &&  ch != '\r')  /* MS-DOS files */

              putchar(ch);

      }

      putchar('\n');

      fclose(fp);

  

      return 0;

  }   

 Here is the output for a sample file:  

  Enter the name of the file to be processed:

   Cluv 

  

  .C ni eno naht ylevol erom margorp a

  ees  reven llahs I taht kniht I   

 This program uses the binary mode so that it can deal with both MS-DOS text and Unix files. 
However, it may not work correctly in an environment that uses some other format for text 
files.  

  Note 

 If you run the program from a command-line environment, this program expects the filename to 
be in the same directory (or folder) as the executable program. If you run the program from an 
IDE, where the program looks depend on the implementation. For example, by default Microsoft 
Visual Studio 2012 looks in the directory containing the source code and Xcode 4.6 looks in 
the directory containing the executable file.   

 We now need to discuss three topics: how  fseek()  and  ftell()  work, how to use a binary 
stream, and how to make the program portable.  

  How  fseek()  and  ftell()  Work  

 The first of the three arguments to  fseek()  is a  FILE  pointer to the file being searched. The 
file should have been opened by using  fopen() .  

 The second argument to  fseek()  is called the  offset . This argument tells how far to move from 
the starting point (see the following list of mode starting points). The argument must be a  long  
value. It can be positive (move forward), negative (move backward), or zero (stay put).  
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 The third argument is the mode, and it identifies the starting point. Since the ANSI standard, 
the  stdio.h  header file specifies the following manifest constants for the mode:  

  Mode     Measures Offset From   

  SEEK_SET    Beginning of file  

  SEEK_CUR    Current position  

  SEEK_END    End of file  

 Older implementations may lack these definitions and, instead, use the numeric values  0L ,  1L , 
and  2L , respectively, for these modes. Recall that the  L  suffix identifies type  long  values. Or the 
implementation might have the constants defined in a different header file. When in doubt, 
consult your usage manual or the online manual.  

 Here are some sample function calls, where  fp  is a file pointer:  

  fseek(fp, 0L, SEEK_SET);   // go to the beginning of the file

  fseek(fp, 10L, SEEK_SET);  // go 10 bytes into the file

  fseek(fp, 2L, SEEK_CUR);   // advance 2 bytes from the current position

  fseek(fp, 0L, SEEK_END);   // go to the end of the file

  fseek(fp, -10L, SEEK_END); // back up 10 bytes from the end of the file   

 There are some possible restrictions on these calls; we’ll get back to that topic in a moment or 
two.  

 The value returned by  fseek()  is  0  if everything is okay, and  -1  if there is an error, such as 
attempting to move past the bounds of the file.  

 The  ftell()  function is type  long , and it returns the current file location. Under ANSI C, it is 
declared in  stdio.h . As originally implemented in Unix,  ftell()  specifies the file position by 
returning the number of bytes from the beginning, with the first byte being byte 0, and so on. 
Under ANSI C, this definition applies to files opened in the binary mode, but not necessarily to 
files opened in the text mode. That is one reason  Listing   13.4    uses the binary mode.  

 Now we can examine the basic elements of  Listing   13.4   . First, the statement  

  fseek(fp, 0L, SEEK_END);   

 sets the position to an offset of 0 bytes from the file end. That is, it sets the position to the end 
of the file. Next, the statement  

  last = ftell(fp);   

 assigns to  last  the number of bytes from the beginning to the end of the file.  

 Next is this loop:  

  for (count = 1L; count <= last; count++)

  {



ptg11524036

582 Chapter 13 File Input/Output

    fseek(fp, -count, SEEK_END);    /* go backward */

       ch = getc(fp);

   }   

 The first cycle positions the program at the first character before the end of the file (that is, at 
the file’s final character). Then the program prints that character. The next loop positions the 
program at the preceding character and prints it. This process continues until the first character 
is reached and printed.   

  Binary Versus Text Mode  

 We designed  Listing   13.4    to work in both the Unix and the MS-DOS environments. Unix has 
only one file format, so no special adjustments are needed. MS-DOS, however, does require 
extra attention. Many MS-DOS editors mark the end of a text file with the character Ctrl+Z. 
When such a file is opened in the text mode, C recognizes this character as marking the end of 
the file. When the same file is opened in the binary mode, however, the Ctrl+Z character is just 
another character in the file, and the actual end-of-file comes later. It might come immediately 
after the Ctrl+Z,  or the file could be padded with null characters to make the size a multiple of, 
say, 256. Null characters don’t print under DOS, and we included code to prevent the program 
from trying to print the Ctrl+Z character.  

 Another difference is one we’ve mentioned before: MS-DOS represents a text file newline with 
the  \r\n  combination. A C program opening the same file in a text mode “sees”  \r\n  as a 
simple  \n , but, when using the binary mode, the program sees both characters. Therefore, we 
included coding to suppress printing  \r . Because a Unix text file normally contains neither 
Ctrl+Z nor  \r , this extra coding does not affect most Unix text files.  

 The  ftell()  function may work differently in the text mode than in the binary mode. Many 
systems have text file formats that are different enough from the Unix model that a byte 
count from the beginning of the file is not a meaningful quantity. ANSI C states that, for the 
text mode,  ftell()  returns a value that can be used as the second argument to  fseek() . For 
MS-DOS, for example,  ftell()  can return a count that sees  \r\n  as a single byte.   

  Portability  

 Ideally,  fseek()  and  ftell()  should conform to the Unix model. However, differences in real 
systems sometimes make this impossible. Therefore, ANSI provides lowered expectations for 
these functions. Here are some limitations:  

    ■   In the binary mode, implementations need not support the  SEEK_END  mode.  Listing 
  13.4   , then, is not guaranteed to be portable. A more portable approach is to read the 
whole file byte-by-byte until the end. But reading the file sequentially to find the end 
is slower than simply jumping to the end. The C preprocessor conditional compilation 
directives, discussed in  Chapter   16   , “The C Preprocessor and the C Library,” provide a 
systematic way to handle alternative code choices.   
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   ■   In the text mode, the only calls to  fseek()  that are guaranteed to work are these:    

  Function Call     Effect   

  fseek(file, 0L, SEEK_SET)    Go to the beginning of the file.  

  fseek(file, 0L, SEEK_CUR)    Stay at the current position.  

  fseek(file, 0L, SEEK_END)    Go to the file’s end.  

  fseek(file,ftell-pos, SEEK_SET)    Go to position  ftell-pos  from the beginning;  ftell-
pos  is a value returned by  ftell() .  

 Fortunately, many common environments allow stronger implementations of these functions.   

  The  fgetpos()  and  fsetpos()  Functions  

 One potential problem with  fseek()  and  ftell()  is that they limit file sizes to values that can 
be represented by type  long . Perhaps two-billion bytes seem more than adequate, but the ever-
increasing capacities of storage devices makes larger files possible. ANSI C introduced two new 
positioning functions designed to work with larger file sizes. Instead of using a  long  value to 
represent a position, it uses a new type, called  fpos_t  (for file position type) for that purpose. 
The  fpos_t  type is not a fundamental type; rather, it is defined in terms of other types. A vari-
able or data object of  fpos_t  type can specify a location  within a file, and it cannot be an array 
type, but its nature is not specified beyond that. Implementations can then provide a type 
to meet the needs of a particular platform; the type could, for example, be implemented as a 
structure.  

 ANSI C does define how  fpos_t  is used. The  fgetpos()  function has this prototype:  

  int fgetpos(FILE * restrict stream, fpos_t * restrict pos);   

 When called, it places an  fpos_t  value in the location pointed to by  pos ; the value describes a 
location in the file. The function returns zero if successful and a nonzero value for failure.  

 The  fsetpos()  function has this prototype:  

  int fsetpos(FILE *stream, const fpos_t *pos);   

 When called, it uses the  fpos_t  value in the location pointed to by  pos  to set the file pointer 
to the location indicated by that value. The function returns zero if successful and a nonzero 
value for failure. The  fpos_t  value should have been obtained by a previous call to  fgetpos() .    

  Behind the Scenes with Standard I/O  

 Now that you’ve seen some of the features of the standard I/O package, let’s examine a repre-
sentative conceptual model to see how standard I/O works.  
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 Normally, the first step in using standard I/O is to use  fopen()  to open a file. (Recall, however, 
that the  stdin ,  stdout , and  stderr  files are opened automatically.) The  fopen()  function 
not only opens a file but sets up a buffer (two buffers for read-write modes), and it sets up a 
data structure containing data about the file and about the buffer. Also,  fopen()  returns a 
pointer to this structure so that other functions know where to find it. Assume that this value 
is assigned to a pointer variable named  fp . The  fopen()  function is said to “open a stream.” If 
the file is opened  in the text mode, you get a text stream, and if the file is opened in the binary 
mode, you get a binary stream.  

 The data structure typically includes a file position indicator to specify the current position in 
the stream. It also has indicators for errors and end-of-file, a pointer to the beginning of the 
buffer, a file identifier, and a count for the number of bytes actually copied into the buffer.  

 Let’s concentrate on file input. Usually, the next step is to call on one of the input functions 
declared in  stdio.h , such as  fscanf() ,  getc() , or  fgets() . Calling any one of these func-
tions causes a chunk of data to be copied from the file to the buffer. The buffer size is imple-
mentation dependent, but it typically is 512 bytes or some multiple thereof, such as 4,096 or 
16,384. (As hard drives and computer memories get larger, the choice of buffer size tends to get 
larger, too.) In addition to filling the buffer, the initial function call sets values in the  structure 
pointed to by  fp . In particular, the current position in the stream and the number of bytes 
copied into the buffer are set. Usually the current position starts at byte 0.  

 After the data structure and buffer are initialized, the input function reads the requested data 
from the buffer. As it does so, the file position indicator is set to point to the character follow-
ing the last character read. Because all the input functions from the  stdio.h  family use the 
same buffer, a call to any one function resumes where the previous call to any of the functions 
stopped.  

 When an input function finds that it has read all the characters in the buffer, it requests that 
the next buffer-sized chunk of data be copied from the file into the buffer. In this manner, the 
input functions can read all the file contents up to the end of the file. After a function reads 
the last character of the final buffer’s worth of data, it sets the end-of-file indicator to true. The 
next call to an input function then returns  EOF .  

 In a similar manner, output functions write to a buffer. When the buffer is filled, the data is 
copied to the file.   

  Other Standard I/O Functions  

 The ANSI standard library contains over three dozen functions in the standard I/O family. 
Although we don’t cover them all here, we will briefly describe a few more to give you a better 
idea of what is available. We’ll list each function by its C prototype to indicate its arguments 
and return values. Of those functions we discuss here, all but  setvbuf()  are also available 
in pre-ANSI implementations. Reference Section V, “The Standard ANSI C Library with C99 
Additions,” lists the full ANSI C standard I/O package.  
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  The  int ungetc(int c, FILE *fp)  Function  

 The  int ungetc()  function pushes the character specified by  c  back onto the input stream. 
If you push a character onto the input stream, the next call to a standard input function reads 
that character (see  Figure   13.2   ). Suppose, for example, that you want a function to read charac-
ters up to, but not including, the next colon. You can use  getchar()  or  getc()  to read char-
acters until a colon is read and then use  ungetc()  to place the colon back in the input stream. 
The ANSI C standard guarantees only one pushback at a time. If an implementation permits 
you to push back several characters  in a row, the input functions read them in the reversed 
order of pushing.  

 

command input queue

w(initial state) h a l e s o n g s

ch = getchar(); h a l e s o n g s

ungetc(ch, stdin); h a l e s o n g sw

 Figure 13.2   The  ungetc()  function.          

  The  int fflush()  Function  

 The prototype for  fflush( ) is this:  

  int fflush(FILE *fp);   

 Calling the  fflush()  function causes any unwritten data in the output buffer to be sent to the 
output file identified by  fp . This process is called  flushing a buffer . If  fp  is the null pointer, all 
output buffers are flushed. The effect of using  fflush()  on an input stream is undefined. You 
can use it with an update stream (any of the read-write modes), provided that the most recent 
operation using the stream was not input.   

  The  int setvbuf()  Function  

 The prototype for  setvbuf()  is this:  

  int setvbuf(FILE * restrict fp, char * restrict buf, int mode, size_t size);   
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 The  setvbuf()  function sets up an alternative buffer to be used by the standard I/O functions. 
It is called after the file has been opened and before any other operations have been performed 
on the stream. The pointer  fp  identifies the stream, and  buf  points to the storage to be used. 
If the value of  buf  is not  NULL , you must create the buffer. For instance, you could declare an 
array of 1,024  char s and pass the address of that array. However, if you use  NULL  for the value 
of  buf , the function allocates a buffer itself. The  size  variable tells  setvbuf()  how big the 
array is.  (The  size_t  type is a derived integer type; see  Chapter   5   , “Operators, Expressions, and 
Statements.”) The  mode  is selected from the following choices:  _IOFBF  means fully buffered 
(buffer flushed when full),  _IOLBF  means line-buffered (buffer flushed when full or when a 
newline is written), and  _IONBF  means nonbuffered. The function returns zero if successful, 
nonzero otherwise.  

 Suppose you have a program that works with stored data objects having, say, a size of 3,000 
bytes each. You could use  setvbuf()  to create a buffer whose size is a multiple of the data 
object’s size.   

  Binary I/O:  fread()  and  fwrite()   

 The  fread()  and  fwrite()  functions are next on the list, but first some background. The 
standard I/O functions you’ve used to this point are text oriented, dealing with characters and 
strings. What if you want to save numeric data in a file? True, you can use  fprintf()  and the 
 %f  format to save a floating-point value, but then you are saving it as a sequence of characters. 
For example, the code  

  double num = 1./3.;

  fprintf(fp,"%f", num);   

 saves  num  as a sequence of eight characters:  0.333333 . Using a  %.2f  specifier saves it as four 
characters:  0.33 . Using a  %.12f  specifier saves it as 14 characters:  0.333333333333 . Changing 
the specifier alters the amount of space needed to store the value; it can also result in different 
values being stored. After the value of  num  is stored as  0.33 , there is no way to get back the 
full precision when the file is read. In general,  fprintf()  converts numeric values to character 
data, possibly altering the value.  

 The most accurate and consistent way to store a number is to use the same pattern of bits that 
the computer does. Therefore, a  double  value should be stored in a size  double  unit. When 
data is stored in a file using the same representation that the program uses, we say that the data 
is stored in  binary form . There is no conversion from numeric forms to character sequences. For 
standard I/O, the  fread()  and  fwrite()  functions provide this binary service (see  
Figure   13.3   ).  

 Actually, as you probably recall, all data is stored in binary form. Even characters are stored 
using the binary representation of the character code. However, if all data in the file is inter-
preted as character codes, we say that the file contains text data. If some or all of the data is 
interpreted as numeric data in binary form, we say that the file contains binary data. (Also, files 
in which the data represents machine-language instructions are binary files.)  
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int num = 12345;

fprintf(fp,"%d", num);

fwrite(&num, sizeof (int), 1, fp);

00110000 00111001

00110000 00111001

001101000110001 001101010011010000110011

stores 12345 as binary number in num

writes the binary codes for the characters
'1','2','3','4','5', to the file

writes the binary codes for the value 12345 to the file

(this figure assumes an integer size of 16 bits)

 Figure 13.3   Binary and text output.         

 The uses of the terms  binary  and  text  can get confusing. ANSI C recognizes two modes for 
opening files: binary and text. Many operating systems recognize two file formats: binary and 
text. Information can be stored or read as binary data or as text data. These are all related, 
but not identical. You can open a text format file in the binary mode. You can store text in 
a binary format file. You can use  getc()  to copy files containing binary data. In general, 
however, you use the binary mode to store binary data in a binary format file. Similarly, you 
most often  use text data in text files opened in the text format. (Files produced by word proces-
sors typically are binary files because they contain a lot of nontext information describing fonts 
and formatting.)   
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  The  size_t fwrite()  Function  

 The prototype for  fwrite()  is this:  

  size_t fwrite(const void * restrict ptr, size_t size, size_t nmemb,

                  FILE * restrict fp);   

 The  fwrite()  function writes binary data to a file. The  size_t  type is defined in terms of the 
standard C types. It is the type returned by the  sizeof  operator. Typically, it is  unsigned int , 
but an implementation can choose another type. The pointer  ptr  is the address of the chunk 
of data to be written. Also,  size  represents the size, in bytes, of the chunks to be written, and 
 nmemb  represents the number of chunks to be written. As usual,  fp  identifies the file to be 
written to. For instance, to save a data object (such as an array) that is 256 bytes in size, you  
can do this:  

  char buffer[256];

  fwrite(buffer, 256, 1, fp);   

 This call writes one chunk of 256 bytes from  buffer  to the file. Or, to save an array of 10 
 double  values, you can do this:  

  double earnings[10];

  fwrite(earnings, sizeof (double), 10, fp);   

 This call writes data from the  earnings  array to the file in 10 chunks, each of size  double .  

 You probably noticed the odd declaration of  const void * restrict ptr  in the  fwrite()  
prototype. One problem with  fwrite()  is that its first argument is not a fixed type. For 
instance, the first example used  buffer , which is type pointer-to- char , and the second 
example used  earnings , which is type pointer-to- double . Under ANSI C function prototyping, 
these actual arguments are converted to the pointer-to- void  type, which acts as a sort of catch-
all type for pointers. (Pre-ANSI C uses type  char *  for this argument, requiring you to typecast 
actual arguments to that type.)  

 The  fwrite()  function returns the number of items successfully written. Normally, this equals 
 nmemb , but it can be less if there is a write error.   

  The  size_t fread()  Function  

 The prototype for  fread()  is this:  

  size_t fread(void * restrict ptr, size_t size, size_t nmemb,

                  FILE * restrict fp);   

 The  fread()  function takes the same set of arguments that  fwrite()  does. This time  ptr  is 
the address of the memory storage into which file data is read, and  fp  identifies the file to be 
read. Use this function to read data that was written to a file using  fwrite() . For example, to 
recover the array of 10  doubles  saved in the previous example, use this call:  
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  double earnings[10];

  fread(earnings, sizeof (double), 10, fp);   

 This call copies 10 size  double  values into the  earnings  array.  

 The  fread()  function returns the number of items successfully read. Normally, this equals 
 nmemb , but it can be less if there is a read error or if the end-of-file is reached.   

  The  int feof(FILE *fp)  and  int ferror(FILE *fp)  

Functions  

 When the standard input functions return  EOF , this usually means they have reached the end 
of a file. However, it can also indicate that a read error has occurred. The  feof()  and  ferror()  
functions enable you to distinguish between the two possibilities. The  feof()  function returns 
a nonzero value if the last input call detected the end-of-file, and it returns zero otherwise. The 
 ferror()  function returns a nonzero value if a read or write error has occurred, and it returns 
zero otherwise.   

  An  fread()  and  fwrite()  Example  

 Let’s use some of these functions in a program that appends the contents from a list of files 
to the end of another file. One problem is passing the file information to the program. This 
can be done interactively or by using command-line arguments. We’ll take the first approach, 
which suggests a plan along the following lines:  

    ■   Request a name for the destination file and open it.   

   ■   Use a loop to request source files.   

   ■   Open each source file in turn in the read mode and add it to the append file.    

 To illustrate  setvbuf() , we’ll use it to specify a different buffer size. The next stage of refine-
ment examines opening the append file. We will use the following steps:  

    1.   Open the destination file in the append mode.   

   2.   If this cannot be done, quit.   

   3.   Establish a 4,096-byte buffer for this file.   

   4.   If this cannot be done, quit.    

 Similarly, we can refine the copying portion by doing the following for each file:  

    ■   If it is the same as the append file, skip to the next file.   

   ■   If it cannot be opened in the read mode, skip to the next file.   

   ■   Add the contents of the file to the append file.    
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 For a grand finale, the program rewinds the append file to the beginning and displays the 
contents.  

 For practice, we’ll use  fread()  and  fwrite()  for the copying.  Listing   13.5    shows the result.  

  Listing 13.5   The  append.c  Program  

 /* append.c -- appends files to a file */

  #include <stdio.h>

  #include <stdlib.h>

  #include <string.h>

  #define BUFSIZE 4096

  #define SLEN 81

  void append(FILE *source, FILE *dest);

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      FILE *fa, *fs;    // fa for append file, fs for source file

      int files = 0;  // number of files appended

      char file_app[SLEN];  // name of append file

      char file_src[SLEN];  // name of source file

      int ch;

  

      puts("Enter name of destination file:");

      s_gets(file_app, SLEN);

      if ((fa = fopen(file_app, "a+")) == NULL)

      {

          fprintf(stderr, "Can't open %s\n", file_app);

          exit(EXIT_FAILURE);

      }

      if (setvbuf(fa, NULL, _IOFBF, BUFSIZE) != 0)

      {

          fputs("Can't create output buffer\n", stderr);

          exit(EXIT_FAILURE);

       }

      puts("Enter name of first source file (empty line to quit):");

      while (s_gets(file_src, SLEN) && file_src[0] != '\0')

      {

          if (strcmp(file_src, file_app) == 0)

              fputs("Can't append file to itself\n",stderr);

          else if ((fs = fopen(file_src, "r")) == NULL)

              fprintf(stderr, "Can't open %s\n", file_src);

          else

          {

              if (setvbuf(fs, NULL, _IOFBF, BUFSIZE) != 0)

              {
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                  fputs("Can't create input buffer\n",stderr);

                  continue;

              }

              append(fs, fa);

              if (ferror(fs) != 0)

                  fprintf(stderr,"Error in reading file %s.\n",

                          file_src);

              if (ferror(fa) != 0)

                  fprintf(stderr,"Error in writing file %s.\n",

                          file_app);

              fclose(fs);

              files++;

              printf("File %s appended.\n", file_src);

              puts("Next file (empty line to quit):");

          }

      }

      printf("Done appending. %d files appended.\n", files);

       rewind(fa);

      printf("%s contents:\n", file_app);

      while ((ch = getc(fa)) != EOF)

          putchar(ch);

      puts("Done displaying.");

      fclose(fa);

  

      return 0;

  }

  

  void append(FILE *source, FILE *dest)

  {

      size_t bytes;

      static char temp[BUFSIZE]; // allocate once

  

      while ((bytes = fread(temp,sizeof(char),BUFSIZE,source)) > 0)

          fwrite(temp, sizeof (char), bytes, dest);

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there
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          else

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }   

 If  setvbuf()  is  unable to create the buffer, it returns a nonzero value, and the code then 
terminates the program. Similar coding establishes a 4,096-byte buffer for the file currently 
being copied. By using  NULL  as the second argument to  setvbuf() , we let that function allo-
cate storage for the buffer.  

 The program uses  s_gets()  instead of  scanf()  to get the file name because  scanf()  skips 
over whitespace and thus doesn’t detect an empty line. It uses  s_gets()  instead of a simple 
 fgets()  because the latter keeps the newline in the string.  

 This code prevents the program from trying to append a file to itself:  

  if (strcmp(file_src, file_app) == 0)

      fputs("Can't append file to itself\n",stderr);   

 The argument  file_app  represents the name of the destination file, and  file_src  represents 
the name of the file currently being processed.  

 The  append()  function does the copying. Instead of copying a byte at a time, it uses  fread()  
and  fwrite()  to copy 4,096 bytes at a time:  

  void append(FILE *source, FILE *dest)

  {

      size_t bytes;

      static char temp[BUFSIZE]; // allocate once

  

      while ((bytes = fread(temp,sizeof(char),BUFSIZE,source)) > 0)

          fwrite(temp, sizeof (char), bytes, dest);

  }   

 Because the file specified by  dest  is opened in the append mode, each source file is added to 
the end of the destination file, one after the other. Note that the  temp  array is static duration 
(meaning it’s allocated at compile time, not each time the  append()  function is called) and 
block scope (meaning that it is private to the function).  

 The example uses text-mode files;  by using the  "ab+"  and  "rb"  modes, it could handle binary 
files.   
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  Random Access with Binary I/O  

 Random access is most often used with binary files written using binary I/O, so let’s look at a 
short example. The program in  Listing   13.6    creates a file of  double  numbers and then lets you 
access the contents.  

  Listing 13.6   The  randbin.c  Program  

 /* randbin.c -- random access, binary i/o */

  #include <stdio.h>

  #include <stdlib.h>

  #define ARSIZE 1000

  

  int main()

  {

      double numbers[ARSIZE];

      double value;

      const char * file = "numbers.dat";

      int i;

      long pos;

      FILE *iofile;

  

      // create a set of double values

      for(i = 0; i < ARSIZE; i++)

          numbers[i] = 100.0 * i + 1.0 / (i + 1);

      // attempt to open file

      if ((iofile = fopen(file, "wb")) == NULL)

      {

          fprintf(stderr, "Could not open %s for output.\n", file);

          exit(EXIT_FAILURE);

      }

      // write array in binary format to file

      fwrite(numbers, sizeof (double), ARSIZE, iofile);

      fclose(iofile);

      if ((iofile = fopen(file, "rb")) == NULL)

      {

          fprintf(stderr,

                   "Could not open %s for random access.\n", file);

          exit(EXIT_FAILURE);

      }

      // read selected items from file

      printf("Enter an index in the range 0-%d.\n", ARSIZE - 1);

      while (scanf("%d", &i) == 1 && i >= 0 && i < ARSIZE)

      {

          pos = (long) i * sizeof(double); // calculate offset

          fseek(iofile, pos, SEEK_SET);    // go there

          fread(&value, sizeof (double), 1, iofile);
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          printf("The value there is %f.\n", value);

          printf("Next index (out of range to quit):\n");

      }

      // finish up

      fclose(iofile);

      puts("Bye!");

  

      return 0;

  }   

 First, the program creates an array and places some values into it. Then it creates a file called 
numbers.dat in binary mode and uses  fwrite()  to copy the array contents to the file. The 
64-bit pattern for each double value is copied from memory to the file. You can’t read the 
resulting binary file with a text editor because the values are not translated to strings. However, 
each value is stored in the file precisely as it was stored in memory, so there is no loss of preci-
sion. Furthermore, each value occupies exactly 64 bits of storage in the file, so it  is a simple 
matter to calculate the location of each value.  

 The second part of the program opens the file for reading and asks the user to enter the index 
for a value. Multiplying the index times the number of bytes per  double  yields the location in 
the file. The program then uses  fseek()  to go to that location and  fread()  to read the value 
there. Note that there are no format specifiers. Instead,  fread()  copies the 8 bytes, starting 
at that location, into the memory location indicated by  &value . Then the program can use 
 printf()  to display  value . Here is a sample run:  

  Enter an index in the range 0-999.

   500 

  The value there is 50000.001996.

  Next index (out of range to quit):

   900 

  The value there is 90000.001110.

  Next index (out of range to quit):

   0 

  The value there is 1.000000.

  Next index (out of range to quit):

  -1

  Bye!     

  Key Concepts  

 A C program views input as a stream of bytes; the source of this stream could be a file, an input 
device (such as a keyboard), or even the output of another program. Similarly, a C program 
views output as a stream of bytes; the destination could be a file, a video display, and so on.  
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 How C interprets an input stream or output stream of bytes depends on which input/output 
functions you use. A program can read and store the bytes unaltered, or it can interpret the 
bytes as characters, which, in turn, can be interpreted as ordinary text or as the text representa-
tion of numbers. Similarly, on output, the functions you use determine whether binary values 
are transferred unaltered or converted to text or textual representations of numbers. If you have 
numeric data that you want to save and recover with no loss of precision, use the binary mode 
and the  fread()  and  fwrite()  functions. If you’re  saving text information and want to create 
files that can be viewed with ordinary text editors, use the text mode and functions such as 
 getc()  and  fprintf() .  

 To access a file, you need to create a file pointer (type  FILE * ) and associate the pointer with 
a particular filename. Subsequent code then uses the pointer, not the filename, when dealing 
with the file.  

 It’s important to understand how C handles the end-of-file concept. Typically, a file-reading 
program uses a loop to read input until reaching the end of file. The C input functions don’t 
detect end-of-file until they attempt to read past the end. This means that testing for end-of-
file should occur immediately  after  an attempted read. You can use the two-file-input models 
labeled “good design” in the “End-of-File” section of this chapter as a guide.    

     Summary  

 Writing to and reading from files is essential for most C programs. Most C implementations 
offer both low-level I/O services and standard high-level I/O services for these purposes. Because 
the ANSI C library includes the standard I/O services but not the low-level services, the stan-
dard package is more portable.  

 The standard I/O package automatically creates input and output buffers to speed up data trans-
fer. The  fopen()  function opens a file for standard I/O and creates a data structure designed to 
hold information about the file and the buffer. The  fopen()  function returns a pointer to that 
data structure, and this pointer is used by other functions to identify the file to be processed. 
The  feof()  and  ferror()  functions report the reason an I/O operation failed.  

 C views input as a stream of bytes. If you use  fread() , C views the input as binary values to be 
placed into whichever storage location you indicate. If you use  fscanf() ,  getc() ,  fgets() , or 
any of the related functions, C views each byte as being a character code. The  fscanf()  and 
 scanf()  functions then attempt to translate the character code into other types, as indicated 
by the format specifiers. For example, the  %f  specifier would translate an input of  23  into a 
floating-point value, the  %d  specifier would translate the same input into an integer value, and 
the  %s  specifier would save the character input  as a string. The  getc()  and  fgets()  family of 
functions leave the input as character code and store it either in  char  variables as individual 
characters or in  char  arrays as strings. Similarly,  fwrite()  places binary data directly into 
the output stream, whereas the other output functions convert noncharacter data to character 
representations before placing it in the output stream.  
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 ANSI C provides two file-opening modes: binary and text. When a file is opened in binary 
mode, it can be read byte-for-byte. When a file is opened in text mode, its contents may be 
mapped from the system representation of text to the C representation. For Unix and Linux 
systems, the two modes are identical.  

 The input functions  getc() ,  fgets() ,  fscanf() , and  fread()  normally read a file sequen-
tially, starting at the beginning of the file. However, the  fseek()  and  ftell()  functions let a 
program move to an arbitrary position in a file, enabling random access. Both  fgetpos()  and 
 fsetpos()  extend similar capabilities to larger files. Random access works better in the binary 
mode than in the text mode.   

  Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    What’s wrong with this program?  

  int main(void)

  {

     int * fp;

     int k;

  

     fp = fopen("gelatin");

     for (k = 0; k < 30; k++)

         fputs(fp, "Nanette eats gelatin.");

     fclose("gelatin");

     return 0;

  }     

   2.    What would the following program do? (Assume it’s run in a command-line 
environment.)  

  #include <stdio.h>

  #include <stdlib.h>

  #include <ctype.h>

  int main(int argc, char *argv[])

  {

      int ch;

      FILE *fp;

  

      if (argc < 2)

        exit(EXIT_FAILURE);

      if ( (fp = fopen(argv[1], "r")) == NULL)

           exit(EXIT_FAILURE);

      while ( (ch= getc(fp)) != EOF )

          if( isdigit(ch) )
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              putchar(ch);

      fclose (fp);

  

      return 0;

  }     

   3.    Suppose you have these statements in a program:  

  #include <stdio.h>

  FILE * fp1,* fp2;

  char ch;

  

  fp1 = fopen("terky", "r");

  fp2 = fopen("jerky", "w");   

 Also, suppose that both files were opened successfully. Supply the missing arguments in 
the following function calls:  

    a.    ch = getc();    

   b.    fprintf( ,"%c\n", );    

   c.    putc( , );    

   d.    fclose(); /* close the terky file */       

   4.    Write a program that takes zero command-line arguments or one command-line 
argument. If there is one argument, it is interpreted as the name of a file. If there is no 
argument, the standard input ( stdin ) is to be used for input. Assume that the input 
consists entirely of floating-point numbers. Have the program calculate and report the 
arithmetic mean (the average) of the input numbers.    

   5.    Write a program that takes two command-line arguments. The first is a character, and 
the second is a filename. The program should print only those lines in the file containing 
the given character.  

  Note 

 Lines in a file are identified by a terminating  '\n' . Assume that no line is more than 256 char-
acters long. You might want to use  fgets() .     

   6.    What’s the difference between binary files and text files on the one hand versus binary 
streams and text streams on the other?    

   7.       a.   What is the difference between saving  8238201  by using 
 fprintf()  and saving it by using  fwrite() ?   
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   b.   What is the difference between saving the character  S  by using  putc()  and saving 
it by using  fwrite() ?      

   8.    What’s the difference among the following?  

  printf("Hello, %s\n", name);

  fprintf(stdout, "Hello, %s\n", name);

  fprintf(stderr, "Hello, %s\n", name);     

   9.    The  "a+" ,  "r+" , and  "w+"  modes all open files for both reading and writing. Which one 
is best suited for altering material already present in a file?      

  Programming Exercises  

    1.    Modify  Listing   13.1    so that it solicits the user to enter the filename and reads the user’s 
response instead of using command-line arguments.    

   2.    Write a file-copy program that takes the original filename and the copy file from the 
command line. Use standard I/O and the binary mode, if possible.    

   3.    Write a file copy program that prompts the user to enter the name of a text file to act as 
the source file and the name of an output file. The program should use the  toupper()  
function from  ctype.h  to convert all text to uppercase as it’s written to the output file. 
Use standard I/O and the text mode.    

   4.    Write a program that sequentially displays onscreen all the files listed in the command 
line. Use  argc  to control a loop.    

   5.    Modify the program in  Listing   13.5    so that it uses a command-line interface instead of an 
interactive interface.    

   6.    Programs using command-line arguments rely on the user’s memory of how to use them 
correctly. Rewrite the program in  Listing   13.2    so that, instead of using command-line 
arguments, it prompts the user for the required information.    

   7.    Write a program that opens two files. You can obtain the filenames either by using 
command-line arguments or by soliciting the user to enter them.  

    a.   Have the program print line 1 of the first file, line 1 of the second file, line 2 of the 
first file, line 2 of the second file, and so on, until the last line of the longer file (in 
terms of lines) is printed.   

   b.   Modify the program so that lines with the same line number are printed on the 
same line.      
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   8.    Write a program that takes as command-line arguments a character and zero or more 
filenames. If no arguments follow the character, have the program read the standard 
input. Otherwise, have it open each file in turn and report how many times the character 
appears in each file. The filename and the character itself should be reported along with 
the count. Include error-checking to see whether the number of arguments is correct and 
whether the files can be opened. If a file can’t be opened, have the program report that 
fact and go on to the next file.    

   9.    Modify the program in  Listing   13.3    so that each word is numbered according to the order 
in which it was added to the list, starting with 1. Make sure that, when the program is 
run a second time, new word numbering resumes where the previous numbering left off.    

   10.    Write a program that opens a text file whose name is obtained interactively. Set up a 
loop that asks the user to enter a file position. The program then should print the part of 
the file starting at that position and proceed to the next newline character. Let negative 
or nonnumeric input terminate the user-input loop.    

   11.    Write a program that takes two command-line arguments. The first is a string; the 
second is the name of a file. The program should then search the file, printing all lines 
containing the string. Because this task is line oriented rather than character oriented, 
use  fgets()  instead of  getc() . Use the standard C library function  strstr()  (briefly 
described in exercise 7 of  Chapter   11   ) to search each line for the string. Assume no lines 
are longer than 255 characters.    

   12.    Create a text file consisting of 20 rows of 30 integers. The integers should be in the range 
0–9 and be separated by spaces. The file is a digital representation of a picture, with 
the values  0  through  9  representing increasing levels of darkness. Write a program that 
reads the contents of the file into a 20-by-30 array of  int s. In a crude approach toward 
converting this digital representation to a picture, have the program use the values 
in this array to initialize a 20-by-31 array of  char s, with a  0  value corresponding to a 
space character, a  1  value to the period character,  and so on, with each larger number 
represented by a character that occupies more space. For example, you might use  #  to 
represent 9. The last character (the 31st) in each row should be a null character, making 
it an array of 20 strings. Have the program display the resulting picture (that is, print the 
strings) and also store the result in a text file. For example, suppose you start with this 
data:  

  0 0 9 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 2 0 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 9 0 0 0 0 0 0 0 5 8 9 9 8 5 5 2 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 5 8 1 9 8 5 4 5 2 0 0 0 0 0 0 0 0 0

  0 0 0 0 9 0 0 0 0 0 0 0 5  8 9 9 8 5 0 4 5 2 0 0 0 0 0 0 0 0

  0 0 9 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 4 5 2 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 1 8 5 0 0 0 4 5 2 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 4 5 2 0  0 0 0 0

  5 5 5 5 5 5 5 5 5 5 5 5 5 8 9 9 8 5 5 5 5 5 5 5 5 5 5 5 5 5
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  8 8 8 8 8 8 8 8 8 8 8 8 5 8 9 9 8 5 8 8 8 8 8 8 8 8 8 8 8 8

  9 9 9 9 0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3 9 9 9 9 9 9 9

  8 8 8 8 8 8 8 8 8 8  8 8 5 8 9 9 8 5 8 8 8 8 8 8 8 8 8 8 8 8

  5 5 5 5 5 5 5 5 5 5 5 5 5 8 9 9 8 5 5 5 5 5 5 5 5 5 5 5 5 5

  0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 6  6 0 0 0 0 0 0

  0 0 0 0 2 2 0 0 0 0 0 0 5 8 9 9 8 5 0 0 5 6 0 0 6 5 0 0 0 0

  0 0 0 0 3 3 0 0 0 0 0 0 5 8 9 9 8 5 0 5 6 1 1 1 1 6 5 0 0 0

  0 0 0 0 4 4 0 0 0 0 0 0 5 8 9 9 8 5 0 0 5 6 0 0 6 5 0 0 0 0

  0 0 0 0 5 5 0  0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 6 6 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 0 0 0 0 0 0 0 0

  0 0 0 0 0 0 0 0 0 0 0 0 5 8 9 9 8 5 0 0 0 0 0 0 0 0 0 0 0 0   

 For one particular choice of output characters, the output looks like this:  

    #         *%##%*'

      #       *%##%**'

              *%.#%*~*'

      #       *%##%* ~*'

    #         *%##%*  ~*'

              *%#.%*   ~*'

              *%##%*    ~*'

  *************%##%*************

  %%%%%%%%%%%%*%##%*%%%%%%%%%%%%

  #### #################:#######

  %%%%%%%%%%%%*%##%*%%%%%%%%%%%%

  *************%##%*************

              *%##%*

              *%##%*    ==

      ''      *%##%*  *=  =*

      ::      *%##%* *=....=*

      ~~      *%##%*  *=  =*

      **      *%##%*    ==

              *%##%*

              *%##%*     

   13.    Do Programming Exercise 12, but use variable-length arrays (VLAs) instead of standard 
arrays.    

   14.    Digital images, particularly those radioed back from spacecraft, may have glitches. Add 
a de-glitching function to programming exercise 12. It should compare each value to its 
immediate neighbors to the left and right, above and below. If the value differs by more 
than 1 from each of its neighbors, replace the value with the average of the neighboring 
values. You should round the average to the nearest integer value. Note that the points 
along the boundaries have fewer than four neighbors, so they require special handling.        



ptg11524036

  14 
 Structures and Other Data 

Forms  

    You will learn about the following in this chapter:  

    ■   Keywords:  

  struct ,  union ,  typedef    

   ■   Operators:  

  . ->    

   ■   What C structures are and how to create structure templates and variables   

   ■   How to access the members of a structure and how to write functions to handle 
structures   

   ■   C’s  typedef  facility   

   ■   Unions and pointers to functions    

 One of the most important steps in designing a program is choosing a good way to represent 
the data. In many cases, a simple variable or even an array is not enough. C takes your ability 
to represent data a step further with the C  structure variables . The C structure is flexible enough 
in its basic form to represent a diversity of data, and it enables you to invent new forms. If you 
are familiar with Pascal records, you should be comfortable with structures. If not, this chapter 
will introduce you to C structures. Let’s study a concrete example to  see why a C structure 
might be needed and how to create and use one.   

     Sample Problem: Creating an Inventory of Books  

 Gwen Glenn wants to print an inventory of her books. She would like to print a variety of 
information for each book: title, author, publisher, copyright date, the number of pages, the 
number of copies, and the dollar value. Some of these items, such as the titles, can be stored 
in an array of strings. Other items require an array of  int s or an array of  float s. With seven 
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different arrays, keeping track of everything can get complicated, especially if Gwen wants to 
generate several complete lists—one sorted by title, one sorted by author, one sorted by value, 
and so  on. A better solution is to use one array, in which each member contains all the infor-
mation about one book.  

 Gwen needs a data form, then, that can contain both strings and numbers and somehow keep 
the information separate. The C structure meets this need. To see how a structure is set up and 
how it works, we’ll start with a limited example. To simplify the problem, we will impose two 
restrictions. First, we’ll include only title, author, and current market value. Second, we’ll limit 
the inventory to one book. Don’t worry about this limitation, however, because we’ll extend 
the program soon.  

 Look at the program in  Listing   14.1    and its output. Then read the explanation of the main 
points.  

  Listing 14.1   The  book.c  Program  

 //* book.c -- one-book inventory */

  #include <stdio.h>

  #include <string.h>

  char * s_gets(char * st, int n);

  #define MAXTITL  41      /* maximum length of title + 1         */

  #define MAXAUTL  31      /* maximum length of author's name + 1 */

  

  struct book {            /* structure template: tag is book     */

      char title[MAXTITL];

      char author[MAXAUTL];

      float value;

  };                       /* end of structure template           */

  

  int main(void)

  {

      struct book library; /* declare library as a book variable  */

  

      printf("Please enter the book title.\n");

      s_gets(library.title, MAXTITL); /* access to the title portion         */

      printf("Now enter the author.\n");

      s_gets(library.author, MAXAUTL);

      printf("Now enter the value.\n");

      scanf("%f", &library.value);

      printf("%s by %s: $%.2f\n",library.title,

             library.author, library.value);

       printf("%s: \"%s\" ($%.2f)\n", library.author,

             library.title, library.value);

      printf("Done.\n");
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      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 As in earlier chapters, we use  s_gets()  to strip the newline character that  fgets()  usually 
stores in a string. Here is a sample run:  

  Please enter the book title.

   Chicken of the Andes 

  Now enter the author.

   Disma Lapoult 

  Now enter the value.

   29.99 

  Chicken of the Andes by Disma Lapoult: $29.99

  Disma Lapoult: "Chicken of the Andes" ($29.99)

  Done.   

 The structure created in  Listing   14.1    has three parts (called members or fields)—one to store the 
title, one to store the author, and one to store the value. These are the three main skills you 
must acquire:  

    ■   Setting up a format or layout for a structure   

   ■   Declaring a variable to fit that layout   

   ■   Gaining access to the individual components of a structure variable     
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  Setting Up the Structure Declaration  

 A  structure declaration  is the master plan that describes how a structure is put together. The 
declaration looks like this:  

  struct book {

      char title[MAXTITL];

      char author[MAXAUTL];

      float value;

  };   

 This declaration describes a structure made up of two character arrays and one  float  vari-
able. It does not create an actual data object, but it describes what constitutes such an object. 
(Occasionally, we’ll refer to a structure declaration as a  template  because it outlines how data 
will be stored. If you’ve heard of templates in C++, that’s a different, more ambitious use of the 
word.) Let’s look at the details. First comes the keyword  struct . It identifies what comes next 
as a structure. Next comes an optional  tag —the word  book —that is a shorthand label you can 
use to refer to this structure. Therefore,  later we have this declaration:  

  struct book library;   

 It declares  library  to be a structure variable using the  book  structure design.  

 Next in the structure declaration, the list of structure members are enclosed in a pair of braces. 
Each member is described by its own declaration, complete with a terminating semicolon. For 
example, the  title  portion is a  char  array with  MAXTITL  elements. A member can be any C 
data type—and that includes other structures!  

 A semicolon after the closing brace ends the definition of the structure design. You can place 
this declaration outside any function (externally), as we have done, or inside a function defini-
tion. If the declaration is placed inside a function, its tag can be used only inside that function. 
If the declaration is external, it is available to all the functions following the declaration in the 
file. For example, in a second function, you could define  

  struct book dickens;   

 and that function would have a variable,  dickens , that follows the form of the  book  design.  

 The tag name is optional, but you must use one when you set up structures as we did, with the 
structure design defined one place and the actual variables defined elsewhere. We will return to 
this point soon, after we look at defining structure variables.   

  Defining a Structure Variable  

 The word  structure  is used in two senses. One is the sense “structure plan,” which is what we 
just discussed. The structure plan tells the compiler  how  to represent the data, but it doesn’t 
make the computer  allocate  space for the data. The next step is to create a  structure variable , the 



ptg11524036

605Defining a Structure Variable

second sense of the word. The line in the program that causes a structure variable to be created 
is this:  

  struct book library;   

 Seeing this instruction, the compiler creates the variable  library . Using the  book  template, 
the compiler allots space for a  char  array of  MAXTITL  elements, for a  char  array of  MAXAUTL  
elements, and for a  float  variable. This storage is lumped together under the single name 
 library  (see  Figure   14.1   ). (The next section explains how to unlump it as needed.)  

 In declaring a structure variable,  struct book  plays the same role that  int  or  float  does in 
simpler declarations. For example, you could declare two variables of the  struct book  type or 
even a pointer to that kind of structure:  

  struct book doyle, panshin, * ptbook;   

 The structure variables  doyle  and  panshin  would each have the parts  title ,  author , and 
 value . The pointer  ptbook  could point to  doyle ,  panshin , or any other  book  structure. In 
essence, the  book  structure declaration creates a new type called  struct book .  

 number

code[0] – – – – – – – – code[3]

struct stuff {

int number;

char code[4];

float cost;

};

costcode[4]

 Figure 14.1   Memory allocation for a structure.         

 As far as the computer is concerned, the declaration  

  struct book library;   

 is short for  

  struct book {

     char title[MAXTITL];

     char author[AXAUTL];

     float value;

  }  library;    /* follow declaration with variable name */   
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 In other words, the process of declaring a structure and the process of defining a structure vari-
able can be combined into one step. Combining the declaration and the variable definitions, as 
shown here, is the one circumstance in which a tag need not be used:  

  struct {         /* no tag */

      char title[MAXTITL];

      char author[MAXAUTL];

      float value;

  } library;   

 Use the tag form, however, if you plan to use a structure template more than once, or you can 
use the  typedef  alternative coming up later in this chapter.  

 There is one aspect of defining a structure variable that did not come up in this example: 
initialization. We’ll look at that now.  

  Initializing a Structure  

 You’ve seen how to initialize variables and arrays:  

  int count = 0;

  int fibo[7] = {0,1,1,2,3,5,8};   

 Can a structure variable be initialized, too? Yes, it can. To initialize a structure (any storage 
class for ANSI C and later, but excluding automatic variables for pre-ANSI C), you use a syntax 
similar to that used for arrays:  

  struct book library = {

      "The Pious Pirate and the Devious Damsel",

      "Renee Vivotte",

      1.95

  };   

 In short, you use a comma-separated list of initializers enclosed in braces. Each initializer 
should match the type of the structure member being initialized. Therefore, you can initialize 
the  title  member to a string and the  value  member to a number. To make the associations 
more obvious, we gave each member its own line of initialization, but all the compiler needs 
are commas to separate one member’s initialization from the next.  

  Note   Structure Initialization and Storage Class Duration  

  Chapter   12   , “Storage Classes, Linkage, and Memory Management,” mentioned that if you 
initialize a variable with static storage duration (such as static external linkage, static internal 
linkage, or static with no linkage), you have to use constant values. This applies to structures, 
too. If you are initializing a structure with static storage duration, the values in the initializer list 
must be constant expressions. If the storage duration is automatic, the values in the list need 
not be constants.    
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  Gaining Access to Structure Members  

 A structure is like a “superarray,” in which one element can be  char , the next element  float , 
and the next an  int  array. You can access the individual elements of an array by using a 
subscript. How do you access individual members of a structure? Use a dot ( . ), the structure 
member operator. For example,  library.value  is the  value  portion of  library . You can 
use  library.value  exactly as you would use any other  float  variable. Similarly, you can use 
 library.title  exactly as you would use a  char  array. Therefore, the program uses expressions 
such as  

  s_gets(library.title, MAXTITL);   

 and  

  scanf("%f", &library.value);   

 In essence,  .title ,  .author , and  .value  play the role of subscripts for a  book  structure.  

 Note that although  library  is a structure,  library.value  is a  float  type and is used like any 
other  float  type. For example,  scanf("%f",...)  requires the address of a  float  location, 
and that is what  &library.float  is. The dot has higher precedence than the  &  here, so the 
expression is the same as  &(library.float) .  

 If you had a second structure variable of the same type, you would use the same method:  

  struct book bill, newt;

  

  s_gets(bill.title, MAXTITL);

  s_gets(newt.title, MAXTITL);   

 The  .title  refers to the first member of the  book  structure. Notice how the initial program 
prints the contents of the structure  library  in two different formats. This illustrates the 
freedom you have in using the members of a structure.   

  Initializers for Structures  

 C99 and C11 provide designated initializers for structures. The syntax is similar to that for 
designated initializers for arrays. However, designated initializers for structures use the dot 
operator and member names instead of brackets and indices to identify particular elements. For 
example, to initialize just the  value  member of a book structure, you would do this:  

  struct book surprise = { .value = 10.99};   

 You can use designated initializers in any order:  

  struct book gift = { .value = 25.99,

                       .author = "James Broadfool",

                       .title = "Rue for the Toad"};   
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 Just as with arrays, a regular initializer following a designated initializer provides a value for the 
member following the designated member. Also, the last value supplied for a particular member 
is the value it gets. For example, consider this declaration:  

  struct book gift= { .value = 18.90,

                      .author = "Philionna Pestle",

                       0.25};   

 The value  0.25  is assigned to the  value  member because it is the one immediately listed after 
the  author  member in the structure declaration. The new value of  0.25  supersedes the value of 
 18.90  provided earlier. Now that you have these basics in hand, you’re ready to expand your 
horizons and look at several ramifications of structures. You’ll see arrays of structures, structures 
of structures, pointers to structures, and functions that process structures.    

  Arrays of Structures  

 Let’s extend our book program to handle more books. Clearly, each book can be described by 
one structure variable of the  book  type. To describe two books, you need to use two such vari-
ables, and so on. To handle several books, you can use an array of such structures, and that is 
what we have created in the next program, shown in  Listing   14.2   . (If you’re using Borland 
C/C++, see section “Borland C and Floating Point” later in the chapter.)      

  Structures and Memory  

 The  manybook.c  program uses an array of 100 structures. Because the array is an auto-
matic storage class object, the information is typically placed on the stack. Such a large array 
requires a good-sized chunk of memory, which can cause problems. If you get a runtime error, 
perhaps complaining about the stack size or stack overflow, your compiler probably uses a 
default size for the stack that is too small for this example. To fix things, you can use the com-
piler options to set the stack size to 10,000 to accommodate the array of structures, or you 
can make the array static  or external (so that it isn’t placed in the stack), or you can reduce 
the array size to 16. Why didn’t we just make the stack small to begin with? Because you 
should know about the potential stack size problem so that you can cope with it if you run into 
it on your own.   

  Listing 14.2   The   manybook.c  Program  

 /* manybook.c -- multiple book inventory */

  #include <stdio.h>

  #include <string.h>

  char * s_gets(char * st, int n);

  #define MAXTITL   40

  #define MAXAUTL   40

  #define MAXBKS   100              /* maximum number of books  */
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  struct book {                     /* set up book template     */

      char title[MAXTITL];

      char author[MAXAUTL];

      float value;

  };

  

  int main(void)

  {

      struct book library[MAXBKS]; /* array of book structures */

      int count = 0;

      int index;

  

      printf("Please enter the book title.\n");

      printf("Press [enter] at the start of a line to stop.\n");

      while (count < MAXBKS && s_gets(library[count].title, MAXTITL) != NULL

             && library[count].title[0] != '\0')

      {

          printf("Now enter the author.\n");

          s_gets(library[count].author, MAXAUTL);

          printf("Now enter the value.\n");

          scanf("%f", &library[count++].value);

          while (getchar()  != '\n')

              continue;          /* clear input line         */

          if (count < MAXBKS)

              printf("Enter the next title.\n");

      }

  

      if (count > 0)

      {

          printf("Here is the list of your books:\n");

          for (index = 0; index < count; index++)

              printf("%s by %s: $%.2f\n", library[index].title,

                     library[index].author, library[index].value);

      }

      else

          printf("No books? Too bad.\n");

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)
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      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while  (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

  Borland C and Floating Point  

 Older Borland C compilers attempt to make programs more compact by using a small version 
of  scanf()  if the program doesn’t use floating-point values. However, the compilers (through 
Borland C/C++ 3.1 for DOS, but not Borland C/C++ 4.0) are fooled if the only floating-point 
values are in an array of structures, as in the case for  Listing   14.2   . As a result, you get a mes-
sage like this:  

  scanf : floating point formats not linked

  Abnormal program termination   

 One workaround is adding this code to your program:  

  #include <math.h>

  double dummy = sin(0.0);   

 This code forces the compiler to load the floating-point version of  scanf() .   

 Here is a sample program run:  

  Please enter the book title.

  Press [enter] at the start of a line to stop.

   My Life as a Budgie 

  Now enter the author.

   Mack Zackles 

  Now enter the value.

   12.95 

  Enter the next title.

       ...more entries... 

  Here is the list of your books:

  My Life as a Budgie by Mack Zackles: $12.95

  Thought and Unthought Rethought by Kindra Schlagmeyer: $43.50

  Concerto for Financial Instruments by Filmore Walletz: $49.99

  The CEO Power Diet by Buster Downsize: $19.25

  C++ Primer Plus by Stephen Prata: $59.99

  Fact Avoidance: Perception as Reality by Polly Bull: $19.97

  Coping with Coping by Dr. Rubin Thonkwacker: $0.02
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  Diaphanous Frivolity by Neda McFey: $29.99

  Murder Wore a Bikini by Mickey Splats: $18.95

  A History of  Buvania, Volume 8, by Prince Nikoli Buvan: $50.04

  Mastering Your Digital Watch, 5nd Edition, by Miklos Mysz: $28.95

  A Foregone Confusion by Phalty Reasoner: $5.99

  Outsourcing Government: Selection vs. Election by Ima Pundit: $33.33   

 First, we’ll describe how to declare arrays of structures and how to access individual members. 
Then we will highlight two aspects of the program.  

  Declaring an Array of Structures  

 Declaring an array of structures is like declaring any other kind of array. Here’s an example:  

  struct book library[MAXBKS];   

 This declares  library  to be an array with  MAXBKS  elements. Each element of this array is a 
structure of  book  type. Thus,  library[0]  is one  book  structure,  library[1]  is a second  book  
structure, and so on.  Figure   14.2    may help you visualize this. The name  library  itself is not a 
structure name; it is the name of the array whose elements are type  struct book  structures.  

 

libry[0]

libry[1]

libry[2]

dot operator

libry[99]

value

libry[0].value

author

libry[0].author

title

libry[0].title

libry[1].valuelibry[1].authorlibry[1].title

libry[2].authorlibry[2].title

libry[99].title

char array[40]

declaration: struct book libry[MAXBKS]

char array[40] float type

libry[2].value

libry[99].author libry[99].value

 Figure 14.2   An array of structures.          
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  Identifying Members of an Array of Structures  

 To identify members of an array of structures, you apply the same rule used for individual 
structures: Follow the structure name with the dot operator and then with the member name. 
Here’s an example:  

  library[0].value   /* the value associated with the first array element */

  library[4].title   /* the title associated with the fifth array element */   

 Note that the array subscript is attached to  library , not to the end of the name:  

  library.value[2]    // WRONG

  library[2].value    // RIGHT   

 The reason  library[2].value  is used is that  library[2]  is the structure variable name, just 
as  library[1]  is another structure variable name.  

 By the way, what do you suppose the following represents?  

  library[2].title[4]   

 It’s the fifth character in the title (the  title[4]  part) of the book described by the third struc-
ture (the  library[2]  part). In the example, it would be the character  B . This example points 
out that subscripts found to the right of the dot operator apply to individual members, but 
subscripts to the left of the dot operator apply to arrays of structures.  

 In summary, we have this sequence:  

  library             // an array of book structures

  library[2]          // an array element, hence a book structure

  library[2].title    // a char array (the title member of library[2])

  library[2].title[4] // a char in the title member array   

 Let’s finish the program now.   

  Program Discussion  

 The main change from the first program is that we inserted a loop to read multiple entries. The 
loop begins with this  while  condition:  

  while (count < MAXBKS && s_gets(library[count].title, MAXTITL) != NULL

                        && library[count].title[0] != '\0')   

 The expression  s_gets(library[count].title, MAXTITL)  reads a string for the title of a 
book; the expression evaluates to  NULL  if  s_gets()  attempts to read past the end-of-file. The 
expression  library[count].title[0] != '\0'  tests whether the first character in the string 
is the null character (that is, if the string is empty). If the user presses the Enter key at the 
beginning of a line, the empty string is transmitted, and the loop ends. We also have a check 
to keep the number of books entered from exceeding the array’s size limit.  
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 Then the program has these lines:  

  while (getchar() != '\n')

      continue;              /* clear input line */   

 As you might recall from earlier chapters, this code compensates for the  scanf()  function 
ignoring spaces and newlines. When you respond to the request for the book’s value, you type 
something like this:  

  12.50[enter]   

 This statement transmits the following sequence of characters:  

  12.50\n   

 The  scanf()  function collects the  1 , the  2 , the  . , the  5 , and the  0 , but it leaves the  \n  sitting 
there, awaiting whatever read statement comes next. If the precautionary code were missing, 
the next read statement,  s_gets(library[count].title, MAXTITL) , would read the left-
over newline character as an empty line, and the program would think you had sent a stop 
signal. The code we inserted will eat up characters until it finds and disposes of the newline. It 
doesn’t do anything with the characters except remove them from the input queue. This gives 
 s_gets()  a fresh start for the next input.  

 Now let’s return to exploring structures.    

  Nested Structures  

 Sometimes it is convenient for one structure to contain, or  nest , another. For example, Shalala 
Pirosky is building a structure of information about her friends. One member of the structure, 
naturally enough, is the friend’s name. The name, however, can be represented by a struc-
ture itself, with separate entries for first and last name members.  Listing   14.3    is a condensed 
example of Shalala’s work.  

  Listing 14.3   The  friend.c  Program  

 // friend.c -- example of a nested structure

  #include <stdio.h>

  #define LEN 20

  const char * msgs[5] =

  {

      "    Thank you for the wonderful evening, ",

      "You certainly prove that a ",

      "is a special kind of guy. We must get together",

      "over a delicious ",

      " and have a few laughs"

  };

  

  struct names {                     // first structure
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      char first[LEN];

      char last[LEN];

  };

  

  struct guy {                       // second structure

      struct names handle;           // nested structure

      char favfood[LEN];

      char job[LEN];

      float income;

  };

  

  int main(void)

  {

      struct guy fellow = {   // initialize a variable

          { "Ewen", "Villard" },

          "grilled salmon",

          "personality coach",

           68112.00

      };

  

      printf("Dear %s, \n\n", fellow.handle.first);

      printf("%s%s.\n",  msgs[0], fellow.handle.first);

      printf("%s%s\n", msgs[1], fellow.job);

      printf("%s\n", msgs[2]);

      printf("%s%s%s", msgs[3], fellow.favfood, msgs[4]);

      if (fellow.income > 150000.0)

          puts("!!");

      else if (fellow.income > 75000.0)

          puts("!");

      else

          puts(".");

      printf("\n%40s%s\n", " ", "See you soon,");

      printf("%40s%s\n", " ", "Shalala");

  

      return 0;

  }   

 Here is the output:  

  Dear Ewen,

  

      Thank you for the wonderful evening, Ewen.

  You certainly prove that a personality coach

  is a special kind of guy. We must get together

  over a delicious grilled salmon and have a few laughs.
  

                                          See you soon,

                                          Shalala   
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 First, note how the nested structure is set up in the structure declaration. It is simply declared, 
just as an  int  variable would be:  

  struct names handle;   

 This declaration says that  handle  is a variable of the  struct names  type. Of course, the file 
should also include the declaration for the  names  structure.  

 Second, note how you gain access to a member of a nested structure; you merely use the dot 
operator twice:  

  printf("Hello, %s!\n", fellow.handle.first);   

 The construction is interpreted this way, going from left to right:  

  (fellow.handle).first   

 That is, find  fellow , then find the  handle  member of  fellow , and then find the  first  
member of that.   

  Pointers to Structures  

 Pointer lovers will be glad to know that you can have pointers to structures. There are at least 
four reasons why having pointers to structures is a good idea. First, just as pointers to arrays 
are easier to manipulate (in a sorting problem, say) than the arrays themselves, pointers to 
structures are often easier to manipulate than structures themselves. Second, in some older 
implementations, a structure can’t be passed as an argument to a function, but a pointer to a 
structure can. Third, even if you can pass a structure as an argument, passing a pointer often is 
more efficient.  Fourth, many wondrous data representations use structures containing pointers 
to other structures.  

 The next short example (see  Listing   14.4   ) shows how to define a pointer to a structure and how 
to use it to access the members of a structure.  

  Listing 14.4   The  friends.c  Program  

 /* friends.c -- uses pointer to a structure */

  #include <stdio.h>

  #define LEN 20

  

  struct names {

      char first[LEN];

      char last[LEN];

  };
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  struct guy {

      struct names handle;

      char favfood[LEN];

      char job[LEN];

      float income;

  };

  

  int main(void)

  {

      struct guy fellow[2] = {

          {{ "Ewen", "Villard"},

           "grilled salmon",

           "personality coach",

           68112.00

          },

          {{"Rodney", "Swillbelly"},

           "tripe",

           "tabloid editor",

           232400.00

          }

      };

      struct guy * him;    /* here is a pointer to a structure */

  

      printf("address #1: %p #2: %p\n", &fellow[0], &fellow[1]);

      him = &fellow[0];    /* tell the pointer where to point  */

      printf("pointer #1: %p #2: %p\n", him, him + 1);

      printf("him->income is $%.2f: (*him).income is $%.2f\n",

           him->income, (*him).income);

       him++;               /* point to the next structure      */

      printf("him->favfood is %s:  him->handle.last is %s\n",

           him->favfood, him->handle.last);

  

      return 0;

  }   

 The output, please:  

  address #1: 0x7fff5fbff820 #2: 0x7fff5fbff874

  pointer #1: 0x7fff5fbff820 #2: 0x7fff5fbff874

  him->income is $68112.00: (*him).income is $68112.00

  him->favfood is tripe:  him->handle.last is Swillbelly   

 Let’s look first at how we created a pointer to a  guy  structure. Then we’ll explain how to specify 
individual structure members by using the pointer.  
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  Declaring and Initializing a Structure Pointer  

 Declaration is as easy as can be:  

  struct guy * him;   

 First is the keyword  struct , then the structure tag  guy , and then an asterisk ( * ) followed by 
the pointer name. The syntax is the same as for the other pointer declarations you have seen.  

 This declaration does not create a new structure, but the pointer  him  can now be made to point 
to any existing structure of the  guy  type. For instance, if  barney  is a structure of the  guy  type, 
you could do this:  

  him = &barney;   

 Unlike the case for arrays, the name of a structure is not the address of the structure; you need 
to use the  &  operator.  

 In the example,  fellow  is an array of structures, which means that  fellow[0]  is a structure, so 
the code initializes  him  by making it point to  fellow[0] :  

  him = &fellow[0];   

 The first two output lines show the success of this assignment. Comparing the two lines, you 
see that  him  points to  fellow[0] , and  him + 1  points to  fellow[1] . Note that adding  1  to 
 him  adds 84 to the address. In hexadecimal, 874 − 820 = 54 (hex) = 84 (base 10) because each 
 guy  structure occupies 84 bytes of memory:  names.first  is 20,  names.last  is 20,  favfood  is 
20,  job  is 20, and  income  is 4, the size of  float  on our system. Incidentally, on some systems, 
the size of a structure may be greater than the sum of its parts. That’s because a system’s align-
ment requirements for data may  cause gaps. For example, a system may have to place each 
member at an even address or at an address that is a multiple of four. Such structures might 
end up with unused “holes” in them.   

  Member Access by Pointer  

 The pointer  him  is pointing to the structure  fellow[0] . How can you use  him  to get a value of 
a member of  fellow[0] ? The third output line shows two methods.  

 The first method, and the most common, uses a new operator,  -> . This operator is formed by 
typing a hyphen ( - ) followed by the greater-than symbol ( > ). We have these relationships:  

  him->income is barney.income if him == &barney

  him->income is fellow[0].income if him == &fellow[0]   

 In other words, a structure pointer followed by the  ->  operator works the same way as a struc-
ture name followed by the  .  (dot) operator. (You can’t properly say  him.income  because  him  is 
not a structure name.)  

 It is important to note that  him  is a pointer, but  him->income  is a member of the pointed-to 
structure. So in this case,  him->income  is a  float  variable.  
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 The second method for specifying the value of a structure member follows from this sequence: 
If  him == &fellow[0] , then  *him == fellow[0]  because  &  and  *  are reciprocal operators. 
Hence, by substitution, you have the following:  

  fellow[0].income == (*him).income   

 The parentheses are required because the  .  operator has higher precedence than  * .  

 In summary, if  him  is a pointer to a type  guy  structure named  barney , the following are all 
equivalent:  

  barney.income == (*him).income == him->income   // assuming him == &barney   

 Now let’s look at the interaction between structures and functions.    

  Telling Functions About Structures  

 Recall that function arguments pass values to the function. Each value is a number—perhaps 
 int , perhaps  float , perhaps ASCII character code, or perhaps an address. A structure is a bit 
more complicated than a single value, so it is not surprising that ancient C implementations 
do not allow a structure to be used as an argument for a function. This limitation was removed 
in newer implementations, and ANSI C allows structures to be used as arguments. Therefore, 
modern implementations give you a choice between passing structures as arguments and 
passing pointers to structures as arguments—or if you are concerned with  just part of a struc-
ture, you can pass structure members as arguments. We’ll examine all three methods, begin-
ning with passing structure members as arguments.  

  Passing Structure Members  

 As long as a structure member is a data type with a single value (that is, an  int  or one of its 
relatives, a  char , a  float , a  double , or a pointer), it can be passed as a function argument to 
a function that accepts that particular type. The fledgling financial analysis program in  Listing 
  14.5   , which adds the client’s bank account to his or her savings and loan account, illustrates 
this point.  

  Listing 14.5   The  funds1.c  Program  

 /* funds1.c -- passing structure members as arguments */

  #include <stdio.h>

  #define FUNDLEN 50

  

  struct funds {

      char   bank[FUNDLEN];

      double bankfund;

      char   save[FUNDLEN];

      double savefund;

  };
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  double sum(double, double);

  

  int main(void)

  {

      struct funds stan = {

          "Garlic-Melon Bank",

          4032.27,

          "Lucky's Savings and Loan",

          8543.94

      };

  

      printf("Stan has a total of $%.2f.\n",

             sum(stan.bankfund, stan.savefund) );

      return 0;

  }

  

  /* adds two double numbers */

  double sum(double x, double y)

  {

      return(x + y);

  }   

 Here is the result of running this program:  

  Stan has a total of $12576.21.   

 Ah, it works. Notice that the function  sum()  neither knows nor cares whether the actual argu-
ments are members of a structure; it requires only that they be type  double .  

 Of course, if you want a called function to affect the value of a member in the calling function, 
you can transmit the address of the member:  

  modify(&stan.bankfund);   

 This would be a function that alters Stan’s bank account.  

 The next approach to telling a function about a structure involves letting the called function 
know that it is dealing with a structure.   

  Using the Structure Address  

 We will solve the same problem as before, but this time we will use the address of the structure 
as an argument. Because the function has to work with the  funds  structure, it, too, has to make 
use of the  funds  declaration. See  Listing   14.6    for the program.  
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  Listing 14.6   The  funds2.c  Program  

 /* funds2.c -- passing a pointer to a structure */

  #include <stdio.h>

  #define FUNDLEN 50

  

  struct funds {

      char   bank[FUNDLEN];

      double bankfund;

      char   save[FUNDLEN];

      double savefund;

  };

  

  double sum(const struct funds *);  /* argument is a pointer */

  

  int main(void)

  {

      struct funds stan = {

          "Garlic-Melon Bank",

          4032.27,

          "Lucky's Savings and Loan",

          8543.94

      };

  

      printf("Stan has a total of $%.2f.\n", sum(&stan));

  

      return 0;

  }

  

  double sum(const struct funds * money)

  {

      return(money->bankfund + money->savefund);

  }   

 This, too, produces the following output:  

  Stan has a total of $12576.21.   

 The  sum()  function uses a pointer ( money ) to a  funds  structure for its single argument. Passing 
the address  &stan  to the function causes the pointer  money  to point to the structure  stan . 
Then the  ->  operator is used to gain the values of  stan.bankfund  and  stan.savefund . 
Because the function does not alter the contents of the pointed-to value, it declares  money  as a 
pointer-to- const .  

 This function also has access to the institution names, although it doesn’t use them. Note that 
you must use the  &  operator to get the structure’s address. Unlike the array name, the structure 
name alone is not a synonym for its address.   



ptg11524036

621Telling Functions About Structures

  Passing a Structure as an Argument  

 For compilers that permit passing structures as arguments, the last example can be rewritten as 
shown in  Listing   14.7   .  

  Listing 14.7   The  funds3.c  Program  

 /* funds3.c -- passing a structure */

  #include <stdio.h>

  #define FUNDLEN 50

  

  struct funds {

      char   bank[FUNDLEN];

      double bankfund;

      char   save[FUNDLEN];

      double savefund;

  };

  

  double sum(struct funds moolah);  /* argument is a structure */

  

  int main(void)

  {

      struct funds stan = {

          "Garlic-Melon Bank",

          4032.27,

          "Lucky's Savings and Loan",

          8543.94

      };

  

      printf("Stan has a total of $%.2f.\n", sum(stan));

  

      return 0;

  }

  

  double sum(struct funds moolah)

  {

      return(moolah.bankfund + moolah.savefund);

  }   

 Again, the output is this:  

  Stan has a total of $12576.21.   

 We replaced  money , which was a pointer to  struct funds , with  moolah , which is a  struct 
funds  variable. When  sum()  is called, an automatic variable called  moolah  is created according 
to the  funds  template. The members of this structure are then initialized to be copies of the 
values held in the corresponding members of the structure  stan . Therefore, the computations 
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are done by using a copy of the original structure; whereas, the preceding program (the one 
using a pointer) used the original structure. Because  moolah  is a structure, the program uses 
 moolah.bankfund , not  moolah->bankfund . On the other hand,  Listing   14.6    used  
money->bankfund  because  money  is a pointer, not  a structure.   

  More on Structure Features  

 Modern C allows you to assign one structure to another, something you can’t do with arrays. 
That is, if  n_data  and  o_data  are both structures of the same type, you can do the following:  

  o_data = n_data;    // assigning one structure to another   

 This causes each member of  n_data  to be assigned the value of the corresponding member of 
 o_data . This works even if a member happens to be an array. Also, you can initialize one struc-
ture to another of the same type:  

  struct names right_field = {"Ruthie", "George"};

  struct names captain = right_field;  // initialize a structure to another   

 Under modern C, including ANSI C, not only can structures be passed as function arguments, 
they can be returned as function return values. Using structures as function arguments enables 
you to convey structure information to a function; using functions to return structures enables 
you to convey structure information from a called function to the calling function. Structure 
pointers also allow two-way communication, so you can often use either approach to solve 
programming problems. Let’s look at another set of examples illustrating these two approaches.  

 To contrast the two approaches, we’ll write a simple program that handles structures by using 
pointers; then we’ll rewrite it by using structure passing and structure returns. The program 
itself asks for your first and last names and reports the total number of letters in them. This 
project hardly requires structures, but it offers a simple framework for seeing how they work. 
 Listing   14.8    presents the pointer form.  

  Listing 14.8   The  names1.c  Program  

 /* names1.c -- uses pointers to a structure */

  #include <stdio.h>

  #include <string.h>

  

  #define NLEN 30

  struct namect {

      char fname[NLEN];

      char lname[NLEN];

      int letters;

  };

  

  void getinfo(struct namect *);

  void makeinfo(struct namect *);
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  void showinfo(const struct namect *);

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      struct namect person;

  

      getinfo(&person);

      makeinfo(&person);

      showinfo(&person);

      return 0;

  }

  

  void getinfo (struct namect * pst)

  {

      printf("Please enter your first name.\n");

      s_gets(pst->fname, NLEN);

      printf("Please enter your last name.\n");

      s_gets(pst->lname, NLEN);

  }

  

  void makeinfo (struct namect * pst)

  {

      pst->letters = strlen(pst->fname) +

      strlen(pst->lname);

  }

  

  void showinfo (const struct namect * pst)

  {

      printf("%s %s, your name contains %d letters.\n",

             pst->fname, pst->lname, pst->letters);

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

       char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line
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      }

      return ret_val;

  }   

 Compiling and running the program produces results like the following:  

  Please enter your first name.

   Viola 

  Please enter your last name.

   Plunderfest 

  Viola Plunderfest, your name contains 16 letters.   

 The work of the program is allocated to three functions called from  main() . In each case, the 
address of the  person  structure is passed to the function.  

 The  getinfo()  function transfers information from itself to  main() . In particular, it gets 
names from the user and places them in the  person  structure, using the  pst  pointer to locate 
it. Recall that  pst->lname  means the  lname  member of the structure pointed to by  pst . This 
makes  pst->lname  equivalent to the name of a  char  array, hence a suitable argument for 
 gets() . Note that although  getinfo()  feeds information to the main program, it does not use 
the return mechanism, so it is type  void .  

 The  makeinfo()  function performs a two-way transfer of information. By using a pointer 
to  person , it locates the two names stored in the structure. It uses the C library function 
 strlen()  to calculate the total number of letters in each name and then uses the address of 
 person  to stow away the sum. Again, the type is  void . Finally, the  showinfo()  function uses 
a pointer to locate the information to be printed. Because this function does not alter the 
contents of an array, it declares the pointer as  const .  

 In all these operations, there has been but one structure variable,  person , and each of the func-
tions have used the structure address to access it. One function transferred information from 
itself to the calling program, one transferred information from the calling program to itself, and 
one did both.  

 Now let’s see how you can program the same task using structure arguments and return values. 
First, to pass the structure itself, use the argument  person  rather than  &person . The corre-
sponding formal argument, then, is declared type  struct namect  instead of being a pointer 
to that type. Second, to provide structure values to  main() , you can return a structure.  Listing 
  14.9    presents the nonpointer version.  

  Listing 14.9   The  names2.c  Program  

 /* names2.c -- passes and returns structures */

  #include <stdio.h>

  #include <string.h>

  

  #define NLEN 30

  struct namect {
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      char fname[NLEN];

      char lname[NLEN];

      int letters;

  };

  

  struct namect getinfo(void);

  struct namect makeinfo(struct namect);

  void showinfo(struct namect);

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      struct namect person;

  

      person = getinfo();

      person = makeinfo(person);

      showinfo(person);

  

      return 0;

  }

  

  struct namect getinfo(void)

  {

      struct namect temp;

      printf("Please enter your first name.\n");

      s_gets(temp.fname, NLEN);

      printf("Please enter your last name.\n");

      s_gets(temp.lname, NLEN);

  

      return temp;

  }

  

  struct namect makeinfo(struct namect info)

  {

      info.letters = strlen(info.fname) + strlen(info.lname);

  

      return info;

  }

  

  void showinfo(struct namect info)

  {

      printf("%s %s, your name contains %d letters.\n",

             info.fname, info.lname, info.letters);

  }

  

  char * s_gets(char * st, int n)

  {
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      char * ret_val;

       char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 This version produces the same final result as the preceding one, but it proceeds in a different 
manner. Each of the three functions creates its own copy of  person , so this program uses four 
distinct structures instead of just one.  

 Consider the  makeinfo()  function, for example. In the first program, the address of  person  
was passed, and the function fiddled with the actual  person  values. In this second version, a 
new structure called  info  is created. The values stored in  person  are copied to  info , and the 
function works with the copy. Therefore, when the number of letters is calculated, it is stored 
in  info , but not in  person . The return mechanism, however, fixes that. The  makeinfo()  line  

  return info;   

 combines with the  main()  line  

  person = makeinfo(person);   

 to copy the values stored in  info  into  person . Note that the  makeinfo()  function had to be 
declared type  struct namect  because it returns a structure.   

  Structures or Pointer to Structures?  

 Suppose you have to write a structure-related function. Should you use structure pointers as 
arguments, or should you use structure arguments and return values? Each approach has its 
strengths and weaknesses.  

 The two advantages of the pointer argument method are that it works on older as well as newer 
C implementations and that it is quick; you just pass a single address. The disadvantage is that 
you have less protection for your data. Some operations in the called function could inadver-
tently affect data in the original structure. However, the ANSI C addition of the  const  qualifier 
solves that problem. For example, if you put code into the  showinfo()  function of  Listing   11.8    
that changes any member of the structure, the compiler will catch it as an error.  
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 One advantage of passing structures as arguments is that the function works with copies of the 
original data, which is safer than working with the original data. Also, the programming style 
tends to be clearer. Suppose you define the following structure type:  

  struct vector {double x; double y;};   

 You want to set the vector  ans  to the sum of the vectors  a  and  b . You could write a structure-
passing and returning function that would make the program look like this:  

  struct vector ans, a, b;

  struct vector sum_vect(struct vector, struct vector);

  ...

  ans = sum_vect(a,b);   

 The preceding version is more natural looking to an engineer than a pointer version, which 
might look like this:  

  struct vector ans, a, b;

  void sum_vect(const struct vector *, const struct vector *, struct vector *);

  ...

  sum_vect(&a, &b, &ans);   

 Also, in the pointer version, the user has to remember whether the address for the sum should 
be the first or the last argument.  

 The two main disadvantages to passing structures are that older implementations might not 
handle the code and that it wastes time and space. It’s especially wasteful to pass large struc-
tures to a function that uses only one or two members of the structure. In that case, passing a 
pointer or passing just the required members as individual arguments makes more sense.  

 Typically, programmers use structure pointers as function arguments for reasons of efficiency, 
using  const  when needed to protect data from unintended changes. Passing structures by value 
is most often done for structures that are small to begin with.   

  Character Arrays or Character Pointers in a Structure  

 The examples so far have used character arrays to store strings in a structure. You might 
have wondered if you can use pointers-to- char  instead. For example,  Listing   14.3    had this 
declaration:  

  #define LEN 20

  struct names {

      char first[LEN];

      char last[LEN];

  };   

 Can you do this instead?  

  struct pnames {

      char * first;
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      char * last;

  };   

 The answer is that you can, but you might get into trouble unless you understand the implica-
tions. Consider the following code:  

  struct names veep = {"Talia", "Summers"};

  struct pnames treas = {"Brad", "Fallingjaw"};

  printf("%s and %s\n", veep.first, treas.first);   

 This is valid code, and it works, but consider where the strings are stored. For the  struct 
names  variable  veep , the strings are stored inside the structure; the structure has allocated a 
total of 40 bytes to hold the two names. For the  struct pnames  variable  treas , however, the 
strings are stored wherever the compiler stores string constants. All the structure holds are the 
two addresses, which takes a total of 16 bytes on our system. In particular, the  struct pnames  
structure allocates no space to store strings. It can be used only with strings that have had space 
allocated for them elsewhere,  such as string constants or strings in arrays. In short, the pointers 
in a  pnames  structure should be used only to manage strings that were created and allocated 
elsewhere in the program.  

 Let’s see where this restriction is a problem. Consider the following code:  

  struct names accountant;

  struct pnames attorney;

  puts("Enter the last name of your accountant:");

  scanf("%s", accountant.last);

  puts("Enter the last name of your attorney:");

  scanf("%s", attorney.last);   /* here lies the danger */   

 As far as syntax goes, this code is fine. But where does the input get stored? For the accountant, 
the name is stored in the last member of the  accountant  variable; this structure has an array 
to hold the string. For the attorney,  scanf()  is told to place the string at the address given by 
 attorney.last . Because this is an uninitialized variable, the address could have any value, and 
the program could try to put the name anywhere. If you are lucky, the program might work, at 
least some of the time—or an attempt could bring your program to a crashing halt.  Actually, if 
the program works, you’re unlucky, because the program will have a dangerous programming 
error of which you are unaware.  

 So if you want a structure to store the strings, it’s simpler to use character array members. 
Storing pointers-to- char  has its uses, but it also has the potential for serious misuse.   

  Structure, Pointers, and  malloc()   

 One instance in which it does make sense to use a pointer in a structure to handle a string is if 
you use  malloc()  to allocate memory and use a pointer to store the address. This approach has 
the advantage that you can ask  malloc()  to allocate just the amount of space that’s needed 
for a string. You can ask for 4 bytes to store  "Joe"  and 18 bytes for the Madagascan name 
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 "Rasolofomasoandro" . It doesn’t take much to adapt  Listing   14.9    to this approach. The two 
main changes are changing the structure definition to use pointers instead of arrays and then 
providing a new  version of the  getinfo()  function.  

 The new structure definition will look like this:  

  struct namect {

      char * fname;  // using pointers instead of arrays

      char * lname;

      int letters;

  };   

 The new version of  getinfo()  will read the input into a temporary array, use  malloc()  to 
allocate storage space, and copy the string to the newly allocated space. It will do so for each 
name:  

  void getinfo (struct namect * pst)

  {

      char temp[SLEN];

      printf("Please enter your first name.\n");

      s_gets(temp, SLEN);

      // allocate memory to hold name

      pst->fname = (char *) malloc(strlen(temp) + 1);

      // copy name to allocated memory

      strcpy(pst->fname, temp);

      printf("Please enter your last name.\n");

      s_gets(temp, SLEN);

      pst->lname = (char *) malloc(strlen(temp) + 1);

      strcpy(pst->lname, temp);

  }   

 Make sure you understand that the two strings are not stored in the structure. They are stored 
in the chunk of memory managed by  malloc() . However, the addresses of the two strings are 
stored in the structure, and the addresses are what string-handling functions typically work 
with. Therefore, the remaining functions in the program need not be changed at all.  

 However, as  Chapter   12    suggests, you should balance calls to  malloc()  with calls to  free() , 
so the program adds a new function called  cleanup()  to free the memory once the program is 
done using it. You’ll find this new function and the rest of the program in  Listing   14.10   .  

  Listing 14.10   The  names3.c  Program  

 // names3.c -- use pointers and malloc()

  #include <stdio.h>

  #include <string.h>   // for strcpy(), strlen()

  #include <stdlib.h>   // for malloc(), free()

  #define SLEN 81

  struct namect {
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      char * fname;  // using pointers

      char * lname;

      int letters;

  };

  

  void getinfo(struct namect *);        // allocates memory

  void makeinfo(struct namect *);

  void showinfo(const struct namect *);

  void cleanup(struct namect *);        // free memory when done

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      struct namect person;

  

      getinfo(&person);

      makeinfo(&person);

      showinfo(&person);

      cleanup(&person);

  

      return 0;

  }

  

  void getinfo (struct namect * pst)

  {

      char temp[SLEN];

      printf("Please enter your first name.\n");

      s_gets(temp, SLEN);

      // allocate memory to hold name

      pst->fname = (char *) malloc(strlen(temp) + 1);

      // copy name  to allocated memory

      strcpy(pst->fname, temp);

      printf("Please enter your last name.\n");

      s_gets(temp, SLEN);

      pst->lname = (char *) malloc(strlen(temp) + 1);

      strcpy(pst->lname, temp);

  }

  

  void makeinfo (struct namect * pst)

  {

      pst->letters = strlen(pst->fname) +

      strlen(pst->lname);

  }

  

  void showinfo (const struct namect * pst)

  {

      printf("%s %s, your name contains %d letters.\n",
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             pst->fname, pst->lname, pst->letters);

  }

  

  void cleanup(struct namect * pst)

  {

      free(pst->fname);

      free(pst->lname);

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

               while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 Here is some sample output:  

  Please enter your first name.

   Floresiensis 

  Please enter your last name.

   Mann 

  Floresiensis Mann, your name contains 16 letters.    

  Compound Literals and Structures (C99)  

 C99’s compound literal feature is available for structures as well as for arrays. It’s handy if you 
just need a temporary structure value. For instance, you can use compound literals to create a 
structure to be used as a function argument or to be assigned to another structure. The syntax 
is to preface a brace-enclosed initializer list with the type name in parentheses. For example, 
the following is a compound literal of the  struct book  type:  

  (struct book) {"The Idiot", "Fyodor Dostoyevsky", 6.99}   
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  Listing   14.11    shows an example using compound literals to provide two alternative values for 
a structure variable. (At the time of writing, several, but not all, compilers support this feature, 
but time should remedy this problem.)  

  Listing 14.11   The  complit.c  Program  

 /* complit.c -- compound literals */

  #include <stdio.h>

  #define MAXTITL  41

  #define MAXAUTL  31

  

  struct book {          // structure template: tag is book

      char title[MAXTITL];

      char author[MAXAUTL];

      float value;

  };

  

  int main(void)

  {

      struct book readfirst;

      int score;

  

      printf("Enter test score: ");

      scanf("%d",&score);

  

      if(score >= 84)

          readfirst = (struct book) {"Crime and Punishment",

                                     "Fyodor Dostoyevsky",

                                     11.25};

      else

            readfirst = (struct book) {"Mr. Bouncy's Nice Hat",

                                     "Fred Winsome",

                                      5.99};

      printf("Your assigned reading:\n");

      printf("%s by %s: $%.2f\n",readfirst.title,

            readfirst.author, readfirst.value);

  

      return 0;

  }   

 You also can use compound literals as arguments to functions. If the function expects a struc-
ture, you can pass the compound literal as the actual argument:  

  struct rect {double x; double y;};

  double rect_area(struct rect r){return r.x * r.y;}

  ...
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  double area;

  area = rect_area( (struct rect) {10.5, 20.0});   

 This causes  area  to be assigned the value  210.0 .  

 If a function expects an address, you can pass the address of a compound literal:  

  struct rect {double x; double y;};

  double rect_areap(struct rect * rp){return rp->x * rp->y;}

  ...

  double area;

  area = rect_areap( &(struct rect) {10.5, 20.0});   

 This causes  area  to be assigned the value  210.0 .  

 Compound literals occurring outside of any function have static storage duration, and those 
occurring inside a block have automatic storage duration. The same syntax rules hold for 
compound literals as hold for regular initializer lists. This means, for example, that you can use 
designated initializers in a compound literal.   

  Flexible Array Members (C99)  

 C99 has a feature called the  flexible array member . It lets you declare a structure for which the 
last member is an array with special properties. One special property is that the array doesn’t 
exist—at least, not immediately. The second special property is that, with the right code, you 
can use the flexible array member as if it did exist and has whatever number of elements you 
need. This probably sounds a little peculiar, so let’s go through the steps of creating and using a 
structure with a flexible array member.  

 First, here are the rules for declaring a flexible array member:  

    ■   The flexible array member must be the last member of the structure.   

   ■   There must be at least one other member.   

   ■   The flexible array is declared like an ordinary array, except that the brackets are empty.    

 Here’s an example illustrating these rules:  

  struct flex

  {

      int count;

      double average;

      double scores[];   // flexible array member

  };   

 If you declare a variable of type  struct flex , you can’t use  scores  for anything, because no 
memory space is set-aside for it. In fact, it’s not intended that you ever declare variables of the 
 struct flex  type. Instead, you are supposed to declare a  pointer  to the  struct flex  type and 
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then use  malloc( ) to allocate enough space for the ordinary contents of  struct flex   plus  any 
extra space you want for the flexible array member. For example, suppose you want  scores  to 
represent an array of five  double  values. Then you would do this:  

  struct flex * pf;  // declare a pointer

  // ask for space for a structure and an array

  pf = malloc(sizeof(struct flex) + 5 * sizeof(double));   

 Now you have a chunk of memory large enough to store  count ,  average , and an array of five 
 double  values. You can use the pointer  pf  to access these members:  

  pf->count = 5;          // set count member

  pf->scores[2] = 18.5;   // access an element of the array member   

  Listing   14.12    carries this example a little further, letting the flexible array member represent 
five values in one case and nine values in a second case. It also illustrates writing a function for 
processing a structure with a flexible array element.  

  Listing 14.12   The  flexmemb.c  Program  

 // flexmemb.c -- flexible array member (C99 feature)

  #include <stdio.h>

  #include <stdlib.h>

  

  struct flex

  {

      size_t count;

      double average;

      double scores[];   // flexible array member

  };

  

  void showFlex(const struct flex * p);

  

  int main(void)

  {

      struct flex * pf1, *pf2;

      int n = 5;

      int i;

      int tot = 0;

  

      // allocate space for structure plus array

      pf1 = malloc(sizeof(struct flex) + n * sizeof(double));

      pf1->count = n;

      for (i = 0; i < n; i++)

      {

          pf1->scores[i] = 20.0 - i;

          tot += pf1->scores[i];

      }
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      pf1->average = tot / n;

      showFlex(pf1);

  

      n = 9;

      tot = 0;

      pf2 = malloc(sizeof(struct flex) + n * sizeof(double));

      pf2->count =  n;

      for (i = 0; i < n; i++)

      {

          pf2->scores[i] = 20.0 - i/2.0;

          tot += pf2->scores[i];

      }

      pf2->average = tot / n;

      showFlex(pf2);

      free(pf1);

      free(pf2);

  

      return 0;

  }

  

  void showFlex(const struct flex * p)

  {

      int i;

      printf("Scores : ");

      for (i = 0; i < p->count; i++)

          printf("%g ", p->scores[i]);

      printf("\nAverage: %g\n", p->average);

  }   

 Here is the output:  

  Scores : 20 19 18 17 16

  Average: 18

  Scores : 20 19.5 19 18.5 18 17.5 17 16.5 16

  Average: 17   

 Structures with flexible array members do have some special handling requirements. First, don’t 
use structure assignment for copying:  

      struct flex * pf1, *pf2;  // *pf1 and *pf2 are structures

  ...

      *pf2 = *pf1;   // don't do this   

 This would just copy the nonflexible members of the structure. Instead, use the memcpy() 
function described in  Chapter   16   , “The C Preprocessor and the C Library.”  
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 Second, don’t use this sort of structure with functions that pass structures by value. The reason 
is the same; passing an argument by value is like assignment. Instead, use functions that pass 
the address of the structure.  

 Third, don’t use a structure with a flexible array member as an element of an array or a member 
of another structure.  

 Some of you may have heard of something similar to the flexible array member called the  struct 
hack . Instead of using empty brackets to declare the flexible member, the struct hack specifies a 
0 array size. However, the struct hack is something that worked for a particular compiler (GCC); 
it wasn’t standard C. The flexible member approach provides a standard-sanctioned version of 
the technique.   

  Anonymous Structures (C11)  

 An anonymous structure is a structure member that is an unnamed structure. To see how this 
works, first consider the following setup for a nested structure:  

  struct names

  {

      char first[20];

      char last[20];

  };

  struct person

  {

      int id;

      struct names name;  // nested structure member

  };

  struct person ted = {8483, {"Ted", "Grass"}};   

 Here the  name  member is a nested structure, and you could use an expression like  ted.name.
first  to access  "Ted" :  

  puts(ted.name.first);   

 With C11, you can define  person  using a nested unnamed member structure:  

  struct person

  {

      int id;

      struct {char first[20]; char last[20];};  // anonymous structure

  };   

 You could initialize this structure in the same fashion:  

  struct person ted = {8483, {"Ted", "Grass"}};   

 But access is simplified as you use member names such as  first  as if they were  person  members:  

  puts(ted.first);   
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 Of course, you could simply have made  first  and  last  direct members of  person  and elimi-
nated nested structures. The anonymous feature becomes more useful with nested unions, 
which we will discuss later in this chapter.   

  Functions Using an Array of Structures  

 Suppose you have an array of structures that you want to process with a function. The name 
of an array is a synonym for its address, so it can be passed to a function. Again, the function 
needs access to the structure template. To show how this works,  Listing   14.13    expands our 
monetary program to two people so that it has an array of two  funds  structures.  

  Listing 14.13   The  funds4.c  Program  

 /* funds4.c -- passing an array of structures to a function */

  #include <stdio.h>

  #define FUNDLEN 50

  #define N 2

  

  struct funds {

      char   bank[FUNDLEN];

      double bankfund;

      char   save[FUNDLEN];

      double savefund;

  };

  

  double sum(const struct funds money[], int n);

  

  int main(void)

  {

      struct funds jones[N] = {

          {

              "Garlic-Melon Bank",

              4032.27,

              "Lucky's Savings and Loan",

              8543.94

  

          },

          {

              "Honest Jack's Bank",

              3620.88,

              "Party Time Savings",

              3802.91

          }

      };

  

      printf("The Joneses have a total of $%.2f.\n",
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             sum(jones,N));

  

      return 0;

  }

  

  double sum(const struct funds money[], int n)

  {

      double total;

      int i;

  

      for (i = 0, total = 0; i < n; i++)

          total += money[i].bankfund + money[i].savefund;

  

      return(total);

  }   

 The output is this:  

  The Joneses have a total of $20000.00.   

 (What an even sum! One would almost think the figures were contrived.)  

 The array name  jones  is the address of the array. In particular, it is the address of the first 
element of the array, which is the structure  jones[0] . Therefore, initially the pointer  money  is 
given by this expression:  

  money = &jones[0];   

 Because money points to the first element of the  jones  array,  money[0]  is another name for 
the first element of that array. Similarly,  money[1]  is the second element. Each element is a 
funds structure, so each can use the dot ( . ) operator to access the structure members.  

 These are the main points:  

    ■   You can use the array name to pass the address of the first structure in the array to a 
function.   

   ■   You can then use array bracket notation to access the successive structures in the array. 
Note that the function call  

  sum(&jones[0], N)   

 would have the same effect as using the array name because both  jones  and  &jones[0]  
are the same address. Using the array name is just an indirect way of passing the 
structure address.   

   ■   Because the  sum()  function ought not alter the original data, the function uses the ANSI 
C  const  qualifier.      
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  Saving the Structure Contents in a File  

 Because structures can hold a wide variety of information, they are important tools for 
constructing databases. For example, you could use a structure to hold all the pertinent infor-
mation about an employee or an auto part. Ultimately, you would want to be able to save this 
information in, and retrieve it from, a file. A database file could contain an arbitrary number of 
such data objects. The entire set of information held in a structure is termed a  record , and the 
individual items are  fields . Let’s investigate these topics.  

 What is perhaps the most obvious way to save a record is the least efficient way, and that is to 
use  fprintf() . For example, recall the  book  structure introduced in  Listing   14.1   :  

  #define MAXTITL   40

  #define MAXAUTL   40

  struct book {

      char title[MAXTITL];

      char author[MAXAUTL];

      float value;

  };   

 If  pbooks  identified a file stream, you could save the information in a  struct book  variable 
called  primer  with the following statement:  

  fprintf(pbooks, "%s %s %.2f\n", primer.title,

          primer.author, primer.value);   

 This setup becomes unwieldy for structures with, say, 30 members. Also, it poses a retrieval 
problem because the program would need some way of telling where one field ends and 
another begins. This problem can be fixed by using a format with fixed-size fields (for example, 
 "%39s%39s%8.2f" ), but the awkwardness remains.  

 A better solution is to use  fread()  and  fwrite()  to read and write structure-sized units. Recall 
that these functions read and write using the same binary representation that the program uses. 
For example,  

  fwrite(&primer, sizeof (struct book), 1, pbooks);   

 goes to the beginning address of the  primer  structure and copies all the bytes of the structure 
to the file associated with  pbooks . The  sizeof (struct book)  term tells the function how 
large a block to copy, and the  1  indicates that it should copy just one block. The  fread()  
function with the same arguments copies a structure-sized chunk of data from the file to the 
location pointed to by  &primer . In short, these functions read and write one whole record at a 
time instead of a field at a time.  

 One drawback to saving data in binary representation is that different systems might use differ-
ent binary representations, so the data file might not be portable. Even on the same system, 
different compiler settings could result in different binary layouts.  
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  A Structure-Saving Example  

 To show how these functions can be used in a program, we’ve modified the program in  Listing 
  14.2    so that the book titles are saved in a file called  book.dat . If the file already exists, the 
program shows you its current contents and then enables you to add to the file.  Listing   14.14    
presents the new version. (If you’re using an older Borland compiler, review the “Borland C and 
Floating Point” discussion in the sidebar near  Listing   14.2   .)  

  Listing 14.14   The  booksave.c  Program  

 /* booksave.c -- saves structure contents in a file */

  #include <stdio.h>

  #include <stdlib.h>

  #include <string.h>

  #define MAXTITL  40

  #define MAXAUTL  40

  #define MAXBKS   10             /* maximum number of books */

  char * s_gets(char * st, int n);

  struct book {                   /* set up book template    */

      char title[MAXTITL];

      char author[MAXAUTL];

      float value;

  };

  

  int main(void)

  {

      struct book library[MAXBKS]; /* array of structures     */

      int count = 0;

      int index, filecount;

      FILE * pbooks;

      int size = sizeof (struct book);

  

      if ((pbooks = fopen("book.dat", "a+b")) == NULL)

      {

          fputs("Can't open book.dat file\n",stderr);

          exit(1);

      }

  

      rewind(pbooks);            /* go to start of file     */

      while (count < MAXBKS &&  fread(&library[count], size,

                                      1,  pbooks) == 1)

      {

          if (count == 0)

              puts("Current contents of book.dat:");

          printf("%s by %s: $%.2f\n",library[count].title,

                 library[count].author, library[count].value);

          count++;
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      }

      filecount = count;

      if (count == MAXBKS)

      {

          fputs("The book.dat file is full.", stderr);

          exit(2);

      }

  

      puts("Please add new book titles.");

      puts("Press [enter] at the start of a line to stop.");

      while (count < MAXBKS && s_gets(library[count].title, MAXTITL) != NULL

             && library[count].title[0] != '\0')

      {

          puts("Now enter the author.");

          s_gets(library[count].author, MAXAUTL);

          puts("Now enter the value.");

          scanf("%f", &library[count++].value);

          while (getchar() != '\n')

              continue;                /* clear input line  */

          if (count < MAXBKS)

              puts("Enter the next title.");

      }

  

      if (count > 0)

       {

          puts("Here is the list of your books:");

          for (index = 0; index < count; index++)

              printf("%s by %s: $%.2f\n",library[index].title,

                     library[index].author, library[index].value);

          fwrite(&library[filecount], size, count - filecount,

                 pbooks);

      }

      else

          puts("No books? Too bad.\n");

  

      puts("Bye.\n");

      fclose(pbooks);

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);
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      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 We’ll look at a couple of sample runs and then discuss the main programming points.  

  $  booksave 

  Please add new book titles.

  Press [enter] at the start of a line to stop.

   Metric Merriment 

  Now enter the author.

   Polly Poetica 

  Now enter the value.

   18.99 

  Enter the next title.

   Deadly Farce 

  Now enter the author.

   Dudley Forse 

  Now enter the value.

   15.99 

  Enter the next title.

   [enter] 

  Here is the list of your books:

  Metric Merriment by Polly Poetica: $18.99

  Deadly Farce by Dudley Forse: $15.99

  Bye.

  $  booksave 

  Current contents of book.dat:

  Metric Merriment by Polly Poetica: $18.99

  Deadly Farce by Dudley Forse: $15.99

  Please add new book titles.

   The Third Jar 

  Now enter the author.

   Nellie Nostrum 

  Now enter the value.

   22.99 

  Enter the next title.

   [enter] 

  Here is the list of your books:



ptg11524036

643Saving the Structure Contents in a File

  Metric Merriment by Polly Poetica: $18.99

  Deadly Farce by Dudley Forse: $15.99

  The Third  Jar by Nellie Nostrum: $22.99

  Bye.

  $   

 Running the  booksave.c  program again would show all three books as current file records.   

  Program Points  

 First, the  "a+b"  mode is used for opening the file. The  a+  part lets the program read the 
whole file and append data to the end of the file. The  b  is the ANSI way of signifying that the 
program will use the binary file format. For Unix systems that don’t accept the  b , you can omit 
it because Unix has only one file form anyway. For other pre-ANSI implementations, you might 
need to find the local equivalent to using  b .  

 We chose the binary mode because  fread()  and  fwrite()  are intended for binary files. True, 
some of the structure contents are text, but the  value  member is not. If you use a text editor to 
look at  book.dat , the text part will show up okay, but the numeric part will be unreadable and 
could even cause your text editor to barf.  

 The  rewind()  command ensures that the file position pointer is situated at the start of the file, 
ready for the first read.  

 The initial  while  loop reads one structure at a time into the array of structures, stopping when 
the array is full or when the file is exhausted. The variable  filecount  keeps track of how many 
structures were read.  

 The next  while  loop prompts for, and takes, user input. As in  Listing   14.2   , this loop quits 
when the array is full or when the user presses the Enter key at the beginning of a line. Notice 
that the  count  variable starts with the value it had after the preceding loop. This causes the 
new entries to be added to the end of the array.  

 The  for  loop then prints the data both from the file and from the user. Because the file was 
opened in the append mode, new writes to the file are appended to the existing contents.  

 We could have used a loop to add one structure at a time to the end of the file. However, 
we decided to use the ability of  fwrite()  to write more than one block at a time. The 
expression  count - filecount  yields the number of new book titles to be added, and the 
call to  fwrite()  writes that number of structure-sized blocks to the file. The expression 
 &library[filecount]  is the address of the first new structure in the array, so copying begins 
from that point.  

 This example is, perhaps, the simplest way to write structures to a file and to retrieve them, but 
it can waste space because the unused parts of a structure are saved, too. The size of this struc-
ture is  2 x 40 x sizeof (char) + sizeof (float) , which totals 84 bytes on our system. 
None of the entries actually need all that space. However, each data chunk being the same size 
makes retrieving the data easy.  
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 Another approach is to use variably sized records. To facilitate reading such records from a 
file, each record can begin with a numerical field specifying the record size. This is a bit more 
complex than what we have done. Normally, this method involves “linked structures,” which 
we describe next, and dynamic memory allocation, which we discuss in  Chapter   16   .    

  Structures: What Next?  

 Before ending our exploration of structures, we would like to mention one of the more impor-
tant uses of structures: creating new data forms. Computer users have developed data forms 
much more efficiently for certain problems than the arrays and simple structures we have 
presented. These forms have names such as queues, binary trees, heaps, hash tables, and 
graphs. Many such forms are built from linked structures. Typically, each structure contains 
one or two items of data plus one or two pointers to other structures of the same type. Those 
pointers link one structure to another and furnish a path to  enable you to search through the 
overall assemblage of structures. For example,  Figure   14.3    shows a binary tree structure, with 
each individual structure (or node) connected to the two below it.  

 

level 1

level 2

level 3

level 4

 Figure 14.3   A binary tree structure.         

 Is the hierarchical, or  tree , structure shown in  Figure   14.3    more efficient than an array? 
Consider the case of a tree with 10 levels of nodes. It has 2 10 −1, or 1,023, nodes in which you 
could store up to 1,023 words. If the words were arranged according to some sensible plan, 
you could start at the top level and find any word in at most nine moves as your search moves 
down one level to the next. If you have the words in an array, you might have to search all 
1,023 elements before finding the word you seek.  

 If you are interested in more advanced concepts such as this, you can consult any number of 
computer science texts on data structures. With the C structures, you can create and use virtu-
ally every form presented in these texts. Also,  Chapter   17   , “Advanced Data Representation,” 
investigates some of these advanced forms.  
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 That’s our final word on structures for this chapter, but we will present examples of linked 
structures in  Chapter   17   . Next, we’ll look at three other C features for dealing with data: 
unions, enumerations, and  typedef .   

  Unions: A Quick Look  

 A  union  is a type that enables you to store different data types in the same memory space (but 
not simultaneously). A typical use is a table designed to hold a mixture of types in some order 
that is neither regular nor known in advance. By using an array of unions, you can create an 
array of equal-sized units, each of which can hold a variety of data types.  

 Unions are set up in much the same way as structures. There is a union template and a union 
variable. They can be defined in one step or, by using a union tag, in two. Here is an example 
of a union template with a tag:  

  union hold {

      int digit;

      double bigfl;

      char letter;

  };   

 A structure with a similar declaration would be able to hold an  int  value  and  a  double  value 
 and  a  char  value. This union, however, can hold an  int  value  or  a  double  value  or  a  char  
value.  

 Here is an example of defining three union variables of the  hold  type:  

  union hold fit;      // union variable of hold type

  union hold save[10]; // array of 10 union variables

  union hold * pu;     // pointer to a variable of hold type   

 The first declaration creates a single variable,  fit . The compiler allots enough space so that it 
can hold the largest of the described possibilities. In this case, the biggest possibility listed is 
 double , which requires 64 bits, or 8 bytes, on our system. The second declaration creates an 
array called  save  with 10 elements, each 8 bytes in size. The third declaration creates a pointer 
that can hold the address of a  hold  union.  

 You can initialize a union. Because the union holds only one value, the rules are different from 
those in a structure. In particular, you have three choices: You can initialize a union to another 
union of the same type, you can initialize the first element of a union, or, with C99, you can 
use a designated initializer:  

  union hold valA;

  valA.letter = 'R';

  union hold valB = valA;  // initialize one union to another

  union hold valC = {88};  // initialize digit member of union

  union hold valD = {.bigfl = 118.2};  // designated initializer   
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  Using Unions  

 Here is how you can use a union:  

  fit.digit = 23;   // 23 is stored in fit; 2 bytes used

  fit.bigfl = 2.0;  // 23 cleared, 2.0 stored; 8 bytes used

  fit.letter = 'h'; // 2.0 cleared, h stored; 1 byte used   

 The dot operator shows which data type is being used. Only one value is stored at a time. You 
can’t store a  char  and an  int  at the same time, even though there is enough space to do so. It 
is your responsibility to write the program so that it keeps track of the data type currently being 
stored in a union.  

 You can use the  ->  operator with pointers to unions in the same fashion that you use the oper-
ator with pointers to structures:  

  pu = &fit;

  x = pu->digit;  // same as x = fit.digit   

 The next sequence shows what  not  to do:  

  fit.letter = 'A';

  flnum = 3.02*fit.bigfl;   // ERROR ERROR ERROR   

 This sequence is wrong because a  char  type is stored, but the next line assumes that the 
content of  fit  is a  double  type.  

 However, sometimes it can be useful to use one member to place values into a union and to 
then use a different member for viewing the contents.  Listing   15.4    in the next chapter shows 
an example.  

 Another place you might use a union is in a structure for which the stored information 
depends on one of the members. For example, suppose you have a structure representing an 
automobile. If the automobile is owned by the user, you want a structure member describing 
the owner. If the automobile is leased, you want the member to describe the leasing company. 
Then you can do something along the following lines:  

  struct owner {

       char socsecurity[12];

       ...

  };

  

  struct leasecompany  {

       char name[40];

       char headquarters[40];

       ...

  };

  

  union data {

       struct owner owncar;
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       struct leasecompany leasecar;

  };

  

  struct car_data {

       char make[15];

       int status; /* 0 = owned, 1 = leased */

       union data ownerinfo;

       ...

  };   

 Suppose  flits  is a  car_data  structure. Then if  flits.status  were 0, the program could use 
 flits.ownerinfo.owncar.socsecurity , and if  flits.status  were 1, the program could use 
 flits.ownerinfo.leasecar.name .   

  Anonymous Unions (C11)  

 Anonymous unions work much the same as anonymous structures. That is, an anonymous 
union is an unnamed member union of a structure or union. For instance, we can redefine the 
 car_data  structure as follows:  

  struct owner {

       char socsecurity[12];

       ...

  };

  

  struct leasecompany  {

       char name[40];

       char headquarters[40];

       ...

  };

  

  struct car_data {

       char make[15];

       int status; /* 0 = owned, 1 = leased */

       union {

           struct owner owncar;

           struct leasecompany leasecar;

       };

  ...

  };   

 Now, if  flits  is a  car_data  structure, we can use  flits.owncar.socsecurity  instead of 
 flits.ownerinfo.owncar.socsecurity .    
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  Summary: Structure and Union Operators  

  The Membership Operator:     .   

  General Comments:   

 This operator is used with a structure or union name to specify a member of that structure or 
union. If  name  is the name of a structure and  member  is a member specified by the structure 
template, the following identifies that member of the structure:  

  name.member   

 The type of  name.member  is the type specified for  member . The membership operator can also 
be used in the same fashion with unions.  

  Example:   

  struct {

         int code;

         float cost;

  } item;

  

  item.code = 1265;   

 The last statement assigns a value to the  code  member of the structure  item .  

  The Indirect Membership Operator:     ->   

  General Comments:   

 This operator is used with a pointer to a structure or union to identify a member of that struc-
ture or union. Suppose that  ptrstr  is a pointer to a structure and that  member  is a member 
specified by the structure template. Then the statement  

  ptrstr->member   

 identifies that member of the pointed-to structure. The indirect membership operator can be 
used in the same fashion with unions.  

  Example:   

  struct {

         int code;

         float cost;

  } item, * ptrst;

  ptrst = &item;

  ptrst->code = 3451;   

 The last statement assigns an  int  value to the  code  member of  item . The following three 
expressions are equivalent:  

  ptrst->code    item.code    (*ptrst).code      
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  Enumerated Types  

 You can use the  enumerated type  to declare symbolic names to represent integer constants. 
By using the  enum  keyword, you can create a new “type” and specify the values it may have. 
(Actually,  enum  constants are type  int ; therefore, they can be used wherever you would use an 
 int .) The purpose of enumerated types is to enhance the readability of a program. The syntax 
is similar to that used for structures. For example, you can make these declarations:  

  enum spectrum {red, orange, yellow, green, blue, violet};

  enum spectrum color;   

 The first declaration establishes  spectrum  as a tag name, which allows you to use  enum 
spectrum  as a type name. The second declaration makes  color  a variable of that type. The 
identifiers within the braces enumerate the possible values that a  spectrum  variable can have. 
Therefore, the possible values for  color  are  red ,  orange ,  yellow , and so on. These symbolic 
constants are termed  enumerators . Then, you can use statements such as the following:  

  int c;

  color = blue;

  if (color == yellow)

     ...;

  for (color = red; color <= violet; color++)

     ...;   

 Although enumerators such as  red  and  blue  are type  int , enumerated variables are more 
loosely constrained to be an integral type as long as the type can hold the enumerated 
constants. For example, the enumerated constants for  spectrum  have the range 0–5, so a 
compiler could choose to use  unsigned char  to represent the  color  variable.  

 Incidentally, some C enumeration properties don’t carry over to C++. For example, C allows 
you to apply the  ++  operator to an enumeration variable, and the C++ standard doesn’t. So if 
you think your code might be incorporated into a C++ program some day, you should declare 
 color  as type  int  in the previous example. Then the code will work with either C or C++.  

   enum  Constants  

 Just what  are  blue  and  red ? Technically, they are type  int  constants. For example, given the 
preceding enumeration declaration, you can try this:  

  printf("red = %d, orange = %d\n", red, orange);   

 Here is the output:  

  red = 0, orange = 1   

 What has happened is that  red  has become a named constant representing the integer 0. 
Similarly, the other identifiers are named constants representing the integers 1 through 5. 
You can use an enumerated constant anywhere you can use an integer constant. For example, 
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you can use them as sizes in array declarations, and you can use them as labels in a switch  
statement.   

  Default Values  

 By default, the  constants in the enumeration list are assigned the integer values 0, 1, 2, and so 
on. Therefore, the declaration  

  enum kids {nippy, slats, skippy, nina, liz};   

 results in  nina  having the value  3 .   

  Assigned Values  

 You can  choose the integer values that you want the constants to have. Just include the 
desired values in the declaration:  

  enum levels {low = 100, medium = 500, high = 2000};   

 If you assign a value to one constant but not to the following constants, the following 
constants will be numbered sequentially. For example, suppose you have this declaration:  

  enum feline {cat, lynx = 10, puma, tiger};   

 Then  cat  is  0 , by default, and  lynx ,  puma , and  tiger  are  10 ,  11 , and  12 ,  respectively.   

   enum  Usage  

 Recall that the purpose of enumerated types is to enhance a program’s readability and make it 
easier to maintain. If you are dealing with colors, using  red  and  blue  is much more obvious 
than using  0  and  1 . Note that the enumerated types are for internal use. If you want to enter a 
value of  orange  for  color , you have to enter a  1 , not the word  orange , or you can read in the 
string  "orange"  and have the program convert it to the value  orange .  

 Because the enumerated type is an integer type,  enum  variables can be used in expressions in 
the same manner as integer variables. They make convenient labels for a  case  statement.  

  Listing   14.15    shows a short example using  enum . The example relies on the default value-
assignment scheme. This gives  red  the value  0 , which makes it the index for the pointer to the 
string  "red" .  

  Listing 14.15   The  enum.c  Program  

 /* enum.c -- uses enumerated values */

  #include <stdio.h>

  #include <string.h>    // for strcmp(), strchr()

  #include <stdbool.h>   // C99 feature

  char * s_gets(char * st, int n);
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  enum spectrum {red, orange, yellow, green, blue, violet};

  const char * colors[] = {"red", "orange", "yellow",

      "green", "blue", "violet"};

  #define LEN 30

  

  int main(void)

  {

      char choice[LEN];

      enum spectrum color;

      bool color_is_found = false;

  

      puts("Enter a color (empty line to quit):");

      while (s_gets(choice, LEN) != NULL && choice[0] != '\0')

      {

          for (color = red; color <= violet; color++)

          {

              if (strcmp(choice, colors[color]) == 0)

              {

                  color_is_found = true;

                  break;

              }

          }

          if (color_is_found)

              switch(color)

          {

              case red    : puts("Roses are red.");

                   break;

              case orange : puts("Poppies are orange.");

                  break;

              case yellow : puts("Sunflowers are yellow.");

                  break;

              case green  : puts("Grass is green.");

                  break;

              case blue   : puts("Bluebells are blue.");

                  break;

              case violet : puts("Violets are violet.");

                  break;

          }

          else

              printf("I don't know about the color %s.\n", choice);

          color_is_found = false;

          puts("Next color, please (empty line to quit):");

      }

      puts("Goodbye!");

  

      return 0;
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  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';           // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 The code breaks out of the  for  loop if the input string matches one of the strings pointed to 
by the members of the  colors  array. If the loop finds a matching color, the program then uses 
the value of the enumeration variable to match an enumeration constant used as a case label. 
Here is a sample run:  

  Enter a color (empty line to quit):

   blue 

  Bluebells are blue.

  Next color, please (empty line to quit):

   orange 

  Poppies are orange.

  Next color, please (empty line to quit):

   purple 

  I don't know about the color purple.

  Next color, please (empty line to quit):

  

  Goodbye!    

  Shared Namespaces  

 C uses the term  namespace  to identify parts of a program in which a name is recognized. Scope 
is part of the concept: Two variables having the same name but in different scopes don’t 
conflict; two variables having the same name in the same scope do conflict. There also is a 
category aspect to namespaces. Structure tags, union tags, and enumeration tags in a particu-
lar scope all share the same namespace, and that namespace is different from the one used by 
ordinary variables. What this means is that you can use the same name for one variable and 
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one tag in  the same scope without causing an error, but you can’t declare two tags of the same 
name or two variables of the same name in the same scope. For example, the following doesn’t 
cause a conflict in C:  

  struct rect { double x; double y; };

  int rect;   // not a conflict in C   

 However, it can be confusing to use the same identifier in two different ways; also, C++ doesn’t 
allow this because it puts tags and variable names into the same namespace.    

   typedef : A Quick Look  

 The  typedef  facility is an advanced data feature that enables you to create your own name for 
a type. It is similar to  #define  in that respect, but with three differences:  

    ■   Unlike  #define ,  typedef  is limited to giving symbolic names to types only and not to 
values.   

   ■   The  typedef  interpretation is performed by the compiler, not the preprocessor.   

   ■   Within its limits,  typedef  is more flexible than  #define .    

 Let’s see how  typedef  works. Suppose you want to use the term  BYTE  for one-byte numbers. 
You simply define  BYTE  as if it were a  char  variable and precede the definition by the keyword 
 typedef , like so:  

  typedef unsigned char BYTE;   

 From then on, you can use  BYTE  to define variables:  

  BYTE x, y[10], * z;   

 The scope of this definition depends on the location of the  typedef  statement. If the defi-
nition is inside a function, the scope is local, confined to that function. If the definition is 
outside a function, the scope is global.  

 Often, uppercase letters are used for these definitions to remind the user that the type name is 
really a symbolic abbreviation, but you can use lowercase, too:  

  typedef unsigned char byte;   

 The same rules that govern the valid names of variables govern the name used for a  typedef .  

 Creating a name for an existing type might seem a bit frivolous, but it can be useful. With 
the preceding example, using  BYTE  instead of  unsigned char  helps document that you plan 
to use  BYTE  variables to represent numbers rather than character codes. Using  typedef  also 
helps increase portability. For example, we’ve mentioned the  size_t  type, which represents 
the type returned by the  sizeof  operator, and the  time_t  type, which represents the type of 
value returned by the  time()  function. The C standard says  sizeof  and  time()  return integer 
types but leaves it up to the implementation to determine which type. The reason for this lack 
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of specificity is that  the C standards committee feels that no one choice is likely to be the best 
choice for every computer platform. So they make up a new type name, such as  time_t , and 
let the implementation use a  typedef  to set that name to some specific type. That way, they 
can provide a general prototype such as the following:  

  time_t time(time_t *);   

 On one system,  time_t  can be  unsigned long ; on another, it can be  unsigned long long . 
As long as you include the  time.h  header file, your program can access the appropriate defini-
tion, and you can declare  time_t  variables in your code.  

 Some features of  typedef  can be duplicated with a  #define . For example,  

  #define BYTE unsigned char   

 causes the preprocessor to replace  BYTE  with  unsigned char . Here is one that can’t be dupli-
cated with a  #define :  

  typedef char * STRING;   

 Without the keyword  typedef , this example would identify  STRING  itself as a pointer-to- char . 
With the keyword, it makes  STRING  an identifier for pointers-to- char . Therefore,  

  STRING name, sign;   

 means  

  char * name, * sign;   

 Suppose, instead, you did this:  

  #define STRING char *   

 Then  

  STRING name, sign;   

 would translate to the following:  

  char * name, sign;   

 In this case, only  name  would be a pointer.  

 You can use  typedef  with structures, too:  

  typedef struct complex {

          float real;

          float imag;

  } COMPLEX;   

 You can then use the type  COMPLEX  instead of the  struct  called  complex  to represent complex 
numbers. One reason to use  typedef  is to create convenient, recognizable names for types that 
turn up often. For instance, many people prefer to use  STRING  or its equivalent, as in the earlier 
example.  
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 You can omit a tag when using  typedef  to name a structure type:  

  typedef struct {double x; double y;} rect;   

 Suppose you use the  typedef  like this:  

  rect r1 = {3.0, 6.0};

  rect r2;   

 This is translated to  

  struct {double x; double y;} r1= {3.0, 6.0};

  struct {double x; double y;} r2;

  r2 = r1;   

 If two structures are declared without a tag but with identical members (with both member 
names and types matching), C considers the two structures to be of the same type, so assigning 
 r1  to  r2  is a valid operation.  

 A second reason for using  typedef  is that  typedef  names are often used for complicated types. 
For example, the declaration  

  typedef char (* FRPTC ()) [5];   

 makes  FRPTC  announce a type that is a function that returns a pointer to a five-element array 
of  char . (See the upcoming discussion on fancy declarations in the next section.)  

 When using  typedef , bear in mind that it does not create new types; instead, it just creates 
convenient labels. This means, for example, that variables using the  STRING  type we created 
can be used as arguments for functions expecting type pointer-to- char .  

 With structures, unions, and  typedef , C gives you the tools for efficient and portable data 
handling.   

  Fancy Declarations  

 C enables you to create elaborate data forms. Although we are sticking to simpler forms, we feel 
it is our duty to point out some of the potentialities. When you make a declaration, the name 
(or identifier) can be modified by tacking on a modifier.  

  Modifier     Significance   

  *    Indicates a pointer  

  ()    Indicates a function  

  []    Indicates an array  
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 C enables you to use more than one modifier at a time, and that enables you to create a variety 
of types, as shown in the following examples:  

  int board[8][8];   // an array of arrays of int

  int ** ptr;        // a pointer to a pointer to int

  int * risks[10];   // a 10-element array of pointers to int

  int (* rusks)[10]; // a pointer to an array of 10 ints

  int * oof[3][4];   // a 3 x 4 array of pointers to int

  int (* uuf)[3][4]; // a pointer to a 3 x 4 array of ints

  int (* uof[3])[4]; // a 3-element array of pointers to

                          4-element arrays of int   

 The trick to unraveling these declarations is figuring out the order in which to apply the modi-
fiers. These rules should get you through:  

    1.   The  [] , which indicates an array, and the  () , which indicates a function, have the same 
precedence. This precedence is higher than that of the  *  indirection operator, which 
means that the following declaration makes  risks  an array of pointers rather than a 
pointer to an array:  

  int * risks[10];    

   2.   The  []  and  ()  associate from left to right. Thus, the next declaration makes  goods  an 
array of 12 arrays of 50  int s, not an array of 50 arrays of 12  int s:  

  int goods[12][50];    

   3.   Both  []  and  ()  have the same precedence, but because they associate from left to right, 
the following declaration groups  *  and  rusks  together before applying the brackets. This 
means that the following declaration makes  rusks  a pointer to an array of 10  int s:    

  int (* rusks)[10];   

 Let’s apply these rules to this declaration:  

  int * oof[3][4];   

 The  [3]  has higher precedence than the  * , and, because of the left-to-right rule, it is applied 
before the  [4] . Hence,  oof  is an array with three elements. Next in order is  [4] , so the 
elements of  oof  are arrays of four elements. The  *  tells us that these elements are pointers. The 
 int  completes the picture:  oof  is a three-element array of four-element arrays of pointers to 
 int , or, for short, a 3×4 array of pointers to  int . Storage is set aside for 12 pointers.  

 Now look at this declaration:  

  int (* uuf)[3][4];   

 The parentheses cause the  *  modifier to have first priority, making  uuf  a pointer to a 3×4 array 
of  int s. Storage is set aside for a single pointer.  

 These rules also yield the following types:  
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  char * fump(int);      // function returning pointer to char

  char (* frump)(int);   // pointer to a function that returns type char

  char (* flump[3])(int);// array of 3 pointers to functions that

                         //  return type char   

 All three functions take an  int  argument.  

 You can use  typedef  to build a sequence of related types:  

  typdef int arr5[5];

  typedef arr5 * p_arr5;

  typedef p_arr5 arrp10[10];

  arr5 togs; // togs an array of 5 int

  p_arr5 p2; // p2 a pointer to an array of 5 int

  arrp10 ap; // ap an array of 10 pointers to array-of-5-int   

 When you bring structures into the picture, the possibilities for declarations truly grow 
baroque. And the applications... well, we’ll leave that for more advanced texts.   

  Functions and Pointers  

 As the discussion on declarations illustrated, it’s possible to declare pointers to functions. You 
might wonder whether such a beast has any usefulness. Typically, a function pointer is used 
as an argument to another function, telling the second function which function to use. For 
instance, sorting an array involves comparing two elements to see which comes first. If the 
elements are numbers, you can use the  >  operator. More generally, the elements may be a 
string or a structure, requiring a function call to do the comparison. The  qsort()  function 
from the C library is designed to work with arrays of any kind  as long as you tell it what func-
tion to use to compare elements. For that purpose, it takes a pointer to a function as one of 
its arguments. The  qsort()  function then uses that function to sort the type—whether it be 
integer, string, or structure.  

 Let’s take a closer look at function pointers. First, what does it mean? A pointer to, say, an  int  
holds the address of a location in memory at which an  int  can be stored. Functions, too, have 
addresses, because the machine-language implementation of a function consists of code loaded 
into memory. A pointer to a function can hold the address marking the start of the function 
code.  

 Next, when you declare a data pointer, you have to declare the type of data to which it points. 
When declaring a function pointer, you have to declare the type of function pointed to. To 
specify the function type, you specify the function signature, that is, the return type for the 
function and the parameter types for a function. For example, consider this prototype:  

  void ToUpper(char *);   // convert string to uppercase   
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 The type for the  ToUpper()  function is “function with  char *  parameter and return type 
 void .” To declare a pointer called  pf  to this function type, do this:  

  void (*pf)(char *);     // pf a pointer-to-function   

 Reading this declaration, you see the first parentheses pair associates the  *  operator with  pf , 
meaning that  pf  is a pointer to a function. This makes  (*pf)  a function, which makes  
(char *)  the parameter list for the function and  void  the return type. Probably the simplest 
way to create this declaration is to note that it replaces the function name  ToUpper  with the 
expression  (*pf ). So if you want to declare a pointer to a specific type of function, you can 
declare a function of that type and then replace the function name with an expression of the 
form  (*pf)  to create a function pointer declaration.  As mentioned earlier, the first parenthe-
ses are needed because of operator precedence rules. Omitting them leads to something quite 
different:  

  void *pf(char *);     // pf a function that returns a pointer   

  Tip 

 To declare a pointer to a particular type of function, first declare a function of the desired type 
and then replace the function name with an expression of the form  (*pf) ;  pf  then becomes a 
pointer to a function of that type.   

 After you have a function pointer, you can assign to it the addresses of functions of the proper 
type. In this context, the  name  of a function can be used to represent the address of the 
function:  

  void ToUpper(char *);

  void ToLower(char *);

  int round(double);

  void (*pf)(char *);

  pf = ToUpper;        // valid, ToUpper is address of the function

  pf = ToLower;        // valid, ToLower is address of the function

  pf = round;          // invalid, round is the wrong type of function

  pf = ToLower();      // invalid, ToLower() is not an address   

 The last assignment is also invalid because you can’t use a  void  function in an assignment 
statement. Note that the pointer  pf  can point to any function that takes a  char *  argument 
and has a return type of  void , but not to functions with other characteristics.  

 Just as you can use a data pointer to access data, you can use a function pointer to access a 
function. Strangely, there are two logically inconsistent syntax rules for doing so, as the follow-
ing illustrates:  

  void ToUpper(char *);

  void ToLower(char *);

  void (*pf)(char *);

  char mis[] = "Nina Metier";

  pf = ToUpper;
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  (*pf)(mis);     // apply ToUpper to mis (syntax 1)

  pf = ToLower;

  pf(mis);        // apply ToLower to mis (syntax 2)   

 Each approach sounds sensible. Here is the first approach: Because  pf  points to the  ToUpper  
function,  *pf  is the  ToUpper  function, so the expression  (*pf)(mis)  is the same as 
 ToUpper(mis) . Just look at the declarations of  ToUpper  and of  pf  to see that  ToUpper  and 
 (*pf)  are equivalent. Here is the second approach: Because the name of a function is a pointer, 
you can use a pointer and a function name interchangeably, hence  pf(mis)  is the same as 
 ToLower(mis) . Just look at the assignment statement for  pf  to see that  pf  and  ToLower  are 
equivalent. Historically, the developers of C and Unix at Bell Labs took the first view and the 
extenders of  Unix at Berkeley took the second view. K&R C did not allow the second form, but 
to maintain compatibility with existing code, ANSI C accepted both forms ( (*pf)(mis)  and 
 pf(mis) ) as equivalent. Subsequent standards have continued with this lofty ambivalence.  

 Just as one of the most common uses of a data pointer is an argument to a function, one of the 
most common uses of a function pointer is an argument to a function. For example, consider 
this function prototype:  

  void show(void (* fp)(char *), char * str);   

 It looks messy, but it declares two parameters,  fp  and  str . The  fp  parameter is a function 
pointer, and the  str  is a data pointer. More specifically,  fp  points to a function that takes a 
 char *  parameter and has a  void  return type, and  str  points to a  char . So, given the declara-
tions we had earlier, you can make function calls such as the following:  

  show(ToLower, mis);  /* show() uses ToLower() function: fp = ToLower   */

  show(pf, mis);       /* show() uses function pointed to by pf: fp = pf */   

 And how does  show()  use the function pointer passed to it? It uses either the  fp()  or the 
 (*fp)()  syntax to invoke the function:  

  void show(void (* fp)(char *), char * str)

  {

      (*fp)(str); /* apply chosen function to str */

      puts(str);  /* display result               */

  }   

 Here, for example,  show()  first transforms the string  str  by applying to it the function pointed 
to by  fp , and then it displays the transformed string.  

 By the way, functions with return values can be used two different ways as arguments to other 
functions. For example, consider the following:  

  function1(sqrt);      /* passes address of sqrt function      */

  function2(sqrt(4.0)); /* passes return value of sqrt function */   
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 The first passes the address of the  sqrt()  function, and presumably  function1()  will use that 
function in its code. The second statement initially calls the  sqrt()  function, evaluates it, and 
then passes the return value (2.0, in this case) to  function2() .  

 To show the essential ideas, the program in  Listing   14.16    uses  show()  with a variety of trans-
forming functions as arguments. The listing also shows some useful techniques for handling a 
menu.  

  Listing 14.16   The  func_ptr.c  Program  

 // func_ptr.c -- uses function pointers

  #include <stdio.h>

  #include <string.h>

  #include <ctype.h>

  #define LEN 81

  char * s_gets(char * st, int n);

  char showmenu(void);

  void eatline(void);     // read through end of line

  void show(void (* fp)(char *), char * str);

  void ToUpper(char *);   // convert string to uppercase

  void ToLower(char *);   // convert string to uppercase

  void Transpose(char *); // transpose cases

  void Dummy(char *);     // leave string unaltered

  

  int main(void)

  {

      char line[LEN];

      char copy[LEN];

      char choice;

      void (*pfun)(char *); // points a function having a

                            // char * argument and no

                            // return value

      puts("Enter a string (empty line to quit):");

      while (s_gets(line, LEN) != NULL && line[0] != '\0')

      {

          while  ((choice = showmenu()) != 'n')

          {

              switch (choice   )  // switch sets pointer

              {

                  case 'u' : pfun = ToUpper;   break;

                  case 'l' : pfun = ToLower;   break;

                  case 't' : pfun = Transpose; break;

                  case 'o' : pfun = Dummy;     break;

              }

              strcpy(copy, line);// make copy for show()

              show(pfun, copy);  // use selected function

          }
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          puts("Enter a string (empty line to quit):");

      }

      puts("Bye!");

  

      return 0;

  }

  

  char showmenu(void)

  {

      char ans;

      puts("Enter menu choice:");

      puts("u) uppercase       l) lowercase");

      puts("t) transposed case o) original case");

      puts("n) next string");

      ans = getchar();    // get response

      ans = tolower(ans); // convert to lowercase

      eatline();           // dispose of rest of line

      while (strchr("ulton", ans) == NULL)

      {

          puts("Please enter a u, l, t, o, or n:");

          ans = tolower(getchar());

          eatline();

      }

  

      return ans;

  }

  

  void eatline(void)

  {

      while (getchar() != '\n')

          continue;

  }

  

  void ToUpper(char * str)

  {

      while (*str)

      {

          *str = toupper(*str);

          str++;

      }

  }

  

  void ToLower(char * str)

  {

      while (*str)

      {

          *str = tolower(*str);
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          str++;

      }

  }

  void Transpose(char * str)

  {

      while (*str)

      {

          if (islower(*str))

              *str = toupper(*str);

          else if (isupper(*str))

              *str = tolower(*str);

          str++;

      }

  }

  

  void Dummy(char * str)

  {

      // leaves string unchanged

  }

  

  void show(void (* fp)(char *), char * str)

  {

      (*fp)(str); // apply chosen function to str

      puts(str);  // display result

  }

  

  char  * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 Here is a sample run:  

  Enter a string (empty line to quit):

   Does C make you feel loopy? 
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  Enter menu choice:

  u) uppercase       l) lowercase

  t) transposed case o) original case

  n) next string

   t 

  dOES c MAKE YOU FEEL LOOPY?

  Enter menu choice:

  u) uppercase       l) lowercase

  t) transposed case o) original case

  n) next string

   l 

  does c make you feel loopy?

  Enter menu choice:

  u) uppercase       l) lowercase

  t) transposed case o) original case

  n) next string

   n 

  Enter a string (empty line to quit):

  

  Bye!   

 Note that the  ToUpper() ,  ToLower( ),  Transpose( ), and  Dummy()  functions all have the same 
type, so all four can be assigned to the  pfun  pointer. This program uses  pfun  as the argument 
to  show() , but you can also use any of the four function names directly as arguments, as in 
 show(Transpose, copy ).  

 You can use  typedef  in situations like these. For example, the program could have done this:  

  typedef void (*V_FP_CHARP)(char *);

  void show (V_FP_CHARP fp, char *);

  V_FP_CHARP pfun;   

 If you’re feeling adventurous, you can declare and initialize an array of such pointers:  

  V_FP_CHARP arpf[4] = {ToUpper, ToLower, Transpose, Dummy};   

 If you then modify the  showmenu()  function so that it is type  int  and returns  0  if the user 
enters  u ,  1  if the user enters  l ,  2  if the user enters  t , and so on, you could replace the loop 
holding the  switch  statement with the following:  

  index = showmenu();

  while (index >= 0 && index <= 3)

  {

      strcpy(copy, line);       /* make copy for show()  */

      show(arpf[index], copy);  /* use selected function */

      index = showmenu();

  }   
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 You can’t have an array of functions, but you can have an array of function pointers.  

 You’ve now seen all four ways in which a function name can be used: in defining a function, 
in declaring a function, in calling a function, and as a pointer.  Figure   14.4    sums up the uses.  

 

function name used in a prototype declaration: int comp(int x, int y);

function name used in a function call: status = comp(q,r);

function name used in a function definition: int comp(intx, inty)
{ ...

function name used as a pointer in assignment: pfunct = comp;

function name used as pointer argument: slowsort(arr,n,comp);

 Figure 14.4   Uses for a function name.         

 As far as menu handling goes, the  showmenu()  function shows several techniques. First, the 
code  

  ans = getchar();    // get response

  ans = tolower(ans); // convert to lowercase   

 and  

  ans = tolower(getchar());   

 show two ways to convert user input to one case so that you don’t have to test for both  'u'  
and  'U' , and so on.  

 The  eatline()  function disposes of the rest of the entry line. This is useful on two accounts. 
First, to enter a choice, the user types a letter and then presses the Enter key, which generates 
a newline character. That newline character will be read as the next response unless you get rid 
of it first. Second, suppose the user responds by typing the entire word  uppercase  instead of the 
letter  u . Without the  eatline()  function, the program would treat each character in the word 
 uppercase  as a separate response. With  eatline() , the program processes the  u  and discards the 
rest of the line.  

 Next, the  showmenu()  function is designed to return only valid choices to the program. 
To help with that task, the program uses the standard library function  strchr()  from the 
 string.h  header file:  

  while (strchr("ulton", ans) == NULL)   

 This function looks for the location of the first occurrence of the character  ans  in the string 
 "ulton"  and returns a pointer to it. If it doesn’t find the character, it returns the null pointer. 
Therefore, this  while  loop test is a more convenient replacement for the following:  

  while (ans != 'u' && ans != 'l' && ans != 't' && ans != 'o' && ans != 'n')   

 The more choices you have to check, the more convenient using  strchr()  becomes.   
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  Key Concepts  

 The information we need to represent a programming problem often is more involved than a 
single number or a list of numbers. A program may deal with an entity or collection of enti-
ties having several properties. For example, you might represent a client by his or her name, 
address, phone number, and other information. Or you might describe a movie DVD by its 
title, distributor, playing time, cost, and so on. A C structure lets you collect all this informa-
tion in a single unit. This is very helpful in organizing a program. Rather than storing informa-
tion in a scattered collection  of variables, you can store all the related information in one place.  

 When you design a structure, it’s often useful to develop a package of functions to go along 
with it. For example, rather than write a bunch of  printf()  statements every time you want to 
display the contents of a structure, you can write a display function that takes the structure (or 
its address) as an argument. Because all the information is in the structure, you need just one 
argument. If you had put the information into separate variables, you would have had to use 
a separate argument for each individual part. Also, if you, say, add a member to the structure,  
you have to rewrite the functions, but you don’t have to change the function calls, which is a 
great convenience if you modify the design.  

 A union declaration looks much like a structure declaration. However, the union members 
share the same memory space and only one member can inhabit the union at a time. In 
essence, a union allows you to create a variable that can hold one value, but more than one 
type.  

 The  enum  facility offers a means of defining symbolic constants, and the  typedef  facility offers 
a means to create a new identifier for a basic or derived type.  

 Pointers to functions provide a means to tell one function which function it should use.    

     Summary  

 A C structure provides the means to store several data items, usually of different types, in the 
same data object. You can use a tag to identify a specific structure template and to declare 
variables of that type. The membership dot operator ( . ) enables you to access the individual 
members of a structure by using labels from the structure template.  

 If you have a pointer to a structure, you can use the pointer and the indirect membership 
operator ( -> ) instead of a name and the dot operator to access individual members. To find the 
address of a structure, use the  &  operator. Unlike arrays, the name of a structure does not serve 
as the address of the structure.  

 Traditionally, structure-related functions have used pointers to structures as arguments. Modern 
C permits structures to be passed as arguments, used as return values, and assigned to structures 
of the same type. However, passing an address usually is more efficient.  

 Unions use the same syntax as structures. However, with unions, the members share a common 
storage space. Instead of storing several data types simultaneously in the manner of a structure, 
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the union stores a single data item type from a list of choices. That is, a structure can hold, say, 
an  int  and a  double  and a  char , and the corresponding union can hold an  int  or a  double  
or a  char .  

 Enumerations allow you to create a group of symbolic integer constants (enumeration 
constants) and to define an associated enumeration type.  

 The  typedef  facility enables you to establish aliases or shorthand representations of standard C 
types.  

 The name of a function yields the address of that function. Such addresses can be passed as 
arguments to functions, which then use the pointed-to function. If  pf  is a function pointer 
that has been assigned the address of a particular function, you can invoke that function in 
two ways:  

  #include <math.h>    /* declares double sin(double) function */

  ...

  double (*pdf)(double);

  double x;

  pdf = sin;

  x = (*pdf)(1.2);  // invokes sin(1.2)

  x = pdf(1.2);     // also invokes sin(1.2)    

  Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    What’s wrong with this template?  

  structure {

         char itable;

         int  num[20];

         char * togs

  }     

   2.    Here is a portion of a program. What will it print?  

  #include <stdio.h>

  struct house {

      float sqft;

      int rooms;

      int stories;

      char address[40];

  };

  int main(void)

  {

    struct house fruzt = {1560.0, 6, 1, "22 Spiffo Road"};
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    struct house *sign;

  

    sign = &fruzt;

    printf("%d %d\n", fruzt.rooms, sign->stories);

    printf("%s \n", fruzt.address);

    printf("%c %c\n", sign->address[3], fruzt.address[4]);

    return 0;

  }     

   3.    Devise a structure template that will hold the name of a month, a three-letter 
abbreviation for the month, the number of days in the month, and the month number.    

   4.    Define an array of 12 structures of the sort in question 3 and initialize it for a non-leap 
year.    

   5.    Write a function that, when given the month number, returns the total days in the year 
up to and including that month. Assume that the structure template of question 3 and 
an appropriate array of such structures are declared externally.    

   6.      a.   Given the following  typedef  ,  declare a 10-element array of the indicated 
structure. Then, using individual member assignment (or the string equivalent), let 
the third element describe a Remarkatar lens with a focal length of 500 mm and an 
aperture of f/2.0.  

  typedef struct lens {    /* lens descriptor */
      float foclen;        /* focal length,mm */

      float fstop;         /* aperture        */

      char brand[30];      /* brand name      */

  } LENS;    

   b.   Repeat part a., but use an initialization list with a designated initializer in the 
declaration rather than using separate assignment statements for each member.      

   7.    Consider the following programming fragment:  

  struct name {

          char first[20];

          char last[20];

  };

  struct bem {

          int limbs;

          struct name title;

          char type[30];

  };

  struct bem * pb;

  struct bem deb = {
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          6,

          {"Berbnazel", "Gwolkapwolk"},

          "Arcturan"

  

  };

  

  pb = &deb;   

    a.   What would each of the following statements print?  

  printf("%d\n", deb.limbs);
  printf("%s\n", pb->type);

  printf("%s\n", pb->type + 2);    

   b.   How could you represent  "Gwolkapwolk"  in structure notation (two ways)?   

   c.   Write a function that takes the address of a  bem  structure as its argument and 
prints the contents of that structure in the form shown here (assume that the 
structure template is in a file called  starfolk.h ):  

   Berbnazel Gwolkapwolk is a 6-limbed Arcturan.        

   8.    Consider the following declarations:  

  struct fullname {

                  char fname[20];

                  char lname[20];

                  };

  struct bard     {

                  struct fullname name;

                  int born;

                  int died;

                  };

  struct bard willie;

  struct bard *pt = &willie;   

    a.   Identify the  born  member of the  willie  structure using the  willie  identifier.   

   b.   Identify the  born  member of the  willie  structure using the  pt  identifier.   

   c.   Use a  scanf()  call to read in a value for the  born  member using the  willie  
identifier.   

   d.   Use a  scanf()  call to read in a value for the  born  member using the  pt  identifier.   

   e.   Use a  scanf()  call to read in a value for the  lname  member of the  name  member 
using the  willie  identifier.   

   f.   Use a  scanf()  call to read in a value for the  lname  member of the  name  member 
using the  pt  identifier.   
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   g.   Construct an identifier for the third letter of the first name of someone described 
by the  willie  variable.   

   h.   Construct an expression representing the total number of letters in the first and 
last names of someone described by the  willie  variable.      

   9.    Define a structure template suitable for holding the following items: the name of an 
automobile, its horsepower, its EPA city-driving MPG rating, its wheelbase, and its year. 
Use  car  as the template tag.    

   10.    Suppose you have this structure:  

  struct gas {

          float distance;

          float gals;

          float mpg;

  };   

    a.   Devise a function that takes a  struct gas  argument. Assume that the passed 
structure contains the  distance  and  gals  information. Have the function 
calculate the correct value for the  mpg  member and return the now completed 
structure.   

   b.   Devise a function that takes the address of a  struct gas  argument. Assume 
that the passed structure contains the  distance  and  gals  information. Have 
the function calculate the correct value for the  mpg  member and assign it to the 
appropriate member.      

   11.    Declare an enumeration with the tag choices that sets the enumeration constants  no , 
 yes , and  maybe  to 0, 1, and 2, respectively.    

   12.    Declare a pointer to a function that returns a pointer-to- char  and that takes a pointer-to-
 char  and a  char  as arguments.    

   13.    Declare four functions and initialize an array of pointers to point to them. Each function 
should take two  double  arguments and return a  double . Also, show two ways using the 
array to invoke the second function with arguments of 10.0 and 2.5.      

  Programming Exercises  

    1.    Redo Review Question 5, but make the argument the spelled-out name of the month 
instead of the month number. (Don’t forget about  strcmp() .) Test the function in a 
simple program.    
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   2.    Write a program that prompts the user to enter the day, month, and year. The month 
can be a month number, a month name, or a month abbreviation. The program then 
should return the total number of days in the year up through the given day. (Do take 
leap years into account.)    

   3.    Revise the book-listing program in  Listing   14.2    so that it prints the book descriptions in 
the order entered, then alphabetized by title, and then in order of increased value.    

   4.    Write a program that creates a structure template with two members according to the 
following criteria:  

    a.   The first member is a social security number. The second member is a structure 
with three members. Its first member contains a first name, its second member 
contains a middle name, and its final member contains a last name. Create and 
initialize an array of five such structures. Have the program print the data in this 
format:  

  Dribble, Flossie M. –– 302039823   

 Only the initial letter of the middle name is printed, and a period is added. Neither the 
initial (of course) nor the period should be printed if the middle name member is empty. 
Write a function to do the printing; pass the structure array to the function.   

   b.   Modify part a. by passing the structure value instead of the address.      

   5.    Write a program that fits the following recipe:  

    a.   Externally define a  name  structure template with two members: a string to hold the 
first name and a string to hold the second name.   

   b.   Externally define a  student  structure template with three members: a  name  
structure, a  grade  array to hold three floating-point scores, and a variable to hold 
the average of those three scores.   

   c.   Have the  main()  function declare an array of  CSIZE  (with  CSIZE = 4 ) student 
structures and initialize the name portions to names of your choice. Use functions 
to perform the tasks described in parts d., e., f., and g.   

   d.   Interactively acquire scores for each student by prompting the user with a student 
name and a request for scores. Place the scores in the grade array portion of the 
appropriate structure. The required looping can be done in  main()  or in the 
function, as you prefer.   

   e.   Calculate the average score value for each structure and assign it to the proper 
member.   

   f.   Print the information in each structure.   

   g.   Print the class average for each of the numeric structure members.      
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   6.    A text file holds information about a softball team. Each line has data arranged as 
follows:  

  4 Jessie Joybat 5 2 1 1   

   The first item is the player’s number, conveniently in the range 0–18. The second item 
is the player’s first name, and the third is the player’s last name. Each name is a single 
word. The next item is the player’s official times at bat, followed by the number of hits, 
walks, and runs batted in (RBIs). The file may contain data for more than one game, 
so the same player may have more than one line of data, and there may be data for 
other players between those lines. Write a program that stores the data into an array of  
structures. The structure should have members to represent the first and last names, the 
at bats, hits, walks, and RBIs (runs batted in), and the batting average (to be calculated 
later). You can use the player number as an array index. The program should read to end-
of-file, and it should keep cumulative totals for each player.  

   The world of baseball statistics is an involved one. For example, a walk or reaching base 
on an error doesn’t count as an at-bat but could possibly produce an RBI. But all this 
program has to do is read and process the data file, as described next, without worrying 
about how realistic the data is.  

 The simplest way for the program to proceed is to initialize the structure contents to 
zeros, read the file data into temporary variables, and then add them to the contents of 
the corresponding structure. After the program has finished reading the file, it should 
then calculate the batting average for each player and store it in the corresponding 
structure member. The batting average is calculated by dividing the cumulative number 
of hits for a player by the cumulative number of at-bats; it should be a floating-point 
calculation. The program should then display the cumulative data for each player along 
with  a line showing the combined statistics for the entire team.    

   7.    Modify  Listing   14.14    so that as each record is read from the file and shown to you, you 
are given the chance to delete the record or to modify its contents. If you delete the 
record, use the vacated array position for the next record to be read. To allow changing 
the existing contents, you’ll need to use the  "r+b"  mode instead of the  "a+b"  mode, and 
you’ll have to pay more attention to positioning the file pointer so that appended records 
don’t overwrite existing records. It’s simplest to make all changes in the data stored in 
program memory and then write the  final set of information to the file. One approach to 
keeping track is to add a member to the book structure that indicates whether it is to be 
deleted.    

   8.    The Colossus Airlines fleet consists of one plane with a seating capacity of 12. It makes 
one flight daily. Write a seating reservation program with the following features:  

    a.   The program uses an array of 12 structures. Each structure should hold a seat 
identification number, a marker that indicates whether the seat is assigned, the last 
name of the seat holder, and the first name of the seat holder.   
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   b.   The program displays the following menu:  

  To choose a function, enter its letter label:
  a) Show number of empty seats

  b) Show list of empty seats

  c) Show alphabetical list of seats

  d) Assign a customer to a seat assignment

  e) Delete a seat assignment

  f) Quit    

   c.   The program successfully executes the promises of its menu. Choices  d)  and  e)  
require additional input, and each should enable the user to abort an entry.   

   d.   After executing a particular function, the program shows the menu again, except 
for choice  f) .   

   e.   Data is saved in a file between runs. When the program is restarted, it first loads in 
the data, if any, from the file.      

   9.    Colossus Airlines (from exercise 8) acquires a second plane (same capacity) and expands 
its service to four flights daily (Flights 102, 311, 444, and 519). Expand the program to 
handle four flights. Have a top-level menu that offers a choice of flights and the option 
to quit. Selecting a particular flight should then bring up a menu similar to that of 
exercise 8. However, one new item should be added: confirming a seat assignment. Also, 
the quit choice should be replaced with the choice of exiting to the top-level menu. Each 
display should indicate which flight is currently being handled.  Also, the seat assignment 
display should indicate the confirmation status.    

   10.    Write a program that implements a menu by using an array of pointers to functions. For 
instance, choosing  a  from the menu would activate the function pointed to by the first 
element of the array.    

   11.    Write a function called  transform()  that takes four arguments: the name of a source 
array containing type  double  data, the name of a target array of type  double , an  int  
representing the number of array elements, and the name of a function (or, equivalently, 
a pointer to a function). The  transform()  function should apply the indicated function 
to each element in the source array, placing the return value in the target array. For 
example, the call  

  transform(source, target, 100, sin);   

 would set  target[0]  to  sin(source[0]) , and so on, for 100 elements. Test the function 
in a program that calls  transform()  four times, using two functions from the  math.h  
library and two suitable functions of your own devising as arguments to successive calls 
of the  transform()  function.        
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 Bit Fiddling  

    You will learn about the following in this chapter:  

    ■   Operators:  

  ~ & |^   

  >> <<   

  &= |= ^= >>= <<=    

   ■   Binary, octal, and hexadecimal number notations (a review)   

   ■   Two C facilities for handling the individual bits in a value: bitwise operators and bit 
fields   

   ■   Keywords:  

    _Alignas, _Alignof     

 With C, you can manipulate the individual bits in a variable. Perhaps you are wondering why 
anyone would want to. Be assured that sometimes this ability is necessary, or at least useful. 
For example, a hardware device is often controlled by sending it a byte or two in which each 
bit has a particular meaning. Also, operating system information about files often is stored by 
using particular bits to indicate particular items. Many compression and encryption operations 
manipulate individual bits. High-level languages generally don’t deal with this level of detail; 
C’s ability to provide high-level language facilities while also being  able to work at a level typi-
cally reserved for assembly language makes it a preferred language for writing device drivers 
and embedded code.  

 We’ll investigate C’s bit powers in this chapter after we supply you with some background 
about bits, bytes, binary notation, and other number bases.   
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     Binary Numbers, Bits, and Bytes  

 The usual way to write numbers is based on the number 10. For example, 2157 has a 2 in the 
thousands place, a 1 in the hundreds place, a 5 in the tens place, and a 7 in the ones place. 
This means you can think of 2157 as being the following:  

  2 x 1000 + 1 x 100 + 5 x 10 + 7 x 1   

 However, 1000 is 10 cubed, 100 is 10 squared, 10 is 10 to the first power, and, by convention, 1 
is 10 (or any positive number) to the zero power. Therefore, you can also write 2157 as this:  

  2 x 10 3  + 1 x 10 2  + 5 x 10 1  + 7 x 10 0    

 Because our system of writing numbers is based on powers of 10, we say that 2157 is written in 
 base 10.   

 Presumably, the decimal system evolved because we have 10 fingers. A computer bit, in a sense, 
has only two fingers because it can be set only to 0 or 1, off or on. Therefore, a  base 2  system 
is natural for a computer. It uses powers of two instead of powers of 10. Numbers expressed in 
base 2 are termed  binary numbers.  The number 2 plays the same role for binary numbers that 
the number 10 does for base 10 numbers. For example, a binary number such as 1101 mean 
this:  

  1 x 2 3  + 1 x 2 2  + 0 x 2 1  + 1 x 2 0    

 In decimal numbers, it becomes this:  

  1 x 8 + 1 x 4 + 0 x 2 + 1 x 1 = 13   

 You can use the binary system to express any integer (if you have enough bits) as a combina-
tion of 1s and 0s. This system is very convenient for digital computers, which express informa-
tion in combinations of on and off states that can be interpreted as 1s and 0s. Let’s see how the 
binary system works for a 1-byte integer.  

  Binary Integers  

 Usually, a byte contains 8 bits. C, remember, uses the term  byte  to denote the size used to 
hold a system’s character set, so a C byte could be 8 bits, 9 bits, 16 bits, or some other value. 
However, the 8-bit byte is the byte used to describe memory chips and the byte used to describe 
data transfer rates. To keep matters simple, this chapter assumes an 8-bit byte. (For clarity, the 
computing world often uses the term  octet  for an 8-bit byte.) You can think of these 8 bits as 
being numbered from 7 to 0, left to right. Bit  7 is called the  high-order bit,  and bit 0 is the  low-
order bit  in the byte. Each bit number corresponds to a particular exponent of 2. Imagine the 
byte as looking like  Figure   15.1   .  
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0 1 0 0 1 0 0 1

bit number 7 6 5 4 3 2 1 0

bit value 128 64 32

This example shows bits 6, 3, and 0 set to 1.
The value of this byte is 64 + 8 + 1 or 73.

16 8 4 2 1

 Figure 15.1   Bit numbers and bit values.         

 Here, 128 is 2 to the 7th power, and so on. The largest number this byte can hold is 1, with all 
bits set to 1: 11111111. The value of this binary number is as follows:  

  128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255   

 The smallest binary number would be 00000000, or a simple 0. A byte can store numbers from 
0 to 255, for a total of 256 possible values. Or, by interpreting the bit pattern differently, a 
program can use a byte to store numbers from –128 to +127, again a total of 256 values. For 
example,  unsigned char  typically uses a byte to represent the 0-to-255 range, whereas  signed 
char  typically uses a byte to represent the –128 to +127 range.   

  Signed Integers  

 The representation of signed numbers is determined by the hardware, not by C. Probably the 
simplest way to represent signed numbers is to reserve 1 bit, such as the high-order bit, to 
represent the sign. In a 1-byte value, this leaves 7 bits for the number itself. In such a  sign-
magnitude  representation, 10000001 is –1 and 00000001 is 1. The total range, then, is –127 to 
+127.  

 One disadvantage of this approach is that it has two zeros: +0 and –0. This is confusing, and it 
also uses up two bit patterns for just one value.  

 The  two’s-complement  method avoids that problem and is the most common system used 
today. We’ll discuss this method as it applies to a 1-byte value. In that context, the values 0 
through 127 are represented by the last 7 bits, with the high-order bit set to 0. So far, that’s the 
same as the sign-magnitude method. Also, if the high-order bit is 1, the value is negative. The 
difference comes in determining the value of that negative number. Subtract the bit-pattern 
for a negative number from the 9-bit pattern 100000000 (256 as expressed in binary), and 
the result is the magnitude  of the value. For example, suppose the pattern is 10000000. As an 
unsigned byte, it would be 128. As a signed value, it is negative (bit 7 is 1) and has a value 
of 100000000−10000000, or 10000000 (128). Therefore, the number is –128. (It would have 
been –0 in the sign-magnitude system.) Similarly, 10000001 is –127, and 11111111 is –1. The 
method represents numbers in the range –128 to +127.  
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 The simplest method for reversing the sign of a two’s-complement binary number is to invert 
each bit (convert 0s to 1s and 1s to 0s) and then add 1. Because 1 is 00000001, –1 is 11111110 
+ 1, or 11111111, just as you saw earlier.  

 The  one’s-complement  method forms the negative of a number by inverting each bit in the 
pattern. For instance, 00000001 is 1 and 11111110 is –1. This method also has a –0: 11111111. 
Its range (for a 1-byte value) is –127 to +127.   

  Binary Floating Point  

 Floating-point numbers are stored in two parts: a binary fraction and a binary exponent. Let’s 
see how this is done.  

  Binary Fractions  

 The ordinary fraction 0.527 represents  

  5/10 + 2/100 + 7/1000   

 with the denominators representing increasing powers of 10. In a binary fraction, you use 
powers of two for denominators, so the binary fraction .101 represents  

  1/2 + 0/4 + 1/8   

 which in decimal notation is  

  0.50 + 0.00 + 0.125   

 or 0.625.  

 Many fractions, such as 1/3, cannot be represented exactly in decimal notation. Similarly, 
many fractions cannot be represented exactly in binary notation. Indeed, the only fractions 
that can be represented exactly are combinations of multiples of powers of 1/2. Therefore, 3/4 
and 7/8 can be represented exactly as binary fractions, but 1/3 and 2/5 cannot be.   

  Floating-Point Representation  

 To represent a floating-point number in a computer, a certain number of bits (depending 
on the system) are set aside to hold a binary fraction. Additional bits hold an exponent. In 
general terms, the actual value of the number consists of the binary fraction times 2 to the 
indicated exponent. Multiplying a floating-point number by, say, 4, increases the exponent by 
2 and leaves the binary fraction unchanged. Multiplying by a number that is not a power of 2 
changes the binary fraction and, if necessary, the exponent.     

  Other Number Bases  

 Computer workers often use number systems based on 8 and on 16. Because 8 and 16 are 
powers of 2, these systems are more closely related to a computer’s binary system than the 
decimal system is.  
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  Octal  

  Octal  refers to a base 8 system. In this system, the different places in a number represent powers 
of 8. You use the digits 0 to 7. For example, the octal number 451 (written 0451 in C) repre-
sents this:  

  4 x 8 2  + 5 x 8 1  + 1 x 8 0  = 297 (base 10)   

 A handy thing to know about octal is that each octal digit corresponds to three binary digits. 
 Table   15.1    shows the correspondence. This correspondence makes it simple to translate 
between the two systems. For example, the octal number 0377 is 11111111 in binary. We 
replaced the 3 with 011, dropped the leading 0, and then replaced each 7 with 111. The only 
awkward part is that a 3-digit octal number might take up to 9 bits in binary form, so an octal 
value larger than 0377 requires more than a byte. Note that internal 0s are not dropped: 0173 
is 01 111  011, not 01 111 11.  

  Table 15.1   Binary Equivalents for Octal Digits  

  Octal Digit     Binary Equivalent   

 0   000  

 1   001  

 2   010  

 3   011  

 4   100  

 5   101  

 6   110  

 7   111  

  Hexadecimal  

  Hexadecimal  (or  hex ) refers to a base 16 system. It uses powers of 16 and the digits 0 to 15, but 
because base 10 doesn’t have single digits to represent the values 10 to 15, hexadecimal uses 
the letters A to F for that purpose. For instance, the hex number A3F (written 0xA3F in C) 
represents  

  10 x 16 2  + 3 x 16 1  + 15 x 16 0  = 2623 (base 10)   

 because A represents 10 and F represents 15. In C, you can use either lowercase or uppercase 
letters for the additional hex digits. Therefore, you can also write 2623 as  0xa3f .  

 Each hexadecimal digit corresponds to a 4-digit binary number, so two hexadecimal digits 
correspond exactly to an 8-bit byte. The first digit represents the upper 4 bits, and the second 
digit the last 4 bits. This makes hexadecimal a natural choice for representing byte values. 
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 Table   15.2    shows the correspondence. For example, the hex value 0xC2 translates to 11000010. 
Going the other direction, the binary value 11010101 can be viewed as 1101 0101, which trans-
lates to 0xD5.  

  Table 15.2   Decimal, Hexadecimal, and Binary Equivalents  

  Decimal Digit     Hexadecimal 

Digit   

  Binary 

Equivalent   

  Decimal Digit     Hexadecimal 

Digit   

  Binary 

Equivalent   

 0   0   0000   8   8   1000  

 1   1   0001   9   9   1001  

 2   2   0010   10   A   1010  

 3   3   0011   11   B   1011  

 4   4   0100   12   C   1100  

 5   5   0101   13   D   1101  

 6   6   0110   14   E   1110  

 7   7   0111   15   F   1111  

 Now that you’ve seen what bits and bytes are, let’s examine what C can do with them. C has 
two facilities to help you manipulate bits. The first is a set of six bitwise operators that act on 
bits. The second is the  field  data form, which gives you access to bits within an  int . The follow-
ing discussion outlines these C features.    

  C’s Bitwise Operators  

 C offers bitwise logical operators and shift operators. In the following examples, we will write 
out values in binary notation so that you can see what happens to the bits. In an actual 
program, you would use integer variables or constants written in the usual forms. For example, 
instead of  00011001 , you would use  25  or  031  or  0x19 . For our examples, we will use 8-bit 
numbers, with the bits numbered 7 to 0, left to right.  

  Bitwise Logical Operators  

 The four bitwise logical operators work on integer-type data, including  char . They are called 
 bitwise  because they operate on each bit independently of the bit to the left or right. Don’t 
confuse them with the regular logical operators ( && ,  || , and  ! ), which operate on values as a 
whole.  
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  One’s Complement, or Bitwise Negation:  ~   

 The unary operator  ~  changes each 1 to a 0 and each 0 to a 1, as in the following example:  

  ~(10011010)  // expression

   (01100101)  // resulting value   

 Suppose that  val  is an  unsigned char  assigned the value  2 . In binary,  2  is  00000010 . Then 
 ~val  has the value  11111101 , or  253 . Note that the operator does not change the value of  val , 
just as  3 * val  does not change the value of  val ;  val  is still  2 , but it does create a new value 
that can be used or assigned elsewhere:  

  newval = ~val;

  printf("%d", ~val);   

 If you want to change the value of  val  to  ~val , use this simple assignment:  

  val = ~val;    

  Bitwise AND:  &   

 The binary operator  &  produces a new value by making a bit-by-bit comparison between two 
operands. For each bit position, the resulting bit is 1 only if both corresponding bits in the 
operands are 1. (In terms of true/false, the result is true only if each of the two bit operands is 
true.) Therefore, the expression  

  (10010011) & (00111101)  // expression   

 evaluates to the following value:  

  (00010001)               // resulting value   

 The reason is that only bits 4 and 0 are  1  in both operands.  

 C also has a combined bitwise AND-assignment operator:  &= . The statement  

  val &= 0377;   

 produces the same final result as the following:  

  val = val & 0377;    

  Bitwise OR:  |   

 The binary operator  |  produces a new value by making a bit-by-bit comparison between two 
operands. For each bit position, the resulting bit is 1 if either of the corresponding bits in the 
operands is 1. (In terms of true/false, the result is true if one or the other bit operands are true 
or if both are true.) Therefore, the expression  

  (10010011) | (00111101)  // expression   

 evaluates to the following value:  

  (10111111)              // resulting value   
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 The reason is that all bit positions but bit 6 have the value  1  in one or the other operand (or 
both).  

 C also has a combined bitwise OR-assignment operator:  |= . The statement  

  val |= 0377;   

 produces the same final result as this:  

  val = val | 0377;    

  Bitwise EXCLUSIVE OR:  ̂    

 The binary operator  ̂   makes a bit-by-bit comparison between two operands. For each bit posi-
tion, the resulting bit is 1 if one or the other (but not both) of the corresponding bits in the 
operands is 1. (In terms of true/false, the result is true if one or the other bit operands—but not 
both— is true.) Therefore, the expression  

  (10010011) ^ (00111101)  // expression   

 evaluates to the following:  

  (10101110)               // resulting value   

 Note that because bit position 0 has the value  1  in both operands, the resulting 0 bit has value 
 0 .  

 C also has a combined bitwise OR-assignment operator:  ̂ = . The statement  

  val ^= 0377;   

 produces the same final result as this:  

  val = val ^ 0377;     

  Usage: Masks  

 The bitwise  AND  operator is often used with a mask. A  mask  is a bit pattern with some bits set 
to on (1) and some bits to off (0). To see why a mask is called a mask, let’s see what happens 
when a quantity is combined with a mask by using  & . For example, suppose you define the 
symbolic constant  MASK  as  2  (that is, binary  00000010 ), with only bit number 1 being nonzero. 
Then the statement  

  flags = flags & MASK;   

 would cause all the bits of  flags  (except bit 1) to be set to 0 because any bit combined with 0 
using the  &  operator yields 0. Bit number 1 will be left unchanged. (If the bit is 1,  1 & 1  is 1; 
if the bit is 0,  0 & 1  is 0.) This process is called “using a mask” because the zeros in the mask 
hide the corresponding bits in  flags .  
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 Extending the analogy, you can think of the 0s in the mask as being opaque and the 1s as 
being transparent. The expression  flags & MASK  is like covering the  flags  bit pattern with 
the mask; only the bits under  MASK ’s 1s are visible (see  Figure   15.2   ).  

 

0 0 0 0 0 0 1

1 0 0 1 0 1 1 0

MASK

flag

AND

EQUALS

1

1

 Figure 15.2   A mask.         

 You can shorten the code by using the AND-assignment operator, as shown here:  

  flags &= MASK;   

 One common C usage is this statement:  

  ch &= 0xff;  /* or ch &= 0377; */   

 The value  0xff , recall, is  11111111  in binary, as is the value  0377 . This mask leaves the final 8 
bits of  ch  alone and sets the rest to 0. Regardless of whether the original  ch  is 8 bits, 16 bits, or 
more, the final value is trimmed to something that fits into a single 8-bit byte. In this case, the 
mask is 8 bits wide.   

  Usage: Turning Bits On (Setting Bits)  

 Sometimes you might need to turn on particular bits in a value while leaving the remaining 
bits unchanged. For instance, an IBM PC controls hardware through values sent to ports. To 
turn on, say, the internal speaker, you might have to turn on the 1 bit while leaving the others 
unchanged. You can do this with the bitwise OR operator.  

 For example, consider the  MASK , which has bit 1 set to 1. The statement  

  flags = flags | MASK;   
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 sets bit number 1 in  flags  to 1 and leaves all the other bits unchanged. This follows because 
any bit combined with 0 by using the  |  operator is itself, and any bit combined with 1 by 
using the  |  operator is 1.  

 For example, suppose  flags  is  00001111  and  MASK  is  10110110 . The expression  

  flags | MASK   

 becomes  

  (00001111) | (10110110)  // expression   

 and evaluates to the following:  

  (10111111)               // resulting value   

 All the bits that are set to  1  in  MASK  are also set to  1  in the result. All the bits in  flags  that 
corresponded to  0  bits in  MASK  are left unchanged.  

 For short, you can use the bitwise OR-assignment operator:  

  flags |= MASK;   

 This, too, sets to 1 those bits in  flags  that are also on in  MASK , leaving the other bits 
unchanged.   

  Usage: Turning Bits Off (Clearing Bits)  

 Just as it’s useful to be able to turn on particular bits without disturbing the other bits, it’s 
useful to be able to turn them off. Suppose you want to turn off bit 1 in the variable  flags . 
Once again,  MASK  has only the 1 bit turned on. You can do this:  

  flags = flags & ~MASK;   

 Because  MASK  is all 0s except for bit 1,  ~MASK  is all 1s except for bit 1. A 1 combined with any 
bit using  &  is that bit, so the statement leaves all the bits other than bit 1 unchanged. Also, a 0 
combined with any bit using  &  is 0, so bit 1 is set to 0 regardless of its original value.  

 For example, suppose  flags  is  00001111  and  MASK  is  10110110 . The expression  

  flags & ~MASK   

 becomes  

  (00001111) &^ (10110110)  // expression   

 and evaluates to the following:  

  (00001001)               // resulting value   

 All the bits that are set to  1  in  MASK  are set to  0  (cleared) in the result. All the bits in  flags  that 
corresponded to  0  bits in  MASK  are left unchanged.  
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 You can use this short form instead:  

  flags &= ~MASK;    

  Usage: Toggling Bits  

  Toggling  a bit means turning it off if it is on, and turning it on if it is off. You can use the 
bitwise EXCLUSIVE OR operator to toggle a bit. The idea is that if  b  is a bit setting (1 or 0), 
then  1 ^ b  is  0  if  b  is  1  and is  1  if  b  is  0 . Also  0 ^ b  is  b , regardless of its value. Therefore, 
if you combine a value with a mask by using  ̂  , values corresponding to 1s in the mask are 
toggled, and values corresponding to 0s in the mask are unaltered. To toggle bit 1 in  flags , 
you  can do either of the following:  

  flags = flags ^ MASK;

  flags ^= MASK;   

 For example, suppose  flags  is  00001111  and  MASK  is  10110110 . The expression  

  flags ^ MASK   

 becomes  

  (00001111) ^ (10110110)  // expression   

 and evaluates to the following:  

  (10111001)               // resulting value   

 All the bits that are set to  1  in  MASK  result in the corresponding bits of  flags  being toggled. All 
the bits in  flags  that corresponded to  0  bits in  MASK  are left unchanged.   

  Usage: Checking the Value of a Bit  

 You’ve seen how to change the values of bits. Suppose, instead, that you want to check the 
value of a bit. For example, does  flags  have bit 1 set to 1? You shouldn’t simply compare 
 flags  to  MASK :  

  if (flags == MASK)

    puts("Wow!");    /* doesn't work right */   

 Even if bit 1 in  flags  is set to 1, the other bit setting in  flags  can make the comparison 
untrue. Instead, you must first mask the other bits in  flags  so that you compare only bit 1 of 
 flags  with  MASK :  

  if ((flags & MASK) == MASK)

    puts("Wow!");   

 The bitwise operators have lower precedence than  == , so the parentheses around  flags & 
MASK  are needed.  
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 To avoid information peeking around the edges, a bit mask should be at least as wide as the 
value it’s masking.   

  Bitwise Shift Operators  

 Now let’s look at C’s shift operators. The bitwise shift operators shift bits to the left or right. 
Again, we will write binary numbers explicitly to show the mechanics.  

  Left Shift:  <<   

 The left shift operator ( << ) shifts the bits of the value of the left operand to the left by the 
number of places given by the right operand. The vacated positions are filled with 0s, and bits 
moved past the end of the left operand are lost. In the following example, then, each bit is 
moved two places to the left:  

  (10001010) << 2  // expression

  (00101000)       // resulting value   

 This operation produces a new bit value, but it doesn’t change its operands. For example, 
suppose  stonk  is  1 . Then  stonk<<2  is  4 , but  stonk  is still  1 . You can use the left-shift assign-
ment operator ( <<= ) to actually change a variable’s value. This operator shifts the bit in the 
variable to its left by the number of places given by the right-hand value. Here’s an example:  

  int stonk = 1;

  int onkoo;

  onkoo = stonk << 2;   /* assigns 4 to onkoo */

  stonk <<= 2;          /* changes stonk to 4 */    

  Right Shift:  >>   

 The right-shift operator ( >> ) shifts the bits of the value of the left operand to the right by the 
number of places given by the right operand. Bits moved past the right end of the left operand 
are lost. For  unsigned  types, the places vacated at the left end are replaced by 0s. For signed 
types, the result is machine dependent. The vacated places may be filled with 0s, or they may 
be filled with copies of the sign (leftmost) bit:  

  (10001010) >> 2  // expression, signed value

  (00100010)       // resulting value, some systems

  (10001010) >> 2  // expression, signed value

  (11100010)       // resulting value, other systems   

 For an unsigned value, you have the following:  

  (10001010) >> 2  // expression, unsigned value

  (00100010)       // resulting value, all system   

 Each bit is moved two places to the right, and the vacated places are filled with 0s.  
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 The right-shift assignment operator ( >>= ) shifts the bits in the left-hand variable to the right by 
the indicated number of places, as shown here:  

  int sweet = 16;

  int ooosw;

  

  ooosw = sweet >> 3;  // ooosw = 2, sweet still 16

  sweet >>=3;          // sweet changed to 2    

  Usage: Bitwise Shift Operators  

 The bitwise shift operators can provide swift, efficient (depending on the hardware) multiplica-
tion and division by powers of 2:  

  number << n    Multiplies  number  by 2 to the  n th power  

  number >> n    Divides  number  by 2 to the  n th power if  number  is not negative  

 These shift operations are analogous to the decimal system procedure of shifting the decimal 
point to multiply or divide by 10.  

 The shift operators can also be used to extract groups of bits from larger units. Suppose, for 
example, you use an  unsigned long  value to represent color values, with the low-order byte 
holding the red intensity, the next byte holding the green intensity, and the third byte holding 
the blue intensity. Supposed you then wanted to store the intensity of each color in its own 
 unsigned char  variable. Then you could do something like this:  

  #define BYTE_MASK 0xff

  unsigned long color = 0x002a162f;

  unsigned char blue, green, red;

  red = color & BYTE_MASK;

  green = (color >> 8) & BYTE_MASK;

  blue = (color >> 16) & BYTE_MASK;   

 The code uses the right-shift operator to move the 8-bit color value to the low-order byte, and 
then uses the mask technique to assign the low-order byte to the desired variable.    

  Programming Example  

 In Chapter 9, “Functions,” we used recursion to write a program to convert numbers to a 
binary representation. Now we’ll solve the same problem by using the bitwise operators. The 
program in  Listing   15.1    reads an integer from the keyboard and passes it and a string address 
to a function called  itobs()  (for  integer-to-binary string , of course). This function then uses the 
bitwise operators to figure out the correct pattern of 1s and 0s to put into  the string.  



ptg11524036

686 Chapter 15 Bit Fiddling

  Listing 15.1   The  binbit.c  Program  

 /* binbit.c -- using bit operations to display binary */

  #include <stdio.h>

  #include <limits.h>  // for CHAR_BIT, # of bits per char

  char * itobs(int, char *);

  void show_bstr(const char *);

  

  int main(void)

  {

      char bin_str[CHAR_BIT * sizeof(int) + 1];

      int number;

  

      puts("Enter integers and see them in binary.");

      puts("Non-numeric input terminates program.");

      while (scanf("%d", &number) == 1)

      {

          itobs(number,bin_str);

          printf("%d is ", number);

          show_bstr(bin_str);

          putchar('\n');

      }

      puts("Bye!");

  

      return 0;

  }

  

  char * itobs(int n, char * ps)

  {

      int i;

      const static int size = CHAR_BIT * sizeof(int);

  

      for (i = size - 1; i >= 0; i--, n >>= 1)

          ps[i] = (01 & n) + '0';  // assume ASCII or similar

      ps[size] = '\0';

  

      return ps;

  }

  

  /* show binary string in blocks of 4 */

  void show_bstr(const char * str)

  {

      int i = 0;

  

      while (str[i])  /* not the null character */

      {

          putchar(str[i]);
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          if(++i % 4 == 0 && str[i])

              putchar(' ');

      }

  }   

  Listing   15.1    uses the  CHAR_BIT  macro from  limits.h . This macro represents the number 
of bits in  char . The  sizeof  operator returns the size in terms of  char , so the expression 
 CHAR_BIT * sizeof(int)  is the number of bits in an  int . The  bin_str  array has that many 
elements plus 1 to allow for the terminating null character.  

 The  itobs()  function returns the same address passed to it, so you can use the function as, 
say, an argument to  printf() . The first time through the  for  loop, the function evaluates 
the quantity  01 & n . The term  01  is the octal representation of a mask with all but the zero 
bit set to 0. Therefore,  01 & n  is just the value of the final bit in  n . This value is  0  or  1 , but 
for the array, you need the  character   '0'  or the  character   '1' . Adding the code for  '0'  accom-
plishes that conversion. (This assumes the digits are coded sequentially, as in ASCII.) The result  
is placed in the next-to-last element of the array. (The last element is reserved for the null 
character.)  

 By the way, you can just as well use  1 & n  as  01 & n . Using octal 1 instead of decimal 1 
just makes the mood a bit more computeresque. Perhaps  0x1 & n  is even better from that 
perspective.  

 Then the loop executes the statements  i--  and  n >>= 1 . The first statement moves to one 
element earlier in the array, and the second shifts the bits in  n  over one position to the right. 
The next time through the loop, then, the code finds the value of the new rightmost bit. The 
corresponding digit character is then placed in the element preceding the final digit. In this 
fashion, the function fills the  array from right to left.  

 You can use  printf()  or  puts()  to display the resulting string, but  Listing   15.1    defines the 
 show_bstr()  function, which breaks up the bits into groups of four to make the string easier 
to read.  

 Here is a sample run:  

  Enter integers and see them in binary.

  Non-numeric input terminates program.

   7 

  7 is 0000 0000 0000 0000 0000 0000 0000 0111

   2013 

  2013 is 0000 0000 0000 0000 0000 0111 1101 1101

   -1 

  -1 is 1111 1111 1111 1111 1111 1111 1111 1111

   32123 

  32123 is 0000 0000 0000 0000 0111 1101 0111 1011

   q 

  Bye!    



ptg11524036

688 Chapter 15 Bit Fiddling

  Another Example  

 Let’s work through one more example. The goal this time is to write a function that inverts the 
last  n  bits in a value, with both  n  and the value being function arguments.  

 The  ~  operator inverts bits, but it inverts all the bits in a byte, not just a select few. However, 
the  ̂   operator (EXCLUSIVE OR), as you have seen, can be used to toggle individual bits. 
Suppose you create a mask with the last  n  bits set to 1 and the remaining bits set to 0. Then 
applying  ̂   to that mask and a value toggles, or  inverts , the last  n  bits, leaving the other bits 
unchanged. That’s the approach used here:  

  int invert_end(int num, int bits)

  {

      int mask = 0;

      int bitval = 1;

  

      while (bits–– > 0)

      {

          mask |= bitval;

          bitval <<= 1;

      }

      return num ^ mask;

  }   

 The  while  loop creates the mask. Initially,  mask  has all its bits set to  0 . The first pass through 
the loop sets bit 0 to  1  and then increases the value of  bitval  to  2 ; that is, it sets bit 0 to  0  
and bit 1 to  1 . The next pass through then sets bit 1 of  mask  to  1 , and so on. Finally, the  
num ^ mask  operation produces the desired result.  

 To test the function, you can slip it into the preceding program, as shown in  Listing   15.2   .  

  Listing 15.2   The  invert4.c  Program  

 /* invert4.c -- using bit operations to display binary */

  #include <stdio.h>

  #include <limits.h>

  char * itobs(int, char *);

  void show_bstr(const char *);

  int invert_end(int num, int bits);

  

  int main(void)

  {

     char bin_str[CHAR_BIT * sizeof(int) + 1];

  

      int number;

  

      puts("Enter integers and see them in binary.");

      puts("Non-numeric input terminates program.");
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      while (scanf("%d", &number) == 1)

      {

          itobs(number,bin_str);

          printf("%d is\n", number);

          show_bstr(bin_str);

          putchar('\n');

          number = invert_end(number, 4);

          printf("Inverting the last 4 bits gives\n");

          show_bstr(itobs(number,bin_str));

          putchar('\n');

      }

      puts("Bye!");

  

      return 0;

  }

  

  char * itobs(int n, char * ps)

  {

      int i;

      const static int size = CHAR_BIT * sizeof(int);

  

      for (i = size - 1; i >= 0; i--, n >>= 1)

           ps[i] = (01 & n) + '0';

      ps[size] = '\0';

  

      return ps;

  }

  

  /* show binary string in blocks of 4 */

  void show_bstr(const char * str)

  {

      int i = 0;

  

      while (str[i])  /* not the null character */

      {

          putchar(str[i]);

          if(++i % 4 == 0 && str[i])

              putchar(' ');

      }

  }

  

  int invert_end(int num, int bits) 

  {

      int mask = 0;

      int bitval = 1;

  

      while (bits-- > 0)
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      {

          mask |= bitval;

          bitval <<= 1;

      }

  

      return num ^ mask;

  }   

 Here’s a sample run:  

  Enter integers and see them in binary.

  Non-numeric input terminates program.

   7 

  7 is

  0000 0000 0000 0000 0000 0000 0000 0111

  Inverting the last 4 bits gives

  0000 0000 0000 0000 0000 0000 0000 1000

   12541 

  12541 is

  0000 0000 0000 0000 0011 0000 1111 1101

  Inverting the last 4 bits gives

  0000 0000 0000 0000 0011 0000 1111 0010

   q 

  Bye!      

  Bit Fields  

 The second method of manipulating bits is to use a  bit field , which is just a set of neighboring 
bits within a  signed int  or an  unsigned int . (C99 and C11 additionally allow type  _Bool  
bit fields.) A bit field is set up with a structure declaration that labels each field and determines 
its width. For example, the following declaration sets up four 1-bit fields:  

  struct   {

      unsigned int autfd   : 1;

      unsigned int bldfc   : 1;

      unsigned int undln   : 1;

      unsigned int itals   : 1;

  } prnt;   

 This definition causes  prnt  to contain four 1-bit fields. Now you can use the usual structure 
membership operator to assign values to individual fields:  

  prnt.itals = 0;

  prnt.undln = 1;   
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 Because each of these particular fields is just 1 bit,  1  and  0  are the only values you can use for 
assignment. The variable  prnt  is stored in an  int -sized memory cell, but only 4 bits are used in 
this example.  

 Structures with bit fields provide a handy way to keep track of settings. Many settings, such as 
boldface and italics for fonts, are simply a matter specifying one of two choices, such as on or 
off, yes or no, or true or false. There’s no need to use a whole variable when all you need is a 
single bit. A structure with bit fields allows you to store several settings in a single unit.  

 Sometimes there are more than two choices for a setting, so you need more than a single bit to 
represent all the choices. That’s not a problem because fields aren’t limited to 1-bit sizes. You 
can also do this:  

  struct {

      unsigned int code1 : 2;

      unsigned int code2 : 2;

      unsigned int code3 : 8;

  } prcode;   

 This code creates two 2-bit fields and one 8-bit field. You can now make assignments such as 
the following:  

  prcode.code1 = 0;

  prcode.code2 = 3;

  prcode.code3 = 102;   

 Just make sure the value doesn’t exceed the capacity of the field.  

 What if the total number of bits you declare exceeds the size of an  unsigned int ? Then the 
next  unsigned int  storage location is used. A single field is not allowed to overlap the bound-
ary between two  unsigned int s. The compiler automatically shifts an overlapping field defini-
tion so that the field is aligned with the  unsigned int  boundary. When this occurs, it leaves 
an unnamed hole in the first  unsigned int .  

 You can “pad” a field structure with unnamed holes by using unnamed field widths. Using an 
unnamed field width of 0 forces the next field to align with the next integer:  

  struct {

      unsigned int field1 : 1;

      unsigned int        : 2;

      unsigned int field2 : 1;

      unsigned int        : 0;

      unsigned int field3 : 1;

  } stuff;   

 Here, there is a 2-bit gap between  stuff.field1  and  stuff.field2 , and  stuff.field3  is 
stored in the next  int .  
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 One important machine dependency is the order in which fields are placed into an  int . On 
some machines, the order is left to right; on others, it is right to left. Also, machines differ 
in the location of boundaries between fields. For these reasons, bit fields tend not to be very 
portable. Typically, however, they are used for nonportable purposes, such as putting data in 
the exact form used by a particular hardware device.  

  Bit-Field Example  

 Often bit fields are used as a more compact way of storing data. Suppose, for example, you 
decided to represent the properties of an onscreen box. Let’s keep the graphics simple and 
suppose the box has the following properties:  

    ■   The box is opaque or transparent.   

   ■   The fill color is selected from the following palette of colors: black, red, green, yellow, 
blue, magenta, cyan, or white.   

   ■   The border can be shown or hidden.   

   ■   The border color is selected from the same palette used for the fill color.   

   ■   The border can use one of three line styles—solid, dotted, or dashed.    

 You could use a separate variable or a full-sized structure member for each property, but that 
is a bit wasteful of bits. For example, you need only a single bit to indicate whether the box 
is opaque or transparent, and you need only a single bit to indicate if the border is shown or 
hidden. The eight possible color values can be represented by the eight possible values of a 
3-bit unit, and a 2-bit unit is more than enough to represent the three possible border styles. A 
total of 10 bits, then, is enough to represent the possible settings  for all five properties.  

 One possible representation of the information is to use padding to place the fill-related infor-
mation in one byte and the border-related information in a second byte. The  struct box_
props  declaration does this:  

  struct box_props {

      bool opaque                 : 1;

      unsigned int fill_color     : 3;

      unsigned int                : 4;

      bool show_border            : 1;

      unsigned int border_color   : 3;

      unsigned int border_style   : 2;

      unsigned int                : 2;

   };   

 The padding brings the structure up to 16 bits. Without padding, the structure would be 10 
bits. Keep in mind, however, that C uses  unsigned int  as the basic layout unit for structures 
with bit fields. So even if the sole member of a structure is a single 1-bit field, the structure 
will have the same size as an  unsigned int , which is 32 bits on our system. Also, this coding 
assumes that the C99  _Bool  type is available and is aliased as  bool  in  stdbool.h .  
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 You can use a value of  1  for the  opaque  member to indicate that the box is opaque and a  0  
value to indicate transparency. You can do the same for the  show_border  member. For colors, 
you can use a simple RGB (red-green-blue) representation. These are the primary colors for 
mixing light. A monitor blends red, green, and blue pixels to reproduce different colors. In the 
early days of computer color, each pixel could be either on or off, so you could use one bit to 
represent the intensity of each of the three binary colors. The usual order is for the left bit  to 
represent blue intensity, the middle bit green intensity, and the right bit red intensity.  Table 
  15.3    shows the eight possible combinations. They can be used as values for the  fill_color  
and  border_color  members. Finally, you can choose to let 0, 1, and 2 represent the solid, 
dotted, and dashed styles; they can be used as values for the  border_style  member.  

  Table 15.3   Simple Color Representation  

  Bit Pattern     Decimal     Color   

 000   0   Black  

 001   1   Red  

 010   2   Green  

 011   3   Yellow  

 100   4   Blue  

 101   5   Magenta  

 110   6   Cyan  

 111   7   White  

  Listing   15.3    uses the  box_props  structure in a simple example. It uses  #define  to create 
symbolic constants for the possible member values. Note that the primary colors are repre-
sented by a single bit being on. The other colors can be represented by combinations of the 
primary colors. For example, magenta consists of the blue bit and the red bit being on, so it can 
be represented by the combination  BLUE | RED .  

  Listing 15.3   The  fields.c  Program  

 /* fields.c -- define and use fields */

  #include <stdio.h>

  #include <stdbool.h>   //C99, defines bool, true, false

  

  /* line styles     */

  #define SOLID   0

  #define DOTTED  1

  #define DASHED  2

  /* primary colors  */

  #define BLUE    4
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  #define GREEN   2

  #define RED     1

  /* mixed colors    */

  #define BLACK   0

  #define YELLOW  (RED | GREEN)

  #define MAGENTA (RED | BLUE)

  #define CYAN    (GREEN | BLUE)

  #define WHITE   (RED | GREEN | BLUE)

  

  const char * colors[8] = {"black", "red", "green", "yellow",

      "blue", "magenta", "cyan", "white"};

  

  struct box_props {

      bool opaque                 : 1;  // or unsigned int (pre C99)

      unsigned int fill_color     : 3;

      unsigned int                : 4;

      bool show_border            : 1;  // or unsigned int (pre C99)

      unsigned  int border_color   : 3;

      unsigned int border_style   : 2;

      unsigned int                : 2;

  };

  

  void show_settings(const struct box_props * pb);

  

  int main(void)

  {

      /* create and initialize box_props structure */

      struct box_props box = {true, YELLOW , true, GREEN, DASHED};

  

      printf("Original box settings:\n");

      show_settings(&box);

  

      box.opaque = false;

      box.fill_color = WHITE;

      box.border_color = MAGENTA;

      box.border_style = SOLID;

      printf("\nModified box settings:\n");

      show_settings(&box);

  

      return 0;

  }

  

  void show_settings(const struct box_props * pb)

  {

      printf("Box is %s.\n",

             pb->opaque == true ? "opaque": "transparent");

      printf("The fill color is %s.\n", colors[pb->fill_color]);



ptg11524036

695Bit Fields

      printf("Border %s.\n",

             pb->show_border == true ? "shown" : "not shown");

      printf("The border color is %s.\n", colors[pb->border_color]);

      printf ("The border style is ");

       switch(pb->border_style)

      {

          case SOLID  : printf("solid.\n"); break;

          case DOTTED : printf("dotted.\n"); break;

          case DASHED : printf("dashed.\n"); break;

          default     : printf("unknown type.\n");

      }

  }   

 Here is the output:  

  Original box settings:

  Box is opaque.

  The fill color is yellow.

  Border shown.

  The border color is green.

  The border style is dashed.

  

  Modified box settings:

  Box is transparent.

  The fill color is white.

  Border shown.

  The border color is magenta.

  The border style is solid.   

 There are some points to note. First, you can initialize a bit-field structure by using the same 
syntax regular structures use:  

  struct box_props box = {YES, YELLOW , YES, GREEN, DASHED};   

 Similarly, you can assign to bit-field members:  

  box.fill_color = WHITE;   

 Also, you can use a bit-field member as the value expression for a  switch  statement. You can 
even use a bit-field member as an array index:  

  printf("The fill color is %s.\n", colors[pb->fill_color]);   

 Notice that the  colors  array was defined so that each index value corresponds to a string 
representing the name of the color having the index value as its numeric color value. For 
example, an index of  1  corresponds to the string  "red" , and the enumeration constant  red  has 
the value of  1 .   
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  Bit Fields and Bitwise Operators  

 Bit fields and bitwise operators are two alternative approaches to the same type of program-
ming problem. That is, often you could use either approach. For instance, the previous example 
used a structure the same size as  unsigned int  to hold information about a graphics box. 
Instead, you could use an  unsigned int  variable to hold the same information. Then, instead 
of using structure member notation to access different parts, you could use the bitwise opera-
tors for that purpose. Typically, this is a bit more awkward to do. Let’s look at an example that 
takes both approaches. (The reason for taking both approaches  is to illustrate the differences, 
not to suggest that taking both approaches simultaneously is a good idea!)  

 You can use a union as a means of combining the structure approach with the bitwise 
approach. Given the existing declaration of the  struct box_props  type, you can declare the 
following union:  

  union Views     /* look at data as struct or as unsigned short */

  {

      struct box_props st_view;

      unsigned short us_view;

  };   

 On some systems, an  unsigned int  and a  box_props  structure both occupy 16 bits of 
memory. On others, such as ours,  unsigned int  and  box_props  are 32 bits. In either case, 
with this union, you can use the  st_view  member to look at that memory as a structure or use 
the  us_view  member to look at the same block of memory as an  unsigned short . Which bit 
fields of the structure correspond to which bits in the  unsigned short ? That depends on the 
implementation and the hardware. The following example assumes that structures are loaded 
into memory from the low-bit end to the high-bit end of  a byte. That is, the first bit field in 
the structure goes into bit 0 of the word. (For simplicity,  Figure   15.3    illustrates this idea with a 
16-bit unit.)   

  Listing   15.4    uses the  Views  union to let you compare the bit field and bitwise approaches. In 
it,  box  is a  Views  union, so  box.st_view  is a  box_props  structure using bit fields, and  box.
us_view  is the same data viewed as an  unsigned short . Recall that a union can have its first 
member initialized, so the initialization values match the structure view. The program displays 
box properties using a function based on the structure view and also with a function based on 
the  unsigned short  view. Either approach lets you access the data, but the techniques differ. 
The program also uses the  itobs()  function defined earlier in this chapter to  display the data 
as a binary string so that you can see which bits are on and which are off.  
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  Listing 15.4   The  dualview.c  Program  

 /* dualview.c -- bit fields and bitwise operators */

  #include <stdio.h>

  #include <stdbool.h>

  #include <limits.h>

  /* BIT-FIELD CONSTANTS */

  /* line styles     */

  #define SOLID   0

  #define DOTTED  1

  #define DASHED  2

  /* primary colors  */

  #define BLUE    4

  #define GREEN   2

  #define RED     1

  /* mixed colors    */

  #define BLACK   0

  #define YELLOW  (RED | GREEN)

  #define MAGENTA (RED | BLUE)

  #define CYAN    (GREEN | BLUE)

  #define WHITE   (RED | GREEN | BLUE)

  

  /* BITWISE CONSTANTS   */

  #define OPAQUE          0x1

  #define FILL_BLUE       0x8

  #define FILL_GREEN      0x4

  #define FILL_RED        0x2

the box union

seen as an integer

bit
15

bit
0

0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1

box.us_view

box. st_view
the box union

seen as a structure

num_prtrs

gameio

num_comcds

num_drives

vid_setup

mother_bd

has_drive

0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1

 Figure 15.3   A union as an integer and as a structure.        
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  #define FILL_MASK       0xE

  #define BORDER          0x100

  #define BORDER_BLUE     0x800

  #define BORDER_GREEN    0x400

  #define BORDER_RED      0x200

  #define BORDER_MASK     0xE00

  #define B_SOLID         0

  #define B_DOTTED        0x1000

  #define B_DASHED        0x2000

  #define STYLE_MASK      0x3000

  

  const char * colors[8] = {"black", "red", "green", "yellow",

      "blue", "magenta", "cyan", "white"};

  struct box_props  {

      bool opaque                 : 1;

      unsigned int fill_color     : 3;

      unsigned int                : 4;

      bool show_border            : 1;

      unsigned int border_color   : 3;

      unsigned int border_style   : 2;

      unsigned int                : 2;

  };

  

  union Views     /* look at data as struct or as unsigned short */

  {

      struct box_props st_view;

      unsigned short us_view;

  };

  

  void show_settings(const struct box_props * pb);

  void show_settings1(unsigned short);

  char * itobs(int n, char * ps);

  

  int main(void)

  {

      /* create Views object, initialize struct box view */

      union Views box = {{true, YELLOW , true, GREEN, DASHED}};

      char bin_str[8 * sizeof(unsigned int) + 1];

  

      printf("Original box settings:\n");

      show_settings(&box.st_view);

      printf("\nBox settings using unsigned int view:\n");

       show_settings1(box.us_view);

  

      printf("bits are %s\n",

             itobs(box.us_view,bin_str));

      box.us_view &= ~FILL_MASK;          /* clear fill bits */
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      box.us_view |= (FILL_BLUE | FILL_GREEN); /* reset fill */

      box.us_view ^= OPAQUE;               /* toggle opacity */

      box.us_view |= BORDER_RED;           /* wrong approach */

      box.us_view &= ~STYLE_MASK;        /* clear style bits */

      box.us_view |= B_DOTTED;        /* set style to dotted */

      printf("\nModified box settings:\n");

      show_settings(&box.st_view);

      printf("\nBox settings using unsigned int view:\n");

      show_settings1(box.us_view);

      printf("bits are %s\n",

             itobs(box.us_view,bin_str));

  

      return 0;

  }

  

  void show_settings(const struct box_props * pb)

  {

      printf("Box is %s.\n",

             pb->opaque == true ? "opaque": "transparent");

      printf("The fill color is %s.\n", colors[pb->fill_color]);

      printf("Border %s.\n",

             pb->show_border == true ? "shown" : "not shown");

       printf("The border color is %s.\n", colors[pb->border_color]);

      printf ("The border style is ");

      switch(pb->border_style)

      {

          case SOLID  : printf("solid.\n"); break;

          case DOTTED : printf("dotted.\n"); break;

          case DASHED : printf("dashed.\n"); break;

          default     : printf("unknown type.\n");

      }

  }

  

  void show_settings1(unsigned short us)

  {

      printf("box is %s.\n",

             (us & OPAQUE) == OPAQUE? "opaque": "transparent");

      printf("The fill color is %s.\n",

             colors[(us >> 1) & 07]);

      printf("Border %s.\n",

             (us & BORDER) == BORDER? "shown" : "not shown");

      printf ("The border style is ");

      switch(us & STYLE_MASK)

      {

          case B_SOLID  : printf("solid.\n"); break;

          case B_DOTTED : printf("dotted.\n"); break;

          case B_DASHED : printf("dashed.\n"); break;
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          default       : printf("unknown type.\n");

      }

      printf("The border  color is %s.\n",

             colors[(us >> 9) & 07]);

  

  }

  

  char * itobs(int n, char * ps)

  {

      int i;

      const static int size = CHAR_BIT * sizeof(int);

  

      for (i = size - 1; i >= 0; i--, n >>= 1)

          ps[i] = (01 & n) + '0';

      ps[size] = '\0';

  

      return ps;

  }   

 Here is the output:  

  Original box settings:

  Box is opaque.

  The fill color is yellow.

  Border shown.

  The border color is green.

  The border style is dashed.

  

  Box settings using unsigned int view:

  box is opaque.

  The fill color is yellow.

  Border shown.

  The border style is dashed.

  The border color is green.

  bits are 00000000000000000010010100000111

  

  Modified box settings:

  Box is transparent.

  The fill color is cyan.

  Border shown.

  The border color is yellow.

  The border style is dotted.

  

  Box settings using unsigned int view:

  box is transparent.

  The fill color is cyan.

  Border not shown.
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  The border style is dotted.

  The border color is yellow.

  bits are 00000000000000000001011100001100   

 There are several points to discuss. One difference between the bit-field and bitwise views is 
that the bitwise view needs positional information. For example, we’ve used  BLUE  to represent 
the color blue. This constant has the numerical value of  4 . But, because of the way the data 
is arranged in the structure, the actual bit holding the blue setting for the fill color is bit 3 
(remember, numbering starts at 0—refer to  Figure   15.1   ), and the bit holding the blue setting for 
the border color is bit 11. Therefore, the program defines some new constants:  

  #define FILL_BLUE       0x8

  #define BORDER_BLUE     0x800   

 Here,  0x8  is the value if just bit 3 is set to 1, and  0x800  is the value if just bit 11 is set to 1. You 
can use the first constant to set the blue bit for the fill color and the second constant to set 
the blue bit for the border color. Using hexadecimal notation makes it easier to see which bits 
are involved. Recall that each hexadecimal digit represents four bits. Thus,  0x800  is the same 
bit pattern as  0x8 , but with eight 0-bits tagged on. This relationship is much less obvious with 
2048 and 8, the base 10 equivalents.  

 If the values are powers of two, you can use the left-shift operator to supply values. For 
example, you could replace the last  #define  statements with these:  

  #define FILL_BLUE       1<<3

  #define BORDER_BLUE     1<<11   

 Here, the second operand is the power to be used with 2. That is,  0x8  is 2 3  and  0x800  is 2 11 . 
Equivalently, the expression  1<<n  is the value of an integer with just the  n th bit set to  1 . 
Expressions such as  1<<11  are constant expressions and are evaluated at compile time.  

 You can use an enumeration instead of  #define  to create symbolic constants. For example, 
you can do this:  

  enum { OPAQUE = 0x1, FILL_BLUE = 0x8, FILL_GREEN = 0x4, FILL_RED = 0x2,

         FILL_MASK = 0xE, BORDER = 0x100, BORDER_BLUE = 0x800,

         BORDER_GREEN = 0x400, BORDER_RED = 0x200, BORDER_MASK = 0xE00,

         B_DOTTED = 0x1000, B_DASHED = 0x2000, STYLE_MASK = 0x3000};   

 If you don’t intend to create enumerated variables, you don’t need to use a tag in the 
declaration.  

 Note that using bitwise operators to change settings is more complicated. For example, consider 
setting the fill color to cyan. It is not enough just to turn the blue bit and the green bit on:  

  box.us_view |= (FILL_BLUE | FILL_GREEN); /* reset fill */   

 The problem is that the color also depends on the red bit setting. If that bit is already set (as 
it is for the color yellow), this code leaves the red bit set and sets the blue and green bits, 
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resulting in the color white. The simplest way around this problem is to turn all the color bits 
off first, before setting the new values. That is why the program uses the following code:  

  box.us_view &= ~FILL_MASK;          /* clear fill bits */

  box.us_view |= (FILL_BLUE | FILL_GREEN); /* reset fill */   

 To show what can happen if you don’t first clear the relevant bits, the program also does this:  

  box.us_view |= BORDER_RED;           /* wrong approach */   

 Because the  BORDER_GREEN  bit already was set, the resulting color is  BORDER_GREEN | BORDER_
RED , which translates to yellow.  

 In cases like this, the bit-field versions are simpler:  

  box.st_view.fill_color = CYAN;  /*bit-field equivalent */   

 You don’t need to clear the bits first. Also, with the bit-field members, you can use the same 
color values for the border as for the fill, but you need to use different values (values reflecting 
the actual bit positions) for the bitwise operator approach.  

 Next, compare the following two print statements:  

  printf("The border color is %s.\n", colors[pb->border_color]);

  printf("The border color is %s.\n", colors[(us >> 9) & 07]);   

 In the first statement, the expression  pb->border_color  has a value in the range 0–7, so it can 
be used as an index for the  colors  array. Getting the same information with bitwise operators 
is more complex. One approach is to use  ui >> 9  to right-shift the border-color bits to the 
rightmost position in the value (bits 0–2) and then combine this value with a mask of  07  so 
that all bits but the rightmost three are turned off. Then what is left is in the range 0–7 and can 
be used as an index for the  colors  array.  

  Caution 

 The correspondence between bit fields and bit positions is implementation dependent. For 
example, running  Listing   15.4    on an old Macintosh PowerPC produced the following output:  
  Original box settings:

  Box is opaque.

  The fill color is yellow.

  Border shown.

  The border color is green.

  The border style is dashed.

  

  Box settings using unsigned int view:

  box is transparent.

  The fill color is black.

  Border not shown.

  The border style is solid.

  The border color is black.
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  bits are 10110000101010000000000000000000

  

  Modified box settings:

  Box is opaque.

  The fill color is yellow.

  Border shown.

  The border color is green.

  The border style is dashed.

  

  Box settings using unsigned int view:

  box is opaque.

  The fill color is cyan.

  Border shown.

  The border style is dotted.

  The border color is red.

  bits are 10110000101010000001001000001101   

 The code changed the same bits as before, but the Macintosh PowerPC loads the structure into 
memory differently. In particular, it loads the first bit field into the highest-order bit instead of 
the lowest-order bit. So the structure representation winds up in the first 16 bits (and in differ-
ent order from the PC version) whereas the  unsigned int  representation winds up in the last 
16 bits. Therefore, the assumptions that  Listing   15.4    makes about the location of bits is incor-
rect for the Macintosh, and using bitwise operators to change the opacity and fill color settings 
alters the wrong bits.     

  Alignment Features (C11)  

 C11’s alignment features are more in the nature of byte fiddling than bit fiddling, but they 
also represent C’s capability to relate to hardware matters. Alignment, in this context, refers to 
how objects are positioned in memory. For example, for maximum efficiency, a system might 
require a type  double  value to be stored at a memory address divisible by four but allow a  char  
to stored at any address. For most programmers most of the time, alignment isn’t a concern. 
But some situations may benefit from alignment control, for example, transferring data from 
one hardware location to another or invoking instructions that  operate upon multiple data 
items simultaneously.  

 The  _Alignof  operator yields the alignment requirement of a type. It’s used by following the 
keyword  _Alignof  with the parenthesized type:  

  size_t d_align = _Alignof(float);   

 A value of, say,  4  for  d_align  means  float  objects have an alignment requirement of 4. 
That means that 4 is the number of bytes between consecutive addresses for storing values of 
that type. In general, alignment values should be a non-negative integer power of two. Bigger 
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alignment values are termed  stricter  or  stronger  than smaller ones, while smaller ones are termed 
 weaker .  

 You can use the  _Alignas  specifier to request a specific alignment for a variable or type. But 
you shouldn’t request an alignment weaker than the fundamental alignment for the type. For 
instance, if the alignment requirement for  float  is 4, don’t ask for an alignment value of 1 
or 2. This specifier is used as part of a declaration, and it’s followed by parentheses containing 
either an alignment value or a type:  

  _Alignas(double) char c1;

  _Alignas(8) char c2;

  unsigned char _Alignas(long double) c_arr[sizeof(long double)];   

  Note 

 At the time of writing, Clang (version 3.2) required the  _Alignas(   type   )  specifier to follow the 
type specifier, as in the third line in the preceding example. But GCC 4.7.3 recognizes both 
orderings, as does the subsequent version (3.3) of Clang.   

  Listing   15.5    provides a short example of  _Alignas  and  _Alignof .  

  Listing 15.5   The  align.c  Program  

 //  align.c -- using _Alignof and _Alignas  (C11)

  

  #include <stdio.h>

  int main(void)

  {

      double dx;

      char ca;

      char cx;

      double dz;

      char cb;

      char _Alignas(double) cz;

  

      printf("char alignment:   %zd\n", _Alignof(char));

      printf("double alignment: %zd\n", _Alignof(double));

      printf("&dx: %p\n", &dx);

      printf("&ca: %p\n", &ca);

      printf("&cx: %p\n", &cx);

      printf("&dz: %p\n", &dz);

      printf("&cb: %p\n", &cb);

      printf("&cz: %p\n", &cz);

  

      return 0;

  }   
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 Here is a sample output:  

  char alignment:   1

  double alignment: 8

  &dx: 0x7fff5fbff660

  &ca: 0x7fff5fbff65f

  &cx: 0x7fff5fbff65e

  &dz: 0x7fff5fbff650

  &cb: 0x7fff5fbff64f

  &cz: 0x7fff5fbff648   

 On our system, the alignment value of 8 for  double  implies that type aligns with addresses 
divisible by 8. Hexadecimal addresses ending in 0 or 8 are divisible by 8, and those were the 
sort of addresses used for the two  double  variables and the  char  variable  cz , which was given 
the  double  alignment value. Because the alignment value for  char  was 1, the compiler could 
use any address for the regular  char  variables.  

 Including the  stdalign.h  header file allows you to use  alignas  and  alignof  for  _Alignas  
and  _Alignof . This matches the C++ keywords.  

 C11 also brings alignment capability for allocated memory by adding a new memory allocation 
function to the  stdlib.h  library. It has this prototype:  

  void *aligned_alloc(size_t alignment, size_t size);   

 The first parameter specifies the alignment required, and the second parameter requests the 
number of bytes required; it should be a multiple of the first parameter. As with the other 
memory allocation functions, use  free()  to release the memory once you are done with it.   

  Key Concepts  

 One of the features that sets C apart from most high-level languages is its ability to access indi-
vidual bits in an integer. This often is the key to interfacing with hardware devices and with 
operating systems.  

 C has two main facilities for accessing bits. One is the family of bitwise operators, and the other 
is the ability to create bit fields in a structure.  

 C11 adds the capability to inspect the memory alignment requirement and to request stricter 
requirements.  

 Typically, but not always, programs using these features are tied to particular hardware plat-
forms or operating systems and aren’t intended to be portable.    
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     Summary  

 Computing hardware is closely tied to the binary number system because the 1s and 0s of 
binary numbers can be used to represent the on and off states of bits in computer memory and 
registers. Although C does not allow you to write integers in binary form, it does recognize the 
related octal and hexadecimal notations. Just as each binary digit represents 1 bit, each octal 
digit represents 3 bits, and each hexadecimal digit represents 4 bits. This relationship makes it 
relatively simple to convert binary numbers to octal or hexadecimal form.  

 C features several bitwise operators, so called because they operate independently on each bit 
within a value. The bitwise negation operator ( ~ ) inverts each bit in its operand, converting 1s 
to 0s, and vice versa. The bitwise AND operator ( & ) forms a value from two operands. Each bit 
in the value is set to 1 if both corresponding bits in the operands are 1. Otherwise, the bit is set 
to 0. The bitwise OR operator ( | ) also forms a value from two operands. Each bit in the value is 
set to 1 if either or both corresponding bits in the  operands are 1; otherwise, the bit is set to 0. 
The bitwise EXCLUSIVE OR operator ( ̂  ) acts similarly, except that the resulting bit is set to 1 
only if one or the other, but not both, of the corresponding bits in the operands is 1.  

 C also has left-shift (<<) and right-shift ( >> ) operators. Each produces a value formed by shift-
ing the bits in a pattern the indicated number of bits to the left or right. For the left-shift 
operator, the vacated bits are set to 0. For the right-shift operator, the vacated bits are set to 0 
if the value is  unsigned . The behavior of the right-shift operator is implementation dependent 
for  signed  values.  

 You can use bit fields in a structure to address individual bits or groups of bits in a value. The 
details are implementation independent.  

 You can use  _Alignas  to impose alignment requirements on data storage.  

 These bit tools help C programs deal with hardware matters, so they most often appear in 
implementation-dependent contexts.   

  Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    Convert the following decimal values to binary:  

    a.   3   

   b.   13   

   c.   59   

   d.   119      
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   2.    Convert the following binary values to decimal, octal, and hexadecimal:  

    a.   00010101   

   b.   01010101   

   c.   01001100   

   d.   10011101      

   3.    Evaluate the following expressions; assume each value is 8 bits:  

    a.    ~3    

   b.    3 & 6    

   c.    3 | 6    

   d.    1 | 6    

   e.    3 ^ 6    

   f.    7 >> 1    

   g.    7 << 2       

   4.    Evaluate the following expressions; assume each value is 8 bits:  

    a.    ~0    

   b.    !0    

   c.    2 & 4    

   d.    2 && 4    

   e.    2 | 4    

   f.    2 || 4    

   g.    5 << 3       

   5.    Because the ASCII code uses only the final 7 bits, sometimes it is desirable to mask off the 
other bits. What’s the appropriate mask in binary? In decimal? In octal? In hexadecimal?    

   6.    In  Listing   15.2   , you can replace  

  while (bits-- > 0)

      {

          mask |= bitval;

          bitval <<= 1;

      }   
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   with  

  while (bits-- > 0)

      {

          mask += bitval;

          bitval *= 2;

      }   

 and the program still works. Does this mean the operation  *= 2  is equivalent to  <<= 1 ? 
What about  |=  and  += ?    

   7.       a.    The Tinkerbell computer has a hardware byte that can be read into a program. This 
byte contains the following information:  

  Bit(s)     Meaning   

 0–1   Number of 1.4MB floppy drives  

 2   Not used  

 3–4   Number of CD-ROM drives  

 5   Not used  

 6–7   Number of hard drives  

 Like the IBM PC, the Tinkerbell fills in structure bit fields from right to left. Create a bit-
field template suitable for holding the information.   

   b.   The Klinkerbell, a near Tinkerbell clone, fills in structures from left to right. Create the 
corresponding bit-field template for the Klinkerbell.        

  Programming Exercises  

    1.    Write a function that converts a binary string to a numeric value. That is, if you have  

  char * pbin = "01001001";   

 you can pass  pbin  as an argument to the function and have the function return an  int  
value of  25 .    

   2.    Write a program that reads two binary strings as command-line arguments and prints 
the results of applying the  ~  operator to each number and the results of applying the 
 & ,  | , and  ̂   operators to the pair. Show the results as binary strings. (If you don’t have a 
command-line environment available, have the program read the strings interactively.)    

   3.    Write a function that takes an  int  argument and returns the number of “on” bits in the 
argument. Test the function in a program.    
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   4.    Write a function that takes two  int  arguments: a value and a bit position. Have the 
function return 1 if that particular bit position is 1, and have it return 0 otherwise. Test 
the function in a program.    

   5.    Write a function that rotates the bits of an  unsigned int  by a specified number of bits 
to the left. For instance,  rotate_l(x,4)  would move the bits in  x  four places to the left, 
and the bits lost from the left end would reappear at the right end. That is, the bit moved 
out of the high-order position is placed in the low-order position. Test the function in a 
program.    

   6.    Design a bit-field structure that holds the following information:  

 Font ID: A number in the range 0–255  

 Font Size: A number in the range 0–127  

 Alignment: A number in the range 0–2 represented the choices Left, Center, and Right  

 Bold: Off (0) or on (1)  

 Italic: Off (0) or on (1)  

 Underline: Off (0) or on (1)  

   Use this structure in a program that displays the font parameters and uses a looped menu 
to let the user change parameters. For example, a sample run might look like this:  

    ID SIZE ALIGNMENT   B   I   U

     1   12   left     off off off

  

  f)change font    s)change size    a)change alignment

  b)toggle bold    i)toggle italic  u)toggle underline

  q)quit

   s 

  Enter font size (0-127):  36 

  

    ID SIZE ALIGNMENT   B   I   U

     1   36   left     off off off

  

  f)change font    s)change size    a)change alignment

  b)toggle bold    i)toggle italic  u)toggle underline

  q)quit

   a 

  Select alignment:

  l)left   c)center   r)right

   r 

  

    ID SIZE ALIGNMENT   B   I   U

     1   36  right     off off off
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  f)change font    s)change size    a)change alignment

  b)toggle bold    i)toggle italic  u)toggle underline

  q)quit

   i 

  

    ID SIZE ALIGNMENT   B   I   U

     1   36  right     off  on off

  

  f)change font    s)change size    a)change alignment

  b)toggle bold    i)toggle italic  u)toggle underline

  q)quit

   q 

  Bye!   

 The program should use the  &  operator and suitable masks to ensure that the ID and size 
entries are converted to the specified range.    

   7.    Write a program with the same behavior as described in exercise 6, but use an  unsigned 
long  variable to hold the font information and use the bitwise operators instead of bit 
members to manage the information.        
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 The C Preprocessor and the 

C Library  

    You will learn about the following in this chapter:  

    ■   Preprocessor directives:  

  #define ,  #include ,  #ifdef   

  #else ,  #endif ,  #ifndef   

  #if ,  #elif ,  #line ,  #error ,  #pragma    

   ■   Keywords:  

  _Generic ,  _Noreturn ,  _Static_assert    

   ■   Functions/Macros:  

  sqrt() ,  atan() ,  atan2()   

  exit() ,  atexit()   

  assert()   

  memcpy() ,  memmove()   

  va_start() ,  va_arg() ,  va_copy() ,  va_end()    

   ■   More capabilities of the C preprocessor   

   ■   Function-like macros and conditional compilation   

   ■   The generic selection expression   

   ■   Inline functions   

   ■   The C library in general and some of its handy functions in particular    

 The C language proper is built on the C keywords, expressions, and statements as well as the 
rules for using them. The C standard, however, goes beyond describing just the C language. It 
also describes how the C preprocessor should perform, establishes which functions form the 
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standard C library, and details how these functions work. We’ll explore the C preprocessor and 
the C library in this chapter, beginning with the preprocessor.  

 The preprocessor looks at your program before it is compiled (hence the term  pre processor). 
Following your preprocessor directives, the preprocessor replaces the symbolic abbreviations 
in your program with the directions they represent. The preprocessor can include other files at 
your request, and it can select which code the compiler sees. The preprocessor doesn’t know 
about C. Basically, it takes some text and converts it to other text. This description does not do 
justice to its true utility and value, so let’s turn to examples. You’ve encountered examples of 
 #define  and  #include  all along. Now we can gather what you have learned in  one place and 
add to it.   

     First Steps in Translating a Program  

 The compiler has to put a program through some translation phases before jumping into 
preprocessing. The compiler starts its work by mapping characters appearing in the source code 
to the source character set. This takes care of multibyte characters and trigraphs—character 
extensions that make the outer face of C more international. ( Appendix   B    “Reference Section 
VII, Expanded Character Support,” gives an overview of these extensions.)  

 Second, the compiler locates each instance of a backslash followed by a newline character and 
deletes them. That is, two physical lines such as  

  printf("That's wond\

  erful!\n");   

 are converted to a single  logical line :  

  printf("That's wonderful\n!");   

 Note that in this context, “newline character” means the character produced by pressing the 
Enter key to start a new line in your source code file; it doesn’t mean the symbolic representa-
tion  \n .  

 This feature is useful as a preparation for preprocessing because preprocessing expressions are 
required to be one logical line long, but that one logical line can be more than one physical 
line.  

 Next, the compiler breaks the text into a sequence of preprocessing tokens and sequences of 
whitespace and comments. (In basic terms, tokens are groups separated from each other by 
spaces, tabs, or line breaks; this chapter will look at tokens in more detail later.) One point of 
interest now is that each comment is replaced by one space character. So something such as  

  int/* this doesn't look like a space*/fox;   

 becomes  

  int fox;   
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 Also, an implementation may choose to replace each sequence of whitespace characters (other 
than a newline) with a single space. Finally, the program is ready for the preprocessing phase, 
and the preprocessor looks for potential preprocessing directives, indicated by a  #  symbol at the 
beginning of a line.   

  Manifest Constants:  #define   

 The  #define  preprocessor directive, like all preprocessor directives, begins with the  #  symbol 
at the beginning of a line. The ANSI and subsequent standards permit the  #  symbol to be 
preceded by spaces or tabs, and it allows for space between the  #  and the remainder of the 
directive. However, older versions of C typically require that the directive begin in the leftmost 
column and that there be no spaces between the  #  and the remainder of the directive. A direc-
tive can appear anywhere in the source file, and the definition holds from its place of appear-
ance to the end of the file. We have  used directives heavily to define symbolic, or  manifest , 
constants in our programs, but they have more range than that, as we will show.  Listing   16.1    
illustrates some of the possibilities and properties of the  #define  directive.  

 Preprocessor directives run until the first newline following the  # . That is, a directive is limited 
to one line in length. However, as mentioned earlier, the combination backslash/newline is 
deleted before preprocessing begins, so you can spread the directive over several physical lines. 
These lines, however, constitute a single logical line.  

  Listing 16.1   The  preproc.c  Program  

 /* preproc.c -- simple preprocessor examples */

  #include <stdio.h>

  #define TWO 2        /* you can use comments if you like   */

  #define OW "Consistency is the last refuge of the unimagina\

  tive. - Oscar Wilde" /* a backslash continues a definition */

                       /* to the next line                   */

  #define FOUR  TWO*TWO

  #define PX printf("X is %d.\

  

  int main(void)

  {

      int x = TWO;

  

      PX;

      x = FOUR;

      printf(FMT, x);

      printf("%s\n", OW);

      printf("TWO: OW\n");

  

      return 0;

  }   
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 Each  #define  line (logical line, that is) has three parts. The first part is the  #define  directive 
itself. The second part is your chosen abbreviation, known as a  macro . Some macros, like these 
examples, represent values; they are called  object-like macros . (C also has  function-like macros , 
and we’ll get to them later.) The macro name must have no spaces in it, and it must conform 
to the same naming rules that C variables follow: Only letters, digits, and the underscore ( _ ) 
character can be used, and the first character cannot be a digit. The third part (the remainder 
of the line) is  termed the  replacement list  or  body  (see  Figure   16.1   ). When the preprocessor finds 
an example of one of your macros within your program, it almost always replaces it with the 
body. (There is one exception, as we will show you in just a moment.) This process of going 
from a macro to a final replacement is called  macro expansion . Note that you can use standard 
C comments on a  #define  line; as mentioned earlier, each is replaced by a space before the 
preprocessor sees it.  

 

#define  PX  printf("x is %d.\n",x)

preprocessor
directive

macro body

 Figure 16.1   Parts of an object-like macro definition.         

 Let’s run the example and see how it works:  

  X is 2.

  X is 4.

  Consistency is the last refuge of the unimaginative. - Oscar Wilde

  TWO: OW   

 Here’s what happened. The statement  

  int x = TWO;   

 becomes  

  int x = 2;   

 as  2  is substituted for  TWO . Then the statement  

  PX;   

 becomes  

  printf("X is %d.\n", x);   

 as that wholesale substitution is made. This is a new wrinkle, because up to now we’ve used 
macros only to represent constants. Here you see that a macro can express any string, even a 
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whole C expression. Note, though, that this is a constant string;  PX  will print only a variable 
named  x .  

 The next line also represents something new. You might think that  FOUR  is replaced by  4 , but 
the actual process is this:  

  x = FOUR;   

 becomes  

  x = TWO*TWO;   

 which then becomes  

  x = 2*2;   

 The macro expansion process ends there. The actual multiplication takes place not while the 
preprocessor works, but during compilation, because the C compiler evaluates all constant 
expressions (expressions with just constants) at compile time. The preprocessor does no calcula-
tion; it just makes the suggested substitutions very literally.  

 Note that a macro definition can include other macros. (Some compilers do not support this 
nesting feature.)  

 In the next line  

  printf (FMT, x);   

 becomes  

  printf("X is %d.\n",x);   

 as  FMT  is replaced by the corresponding string. This approach could be handy if you had 
a lengthy control string that you had to use several times. Alternatively, you can do the 
following:  

  const char * fmt = "X is %d.\n";   

 Then you can use  fmt  as the  printf()  control string.  

 In the next line,  OW  is replaced by the corresponding string. The double quotation marks make 
the replacement string a character string constant. The compiler will store it in an array termi-
nated with a null character. Therefore,  

  #define HAL 'Z'   

 defines a character constant, but  

  #define HAP "Z"   

 defines a character string:  Z\O .  

 In the example, we used a backslash immediately before the end of the line to extend the string 
to the next line:  
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  #define OW "Consistency is the last refuge of the unimagina\

  tive. - Oscar Wilde"   

 Note that the second line is flush left. Suppose, instead, we did this:  

  #define OW "Consistency is the last refuge of the unimagina\

      tive. - Oscar Wilde"   

 Then the output would be this:  

  Consistency is the last refuge of the unimagina    tive. - Oscar Wilde   

 The space between the beginning of the line and  tive  counts as part of the string.  

 In general, wherever the preprocessor finds one of your macros in your program, it replaces it 
literally with the equivalent replacement text. If that string also contains macros, they, too, are 
replaced. The one exception to replacement is a macro found within double quotation marks. 
Therefore,  

  printf("TWO: OW");   

 prints  TWO: OW  literally instead of printing  

  2: Consistency is the last refuge of the unimaginative. - Oscar Wilde   

 To print this last line, you would use this:  

  printf("%d: %s\n", TWO, OW);   

 Here, the macros are outside the double quotation marks.  

 When should you use symbolic constants? You should use them for most numeric constants. If 
the number is some constant used in a calculation, a symbolic name makes its meaning clearer. 
If the number is an array size, a symbolic name makes it simpler to change the array size and 
loop limits later. If the number is a system code for, say,  EOF , a symbolic representation makes 
your program much more portable; just change one  EOF  definition. Mnemonic value, easy 
alterability, portability—these features all make symbolic constants worthwhile.  

 It is true that the  const  keyword now supported by C allows for a more flexible way of creating 
constants. With  const  you can create global constants and local constants, numeric constants, 
array constants, and structure constants. On the other hand, macro constants can be used to 
specify the sizes of standard arrays and as initialization values for  const  values:  

  #define LIMIT 20

  const int LIM = 50;

  static int data1[LIMIT];    // valid

  static int data2[LIM];      // not required to be valid

  const int LIM2 = 2 * LIMIT; // valid

  const int LIM3 = 2 * LIM;   // not required to be valid   
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 Let’s look at the “not required to be valid” comments. In C, the array size for nonautomatic 
arrays is supposed to be an integer constant expression, meaning that it’s a combination of 
integer constants, such as  5 , enumeration constants, and  sizeof  expressions. This doesn’t 
include values declared using  const . (This is one respect in which C++ differs from C; in C++ 
you can use  const  values as part of constant expressions.) However, an implementation may 
accept other forms of constant expressions. So, for example, GCC 4.7.3 doesn’t accept the 
declaration for  data2 , but Clang 4.6 does.  

  Tokens  

 Technically, the body of a macro is considered to be a string of  tokens  rather than a string of 
characters. C preprocessor tokens are the separate “words” in the body of a macro definition. 
They are separated from one another by whitespace. For example, the definition  

  #define FOUR 2*2   

 has one token—the sequence  2*2 —but the definition  

  #define SIX 2 * 3   

 has three tokens in it:  2 ,  * , and  3 .  

 Character strings and token strings differ in how multiple spaces in a body are treated. 
Consider this definition:  

  #define EIGHT 4    *    8   

 A preprocessor that interprets the body as a character string would replace  EIGHT  with  4 * 8 . 
That is, the extra spaces would be part of the replacement, but a preprocessor that interprets 
the body as tokens will replace  EIGHT  with three tokens separated by single spaces:  4 * 8 . In 
other words, the character string interpretation views the spaces as part of the body, but the 
token interpretation views the spaces as separators between the tokens of the body. In practice, 
some C compilers have viewed macro bodies as strings rather than as tokens. The difference is 
of practical importance only  for usages more intricate than what we’re attempting here.  

 Incidentally, the C compiler takes a more complex view of tokens than the preprocessor does. 
The compiler understands the rules of C and doesn’t necessarily require spaces to separate 
tokens. For example, the C compiler would view  2*2  as three tokens because it recognizes that 
each  2  is a constant and that  *  is an operator.   

  Redefining Constants  

 Suppose you define  LIMIT  to be 20, and then later in the same file you define it again as 25. 
This process is called  redefining a constant . Implementations differ on redefinition policy. Some 
consider it an error unless the new definition is the same as the old. Others allow redefinition, 
perhaps issuing a warning. The ANSI standard takes the first view, allowing redefinition only if 
the new definition duplicates the old.  
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 Having the same definition means the bodies must have the same tokens in the same order. 
Therefore, these two definitions agree:  

  #define SIX 2 * 3

  #define SIX 2       *    3   

 Both have the same three tokens, and the extra spaces are not part of the body. The next defi-
nition is considered different:  

  #define SIX 2*3   

 It has just one token, not three, so it doesn’t match. If you want to redefine a macro, use the 
 #undef  directive, which we discuss later.  

 If you do have constants that you need to redefine, it might be easier to use the  const  keyword 
and scope rules to accomplish that end.    

  Using Arguments with  #define   

 By using arguments, you can create  function-like macros  that look and act much like functions. 
A macro with arguments looks very similar to a function because the arguments are enclosed 
within parentheses. Function-like macro definitions have one or more arguments in parenthe-
ses, and these arguments then appear in the replacement portion, as shown in  Figure   16.2   .  

 

#define MEAN(X,Y)

macro

macro arguments

(((X)+(Y))/2)

replacement body

 Figure 16.2   Parts of a function-like macro definition.         

 Here’s a sample definition:  

  #define SQUARE(X) X*X   

 It can be used in program like this:  

  z = SQUARE(2);   

 This looks like a function call, but it doesn’t necessarily behave identically.  Listing   16.2    illus-
trates using this and a second macro. Some of the examples also point out possible pitfalls, so 
read them carefully.  
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  Listing 16.2   The  mac_arg.c  Program  

 /* mac_arg.c -- macros with arguments */

  #include <stdio.h>

  #define SQUARE(X) X*X

  #define PR(X)   printf("The result is %d.\n", X)

  int main(void)

  {

      int x = 5;

      int z;

  

      printf("x = %d\n", x);

      z = SQUARE(x);

      printf("Evaluating SQUARE(x): ");

      PR(z);

      z = SQUARE(2);

      printf("Evaluating SQUARE(2): ");

      PR(z);

      printf("Evaluating SQUARE(x+2): ");

      PR(SQUARE(x+2));

      printf("Evaluating 100/SQUARE(2): ");

      PR(100/SQUARE(2));

      printf("x is %d.\n", x);

      printf("Evaluating SQUARE(++x): ");

      PR(SQUARE(++x));

      printf("After incrementing, x is %x.\n", x);

  

      return 0;

  }   

 The  SQUARE  macro has this definition:  

  #define SQUARE(X) X*X   

 Here,  SQUARE  is the macro identifier, the  X  in  SQUARE(X)  is the macro argument, and  X*X  is the 
replacement list. Wherever  SQUARE(x)  appears in  Listing   16.2   , it is replaced by  x*x . This differs 
from the earlier examples in that you are free to use symbols other than  x  when you use this 
macro. The  x  in the macro definition is replaced by the symbol used in the macro call in the 
program. Therefore,  SQUARE(2)  is replaced by  2*2 , so the  x  really does act as an argument.  

 However, as you will soon see, a macro argument does not work exactly like a function argu-
ment. Here are the results of running the program. Note that some of the answers are different 
from what you might expect. Indeed, your compiler might not even give the same answer as 
what’s shown here for the next-to-last line:  

  x = 5

  Evaluating SQUARE(x): The result is 25.

  Evaluating SQUARE(2): The result is 4.
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  Evaluating SQUARE(x+2): The result is 17.

  Evaluating 100/SQUARE(2): The result is 100.

  x is 5.

  Evaluating SQUARE(++x): The result is 42.

  After incrementing, x is 7.   

 The first two lines are predictable, but then you come to some peculiar results. Recall that  x  
has the value  5 . This might lead you to expect that  SQUARE(x+2)  would be  7*7 , or  49 , but the 
printout says it is  17 , a prime number and certainly not a square! The simple reason for this 
misleading output is the one we have already stated—the preprocessor doesn’t make calcula-
tions; it just substitutes character sequences. Wherever the definition shows an  x , the prepro-
cessor substitutes the characters  x+2 . Therefore,  

  x*x   

 becomes  

  x+2*x+2   

 The only multiplication is  2*x . If  x  is  5 , this is the value of this expression:  

  5+2*5+2 = 5 + 10 + 2 = 17   

 This example pinpoints an important difference between a function call and a macro call. A 
function call passes the value of the argument to the function while the program is running. A 
macro call passes the argument token to the program before compilation; it’s a different process 
at a different time. Can the definition be fixed to make  SQUARE(x+2)  yield 36? Sure. You 
simply need more parentheses:  

  #define SQUARE(x)  (x)*(x)   

 Now  SQUARE(x+2)  becomes  (x+2)*(x+2) , and you get the desired multiplication as the paren-
theses carry over in the replacement string.  

 This doesn’t solve all the problems, however. Consider the events leading to the next output 
line:  

  100/SQUARE(2)   

 becomes  

  100/2*2   

 By the laws of precedence, the expression is evaluated from left to right:  (100/2)*2  or  50*2  or 
 100 . This mix-up can be cured by defining  SQUARE(x)  as follows:  

  #define SQUARE(x)  (x*x)   

 This produces  100/(2*2) , which eventually evaluates to  100/4 , or  25 .  

 To handle both of the previous two examples, you need this definition:  

  #define SQUARE(x)  ((x)*(x))   



ptg11524036

721Using Arguments with #define

 The lesson here is to use as many parentheses as necessary to ensure that operations and asso-
ciations are done in the right order.  

 Even these precautions fail to save the final example from grief:  

  SQUARE(++x)   

 becomes  

  ++x*++x   

 and  x  gets incremented twice, once before the multiplication and once afterward:  

  ++x*++x = 6*7 = 42   

 Because the order of operations is left open, some compilers render the product  7*6 . Yet other 
compilers might increment both terms before multiplication, yielding  7*7 ,or 49. Indeed, evalu-
ating this expression results in what the standard calls undefined behavior. In all these cases, 
however,  x  starts with the value  5  and ends up with the value  7 , even though the code looks as 
though  x  was incremented just once.  

 The simplest remedy for this problem is to avoid using  ++x  as a macro argument. In general, 
don’t use increment or decrement operators with macros. Note that  ++x  would work as a func-
tion argument because it would be evaluated to  6 , and then the value  6  would be sent to the 
function.  

  Creating Strings from Macro Arguments: The  #  Operator  

 Here’s a function-like macro:  

  #define PSQR(X)  printf("The square of X is %d.\n", ((X)*(X)));   

 Suppose you used the macro like this:  

  PSQR(8);   

 Here’s the output:  

  The square of X is 64.   

 Note that the  X  in the quoted string is treated as ordinary text, not as a token that can be 
replaced.  

 Suppose you do want to include the macro argument in a string. C enables you to do that. 
Within the replacement part of a function-like macro, the  #  symbol becomes a preprocessing 
operator that converts tokens into strings. For example, say that  x  is a macro parameter, and 
then  #x  is that parameter name converted to the string  "x" . This process is called  stringizing . 
 Listing   16.3    illustrates how  this process works.  
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  Listing 16.3   The  subst.c  Program  

 /* subst.c -- substitute in string */

  #include <stdio.h>

  #define PSQR(x) printf("The square of " #x " is %d.\n",((x)*(x)))

  

  int main(void)

  {

      int y = 5;

  

      PSQR(y);

      PSQR(2 + 4);

  

      return 0;

  }   

 Here’s the output:  

  The square of y is 25.

  The square of 2 + 4 is 36.   

 In the first call to the macro,  #x  was replaced by  "y" , and in the second call  #x  was replaced by 
 "2 + 4" . ANSI C string concatenation then combined these strings with the other strings in 
the  printf()  statement to produce the final strings that were used. For example, the first invo-
cation becomes this:  

  printf("The square of " "y" " is %d.\n",((y)*(y)));   

 Then string concatenation converts the three adjacent strings to one string:  

  "The square of y is %d.\n"    

  Preprocessor Glue: The  ##  Operator  

 Like the  #  operator, the  ##  operator can be used in the replacement section of a function-like 
macro. Additionally, it can be used in the replacement section of an object-like macro. The  ##  
operator combines two tokens into a single token. For example, you could do this:  

  #define XNAME(n) x ## n   

 Then the macro  

  XNAME(4)   

 would expand to the following:  

  x4   

  Listing   16.4    uses this and another macro  using  ##  to do a bit of token gluing.  
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  Listing 16.4   The  glue.c  Program  

 // glue.c -- use the ## operator

  #include <stdio.h>

  #define XNAME(n) x ## n

  #define PRINT_XN(n) printf("x" #n " = %d\n", x ## n);

  

  int main(void)

  {

      int XNAME(1) = 14;  // becomes int x1 = 14;

      int XNAME(2) = 20;  // becomes int x2 = 20;

      int x3 = 30;

      PRINT_XN(1);        // becomes printf("x1 = %d\n", x1);

      PRINT_XN(2);        // becomes printf("x2 = %d\n", x2);

      PRINT_XN(3);        // becomes printf("x3 = %d\n", x3);

       return 0;

  }   

 Here’s the output:  

  x1 = 14

  x2 = 20

  x3 = 30   

 Note how the  PRINT_XN()  macro uses the  #  operator to combine strings and the  ##  operator to 
combine tokens into a new identifier.   

  Variadic Macros:  ...  and  _ _VA_ARGS_ _   

 Some functions, such as  printf() , accept a variable number of arguments. The  stdvar.h  
header file, discussed later in this chapter, provides tools for creating user-defined functions 
with a variable number of arguments. And C99/C11 does the same thing for macros. Although 
not used in the standard, the word  variadic  has come into currency to label this facility. 
(However, the process that has added  stringizing  and  variadic  to the C vocabulary has not yet 
led to labeling functions or macros with a fixed number of arguments as fixadic functions and 
normadic macros.)  

 The idea is that the final argument in an argument list for a macro definition can be ellipses 
(that is, three periods). If so, the predefined macro  _ _VA_ARGS_ _  can be used in the substi-
tution part to indicate what will be substituted for the ellipses. For example, consider this 
definition:  

  #define PR(...) printf(_ _VA_ARGS_ _)   

 Suppose you later invoke the macro like this:  

  PR("Howdy");

  PR("weight = %d, shipping = $%.2f\n", wt, sp);   
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 For the first invocation,  _ _VA_ARGS_ _  expands to one argument:  

  "Howdy"   

 For the second invocation, it expands to three arguments:  

  "weight = %d, shipping = $%.2f\n", wt, sp   

 Thus, the resulting code is this:  

  printf("Howdy");

  printf("weight = %d, shipping = $%.2f\n", wt, sp);   

  Listing   16.5    shows a slightly more ambitious example that uses string concatenation and the  #  
operator:  

  Listing 16.5   The  variadic.c  Program  

 // variadic.c -- variadic macros

  #include <stdio.h>

  #include <math.h>

  #define PR(X, ...) printf("Message " #X ": " _ _VA_ARGS_ _)

  

  int main(void)

  {

      double x = 48;

      double y;

  

      y = sqrt(x);

      PR(1, "x = %g\n", x);

      PR(2, "x = %.2f, y = %.4f\n", x, y);

  

      return 0;

  }   

 In the first macro call,  X  has the value  1 , so  #X  becomes  "1" . That makes the expansion look 
like this:  

  print("Message " "1" ": " "x = %g\n", x);   

 Then the four strings are concatenated, reducing the call to this:  

  print("Message 1: x = %g\n", x);   

 Here’s the output:  

  Message 1: x = 48

  Message 2: x = 48.00, y = 6.9282   

 Don’t forget, the ellipses have to be the last macro argument:  

  #define WRONG(X, ..., Y)  #X #_ _VA_ARGS_ _ #y  // won't work     
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  Macro or Function?  

 Many tasks can be done by using a macro with arguments or by using a function. Which one 
should you use? There is no hard-and-fast rule, but here are some considerations.  

 Macros are somewhat trickier to use than regular functions because they can have odd side 
effects if you are unwary. Some compilers limit the macro definition to one line, and it is prob-
ably best to observe that limit, even if your compiler does not.  

 The macro-versus-function choice represents a trade-off between time and space. A macro 
produces inline code; that is, you get a statement in your program. If you use the macro 20 
times, you get 20 lines of code inserted into your program. If you use a function 20 times, you 
have just one copy of the function statements in your program, so less space is used. On the 
other hand, program control must shift to where the function is and then return to the calling 
program, and this takes longer than inline code.  

 Macros have an advantage in that they don’t worry about variable types. (This is because they 
deal with character strings, not with actual values.) Therefore, the  SQUARE(x)  macro can be 
used equally well with  int  or  float .  

 C99 provides a third alternative—inline functions. We’ll look at them later in this chapter.  

 Programmers typically use macros for simple functions such as the following:  

  #define MAX(X,Y)    ((X) > (Y) ? (X) : (Y))

  #define ABS(X)       ((X) < 0 ? -(X) : (X))

  #define ISSIGN(X)   ((X) == '+' || (X) == '-' ? 1 : 0)   

 (The last macro has the value  1 , or true, if  x  is an algebraic sign character.)  

 Here are some points to note:  

    ■   Remember that there are no spaces in the macro name, but that spaces can appear in the 
replacement string. ANSI C permits spaces in the argument list.   

   ■   Use parentheses around each argument and around the definition as a whole. This 
ensures that the enclosed terms are grouped properly in an expression such as  

  forks = 2 * MAX(guests + 3, last);    

   ■   Use capital letters for macro function names. This convention is not as widespread as 
that of using capitals for macro constants. However, one good reason for using capitals is 
to remind yourself to be alert to possible macro side effects.   

   ■   If you intend to use a macro instead of a function primarily to speed up a program, first 
try to determine whether it is likely to make a significant difference. A macro that is used 
once in a program probably won’t make any noticeable improvement in running time. 
A macro inside a nested loop is a much better candidate for speed improvements. Many 
systems offer program profilers to help you pin down where a program spends the most 
time.    
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 Suppose you have developed some macro functions you like. Do you have to retype them each 
time you write a new program? Not if you remember the  #include  directive, reviewed in the 
following section.   

  File Inclusion:  #include   

 When the preprocessor spots an  #include  directive, it looks for the following filename and 
includes the contents of that file within the current file. The  #include  directive in your source 
code file is replaced with the text from the included file. It’s as though you sat down and typed 
in the entire contents of the included file at that particular location in your source file. The 
 #include  directive comes in two varieties:  

  #include <stdio.h>    Filename  directive>  >  in  (angle brackets)> )> 
(angle)>angle brackets  

  #include "mystuff.h"    Filename in  double quotation marks  

 On a Unix system, the angle brackets tell the preprocessor to look for the file in one or more 
standard system directories. The double quotation marks tell it to first look in your current 
directory (or some other directory that you have specified in the filename) and then look in the 
standard places:  

  #include <stdio.h>    Searches directive>> system directories  

  #include "hot.h"    Searches your current working directory  

  #include "/usr/biff/p.h"    Searches the  /usr/biff  directory  

 Integrated development environments (IDEs) also have a standard location or locations for 
the system header files. Many provide menu choices for specifying additional locations to be 
searched when angle brackets are used. As with Unix, using double  quotes means to search a 
local directory first, but the exact directory searched depends on the compiler. Some search the 
same directory as that holding the source code; some search the current working directory; and 
some search the same directory as that holding the project file.  

 ANSI C doesn’t demand adherence to the directory model for files because not all computer 
systems are organized similarly. In general, the method used to name files is system dependent, 
but the use of the angle brackets and double quotation marks is not.  

 Why include files? Because they have information the compiler needs. The  stdio.h  file, for 
example, typically includes definitions of  EOF ,  NULL ,  getchar() , and  putchar() . The last two 
are defined as macro functions. It also contains function prototypes for the C I/O functions.  

 The  .h  suffix is conventionally used for  header files —files with information that are placed at 
the head of your program. Header files often contain preprocessor statements. Some, such as 
 stdio.h , come with the system, but you are free to create your own.  



ptg11524036

727File Inclusion: #include

 Including a large header file doesn’t necessarily add much to the size of your program. The 
content of header files, for the most part, is information used by the compiler to generate the 
final code, not material to be added to the final code.  

  Header Files: An Example  

 Suppose you developed a structure for holding a person’s name and also wrote some functions 
for using the structure. You could gather together the various declarations in a header file. 
 Listing   16.6    shows an example of this.  

  Listing 16.6   The  names_st.h  Header File  

 // names_st.h -- names_st structure header file

  // constants

  #include <string.h>

  #define SLEN 32

  

  // structure declarations

  struct names_st

  {

      char first[SLEN];

      char last[SLEN];

  };

  

  // typedefs

  typedef struct names_st names;

  

  // function prototypes

  void get_names(names *);

  void show_names(const names *);

  char * s_gets(char * st, int n);   

 This header file includes many of the kinds of things commonly found in header files: #define 
directives, structure declarations,  typedef  statements, and function prototypes. Note that none 
of these things are executable code; rather, they are information that the compiler uses when it 
creates executable code.  

 This particular header file is a bit naïve. Normally, you should use  #ifndef  and  #define  to 
protect against multiple inclusions of a header file. We’ll return to that technique later.  

 Executable code normally goes into a source code file, not a header file. For example,  Listing 
  16.7    shows the function definitions for those functions prototyped in the header file. It 
includes the header file so that the compiler will know about  names  type.  
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  Listing 16.7   The  name_st.c  Source File  

 // names_st.c -- define names_st functions

  #include <stdio.h>

  #include "names_st.h"     // include the header file

  

  // function definitions

  void get_names(names * pn)

  {

      printf("Please enter your first name: ");

      s_gets(pn->first, SLEN);

  

      printf("Please enter your last name: ");

      s_gets(pn->last, SLEN);

   }

  

  void show_names(const names * pn)

  {

      printf("%s %s", pn->first, pn->last);

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of  line

      }

      return ret_val;

  }   

 The  get_names()  function uses  fgets()  (via  s_gets() ) so as not to overflow the destination 
arrays.  Listing   16.8    is an example of a program that uses this header and source code file.  

  Listing 16.8   The  useheader.c  Program  

 // useheader.c -- use the names_st structure

  #include <stdio.h>

  #include "names_st.h"



ptg11524036

729File Inclusion: #include

  // remember to link with names_st.c

  

  int main(void)

  {

      names candidate;

  

      get_names(&candidate);

      printf("Let's welcome ");

      show_names(&candidate);

      printf(" to this program!\n");

      return 0;

  }   

 Here is a sample run:  

  Please enter your first name: Ian

  Please enter your last name: Smersh

  Let's welcome Ian Smersh to this program!   

 Note the following points about this program:  

    ■   Both source code files use the  names_st  structure, so both have to include the  names_
st.h  header file.   

   ■   You need to compile and link the  names_st.c  and the  useheader.c  source code files.   

   ■   Declarations and the like go into the  names_st.h  header file; function definitions go 
into the  names_st.c  source code file.     

  Uses for Header Files  

 A look through any of the standard header files can give you a good idea of the sort of informa-
tion found in them. The most common forms of header contents include the following:  

    ■    Manifest constants—    A typical  stdio.h  file, for instance, defines  EOF ,  NULL , and  BUFSIZ  
(the size of the standard I/O buffer).   

   ■    Macro functions—    For example,  getchar()  is usually defined as  getc(stdin) ,  getc()  
is usually defined as a rather complex macro, and the  ctype.h  header typically contains 
macro definitions for the  ctype  functions.   

   ■    Function declarations—    The  string.h  header ( strings.h  on some older systems), for 
example, contains function declarations for the family of string functions. Under ANSI C 
and later, the declarations are in function prototype form.   

   ■    Structure template definitions—    The standard I/O functions make use of a  FILE  
structure containing information about a file and its associated buffer. The  stdio.h  file 
holds the declaration for this structure.   
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   ■    Type definitions—    You might recall that the standard I/O functions use a pointer-to-
 FILE  argument. Typically,  stdio.h  uses a  #define  or a  typedef  to make  FILE  represent 
a pointer to a structure. Similarly, the  size_t  and  time_t  types are defined in header 
files.    

 Many programmers develop their own standard header files to use with their programs. This is 
particularly valuable if you develop a family of related functions and/or structures.  

 Also, you can use header files to declare external variables to be shared by several files. This 
makes sense, for example, if you’ve developed a family of functions that share a variable for 
reporting a status of some kind, such as an error condition. In that case, you could define a file-
scope, external-linkage variable in the source code file containing the function declarations:  

  int status = 0;    // file scope, source code file   

 Then, in the header file associated with the source code file, you could place a reference 
declaration:  

  extern int status;  // in header file   

 This code would then appear in any file in which you included the header file, making the 
variable available to those files that use that family of functions. This declaration also would 
appear, through inclusion, in the function source code file, but it’s okay to have both a defin-
ing declaration and a reference declaration in the same file, as long as the declarations agree in 
type.  

 Another candidate for inclusion in a header file is a variable or array with file scope, internal 
linkage, and  const  qualification. The  const  part protects against accidental changes, and the 
 static  part means that each file including the header gets its own copy of the constants so 
that there isn’t the problem of needing one file with a defining declaration and the rest with 
reference declarations.  

 The  #include  and  #define  directives are the most heavily used C preprocessor features. We’ll 
look at the other directives in less detail.    

  Other Directives  

 Programmers may have to prepare C programs or C library packages that have to work in 
a variety of environments. The choices of types of code can vary from one environment to 
another. The preprocessor provides several directives that help the programmer produce code 
that can be moved from one system to another by changing the values of some  #define  
macros. The  #undef  directive cancels an earlier  #define  definition. The  #if ,  #ifdef ,  #ifndef , 
 #else ,  #elif , and  #endif  directives allow you to specify different alternatives for which code 
is compiled. The  #line  directive lets you reset line and file information, the  #error  direc-
tive lets you issue error messages,  and the  #pragma  directive lets you give instructions to the 
compiler.  
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  The  #undef  Directive  

 The  #undef  directive “undefines” a given  #define . That is, suppose you have this definition:  

  #define LIMIT 400   

 Then the directive  

  #undef LIMIT   

 removes that definition. Now, if you like, you can redefine  LIMIT  so that it has a new value. 
Even if  LIMIT  is not defined in the first place, it is still valid to undefine it. If you want to use a 
particular name and you are unsure whether it has been used previously, you can undefine it to 
be on the safe side.   

  Being Defined—The C Preprocessor Perspective  

 The preprocessor follows the same rules as C about what constitutes an identifier: An identifier 
can consist only of uppercase letters, lowercase letters, digits, and underscore characters, and a 
digit cannot be the first character. When the preprocessor encounters an identifier in a prepro-
cessor directive, it considers it to be either defined or undefined. Here,  defined  means defined 
by the preprocessor. If the identifier is a macro name created by a prior  #define  directive in 
the same file and it hasn’t been turned off by an  #undef  directive, it’s defined. If the identifier 
is not a macro but is, say, a file-scope C variable,  it’s not defined as far as the preprocessor is 
concerned.  

 A defined macro can be an object-like macro, including an empty macro, or a function-like 
macro:  

  #define LIMIT 1000         // LIMIT is defined

  #define GOOD               // GOOD is defined

  #define A(X)  ((-(X))*(X)) // A is defined

  int q;                     // q not a macro, hence not defined

  #undef GOOD                // GOOD not defined   

 Note that the scope of a  #define  macro extends from the point it is declared in a file until it is 
the subject of an  #undef  directive or until the end of the file, whichever comes first. Also note 
that the position of the  #define  in a file will depend on the position of an  #include  directive 
if the macro is brought in via a header file.  

 A few predefined macros, such as  _ _DATE_ _  and  _ _FILE_ _  (discussed later this chapter), are 
always considered defined and cannot be undefined.   

  Conditional Compilation  

 You can use the other directives mentioned to set up conditional compilations. That is, you 
can use them to tell the compiler to accept or ignore blocks of information or code according 
to conditions at the time of compilation.  
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  The  #ifdef ,  #else , and  #endif  Directives  

 A short example will clarify what conditional compilation does. Consider the following:  

  #ifdef MAVIS

       #include "horse.h"  // gets done if MAVIS is #defined

       #define  STABLES     5

  #else

       #include "cow.h"    // gets done if MAVIS isn't #defined

       #define  STABLES   15

  #endif   

 Here we’ve used the indentation allowed by newer implementations and by the ANSI standard. 
If you have an older implementation, you might have to move all the directives, or at least the 
 #  symbols (see the next example), to flush left:  

  #ifdef MAVIS

  #   include "horse.h"  /* gets done if MAVIS is #defined    */

  #   define  STABLES     5

  #else

  #   include "cow.h"    /* gets done if MAVIS isn't #defined */

  #   define  STABLES   15

  #endif   

 The  #ifdef  directive says that if the following identifier ( MAVIS ) has been defined by the 
preprocessor, follow all the directives and compile all the C code up to the next  #else  or 
 #endif , whichever comes first. If there is an  #else , everything from the  #else  to the  #endif  
is done if the identifier isn’t defined.  

 The form  #ifdef #else  is much like that of the C  if else . The main difference is that the 
preprocessor doesn’t recognize the braces ( {} ) method of marking a block, so it uses the  #else  
(if any) and the  #endif  (which must be present) to mark blocks of directives. These conditional 
structures can be nested. You can use these directives to mark blocks of C statements, too, as 
 Listing   16.9    illustrates.  

  Listing 16.9   The  ifdef.c  Program  

 /* ifdef.c -- uses conditional compilation */

  #include <stdio.h>

  #define JUST_CHECKING

  #define LIMIT 4

  

  int main(void)

  {

      int i;

      int total = 0;

  

      for (i = 1; i <= LIMIT; i++)
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      {

          total += 2*i*i + 1;

  #ifdef JUST_CHECKING

          printf("i=%d, running total = %d\n", i, total);

  #endif

      }

      printf("Grand total = %d\n", total);

  

      return 0;

  }   

 Compiling and running the program as shown produces this output:  

  i=1, running total = 3

  i=2, running total = 12

  i=3, running total = 31

  i=4, running total = 64

  Grand total = 64   

 If you omit the  JUST_CHECKING  definition (or enclose it inside a C comment, or use  #undef  
to undefine it) and recompile the program, only the final line is displayed. You can use this 
approach, for example, to help in program debugging. Define  JUST_CHECKING  and use a judi-
cious selection of  #ifdef s, and the compiler will include program code for printing interme-
diate values for debugging. After everything is working, you can remove the definition and 
recompile. If, later, you find that you need the information again, you can reinsert the defi-
nition and avoid having to retype all the extra print statements. Another possibility is using  
 #ifdef  to select among alternative chunks of codes suited for different C implementations.   

  The  #ifndef  Directive  

 The  #ifndef  directive can be used with  #else  and  #endif  in the same way that  #ifdef  is. 
The  #ifndef  asks whether the following identifier is  not  defined;  #ifndef  is the negative of 
 #ifdef . This directive is often used to define a constant if it is not already defined. Here’s an 
example:  

  /* arrays.h  */

  #ifndef SIZE

     #define SIZE 100

  #endif   

 (Older implementations might not permit indenting the  #define  directive.)  

 Typically, this idiom is used to prevent multiple definitions of the same macro when you 
include several header files, each of which may contain a definition. In this case, the definition 
in the first header file included becomes the active definition and subsequent definitions in 
other header files are ignored.  
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 Here’s another use. Suppose we place the line  

  #include "arrays.h"   

 at the head of a file. This results in  SIZE  being defined as 100. But placing  

  #define SIZE 10

  #include "arrays.h"   

 at the head sets  SIZE  to 10. Here,  SIZE  is defined by the time the lines in  arrays.h  are 
processed, so the  #define SIZE 100  line is skipped. You might do this, for example, to test 
a program using a smaller array size. When it works to your satisfaction, you can remove the 
 #define SIZE 10  statement and recompile. That way, you never have to worry about modify-
ing the header array itself.  

 The  #ifndef  directive is commonly used to prevent multiple inclusions of a file. That is, 
header files usually are set up along the following lines:  

  /* things.h */

  #ifndef THINGS_H_

       #define THINGS_H_

       /* rest of include file */

  #endif   

 Suppose this file somehow got included several times. The first time the preprocessor encoun-
ters this include file,  THINGS_H_  is undefined, so the program proceeds to define  THINGS_H_  
and to process the rest of the file. The next time the preprocessor encounters this file, 
 THINGS_H_  is defined, so the preprocessor skips the rest of the file.  

 Why would you include a file more than once? The most common reason is that many include 
files include other files, so you may include a file explicitly that another include file has already 
included. Why is this a problem? Some items that appear in include files, such as declarations 
of structure types, can appear only once in a file. The standard C header files use the  #ifndef  
technique to avoid multiple inclusions. One problem is to make sure the identifier you are 
testing hasn’t been defined elsewhere. Vendors typically solve this by using the filename as the 
identifier, using uppercase,  replacing periods with an underscore, and using an underscore (or, 
perhaps, two underscores) as a prefix and a suffix. If you check your  stdio.h  header file, for 
example, you’ll probably find something similar to this:  

  #ifndef _STDIO_H

  #define _STDIO_H

  // contents of file

  #endif   

 You can do something similar. However, you should avoid using the underscore as a prefix 
because the standard says such usage is reserved. You wouldn’t want to accidentally define a 
macro that conflicts with something in the standard header files.  Listing   16.10    uses  #ifndef  to 
provide multiple-inclusion protection for the header file from  Listing   16.6   .  
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  Listing 16.10   The  names.h  Header File  

 // names.h --revised with include protection

  

  #ifndef NAMES_H_

  #define NAMES_H_

  

  // constants

  #define SLEN 32

  

  // structure declarations

  struct names_st

  {

      char first[SLEN];

      char last[SLEN];

  };

  

  // typedefs

  typedef struct names_st names;

  

  // function prototypes

  void get_names(names *);

  void show_names(const names *);

  char * s_gets(char * st, int n);

  

  #endif   

 You can test this header file with the program shown in  Listing   16.11   . This program should 
work correctly when using the header file shown in  Listing   16.10   , and it should fail to compile 
if you remove the  #ifndef  protection from  Listing   16.10   .  

  Listing 16.11   The  doubincl.c  Program  

 // doubincl.c -- include header twice

  #include <stdio.h>

  #include "names.h"

  #include "names.h"   // accidental second inclusion

  

  int main()

  {

      names winner = {"Less", "Ismoor"};

      printf("The winner is %s %s.\n", winner.first,

              winner.last);

      return 0;

  }    
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  The  #if  and  #elif  Directives  

 The  #if  directive is more like the regular C  if . It is followed by a constant integer expression 
that is considered true if nonzero, and you can use C’s relational and logical operators with it:  

  #if SYS == 1

  #include "ibm.h"

  #endif   

 You can use the  #elif  directive (not available in some older implementations) to extend an 
 if-else  sequence. For example, you could do this:  

  #if SYS == 1

       #include "ibmpc.h"

  #elif SYS == 2

       #include "vax.h"

  #elif SYS == 3

       #include "mac.h"

  #else

       #include "general.h"

  #endif   

 Newer implementations offer a second way to test whether a name is defined. Instead of using  

  #ifdef VAX   

 you can use this form:  

  #if defined (VAX)   

 Here,  defined  is a preprocessor operator that returns  1  if its argument is  #defined  and  0  
otherwise. The advantage of this newer form is that it can be used with  #elif . Using it, you 
can rewrite the previous example this way:  

  #if defined (IBMPC)

       #include "ibmpc.h"

  #elif defined (VAX)

       #include "vax.h"

  #elif defined (MAC)

       #include "mac.h"

  #else

       #include "general.h"

  #endif   

 If you were using these lines on, say, a VAX, you would have defined  VAX  somewhere earlier in 
the file with this line:  

  #define VAX   
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 One use for these conditional compilation features is to make a program more portable. By 
changing a few key definitions at the beginning of a file, you can set up different values and 
include different files for different systems.    

  Predefined Macros  

 The C standard specifies several predefined macros, which  Table   16.1    lists.  

  Table 16.1   Predefined Macros  

  Macro     Meaning   

  _ _DATE_ _    A character string literal in the form “Mmm dd yyyy” representing the date 
of preprocessing, as in Nov 23 2013  

  _ _FILE_ _    A character string literal representing the name of the current source 
code file  

  _ _LINE_ _    An integer constant representing the line number in the current source 
code file  

  _ _STDC_ _    Set to 1 to indicate the implementation conforms to the C Standard  

  _ _STDC_HOSTED_ _    Set to 1 for a hosted environment; 0 otherwise  

  _ _STDC_VERSION_ _     For   C99, set to 199901L; for C11, set to 201112L   

  _ _TIME_ _    The time of translation in the form “hh:mm:ss”  

 While we’re discussing predefined identifiers, the C99 standard provides for one called 
 _ _func_ _ . It expands to a string representing the name of the function containing the identi-
fier. For this reason, the identifier has to have function scope, whereas macros essentially have 
file scope. Therefore,  _ _func_ _  is a C language predefined identifier rather than a predefined 
macro.  

  Listing   16.12    shows several of these predefined identifiers in use. Note that some of them are 
C99 additions, so a pre-C99 compiler might not accept them. For GCC you may have to use 
the  -std=c99  or the  -std=c11  flag.  

  Listing 16.12   The  predef.c  Program  

 // predef.c -- predefined identifiers

  #include <stdio.h>

  void why_me();

  

  int main()

  {

      printf("The file is %s.\n", _ _FILE_ _);
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      printf("The date is %s.\n", _ _DATE_ _);

      printf("The time is %s.\n", _ _TIME_ _);

      printf("The version is %ld.\n", 3TDC_VERSION_ _);

      printf("This is line %d.\n", _ _LINE_ _);

      printf("This function is %s\n", _ _func_ _);

      why_me();

  

      return 0;

  }

  

  

  void why_me()

  {

      printf("This function is %s\n", _ _func_ _);

      printf("This is line %d.\n", _ _LINE_ _);

  }   

 Here’s a sample run:  

  The file is predef.c.

  The date is Sep 23 2013.

  The time is 22:01:09.

  The version is 201112.

  This is line 11.

  This function is main

  This function is why_me

  This is line 21.     

   #line  and  #error   

 The  #line  directive lets you reset the line numbering and the filename as reported by the 
 _ _LINE_ _  and  _ _FILE_ _  macros. You can use  #line  like this:  

  #line 1000     // reset current line number to 1000

  #line 10  "cool.c"  // reset line number to 10, file name to cool.c   

 The  #error  directive causes the preprocessor to issue an error message that includes any text in 
the directive. If possible, the compilation process should halt. You could use the directive like 
this:  

  #if _ _STDC_VERSION_ _ != 201112L

  #error Not C11

  

  #endif   

 Attempting to compile the program could then produce results like this:  
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  $  gcc newish.c 

  newish.c:14:2: error: #error Not C11

  $  gcc -std=c11 newish.c 

  $   

 The compilation process failed when the compiler used an older standard and succeeded when 
it used the C11 standard.   

   #pragma   

 Modern compilers have several settings that can be modified by command-line arguments or 
by using an IDE menu. The  #pragma  lets you place compiler instructions in the source code. 
For example, while C99 was being developed, it was referred to as C9X, and one compiler used 
the following pragma to turn on C9X support:  

  #pragma c9x on   

 Generally, each compiler has its own set of pragmas. They might be used, for example, to 
control the amount of memory set aside for automatic variables or to set the strictness of error 
checking or to enable nonstandard language features. The C99 standard does provide for three 
standard pragmas of rather technical nature that we won’t discuss here.  

 C99 also provides the  _Pragma  preprocessor operator. It converts a string into a regular pragma. 
For example,  

  _Pragma("nonstandardtreatmenttypeB on")   

 is equivalent to the following:  

  #pragma nonstandardtreatmenttypeB on   

 Because the operator doesn’t use the  #  symbol, you can use it as part of a macro expansion:  

  #define PRAGMA(X) _Pragma(#X)

  #define LIMRG(X) PRAGMA(STDC CX_LIMITED_RANGE  X)   

 Then you can use code like this:  

  LIMRG ( ON )   

 Incidentally, the following definition doesn’t work, although it looks as if it might:  

  #define LIMRG(X) _Pragma(STDC CX_LIMITED_RANGE  #X)   

 The problem is that it relies on string concatenation, but the compiler doesn’t concatenate 
strings until after preprocessing is complete.  

 The  _Pragma  operator does a complete job of “destringizing”; that is, escape sequences in a 
string are converted to the character represented. Thus,  

  _Pragma("use_bool \"true \"false")   
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 becomes  

  #pragma use_bool "true "false    

  Generic Selection (C11)  

 In programming, the term  generic programming  indicates code that is not specific to a particu-
lar type but which, once a type is specified, can be translated into code for that type. C++, for 
example, lets you create generic algorithms in the form of templates that the compiler can 
then use to instantiate code automatically for a specified type. C doesn’t have anything quite 
like that. However, C11 adds a new sort of expression, called a  generic selection expression , that 
can be used to select a value on the basis of the type of an expression, that is, on whether the 
expression  type is  int ,  double , or some other type. The generic selection expression is not a 
preprocessor statement, but its usual use is a part of a  #define  macro definition that has some 
aspects of generic programming.  

 A generic selection expression looks like this:  

  _Generic(x, int: 0, float: 1, double: 2, default: 3)   

 Here  _Generic  is a new C11 keyword. The parentheses following  _Generic  contain several 
comma-separated terms. The first term is an expression, and each remaining item is a type 
followed by a colon followed by a value, such as  float: 1 . The type of the first term is 
matched to one of the labels, and the value of the whole expression is the value following 
the matched label. For example, suppose  x  in the preceding expression is a type  int  variable. 
Then the type of  x  matches the  int:  label, making  0  the value of the whole expression. If the 
type doesn’t match a label, the value associated  with the  default:  label is used for the whole 
expression. A generic selection statement is a little like a  switch  statement, except that the 
type of an expression rather than the value of an expression is matched to a label.  

 Let’s look at an example combining a generic selection statement with a macro definition:  

  #define MYTYPE(X) _Generic((X),\

      int: "int",\

      float : "float",\

      double: "double",\

      default: "other"\

  )   

 Recall that a macro has to be defined on one logical line, but you can use a  \  to break the one 
logical line into multiple physical lines. In this case, the generic selection expression evalu-
ates to a string. For example, the macro invocation  MYTYPE(5)  evaluates to the string  "int"  
because the type for the value  5  matches the  int:  label.  Listing   16.13    illustrates this macro 
further.  
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  Listing 16.13   The  predef.c  Program  

 //  mytype.c

  

  #include <stdio.h>

  

  #define MYTYPE(X) _Generic((X),\

      int: "int",\

      float : "float",\

      double: "double",\

      default: "other"\

  )

  

  int main(void)

  {

      int d = 5;

  

      printf("%s\n", MYTYPE(d));     // d is type int

      printf("%s\n", MYTYPE(2.0*d)); // 2.0* d is type double

      printf("%s\n", MYTYPE(3L));    // 3L is type long

      printf("%s\n", MYTYPE(&d));    // &d is type int *

      return 0;

   }   

 Here is the output:  

  int

  double

  other

  other   

 The final two instances of  MYTYPE()  use types without matching labels, so the default string 
is used. We could have used more type labels to extend the capabilities of the macro, but the 
example serves to illustrate how  _Generic -based macros work.  

 When evaluating a generic selection expression, the program does not evaluate the first term; it 
only determines the type. And the only expression it does evaluate is the one with the match-
ing label.  

 You can use  _Generic  to define macros that act like type-independent (“generic”) functions. 
The section later in this chapter about the  math  library provides an example.    

  Inline Functions (C99)  

 Normally, a function call has overhead. That means it takes execution time to set up the call, 
pass arguments, jump to the function code, and return. As you’ve seen, you can use a macro 
to place code inline, thus avoiding that overhead. C99, borrowing from C++ (but not always 
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exactly), added another approach,  inline functions . From the name, you might expect that an 
inline function replaces a function call with inline code, but you would be misled. What the 
C99 and C11 standards actually say is this: “Making a function an inline function suggests that 
calls to the function be  as fast as possible. The extent to which such suggestions are effective is 
implementation-defined.” So making a function an inline function may cause the compiler to 
replace the function call with inline code and/or perform some other sorts of optimizations, or 
it may have no effect.  

 There are different ways to create inline function definitions. The standard says that a function 
with internal linkage can be made inline and that the definition for the inline function must 
be in the same file in which the function is used. So a simple approach is to use the  inline  
function specifier along with the  static  storage-class specifier. Usually, inline functions are 
defined before the first use in a file, so the definition also acts as a prototype. That is, the code 
would look like this:  

  #include <stdio.h>

  inline static void eatline()   // inline definition/prototype

  {

      while (getchar() != '\n')

           continue;

  }

  

  int main()

  {

  ...

      eatline();                 // function call

  ...

  }   

 Seeing the inline declaration, the compiler could choose, for example, to replace the 
 eatline()  function call with the function body. That is, the effect could end up the same as if 
you had written this code instead:  

  #include <stdio.h>

  inline static void eatline()    // inline definition/prototype

  {

      while (getchar() != '\n')

           continue;

  }

  

  int main()

  {

  ...

      while (getchar() != '\n')   // function call replaced

           continue;

  ...

  }   
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 Because an inline function doesn’t have a separate block of code set aside for it, you can’t take 
its address. (Actually, you can take the address, but then the compiler will generate a non-inline 
function.) Also, an inline function may not show up in a debugger.  

 An inline function should be short. For a long function, the time consumed in calling the func-
tion is short compared to the time spent executing the body of the function, so there is no 
great savings in time using an inline version.  

 For the compiler to make inline optimizations, it has to know the contents of the function 
definition. This means the inline function definition has to be in the same file as the func-
tion call. For this reason, an inline function ordinarily has internal linkage. Therefore, if you 
have a multifile program, you need an inline definition in each file that calls the function. The 
simplest way to accomplish this is to put the inline function definition in a header file and 
then include the header file in those files that use the function.  

  // eatline.h

  #ifndef EATLINE_H_

  #define EATLINE_H_

  inline static void eatline()

  {

      while (getchar() != '\n')

           continue;

  }

  #endif   

 An inline function is an exception to the rule of not placing executable code in a header file. 
Because the inline function has internal linkage, defining one in several files doesn’t cause 
problems.  

 C, unlike C++, also allows a mixture of inline definitions with external definitions (function 
definitions with external linkage). For example, a program has the following three files:  

  //file1.c

  ...

  inline static double square(double);

  double square(double x) { return x * x; }

  

  int main()

  {

      double q = square(1.3);

  ...

  

  //file2.c

  ...

  double square(double x) { return (int) (x*x); }

  void spam(double v)

  {

      double kv = square(v);
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  ...

  

  //file3.c

  ...

  inline double square(double x) { return (int) (x * x + 0.5); }

  void masp(double w)

  {

      double kw = square(w);

  ...   

 One has an  inline static  definition, as before. One has an ordinary function definition, 
hence having external linkage. And one has an  inline  definition that omits the  static  
qualifier.  

 What happens? The  spam()  function in  file2.c  uses the  square()  definition in that file. 
That definition, having external linkage, is visible to the other files, but  main()  in  file1.c  
uses the local  static  definition of  square() . Because this definition also is  inline , the 
compiler may (or may not) optimize the coding, perhaps inlining it. Finally, for  file3.c , the 
compiler is free to use either (or both!) the inline definition of  file3.c  or the external linkage 
definition from  file2.c . If you omit  static  from an  inline  definition, as in  file3 .c, the 
 inline  definition is considered as an alternative that could be used instead of the external 
definition.  

 Note that GCC implemented inline functions prior to C99 using somewhat different rules, so 
the GCC interpretation of  inline  can depend on which compiler flags you use.   

   _Noreturn  Functions (C11)  

 When C99 added the  inline  keyword, that keyword became the sole example of a func-
tion specifier. (The keywords  extern  and  static  are termed storage-class specifiers and 
can be applied to data objects as well as to functions.) C11 adds a second function specifier, 
 _Noreturn , to indicate a function that, upon completion, does not return to the calling func-
tion. The  exit()  function is an example of a  _Noreturn  function, for once  exit()  is called, 
the calling function never resumes. Note that this is different from the  void  return type. A 
typical  void  function does return to the calling function; it just doesn’t provide an assignable 
value.  

 The purpose of  _Noreturn  is to inform the user and the compiler that a particular function 
won’t return control to the calling program. Informing the user helps to prevent misuse of the 
function, and informing the compiler may enable it to make some code optimizations.   

  The C Library  

 Originally, there was no official C library. Later, a de facto standard emerged based on the Unix 
implementation of C. The ANSI C committee, in turn, developed an official standard library, 
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largely based on the de facto standard. Recognizing the expanded C universe, the commit-
tee then sought to redefine the library so that it could be implemented on a wide variety of 
systems.  

 We’ve already discussed some I/O functions, character functions, and string functions from the 
library. In this chapter, we’ll browse through several more. First, however, let’s talk about how 
to use a library.  

  Gaining Access to the C Library  

 How you gain access to the C library depends on your implementation, so you need to see how 
the more general statements apply to your system. First, there are often several different places 
to find library functions. For example,  getchar()  is usually defined as a macro in the file 
 stdio.h , but  strlen()  is usually kept in a library file. Second, different systems have different 
ways to reach these functions. The following sections outline three possibilities.  

  Automatic Access  

 On many systems, you just compile the program and the more common library functions are 
made available automatically.  

 Keep in mind that you should declare the function type for functions you use. Usually you can 
do that by including the appropriate header file. User manuals describing library functions tell 
you which files to include. On some older systems, however, you might have to enter the func-
tion declarations yourself. Again, the user manual indicates the function type. Also,  Appendix 
  B   , “Reference Section,” summarizes the ANSI C library, grouping functions by header file.  

 In the past, header filenames have not been consistent among different implementations. The 
ANSI C standard groups the library functions into families, with each family having a specific 
header file for its function prototypes.   

  File Inclusion  

 If a function is defined as a macro, you can include the file containing its definition by using 
the  #include  directive. Often, similar macros are collected in an appropriately named header 
file. For example, since the introduction of ANSI C, C compilers come with a  ctype.h  file 
containing several macros that determine the nature of a character: uppercase, digit, and so 
forth.   

  Library Inclusion  

 At some stage in compiling or linking a program, you might have to specify a library option. 
Even a system that automatically checks its standard library can have other libraries of func-
tions less frequently used. These libraries have to be requested explicitly by using a compile-
time option. Note that this process is distinct from including a header file. A header file 
provides a function declaration or prototype. The library option tells the system where to 
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find the function code. Clearly, we can’t go through all the specifics for all systems, but these 
discussions should alert you to what you should look  for.    

  Using the Library Descriptions  

 We haven’t the space to discuss the complete library, but we will look at some representative 
examples. First, though, let’s take a look at documentation.  

 You can find function documentation in several places. Your system might have an online 
manual, and integrated environments often have online help. C vendors may supply printed 
user’s guides describing library functions, or they might place equivalent material on a refer-
ence CD-ROM or online. Several publishers have issued reference manuals for C library func-
tions. Some are generic in nature, and some are targeted toward specific implementations. And, 
as mentioned earlier,  Appendix   B    in this book provides a summary.  

 The key skill you need in reading the documentation is interpreting function headings. The 
idiom has changed with time. Here, for instance, is how  fread()  is listed in older Unix 
documentation:  

  #include <stdio.h>

  

  fread(ptr, sizeof(*ptr), nitems, stream)

  FILE *stream;   

 First, the proper  include  file is given. No type is given for  fread() ,  ptr ,  sizeof(*ptr) , or 
 nitems . By default, in the old days, they were taken to be type  int , but the context makes it 
clear that  ptr  is a pointer. (In C’s early days, pointers were handled as integers.) The  stream  
argument is declared as a pointer to  FILE . The declaration makes it look as though you are 
supposed to use the  sizeof  operator as the second argument. Actually, it’s saying that the 
value of this argument should be the size of the object pointed to by  ptr . Often, you would use 
 sizeof  as  illustrated, but any type  int  value satisfies the syntax.  

 Later, the form changed to this:  

  #include <stdio.h>

  

  int fread(ptr, size, nitems, stream;)

  char *ptr;

  int size, nitems;

  FILE *stream;   

 Now all types are given explicitly, and  ptr  is treated as a pointer-to- char .  

 The ANSI C90 standard provides the following description:  

  #include <stdio.h>

  size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);   
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 First, it uses the new prototype format. Second, it changes some types. The  size_t  type is 
defined as the unsigned integer type that the  sizeof  operator returns. Usually, it is either 
 unsigned int  or  unsigned long . The  stddef.h  file contains a  typedef  or a  #define  for 
 size_t , as do several other files, including  stdio.h , typically by including  stddef.h . Many 
functions, including  fread() , often incorporate the  sizeof  operator as part of an actual argu-
ment. The  size_t  type makes that formal argument match this common usage.  

 Also, ANSI C uses pointer-to- void  as a kind of generic pointer for situations in which point-
ers to different types may be used. For example, the actual first argument to  fread()  may be 
a pointer to an array of  double  or to a structure of some sort. If the actual argument is, say, a 
pointer-to-array-of-20- double  and the formal argument is pointer-to- void , the compiler makes 
the appropriate type version without complaining about type clashes.  

 More recently, the C99/C11 standards incorporate the new keyword  restrict  into the 
description:  

  #include <stdio.h>

  size_t fread(void * restrict ptr, size_t size,

               size_t nmemb, FILE * restrict stream);   

 Now let’s turn to some specific functions.    

  The Math Library  

 The math library contains many useful mathematical functions. The  math.h  header file 
provides the function declarations or prototypes for these functions.  Table   16.2    lists several 
functions declared in  math.h . Note that all angles are measured in radians (one radian = 180/π 
= 57.296 degrees). Reference Section V, “The Standard ANSI C Library with C99 Additions,” 
supplies a complete list of the functions specified by the C99 standard.  

  Table 16.2   Some ANSI C Standard Math Functions  

  Prototype     Description   

  double acos(double x)    Returns the angle (0 to π radians) whose cosine is  x   

  double asin(double x)    Returns the angle (—π/2 to π/2 radians) whose sine is  x   

  double atan(double x)    Returns the angle (−π/2 to π/2 radians) whose tangent is  x   

  double atan2(double y, 
double x)   

 Returns the angle (−π to π radians) whose tangent is  y / x   

  double cos(double x)    Returns the cosine of  x  ( x  in radians)  

  double sin(double x)    Returns the sine of  x  ( x  in radians)  

  double tan(double x)    Returns the tangent of  x  ( x  in radians)  

  double exp(double x)    Returns the exponential function of  x  (e x )  
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  Prototype     Description   

  double log(double x)    Returns the natural logarithm of  x   

  double log10(double x)    Returns the base 10 logarithm of  x   

  double pow(double x, dou-
ble y)   

 Returns  x  to the  y  power  

  double sqrt(double x)    Returns the square root of  x   

  double cbrt(double x)    Returns the cube root of  x   

  double ceil(double x)    Returns the smallest integral value not less than  x   

  double fabs(double x)    Returns the absolute value of  x   

  double floor(double x)    Returns the largest integral value not greater than x  

  A Little Trigonometry  

 Let’s use the math library to solve a common problem: converting from x/y coordinates to 
magnitudes and angles. For example, suppose you draw, on a grid work, a line that trans-
verses 4 units horizontally (the  x  value) and 3 units vertically (the  y  value). What is the length 
(magnitude) of the line and what is its direction? Trigonometry tells us the following:  

  magnitude = square root (x 2  + y 2 )   

 and  

  angle = arctangent (y/x)   

 The math library provides a square root function and a couple arctangent functions, so you can 
express this solution in a C program. The square root function, called  sqrt() , takes a  double  
argument and returns the argument’s square root, also as a type  double  value.  

 The  atan()  function takes a double argument—the tangent—and returns the angle having that 
value as its tangent. Unfortunately, the  atan()  function is confused by, say, a line with  x  and 
 y  values of  –5  and  –5 . Because (–5)/(–5) is 1,  atan()  would report 45°, the same as it does for a 
line with  x  and  y  values of  5  and  5 . In other words,  atan()  doesn’t distinguish between a line 
of a given angle and one 180° in the opposite direction. (Actually,  atan()  reports in radians, 
not degrees; we’ll discuss that conversion soon.)  

 Fortunately, the C library also provides the  atan2()  function. It takes two arguments: the x 
value and the y value. That way, the function can examine the signs of x and y and figure out 
the correct angle. Like  atan() ,  atan2()  returns the angle in radians. To convert to degrees, 
multiply the resulting angle by 180 and divide by pi. You can have the computer calculate pi 
by using the expression  4 * atan(1) .  Listing   16.14    illustrates these steps. It also gives you a 
chance to review structures and the  typedef  facility.  
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  Listing 16.14   The  rect_pol.c  Program  

 /* rect_pol.c -- converts rectangular coordinates to polar */

  #include <stdio.h>

  #include <math.h>

  

  #define RAD_TO_DEG (180/(4 * atan(1)))

  

  typedef struct polar_v {

      double magnitude;

      double angle;

  } Polar_V;

  

  typedef struct rect_v {

      double x;

      double y;

  } Rect_V;

  

  Polar_V rect_to_polar(Rect_V);

  

  int main(void)

  {

      Rect_V input;

      Polar_V result;

  

      puts("Enter x and y coordinates; enter q to quit:");

      while (scanf("%lf %lf", &input.x, &input.y) == 2)

      {

          result = rect_to_polar(input);

          printf("magnitude = %0.2f, angle = %0.2f\n",

                  result.magnitude, result.angle);

      }

      puts("Bye.");

  

      return 0;

  }

  

  Polar_V rect_to_polar(Rect_V rv)

  {

      Polar_V pv;

  

      pv.magnitude = sqrt(rv.x * rv.x + rv.y * rv.y);

      if (pv.magnitude == 0)

          pv.angle = 0.0;

      else

          pv.angle = RAD_TO_DEG * atan2(rv.y, rv.x);

  

      return pv;

  }   
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 Here’s a sample run:  

  Enter x and y coordinates; enter q to quit:

   10 10 

  magnitude = 14.14, angle = 45.00

   -12 -5 

  magnitude = 13.00, angle = -157.38

  q

  Bye.   

 If, when you compile, you get a message such as  

  Undefined:     _sqrt   

 or  

  'sqrt': unresolved external   

 or something similar, your compiler-linker is not finding the math library. Unix systems may 
require that you instruct the linker to search the math library by using the  -lm  flag:  

  cc rect_pol.c –lm   

 Note that the  –lm  flag comes at the end of the command. That’s because the linker comes into 
play after the compiler compiles the C file. The GCC compiler on Linux may behave in the 
same fashion:  

  gcc rect_pol.c -lm    

  Type Variants  

 The basic floating-point math functions take type  double  arguments and return a type  double  
value. You can pass them type  float  or type  long double  arguments, and the functions still 
work because the arguments are converted to type  double . That’s convenient but not neces-
sarily optimal. If double precision isn’t needed, the computations might be faster if done using 
single precision  float  values. And type  long double  value will lose precision when passed 
to a type  double  parameter; the value might not even be representable. To deal with these 
potential problems, the C standard provides type  float  and type  long double  versions of the 
standard functions, using an  f  or an   l  (“ell”) suffix on the function name. So  sqrtf()  is a type 
 float  version of  sqrt() , and  sqrtl()  is a type  long double  version.  

 The C11 addition of the generic selection expression lets us define a generic macro that chooses 
the most appropriate version of a math function based on the argument type.  Listing   16.15    
shows two approaches.  

  Listing 16.15   The  generic.c  Program  

 //  generic.c  -- defining generic macros

  

  #include <stdio.h>
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  #include <math.h>

  #define RAD_TO_DEG (180/(4 * atanl(1)))

  

  // generic square root function

  #define SQRT(X) _Generic((X),\

      long double: sqrtl, \

      default: sqrt, \

      float: sqrtf)(X)

  

  // generic sine function, angle in degrees

  #define SIN(X) _Generic((X),\

      long double: sinl((X)/RAD_TO_DEG),\

      default:     sin((X)/RAD_TO_DEG),\

      float:       sinf((X)/RAD_TO_DEG)\

  )

  

  int main(void)

  {

      float x = 45.0f;

      double xx = 45.0;

      long double xxx =45.0L;

  

      long double y = SQRT(x);

      long double yy= SQRT(xx);

      long double yyy = SQRT(xxx);

      printf("%.17Lf\n", y);   // matches float

      printf("%.17Lf\n", yy);  // matches default

      printf("%.17Lf\n", yyy); // matches long double

      int i = 45;

      yy = SQRT(i);            // matches default

      printf("%.17Lf\n", yy);

      yyy= SIN(xxx);           //  matches long double

      printf("%.17Lf\n", yyy);

  

      return 0;

  }   

 Here is the output:  

  6.70820379257202148

  6.70820393249936942

  6.70820393249936909

  6.70820393249936942

  0.70710678118654752   

 As you can see,  SQRT(i)  has the same return value as  SQRT(xx) , as both argument types ( int  
and  double ) correspond to the  default  label.  
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 A point of interest is how to get a macro using  _Generic  to act like a function. The definition 
for  SIN()  takes perhaps the more obvious approach: Each labeled value is a function call, so 
the value of the  _Generic  expression is a particular function call, such as  sinf((X)/RAD_TO_
DEG) , with the argument to  SIN()  replacing the  X .  

 The  SQRT()  definition is perhaps more elegant. In this case the value of the  _Generic  expres-
sion is the name of a function, such as  sinf . The name of a function is replaced by the 
address of the function, so the value of the  _Generic  expression is a pointer to a function. 
However, the entire  _Generic  expression is followed by  (X) , and the combination of  function-
pointer(argument)  calls the pointed-to function with the indicated argument.  

 In short, for  SIN() , the function call is inside the generic selection expression, while for 
 SQRT()  the generic selection expression evaluates to a pointer, which is then used to invoke a 
function.   

  The  tgmath.h  Library (C99)  

 The C99 standard provides a  tgmath.h  header file that defines type-generic macros similar 
in effect to those in  Listing   16.15   . If a  math.h  function is defined for each of the three types 
 float ,  double , and  long double , the  tgmath.h  file creates a type-generic macro with the 
same name as the double version. For instance, it defines a  sqrt()  macro that expands to the 
 sqrtf() ,  sqrt() , or  sqrtl()  function, depending on the type of argument provided. In other 
words, the  sqrt()  macro behaves like the  SQRT()  macro in  Listing   16.15   .  

 If the compiler supports complex arithmetic, it supports the  complex.h  header file, which 
declares complex analogs to math functions. For example, it declares  csqrtf() ,  csqrt() , and 
 csqrtl() , which return the complex square roots of type  float complex ,  double complex , 
and  long double complex , respectively. When such support is provided, the  tgmath.h 
sqrt()  macro also can expand to the corresponding complex square root function.  

 If you want to, say, invoke the  sqrt()  function instead of the  sqrt()  macro even though 
 tgmath.h  is included, you can enclose the function name in parentheses:  

  #include <tgmath.h>

  ...

      float x = 44.0;

      double y;

      y = sqrt(x);   // invoke macro, hence sqrtf(x)

      y = (sqrt)(x); // invoke function sqrt()   

 This works because a function-like macro name has to be followed by an opening parenthesis, 
which using enclosing parentheses circumvents. Otherwise, aside from order of operations, 
parentheses don’t affect enclosed expressions, so enclosing a function name in parentheses still 
results in a function call. Indeed, because of C’s strangely contradictory rules about function 
pointers, you also can also use  (*sqrt)()  to invoke the  sqrt()  function.  

 What C11 adds with  _Generic  expressions is a simple way to implement the macros of 
 tgmath.h  without resorting to mechanisms outside the C standard.    
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  The General Utilities Library  

 The general utilities library contains a grab bag of functions, including a random-number 
generator, searching and sorting functions, conversion functions, and memory-management 
functions. You’ve already seen  rand() ,  srand() ,  malloc() , and  free()  in  Chapter   12   , 
“Storage Classes, Linkage, and Memory Management.” Under ANSI C, prototypes for these 
functions exist in the  stdlib.h  header file.  Appendix   B   , Reference Section V lists all the func-
tions in this family; we’ll take a closer look at a few of them now.  

  The  exit()  and  atexit()  Functions  

 We’ve already used  exit()  explicitly in several examples. In addition, the  exit()  function 
is invoked automatically upon return from  main() . The ANSI standard has added a couple 
nice features that we haven’t used yet. The most important addition is that you can specify 
particular functions to be called when  exit()  executes. The  atexit()  function provides this 
feature by registering the functions to be called on exit; the  atexit()  function takes a function 
pointer as its argument.  Listing   16.16    shows how this works.  

  Listing 16.16   The  byebye.c  Program  

 /* byebye.c -- atexit() example */

  #include <stdio.h>

  #include <stdlib.h>

  void sign_off(void);

  void too_bad(void);

  

  int main(void)

  {

      int n;

  

      atexit(sign_off);    /* register the sign_off() function */

      puts("Enter an integer:");

      if (scanf("%d",&n) != 1)

      {

          puts("That's no integer!");

          atexit(too_bad); /* register the too_bad()  function */

          exit(EXIT_FAILURE);

      }

      printf("%d is %s.\n", n,  (n % 2 == 0)? "even" : "odd");

  

      return 0;

  }

  

  void sign_off(void)

  {

      puts("Thus terminates another magnificent program from");
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      puts("SeeSaw Software!");

  }

  

  void too_bad(void)

  {

      puts("SeeSaw Software extends its heartfelt condolences");

      puts("to you upon the failure of your program.");

  }   

 Here’s one sample run:  

  Enter an integer:

   212 

  212 is even.

  Thus terminates another magnificent program from

  SeeSaw Software!   

 You might not see the final two lines if you are running in an IDE.  

 Here’s a second run:  

  Enter an integer:

   what? 

  That's no integer!

  SeeSaw Software extends its heartfelt condolences

  to you upon the failure of your program.

  Thus terminates another magnificent program from

  SeeSaw Software!   

 You might not see the final four lines if you are running in an IDE.  

 Let’s look at two main areas: the use of the  atexit()  and  exit()  arguments.  

  Using  atexit()   

 Here’s a function that uses function pointers! To use the  atexit()  function, simply pass it 
the address of the function you want called on exit. Because the name of a function acts as an 
address when used as a function argument, use  sign_off  or  too_bad  as the argument. Then 
 atexit()  registers that function in a list of functions to be executed when  exit()  is called. 
ANSI guarantees that you can place at least 32 functions on the list. Each function is added 
with a separate call to  atexit() . When the  exit()  function is finally called, it executes these 
functions, with the last function added being executed first.  

 Notice that both  sign_off()  and  too_bad()  were called when input failed, but only  sign_
off()  was called when input worked. That’s because the  if  statement registers  too_bad()  
only if input fails. Also note that the last function registered was the first called.  



ptg11524036

755The General Utilities Library

 The functions registered by  atexit()  should, like  sign_off()  and  too_bad() , be type  void  
functions taking no arguments. Typically, they would perform housekeeping tasks, such as 
updating a program-monitoring file or resetting environmental variables.  

 Note that  sign_off()  is called even when  exit()  is not called explicitly; that’s because 
 exit()  is called implicitly when  main()  terminates.   

  Using  exit()   

 After  exit()  executes the functions specified by  atexit() , it does some tidying of its own. It 
flushes all output streams, closes all open streams, and closes temporary files created by calls to 
the standard I/O function  tmpfile() . Then  exit()  returns control to the host environment 
and, if possible, reports a termination status to the environment. Traditionally, Unix programs 
have used 0 to indicate successful termination and nonzero to report failure. Unix return codes 
don’t necessarily work with all systems, so ANSI C defined a macro called  EXIT_FAILURE  that 
can be used portably to indicate failure. Similarly, it defined  EXIT_SUCCESS  to indicate success, 
but  exit()  also  accepts 0 for that purpose. Under ANSI C, using the  exit()  function in a 
nonrecursive  main()  function is equivalent to using the keyword  return . However,  exit()  
also terminates programs when used in functions other than  main() .    

  The  qsort()  Function  

 The “quick sort” method is one of the most effective sorting algorithms, particularly for larger 
arrays. Developed by C.A.R. Hoare in 1962, it partitions arrays into ever smaller sizes until the 
element level is reached. First, the array is divided into two parts, with every value in one parti-
tion being less than every value in the other partition. This process continues until the array is 
fully sorted.  

 The name for the C implementation of the quick sort algorithm is  qsort() . The  qsort()  func-
tion sorts an array of data objects. It has the following ANSI prototype:  

  void qsort (void *base, size_t nmemb, size_t size,

          int (*compar)(const void *, const void *));   

 The first argument is a pointer to the beginning of the array to be sorted. ANSI C permits any 
data pointer type to be typecast to a pointer-to- void , thus permitting the first actual argument 
to  qsort()  to refer to any kind of array.  

 The second argument is the number of items to be sorted. The prototype converts this value 
to type  size_t . As you may recall from several previous mentions,  size_t  is the integer type 
returned by the  sizeof  operator and is defined in the standard header files.  

 Because  qsort()  converts its first argument to a  void  pointer,  qsort()  loses track of how big 
each array element is. To compensate, you must tell  qsort()  explicitly the size of the data 
object. That’s what the third argument is for. For example, if you are sorting an array of type 
 double , you would use  sizeof(double)  for this argument.  
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 Finally,  qsort()  requires a pointer to the function to be used to determine the sorting 
order. The comparison function should take two arguments: pointers to the two items being 
compared. It should return a positive integer if the first item should follow the second value, 
zero if the two items are the same, and a negative integer if the second item should follow the 
first. The  qsort()  will use this function, passing it pointer values that it calculates from the 
other information given to it.  

 The form the comparison function must take is set forth in the  qsort()  prototype for the final 
argument:  

  int (*compar)(const void *, const void *)   

 This states that the final argument is a pointer to a function that returns an  int  and that takes 
two arguments, each of which is a pointer to type  const void . These two pointers point to the 
items being compared.  

  Listing   16.17    and the discussion following it illustrate how to define a comparison function 
and how to use  qsort() . The program creates an array of random floating-point values and 
sorts the array.  

  Listing 16.17   The  qsorter.c  Program  

 /* qsorter.c -- using qsort to sort groups of numbers */

  #include <stdio.h>

  #include <stdlib.h>

  

  #define NUM 40

  void fillarray(double ar[], int n);

  void showarray(const double ar[], int n);

  int mycomp(const void * p1, const void * p2);

  

  int main(void)

  {

      double vals[NUM];

      fillarray(vals, NUM);

      puts("Random list:");

      showarray(vals, NUM);

      qsort(vals, NUM, sizeof(double), mycomp);

      puts("\nSorted list:");

      showarray(vals, NUM);

      return 0;

  }

  

  void fillarray(double ar[], int n)

  {

      int index;

  

      for( index = 0; index < n; index++)
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          ar[index] = (double)rand()/((double) rand() + 0.1);

  }

  

  void showarray(const double ar[], int n)

  {

      int index;

  

      for( index = 0; index < n; index++)

      {

          printf("%9.4f ", ar[index]);

          if (index % 6 == 5)

              putchar('\n');

      }

      if (index  % 6 != 0)

          putchar('\n');

  }

  

  /* sort by increasing value */

  int mycomp(const void * p1, const void * p2)

  {

      /* need to use pointers to double to access values   */

      const double * a1 = (const double *) p1;

      const double * a2 = (const double *) p2;

  

      if (*a1 < *a2)

          return -1;

      else if (*a1 == *a2)

          return 0;

      else

          return 1;

  }   

 Here is a sample run:  

  Random list:

     0.0001    1.6475    2.4332    0.0693    0.7268    0.7383

    24.0357    0.1009   87.1828    5.7361    0.6079    0.6330

     1.6058    0.1406    0.5933    1.1943    5.5295    2.2426

     0.8364    2.7127    0.2514    0.9593    8.9635    0.7139

     0.6249    1.6044    0.8649    2.1577    0.5420   15.0123

     1.7931    1.6183    1.9973    2.9333   12.8512    1.3034

     0.3032    1.1406   18.7880    0.9887

  

  Sorted list:

     0.0001    0.0693    0.1009    0.1406    0.2514    0.3032

     0.5420    0.5933    0.6079    0.6249    0.6330    0.7139

     0.7268    0.7383    0.8364    0.8649    0.9593    0.9887
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     1.1406    1.1943    1.3034    1.6044    1.6058    1.6183

     1.6475    1.7931    1.9973    2.1577    2.2426    2.4332

     2.7127    2.9333    5.5295    5.7361    8.9635   12.8512

    15.0123   18.7880   24.0357   87.1828   

 Let’s look at two main areas: the use of  qsort()  and the definition of  mycomp() .  

  Using  qsort()   

 The  qsort()  function sorts an array of data objects. The ANSI prototype, again, is this:  

  void qsort (void *base, size_t nmemb, size_t size,

          int (*compar)(const void *, const void *));   

 The first argument is a pointer to the beginning of the array to be sorted. In this program, the 
actual argument is  vals , the name of an array of  double , hence a pointer to the first element 
of the array. The ANSI prototype causes the  vals  argument to be typecast to type pointer-to-
 void . That’s because ANSI C permits any data pointer type to be typecast to a pointer-to- void , 
thus permitting the first actual argument to  qsort()  to refer to any kind of array.  

 The second argument is the number of items to be sorted. In  Listing   16.17   , it is  N , the number 
of array elements. The prototype converts this value to type  size_t .  

 The third argument is the size of each element— sizeof(double) , in this case.  

 The final argument is  mycomp , the address of the function to be used for comparing elements.   

  Defining  mycomp()   

 As mentioned before, the  qsort()  prototype mandates the form of the comparison function:  

  int (*compar)(const void *, const void *)   

 This states that the final argument is a pointer to a function that returns an  int  and that takes 
two arguments, each of which is a pointer to type  const void . We made the prototype for the 
 mycomp()  function agree with this prototype:  

  int mycomp(const void * p1, const void * p2);   

 Remember that the name of the function is a pointer to the function when used as argument, 
so  mycomp  matches the  compar  prototype.  

 The  qsort()  function passes the addresses of the two elements to be compared to the compari-
son function. In this program, then,  p1  and  p2  are assigned the addresses of two type  double  
values to be compared. Note that the first argument to  qsort()  refers to the whole array, and 
the two arguments in the comparison function refer to two elements in the array. There is a 
problem. To compare the pointed-to values, you need to dereference a pointer. Because the 
values are type  double , you need to dereference a pointer to type  double . However,  qsort()  
requires pointers to type  void . The way to get around this problem  is to declare pointers of the 
proper type inside the function and initialize them to the values passed as arguments:  
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  /* sort by increasing value */

  int mycomp(const void * p1, const void * p2)

  {

      /* need to use pointers to double to access values   */

      const double * a1 = (const double *) p1;

      const double * a2 = (const double *) p2;

  

      if (*a1 < *a2)

          return -1;

      else if (*a1 == *a2)

          return 0;

      else

          return 1;

  }   

 In short,  qsort()  and the comparison function use  void  pointers for generality. As a conse-
quence, you have to tell  qsort()  explicitly how large each element of the array is, and within 
the definition of the comparison function, you have to convert its pointer arguments to point-
ers of the proper type for your application.  

  Note     void *   in C and in C++  

 C and C++ treat pointer-to- void  differently. In both languages, you can assign a pointer of any 
type to type  void * . The function call to  qsort()  in  Listing   16.17   , for example, assigns type 
 double *  to a type  void *  pointer. But C++ requires a type cast when assigning a  void *  
pointer to a pointer of another type, whereas C doesn’t have that requirement. For instance, 
the  mycomp()  function in  Listing   16.17    has this type cast for the type  void *  pointer  p1 :  
  const double * a1 = (const double *) p1;   

 In C, this type cast is optional; in C++ it is mandatory. Because the type cast version works in 
both languages, it makes sense to use it. Then, if you convert the program to C++, you won’t 
have to remember to change that part.   

 Let’s look at one more example of a comparison function. Suppose you have these declarations:  

  struct names {

      char first[40];

      char last[40];

  };

  struct names staff[100];   

 What should a call to  qsort()  look like? Following the model in  Listing   16.17   , a call could 
look like this:  

  qsort(staff, 100, sizeof(struct names), comp);   
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 Here,  comp  is the name of the comparison function. What should this function look like? 
Suppose you want to sort by last name, then by first name. You could write the function this 
way:  

  #include <string.h>

  int comp(const void * p1, const void * p2)   /* mandatory form */

  {

      /* get right type of pointer */

      const struct names *ps1 = (const struct names *) p1;

      const struct names *ps2 = (const struct names *) p2;

      int res;

  

      res = strcmp(ps1->last, ps2->last);  /* compare last names */

      if (res != 0)

          return res;

      else       /* last names identical, so compare first names */

          return strcmp(ps1->first, ps2->first);

  }   

 This function uses the  strcmp()  function to do the comparison; its possible return values 
match the requirements for the comparison function. Note that you need a pointer to a struc-
ture to use the  ->  operator.     

  The Assert Library  

 The assert library, supported by the  assert.h  header file, is a small one designed to help 
with debugging programs. It consists of a macro named  assert() . It takes as its argument an 
integer expression. If the expression evaluates as false (nonzero), the  assert()  macro writes 
an error message to the standard error stream ( stderr ) and calls the  abort()  function, which 
terminates the program. (The  abort()  function is prototyped in the  stdlib.h  header file.) The 
idea is to identify critical locations in a program where certain conditions should be true and to 
use the  assert()  statement to terminate the program if one of the specified conditions is  not 
true. Typically, the argument is a relational or logical expression. If  assert()  does abort the 
program, it first displays the test that failed, the name of the file containing the test, and a line 
number.  

  Using  assert   

  Listing   16.18    shows a short example using  assert . It asserts that  z  is greater than or equal to  0  
before attempting to take its square root. It also mistakenly subtracts a value instead of adding 
it, making it possible for  z  to obtain forbidden values.  
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  Listing 16.18   The  assert.c  Program  

 /* assert.c -- use assert() */

  #include <stdio.h>

  #include <math.h>

  #include <assert.h>

  int main()

  {

      double x, y, z;

  

      puts("Enter a pair of numbers (0 0 to quit): ");

      while (scanf("%lf%lf", &x, &y) == 2

                  && (x != 0 || y != 0))

      {

          z = x * x - y * y;  /* should be + */

          assert(z >= 0);

          printf("answer is %f\n", sqrt(z));

          puts("Next pair of numbers: ");

      }

      puts("Done");

  

      return 0;

  }   

 Here is a sample run:  

  Enter a pair of numbers (0 0 to quit):

   4 3 

  answer is 2.645751

  Next pair of numbers:

   5 3 

  answer is 4.000000

  Next pair of numbers:

   3 5 

  Assertion failed: (z >= 0), function main, file /Users/assert.c, line 14.   

 The exact wording will depend on the compiler. One potentially confusing point to note is that 
the message is not saying that  z >= 0 ; instead, it’s saying that the claim  z >= 0  failed.  

 You could accomplish something similar with an  if  statement:  

  if (z < 0)

  {

      puts("z less than 0");

      abort();

  }   
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 The  assert()  approach has several advantages, however. It identifies the file automatically. It 
identifies the line number where the problem occurs automatically. Finally, there’s a mecha-
nism for turning the  assert()  macro on and off without changing code. If you think you’ve 
eliminated the program bugs, place the macro definition  

  #define NDEBUG   

 before the location where  assert.h  is included and then recompile the program, and the 
compiler will deactivate all  assert()  statements in the file. If problems pop up again, you can 
remove the  #define  directive (or comment it out) and then recompile, thus reactivating all the 
 assert()  statements.   

   _Static_assert  (C11)  

 The  assert()  expression is a run-time check. C11 adds a feature, the  _Static_assert  decla-
ration, that does a compile-time check. So,  assert()  can cause a running program to abort, 
while  _Static_assert()  can cause a program not to compile. The latter takes two arguments. 
The first is a constant integer expression, and the second is a string. If the first expression 
evaluates to  0  (or  _False ), the compiler displays the string and does not compile the program. 
Let’s look at the short example of  Listing   16.19   , and then look at the differences between 
 assert()  and  _Static_assert() .  

  Listing 16.19   The  statasrt.c  Program  

 //  statasrt.c

  #include <stdio.h>

  #include <limits.h>

  _Static_assert(CHAR_BIT == 16, "16-bit char falsely assumed");

  int main(void)

  {

      puts("char is 16 bits.");

      return 0;

  }   

 Here is a sample attempt at command-line compilation:  

  $ clang statasrt.c

  statasrt.c:4:1: error: static_assert failed "16-bit char falsely assumed"

  _Static_assert(CHAR_BIT == 16, "16-bit char falsely assumed");

  ̂              ~~~~~~~~~~~~~~

  1 error generated.

  $   

 In terms of syntax,  _Static_assert  is treated as a declaration statement. Thus, unlike most 
kinds of C statements, it can appear either in a function or, as in this case, external to a 
function.  
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 The requirement that the first argument to  _Static_assert  be an integer constant expression 
guarantees that it can be evaluated during compilation. (Recall that  sizeof  expressions count 
as integer constants.) So you can’t substitute  _Static_assert  for  assert  in  Listing   16.18   , 
because that program used  z > 0  for a test expression, and that’s a nonconstant expression 
that can be evaluated only while the program is running. You could use  assert(CHAR_BIT == 
16)  in the body of  main()  in  Listing   16.19   , but that would alert you to an error only after you 
compiled and ran the program, which is more inefficient.  

 The  assert.h  header makes  static_assert  an alias for the C keyword  _Static_assert . 
That’s to make C more compatible with C++, which uses  static_assert  as its keyword for 
this feature.    

   memcpy()  and  memmove()  from the  string.h  

Library  

 You can’t assign one array to another, so we’ve been using loops to copy one array to another, 
element by element. The one exception is that we’ve used the  strcpy()  and  strncpy()  func-
tions for character arrays. The  memcpy()  and  memmove()  functions offer you almost the same 
convenience for other kinds of arrays. Here are the prototypes for these two functions:  

  void *memcpy(void * restrict s1, const void * restrict s2, size_t n);

  void *memmove(void *s1, const void *s2, size_t n);   

 Both of these functions copy  n  bytes from the location pointed to by  s2  to the location pointed 
to by  s1 , and both return the value of  s1 . The difference between the two, as indicated by the 
keyword  restrict , is that  memcpy()  is free to assume that there is no overlap between the two 
memory ranges. The  memmove()  function doesn’t make that assumption, so copying takes place 
as if all the bytes are first copied to a temporary buffer before being copied to the final destina-
tion. What if you use  memcpy()  when there are overlapping ranges? The behavior is undefined, 
meaning it might work or  it might not. The compiler won’t stop you from using the  memcpy()  
function when you shouldn’t, so it’s your responsibility to make sure the ranges aren’t overlap-
ping when you use it. It’s just another part of the programmer’s burden.  

 Because these functions are designed to work with any data type, the two pointer arguments 
are type pointer-to- void . C allows you to assign any pointer type to pointers of the  void *  
type. The other side of this tolerant acceptance is that these functions have no way of knowing 
what type of data is being copied. Therefore, they use the third argument to indicate the 
number of bytes to be copied. Note that for an array, the number of bytes is not, in general, 
the number of elements. So if you were copying an array of 10  double  values, you would use  
 10*sizeof(double) , not  10 , as the third argument.  

  Listing   16.20    shows some examples  using these two functions. It assumes that  double  is twice 
the size of  int , and it uses the C11  _Static_assert  feature to test that assumption.  
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  Listing 16.20   The  mems.c  Program  

 // mems.c -- using memcpy() and memmove()

  #include <stdio.h>

  #include <string.h>

  #include <stdlib.h>

  #define SIZE 10

  void show_array(const int ar[], int n);

  // remove following if C11 _Static_assert not supported

  _Static_assert(sizeof(double) == 2 * sizeof(int), "double not twice int size");

  int main()

  {

      int values[SIZE] = {1,2,3,4,5,6,7,8,9,10};

      int target[SIZE];

      double curious[SIZE / 2] = {2.0, 2.0e5, 2.0e10, 2.0e20, 5.0e30};

  

      puts("memcpy() used:");

      puts("values (original data): ");

      show_array(values, SIZE);

      memcpy(target, values, SIZE * sizeof(int));

      puts("target (copy of values):");

      show_array(target, SIZE);

  

      puts("\nUsing memmove() with overlapping ranges:");

      memmove(values + 2, values, 5 * sizeof(int));

      puts("values -- elements 0-5 copied to 2-7:");

      show_array(values, SIZE);

  

      puts("\nUsing memcpy() to copy double to int:");

      memcpy(target, curious, (SIZE  / 2) * sizeof(double));

      puts("target -- 5 doubles into 10 int positions:");

      show_array(target, SIZE/2);

      show_array(target + 5, SIZE/2);

  

      return 0;

  }

  

  void show_array(const int ar[], int n)

  {

      int i;

  

      for (i = 0; i < n; i++)

          printf("%d ", ar[i]);

      putchar('\n');

  }   
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 Here is the output:  

  memcpy() used:

  values (original data):

  1 2 3 4 5 6 7 8 9 10

  target (copy of values):

  1 2 3 4 5 6 7 8 9 10

  

  Using memmove() with overlapping ranges:

  values -- elements 0-5 copied to 2-7:

  1 2 1 2 3 4 5 8 9 10

  

  Using memcpy() to copy double to int:

  target -- 5 doubles into 10 int positions:

  0 1073741824 0 1091070464 536870912

  1108516959 2025163840 1143320349 -2012696540 1179618799   

 The last call to  memcpy()  copies data from a type  double  array to a type  int  array. This shows 
that  memcpy()  doesn’t know or care about data types; it just copies bytes from one location 
to another. (You could, for example, copy bytes from a structure to a character array.) Also, 
there is no data conversion. If you had a loop doing element-by-element assignment, the type 
 double  values would be converted to type  int  during assignment. In this case, the bytes are 
copied over “as is,” and the program then interprets the bit patterns as if they were type  int .   

  Variable Arguments:  stdarg.h   

 Earlier, this chapter discussed variadic macros—macros that can accept a variable number of 
arguments. The  stdarg.h  header file provides a similar capability for functions. But the usage 
is a bit more involved. You have to do the following:  

    1.   Provide a function prototype using an ellipsis.   

   2.   Create a  va_list  type variable in the function definition.   

   3.   Use a macro to initialize the variable to an argument list.   

   4.   Use a macro to access the argument list.   

   5.   Use a macro to clean up.    

 Let’s look at these steps in more detail. The prototype for such a function should have a param-
eter list with at least one parameter followed by an ellipsis:  

  void f1(int n, ...);                 // valid

  int f2(const char * s, int k, ...);  // valid

  char f3(char c1, ..., char c2);      // invalid, ellipsis not last

  double f3(...);                      // invalid, no parameter   



ptg11524036

766 Chapter 16 The C Preprocessor and the C Library

 The rightmost parameter (the one just before the ellipses) plays a special role; the standard uses 
the term   parmN   as a name to use in discussion. In the preceding examples,   parmN   would be  n  
for the first case and  k  for the second case. The actual argument passed to this parameter will 
be the number of arguments represented by the ellipses section. For example, the  f1()  func-
tion prototyped earlier could be used this way:  

  f1(2, 200, 400);           // 2 additional arguments

  f1(4, 13, 117, 18, 23);    // 4 additional arguments   

 Next, the  va_list  type, which is declared in the  stdargs.h  header file, represents a data 
object used to hold the parameters corresponding to the ellipsis part of the parameter list. The 
beginning of a definition of a variadic function would look something like this:  

  double sum(int lim,...)

  {

      va_list ap;                   // declare object to hold arguments   

 In this example,  lim  is the   parmN   parameter, and it will indicate the number of arguments in 
the variable-argument list.  

 After this, the function will use the  va_start()  macro, also defined in  stdargs.h , to copy the 
argument list to the  va_list  variable. The macro has two arguments: the  va_list  variable and 
the  parmN  parameter. Continuing with the previous example, the  va_list  variable is called  ap  
and the  parmN  parameter is call  lim , so the call would look like this:  

  va_start(ap, lim);            // initialize ap to argument list   

 The next step is gaining access to the contents of the argument list. This involves using  va_
arg() , another macro. It takes two arguments: a type  va_list  variable and a type name. The 
first time it’s called, it returns the first item in the list; the next time it’s called, it returns the 
next item, and so on. The type argument specifies the type of value returned. For example, if 
the first argument in the list were a  double  and the second were an  int , you could do this:  

  double tic;

  int toc;

  ...

  tic = va_arg(ap, double);   // retrieve first argument

  toc = va_arg(ap, int);      // retrieve second argument   

 Be careful. The argument type really has to match the specification. If the first argument is 
10.0, the previous code for  tic  works fine. But if the argument is 10, the code may not work; 
the automatic conversion of  double  to  int  that works for assignment doesn’t take place here.  

 Finally, you should clean up by using the  va_end()  macro. It may, for example, free memory 
dynamically allocated to hold the arguments. This macro takes a  va_list  variable as its 
argument:  

  va_end(ap);                   // clean up   

 After you do this, the variable  ap  may not be usable unless you use  va_start  to reinitialize it.  
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 Because  va_arg()  doesn’t provide a way to back up to previous arguments, it may be useful 
to preserve a copy of the  va_list  type variable. C99 has added a macro for that purpose. It’s 
called  va_copy() . Its two arguments are both type  va_list  variables, and it copies the second 
argument to the first:  

  va_list ap;

  va_list apcopy;

  double

  double tic;

  int toc;

  ...

  va_start(ap, lim);          // initialize ap to argument list

  va_copy(apcopy, ap);        // make apcopy a copy of ap

  tic = va_arg(ap, double);   // retrieve first argument

  toc = va_arg(ap, int);      // retrieve second argument   

 At this point, you could still retrieve the first two items from  apcopy , even though they have 
been removed from  ap .  

  Listing   16.21    is a short example of how the facilities can be used to create a function that sums 
a variable number of arguments; here, the first argument to  sum()  is the number of items to be 
summed.  

  Listing 16.21   The  varargs.c  Program  

 //varargs.c -- use variable number of arguments

  #include <stdio.h>

  #include <stdarg.h>

  double sum(int, ...);

  

  int main(void)

  {

      double s,t;

  

      s = sum(3, 1.1, 2.5, 13.3);

      t = sum(6, 1.1, 2.1, 13.1, 4.1, 5.1, 6.1);

      printf("return value for "

             "sum(3, 1.1, 2.5, 13.3):                %g\n", s);

      printf("return value for "

             "sum(6, 1.1, 2.1, 13.1, 4.1, 5.1, 6.1): %g\n", t);

  

      return 0;

  }

  

  double sum(int lim,...)

  {

      va_list ap;                   // declare object to hold arguments
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      double tot = 0;

      int i;

  

      va_start(ap, lim);            // initialize ap to argument list

      for (i = 0; i < lim; i++)

         tot += va_arg(ap, double); // access each item in argument list

      va_end(ap);                   // clean  up

  

      return tot;

  }   

 Here is the output:  

  return value for sum(3, 1.1, 2.5, 13.3):                16.9

  return value for sum(6, 1.1, 2.1, 13.1, 4.1, 5.1, 6.1): 31.6   

 If you check the arithmetic, you’ll find that  sum()  did add three numbers to the first function 
call and six numbers to the second.  

 All in all, using variadic functions is more involved than using variadic macros, but the func-
tions have a greater range of application.   

  Key Concepts  

 The C standard doesn’t just describe the C language; it describes a package consisting of the 
C language, the C preprocessor, and the standard C library. The preprocessor lets you shape 
the compiling process, listing substitutions to be made, indicating which lines of code should 
be compiled, and other aspects of compiler behavior. The C library extends the reach of the 
language and provides prepackaged solutions to many programming problems.    

     Summary  

 The C preprocessor and the C library are two important adjuncts to the C language. The C 
preprocessor, following preprocessor directives, adjusts your source code before it is compiled. 
The C library provides many functions designed to help with tasks such as input, output, file 
handling, memory management, sorting and searching, mathematical calculations, and string 
processing, to name a few.  Appendix   B   , Reference Section V lists the complete ANSI C library.   

  Review Questions  

    1.    Here are groups of one or more macros followed by a source code line that uses them. 
What code results in each case? Is it valid code? (Assume C variables have been declared.)  
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    a.  

  #define FPM  5280     /* feet per mile */
  dist = FPM * miles;    

   b.  

  #define FEET 4
  #define POD FEET + FEET

  plort = FEET * POD;    

   c.  

  #define SIX = 6;
  nex = SIX;    

   d.  

  #define NEW(X) X + 5
  y = NEW(y);

  berg = NEW(berg) * lob;

  est = NEW(berg) / NEW(y);

  nilp = lob * NEW(-berg);       

   2.    Fix the definition in part d of question 1 to make it more reliable.    

   3.    Define a macro function that returns the minimum of two values.    

   4.    Define the  EVEN_GT(X,Y)  macro, which returns 1 if  X  is even and also greater than  Y .    

   5.    Define a macro function that prints the representations and the values of two integer 
expressions. For example, it might print  

  3+4 is 7 and 4*12 is 48   

 if its arguments are  3+4  and  4*12 .    

   6.    Create  #define  statements to accomplish the following goals:  

    a.   Create a named constant of value  25 .   

   b.   Have  SPACE  represent the space character.   

   c.   Have  PS()  represent printing the space character.   

   d.   Have  BIG(X)  represent adding 3 to  X  .    

   e.   Have  SUMSQ(X,Y)  represent the sums of the squares of  X  and  Y .      
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   7.    Define a macro that prints the name, value, and address of an  int  variable in the 
following format:  

  name: fop;  value: 23;  address: ff464016     

   8.    Suppose you have a block of code you want to skip over temporarily while testing a 
program. How can you do so without actually removing the code from the file?    

   9.    Show a code fragment that prints out the date of preprocessing if the macro  PR_DATE  is 
defined.    

   10.    The discussion of inline functions shows three different versions of a  square()  function. 
How do the three differ from one another in terms of behavior?    

   11.    Create a macro using a generic selection expression that evaluates to the string 
 "boolean"  if the macro argument is type  _Bool , and evaluates to  "not boolean"  
otherwise.    

   12.    What’s wrong with this program?  

  #include <stdio.h>

  int main(int argc, char argv[])

  {

      printf("The square root of %f is %f\n", argv[1],

             sqrt(argv[1]) );

  }     

   13.    Suppose  scores  is an array of 1000  int  values that you want to sort into descending 
order. And suppose you are using  qsort()  and a comparison function called  comp() .  

    a.   What is a suitable call to  qsort() ?   

   b.   What is a suitable definition for  comp() ?      

   14.    Suppose  data1  is an array of 100  double  values and  data2  is an array of 300  double  
values.  

    a.   Write a  memcpy()  function call that copies the first 100 elements of  data2  to 
 data1 .   

   b.   Write a  memcpy()  function call that copies the last 100 elements of  data2  to 
 data1 .        

  Programming Exercises  

    1.    Start developing a header file of preprocessor definitions that you want to use.    
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   2.    The harmonic mean of two numbers is obtained by taking the inverses of the two 
numbers, averaging them, and taking the inverse of the result. Use a  #define  directive 
to define a macro “function” that performs this operation. Write a simple program that 
tests the macro.    

   3.    Polar coordinates describe a vector in terms of magnitude and the counterclockwise angle 
from the x-axis to the vector. Rectangular coordinates describe the same vector in terms 
of x and y components (see  Figure   16.3   ). Write a program that reads the magnitude and 
angle (in degrees) of a vector and then displays the x and y components. The relevant 
equations are these:  

  x = r cos A    y = r sin A   

 To do the conversion, use a function that takes a structure containing the polar 
coordinates and returns a structure containing the rectangular coordinates (or use 
pointers to such structures, if you prefer).  

 x

A

y

r

 Figure 16.3   Rectangular and polar coordinates.           

   4.    The ANSI library features a  clock()  function with this description:  

  #include <time.h>

  clock_t clock (void);   

 Here,  clock_t  is a type defined in  time.h . The function returns the processor time, 
which is given in some implementation-dependent units. (If the processor time is 
unavailable or cannot be represented, the function returns a value of  -1 .) However, 
 CLOCKS_PER_SEC , also defined in  time.h , is the number of processor time units per 
second. Therefore, dividing the difference between two return values of  clock()  by 
 CLOCKS_PER_SEC  gives you the number of seconds elapsed between the two calls. 
Typecasting the values to  double  before division enables you to get fractions of a second. 
Write a function that takes a  double  argument representing a desired time delay and  
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then runs a loop until that amount of time has passed. Write a simple program that tests 
the function.    

   5.    Write a function that takes as arguments the name of an array of type  int  elements, the 
size of an array, and a value representing the number of picks. The function then should 
select the indicated number of items at random from the array and prints them. No 
array element is to be picked more than once. (This simulates picking lottery numbers or 
jury members.) Also, if your implementation has  time()  (discussed in  Chapter   12   ) or a 
similar function available, use its output with  srand()  to initialize the  rand()  random-
number generator. Write a simple program that tests the function.    

   6.    Modify  Listing   16.17    so that it uses an array of  struct names  elements (as defined after 
the listing) instead of an array of  double . Use fewer elements, and initialize the array 
explicitly to a suitable selection of names.    

   7.    Here’s a partial program using a variadic function:  

  #include <stdio.h>

  #include <stdlib.h>

  #include <stdarg.h>

  void show_array(const double ar[], int n);

  double * new_d_array(int n, ...);

  

  int main()

  {

      double * p1;

      double * p2;

  

      p1 = new_d_array(5, 1.2, 2.3, 3.4, 4.5, 5.6);

      p2 = new_d_array(4, 100.0, 20.00, 8.08, -1890.0);

      show_array(p1, 5);

      show_array(p2, 4);

      free(p1);

      free(p2);

  

      return 0;

  }   

 The  new_d_array()  function takes an  int  argument and a variable number of  double  
arguments. The function returns a pointer to a block of memory allocated by  malloc() . 
The  int  argument indicates the number of elements to be in the dynamic array, and 
the  double  values are used to initialize the elements, with the first value being assigned 
to the first element, and so on. Complete the program by providing the code for  show_
array()  and  new_d_array() .        
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 Advanced Data 
Representation  

    You will learn about the following in this chapter:  

    ■   Functions:  

 More  malloc()    

   ■   Using C to represent a variety of data types   

   ■   New algorithms and increasing your ability to develop programs conceptually   

   ■   Abstract data types (ADTs)    

 Learning a computer language is like learning music, carpentry, or engineering. At first, you 
work with the tools of the trade, playing scales, learning which end of the hammer to hold and 
which end to avoid, solving countless problems involving falling, sliding, and balanced objects. 
Acquiring and practicing skills is what you’ve been doing so far in this book, learning to create 
variables, structures, functions, and the like. Eventually, however, you move to a higher level 
in which using the tools is second nature and the real challenge is designing and creating a 
project. You develop an ability to see the  project as a coherent whole. This chapter concen-
trates on that higher level. You may find the material covered here a little more challenging 
than the preceding chapters, but you may also find it more rewarding because it helps you 
move from the role of apprentice to the role of craftsperson.  

 We’ll start by examining a vital aspect of program design: the way a program represents data. 
Often the most important aspect of program development is finding a good representation of 
the data manipulated by that program. Getting data representation right can make writing the 
rest of the program simple. By now you’ve seen C’s built-in data types: simple variables, arrays, 
pointers, structures, and unions.  

 Finding the right data representation, however, often goes beyond simply selecting a type. You 
should also think about what operations will be necessary. That is, you should decide how to 
store the data, and you should define what operations are valid for the data type. For example, 
C implementations typically store both the C  int  type and the C pointer type as integers, but 
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the two types have different sets of valid operations. You can multiply one integer by another, 
for example, but you can’t multiply a pointer by a pointer. You can use the  *  operator to deref-
erence a pointer, but  that operation is meaningless for an integer. The C language defines the 
valid operations for its fundamental types. However, when you design a scheme to represent 
data, you might need to define the valid operations yourself. In C, you can do so by designing 
C functions to represent the desired operations. In short, then, designing a data type consists of 
deciding on how to store the data and of designing a set of functions to manage the data.  

 You will also look at some  algorithms , recipes for manipulating data. As a programmer, you will 
acquire a repertoire of such recipes that you apply over and over again to similar problems.  

 This chapter looks into the process of designing data types, a process that matches algorithms 
to data representations. In it, you’ll meet some common data forms, such as the queue, the list, 
and the binary search tree.  

 You’ll also be introduced to the concept of the abstract data type (ADT). An ADT packages 
methods and data representations in a way that is problem oriented rather than language 
oriented. After you’ve designed an ADT, you can easily reuse it in different circumstances. 
Understanding ADTs prepares you conceptually for entering the world of object-oriented 
programming  (OOP) and the C++ language.   

     Exploring Data Representation  

 Let’s begin by thinking about data. Suppose you had to create an address book program. What 
data form would you use to store information? Because there’s a variety of information asso-
ciated with each entry, it makes sense to represent each entry with a structure. How do you 
represent several entries? With a standard array of structures? With a dynamic array? With 
some other form? Should the entries be alphabetized? Should you be able to search through 
the entries by ZIP Code? By area code? The actions you want to perform might affect how you 
decide to store the information. In  short, you have a lot of design decisions to make before 
plunging into coding.  

 How would you represent a bitmapped graphics image that you want to store in memory? A 
bitmapped image is one in which each pixel on the screen is set individually. In the days of 
black-and-white screens, you could use one computer bit (1 or 0) to represent one pixel (on or 
off), hence the name  bitmapped . With color monitors, it takes more than one bit to describe a 
single pixel. For example, you can get 256 colors if you dedicate 8 bits to each pixel. Now the 
industry has moved to 65,536 colors (16 bits per pixel), 16,777,216 colors (24 bits  per pixel), 
2,147,483,648 colors (32 bits per pixel), and even beyond. If you have 32-bit colors and if your 
monitor has a resolution of 2560×1440, you’ll need nearly 118 million bits (14MB) to repre-
sent a single screen of bitmapped graphics. Is this the way to go, or can you develop a way of 
compressing the information? Should this compression be  lossless  (no data lost) or  lossy  (rela-
tively unimportant data lost)? Again, you have a lot of design decisions to make before diving 
into coding.  
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 Let’s tackle a particular case of representing data. Suppose you want to write a program that 
enables you to enter a list of all the movies (including videotapes, DVDs, and Blu-ray) you’ve 
seen in a year. For each movie, you’d like to record a variety of information, such as the title, 
the year it was released, the director, the lead actors, the length, the kind of film (comedy, 
science fiction, romance, drivel, and so forth), your evaluation, and so on. That suggests using 
a structure for each film and an array of structures for the list. To simplify matters, let’s  limit 
the structure to two members: the film title and your evaluation, a ranking on a 0-to-10 scale. 
 Listing   17.1    shows a bare-bones implementation using this approach.  

  Listing 17.1   The  films1.c  Program  

 /* films1.c -- using an array of structures */

  #include <stdio.h>

  #include <string.h>

  #define TSIZE        45      /* size of array to hold title   */

  #define FMAX         5       /* maximum number of film titles */

  

  struct film {

      char title[TSIZE];

      int rating;

  };

  char * s_gets(char * st, int n);

  int main(void)

  {

      struct film movies[FMAX];

      int i = 0;

      int j;

  

      puts("Enter first movie title:");

      while (i < FMAX && s_gets(movies[i].title, TSIZE) != NULL &&

             movies[i].title[0] != '\0')

      {

          puts("Enter your rating <0-10>:");

          scanf("%d", &movies[i++].rating);

          while(getchar() != '\n')

              continue;

          puts("Enter next movie title (empty line to stop):");

      }

      if (i == 0)

          printf("No data entered. ");

      else

          printf ("Here  is the movie list:\n");

  

      for (j = 0; j < i; j++)

          printf("Movie: %s  Rating: %d\n", movies[j].title,

                 movies[j].rating);
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      printf("Bye!\n");

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 The program creates an array of structures and then fills the array with data entered by the 
user. Entry continues until the array is full (the FMAX test), until end-of-file (the NULL test) is 
reached, or until the user presses the Enter key at the beginning of a line (the ‘\0’ test).  

 This formulation has some problems. First, the program will most likely waste a lot of space 
because most movies don’t have titles 40 characters long, but some movies do have long titles, 
such as  The Discreet Charm of the Bourgeoisie  and  Won Ton Ton, The Dog Who Saved Hollywood . 
Second, many people will find the limit of five movies a year too restrictive. Of course, you can 
increase that limit, but what would be a good value? Some people see 500 movies a year, so you 
could increase  FMAX  to 500, but that still might be too small for some, yet it  might waste enor-
mous amounts of memory for others. Also, some compilers set a default limit for the amount 
of memory available for automatic storage class variables such as  movies , and such a large array 
could exceed that value. You can fix that by making the array a static or external array or by 
instructing the compiler to use a larger stack, but that’s not fixing the real problem.  

 The real problem here is that the data representation is too inflexible. You have to make deci-
sions at compile time that are better made at runtime. This suggests switching to a data repre-
sentation that uses dynamic memory allocation. You could try something like this:  

  #define TSIZE  45           /* size of array to hold title  */

  struct film {

      char title[TSIZE];

      int rating;

  };
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  ...

      int n, i;

      struct film * movies;   /* pointer to a structure       */

      ...

      printf("Enter the maximum number of movies you'll enter:\n");

      scanf("%d", &n);

      movies = (struct film *) malloc(n * sizeof(struct film));   

 Here, as in  Chapter   12   , “Storage Classes, Linkage, and Memory Management,” you can use the 
pointer  movies  just as though it were an array name:  

  while (i < FMAX && s_gets(movies[i].title, TSIZE) != NULL &&

           movies[i].title[0] != '\0')   

 By using  malloc() , you can postpone determining the number of elements until the program 
runs, so the program need not allocate 500 elements if only 20 are needed. However, it puts the 
burden on the user to supply a correct value for the number of entries.   

  Beyond the Array to the Linked List  

 Ideally, you’d like to be able to add data indefinitely (or until the program runs out of memory) 
without specifying in advance how many entries you’ll make and without committing the 
program to allocating huge chunks of memory unnecessarily. You can do this by calling 
 malloc()  after each entry and allocating just enough space to hold the new entry. If the user 
enters three films, the program calls  malloc()  three times. If the user enters 300 films, the 
program calls  malloc()  300 times.  

 This fine idea raises a new problem. To see what it is, compare calling  malloc()  once, asking 
for enough space for 300  film  structures, and calling  malloc()  300 times, each time asking 
for enough space for one  film  structure. The first case allocates the memory as one contiguous 
memory block and all you need to keep track of the contents is a single pointer-to- struct  vari-
able ( film ) that points to the first structure in the block. Simple array notation lets the pointer 
access each structure in the block, as shown in the preceding code segment. The problem with 
the second approach is that there is no  guarantee that consecutive calls to  malloc()  yield adja-
cent blocks of memory. This means the structures won’t necessarily be stored contiguously (see 
 Figure   17.1   ). Therefore, instead of storing one pointer to a block of 300 structures, you need to 
store 300 pointers, one for each independently allocated structure!   
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 One solution, which we won’t use, is to create a large array of pointers and assign values to the 
pointers, one by one, as new structures are allocated:  

  #define TSIZE  45               /* size of array to hold titles    */

  #define FMAX   500              /* maximum number of film titles   */

  struct film {

      char title[TSIZE];

      int rating;

  };

  ...

      struct film * movies[FMAX]; /* array of pointers to structures */

      int i;

      ...

      movies[i] = (struct film *) malloc (sizeof (struct film));   

 This approach saves a lot of memory if you don’t use the full allotment of pointers, because an 
array of 500 pointers takes much less memory than an array of 500 structures. It still wastes the 
space occupied by unused pointers, however, and it still imposes a 500-structure limit.  

movie[0]movie

struct film * movie;

movie = (struct film *) malloc(5*sizeof(struct film);

int i;

struct film * movies[s];

for (i = 0; i < 5; i++)

    movies[i] = (struct films *) malloc(sizeof(struct films));

movie[1] movie[2] movie[3] movie[4]

movies[0]

movies[4]

movies[3]

movies[1]

movies[2]

 Figure 17.1   Allocating structures in a block versus allocating them individually.        
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 There’s a better way. Each time you use  malloc()  to allocate space for a new structure, you 
can also allocate space for a new pointer. “But,” you say, “then I need another pointer to keep 
track of the newly allocated pointer, and that needs a pointer to keep track of it, and so on.” 
The trick to avoiding this potential problem is to redefine the structure so that each structure 
includes a pointer to the  next  structure. Then, each time you create a new structure, you can 
store its address in the preceding structure. In short, you need to redefine the  film  structure  
this way:  

  #define TSIZE  45      /* size of array to hold titles  */

  struct film {

      char title[TSIZE];

      int rating;

      struct film * next;

  };   

 True, a structure can’t contain in itself a structure of the same type, but it can contain a pointer 
to a structure of the same type. Such a definition is the basis for defining a  linked list —a list in 
which each item contains information describing where to find the next item.  

 Before looking at C code for a linked list, let’s take a conceptual walk through such a list. 
Suppose a user enters  Modern Times  as a title and  10  as a rating. The program would allocate 
space for a  film  structure, copy the string  Modern Times  into the  title  member, and set the 
 rating  member to  10 . To indicate that no structure follows this one, the program would set 
the  next  member pointer to  NULL . ( NULL , recall, is a symbolic constant defined in the  stdio.h  
file and represents the null pointer.) Of course, you need to keep track of where the first struc-
ture is stored. You can do  this by assigning its address to a separate pointer that we’ll refer to as 
the  head pointer . The head pointer points to the first item in a linked list of items.  Figure   17.2    
represents how this structure looks. (The empty space in the  title  member is suppressed to 
save space in the figure.)  

 

Modern Times2240

2240

10 NULL

head title rating next

#define TSIZE 45

struct film {

   char title[TSIZE]

   int rating;

   struct film * next;

};

struct film * head;

 Figure 17.2   First item in a linked list.         
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 Now suppose the user enters a second movie and rating—for example,  Midnight in Paris  
and  8 . The program allocates space for a second  film  structure, storing the address of the new 
structure in the  next  member of the first structure (overwriting the  NULL  previously stored 
there) so that the  next  pointer of one structure points to the following structure in the linked 
list. Then the program copies  Midnight in Paris  and  8  to the new structure and sets its  next  
member to  NULL , indicating that it is now the last structure in the list.  Figure   17.3    shows this 
list of two items.  

 

Modern Times2240

2240

10 2360

head title rating next

Midnight in Paris

2360

8 NULL

title rating next

 Figure 17.3   Linked list with two items.         

 Each new movie will be handled the same way. Its address will be stored in the preceding struc-
ture, the new information goes into the new structure, and its  next  member is set to  NULL , 
setting up a linked list like that shown in  Figure   17.4   .   

 Suppose you want to display the list. Each time you display an item, you can use the address 
stored in the corresponding structure to locate the next item to be displayed. For this scheme 
to work, however, you need a pointer to keep track of the very first item in the list because 
no structure in the list stores the address of the first item. Fortunately, you’ve already accom-
plished this with the head pointer.  
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  Using a Linked List  

 Now that you have a picture of how a linked list works, let’s implement it.  Listing   17.2    modi-
fies  Listing   17.1    so that it uses a linked list instead of an array to hold the movie information.  

  Listing 17.2   The  films2.c  Program  

 /* films2.c -- using a linked list of structures */

  #include <stdio.h>

  #include <stdlib.h>      /* has the malloc prototype      */

  #include <string.h>      /* has the strcpy prototype      */

  #define TSIZE    45      /* size of array to hold title   */

  

  struct film {

      char title[TSIZE];

      int rating;

Modern Times2240

2240

10 2360

head title rating next

Midnight in Paris

2360

8 2100

title rating next

Star Wars

2100

9 4320

title rating next

Fetid Cheese

4320

1 NULL

title rating next

 Figure 17.4   Linked list with several items.        
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      struct film * next;  /* points to next struct in list */

  };

  char * s_gets(char * st, int n);

  

  int main(void)

  {

      struct film * head = NULL;

      struct film * prev, * current;

      char input[TSIZE];

  

  /* Gather  and store information          */

      puts("Enter first movie title:");

      while (s_gets(input, TSIZE) != NULL && input[0] != '\0')

      {

          current = (struct film *) malloc(sizeof(struct film));

           if (head == NULL)       /* first structure       */

              head = current;

          else                    /* subsequent structures */

              prev->next = current;

          current->next = NULL;

          strcpy(current->title, input);

          puts("Enter your rating <0-10>:");

          scanf("%d", &current->rating);

          while(getchar() != '\n')

              continue;

          puts("Enter next movie title (empty line to stop):");

          prev = current;

      }

  

  /* Show list of movies                    */

      if (head == NULL)

          printf("No data entered. ");

      else

          printf ("Here is the movie list:\n");

      current = head;

      while (current != NULL)

      {

          printf("Movie: %s  Rating: %d\n",

                 current->title, current->rating);

          current = current->next;

      }

  

  /* Program done, so free allocated memory */

      current = head;

      while (current != NULL)

      {

          free(current);
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           current = current->next;

      }

      printf("Bye!\n");

  

      return 0;

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 The program performs two tasks using the linked list. First, it constructs the list and fills it with 
the incoming data. Second, it displays the list. Displaying is the simpler task, so let’s look at it 
first.  

  Displaying a List  

 The idea is to begin by setting a pointer (call it  current ) to point to the first structure. Because 
the head pointer (call it  head ) already points there, this code suffices:  

  current = head;   

 Then you can use pointer notation to access the members of that structure:  

  printf("Movie: %s  Rating: %d\n", current->title, current->rating);   

 The next step is to reset the  current  pointer to point to the next structure in the list. That 
information is stored in the  next  member of the structure, so this code accomplishes the task:  

  current = current->next;   

 After this is accomplished, repeat the whole process. When the last item in the list is displayed, 
 current  will be set to  NULL , because that’s the value of the  next  member of the final structure. 
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You can use that fact to terminate the printing. Here’s all the code  films2.c  uses to display 
the list:  

  while (current != NULL)

  {

      printf("Movie: %s  Rating: %d\n", current->title, current->rating);

      current = current->next;

  }   

 Why not just use  head  instead of creating a new pointer ( current ) to march through the list? 
Because using  head  would change the value of  head , and the program would no longer have a 
way to find the beginning of the list.   

  Creating the List  

 Creating the list involves three steps:  

    1.   Use  malloc()  to allocate enough space for a structure.   

   2.   Store the address of the structure.   

   3.   Copy the correct information into the structure.    

 There’s no point in creating a structure if none is needed, so the program uses temporary 
storage (the  input  array) to get the user’s choice for a movie name. If the user simulates  EOF  
from the keyboard or enters an empty line, the input loop quits:  

  while (s_gets(input, TSIZE) != NULL && input[0] != '\0')   

 If there is input, the program requests space for a structure and assigns its address to the 
pointer variable  current :  

  current = (struct film *) malloc(sizeof(struct film));   

 The address of the very first structure should be stored in the pointer variable  head . The 
address of each subsequent structure should be stored in the  next  member of the structure 
that precedes it. Therefore, the program needs a way to know whether it’s dealing with the first 
structure or not. A simple way is to initialize the  head  pointer to  NULL  when the program starts. 
Then the program can use the value of  head  to decide what to do:  

  if (head == NULL)       /* first structure       */

     head = current;

  else                    /* subsequent structures */

     prev->next = current;   

 In this code,  prev  is a pointer that points to the structure allocated the previous time.  

 Next, you have to set the structure members to the proper values. In particular, you should set 
the  next  member to  NULL  to indicate that the current structure is the last one in the list. You 
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should copy the film title from the  input  array to the  title  member, and you should get a 
value for the  rating  member. The following code does these things:  

  current->next = NULL;

  strcpy(current->title, input);

  puts("Enter your rating <0-10>:");

  scanf("%d", &current->rating);   

 Because the call to  s_gets()  limits the input to  TSIZE – 1  characters, the string in the  input  
array will fit into the  title  member, so it’s safe to use  strcpy() .  

 Finally, you should prepare the program for the next cycle of the input loop. In particular, you 
need to set  prev  to point to the current structure, because it will become the previous structure 
after the next movie name is entered and the next structure is allocated. The program sets this 
pointer at the end of the loop:  

  prev = current;   

 Does it work? Here is a sample run:  

  Enter first movie title:

   Spirited Away 

  Enter your rating <0-10>:

   9 

  Enter next movie title (empty line to stop):

   The Duelists 

  Enter your rating <0-10>:

   8 

  Enter next movie title (empty line to stop):

   Devil Dog: The Mound of Hound 

  Enter your rating <0-10>:

   1 

  Enter next movie title (empty line to stop):

  

  Here is the movie list:

  Movie: Spirited Away  Rating: 9

  Movie: The Duelists  Rating: 8

  Movie: Devil Dog: The Mound of Hound  Rating: 1

  Bye!    

  Freeing List Memory  

 In many environments the program will free the memory used by  malloc()  when the program 
terminates, but it’s best to get into the habit of balancing calls to  malloc()  with calls to 
 free() . Therefore, the program cleans up its memory use by applying  free()  to each of the 
allocated structures:  

  current = head;

  while (current != NULL)
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  {

      free(current);

      current = current->next;

  }     

  Afterthoughts  

 The  films2.c  program is a bit skimpy. For example, it fails to check whether  malloc()  finds 
the requested memory, and it doesn’t have any provisions for deleting items from the list. 
These failings can be fixed, however. For example, you can add code that checks whether 
 malloc() ’s return value is  NULL  (the sign it failed to obtain the memory you wanted). If the 
program needs to delete entries, you can write some more code to do that.  

 This ad hoc approach to solving problems and adding features as the need arises isn’t always 
the best programming method. On the other hand, you usually can’t anticipate everything 
a program needs to do. As programming projects get larger, the model of a programmer or 
programming team planning everything in advance becomes more and more unrealistic. It has 
been observed that the most successful large programs are those that evolved step-by-step from 
successful small programs.  

 Given that you may have to revise your plans, it’s a good idea to develop your original ideas in 
a way that simplifies modification. The example in  Listing   17.2    doesn’t follow this precept. In 
particular, it tends to intermingle coding details and the conceptual model. For example, in the 
sample program, the conceptual model is that you add items to a list. The program obscures 
that interface by pushing details such as  malloc()  and the  current->next  pointer into the 
foreground. It would be nice if you could write a program in a way that made it obvious you’re 
adding something to a list  and in which bookkeeping details, such as calling memory-manage-
ment functions and setting pointers, were hidden. Separating the user interface from the details 
will make the program easier to understand and to update. By making a fresh start, you can 
meet these targets. Let’s see how.    

  Abstract Data Types (ADTs)  

 In programming, you try to match the data type to the needs of a programming problem. For 
example, you would use the  int  type to represent the number of shoes you own and the  float  
or  double  type to represent your average cost per pair of shoes. In the movie examples, the 
data formed a list of items, each of which consisted of a movie name (a C string) and rating 
(an  int ). No basic C type matches that description, so we defined a structure to represent indi-
vidual items, and then we devised a couple methods for tying together a series of structures  
to form a list. In essence, we used C’s capabilities to design a new data type that matched our 
needs, but we did so unsystematically. Now we’ll take a more systematic approach to defining 
types.  

 What constitutes a type? A  type  specifies two kinds of information: a set of properties and a set 
of operations. For example, the  int  type’s property is that it represents an integer value and, 
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therefore, shares the properties of integers. The allowed arithmetic operations are changing 
the sign, adding two  int s, subtracting two  int s, multiplying two  int s, dividing one  int  by 
another, and taking the modulus of one  int  with respect to another. When you declare a vari-
able to be an  int , you’re saying that these and only these operations can affect it.  

  Note   Integer Properties  

 Behind the C  int  type is a more abstract concept, that of the  integer . Mathematicians can, 
and do, define the properties of integers in a formal abstract manner. For example, if N and 
M are integers, N + M = M + N, or for every two integers N and M, there is an integer S, such 
that N + M = S. If N + M = S and if N + Q = S, then M = Q. You can think of mathematics 
as supplying the abstract concept of the integer and of C as supplying an implementation of  
that concept. For example, C provides a means of storing an integer and of performing integer 
operations such as addition and multiplication. Note that providing support for arithmetic opera-
tions is an essential part of representing integers. The  int  type would be much less useful if 
all you could do was store a value but not use it in arithmetic expressions. Note also that the 
implementation doesn’t do a perfect job of representing integers. For example, there are an 
infinite number of integers, but a 2-byte  int  can represent only 65,536 of them; don’t confuse 
the abstract idea with a particular implementation.   

 Suppose you want to define a new data type. First, you have to provide a way to store the data, 
perhaps by designing a structure. Second, you have to provide ways of manipulating the data. 
For example, consider the  films2.c  program ( Listing   17.2   ). It has a linked set of structures to 
hold the information and supplies code for adding information and displaying information. 
This program, however, doesn’t do these things in a way that makes it clear we were creating a 
new type. What should we have done?  

 Computer science has developed a very successful way to define new data types. It’s a three-
step process that moves from the abstract to the concrete:  

    1.   Provide an abstract description of the type’s properties and of the operations you can 
perform on the type. This description shouldn’t be tied to any particular implementation. 
It shouldn’t even be tied to a particular programming language. Such a formal abstract 
description is called an  abstract data type  (ADT).   

   2.   Develop a programming interface that implements the ADT. That is, indicate how to 
store the data and describe a set of functions that perform the desired operations. In C, 
for example, you might supply a structure definition along with prototypes for functions 
to manipulate the structures. These functions play the same role for the user-defined type 
that C’s built-in operators play for the fundamental C types. Someone who wants to use 
the new type will use this interface for her or his programming.   

   3.   Write code to implement the interface. This step is essential, of course, but the 
programmer using the new type need not be aware of the details of the implementation.    

 Let’s work through an example to see how this process works. Because we’ve already invested 
some effort into the movie listing example, let’s redo it using the new approach.  
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  Getting Abstract  

 Basically, all you need for the movie project is a list of items. Each item contains a movie name 
and a rating. You need to be able to add new items to the end of the list, and you need to be 
able to display the contents of the list. Let’s call the abstract type that will handle these needs 
a  list . What properties should a list have? Clearly, a list should be able to hold a sequence of 
items. That is, a list can hold several items, and these items are arranged in some kind of order, 
so you can  speak of the first item in a list or of the second item or of the last item. Next, the 
list type should support operations such as adding an item to the list. Here are some useful 
operations:  

    ■   Initializing a list to empty   

   ■   Adding an item to the end of a list   

   ■   Determining whether the list is empty   

   ■   Determining whether the list is full   

   ■   Determining how many items are in the list   

   ■   Visiting each item in a list to perform some action, such as displaying the item    

 We don’t need any further operations for this project, but a more general list of operations for 
lists might include the following:  

    ■   Inserting an item anywhere in the list   

   ■   Removing an item from the list   

   ■   Retrieving an item from the list (list left unaltered)   

   ■   Replacing one item in the list with another   

   ■   Searching for an item in the list    

 The informal, but abstract, definition of a list, then, is that it is a data object capable of holding 
a sequence of items and to which you can apply any of the preceding operations. This defini-
tion doesn’t state what kind of items can be stored in the list. It doesn’t specify whether an 
array or a linked set of structures or some other data form should be used to hold the items. 
It doesn’t dictate what method to use, for example, to find the number of elements in a list. 
These matters are all details left to the implementation.  

 To keep the example simple, let’s adopt a simplified list as the abstract data type, one that 
embodies only the features needed for the movie project. Here’s a summary of the type:  

  Type Name:    Simple List  

  Type Properties:    Can hold a sequence of items.  

  Type Operations:    Initialize list to empty.  

 Determine whether list is empty.  

 Determine whether list is full.  
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 Determine number of items in the list.  

 Add item to end of list.  

 Traverse list, processing each item in list.  

 Empty the list.  

 The next step is to develop a C-language interface for the simple list ADT.   

  Building an Interface  

 The interface for the simple list has two parts. The first part describes how the data will be 
represented, and the second part describes functions that implement the ADT operations. For 
example, there will be functions for adding an item to a list and for reporting the number of 
items in the list. The interface design should parallel the ADT description as closely as possible. 
Therefore, it should be expressed in terms of some general  Item  type instead of in terms of 
some specific type, such as  int  or  struct film . One way to do this is to use C’s  typedef  
facility to  define  Item  as the needed type:  

  #define TSIZE  45      /* size of array to hold title   */

  struct film

  {

      char title[TSIZE];

      int rating;

  };

  

  typedef struct film Item;   

 Then you can use the  Item  type for the rest of the definitions. If you later want a list of some 
other form of data, you can redefine the  Item  type and leave the rest of the interface definition 
unchanged.  

 Having defined  Item , you now have to decide how to store items of that type. This step really 
belongs to the implementation stage, but making a decision now makes the example easier to 
follow. The linked structure approach worked pretty well in the  films2.c  program, so let’s 
adapt it as shown here:  

  typedef struct node

  {

      Item item;

     struct node * next;

  } Node;

  typedef Node * List;   

 In a linked list implementation, each link is called a  node.  Each node contains information that 
forms the contents of the list along with a pointer to the next node. To emphasize this termi-
nology, we’ve used the tag name  node  for a node structure, and we’ve used  typedef  to make 
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 Node  the type name for a  struct node  structure. Finally, to manage a linked list, we need a 
pointer to its beginning, and we’ve used  typedef  to make  List  the name for a pointer of this 
type. Therefore, the declaration  

  List movies;   

 establishes  movies  as a pointer suitable for referring to a linked list.  

 Is this the only way to define the  List  type? No. For example, you could incorporate a variable 
to keep track of the number of entries:  

  typedef struct list

  {

      Node * head;   /* pointer to head of list        */

      int size;      /* number of entries in list      */

  } List;            /* alternative definition of list */   

 You could add a second pointer to keep track of the end of the list. Later, you’ll see an example 
that does that. For now, let’s stick to the first definition of a  List  type. The important point is 
that you should think of the declaration  

  List movies;   

 as establishing a list, not as establishing a pointer to a node or as establishing a structure. The 
exact data representation of  movies  is an implementation detail that should be invisible at the 
interface level.  

 For example, a program should initialize the head pointer to  NULL  when starting out, but you 
should not use code like this:  

  movies = NULL;   

 Why not? Because later you might find you like the structure implementation of a  List  type 
better, and that would require the following initializations:  

  movies.next = NULL;

  movies.size = 0;   

 Anyone using the  List  type shouldn’t have to worry about such details. Instead, they should 
be able do something along the following lines:  

  InitializeList(movies);   

 Programmers need to know only that they should use the  InitializeList()  function to 
initialize a list. They don’t have to know the exact data implementation of a  List  variable. 
This is an example of  data hiding , the art of concealing details of data representation from the 
higher levels of programming.  

 To guide the user, you can supply a function prototype along these lines:  

  /* operation:        initialize a list                  */

  /* preconditions:    plist points to a list             */
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  /* postconditions:   the list is initialized to empty   */

  void InitializeList(List * plist);   

 There are three points you should notice. First, the comments outline  preconditions —that is, 
conditions that should hold before the function is called. Here, for example, you need a list to 
initialize. Second, the comments outline  postconditions —that is, conditions that should hold 
after the function executes. Finally, the function uses a pointer to a list instead of a list as its 
argument, so this would be the function call:  

  InitializeList(&movies);   

 The reason is that C passes arguments by value, so the only way a C function can alter a vari-
able in the calling program is by using a pointer to that variable. Here the restrictions of the 
language make the interface deviate slightly from the abstract description.  

 The C way to tie all the type and function information into a single package is to place the type 
definitions and function prototypes (including precondition and postcondition comments) in 
a header file. This file should supply all the information a programmer needs to use the type. 
 Listing   17.3    shows a header file for the simple  list  type. It defines a particular structure as the 
 Item  type, and then it defines  Node  in terms of  Item  and it defines  List  in terms of  Node . The 
functions representing list operations then use  Item  types and  List  types as arguments. If the 
function needs to modify an argument, it uses  a pointer to the corresponding type instead of 
using the type directly. The file capitalizes each function name as a way of marking it as part of 
an interface package. Also, the file uses the  #ifndef  technique discussed in  Chapter   16   , “The C 
Preprocessor and the C Library,” to protect against multiple inclusions of a file. If your compiler 
doesn’t support the C99  bool  type, you can replace  

  #include <stdbool.h>     /* C99 feature         */   

 with this in the header file:  

  enum bool {false, true}; /* define bool as type, false, true as values */   

  Listing 17.3   The  list.h  Interface Header File  

 /* list.h -- header file for a simple list type */

  #ifndef LIST_H_

  #define LIST_H_

  #include <stdbool.h>     /* C99 feature         */

  

  /* program-specific declarations */

  

  #define TSIZE      45    /* size of array to hold title  */

  struct film

  {

      char title[TSIZE];

      int rating;

  };
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  /* general type definitions */

  

  typedef struct film Item;

  

  typedef struct node

  {

      Item item;

      struct node * next;

  } Node;

  

  typedef Node * List;

  

  /* function prototypes */

  

  /* operation:        initialize a list                          */

  /* preconditions:    plist points to a list                     */

  /* postconditions:   the list is initialized to empty           */

  void InitializeList(List * plist);

  

  /* operation:        determine if list is empty                 */

  /*                   plist points to an initialized list        */

  /* postconditions:   function returns True if  list is empty     */

  /*                   and returns False otherwise                */

  bool ListIsEmpty(const List *plist);

  

  /* operation:        determine if list is full                  */

  /*                   plist points to an initialized list        */

  /* postconditions:   function returns True if list is full      */

  /*                   and returns False otherwise                */

  bool ListIsFull(const List *plist);

  

  /* operation:        determine number of items in list          */

  /*                   plist points to an initialized list        */

  /* postconditions:   function returns number of items in list   */

  unsigned int ListItemCount(const List *plist);

  

  /* operation:        add item to end of list                    */

  /* preconditions:    item is an item to be added to list        */

  /*                   plist points to an initialized list        */

  /* postconditions:   if possible,  function adds item to end     */

  /*                   of list and returns True; otherwise the    */

  /*                   function returns False                     */

  bool AddItem(Item item, List * plist);

  

  /* operation:        apply a function to each item in list      */

  /*                   plist points to an initialized list        */
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  /*                   pfun points to a function that takes an    */

  /*                   Item argument and has no return value      */

  /* postcondition:    the function pointed to by pfun is         */

  /*                   executed once for each item in the list    */

  void Traverse (const List *plist, void (* pfun)(Item item) );

  

  /* operation:        free allocated memory, if any              */

  /*                   plist points to an initialized list        */

  /* postconditions:   any  memory allocated for the list is freed */

  /*                   and the list is set to empty               */

  void EmptyTheList(List * plist);

  

  #endif   

 Only the  InitializeList() ,  AddItem() , and  EmptyTheList()  functions modify the list, 
so, technically, they are the only methods requiring a pointer argument. However, it can get 
confusing if the user has to remember to pass a  List  argument to some functions and an 
address of a  List  as the argument to others. So, to simplify the user’s responsibilities, all the 
functions use pointer arguments.  

 One of the prototypes in the header file is a bit more complex than the others:  

  /* operation:        apply a function to each item in list      */

  /*                   plist points to an initialized list        */

  /*                   pfun points to a function that takes an    */

  /*                   Item argument and has no return value      */

  /* postcondition:    the function pointed to by pfun is         */

  /*                   executed once for each item in the list    */

  void Traverse (const List *plist, void (* pfun)(Item item) );   

 The argument  pfun  is a pointer to a function. In particular, it is a pointer to a function that 
takes an  item  value as an argument and that has no return value. As you might recall from 
 Chapter   14   , “Structures and Other Data Forms,” you can pass a pointer to a function as an 
argument to a second function, and the second function can then use the pointed-to function. 
Here, for example, you can let  pfun  point to a function that displays an item. The  Traverse()  
function would then apply this function to each item in the list, thus displaying the whole list.   

  Using the Interface  

 Our claim is that you should be able to use this interface to write a program without knowing 
any further details—for example, without knowing how the functions are written. Let’s write a 
new version of the movie program right now before we write the supporting functions. Because 
the interface is in terms of  List  and  Item  types, the program should be phrased in those terms. 
Here’s a pseudocode representation of one possible plan:  

  Create a List variable.

  Create an Item variable.
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  Initialize the list to empty.

  While the list isn't full and while there's more input:

      Read the input into the Item variable.

      Add the item to the end of the list.

  Visit each item in the list and display it.   

 The program shown in  Listing   17.4    follows this basic plan, with some error-checking. Note 
how it makes use of the interface described in the  list.h  file ( Listing   17.3   ). Also note that the 
listing has code for the  showmovies()  function, which conforms to the prototype required by 
 Traverse() . Therefore, the program can pass the pointer  showmovies  to  Traverse()  so that 
 Traverse()  can apply the  showmovies()  function to each item in the list. (Recall that the 
name of a function is a pointer to the function.)  

  Listing 17.4   The  films3.c  Program  

 /* films3.c -- using an ADT-style linked list */

  /* compile with list.c                        */

  #include <stdio.h>

  #include <stdlib.h>    /* prototype for exit() */

  #include "list.h"      /* defines List, Item   */

  void showmovies(Item item);

  char * s_gets(char * st, int n);

  int main(void)

  {

      List movies;

      Item temp;

  

  

  /* initialize       */

      InitializeList(&movies);

      if (ListIsFull(&movies))

      {

          fprintf(stderr,"No memory available! Bye!\n");

          exit(1);

      }

  

  /* gather and store */

      puts("Enter first movie title:");

      while (s_gets(temp.title, TSIZE) != NULL && temp.title[0] != '\0')

      {

          puts("Enter your rating <0-10>:");

          scanf("%d", &temp.rating);

          while(getchar() != '\n')

              continue;

          if (AddItem(temp, &movies)==false)

          {



ptg11524036

795Abstract Data Types (ADTs)

              fprintf(stderr,"Problem allocating memory\n");

              break;

          }

          if (ListIsFull(&movies))

          {

              puts("The list is now full.");

              break;

          }

          puts("Enter next  movie title (empty line to stop):");

      }

  

  /* display          */

      if (ListIsEmpty(&movies))

          printf("No data entered. ");

      else

      {

          printf ("Here is the movie list:\n");

          Traverse(&movies, showmovies);

      }

      printf("You entered %d movies.\n", ListItemCount(&movies));

  

  

  /* clean up         */

      EmptyTheList(&movies);

      printf("Bye!\n");

  

      return 0;

  }

  

  void showmovies(Item item)

  {

      printf("Movie: %s  Rating: %d\n", item.title,

              item.rating);  

  }

  char * s_gets(char * st, int n)

  

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')
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                  continue;          //  dispose of rest of line

      }

      return ret_val;

  }    

  Implementing the Interface  

 Of course, you still have to implement the  List  interface. The C approach is to collect the 
function definitions in a file called  list.c . The complete program, then, consists of three 
files:  list.h , which defines the data structures and provides prototypes for the user inter-
face,  list.c , which provides the function code to implement the interface, and  films3.c , 
which is a source code file that applies the list interface to a particular programming problem. 
 Listing   17.5    shows one possible implementation of  list.c . To run the program, you must 
compile both  films3.c  and  list.c  and link them. (You might want to review the discussion 
in  Chapter   9   ,  “Functions,” on compiling multiple-file programs.) Together, the files  list.h , 
 list.c , and  films3.c  constitute a complete program  (see  Figure   17.5   ).   

  Listing 17.5   The  list.c  Implementation File  

 /* list.c -- functions supporting list operations */

  #include <stdio.h>

  #include <stdlib.h>

  #include "list.h"

  

  /* local function prototype */

  static void CopyToNode(Item item, Node * pnode);

  

  /* interface functions   */

  /* set the list to empty */

  void InitializeList(List * plist)

  {

      * plist = NULL;

  }

  

  /* returns true if list is empty */

  bool ListIsEmpty(const List * plist)

  {

      if (*plist == NULL)

          return true;

      else

          return false;

  }
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  /* returns true if list is full */

  bool ListIsFull(const List * plist)

  {

      Node * pt;

      bool full;

  

      pt = (Node *) malloc(sizeof(Node));

      if (pt == NULL)

          full = true;

      else

          full = false;

      free(pt);

  

      return full;

  }

  

  /* returns number of nodes */

  unsigned int ListItemCount(const List  * plist)

  {

      unsigned int count = 0;

      Node * pnode = *plist;    /* set to start of list */

  

      while (pnode != NULL)

      {

          ++count;

          pnode = pnode->next;  /* set to next node     */

      }

  

      return count; 

  }

  

  /* creates node to hold item and adds it to the end of */

  /* the list pointed to by plist (slow implementation)  */

  bool AddItem(Item item, List * plist)

  {

      Node * pnew;

      Node * scan = *plist;

  

      pnew = (Node *) malloc(sizeof(Node));

      if (pnew == NULL)

          return false;     /* quit function on failure  */

  

      CopyToNode(item, pnew);

      pnew->next = NULL;

      if (scan == NULL)          /*  empty list, so place */
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          *plist = pnew;         /* pnew at head of list */

      else

      {

          while (scan->next != NULL)

              scan = scan->next;  /* find end of list    */

          scan->next = pnew;      /* add pnew to end     */

      }

  

      return true;

  }

  

  /* visit each node and execute function pointed to by pfun */

  void Traverse  (const List * plist, void (* pfun)(Item item) )

  {

      Node * pnode = *plist;    /* set to start of list   */

  

      while (pnode != NULL)

      {

          (*pfun)(pnode->item); /* apply function to item */

          pnode = pnode->next;  /* advance to next item   */

      }

  }

  

  /* free memory allocated  by malloc() */

  /* set list pointer to NULL          */

  void EmptyTheList(List * plist)

  {

      Node * psave;

  

      while (*plist != NULL)

      {

          psave = (*plist)->next; /* save address of next node */

          free(*plist);           /* free current node         */

          *plist = psave;         /* advance to next node      */

      }

  }

  

  /* local function definition  */

  /* copies an item into a node */

  static void CopyToNode(Item item, Node * pnode)

  {

      pnode->item = item;  /* structure copy */

  }   
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  Program Notes  

 The  list.c  file has many interesting points. For one, it illustrates when you might use func-
tions with internal linkage. As described in  Chapter   12   , functions with internal linkage are 
known only in the file where they are defined. When implementing an interface, you might 
find it convenient sometimes to write auxiliary functions that aren’t part of the official inter-
face. For instance, the example uses the function  CopyToNode()  to copy a type  Item  value to 
a type  Item  variable. Because this function is part of the implementation but not part of the 
interface, we hid it in the  list.c  file by using the  static  storage class qualifier.  Now, let’s 
examine the other functions.  

list.h

/* list.h--header file for a simple list type */

/* program-specific declarations */

#define TSIZE 45 /* size of array to hold title */

struct film

{

  char title[TSIZE];

  int rating;

};

.

.

.

void Traverse (List 1, void (* pfun)(Item item) );

films3.c

/* films3.c -- using and ADT-style linked list */

#include <stdio.h>

#include <stdlib.h> /* prototype for exit() */

#include "list.h"

void showmovies(Item item);

int main(void)

{

.

.

.

}

list.c

/* list.c--functions supporting list operations */

#include<stdio.h>

#include<stdlib.h>

#include "list.h"

.

.

.

/* copies an item into node */

static void CopyToNode (Item item, Node * pnode)

{

pnode->item = item; /* structure copy */

}

 Figure 17.5   The three parts of a program package.        
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 The  InitializeList()  function initializes a list to empty. In our implementation, that means 
setting a type  List  variable to  NULL . As mentioned earlier, this requires passing a pointer to the 
 List  variable to the function.  

 The  ListIsEmpty()  function is quite simple, but it does depend on the list variable being set 
to  NULL  when the list is empty. Therefore, it’s important to initialize a list before first using 
the  ListIsEmpty()  function. Also, if you were to extend the interface to include deleting 
items, you should make sure the deletion function resets the list to empty when the last item 
is deleted. With a linked list, the size of the list is limited by the amount of memory available. 
The  ListIsFull()  function tries to allocate enough space for a new item. If it fails, the list 
is full. If it succeeds,  it has to free the memory it just allocated so that it is available for a real 
item.  

 The  ListItemCount()  function uses the usual linked-list algorithm to traverse the list, count-
ing items as it goes:  

  unsigned int ListItemCount(const List * plist)

  {

      unsigned int count = 0;

      Node * pnode = *plist;    /* set to start of list */

  

      while (pnode != NULL)

      {

          ++count;

          pnode = pnode->next;  /* set to next node     */

      }

  

      return count;

  }   

 The  AddItem()  function is the most elaborate of the group:  

  bool AddItem(Item item, List * plist)

  {

      Node * pnew;

      Node * scan = *plist;

  

      pnew = (Node *) malloc(sizeof(Node));

      if (pnew == NULL)

          return false;     /* quit function on failure  */

  

      CopyToNode(item, pnew);

      pnew->next = NULL;

      if (scan == NULL)          /* empty list, so place */

          *plist = pnew;         /* pnew at head of list */

      else

      {

          while (scan->next != NULL)
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              scan = scan->next;  /* find end of list    */

          scan->next = pnew;      /* add pnew to end     */

      }

  

      return true;

  }   

 The first thing the  AddItem()  function does is allocate space for a new node. If this succeeds, 
the function uses  CopyToNode()  to copy the item to the node. Then it sets the  next  member 
of the node to  NULL . This, as you’ll recall, indicates that the node is the last node in the 
linked list. Finally, after creating the node and assigning the correct values to its members, 
the function attaches the node to the end of the list. If the item is the first item added to the 
list, the program sets the head pointer to the first item. (Remember,  AddItem()  is called with  
the address of the head pointer as its second argument, so  * plist  is the value of the head 
pointer.) Otherwise, the code marches through the linked list until it finds the item having its 
 next  member set to  NULL . That node is currently the last node, so the function resets its  next  
member to point to the new node.  

 Good programming practice dictates that you call  ListIsFull()  before trying to add an item 
to the list. However, a user might fail to observe this dictate, so  AddItem()  checks for itself 
whether  malloc()  has succeeded. Also, it’s possible a user might do something else to allocate 
memory between calling  ListIsFull()  and calling  AddItem() , so it’s best to check whether 
 malloc()  worked.  

 The  Traverse()  function is similar to the  ListItemCount()  function with the addition of 
applying a function to each item in the list:  

  void Traverse  (const List * plist, void (* pfun)(Item item) )

  {

      Node * pnode = *plist;    /* set to start of list   */

  

      while (pnode != NULL)

      {

          (*pfun)(pnode->item); /* apply function to item */

          pnode = pnode->next;  /* advance to next item   */

      }

  }   

 Recall that  pnode->item  represents the data stored in a node and that  pnode->next  identifies 
the next node in the linked list. For example, the function call  

  Traverse(movies, showmovies);   

 applies the  showmovies()  function to each item in the list.  

 Finally, the  EmptyTheList()  function frees the memory previously allocated using  malloc() :  

  void EmptyTheList(List * plist)

  {
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      Node * psave;

  

      while (*plist != NULL)

      {

          psave = (*plist)->next; /* save address of next node */

          free(*plist);           /* free current node         */

          *plist = psave;         /* advance to next node      */

      }

  }   

 The implementation indicates an empty list by having the  List  variable being set to  NULL . 
Therefore, this function needs to be passed the address of the  List  variable to be able to reset 
it. Because  List  already is a pointer,  plist  is a pointer to a pointer. Thus, within the code, the 
expression  *plist  is type pointer-to- Node . When the list terminates,  *plist  is  NULL , meaning 
the original actual argument is now set to  NULL .  

 The code saves the address of the next node because the call to  free() , in principle, may make 
the contents of the current node (the one pointed to by  *plist ) no longer available.  

  Note   The Limitations of  const   

 Several of the list-handling functions have  const List * plist  for a parameter. This indi-
cates the intent that these functions don’t alter the list. Here,  const  does provide some pro-
tection. It prevents  *plist  (the quantity to which  plist  points) from being changed. In this 
program,  plist  points to  movies , so  const  prevents those functions from changing  movies , 
which, in turn, points to the first link in the list. Therefore, code such as this is not allowed in, 
say,  ListItemCount() :  
  *plist = (*plist)->next;   // not allowed if *plist is const   

 This is good, because changing  *plist , and, hence,  movies,  would cause the program 
to lose track of the data. However, the fact that  *plist  and  movies  are treated as  const  
doesn’t mean that data pointed to by  *plist  or  movies  is  const . For example, code such as 
this is allowed:  
  (*plist)->item.rating = 3; // allowed even if *plist is const   

 That’s because this code doesn’t change  *plist ; it changes data that  *plist  points to. The 
moral is that you can’t necessarily rely on  const  to catch programming errors that accidentally 
modify data.    

  Contemplating Your Work  

 Take a little time now to evaluate what the ADT approach has done for you. First, compare 
 Listing   17.2    with  Listing   17.4   . Both programs use the same fundamental method (dynamic allo-
cation of linked structures) to solve the movie listing problem, but  Listing   17.2    exposes all the 
programming plumbing, putting  malloc()  and  prev->next  into public view.  Listing   17.4   , on 
the other hand, hides these details and expresses the program in a language that relates directly 
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to the tasks. That is, it talks about creating a list and adding items to the list, not about calling 
memory functions or resetting pointers. In short,  Listing   17.4    expresses the program  in terms of 
the problem to be solved, not in terms of the low-level tools needed to solve the problem. The 
ADT version is oriented to the end user’s concerns and is much easier to read.  

 Next, the  list.h  and  list.c  files together constitute a reusable resource. If you need another 
simple list, just haul out these files. Suppose you need to store an inventory of your relatives: 
names, relationships, addresses, and phone numbers. First, you would go to the  list.h  file and 
redefine the  Item  type:  

  typedef struct itemtag

  {

     char fname[14];

     char lname [24];

     char relationship[36];

     char address [60];

     char phonenum[20];

  } Item;   

 Next... well, that’s all you have to do in this case because all the simple list functions are 
defined in terms of the  Item  type. In some cases, you would also have to redefine the 
 CopyToNode()  function. For example, if an item were an array, you couldn’t copy it by 
assignment.  

 Another important point is that the user interface is defined in terms of abstract list operations, 
not in terms of some particular set of data representations and algorithms. This leaves you free 
to fiddle with the implementation without having to redo the final program. For example, the 
current  AddItem()  function is a bit inefficient because it always starts at the beginning of the 
list and then searches for the end. You can fix this problem by keeping track of the end of the 
list. For example, you can redefine the  List  type this way:  

  typedef struct list

  {

      Node * head;      /* points to head of list */

      Node * end;       /* points to end of list  */

  } List;   

 Of course, you would then have to rewrite the list-processing functions using this new defini-
tion, but you wouldn’t have to change a thing in  Listing   17.4   . This sort of isolating implemen-
tation from the final interface is particularly useful for large programming projects. It’s called 
 data hiding  because the detailed data representation is hidden from the final user.  

 Note that this particular ADT doesn’t even force you to implement the simple list as a linked 
list. Here’s another possibility:  

  #define MAXSIZE 100

  typedef struct list

  {

      Item entries[MAXSIZE];   /* array of items          */
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      int items;               /* number of items in list */

  } List;   

 Again, this would require rewriting the  list.c  file, but the program using the list doesn’t need 
to be changed.  

 Finally, think of the benefits this approach provides for the program-development process. If 
something is not working right, you probably can localize the problem to a single function. If 
you think of a better way to do one of the tasks, such as adding an item, you just have to rewrite 
that one function. If you need a new feature, you can think in terms of adding a new function to 
the package. If you think that an array or double-linked list would be better, you can rewrite the 
implementation without having to modify the programs that use the implementation.     

  Getting Queued with an ADT  

 The abstract data type approach to programming in C, as you’ve seen, involves the following 
three steps:  

    1.   Describing a type, including its operations, in an abstract, general fashion   

   2.   Devising a function interface to represent the new type   

   3.   Writing detailed code to implement the interface    

 You’ve seen this approach applied to a simple list. Now, apply it to something slightly more 
complex: the queue.  

  Defining the Queue Abstract Data Type  

 A  queue  is a list with two special properties. First, new items can be added only to the end of 
the list. In this respect, the queue is like the simple list. Second, items can be removed from 
the list only at the beginning. You can visualize a queue as a line of people buying tickets to a 
theater. You join the line at the end, and you leave the line at the front, after purchasing your 
tickets. A queue is a  first in, first out  (FIFO) data form, just the way a movie line is (if no one 
cuts into the  line). Once again, let’s frame an informal, abstract definition, as shown here:  

  Type Name:    Queue  

  Type Properties:    Can hold an ordered sequence of items.  

  Type Operations:    Initialize queue to empty.  

 Determine whether queue is empty.  

 Determine whether queue is full.  

 Determine number of items in the queue.  

 Add item to rear of queue.  

 Remove and recover item from front of queue.  

 Empty the queue.  
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  Defining an Interface  

 The interface definition will go into a file called  queue.h . We’ll use C’s  typedef  facility to 
create names for two types:  Item  and  Queue . The exact implementation for the corresponding 
structures should be part of the  queue.h  file, but conceptually, designing the structures is part 
of the detailed implementation stage. For the moment, just assume that the types have been 
defined and concentrate on the function prototypes.  

 First, consider initialization. It involves altering a  Queue  type, so the function should take the 
address of a  Queue  as an argument:  

  void InitializeQueue (Queue * pq);   

 Next, determining whether the queue is empty or full involves a function that should return 
a true or false value. Here we assume that the C99  stdbool.h  header file is available. If it’s 
not, you can use type  int  or define a  bool  type yourself. Because the function doesn’t alter 
the queue, it can take a  Queue  argument. On the other hand, it can be faster and less memory 
intensive to just pass the address of a  Queue , depending on how large a  Queue -type object 
is. Let’s try that approach. Another advantage is that this way all the functions will take an 
address as  an argument. To indicate that these functions don’t change a queue, you can, and 
should, use the  const  qualifier:  

  bool QueueIsFull(const Queue * pq);

  bool QueueIsEmpty (const Queue * pq);   

 Paraphrasing, the pointer  pq  points to a  Queue  data object that cannot be altered through the 
agency of  pq . You can define a similar prototype for a function that returns the number of 
items in a queue:  

  int QueueItemCount(const Queue * pq);   

 Adding an item to the end of the queue involves identifying the item and the queue. This time 
the queue is altered, so using a pointer is necessary, not optional. The function could be type 
 void , or you can use the return value to indicate whether the operation of adding an item 
succeeded. Let’s take the second approach:  

  bool EnQueue(Item item, Queue * pq);   

 Finally, removing an item can be done several ways. If the item is defined as a structure or as 
one of the fundamental types, it could be returned by the function. The function argument 
could be either a  Queue  or a pointer to a  Queue . Therefore, one possible prototype is this:  

  Item DeQueue(Queue q);   

 However, the following prototype is a bit more general:  

  bool DeQueue(Item * pitem, Queue * pq);   

 The item removed from the queue goes to the location pointed to by the  pitem  pointer, and 
the return value indicates whether the operation succeeded.  
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 The only argument that should be needed for a function to empty the queue is the queue’s 
address, suggesting this prototype:  

  void EmptyTheQueue(Queue * pq);    

  Implementing the Interface Data Representation  

 The first step is deciding what C data form to use for a queue. One possibility is an array. The 
advantages to arrays are that they’re easy to use and that adding an item to the end of an 
array’s filled portion is easy. The problem comes with removing an item from the front of the 
queue. In the analogy of people in a ticket line, removing an item from the front of the queue 
consists of copying the value of the first element of the array (simple) and then moving each 
item left in the array one element toward the  front. Although this is easy to program, it wastes 
a lot of computer time (see  Figure   17.6   ).  

 

Four folks in a queue

Sue

front rear

front rear

Bob Joe Meg

Ken joins the queue, then Sue leaves the queue

Sue

Ken

Bob Joe Meg

Sue

Ken

front rear

Bob Joe Meg Ken

 Figure 17.6   Using an array as a queue.         

 A second way to handle the removal problem in an array implementation is to leave the 
remaining elements where they are and, instead, change which element you call the front (see 
 Figure   17.7   ). This method’s problem is that the vacated elements become dead space, so the 
available space in the queue keeps decreasing.  
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Four folks in a queue

room for 6
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Ken joins the queue, then Sue leaves the queue
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room for 5
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front rear
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 Figure 17.7   Redefining the front element.         

 A clever solution to the dead space problem is to make the queue  circular . This means wrapping 
around from the end of the array to the beginning. That is, consider the first element of the 
array as immediately following the last element so that when you reach the end of the array, 
you can start adding items to the beginning elements if they have been vacated (see  Figure 
  17.8   ). You can imagine drawing the array on a strip of paper, and then pasting one end of the 
array to the other to form a band. Of course, you now have  to do some fancy bookkeeping to 
make sure the end of the queue doesn’t pass the front.   

 Yet another solution is to use a linked list. This has the advantage that removing the front item 
doesn’t require moving all the other items. Instead, you just reset the front pointer to point 
to the new first element. Because we’ve already been working with linked lists, we’ll take this 
track. To test our ideas, we’ll start with a queue of integers:  

  typedef int Item;   

 A linked list is built from nodes, so let’s define a node next:  

  typedef struct node

  {

      Item item;

      struct node * next;

  } Node;   
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 For the queue, you need to keep track of the front and rear items. You can use pointers to do 
this. Also, you can use a counter to keep track of the number of items in a queue. Thus, the 
structure will have two pointer members and one type  int  member:  

  typedef struct queue

  {

      Node * front;   /* pointer to front of queue */

      Node * rear;    /* pointer to rear of queue  */

front rear

Four folks in a queue

front

rear

Sue and Bob leave the queue and
Ken joins the queue

Sue

Bob Joe

Meg

front

rear

Liz and Ben join the queue

Circular queue wraps around to front of array

Joe

MegBen

KenLiz

Joe

Meg

Bob

Ken

Ken

Sue

Ben

Liz

 Figure 17.8   A circular queue.        
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      int items;      /* number of items in queue  */

  } Queue;   

 Note that a  Queue  is a structure with three members, so the earlier decision to use pointers to 
queues instead of entire queues as arguments is a time and space saver.  

 Next, think about the size of a queue. With a linked list, the amount of available memory sets 
the limit, but often a much smaller size is more appropriate. For example, you might use a 
queue to simulate airplanes waiting to land at an airport. If the number of waiting planes gets 
too large, new arrivals might be rerouted to other airports. We’ll set a maximum queue size of 
10.  Listing   17.6    contains the definitions and prototypes for the queue interface. It leaves open 
the exact definition of the  Item  type. When using the interface, you would insert the appropri-
ate definition for  your particular program.  

  Listing 17.6   The  queue.h  Interface Header File  

 /* queue.h -- interface for a queue */

  #ifndef _QUEUE_H_

  #define _QUEUE_H_

  #include <stdbool.h>

  

  /* INSERT ITEM TYPE HERE */

  /* FOR EXAMPLE, */

  typedef int Item;  // for use_q.c

  /* OR typedef struct item {int gumption; int charisma;} Item; */

  

  #define MAXQUEUE 10

  

  typedef struct node

  {

      Item item;

      struct node * next;

  } Node;

  

  typedef struct queue

  {

      Node * front;  /* pointer to front of queue  */

      Node * rear;   /* pointer to rear of queue   */

      int items;     /* number of items in queue   */

  } Queue;

  

  /* operation:        initialize the queue                       */

  /* precondition:     pq points to a queue                       */

  /* postcondition:    queue is initialized to being empty        */

  void InitializeQueue(Queue * pq);

  

  /*  operation:        check if queue is full                     */
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  /* precondition:     pq points to previously initialized queue  */

  /* postcondition:   returns True if queue is full, else False   */

  bool QueueIsFull(const Queue * pq);

  

  /* operation:        check if queue is empty                    */

  /* precondition:     pq points to previously initialized queue  */

  /* postcondition:    returns True if queue is empty, else False */

  bool QueueIsEmpty(const Queue *pq);

  

  /* operation:        determine number of items in queue         */

  /* precondition:     pq points to previously initialized queue  */

  /* postcondition:    returns number of items in queue           */

  int QueueItemCount(const Queue * pq);

  

  /* operation:        add item to rear of queue                  */

  /* precondition:     pq points to previously initialized queue   */

  /*                   item is to be placed at rear of queue      */

  /* postcondition:    if queue is not empty, item is placed at   */

  /*                   rear of queue and function returns         */

  /*                   True; otherwise, queue is unchanged and    */

  /*                   function returns False                     */

  bool EnQueue(Item item, Queue * pq);

  

  /* operation:        remove item from front of queue            */

  /* precondition:     pq points to previously initialized queue  */

  /* postcondition:    if queue is not empty, item at head of     */

  /*                   queue is copied to *pitem and deleted from */

  /*                   queue, and function returns True; if the   */

  /*                   operation empties the queue, the queue is  */

  /*                   reset to empty.  If the queue is empty to   */

  /*                   begin with, queue is unchanged and the     */

  /*                   function returns False                     */

  bool DeQueue(Item *pitem, Queue * pq);

  

  /* operation:        empty the queue                            */

  /* precondition:     pq points to previously initialized queue  */

  /* postconditions:   the queue is empty                         */

  void EmptyTheQueue(Queue * pq);

  

  #endif   

  Implementing the Interface Functions  

 Now we can get down to writing the interface code. First, initializing a queue to “empty” 
means setting the front and rear pointers to  NULL  and setting the item count (the  items  
member) to  0 :  
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  void InitializeQueue(Queue * pq)

  {

      pq->front = pq->rear = NULL;

      pq->items = 0;

  }   

 Next, the  items  member makes it easy to check for a full queue or empty queue and to return 
the number of items in a queue:  

  bool QueueIsFull(const Queue * pq)

  {

      return pq->items == MAXQUEUE;

  }

  

  bool QueueIsEmpty(const Queue * pq)

  {

      return pq->items == 0;

  }

  

  int QueueItemCount(const Queue * pq)

  {

      return pq->items;

  }   

 Adding an item to the queue involves the following steps:  

    1.   Creating a new node.   

   2.   Copying the item to the node.   

   3.   Setting the node’s  next  pointer to  NULL , identifying the node as the last in the list.   

   4.   Setting the current rear node’s  next  pointer to point to the new node, linking the new 
node to the queue.   

   5.   Setting the  rear  pointer to the new node, making it easy to find the last node.   

   6.   Adding 1 to the item count.    

 Also, the function has to handle two special cases. First, if the queue is empty, the  front  
pointer should be set to point to the new node. That’s because when there is just one node, 
that node is both the front and the rear of the queue. Second, if the function is unable to 
obtain memory for the node, it should do something. Because we envision using small queues, 
such failure should be rare, so we’ll simply have the function terminate the program if the 
program runs out of memory. Here’s the code for  EnQueue() :  

  bool EnQueue(Item item, Queue * pq)

  {

      Node * pnew;
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      if (QueueIsFull(pq))

          return false;

      pnew = (Node *) malloc( sizeof(Node));

      if (pnew == NULL)

      {

          fprintf(stderr,"Unable to allocate memory!\n");

          exit(1);

      }

      CopyToNode(item, pnew);

      pnew->next = NULL;

      if (QueueIsEmpty(pq))

          pq->front = pnew;           /* item goes to front     */

      else

          pq->rear->next = pnew;      /* link at end of queue   */

      pq->rear = pnew;                /* record location of end */

      pq->items++;                    /* one more item in queue */

  

      return true;

  }   

 The  CopyToNode()  function is a static function to handle copying the item to a node:  

  static void CopyToNode(Item item, Node * pn)

  {

      pn->item = item;

  }   

 Removing an item from the front of the queue involves the following steps:  

    1.   Copying the item to a waiting variable   

   2.   Freeing the memory used by the vacated node   

   3.   Resetting the front pointer to the next item in the queue   

   4.   Resetting the front and rear pointers to  NULL  if the last item is removed   

   5.   Decrementing the item count    

 Here’s code that does all these things:  

  bool DeQueue(Item * pitem, Queue * pq)

  {

      Node * pt;

  

      if (QueueIsEmpty(pq))

          return false;

      CopyToItem(pq->front, pitem);

      pt = pq->front;

      pq->front = pq->front->next;



ptg11524036

813Getting Queued with an ADT

      free(pt);

      pq->items--;

      if (pq->items == 0)

          pq->rear = NULL;

  

      return true;

  }   

 There are a couple of pointer facts you should note. First, the code doesn’t explicitly set the 
 front  pointer to  NULL  when the last item is deleted. That’s because it already sets the  front  
pointer to the  next  pointer of the node being deleted. If that node is the last node, its  next  
pointer is  NULL , so the  front  pointer gets set to  NULL . Second, the code uses a temporary 
pointer ( pt ) to keep track of the deleted node’s location. That’s because the official pointer 
to the first node ( pq->front ) gets reset to point to the next node, so without the temporary 
pointer, the program would  lose track of which block of memory to free.  

 We can use the  DeQueue()  function to empty a queue. Just use a loop calling  DeQueue()  until 
the queue is empty:  

  void EmptyTheQueue(Queue * pq)

  {

      Item dummy;

      while (!QueueIsEmpty(pq))

          DeQueue(&dummy, pq);

  }   

  Note   Keeping Your ADT Pure  

 After you’ve defined an ADT interface, you should use only the functions of the interface to 
handle the data type. Note, for example, that  Dequeue()  depends on the  EnQueue()  func-
tion doing its job of setting pointers correctly and setting the  next  pointer of the  rear  node 
to  NULL . If, in a program using the ADT, you decided to manipulate parts of the queue directly, 
you might mess up the coordination between the functions in the interface package.   

  Listing   17.7    shows all the functions of the interface, including the  CopyToItem()  function 
used in  EnQueue() .  

  Listing 17.7   The  queue.c  Implementation File  

 /* queue.c -- the Queue type implementation*/

  #include <stdio.h>

  #include <stdlib.h>

  #include "queue.h"

  

  /* local functions */

  static void CopyToNode(Item item, Node * pn);
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  static void CopyToItem(Node * pn, Item * pi);

  

  void InitializeQueue(Queue * pq)

  {

      pq->front = pq->rear = NULL;

      pq->items = 0;

  }

  

  bool QueueIsFull(const Queue * pq)

  {

      return pq->items == MAXQUEUE;

  }

  

  bool QueueIsEmpty(const Queue * pq)

  {

      return pq->items == 0;

  }

  

  int QueueItemCount(const Queue * pq)

  {

      return pq->items;

  }

  

  bool EnQueue(Item item, Queue * pq)

  {

      Node * pnew;

  

      if (QueueIsFull(pq))

          return false;

      pnew = (Node *) malloc( sizeof(Node));

      if (pnew == NULL)

      {

          fprintf(stderr,"Unable to allocate memory!\n");

          exit(1);

      }

      CopyToNode(item, pnew);

      pnew->next = NULL;

      if (QueueIsEmpty(pq))

          pq->front = pnew;           /* item  goes to front     */

      else

          pq->rear->next = pnew;      /* link at end of queue   */

      pq->rear = pnew;                /* record location of end */

      pq->items++;                    /* one more item in queue */

  

      return true;

  }
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  bool DeQueue(Item * pitem, Queue * pq)

  {

      Node * pt;

  

      if (QueueIsEmpty(pq))

          return false;

      CopyToItem(pq->front, pitem); 

      pt = pq->front;

      pq->front = pq->front->next;

      free(pt);

      pq->items--;

      if (pq->items == 0)

          pq->rear = NULL;

  

      return true;

  }

  

  /* empty the queue                */

  void EmptyTheQueue(Queue * pq)

  {

      Item dummy;

      while (!QueueIsEmpty(pq))

          DeQueue(&dummy, pq);

  }

  

  /* Local functions                 */

  

  static void CopyToNode(Item item, Node * pn)

  {

      pn->item = item;

  }

  

  static void CopyToItem(Node * pn, Item * pi)

  {

      *pi  = pn->item; 

  }     

  Testing the Queue  

 It’s a good idea to test a new design, such as the queue package, before inserting it into a criti-
cal program. One approach to testing is writing a short program, sometimes called a  driver , 
whose sole purpose is to test the package. For example,  Listing   17.8    uses a queue that enables 
you to add and delete integers. Before using the program, make sure the following line is 
present in  queue.h :  

  typedef int item;   
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 Remember, too, that you have to link  queue.c  and  use_q.c .  

  Listing 17.8   The  use_q.c  Program  

 /* use_q.c -- driver testing the Queue interface */

  /* compile with queue.c                          */

  #include <stdio.h>

  #include "queue.h"  /* defines Queue, Item       */

  

  int main(void)

  {

      Queue line;

      Item temp;

      char ch;

  

      InitializeQueue(&line);

      puts("Testing the Queue interface. Type a to add a value,");

      puts("type d to delete a value, and type q to quit.");

      while ((ch = getchar()) != 'q')

      {

          if (ch != 'a' && ch != 'd')   /* ignore other input */

              continue;

          if ( ch == 'a')

          {

              printf("Integer to add: ");

              scanf("%d", &temp);

              if (!QueueIsFull(&line))

              {

                  printf("Putting %d into queue\n", temp);

                  EnQueue(temp,&line);

              }

             else

                 puts("Queue is full!");

          }

          else

          {

              if  (QueueIsEmpty(&line))

                  puts("Nothing to delete!");

              else

              {

                   DeQueue(&temp,&line);

                   printf("Removing %d from queue\n", temp);

              }

          }

          printf("%d items in queue\n", QueueItemCount(&line));

          puts("Type a to add, d to delete, q to quit:");

      }
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      EmptyTheQueue(&line);

      puts("Bye!");

  

      return 0;

  }   

 Here is a sample run. You should also test to see that the implementation behaves correctly 
when the queue is full.  

  Testing the Queue interface. Type a to add a value,

  type d to delete a value, and type q to quit.

   a 

  Integer to add:  40 

  Putting 40 into queue

  1 items in queue

  Type a to add, d to delete, q to quit:

   a 

  Integer to add:  20 

  Putting 20 into queue

  2 items in queue

  Type a to add, d to delete, q to quit:

   a 

  Integer to add: 55

  Putting 55 into queue

  3 items in queue

  Type a to add, d to delete, q to quit:

   d 

  Removing 40 from queue

  2 items in queue

  Type a to add, d to delete, q to quit:

   d 

  Removing 20 from queue

  1 items in queue

  Type a to add, d to  delete, q to quit:

   d 

  Removing 55 from queue

  0 items in queue

  Type a to add, d to delete, q to quit:

   d 

  Nothing to delete!

  0 items in queue

  Type a to add, d to delete, q to quit:

   q 

  Bye!     
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  Simulating with a Queue  

 Well, the queue works! Now let’s do something more interesting with it. Many real-life situa-
tions involve queues. For example, customers queue in banks and in supermarkets, airplanes 
queue at airports, and tasks queue in multitasking computer systems. You can use the queue 
package to simulate such situations.  

 Suppose, for example, that Sigmund Landers has set up an advice booth in a mall. Customers 
can purchase one, two, or three minutes of advice. To ensure a free flow of foot traffic, mall 
regulations limit the number of customers waiting in line to 10 (conveniently equal to the 
program’s maximum queue size). Suppose people show up randomly and that the time they 
want to spend in consultation is spread randomly over the three choices (one, two, or three 
minutes). How many customers, on average, will Sigmund handle in an hour? How long, on 
average, will customers have to wait?  How long, on average, will the line be? These are the sort 
of questions a queue simulation can answer.  

 First, let’s decide what to put in the queue. You can describe each customer in terms of the 
time when he or she joins the queue and in terms of how many minutes of consultation he or 
she wants. This suggests the following definition for the  Item  type:  

  typedef struct item

  {

      long arrive;      /* the time when a customer joins the queue   */

      int processtime;  /* the number of consultation minutes desired */

  } Item;   

 To convert the queue package to handle this structure, instead of the  int  type the last example 
used, all you have to do is replace the former  typedef  for  Item  with the one shown here. After 
that’s done, you don’t have to worry about the detailed mechanics of a queue. Instead, you can 
proceed to the real problem—simulating Sigmund’s waiting line.  

 Here’s one approach. Let time move in one-minute increments. Each minute, check to see 
whether a new customer has arrived. If a customer arrives and the queue isn’t full, add the 
customer to the queue. This involves recording in an  Item  structure the customer’s arrival time 
and the amount of consultation time the customer wants, and then adding the item to the 
queue. If the queue is full, however, turn the customer away. For bookkeeping, keep track of 
the total number of customers and the total number of “turnaways” (people who can’t get in 
line because it is full).  

 Next, process the front of the queue. That is, if the queue isn’t empty and if Sigmund isn’t 
occupied with a previous customer, remove the item at the front of the queue. The item, recall, 
contains the time when the customer joined the queue. By comparing this time with the 
current time, you get the number of minutes the customer has been in the queue. The item 
also contains the number of consultation minutes the customer wants, which determines how 
long Sigmund will be occupied with the new customer. Use a variable to keep track of this 
waiting time. If  Sigmund is busy, no one is “dequeued.” However, the variable keeping track of 
the waiting time should be decremented.  
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 The core code can look like this, with each cycle corresponding to one minute of activity:  

  for (cycle = 0; cycle < cyclelimit; cycle++)

  {

      if (newcustomer(min_per_cust))

      {

          if (QueueIsFull(&line))

              turnaways++;

          else

          {

              customers++;

              temp = customertime(cycle);

              EnQueue(temp, &line);

          }

      }

      if (wait_time <= 0 && !QueueIsEmpty(&line))

      {

          DeQueue (&temp, &line);

          wait_time = temp.processtime;

          line_wait += cycle - temp.arrive;

          served++;

      }

      if (wait_time > 0)

          wait_time––;

      sum_line += QueueItemCount(&line);

  }   

 Note that the time resolution is relatively coarse (one minute) so that the maximum number of 
customers per hour is just 60.  

 Here are the meanings of some of the variables and functions:  

    ■    min_per_cust  is the average number of minutes between customer arrivals.   

   ■    newcustomer()  uses the C  rand()  function to determine whether a customer shows up 
during this particular minute.   

   ■    turnaways  is the number of arrivals turned away.   

   ■    customers  is the number of arrivals who join the queue.   

   ■    temp  is an  Item  variable describing the new customer.   

   ■    customertime()  sets the  arrive  and  processtime  members of the  temp  structure.   

   ■    wait_time  is the number of minutes remaining until Sigmund finishes with the current 
client.   

   ■    line_wait  is the cumulative time spent in line by all customers to date.   

   ■    served  is the number of clients actually served.   

   ■    sum_line  is the cumulative length of the line to date.    
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 Think of how much messier and more obscure this code would look if it were sprinkled with 
 malloc()  and  free()  functions and pointers to nodes. Having the queue package enables you 
to concentrate on the simulation problem, not on programming details.  

  Listing   17.9    shows the complete code for the mall advice booth simulation. It uses the standard 
 rand() ,  srand() , and  time()  functions to generate random values, following the method 
suggested in  Chapter   12   . To use the program, remember to update the  Item  definition in 
 queue.h  with the following:  

  typedef struct item

  {

      long arrive;      // the time when a customer joins the queue

      int processtime;  // the number of consultation minutes desired

  } Item;   

 Also remember to link the code for  mall.c  with  queue.c .  

  Listing 17.9   The  mall.c  Program  

 // mall.c -- use the Queue interface

  // compile with queue.c

  #include <stdio.h>

  #include <stdlib.h>    // for rand() and srand()

  #include <time.h>      // for time()

  #include "queue.h"     // change Item typedef

  #define MIN_PER_HR 60.0

  

  bool newcustomer(double x);   // is there a new customer?

  Item customertime(long when); // set customer parameters

  

  int main(void)

  {

      Queue line;

      Item temp;                // new customer data

      int hours;                // hours of simulation

      int perhour;              // average # of arrivals per hour

      long cycle, cyclelimit;   // loop counter, limit

      long turnaways = 0;       // turned away by full queue

      long customers = 0;       // joined the queue

      long served = 0;          // served during the simulation

       long sum_line = 0;        // cumulative line length

      int wait_time = 0;        // time until Sigmund is free

      double min_per_cust;      // average time between arrivals

      long line_wait = 0;       // cumulative time in line

  

      InitializeQueue(&line);

      srand((unsigned int) time(0)); // random initializing of rand()
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      puts("Case Study: Sigmund Lander's Advice Booth");

      puts("Enter the number of simulation hours:");

      scanf("%d", &hours);

      cyclelimit = MIN_PER_HR * hours;

      puts("Enter the average number of customers per hour:");

      scanf("%d", &perhour);

      min_per_cust = MIN_PER_HR / perhour;

  

      for (cycle = 0; cycle < cyclelimit; cycle++)

      {

          if (newcustomer(min_per_cust))

          {

              if (QueueIsFull(&line))

                  turnaways++;

              else

              {

                  customers++;

                  temp = customertime(cycle);

                  EnQueue(temp, &line);

               }

          }

          if (wait_time <= 0 && !QueueIsEmpty(&line))

          {

              DeQueue (&temp, &line);

              wait_time = temp.processtime;

              line_wait += cycle - temp.arrive;

              served++;

          }

          if (wait_time > 0)

              wait_time--;

          sum_line += QueueItemCount(&line);

      }

  

      if (customers > 0)

      {

          printf("customers accepted: %ld\n", customers);

          printf("  customers served: %ld\n", served);

          printf("       turnaways: %ld\n", turnaways);

          printf("average queue size: %.2f\n",

                 (double) sum_line / cyclelimit);

          printf(" average wait time: %.2f minutes\n",

                 (double) line_wait / served);

      }

      else

          puts("No customers!");

      EmptyTheQueue(&line);

      puts("Bye!");
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      return 0;

  }

  

  // x = average time, in minutes, between customers

  // return value is true if customer shows up this minute

  bool newcustomer(double x)

  {

      if (rand() * x /  RAND_MAX < 1)

          return true;

      else

          return false;

  }

  

  // when is the time at which the customer arrives

  // function returns an Item structure with the arrival time

  // set to when and the processing time set to a random value

  // in the range 1 - 3

  Item customertime(long when)

  {

      Item cust;

  

      cust.processtime = rand() % 3 + 1;

      cust.arrive = when;

  

      return cust;

  }   

 The program enables you to specify the number of hours to simulate and the average number 
of customers per hour. Choosing a large number of hours gives you good average values, and 
choosing a small number of hours shows the sort of random variation you can get from hour 
to hour. The following runs illustrate these points. Note that the average queue sizes and wait 
times for 80 hours are about the same as for 800 hours, but that the two one-hour samples 
differ quite a bit from each other and from the long-term averages. That’s because smaller 
statistical samples tend  to have larger relative variations.  

  Case Study: Sigmund Lander's Advice Booth

  Enter the number of simulation hours:

   80 

  Enter the average number of customers per hour:

   20 

  customers accepted: 1633

    customers served: 1633

         turnaways: 0

  average queue size: 0.46

  average wait time: 1.35 minutes
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  Case Study: Sigmund Lander's Advice Booth

  Enter the number of simulation hours:

   800 

  Enter the average number of customers per hour:

   20 

  customers accepted: 16020

    customers served: 16019

         turnaways: 0

  average queue size: 0.44

  average wait time: 1.32 minutes

  

  Case Study: Sigmund Lander's Advice Booth

  Enter the number of simulation hours:

   1 

  Enter the average number of customers per hour:

   20 

  customers accepted: 20

    customers served: 20

         turnaways: 0

  average queue size: 0.23

  average wait time: 0.70 minutes

  

  Case Study: Sigmund Lander's Advice Booth

  Enter the  number of simulation hours:

   1 

  Enter the average number of customers per hour:

   20 

  customers accepted: 22

    customers served: 22

         turnaways: 0

  average queue size: 0.75

  average wait time: 2.05 minutes   

 Another way to use the program is to keep the numbers of hours constant but to try different 
average numbers of customers per hour. Here are two sample runs exploring this variation:  

  Case Study: Sigmund Lander's Advice Booth

  Enter the number of simulation hours:

   80 

  Enter the average number of customers per hour:

   25 

  customers accepted: 1960

    customers served: 1959

         turnaways: 3

  average queue size: 1.43

  average wait time: 3.50 minutes
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  Case Study: Sigmund Lander's Advice Booth

  Enter the number of simulation hours:

   80 

  Enter the average number of customers per hour:

   30 

  customers accepted: 2376

    customers served: 2373

         turnaways: 94

  average queue size: 5.85

  average wait time: 11.83 minutes   

 Note how the average wait time takes a sharp upturn as the frequency of customers increases. 
The average wait for 20 customers per hour (80-hour simulation) was 1.35 minutes. It climbs 
to 3.50 minutes at 25 customers per hour and soars to 11.83 minutes at 30 customers an hour. 
Also, the number of turnaways climbs from 0 to 3 to 94. Sigmund could use this sort of analy-
sis to decide whether he needs a second booth.   

  The Linked List Versus the Array  

 Many programming problems, such as creating a list or a queue, can be handled with a linked 
list—by which we mean a linked sequence of dynamically allocated structures—or with an 
array. Each form has its strengths and weaknesses, so the choice of which to use depends on 
the particular requirements of a problem.  Table   17.1    summarizes the qualities of linked lists 
and arrays.  

  Table 17.1   Comparing Arrays to Linked Lists  

  Data Form     Pros     Cons   

 Array   Directly supported by C. Provides ran-
dom access. at compile time.  

 Size determined Inserting and deleting 
elements is time consuming  

 Linked list   Size determined during runtime. 
Inserting and deleting elements is 
quick.  

 No random access. User must provide 
programming support.  

 Take a closer look at the process of inserting and deleting elements. To insert an element in an 
array, you have to move elements to make way for the new element, as shown in  Figure   17.9   . 
The closer to the front the new element goes, the more elements have to be moved. To insert 
a node in a linked list, however, you just have to assign values to two pointers, as shown in 
 Figure   17.10   . Similarly, removing an element from an array involves a wholesale relocation of 
elements, but removing a node from a linked list involves resetting a pointer  and freeing the 
memory used by the deleted node.  
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make room by shifting items

place new item

apples bread dill rice yogurt

apples bread dill rice yogurt

apples bread dill rice yogurtcorn

 Figure 17.9   Inserting an element into an array.         

 

create new node

reset pointers

apples

bread

apples

bread

rice

NULL

yogurt

dill

rice

NULL

yogurt

dill

NULL

corn

corn

 Figure 17.10   Inserting an element into a  linked list.         
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 Next, consider how to access the members of a list. With an array, you can use the array index 
to access any element immediately. This is called  random access . With a linked list, you have 
to start at the top of the list and then move from node to node until you get to the node you 
want, which is termed  sequential access . You can have sequential access with an array, too. Just 
increment the array index by one step each to move through the array in order. For some situ-
ations, sequential access is sufficient. For example, if you want to  display every item in a list, 
sequential access is fine. Other situations greatly favor random access, as you will see next.  

 Suppose you want to search a list for a particular item. One algorithm is to start at the begin-
ning of the list and search through it in sequence, called a  sequential search . If the items aren’t 
arranged in some sort of order, a sequential search is about all you can do. If the sought-for 
item isn’t in the list, you’ll have to look at every item in the list before concluding the item 
isn’t there. (Concurrent programming could help here, as different CPUs could search different 
parts of the list simultaneously.)  

 You can improve the sequential search by sorting the list first. That way, you can terminate a 
search if you haven’t found an item by the time you reach an item that would come later. For 
example, suppose you’re seeking  Susan  in an alphabetical list. Starting from the top of the list, 
you look at each item and eventually encounter  Sylvia  without finding  Susan . At that point you 
can quit searching because  Susan , if in the list, would precede  Sylvia . On average, this method 
would cut search times in half for attempting to find items not in the list.  

 With an ordered list, you can do much better than a sequential search by using the  binary 
search  method. Here’s how it works. First, call the list item you want to find the  target  and 
assume the list is in alphabetical order. Next, pick the item halfway down the list and compare 
it to the target. If the two are the same, the search is over. If the list item comes before the 
target alphabetically, the target, if it’s in the list, must be in the second half. If the list item 
follows the target alphabetically, the target must be in the  first half. Either way, the compari-
son rules out half the list as a place to search. Next, apply the method again. That is, choose 
an item midway in the half of the list that remains. Again, this method either finds the item 
or rules out half the remaining list. Proceed in this fashion until you find the item or until 
you’ve eliminated the whole list (see  Figure   17.11   ). This method is quite efficient. Suppose, 
for example, that the list is 127 items long. A sequential search, on the average, would take 64 
comparisons before finding an item or ruling out  its presence. The binary search method, on 
the other hand, will take at most seven comparisons. The first comparison prunes the possible 
matches to 63, the second comparison cuts the possible matches to 31, and so on, until the 
sixth comparison cuts down the possibilities to 1. The seventh comparison then determines 
whether the one remaining choice is the target. In general,  n  comparisons let you process an 
array with 2  n  −1 members, so the advantage of a binary search over a sequential search gets 
greater the longer the list is.   

 It’s simple to implement a binary search with an array, because you can use the array index 
to determine the midpoint of any list or subdivision of a list. Add the subscripts of the initial 
and final elements of the subdivision and divide by 2. For example, in a list of 100 elements, 
the first index is 0, the final index is 99, and the initial guess would be (0 + 99) / 2, or 49 
(integer division). If the element having index 49 were too far down the alphabet, the correct 



ptg11524036

827The Linked List Versus the Array

choice must be in the range 0–48, so the  next guess would be (0 + 48) / 2, or 24. If element 24 
were too early in the alphabet, the next guess would be (25 + 48) / 2, or 36. This is where the 
random access feature of the array comes into play. It enables you to jump from one location 
to another without visiting every location in between. Linked lists, which support only sequen-
tial access, don’t provide a means to jump to the midpoint of a list, so you can’t use the binary 
search technique with linked lists.  

First guess

Arnie

Chloe

Fritz

Susan

Sylvia

Torval

Ursula

Val

Wally

Winfred

Xaveria

Arnie

Chloe

Fritz
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Sylvia

Torval

Ursula

Val

Wally

Winfred

Xaveria

Arnie

Chloe

Fritz

Susan

Sylvia

Torval

Ursula

Val

Wally

Winfred

Xaveria

Third guess

Second guess

Eliminated from
consideration

Eliminated from
consideration

 Figure 17.11   A binary search for Susan.        
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 You can see, then, that the choice of data type depends on the problem. If the situation calls 
for a list that is continuously resized with frequent insertions and deletions but that isn’t 
searched often, the linked list is the better choice. If the situation calls for a stable list with 
only occasional insertions and deletions but that has to be searched often, an array is the better 
choice.  

 What if you need a data form that supports frequent insertions and deletions and frequent 
searches? Neither a linked list nor an array is ideal for that set of purposes. Another form—the 
binary search tree—may be just what you need.   

  Binary Search Trees  

 The  binary search tree  is a linked structure that incorporates the binary search strategy. Each 
node in the tree contains an item and two pointers to other nodes, called  child nodes.   Figure 
  17.12    shows how the nodes in a binary search tree are linked. The idea is that each node has 
two child nodes—a left node and a right node. The ordering comes from the fact that the item 
in a left node precedes the item in the parent node, and the item in the right node follows the 
item in the parent node. This relationship holds for every node with children. Furthermore,  all 
items that can trace their ancestry back to a left node of a parent contain items that precede 
the parent item in order, and every item descended from the right node contains items that 
follow the parent item in order. The tree in  Figure   17.12    stores words in this fashion. The top 
of the tree, in an interesting inversion of botany, is called the  root . A tree is a  hierarchical  orga-
nization, meaning that the data is organized in ranks, or levels, with each rank, in general, 
having ranks above and below it. If a binary search tree is fully populated, each  level has twice 
as many nodes as the level above it.  

 

root

melon

left child node

left subtree right subtree

right child node

fate

llamacarpet

NULL NULL NULL NULL NULL NULL NULL NULL

style

voyageplenum

 Figure 17.12   A binary search tree storing words.         
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 Each node in the binary search tree is itself the root of the nodes descending from it, making 
the node and its descendants a  subtree . In  Figure   17.12   , for example, the nodes containing the 
words  fate ,  carpet , and  llama  form the left subtree of the whole tree, and the word  voyage  is the 
right subtree of the  style - plenum - voyage  subtree.  

 Suppose you want to find an item—call it the  target —in such a tree. If the item precedes the 
root item, you need to search only the left half of the tree, and if the target follows the root 
item, you need to search only the right subtree of the root node. Therefore, one comparison 
eliminates half the tree. Suppose you search the left half. That means comparing the target with 
the item in the left child. If the target precedes the left-child item, you need to search only the 
left half of its descendants, and so on. As with the  binary search, each comparison cuts the 
number of potential matches in half.  

 Let’s apply this method to see whether the word  puppy  is in the tree shown in  Figure   17.12   . 
Comparing  puppy  to  melon  (the root node item), you see that  puppy , if present, must be in the 
right half of the tree. Therefore, you go to the right child and compare  puppy  to  style . In this 
case,  puppy  precedes the node item, so you must follow the link to the left node. There you find 
 plenum , which precedes  puppy . You now have to follow the right branch for that node, but it is 
empty, so three comparisons show you that  puppy  is not in the tree.  

 A binary search tree, then, combines a linked structure with binary search efficiency. The 
programming price is that putting a tree together is more involved than creating a linked list. 
Let’s make a binary tree for the next, and final, ADT project.  

  A Binary Tree ADT  

 As usual, we’ll start by defining a binary tree in general terms. This particular definition 
assumes the tree contains no duplicate items. Many of the operations are the same as list opera-
tions. The difference is in the hierarchical arrangement of data. Here is an informal summary of 
this ADT:  

  Type Name:    Binary Search Tree  

  Type Properties:    A binary tree is either an empty set of nodes (an empty tree) or a set 
of nodes with one node designated the root.  

 Each node has exactly two trees, called the  left subtree  and the  right 
subtree , descending from it.  

 Each subtree is itself a binary tree, which includes the possibility of 
being an empty tree.  

 A binary search tree is an ordered binary tree in which each node con-
tains an item, in which all items in the left subtree precede the root 
item, and in which the root item precedes all items in the right subtree.  

  Type Operations:    Initializing tree to empty.  

 Determining whether tree is empty.  

 Determining whether tree is full.  
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 Determining the number of items in the tree.  

 Adding an item to the tree.  

 Removing an item from the tree.  

 Searching the tree for an item.  

 Visiting each item in the tree.  

 Emptying the tree.  

  The Binary Search Tree Interface  

 In principle, you can implement a binary search tree in a variety of ways. You can even imple-
ment one as an array by manipulating array indices. But the most direct way to implement a 
binary search tree is by using dynamically allocated nodes linked together by using pointers, so 
we’ll start with definitions like these:  

  typedef SOMETHING Item;

  

  typedef struct trnode

  {

      Item item;

      struct trnode * left;

      struct trnode * right;

  } Trn;

  

  typedef struct tree

  {

      Trnode * root;

      int size;

  } Tree;   

 Each node contains an item, a pointer to the left child node, and a pointer to the right child 
node. You could define a  Tree  to be type pointer-to- Trnode , because you only need to know 
the location of the root node to access the entire tree. Using a structure with a size member, 
however, makes it simpler to keep track of the size of the tree.  

 The example we’ll be developing is maintaining the roster of the Nerfville Pet Club, with each 
item consisting of a pet name and a pet kind. With that in mind, we can set up the interface 
shown in  Listing   17.10   . We’ve limited the tree size to 10. The small size makes it easier to test 
whether the program behaves correctly when the tree fills. You can always set  MAXITEMS  to a 
larger value, if necessary.  

  Listing 17.10   The  tree.h  Interface Header File  

 /* tree.h -- binary search tree                          */

  /*           no duplicate items are allowed in this tree */
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  #ifndef _TREE_H_

  #define _TREE_H_

  #include <stdbool.h>

  

  /* redefine Item as appropriate */

  typedef struct item

  {

      char petname[20];

      char petkind[20];

  } Item;

  

  #define MAXITEMS 10

  

  typedef struct trnode

  {

      Item item;

      struct trnode * left;  /* pointer to right branch  */

      struct trnode * right; /* pointer to left branch   */

  } Trnode;

  

  typedef struct tree

  {

      Trnode * root;         /* pointer to root of tree  */

      int size;              /* number of items in tree  */

  } Tree;

  

  /* function prototypes */

  

  /* operation:      initialize a tree to empty          */

  /* preconditions:  ptree points to a tree              */

  /* postconditions: the tree  is initialized to empty    */

  void InitializeTree(Tree * ptree);

  

  /* operation:      determine if tree is empty          */

  /* preconditions:  ptree points to a tree              */

  /* postconditions: function returns true if tree is    */

  /*                 empty and returns false otherwise   */

  bool TreeIsEmpty(const Tree * ptree);

  

  /* operation:      determine if tree is full           */

  /* preconditions:  ptree points to a tree              */

  /* postconditions: function returns true if tree is    */

  /*                 full and returns false otherwise    */

  bool TreeIsFull(const Tree * ptree);

  

  /* operation:      determine number of items in tree   */

  /* preconditions:  ptree points to a tree              */
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  /* postconditions: function returns number of items in */

  /*                 tree                                */

  int TreeItemCount(const Tree *  ptree);

  

  /* operation:      add an item to a tree               */

  /* preconditions:  pi is address of item to be added   */

  /*                 ptree points to an initialized tree */

  /* postconditions: if possible, function adds item to  */

  /*                 tree and returns true; otherwise,   */

  /*                 the function returns false          */

  bool AddItem(const Item * pi, Tree * ptree);

  

  /* operation: find an item in a tree                   */

  /* preconditions:  pi points to an item                */

  /*                 ptree points to an initialized tree */

  /* postconditions: function returns true if item is in */

  /*                 tree and returns false otherwise    */

  bool InTree(const Item * pi, const Tree * ptree);

  

  /* operation:      delete an  item from a tree          */

  /* preconditions:  pi is address of item to be deleted */

  /*                 ptree points to an initialized tree */

  /* postconditions: if possible, function deletes item  */

  /*                 from tree and returns true;         */

  /*                 otherwise the function returns false*/

  bool DeleteItem(const Item * pi, Tree * ptree);

  

  /* operation:      apply a function to each item in    */

  /*                 the tree                            */

  /* preconditions:  ptree points to a tree              */

  /*                 pfun points to a function that takes*/

  /*                 an Item argument and has no return  */

  /*                 value                               */

  /* postcondition:  the function pointed to by pfun is  */

  /*                 executed once for each item in tree */

  void  Traverse (const Tree * ptree, void (* pfun)(Item item));

  

  /* operation:      delete everything from a tree       */

  /* preconditions:  ptree points to an initialized tree */

  /* postconditions: tree is empty                       */

  void DeleteAll(Tree * ptree);

  

  #endif    
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  The Binary Tree Implementation  

 Next, proceed to the task of implementing the splendid functions outlined in  tree.h . The 
 InitializeTree() ,  EmptyTree() ,  FullTree() , and  TreeItems()  functions are pretty simple, 
working like their counterparts for the list and queue ADTs, so we’ll concentrate on the remain-
ing ones.  

  Adding an Item  

 When adding an item to the tree, you should first check whether the tree has room for a new 
node. Then, because the binary search tree is defined so that it has no duplicate items, you 
should check that the item is not already in the tree. If the new item clears these first two 
hurdles, you create a new node, copy the item to the node, and set the node’s left and right 
pointers to  NULL . This indicates that the node has no children. Then you should update the 
 size  member of the  Tree  structure to mark the adding of a  new item. Next, you have to find 
where the node should be located in the tree. If the tree is empty, you should set the root 
pointer to point to the new node. Otherwise, look through the tree for a place to add the node. 
The  AddItem()  function follows this recipe, offloading some of the work to functions not yet 
defined:  SeekItem() ,  MakeNode() , and  AddNode() .  

  bool AddItem(const Item * pi, Tree * ptree)

  {

      Trnode * new_node;

  

      if  (TreeIsFull(ptree))

      {

          fprintf(stderr,"Tree is full\n");

          return false;             /* early return           */

      }

      if (SeekItem(pi, ptree).child != NULL)

      {

          fprintf(stderr, "Attempted to add duplicate item\n");

          return false;             /* early return           */

      }

      new_node = MakeNode(pi);      /* points to new node     */

      if (new_node == NULL)

      {

          fprintf(stderr, "Couldn't create node\n");

          return false;             /* early return           */

      }

      /* succeeded in creating a new node */

      ptree->size++;

  

      if (ptree->root == NULL)      /* case 1: tree is empty  */

          ptree->root = new_node;   /* new node is tree root  */

      else                          /*  case 2: not empty      */

          AddNode(new_node,ptree->root); /* add node to tree  */
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      return true;                  /* successful return      */

  }   

 The  SeekItem() ,  MakeNode() , and  AddNode()  functions are not part of the public interface 
for the  Tree  type. Instead, they are static functions hidden in the  tree.c  file. They deal with 
implementation details, such as nodes, pointers, and structures, that don’t belong in the public 
interface.  

 The  MakeNode()  function is pretty simple. It handles the dynamic memory allocation and the 
initialization of the node. The function argument is a pointer to the new item, and the func-
tion’s return value is a pointer to the new node. Recall that  malloc()  returns the null pointer 
if it can’t make the requested allocation. The  MakeNode()  function initializes the new node 
only if memory allocation succeeds. Here is the code for  MakeNode() :  

  static Trnode * MakeNode(const Item * pi)

  {

      Trnode * new_node;

  

      new_node = (Trnode *) malloc(sizeof(Trnode));

      if (new_node != NULL)

      {

          new_node->item = *pi;

          new_node->left = NULL;

          new_node->right = NULL;

      }

  

      return new_node;

  }   

 The  AddNode()  function is the second most difficult function in the binary search tree 
package. It has to determine where the new node goes and then has to add it. In particular, 
it needs to compare the new item with the root item to see whether the new item goes into 
the left subtree or the right subtree. If the item were a number, you could use  <  and  >  to make 
comparisons. If the item were a string, you could use  strcmp()  to make comparisons. But 
the item is a structure containing two strings, so you’ll have to define your own functions for  
making comparisons. The  ToLeft()  function, to be defined later, returns  True  if the new item 
should be in the left subtree, and the  ToRight()  function returns  True  if the new item should 
be in the right subtree. These two functions are analogous to  <  and  > , respectively. Suppose 
the new item goes to the left subtree. It could be that the left subtree is empty. In that case, 
the function just makes the left child pointer point to the new node. What if the left subtree 
isn’t empty? Then the function should compare the new item to the item in the left child 
node, deciding  whether the new item should go in the left subtree or right subtree of the child 
node. This process should continue until the function arrives at an empty subtree, at which 
point the new node can be added. One way to implement this search is to use recursion—that 
is, apply the  AddNode()  function to a child node instead of to the root node. The recursive 
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series of function calls ends when a left or right subtree is empty—that is, when  root->left  or 
 root->right  is  NULL . Keep in mind that  root  is a pointer to the top of the current subtree, so 
it points to  a new, and lower-level, subtree each recursive call. (You might want to review the 
discussion of recursion in  Chapter   9   .)  

  static void AddNode (Trnode * new_node, Trnode * root)

  {

      if (ToLeft(&new_node->item, &root->item))

      {

          if (root->left == NULL)      /* empty subtree       */

              root->left = new_node;   /* so add node here    */

          else

              AddNode(new_node, root->left);/* else process subtree*/

      }

      else if (ToRight(&new_node->item, &root->item))

      {

          if (root->right == NULL)

              root->right = new_node;

          else

              AddNode(new_node, root->right);

      }

      else                         /* should be no duplicates */

      {

          fprintf(stderr,"location error in AddNode()\n");

          exit(1);

      }

  }   

 The  ToLeft()  and  ToRight() functions depend on the nature of the  Item  type. The members 
of the Nerfville Pet Club will be ordered alphabetically by name. If two pets have the same 
name, order them by kind. If they are also the same kind, then the two items are duplicates, 
which aren’t allowed in the basic search tree. Recall that the standard C library function 
 strcmp()  returns a negative number if the string represented by the first argument precedes 
the second string, returns zero if the two strings are the same, and returns a positive number if 
the first string follows the second. The   ToRight()  function has similar code. Using these two 
functions instead of making comparisons directly in  AddNode()  makes the code easier to adapt 
to new requirements. Instead of rewriting  AddNode()  when a different form of comparison is 
needed, you rewrite  ToLeft()  and  ToRight() .  

  static bool ToLeft(const Item * i1, const Item * i2)

  {

      int comp1;

  

      if ((comp1 = strcmp(i1->petname, i2->petname)) < 0)

          return true;

      else if (comp1 == 0 &&

                  strcmp(i1->petkind, i2->petkind) < 0 )
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          return true;

      else

          return false;

  }    

  Finding an Item  

 Three of the interface functions involve searching the tree for a particular item:  AddItem() , 
 InTree() , and  DeleteItem() . This implementation uses a  SeekItem()  function to provide 
that service. The  DeleteItem()  function has an additional requirement: It needs to know the 
parent node of the deleted item so that the parent’s child pointer can be updated when the 
child is deleted. Therefore, we designed  SeekItem()  to return a structure containing two point-
ers: one pointing to the node containing the item ( NULL  if the item isn’t found) and one point-
ing to the parent node ( NULL  if the node is the root and has no parent). The structure type  is 
defined as follows:  

  typedef struct pair {

      Trnode * parent;

      Trnode * child;

  } Pair;   

 The  SeekItem()  function can be implemented recursively. However, to expose you to a variety 
of programming techniques, we’ll use a  while  loop to handle descending through the tree. 
Like  AddNode() ,  SeekItem()  uses  ToLeft()  and  ToRight()  to navigate through the tree. 
 SeekItem()  initially sets the  look.child  pointer to point to the root of the tree, and then 
it resets  look.child  to successive subtrees as it traces the path to where the item should be 
found. Meanwhile,  look.parent  is set to point to successive parent nodes. If no matching item 
is found,  look.child  will be  NULL . If the matching item is in the root node,  look.parent  is 
 NULL  because the root node has no parent.  Here is the code for  SeekItem() :  

  static Pair SeekItem(const Item * pi, const Tree * ptree)

  {

      Pair look;

      look.parent = NULL;

      look.child = ptree->root;

  

      if (look.child == NULL)

          return look;                        /* early return   */

  

      while (look.child != NULL)

      {

          if (ToLeft(pi, &(look.child->item)))

          {
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              look.parent = look.child;

              look.child = look.child->left;

          }

          else if (ToRight(pi, &(look.child->item)))

          {

              look.parent = look.child;

              look.child = look.child->right;

          }

          else       /* must be same if not to left or right    */

              break; /* look.child is address of node with item */

      }

  

      return look;                       /* successful return   */

  }   

 Note that because the  SeekItem()  function returns a structure, it can be used with the struc-
ture membership operator. For example, the  AddItem()  function used the following code:  

  if (SeekItem(pi, ptree).child != NULL)   

 After you have  SeekItem() , it’s simple to code the  InTree()  public interface function:  

  bool InTree(const Item * pi, const Tree * ptree)

  {

      return (SeekItem(pi, ptree).child == NULL) ? false : true;

  }    

  Considerations in Deleting an Item  

 Removing an item is the most difficult of the tasks because you have to reconnect the remain-
ing subtrees to form a valid tree. Before attempting to program this task, it’s a good idea to 
develop a visual picture of what has to be done.  

  Figure   17.13    illustrates the simplest case. Here the node to be deleted has no children. Such a 
node is called a  leaf . All that has to be done in this case is to reset a pointer in the parent node 
to  NULL  and to use the  free()  function to reclaim the memory used by the deleted node.   

 Next in complexity is deleting a node with one child. Deleting the node leaves the child 
subtree separate from the rest of the tree. To fix this, the address of the child subtree needs to 
be stored in the parent node at the location formerly occupied by the address of the deleted 
node (see  Figure   17.14   ).  
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 The final case is deleting a node with two subtrees. One subtree, say the left, can be attached 
to where the deleted node was formerly attached. But where should the remaining subtree go? 
Keep in mind the basic design of a tree. Every item in a left subtree precedes the item in the 
parent node, and every item in a right subtree follows the item in the parent node. This means 
that every item in the right subtree comes after every item in the left subtree. Also, because 
the right subtree once was part of the subtree headed by the  deleted node, every item in the 
right subtree comes before the parent node of the deleted node. Imagine coming down the 
tree looking for where to place the head of the right subtree. It comes before the parent node, 
so you have to go down the left subtree from there. However, it comes after every item in the 
left subtree, so you have to take the right branch of the left subtree and see whether it has an 
opening for a new node. If not, you must go down the right side of the left subtree until you 
do find  an opening.  Figure   17.15    illustrates the approach.  

 

original tree deleting the node leaves two
unconnected subtrees

attach left subtree to original
parent node

attach right subtree to first open
location along the rightmost

branches of first subtree

 Figure 17.15   Deleting a two-child node.         
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  Deleting a Node  
 Now you can begin to plan the necessary functions, separating the job into two tasks. One is 
associating a particular item with the node to be deleted, and the second is actually deleting 
the node. One point to note is that all the cases involve modifying a pointer in the parent 
node, which has two important consequences:  

    ■   The program has to identify the parent node of the node to be deleted.   

   ■   To modify the pointer, the code must pass the  address  of that pointer to the deleting 
function.    

 We’ll come back to the first point later. Meanwhile, the pointer to be modified is itself of type 
 Trnode * , or pointer-to- Trnode . Because the function argument is the address of that pointer, 
the argument will be of type  Trnode ** , or pointer-to-pointer-to- Trnode . Assuming you have 
the proper address available, you can write the deletion function as the following:  

  static void DeleteNode(Trnode **ptr)

  /* ptr is address of parent member pointing to target node  */

  {

      Trnode * temp;

  

      if ( (*ptr)->left == NULL)

      {

          temp = *ptr;

          *ptr = (*ptr)->right;

          free(temp);

      }

      else if ( (*ptr)->right == NULL)

      {

          temp = *ptr;

          *ptr = (*ptr)->left;

          free(temp);

      }

      else    /* deleted node has two children */

      {

          /* find where to reattach right subtree */

          for (temp = (*ptr)->left; temp->right != NULL;

               temp = temp->right)

              continue;

          temp->right = (*ptr)->right;

          temp = *ptr;

          *ptr =(*ptr)->left;

          free(temp);

      }

  }   
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 This function explicitly handles three cases: a node with no left child, a node with no right 
child, and a node with two children. A node with no children can be considered a special case 
of a node with no left child. If the node has no left child, the code assigns the address of the 
right child to the parent pointer. But if the node also has no right child, that pointer is  NULL , 
which is the proper value for the no-child case.  

 Notice that the code uses a temporary pointer to keep track of the address of the deleted node. 
After the parent pointer ( *ptr ) is reset, the program would lose track of where the deleted node 
is, but you need that information for the  free()  function. So the program stores the original 
value of  *ptr  in  temp  and then uses  temp  to free the memory used for the deleted node.  

 The code for the two-child case first uses the  temp  pointer in a  for  loop to search down the 
right side of the left subtree for an empty spot. When it finds an empty spot, it attaches the 
right subtree there. Then it reuses  temp  to keep track of where the deleted node is. Next, it 
attaches the left subtree to the parent and then frees the node pointed to by  temp .  

 Note that because  ptr  is type  Trnode ** ,  *ptr  is of type  Trnode * , making it the same type 
as  temp .   

  Deleting an Item  
 The remaining part of the problem is associating a node with a particular item. You can use 
the  SeekItem()  function to do so. Recall that it returns a structure containing a pointer to the 
parent node and a pointer to the node containing the item. Then you can use the parent node 
pointer to get the proper address to pass to the  DeleteNode()  function. The  DeleteItem()  
function, shown here, follows this plan:  

  bool DeleteItem(const Item * pi, Tree * ptree)

  {

      Pair look;

  

      look = SeekItem(pi, ptree);

      if (look.child == NULL)

          return false;

  

      if (look.parent == NULL)      /* delete root item       */

          DeleteNode(&ptree->root);

      else if (look.parent->left == look.child)

          DeleteNode(&look.parent->left);

      else

          DeleteNode(&look.parent->right);

      ptree->size--;

  

      return true;

  }   

 First, the return value of the  SeekItem()  function is assigned to the  look  structure variable. If 
 look.child  is  NULL , the search failed to find the item, and the  DeleteItem()  function quits, 
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returning  false . If the  Item  is found, the function handles three cases. First, a  NULL  value for 
 look.parent  means the item was found in the root node. In this case, there is no parent node 
to update. Instead, the program has to update the root pointer in the  Tree  structure. Therefore, 
the function passes the address of that pointer to the  DeleteNode()  function. Otherwise, the 
program determines whether the node to be deleted is the left child or  the right child of the 
parent, and then it passes the address of the appropriate pointer.  

 Note that the public interface function ( DeleteItem() ) speaks in terms of end-user concerns 
(items and trees), and the hidden  DeleteNode()  function handles the nitty-gritty of pointer 
shuffling.    

  Traversing the Tree  

 Traversing a tree is more involved than traversing a linked list because each node has two 
branches to follow. This branching nature makes divide-and-conquer recursion ( Chapter   9   ) a 
natural choice for handling the problem. At each node, the function should do the following:  

    ■   Process the item in the node.   

   ■   Process the left subtree (a recursive call).   

   ■   Process the right subtree (a recursive call).    

 You can break this process down into two functions:  Traverse()  and  InOrder() . Note that 
the  InOrder()  function processes the left subtree, then processes the item, and then processes 
the right subtree. This order results in traversing the tree in alphabetic order. If you have the 
time, you might want to see what happens if you use different orders, such as item-left-right 
and left-right-item.  

  void Traverse (const Tree * ptree, void (* pfun)(Item item))

  {

  

      if (ptree != NULL)

          InOrder(ptree->root, pfun);

  }

  static void InOrder(const Trnode * root, void (* pfun)(Item item))

  {

      if (root != NULL)

      {

          InOrder(root->left, pfun);

          (*pfun)(root->item);

          InOrder(root->right, pfun);

      }

  }    
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  Emptying the Tree  

 Emptying the tree is basically the same process as traversing it. That is, the code needs to visit 
each node and apply  free()  to it. It also needs to reset the members of the  Tree  structure to 
indicate an empty  Tree . The  DeleteAll()  function takes care of the  Tree  structure and passes 
off the task of freeing memory to  DeleteAllNodes() . The latter function has the same design 
as  InOrder() . It does save the pointer value  root->right  so that it is still available after the 
root is freed. Here is the code for these two functions:  

  void DeleteAll(Tree * ptree)

  {

      if (ptree != NULL)

          DeleteAllNodes(ptree->root);

      ptree->root = NULL;

      ptree->size = 0;

  }

  

  static void DeleteAllNodes(Trnode * root)

  {

      Trnode * pright;

  

      if (root != NULL)

      {

          pright = root->right;

          DeleteAllNodes(root->left);

          free(root);

          DeleteAllNodes(pright);

      }

  }    

  The Complete Package  

  Listing   17.11    shows the entire  tree.c  code. Together,  tree.h  and  tree.c  constitute a tree 
programming package.  

  Listing 17.11   The  tree.c  Implementation File  

 /* tree.c -- tree support functions */

  #include <string.h>

  #include <stdio.h>

  #include <stdlib.h>

  #include "tree.h"

  

  /* local data type */

  typedef struct pair {

      Trnode * parent;

      Trnode * child;
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  } Pair;

  

  /* protototypes for local functions */

  static Trnode * MakeNode(const Item * pi);

  static bool ToLeft(const Item * i1, const Item * i2);

  static bool ToRight(const Item * i1, const Item * i2);

  static void AddNode (Trnode * new_node, Trnode * root);

  static void InOrder(const Trnode * root, void (* pfun)(Item item));

  static Pair SeekItem(const Item * pi, const Tree * ptree);

  static void DeleteNode(Trnode **ptr);

  static void DeleteAllNodes(Trnode * ptr);

  

  /* function definitions */

  void InitializeTree(Tree * ptree)

  {

      ptree->root = NULL;

      ptree->size = 0;

  }

  

  bool TreeIsEmpty(const  Tree * ptree)

  {

      if (ptree->root == NULL)

          return true;

      else

          return false;

  }

  

  bool TreeIsFull(const Tree * ptree)

  {

      if (ptree->size == MAXITEMS)

          return true;

      else

          return false;

  }

  

  int TreeItemCount(const Tree * ptree)

  {

      return ptree->size;

  }

  

  bool AddItem(const Item * pi, Tree * ptree)

  {

      Trnode * new_node;

  

      if  (TreeIsFull(ptree))

      {

          fprintf(stderr,"Tree is full\n");
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          return false;             /* early return           */

      }

      if (SeekItem(pi, ptree).child != NULL)

      {

          fprintf(stderr, "Attempted to add duplicate item\n");

          return false;             /* early return           */

      }

      new_node = MakeNode(pi);      /* points to new node     */

      if (new_node == NULL)

      {

          fprintf(stderr, "Couldn't create node\n");

          return false;             /* early return           */

      }

      /* succeeded  in creating a new node */

      ptree->size++;

  

      if (ptree->root == NULL)      /* case 1: tree is empty  */

          ptree->root = new_node;   /* new node is tree root  */

      else                          /* case 2: not empty      */

          AddNode(new_node,ptree->root); /* add node to tree  */

  

      return true;                  /* successful return      */

  }

  

  bool InTree(const Item * pi, const Tree * ptree)

  {

      return (SeekItem(pi, ptree).child == NULL) ? false : true;

  }

  

  bool DeleteItem(const Item * pi, Tree * ptree)

  {

      Pair look;

  

      look = SeekItem(pi, ptree);

      if (look.child == NULL)

          return false;

  

      if (look.parent == NULL)      /* delete root item       */

          DeleteNode(&ptree->root);

      else if (look.parent->left == look.child)

          DeleteNode(&look.parent->left);

       else

          DeleteNode(&look.parent->right);

      ptree->size--;

  

      return true;

  }
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  void Traverse (const Tree * ptree, void (* pfun)(Item item))

  {

  

      if (ptree != NULL)

          InOrder(ptree->root, pfun);

  }

  

  void DeleteAll(Tree * ptree)

  {

      if (ptree != NULL)

          DeleteAllNodes(ptree->root);

      ptree->root = NULL;

      ptree->size = 0;

  }

  

  

  /* local functions */

  static void InOrder(const Trnode * root, void (* pfun)(Item item))

  {

      if (root != NULL)

      {

          InOrder(root->left, pfun);

          (*pfun)(root->item);

          InOrder(root->right, pfun);

      }

  }

  

  static void DeleteAllNodes(Trnode * root)

  {

      Trnode * pright;

  

      if (root != NULL)

      {

          pright = root->right;

          DeleteAllNodes(root->left);

          free(root);

          DeleteAllNodes(pright);

      }

  }

  

  static void AddNode (Trnode * new_node, Trnode * root)

  {

      if (ToLeft(&new_node->item, &root->item))

      {

          if (root->left == NULL)      /* empty subtree       */

              root->left = new_node;   /*  so add node here    */
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          else

              AddNode(new_node, root->left);/* else process subtree*/

      }

      else if (ToRight(&new_node->item, &root->item))

      {

          if (root->right == NULL)

              root->right = new_node;

          else

              AddNode(new_node, root->right);

      }

      else                         /* should be no duplicates */

      {

          fprintf(stderr,"location error in AddNode()\n");

          exit(1);

      }

  }\

  static bool ToLeft(const Item * i1, const Item * i2)

  {

      int comp1;

  

      if ((comp1 = strcmp(i1->petname, i2->petname)) < 0)

          return true;

      else if (comp1 == 0 &&

               strcmp(i1->petkind, i2->petkind) < 0 )

          return true;

      else

          return false;

  }

  

  static bool ToRight(const Item * i1, const Item * i2)

  {

      int comp1;

  

      if ((comp1 = strcmp(i1->petname, i2->petname)) > 0)

          return true;

      else if  (comp1 == 0 &&

               strcmp(i1->petkind, i2->petkind) > 0 )

          return true;

      else

          return false;

  }

  

  static Trnode * MakeNode(const Item * pi)

  {

      Trnode * new_node;

  

      new_node = (Trnode *) malloc(sizeof(Trnode));
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      if (new_node != NULL)

      {

          new_node->item = *pi;

          new_node->left = NULL;

          new_node->right = NULL;

      }

  

      return new_node;

  }

  

  static Pair SeekItem(const Item * pi, const Tree * ptree)

  {

      Pair look;

      look.parent = NULL;

      look.child = ptree->root;

  

      if (look.child == NULL)

          return look;                        /* early return   */

  

      while (look.child != NULL)

      {

          if (ToLeft(pi, &(look.child->item)))

          {

              look.parent = look.child;

              look.child = look.child->left;

          }

          else if (ToRight(pi, &(look.child->item)))

          {

              look.parent = look.child;

              look.child = look.child->right;

          }

           else       /* must be same if not to left or right    */

              break; /* look.child is address of node with item */

      }

  

      return look;                       /* successful return   */

  }

  

  static void DeleteNode(Trnode **ptr)

  /* ptr is address of parent member pointing to target node  */

  {

      Trnode * temp;

  

      if ( (*ptr)->left == NULL)

      {

          temp = *ptr;

          *ptr = (*ptr)->right;
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          free(temp);

      }

      else if ( (*ptr)->right == NULL)

      {

          temp = *ptr;

          *ptr = (*ptr)->left;

          free(temp);

      }

      else    /* deleted node has two children */

      {

          /* find where to reattach right subtree */

          for (temp = (*ptr)->left; temp->right != NULL;

               temp  = temp->right)

              continue;

          temp->right = (*ptr)->right;

          temp = *ptr;

          *ptr =(*ptr)->left;

          free(temp);

      }

  }     

  Trying the Tree  

 Now that you have the interface and the function implementations, let’s use them. The 
program in  Listing   17.12    uses a menu to offer a choice of adding pets to the club member-
ship roster, listing members, reporting the number of members, checking for membership, and 
quitting. The brief  main()  function concentrates on the essential program outline. Supporting 
functions do most of the work.  

  Listing 17.12   The  petclub.c  Program  

 /* petclub.c -- use a binary search tree */

  #include <stdio.h>

  #include <string.h>

  #include <ctype.h>

  #include "tree.h"

  

  char menu(void);

  void addpet(Tree * pt);

  void droppet(Tree * pt);

  void showpets(const Tree * pt);

  void findpet(const Tree * pt);

  void printitem(Item item);

  void uppercase(char * str);

  char * s_gets(char * st, int n);
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  int main(void)

  {

      Tree pets;

      char choice;

  

      InitializeTree(&pets);

      while ((choice = menu()) != 'q')

      {

          switch (choice)

          {

              case 'a' :  addpet(&pets);

                  break;

              case 'l' :  showpets(&pets);

                  break;

              case 'f' :  findpet(&pets);

                  break;

              case 'n' :  printf("%d pets in club\n",

                                 TreeItemCount(&pets));

                  break;

              case 'd' :  droppet(&pets);

                  break;

              default  :  puts("Switching error");

          }

      }

      DeleteAll(&pets);

      puts("Bye.");

  

      return 0;

  }

  

  char menu(void)

  {

      int ch;

  

      puts("Nerfville Pet Club  Membership Program");

      puts("Enter the letter corresponding to your choice:");

      puts("a) add a pet          l) show list of pets");

      puts("n) number of pets     f) find pets");

      puts("d) delete a pet       q) quit");

      while ((ch = getchar()) != EOF)

      {

          while (getchar() != '\n')  /* discard rest of line */

              continue;

          ch = tolower(ch);

          if (strchr("alrfndq",ch) == NULL)

              puts("Please enter an a, l, f, n, d, or q:");
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          else

              break;

      }

      if (ch == EOF)       /* make EOF cause program to quit */

          ch = 'q';

  

      return ch;

  }

  

  void addpet(Tree * pt)

  {

      Item temp;

  

      if (TreeIsFull(pt))

          puts("No room in the club!");

      else

      {

           puts("Please enter name of pet:");

          s_gets(temp.petname,SLEN);

          puts("Please enter pet kind:");

          s_gets(temp.petkind,SLEN);

          uppercase(temp.petname);

          uppercase(temp.petkind);

          AddItem(&temp, pt);

      }

  }

  

  void showpets(const Tree * pt)

  {

      if (TreeIsEmpty(pt))

          puts("No entries!");

      else

          Traverse(pt, printitem);

  }

  

  void printitem(Item item)

  {

      printf("Pet: %-19s  Kind: %-19s\n", item.petname,

             item.petkind);

  }

  

  void findpet(const Tree * pt)

  {

      Item temp;

  

      if (TreeIsEmpty(pt))

      {
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          puts("No entries!");

          return;     /* quit function if tree is empty */

      }

  

      puts("Please enter name of pet you wish to find:");

      s_gets(temp.petname, SLEN);

      puts("Please enter pet kind:");

      s_gets(temp.petkind, SLEN);

      uppercase(temp.petname);

      uppercase(temp.petkind);

      printf("%s the %s ", temp.petname, temp.petkind);

      if (InTree(&temp, pt))

          printf("is a member.\n");

      else

          printf("is not a member.\n");

  }

  

  void droppet(Tree * pt)

  {

      Item temp;

  

      if (TreeIsEmpty(pt))

      {

           puts("No entries!");

          return;     /* quit function if tree is empty */

      }

  

      puts("Please enter name of pet you wish to delete:");

      s_gets(temp.petname, SLEN);

      puts("Please enter pet kind:");

      s_gets(temp.petkind, SLEN);

      uppercase(temp.petname);

      uppercase(temp.petkind);

      printf("%s the %s ", temp.petname, temp.petkind);

      if (DeleteItem(&temp, pt))

          printf("is dropped from the club.\n");

      else

          printf("is not a member.\n");

  }

  

  void uppercase(char * str)

  {

      while (*str)

      {

          *str = toupper(*str);

          str++;

      }
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  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find =  '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;          // dispose of rest of line

      }

      return ret_val;

  }   

 The program converts all letters to uppercase so that  SNUFFY ,  Snuffy , and  snuffy  are not consid-
ered distinct names. Here is a sample run:  

  Nerfville Pet Club Membership Program

  Enter the letter corresponding to your choice:

  a) add a pet          l) show list of pets

  n) number of pets     f) find pets

  q) quit

   a 

  Please enter name of pet:

   Quincy 

  Please enter pet kind:

   pig 

  Nerfville Pet Club Membership Program

  Enter the letter corresponding to your choice:

  a) add a pet          l) show list of pets

  n) number of pets     f) find pets

  q) quit

   a 

  Please enter name of pet:

   Bennie Haha 

  Please enter pet kind:

   parrot 

  Nerfville Pet Club Membership Program

  Enter the letter corresponding to your choice:

  a) add a pet          l) show list of pets

  n) number of pets     f) find pets
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  q) quit

   a 

  Please enter name of pet:

   Hiram Jinx 

  Please enter pet kind:

   domestic cat 

  Nerfville  Pet Club Membership Program

  Enter the letter corresponding to your choice:

  a) add a pet          l) show list of pets

  n) number of pets     f) find pets

  q) quit

   n 

  3 pets in club

  Nerfville Pet Club Membership Program

  Enter the letter corresponding to your choice:

  a) add a pet          l) show list of pets

  n) number of pets     f) find pets

  q) quit

   l 

  Pet: BENNIE HAHA          Kind: PARROT

  Pet: HIRAM JINX           Kind: DOMESTIC CAT

  Pet: QUINCY               Kind: PIG

  Nerfville Pet Club Membership Program

  Enter the letter corresponding to your choice:

  a) add a pet          l) show list of pets

  n) number of pets     f) find pets

  q)  quit

   q 

  Bye.    

  Tree Thoughts  

 The binary search tree has some drawbacks. For example, the binary search tree is efficient only 
if it is fully populated, or  balanced . Suppose you’re storing words that are entered randomly. 
Chances are the tree will have a fairly bushy look, as in  Figure   17.12   . Now suppose you enter 
data in alphabetical order. Then each new node would be added to the right, and the tree 
might look like  Figure   17.16   . The  Figure   17.12    tree is said to be  balanced , and the  Figure   17.16    
tree is  unbalanced . Searching this tree is no more effective than sequentially searching a linked 
list.   

 One way to avoid stringy trees is use more care when building a tree. If a tree or subtree begins 
to get too unbalanced on one side or the other, rearrange the nodes to restore a better balance. 
Similarly, you might need to rearrange the tree after a deletion. The Russian mathematicians 
Adel’son-Vel’skii and Landis developed an algorithm to do this. Trees built with their method 
are called  AVL trees . It takes longer to build a balanced tree because of the extra restructuring, 
but you ensure maximum, or nearly maximum, search efficiency.  
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 You might want a binary search tree that does allow duplicate items. Suppose, for example, 
that you wanted to analyze some text by tracking how many times each word in the text 
appears. One approach is to define  Item  as a structure that holds one word and a number. The 
first time a word is encountered, it’s added to the tree, and the number is set to  1 . The next 
time the same word is encountered, the program finds the node containing the word and incre-
ments the number. It doesn’t take much work to modify the basic binary search tree to  behave 
in this fashion.  

 For another possible variation, consider the Nerfville Pet Club. The example ordered the tree by 
both name and kind, so it could hold Sam the cat in one node, Sam the dog in another node, 
and Sam the goat in a third node. You couldn’t have two cats called Sam, however. Another 
approach is to order the tree just by name. Making that change alone would allow for only 
one Sam, regardless of kind, but you could then define  Item  to be a list of structures instead of 
being a single structure. The first time a Sally shows up, the program  would create a new node, 
then create a new list, and then add Sally and her kind to the list. The next Sally that shows up 
would be directed to the same node and added to the list.  

root

carpet

NULL
fate

NULL
llama

NULL
melon

NULL
plenum

NULL
style

NULL
voyage

NULL
NULL

 Figure 17.16   A badly unbalanced binary search tree.        
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  Tip   Add-On Libraries  

 You’ve probably concluded that implementing an ADT such as a linked list or a tree is hard 
work with many, many opportunities to err. Add-on libraries provide an alternative approach: Let 
someone else do the work and testing. Having gone through the two relatively simple examples 
in this chapter, you are in a better position to understand and appreciate such libraries.     

  Other Directions  

 In this book, we’ve covered the essential features of C, but we’ve only touched upon the 
library. The ANSI C library contains scores of useful functions. Most implementations also 
offer extensive libraries of functions specific to particular systems. Windows-based compilers 
support the Windows graphic interface. Macintosh C compilers provide functions to access 
the Macintosh toolbox to facilitate producing programs with the standard Macintosh inter-
face or for IOS systems, such as iPhones and iPads. Similarly, there are tools for creating Linux 
programs with graphical interfaces. Take the time to explore what your system has to offer. If it 
doesn’t have what  you want, make your own functions. That’s part of C. If you think you can 
do a better job on, say, an input function, do it! And as you refine and polish your program-
ming technique, you will go from C to shining C.  

 If you’ve found the concepts of lists, queues, and trees exciting and useful, you might want to 
read a book or take a course on advanced programming techniques. Computer scientists have 
invested a lot of energy and talent into developing and analyzing algorithms and ways of repre-
senting data. You may find that someone has already developed exactly the tool you need.  

 After you are comfortable with C, you might want to investigate C++, Objective C, or Java. 
These  object-oriented  languages have their roots in C. C already has data objects ranging in 
complexity from a simple  char  variable to large and intricate structures. Object-oriented 
languages carry the idea of the object even further. For example, the properties of an object 
include not only what kinds of information it can hold, but also what kinds of operations can 
be performed on it. The ADTs in this chapter follow that pattern. Also, objects can inherit prop-
erties from other objects. OOP carries modularizing to a higher  level of abstraction than does C, 
and it facilitates writing large programs.  

 You might want to check out the bibliography in Reference Section I, “Additional Reading,” for 
books that might further your interests.   

  Key Concepts  

 A data type is characterized by how the data is structured and stored and also by what opera-
tions are possible. An abstract data type (ADT) specifies in an abstract manner the properties 
and operations characterizing a type. Conceptually, you can translate an ADT to a particular 
programming language in two steps. The first step is defining the programming interface. In C, 
you can do this by using a header file to define type names and to provide function prototypes 
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that correspond to the allowed operations. The second step is implementing the interface. In C, 
you can do this with a  source code file that supplies the function definitions corresponding to 
the prototypes.    

     Summary  

 The list, the queue, and the binary tree are examples of ADTs commonly used in computer 
programming. Often they are implemented using dynamic memory allocation and linked struc-
tures, but sometimes implementing them with an array is a better choice.  

 When you program using a particular type (say, a queue or a tree), you should write the 
program in terms of the type interface. That way, you can modify and improve the implemen-
tation without having to alter programs by using the interface.   

  Review Questions  

 You’ll find answers to the review questions in  Appendix   A   , “Answers to the Review Questions.”  

    1.    What’s involved in defining a data type?    

   2.    Why can the linked list in  Listing   17.2    be traversed in only one direction? How could 
you modify the  struct film  definition so that the list could be traversed in both 
directions?    

   3.    What’s an ADT?    

   4.    The  QueueIsEmpty()  function took a pointer to a  queue  structure as an argument, but 
it could have been written so that it took a  queue  structure rather than a pointer as an 
argument. What are the advantages and disadvantages of each approach?    

   5.    The  stack  is another data form from the list family. In a stack, additions and deletions 
can be made from only one end of the list. Items are said to be “pushed onto” the top of 
the stack and to be “popped off” the stack. Therefore, the stack is a LIFO structure (that 
is,  last in, first out ).  

    a.   Devise an ADT for a stack.   

   b.   Devise a C programming interface for a stack, i.e., a  stack.h  header file.      

   6.    What is the maximum number of comparisons a sequential search and a binary search 
would need to determine that a particular item is not in a sorted list of three items? 
1,023 items? 65,535 items?    
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   7.    Suppose a program constructs a binary search tree of words, using the algorithm 
developed in this chapter. Draw four trees, one for each of the following word entry 
orderings:  

    a.   nice food roam dodge gate office wave   

   b.   wave roam office nice gate food dodge   

   c.   food dodge roam wave office gate nice   

   d.   nice roam office food wave gate dodge      

   8.    Consider the binary trees constructed in Review Question 7. What would each one look 
like after the word  food  is removed from each tree using the algorithm from this chapter?      

  Programming Exercises  

    1.    Modify  Listing   17.2    so that it displays the movie list both in the original order and in 
reverse order. One approach is to modify the linked-list definition so that the list can be 
traversed in both directions. Another approach is to use recursion.    

   2.    Suppose  list.h  ( Listing   17.3   ) uses the following definition of a list:  

  typedef struct list

  {

      Node * head;    /* points to head of list */

      Node * end;     /* points to end of list  */

  } List;   

 Rewrite the  list.c  ( Listing   17.5   ) functions to fit this definition and test the resulting 
code with the  films3.c  ( Listing   17.4   ) program.    

   3.    Suppose  list.h  ( Listing   17.3   ) uses the following definition of a list:  

  #define MAXSIZE 100

  typedef struct list

  {

      Item entries[MAXSIZE];    /* array of items          */

      int items;                /* number of items in list */

  } List;   

 Rewrite the  list.c  ( Listing   17.5   ) functions to fit this definition and test the resulting 
code with the  films3.c  ( Listing   17.4   ) program.    

   4.    Rewrite  mall.c  ( Listing   17.7   ) so that it simulates a double booth having two queues.    
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   5.    Write a program that lets you input a string. The program then should push the 
characters of the string onto a stack, one by one (see review question 5), and then pop 
the characters from the stack and display them. This results in displaying the string in 
reverse order.    

   6.    Write a function that takes three arguments: the name of an array of sorted integers, the 
number of elements of the array, and an integer to seek. The function returns the value 
 1  if the integer is in the array, and  0  if it isn’t. Have the function use the binary search 
technique.    

   7.    Write a program that opens and reads a text file and records how many times each word 
occurs in the file. Use a binary search tree modified to store both a word and the number 
of times it occurs. After the program has read the file, it should offer a menu with three 
choices. The first is to list all the words along with the number of occurrences. The 
second is to let you enter a word, with the program reporting how many times the word 
occurred in the file. The third choice is to quit.    

   8.    Modify the Pet Club program so that all pets with the same name are stored in a list in 
the same node. When the user chooses to find a pet, the program should request the pet 
name and then list all pets (along with their kinds) having that name.        
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Answers to the Review 

Questions  

     Answers to Review Questions for  Chapter   1        

 1.   A perfectly portable program is one whose source code can, without modification, be 
compiled to a successful program on a variety of different computer systems.   

   2.   A source code file contains code as written in whatever language the programmer is 
using. An object code file contains machine language code; it need not be the code for a 
complete program. An executable file contains the complete code, in machine language, 
constituting an executable program.   

   3.      a.   Defining program objectives.   
   b.   Designing the program.   

   c.   Coding the program.   

   d.   Compiling the program.   

   e.   Running the program.   

   f.   Testing and debugging the program.   

   g.   Maintaining and modifying the program.     

   4.   A compiler translates source code (for example, code written in C) to the equivalent 
machine language code, also termed  object code .   

   5.   The linker combines translated source code with library code and start-up code to 
produce an executable program.     
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  Answers to Review Questions for  Chapter   2        

 1.   They are called functions.   

   2.   A syntax error is a violation of the rules governing how sentences or programs are put 
together. Here’s an example in English: “Me speak English good.” Here’s an example in 
C:  

  printf"Where are the parentheses?";.    

   3.   A semantic error is one of meaning. Here’s an example in English: “This sentence is 
excellent Czech.” Here’s a C example:  

  thrice_n = 3 + n;    

   4.   Line 1: Begin the line with a  # ; spell the file  stdio.h ; place the filename within angle 
brackets.  

   Line 2: Use  () , not  {} ; end the comment with  */ , not  /* .  

   Line 3: Use  { , not  ( .  

   Line 4: Complete the statement with a semicolon.  

   Line 5: Indiana got this one (the blank line) right!  

   Line 6: Use  = , not  :=  for assignment. (Apparently, Indiana knows a little Pascal.) Use 52, 
not 56, weeks per year.  

   Line 7: Should be  

  printf("There are %d weeks in a year.\n", s);   

   Line 9: There isn’t a line 9, but there should be, and it should consist of the closing 
brace,  } .  

   Here’s how the code looks after these changes:  

  #include <stdio.h>

  int main(void) /* this prints the number of weeks in a year */

  {

      int s;

  

      s = 52;

      printf("There are %d weeks in a year.\n", s);

      return 0;

  }    

   5.      a.    Baa Baa Black Sheep. Have you any wool ?  
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 (Note that there is no space after the period. You could have had a space by using  " 
Have  instead of  "Have .)   

   b.    

Begone!

  O creature of lard!

      (Note that the cursor is left at the end of the second line.)   

   c.    

What?

  No/nfish?

      (Note that the slash [ / ] does not have the same effect as the backslash [ \ ]; it simply 
prints as a slash.)   

   d.    2 + 2 = 4   

 (Note how each  %d  is replaced by the corresponding variable value from the list. 
Note, too, that  +  means addition and that calculation can be done inside a  printf()  
statement.)     

   6.    int  and  char  ( main  is a function name, function is a technical term for describing C, 
and  =  is an operator).   

   7.    printf("There were %d words and %d lines.\n", words, lines);    

   8.   After line 7,  a  is 5 and  b  is 2. After line 8, both  a  and  b  are 5. After line 9, both  a  and 
 b  are still 5. (Note that  a  can’t be 2 because by the time you say  a = b; ,  b  has already 
been changed to 5.)   

   9.   After line 7,  x  is 10 and  b  is 5. After line 8,  x  is 10 and  y  is 15. After line 9,  x  is 150 and  y  
is 15.     

  Answers to Review Questions for  Chapter   3        

 1.      a.     int , possibly  short  or  unsigned  or  unsigned short ; population is a whole 
number.   

   b.    float ; it’s unlikely the cost will be an exact integer. (You could use  double  but 
don’t really need the extra precision.)   

   c.    char .   

   d.    int , possibly  unsigned .     

   2.   One reason is that  long  may accommodate larger numbers than  int  on your system; 
another reason is that if you do need to handle larger values, you improve portability by 
using a type guaranteed to be at least 32 bits on all systems.   
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   3.   To get exactly 32 bits, you could use  int32_t , provided it was defined for your system. 
To get the smallest type that could store at least 32 bits, use  int_least32_t . And to get 
the type that would provide the fastest computations for 32 bits, choose  int_fast32_t .   

   4.      a.    char  constant (but stored as type  int )   

   b.    int  constant   

   c.    double  constant   

   d.    unsigned int  constant, hexadecimal format   

   e.    double  constant     

   5.   Line 1: Should be  #include <stdio.h> .  

   Line 2: Should be  int main(void) .  

   Line 3: Use  { , not  ( .  

   Line 4: Should be a comma, not a semicolon, between  g  and  h .  

   Line 5: Fine.  

   Line 6 (the blank line): Fine.  

   Line 7: There should be at least one digit before the  e . Either  1e21  or  1.0e21  is okay, 
although rather large.  

   Line 8: Fine, at least in terms of syntax.  

   Line 9: Use  } , not  ) .  

   Missing lines: First,  rate  is never assigned a value. Second, the variable  h  is never used. 
Also, the program never informs you of the results of its calculation. None of these errors 
will stop the program from running (although you might be given a warning about the 
unused variable), but they do detract from its already limited usefulness. Also, there 
should be a  return  statement at the end.  

   Here is one possible correct version:  

  #include <stdio.h>

  int main(void)

  {

    float g, h;

    float tax, rate;

  

    rate = 0.08;

    g = 1.0e5;

    tax = rate*g;

    h = g + tax;
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    printf("You owe $%f plus $%f in taxes for a total of $%f.\n", g, tax, h);

    return 0;

  }    

   6.  

  Constant     Type     Specifier   

 a.  12     int     %d   

 b.  0X3     unsigned int     %#X   

 c.  'C'     char  (really  int )    %c   

 d.  2.34E07     double     %e   

 e.  '\040'     char  (really  int )    %c   

 f.  7.0     double     %f   

 g.  6L     long     %ld   

 h.  6.0f     float     %f   

 i.  0x5.b6p12     float     %a   

   7.  

  Constant     Type     Specifier   

 a.  012     unsigned int     %#o   

 b.  2.9e05L     long double     %Le   

 c.  's'     char  (really  int )    %c   

 d.  100000     long     %ld   

 e.  '\n'     char  (really  int )    %c   

 f.  20.0f     float     %f   

 g.  0x44     unsigned int     %x   

 h.  -40     int     %d   

   8.  

  printf("The odds against the %d were %ld to 1.\n", imate, shot);

  printf("A score of %f is not an %c grade.\n", log, grade);    

   9.  

  ch = '\r';

  ch = 13;

  ch = '\015'

  ch = '\xd'    
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   10.   Line 0: Should have  #include <stdio.h> .  

   Line 1: Use  /*  and  */  or else  //   

   Line 3:  int cows, legs;   

   Line 4:  count?\n");   

   Line 5:  %d , not  %c ; replace  legs  with  &legs   

   Line 7:  %d , not  %f   

   Also, add a  return  statement.  

   Here’s one correct version:  

  #include <stdio.h>

  int main(void) /* this program is perfect */

  {

     int cows, legs;

     printf("How many cow legs did you count?\n");

     scanf("%d", &legs);

     cows = legs / 4;

     printf("That implies there are %d cows.\n", cows);

     return 0;

  }    

   11.      a.   A newline character   

   b.   A backslash character   

   c.   A double quotation mark   

   d.   A tab character       

  Answers to Review Questions for  Chapter   4        

 1.   The program malfunctions. The first  scanf()  statement reads just your first name, 
leaving your last name untouched but still stored in the input “buffer.” (This buffer is 
just a temporary storage area used to store the input.) When the next  scanf()  statement 
comes along looking for your weight, it picks up where the last reading attempt ended, 
and it tries to read your last name as your weight. This frustrates  scanf() . On the other 
hand, if you respond to the name request with something such as  Lasha 144 , it uses 144 
as your weight, even though you typed it before your weight  was requested.   

   2.      a.    He sold the painting for $234.50.    
   b.    Hi!    
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  (Note: The first character is a character constant, the second is a decimal integer 
converted to a character, and the third is an ASCII representation, in octal, of a 
character constant.)   

   c.  

  His Hamlet was funny without being vulgar.

  has 42 characters.    

   d.    Is 1.20e+003 the same as 1201.00?      

   3.   Use  \" , as in the following:  

  printf("\"%s\"\nhas %d characters.\n", Q, strlen(Q));    

   4.   Here is a corrected version:  

  #include <stdio.h>   /* don't forget this    */

  #define B "booboo"   /* add #, quotes        */

  #define X 10         /* add #                */

  int main(void)       /* instead of main(int) */

  {

     int age;

     int xp;          /* declare all variables */

     char name[40];   /* make into an array    */

  

     printf("Please enter your first name.\n"); /* \n for readability */

     scanf("%s", name);

     printf("All right, %s, what's your age?\n", name); /* %s for string */

     scanf("%d", &age);       /* %d, not %f, &age, not age */

     xp = age + X;

     printf("That's a %s! You must be at least %d.\n", B, xp);

     return 0;                /* not rerun                 */

  }    

   5.   Recall the  %%  construction for printing  % .  

  printf("This copy of \"%s\" sells for $%0.2f.\n", BOOK, cost);

  

  printf("That is %0.0f%% of list.\n", percent);    

   6.      a.    %d    

   b.    %4X    

   c.    %10.3f    

   d.    %12.2e    

   e.    %-30s      

   7.      a.    %15lu    

   b.    %#4x    
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   c.    %-12.2E    

   d.    %+10.3f    

   e.    %8.8s      

   8.      a.    %6.4d    

   b.    %*o    

   c.    %2c    

   d.    %+0.2f    

   e.    %-7.5s      

   9.      a.  

  int dalmations;

     scanf("%d", &dalmations);    

   b.  

  float kgs, share;

     scanf("%f%f", &kgs, &share);    

  (Note: For input,  e ,  f , and  g  can be used interchangeably. Also, for all but  %c , it 
makes no difference if you leave spaces between the conversion specifiers.)   

   c.  

  char pasta[20];

     scanf("%s", pasta);    

   d.  

  char action[20];

     int value;

     scanf("%s %d", action, &value);    

   e.  

  int value;

     scanf("%*s %d", &value);      

   10.   Whitespace consists of spaces, tabs, and newlines. C uses whitespace to separate tokens 
from one another;  scanf()  uses whitespace to separate consecutive input items from 
each other.   

   11.   The  z  in  %z  is a modifier, not a specifier, so it requires a specifier for it to modify. You 
could use  %zd  to print the result in base 10 or use a different specifier to print using a 
different base, for example,  %zx  for hexadecimal.   

   12.   The substitutions would take place. Unfortunately, the preprocessor cannot discriminate 
between those parentheses that should be replaced with braces and those that should 
not. Therefore,  
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  #define ( {

  #define ) }

  int main(void)

  

  (

      printf("Hello, O Great One!\n");

  )   

   becomes  

  int main{void}

  {

      printf{"Hello, O Great One!\n"};

  }      

  Answers to Review Questions for  Chapter   5        

 1.      a.    30 .   

   b.    27  (not  3 ).  (12 + 6)/(2*3)  would give  3 .   

   c.    x = 1, y = 1  (integer division).   

   d.    x = 3  (integer division) and  y = 9 .     

   2.      a.    6  (reduces to  3 + 3.3 )   

   b.    52    

   c.    0  (reduces to  0 * 22.0 )   

   d.    13  (reduces to  66.0 / 5  or  13.2  and is then assigned to  int )     

   3.      a.    37.5  (reduces to  7.5 * 5.0 )   

   b.    1.5  (reduces to  30.0 / 20.0 )   

   c.    35  (reduces to  7 * 5 )   

   d.    37  (reduces to  150 / 4 )   

   e.    37.5  (reduces to  7.5 * 5 )   

   f.    35.0  (reduces to  7 * 5.0 )     

   4.    Line 0 : Should include  <stdio.h> .  

    Line 3 : Should end in a semicolon, not a comma.  

    Line 6 : The  while  statement sets up an infinite loop because the value of  i  remains  1  
and is always less than  30 . Presumably, we meant to write  while(i++ < 30) .  

    Lines 6–8 : The indentation implies that we wanted lines 7 and 8 to form a block, but the 
lack of braces means that the  while  loop includes only line 7. Braces should be added.  
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    Line 7 : Because  1  and  i  are both integers, the result of the division will be  1  when  i  is  1 , 
and  0  for all larger values. Using  n = 1.0/i;  would cause  i  to be converted to floating 
point before division and would yield nonzero answers.  

    Line 8 : We omitted a newline character ( \n ) in the control statement. This causes the 
numbers to be printed on one line, if possible.  

    Line 10 : Should be  return 0; .  

   Here is a corrected version:  

  #include <stdio.h>

  int main(void)

  {

    int i = 1;

    float n;

    printf("Watch out! Here come a bunch of fractions!\n");

    while (i++ < 30)

    {

      n = 1.0/i;

      printf(" %f\n", n);

    }

    printf("That's all, folks!\n");

    return 0;

  }    

   5.   The main problem lies in the relationship between the test statement (is  sec  greater 
than 0?) and the  scanf()  statement that fetches the value of  sec . In particular, the first 
time the test is made, the program hasn’t had a chance to even get a value for  sec , and 
the comparison will be made to some garbage value that happens to be at that memory 
location; it might or might not be greater than 0. One solution, albeit an inelegant 
one, is to initialize  sec  to, say,  1  so that the test is passed the first time through. This 
uncovers a second problem. When  you finally type  0  to halt the program,  sec  doesn’t 
get checked until  after  the loop is finished, and the results for 0 seconds are printed out. 
What you really want is to have a  scanf()  statement just before the  while  test is made. 
You can accomplish that by altering the central part of the program to read this way:  

  scanf("%d", &sec);

  while ( sec > 0 ) {

    min = sec/S_TO_M;

    left = sec % S_TO_M;

    printf("%d sec is %d min, %d sec. \n", sec, min, left);

    printf("Next input?\n");

    scanf("%d", &sec);

  }   
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   The first time through, the  scanf()  outside the loop is used. Thereafter, the  scanf()  
at the end of the loop (and hence just before the loop begins again) is used. This is a 
common method for handling problems of this sort, which is why  Listing   5.9    used it.   

   6.   Here is the output:  

  %s! C is cool!

  ! C is cool!

  11

  11

  12

  11   

   Let’s explain. The first  printf()  statement is the same as this:  

  printf("%s! C is cool!\n","%s! C is cool!\n");   

   The second print statement first increments  num  to  11  and then prints the value. The 
third print statement prints  num , which is  11 , and then increments it to  12 . The fourth 
print statement prints the current value of  n , which still is  12 , and then decrements  n  to 
 11 . The final print statement prints the current value of  num , which is  11 .   

   7.   Here is the output:  

  SOS:4 4.00   

   The expression  c1 - c2  has the same value as  'S' - '0' , which in ASCII is  83 - 79 .   

   8.   It prints on one line the digits 1 through 10 in fields that are five columns wide and then 
starts a new line:  

  1    2    3    4    5    6    7    8    9   10    

   9.   Here is one possibility, which assumes that the letters are coded consecutively, as is the 
case for ASCII:  

  #include <stdio.h>

  

  int main(void)

  {

       char ch = 'a';

       while (ch <= 'g')

            printf("%5c", ch++);

       printf("\n");

       return 0;

  }    

   10.   Here is the output for each example:  

    a.    1 2   

 Note that  x  is incremented and then compared. The cursor is left on the same line.   
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   b.  

  101

  102

  103

  104    

  Note that this time  x  is compared and then incremented. In both this case 
and in example a,  x  is incremented before printing takes place. Note, too, that 
indenting the second  printf()  statement does not make it part of the  while  loop. 
Therefore, it is called only once, after the  while  loop ends.   

   c.    stuvw   

 Here, there is no incrementing until after the first  printf() .     

   11.   This is an ill-constructed program. Because the  while  statement doesn’t use braces, only 
the  printf()  statement is part of the loop, so the program prints the message  COMPUTER 
BYTES DOG  indefinitely until you can kill the program.   

   12.      a.    x = x + 10;    

   b.    x++; or ++x; or x = x + 1;    

   c.    c = 2 * (a + b);    

   d.    c = a + 2* b;      

   13.      a.    x--; or --x; or x = x - 1;    

   b.    m = n % k;    

   c.    p = q / (b - a);    

   d.    x = (a + b) / (c * d);        

  Answers to Review Questions for  Chapter   6        

 1.    2 ,  7 ,  70 ,  64 ,  8 ,  2    

   2.   It would produce the following output:  

  36 18  9  4  2  1   

   If  value  were  double , the test would remain true even when  value  became less than 1. 
The loop would continue until floating-point underflow yielded a value of 0. Also, the 
 %3d  specifier would be the wrong choice.   

   3.      a.    x > 5    

   b.    scanf("%lf",&x) != 1    

   c.    x == 5      
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   4.      a.    scanf("%d", &x) == 1    

   b.    x != 5    

   c.    x >= 20      

   5.   Line 4: Should be  list[10] .  

   Line 6: Commas should be semicolons.  

   Line 6: The range for  i  should be from 0 to 9, not 1 to 10.  

   Line 9: Commas should be semicolons.  

   Line 9:  >=  should be  <= . Otherwise, when  i  is  1 , the loop runs for quite a while.  

   Line 10: There should be another closing brace between lines 9 and 10. One brace closes 
the compound statement, and one closes the program. In between should be a  return 
0;  line.  

   Here’s a corrected version:  

  #include <stdio.h>

  int main(void)

  {                                      /* line 3  */

    int i, j, list[10];                  /* line 4  */

  

    for (i = 0; i <  10;  i++)           /* line 6  */

    {                                    /* line 7  */

        list[i] = 2*i + 3;               /* line 8  */

        for (j = 1; j <= i; j++)         /* line 9  */

            printf(" %d", list[j]);      /* line 10 */

        printf("\n");                    /* line 11 */

    }

    return 0;

  }    

   6.   Here’s one way:  

  #include <stdio.h>

  int main(void)

  {

     int col, row;

  

     for (row = 1; row <= 4; row++)

     {

        for (col = 1; col <= 8; col++)

           printf("$");

        printf("\n");

     }
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    return 0;

  }    

   7.      a.   It would produce the following output:  

  Hi! Hi! Hi! Bye! Bye! Bye! Bye! Bye!    

   b.   It would produce the following output:  

  ACGM   

 Because the code adds an  int  value to a  char  value, a compiler might warn of possible 
loss of significant digits.     

   8.      a.   It would produce the following output:  

  Go west, youn    

   b.   It would produce the following output:  

  Hp!xftu-!zpvo    

   c.   It would produce the following output:  

  Go west, young    

   d.   It would produce the following output:  

  $o west, youn      

   9.   Here is the output you should get:  

  31|32|33|30|31|32|33|

  ***

  1

  5

  9

  13

  

  ***

  2 6

  4 8

  8 10

  

  ***

  ======

  =====

  ====

  ===

  ==    

   10.      a.    mint    

   b.   10 elements   
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   c.   Type  double  values   

   d.   Line ii is correct;  mint[2]  is a type  double  value and  &mint[2]  is its location.     

   11.   Because the first element has index  0 , the loop range should be  0  to  SIZE - 1 , not  1  to 
 SIZE . Making that change, however, causes the first element to be assigned the value  0  
instead of  2 . So rewrite the loop this way:  

  for (index = 0; index < SIZE; index++)

      by_twos[index] = 2 * (index + 1);   

   Similarly, the limits for the second loop should be changed. Also, an array index should 
be used with the array name:  

  for( index = 0; index < SIZE; index++)

       printf("%d ", by_twos[index]);   

   One dangerous aspect of bad loop limits is that the program may work; however, because 
it is placing data where it shouldn’t, it might not work at some time in the future, 
forming sort of a programming time bomb.   

   12.   It should declare the return type as  long , and it should have a  return  statement that 
returns a  long  value.   

   13.   Typecasting  num  to  long  makes sure the calculation is done as a  long  calculation, not an 
 int  calculation. On a system with a 16-bit  int , multiplying two  int s produces a result 
that is truncated to an  int  before the value is returned, possibly losing data.  

  long square(int num)

  

  {

  

     return ((long) num) * num;

  

  }    

   14.   Here is the output:  

  1: Hi!

  k = 1

  k is 1 in the loop

  Now k is 3

  k = 3

  k is 3 in the loop

  Now k is 5

  k = 5

  k is 5 in the loop

  Now k is 7

  k = 7      
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  Answers to Review Questions for  Chapter   7        

 1.   True: b.   

   2.      a.    number >= 90 && number < 100    

   b.    ch != 'q' && ch != 'k'    

   c.    (number >= 1 && number <= 9) && number != 5    

   d.    !(number >= 1 && number <= 9)  is one choice, but  

  number < 1 || number > 9  is simpler to understand     

   3.   Line 5: Should be  scanf("%d %d", &weight, &height); . Don’t forget those  & s for 
 scanf() . Also, this line should be preceded by a line prompting input.  

   Line 9: What is meant is  (height < 72 && height > 64) . However, the first part 
of the expression is unnecessary because height must be less than 72 for the  else if  
to be reached in the first place. Therefore, a simple  (height > 64)  will serve. But line 
6 already guarantees that  height > 64 , so no test at all is needed, and the  if else  
should just be an  else .  

   Line 11: The condition is redundant; the second subexpression ( weight  not less than or 
equal to 300) means the same as the first. A simple  (weight > 300)  is all that is needed. 
But there is more trouble. Line 11 gets attached to the wrong  if ! Clearly, this  else  is 
meant to go along with line 6. By the most recent  if  rule, however, it will be associated 
with the  if  of line 9. Therefore, line 11 is reached when  weight  is less than 100 and 
 height  is 64 or under. This makes it impossible for  weight  to exceed 300 when this 
statement is reached.  

   Lines 7 through 10: Should be enclosed in braces. Then line 11 will become an 
alternative to line 6, not to line 9. Alternatively, if the  if else  on line 9 is replaced with 
a simple  else , no braces are needed.  

   Line 13: Simplify to  if (height > 48) . Actually, you can omit this line entirely 
because line 12 already makes this test.  

   Line 15: This  else  associates with the last  if , the one on line 13. Enclose lines 13 and 14 
in braces to force this  else  to associate with the  if  of line 11. Or, as suggested, simply 
eliminate line 13.  

   Here’s a corrected version:  

  #include <stdio.h>

  int main(void)

  {

     int weight, height;  /* weight in lbs, height in inches */

  

     printf("Enter your weight in pounds and ");
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     printf("your height in inches.\n");

     scanf("%d %d", &weight, &height);

     if (weight < 100 && height > 64)

         if (height >= 72)

             printf("You are very tall for your weight.\n");

         else

             printf("You are tall for your weight.\n");

     else if (weight > 300 && height < 48)

             printf(" You are quite short for your weight.\n");

     else

          printf("Your weight is ideal.\n");

  

      return 0;

  }    

   4.      a.    1 . The assertion is true, which numerically is a  1 .   

   b.    0 . 3 is not less than 2.   

   c.    1 . If the first expression is false, the second is true, and vice versa; just one true 
expression is needed.   

   d.    6 , because the value of  6 > 2  is  1 .   

   e.    10 , because the test condition is true.   

   f.    0 . If  x > y  is true, the value of the expression is  y > x , which is false in that case, 
or  0 . If  x > y  is false, the value of the expression is  x > y , which is false in that 
case.     

   5.   The program prints the following:  

  *#%*#%$#%*#%*#%$#%*#%*#%$#%*#%*#%   

   Despite what the indentation suggests, the  #  is printed during every loop because it is 
not part of a compound statement.   

   6.   The program prints the following:  

  fat hat cat Oh no!

  hat cat Oh no!

  cat Oh no!    

   7.   The comments on lines 5 through 7 should be terminated with  */ , or else you can 
replace  /*  with  // . The expression  'a' <= ch >= 'z'  should be replaced with this:  

  ch >= 'a' && ch <= 'z'   

   Or, more simply and more portably, you can include  ctype.h  and use  islower() . 
Incidentally,  'a' <= ch >= 'z'  is valid C in terms of syntax; it just doesn’t have 
the right meaning. Because relational operators associate left to right, the expression is 
interpreted as  ('a' <= ch) >= 'z' . The expression in parentheses has the value  1  or  0  
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(true or false), and this value is checked to see whether it is equal to or greater than the 
numeric code for  'z' . Neither  0  nor  1  satisfies that test, so the whole expression always 
evaluates to  0  (false). In the second test expression,  ||  should be  && .  Also, although  !(ch 
< 'A')  is both valid and correct in meaning,  ch >= 'A'  is simpler. The  'Z'  should 
be followed by two closing parentheses, not one. Again, more simply, use  isupper() . 
The  oc++;  statement should be preceded by an  else . Otherwise, it is incremented every 
character. The control expression in the  printf()  call should be enclosed in double 
quotes.  

   Here is a corrected version:  

  #include <stdio.h>

  #include <ctype.h>

  int main(void)

  {

    char ch;

    int lc = 0;    /* lowercase char count */

    int uc = 0;    /* uppercase char count */

    int oc = 0;    /* other char count     */

  

    while ((ch = getchar()) != '#')

    {

         if (islower(ch))

              lc++;

         else if (isupper(ch))

              uc++;

         else

              oc++;

    }

    printf("%d lowercase, %d uppercase, %d other", lc, uc, oc);

    return 0;

  }    

   8.   Unhappily, it prints the same line indefinitely:  

  You are 65. Here is your gold watch.   

   The problem is that the line  

  if (age = 65)   

   sets  age  to  65 , which tests as true every loop cycle.   

   9.   Here is the resulting run using the given input:  

   q 

  Step 1

  Step 2
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  Step 3

   c 

  Step 1

   h 

  Step 1

  Step 3

   b 

  Step 1

  Done   

   Note that both  b  and  #  terminate the loop, but that entering  b  elicits the printing of step 
1, and entering  #  doesn’t.   

   10.   Here is one solution:  

  #include <stdio.h>

  int main(void)

  {

    char ch;

  

    while ((ch = getchar()) != '#')

    {

      if (ch != '\n')

      {

         printf("Step 1\n");

         if (ch == 'b')

            break;

         else if (ch != 'c')

         {

            if (ch != 'h')

                printf("Step 2\n");

             printf("Step 3\n");

         }

      }

    }

    printf("Done\n");

    return 0;

  }      

  Answers to Review Questions for  Chapter   8        

 1.   The expression  putchar(getchar())  causes the program to read the next input 
character and to print it; the return value from  getchar()  is the argument to 
 putchar() . No,  getchar(putchar())  is invalid because  getchar()  doesn’t use an 
argument and  putchar()  needs one.   
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   2.      a.   Display the H character.   

   b.   Sound the alert if the system uses ASCII.   

   c.   Move the cursor to the beginning of the next line.   

   d.   Backspace.     

   3.    count <essay >essayct  or else  count >essayct <essay    

   4.   None are valid.   

   5.   It’s a signal (a special value) returned by  getchar()  and  scanf()  to indicate that they 
have detected the end of a file.   

   6.      a.   The output is as follows:  

  If you qu   

 Note that the character  I  is distinct from the character  i . Also note that the  i  is not 
printed because the loop quits upon detecting it.   

   b.   The output for ASCII is as follows:  

  HJacrthjacrt     

   The first time through,  ch  has the value  H . The  ch++  causes the value to be used (printed) 
and then incremented (to  I ). Then the  ++ch  causes the value to be incremented (to  J ) 
and then used (printed). After that, the next character ( a ) is read, and the process is 
repeated. An important point to note here is that the incrementations affect the value 
of  ch  after it has been assigned a value; they don’t somehow cause the program to move 
through the input queue.   

   7.   C’s standard I/O library maps diverse file forms to uniform streams that can be handled 
equivalently.   

   8.   Numeric input skips over spaces and newlines, but character input does not. Suppose you 
have code like this:  

  int score;

  char grade;

  printf("Enter the score.\n");

  scanf("%s", %score);

  printf("Enter the letter grade.\n");

  grade = getchar();   

   If you enter  98  for the score and then press the Enter key to send the score to the 
program, you also sent a newline character, which becomes the next input character and 
is read into  grade  as the grade value. If you precede character input with numeric input, 
you should add code to dispose of the newline character before the character input takes 
place.     
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  Answers to Review Questions for  Chapter   9        

 1.   A formal parameter is a variable that is defined in the function being called. The actual 
argument is the value appearing in the function call; this value is assigned to the formal 
argument. You can think of the actual argument as being the value to which the formal 
parameter is initialized when the function is called.   

   2.      a.    void donut(int n)    

   b.    int gear(int t1, int t2)    

   c.    int guess(void)    

   d.    void stuff_it(double d, double *pd)      

   3.      a.    char n_to_char(int n)    

   b.    int digits(double x, int n)    

   c.    double * which(double * p1, double * p2)    

   d.    int random(void)      

   4.  

  int sum(int a, int b)

  {

      return a + b;

  }    

   5.   Replace  int  with  double  throughout:  

  double sum(double a, double b)

  

  {

      return a + b;

  

  }    

   6.   This function needs to use pointers:  

  void alter(int * pa, int * pb)

  {

      int temp;

      temp = *pa + *pb;

      *pb = *pa - *pb;

      *pa = temp;

  }   
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   or  

  void alter(int * pa, int * pb)

  {

      *pa += *pb;

      *pb = *pa - 2 * *pb;

  }    

   7.   Yes;  num  should be declared in the  salami()  argument list, not after the brace. Also, it 
should be  count++ , not  num++ .   

   8.   Here is one solution:  

  int largest(int a, int b, int c)

  {

      int max = a;

      if (b > max)

          max = b;

      if (c > max)

          max = c;

      return max;

  }    

   9.   Here is a minimal program; the  showmenu()  and  getchoice()  functions are possible 
solutions to parts a and b.  

  #include <stdio.h>

  void showmenu(void);     /* declare functions used */

  int getchoice(int, int);

  int main()

  {

      int res;

  

      showmenu();

      while ((res = getchoice(1,4)) != 4)

      {

          printf("I like choice %d.\n", res);

          showmenu();

      }

      printf("Bye!\n");

      return 0;

  }

  void showmenu(void)

  {

      printf("Please choose one of the following:\n");

      printf("1) copy files          2) move files\n");

      printf("3) remove files        4) quit\n");

      printf("Enter the number of your choice:\n");
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  }

  

  int getchoice(int low, int high)

  {

      int ans;

      int good;

      good = scanf("%d", &ans);

      while (good == 1 && (ans < low || ans  > high))

      {

          printf("%d is not a valid choice; try again\n", ans);

          showmenu();

          scanf("%d", &ans);

      }

      if (good != 1)

      {

          printf("Non-numeric input.  ");

          ans = 4;

      }

      return ans;

  }      

  Answers to Review Questions for  Chapter   10        

 1.   The printout is this:  

  8 8

  4 4

  0 0

  2 2    

   2.   The array  ref  has four elements because that is the number of values in the initialization 
list.   

   3.   The array name  ref  points to the first element of the array, the integer  8 . The expression 
 ref + 1  points to the second element, the integer  4 . The construction  ++ref  is not a 
valid C expression;  ref  is a constant, not a variable.   

   4.    ptr  points to the first element, and  ptr + 2  points to the third element, which would 
be the first element of the second row.  

    a.   12 and 16.   

   b.   12 and 14 (just the 12 goes in the first row because of the braces).     

   5.    ptr  points to the first row and  ptr+1  points to the second row;  *ptr  points to the first 
element in the first row, and  *(ptr + 1)  points to the first element of the second row.  
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    a.   12 and 16.   

   b.   12 and 14 (just the 12 goes in the first row because of the braces).     

   6.      a.    &grid[22][56]    

   b.    &grid[22][0] or grid[22]   

 (The latter is the name of a one-dimensional array of 100 elements, hence the address of 
its first element, which is the element  grid[22][0] .)   

   c.    &grid[0][0] or grid[0] or (int *) grid   

 (Here,  grid[0]  is the address of the  int  element  grid[0][0] , and  grid  is the address 
of the 100-element array  grid[0] . The two addresses have the same numeric value but 
different types; the typecast makes the types the same.)     

   7.      a.    int digits[10];    

   b.    float rates[6];    

   c.    int mat[3][5];    

   d.    char * psa[20] ;  

 Note that  [ ]  has higher precedence than  * , so in the absence of parentheses, the array 
descriptor is applied first, and then the pointer descriptor. Hence, this declaration is the 
same as  char *(psa[20]); .   

   e.    char (*pstr)[20];   

  Note 

  char *pstr[20];  is incorrect for e. This would make  pstr  an array of pointers instead of a 
pointer to an array. In particular,  pstr  would point to a single  char , the first member of the 
array;  pstr + 1  would point to the next byte. With the correct declaration,  pstr  is a variable 
rather than an array name, and  pstr + 1  points 20 bytes beyond the initial byte.      

   8.      a.    int sextet[6] = {1, 2, 4, 8, 16, 32};    

   b.    sextet[2]    

   c.    int lots[100] = { [99] = -1};    

   d.    int pots[100] = { [5] = 101, [10] = 101,   

  101, 101, 101};      

   9.   0 through 9   

   10.      a.    rootbeer[2] = value;   

 Valid.   

   b.    scanf("%f", &rootbeer );   
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 Invalid;  rootbeer  is not a  float .   

   c.    rootbeer = value;   

 Invalid;  rootbeer  is not a  float .   

   d.    printf("%f", rootbeer);   

 Invalid;  rootbeer  is not a  float .   

   e.    things[4][4] = rootbeer[3];   

 Valid.   

   f.    things[5] = rootbeer;   

 Invalid; can’t assign arrays.   

   g.    pf = value;   

 Invalid;  value  is not an address.   

   h.    pf = rootbeer;   

 Valid.     

   11.    int screen[800][600] ;   

   12.      a.  

  void process(double ar[], int n);

  void processvla(int n, double ar[n]);

  process(trots, 20);

  processvla(20, trots);    

   b.  

  void process2(short ar2[30], int n);

  void process2vla(int n, int m, short ar2[n][m]);

  process2(clops, 10);

  process2vla(10, 30, clops);    

   c.  

  void process3(long ar3[10][15], int n);

  void process3vla(int n, int m,int k, long ar3[n][m][k]);

  process3(shots, 5);

  process3vla(5, 10, 15, shots);      

   13.      a.  

  show( (int [4]) {8,3,9,2}, 4);    

   b.  

  show2( (int [][3]){{8,3,9}, {5,4,1}}, 2);        
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  Answers to Review Questions for  Chapter   11        

 1.   The initialization should include a  '\0'  if you want the result to be a string. Of course, 
the alternative syntax adds the null character automatically:  

  char name[] = "Fess";    

   2.  

  See you at the snack bar.

  ee you at the snack bar.

  See you

  e you    

   3.  

  y

  

  my

  

  mmy

  

  ummy

  

  Yummy    

   4.    I read part of it all the way through.    

   5.      a.    Ho Ho Ho!!oH oH oH    

   b.   Pointer-to- char  (that is,  char * ).   

   c.   The address of the initial  H .   

   d.    *––pc  means to decrement the pointer by 1 and use the value found there.  ––*pc  
means to take the value pointed to by  pc  and decrement that value by 1 (for 
example, H becomes G).   

   e.    Ho Ho Ho!!oH oH o   

  Note 

 A null character comes between  !  and  ! , but typically it produces no printing effect.    

   f.    while(*pc)  checks to see that  pc  does not point to a null character (that is, to the 
end of the string). The expression uses the value at the pointed-to location.  

  while(pc - str)  checks to see that  pc  does not point to the same location 
that  str  does (the beginning of the string). The expression uses the values of the 
pointers themselves.   
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   g.   After the first  while  loop,  pc  points to the null character. Upon entering the 
second loop, it is made to point to the storage location before the null character 
(that is, to the location just before the one that  str  points to). That byte is 
interpreted as a character and is printed. The pointer then backs up to the 
preceding byte. The terminating condition  (pc == str)  never occurs, and the 
process continues until you, or the system, tire.   

   h.    pr()  must be declared in the calling program:  

  char * pr(char *);      

   6.   Character variables occupy a byte, so  sign  occupies a byte. But a character constant is 
stored in an  int , meaning the  '$'  typically would use 2 or 4 bytes; however, only 1 byte 
of the  int  is actually used to store the code for  '$' . The string  "$"  uses 2 bytes: one to 
hold the code for  '$' , and one to hold the code for  '\0' .   

   7.   Here is what you get:  

  How are ya, sweetie? How are ya, sweetie?

  Beat the clock.

  eat the clock.

  Beat the clock. Win a toy.

  Beat

  chat

  hat

  at

  t

  t

  at

  How are ya, sweetie?    

   8.   Here is what you get:  

  faavrhee

  *le*on*sm    

   9.   Here is one solution:  

  #include <stdio.h>      // for fgets(), getchar()

  char * s_gets(char * st, int n)

  {

      char * ret_val;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (*st != '\n' && *st != '\0')

              st++;

          if (*st == '\n')
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              *st = '\0';

          else

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }    

   10.   Here is one solution:  

  int strlen(const char * s)

  {

      int ct = 0;

  

      while (*s++)     // or while (*s++ != '\0')

          ct++;

  

      return(ct);

  }    

   11.   Here is one solution:  

  #include <stdio.h>      // for fgets(), getchar()

  #include <string.h>     // for strchr();

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      char * find;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          find = strchr(st, '\n');   // look for newline

          if (find)                  // if the address is not NULL,

              *find = '\0';          // place a null character there

          else

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }    

   12.   Here is one solution:  

  #include <stdio.h>      /* for NULL definition          */

  char * strblk(char * string)

  {

    while (*string != ' ' && *string != '\0')
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      string++;           /* stops at first blank or null */

    if (*string == '\0')

      return NULL;        /* NULL is the null pointer     */

    else

      return string;

  }   

   Here is a second solution that prevents the function from modifying the string but 
that allows the return value to be used to change the string. The expression  (char *) 
string  is called “casting away  const .”  

  #include <stdio.h>      /* for NULL definition          */

  char * strblk(const char * string)

  {

    while (*string != ' ' && *string != '\0')

      string++;           /* stops at first blank or null */

    if (*string == '\0')

      return NULL;        /* NULL is the null pointer     */

    else

      return (char *) string;

  }    

   13.   Here is one solution:  

  /* compare.c -- this will work */

  #include <stdio.h>

  #include <string.h>   // declares strcmp()

  #include <ctype.h>

  #define ANSWER "GRANT"

  #define SIZE 40

  char * s_gets(char * st, int n);

  void ToUpper(char * str);

  

  int main(void)

  {

      char try[SIZE];

  

      puts("Who is buried in Grant's tomb?");

      s_gets(try, SIZE);

      ToUpper(try);

      while (strcmp(try,ANSWER) != 0)

      {

          puts("No, that's wrong. Try again.");

          s_gets(try, SIZE);

          ToUpper(try);

      }

      puts("That's right!");
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      return 0;

  }

  

  void ToUpper(char * str)

  {

      while (*str != '\0')

      {

          *str = toupper(*str);

          str++;

      }

  }

  

  char * s_gets(char * st, int n)

  {

      char * ret_val;

      int i = 0;

  

      ret_val = fgets(st, n, stdin);

      if (ret_val)

      {

          while (st[i] != '\n' && st[i] != '\0')

              i++;

          if  (st[i] == '\n')

              st[i] = '\0';

          else // must have words[i] == '\0'

              while (getchar() != '\n')

                  continue;

      }

      return ret_val;

  }      

  Answers to Review Questions for  Chapter   12        

 1.   The automatic storage class, the register storage class, and the static, no linkage storage 
class.   

   2.   The static, no linkage storage class; the static, internal linkage storage class; and the 
static, external linkage storage class.   

   3.   The static, external linkage storage class. The static, internal linkage storage class.   

   4.   No linkage.   

   5.   The keyword  extern  is used in declarations to indicate a variable or function that has 
been defined elsewhere.   
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   6.   Both allocate an array of 100  int  values. The statement using  calloc()  additionally sets 
each element to 0.   

   7.    daisy  is known to  main() , by default, and to  petal() ,  stem() , and  root()  because 
of the  extern  declaration. The  extern int daisy;  declaration in file 2 makes  daisy  
known to all the functions in file 2. The first  lily  is local to  main() . The reference to 
 lily  in  petal()  is an error because there is no external  lily  in either file. There is an 
external static  lily , but it is known just to functions in the second file. The first external 
 rose  is known to  root() , but  stem()  has overridden it with its own local  rose .   

   8.   Here is the output:  

  color in main() is B

  color in first() is R

  color in main() is B

  color in second() is G

  color in main() is G   

   The  first()  function does not use the global  color  variable, but  second()  does.   

   9.      a.    It tells you that the program will use the variable  plink , which is local to the 
file containing the function. The first argument to  value_ct()  is a pointer to an 
integer, presumably the first element of an array of  n  members. The important 
point here is that the program will not be allowed to use the pointer  arr  to modify 
values in the original array.   

   b.   No. Already,  value  and  n  are copies of original data, so there is no way for the 
function to alter the corresponding values in the calling program. What these 
declarations do accomplish is to prevent the function from altering  value  and  n  
within the function. For example, the function couldn’t use the expression  n++  if  n  
were qualified as  const .       

  Answers to Review Questions for  Chapter   13        

 1.   It should have  #include <stdio.h>  for its file definitions. It should declare  fp  a 
file pointer:  FILE *fp; . The function  fopen()  requires a mode:  fopen("gelatin", 
"w") , or perhaps the  "a"  mode. The order of the arguments to  fputs()  should be 
reversed. For clarity, the output string should have a newline because  fputs()  doesn’t 
add one automatically. The  fclose()  function requires a file pointer, not a filename: 
 fclose(fp); . Here is a corrected version:  

  #include <stdio.h>

  int main(void)

  {

     FILE * fp;

     int k;
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     fp = fopen("gelatin", "w");

     for (k = 0; k < 30; k++)

         fputs("Nanette eats gelatin.\n", fp);

     fclose(fp);

     return 0;

  }    

   2.   It would open, if possible, the file whose name is the first command-line argument, and 
it would display onscreen each digit character in the file.   

   3.      a.    ch = getc(fp1);    

   b.    fprintf(fp2,"%c"\n",ch);    

   c.    putc(ch,fp2);    

   d.    fclose(fp1); /* close the terky file */     

  Note 

  fp1  is used for input operations because it identifies the file opened in the read mode. 
Similarly,  fp2  was opened in the write mode, so it is used with output functions.    

   4.   Here is one approach:  

  #include <stdio.h>

  #include <stdlib.h>

  

  int main(int argc,char * argv[])

  {

     FILE * fp;

     double n;

     double sum = 0.0;

     int ct = 0;

  

  if (argc == 1)

        fp = stdin;

     else if (argc == 2)

     {

        if ((fp = fopen(argv[1], "r")) == NULL)

        {

           fprintf(stderr, "Can't open %s\n", argv[1]);

           exit(EXIT_FAILURE);

        }

     }

     else

     {

        fprintf(stderr, "Usage: %s [filename]\n", argv[0]);



ptg11524036

893Answers to Review Questions for Chapter 13

        exit(EXIT_FAILURE);

     }

     while (fscanf(fp, "%lf", &n) == 1)

     {

        sum += n;

            ++ct;

     }

     if (ct > 0)

           printf("Average of %d values = %f\n", ct, sum / ct);

     else

           printf("No valid data.\n");

  

     return 0;

  }    

   5.   Here is one approach.  

  #include <stdio.h>

  #include <stdlib.h>

  #define BUF 256

  int has_ch(char ch, const char * line);

  int main(int argc,char * argv[])

  {

     FILE * fp;

     char ch;

     char line [BUF];

  

  if (argc != 3)

     {

        printf("Usage: %s character filename\n", argv[0]);

        exit(EXIT_FAILURE);

     }

     ch = argv[1][0];

     if ((fp = fopen(argv[2], "r")) == NULL)

     {

        printf("Can't open %s\n", argv[2]);

        exit(EXIT_FAILURE);

     }

     while (fgets(line,BUF,fp) != NULL)

     {

        if (has_ch(ch,line))

           fputs(line,stdout);

     }

     fclose(fp);

     return 0;

  }
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  int has_ch(char ch, const char * line)

  {

     while (*line)

        if (ch == *line++)

           return(1);

     return 0;

  }   

   The  fgets()  and  fputs()  functions work together because  fgets()  leaves the  \n  
produced by Enter in the string, and  fputs()  does not add a  \n  the way that  puts()  
does.   

   6.   The distinction between a binary file and a text file is a system-dependent difference 
between file formats. The distinction between a binary stream and a text stream consists 
of translations performed by the program as it reads or writes streams. (A binary stream 
has no translations; a text stream may convert newline and other characters.)   

   7.      a.    When 8238201 is saved using  fprintf() , it’s saved as seven characters stored in 
7 bytes. When  fwrite()  is used, it’s saved as a 4-byte integer using the binary 
representation of that numeric value.   

   b.   No difference; in each case it’s saved as a 1-byte binary code.     

   8.   The first is just a shorthand notation for the second; the third writes to the standard 
error. Normally, the standard error is directed to the same place as the standard output, 
but the standard error is not affected by standard output redirection.   

   9.   The  "r+"  mode lets you read and write anywhere in a file, so it’s best suited. The  "a+"  
mode only lets you append material to the end of the file, and the  "w+"  mode starts with 
a clean slate, discarding previous file contents.     

  Answers to Review Questions for  Chapter   14        

 1.   The proper keyword is  struct , not  structure . The template requires either a tag before 
the opening brace or a variable name after the closing brace. Also, there should be a 
semicolon after  * togs  and at the end of the template.   

   2.   Here is the output:  

  6 1

  22 Spiffo Road

  S p    

   3.  

  struct month {

      char name[10];

      char abbrev[4];
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      int days;

      int monumb;

  };    

   4.  

  struct month months[12] =

  {

      {"January", "jan", 31, 1},

      {"February", "feb", 28, 2},

      {"March", "mar", 31, 3},

      {"April", "apr", 30, 4},

      {"May", "may", 31, 5},

      {"June", "jun", 30, 6},

      {"July", "jul", 31, 7},

      {"August", "aug", 31, 8},

      {"September", "sep", 30, 9},

      {"October", "oct", 31, 10},

      {"November", "nov", 30, 11},

      {"December", "dec", 31, 12}

  };    

   5.  

  extern struct month months[];

  int days(int month)

  {

     int index, total;

  

     if (month < 1 || month > 12)

        return(-1);  /* error signal */

     else

     {

        for (index = 0, total = 0; index < month; index ++)

              total += months[index].days;

        return( total);

     }

  }   

   Note that  index  is one less than the month number because arrays start with subscript 0. 
Therefore, use  index < month  instead of  index <= month .   

   6.      a.   Include  string.h  to provide  strcpy() :  

  typedef struct lens {    /* lens descriptor */

      float foclen;        /* focal length,mm */

      float fstop;         /* aperture        */

      char brand[30];      /* brand name      */

  } LENS;   
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  LENS bigEye[10];

  bigEye[2].foclen = 500;

  bigEye[2].fstop = 2.0;

  strcpy(bigEye[2].brand, "Remarkatar");    

   b.  

  LENS bigEye[10] = { [2] = {500, 2, "Remarkatar"} };      

   7.      a.  

  6

  Arcturan

  cturan    

   b.   Use the structure name and use the pointer:  

  deb.title.last

  

  pb->title.last    

   c.   Here is one version:  

  #include <stdio.h>

  

  #include "starfolk.h"   /* make struct defs available */

  

  void prbem (const struct bem * pbem )

  {

     printf("%s %s is a %d-limbed %s.\n", pbem->title.first,

            pbem->title.last, pbem->limbs, pbem->type);

  }      

   8.      a.    willie.born    

   b.    pt->born    

   c.    scanf("%d", &willie.born);    

   d.    scanf("%d", &pt->born);    

   e.    scanf("%s", willie.name.lname);    

   f.    scanf("%s", pt->name.lname);    

   g.    willie.name.fname[2]    

   h.    strlen(willie.name.fname) + strlen(willie.name.lname)      

   9.   Here is one possibility:  

  struct car {

  

      char name[20];

      float hp;
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      float epampg;

      float wbase;

      int year;

  };    

   10.   The functions could be set up like this:  

  struct gas {

     float distance;

     float gals;

     float mpg;

  };

  

  struct gas mpgs(struct gas trip)

  {

    if (trip.gals > 0)

       trip.mpg = trip.distance / trip.gals ;

    else

       trip.mpg = -1.0;

    return trip;

  }   

  void set_mpgs(struct gas * ptrip)

  {

    if (ptrip->gals > 0)

       ptrip->mpg = ptrip->distance / ptrip->gals ;

    else

       ptrip->mpg = -1.0;

  }   

   Note that the first function cannot directly alter values in the calling program, so you 
must use the return value to convey the information:  

  struct gas idaho = {430.0, 14.8};  // set first two members

  idaho = mpgs(idaho);               // reset structure   

   The second function, however, accesses the original structure directly:  

  struct gas ohio = {583, 17.6};   // set first two members

  set_mpgs(&ohio);                  // set third member    

   11.    enum choices {no, yes, maybe};    

   12.    char * (*pfun)(char *, char);    

   13.  

  double sum(double, double);

  double diff(double, double);



ptg11524036

898 Appendix A Answers to the Review Questions

  double times(double, double);

  double divide(double, double);

  double (*pf1[4])(double, double) = {sum, diff, times, divide};   

   Or, more simply, replace the last line of code with these lines:  

  typedef double (*ptype)(double, double);

  ptype pf1[4] = {sum, diff, times, divide};   

   To invoke the  diff()  function:  

  pf1[1](10.0, 2.5);     // first notation

  (*pf1[1])(10.0, 2.5);  // equivalent notation      

  Answers to Review Questions for  Chapter   15        

 1.      a.   00000011   

   b.   00001101   

   c.   00111011   

   d.   01110111     

   2.      a.   21, 025, 0x15   

   b.   85, 0125, 0x55   

   c.   76, 0114, 0x4C   

   d.   157, 0235, 0x9D     

   3.      a.   252   

   b.   2   

   c.   7   

   d.   7   

   e.   5   

   f.   3   

   g.   28     

   4.      a.   255   

   b.   1 (not false is true)   

   c.   0   

   d.   1 (true and true is true)   

   e.   6   
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   f.   1 (true or true is true)   

   g.   40     

   5.   In binary, the mask is  1111111 . In decimal, it’s  127 . In octal, it’s  0177 . In hexadecimal, 
it’s  0x7F .   

   6.   Both  bitvbal *= 2  and  bitval << 1  double the current value of  bitval , so they are 
equivalent. However,  mask += bitval  and  mask |= bitval  have the same effect only 
if  bitval  and  mask  have no bits set to “on” in common. For example,  2 | 4  is  6 , but so 
is  3 | 6 .   

   7.      a.  

  struct tb_drives {

      unsigned int diskdrives  : 2;

      unsigned int             : 1;

      unsigned int cdromdrives : 2;

      unsigned int             : 1;

      unsigned int harddrives  : 2;

  };    

   b.  

  struct kb_drives {

      unsigned int harddrives  : 2;

      unsigned int             : 1;

      unsigned int cdromdrives : 2;

      unsigned int             : 1;

      unsigned int diskdrives  : 2;

  };        

  Answers to Review Questions for  Chapter   16        

 1.      a.    dist = 5280 * miles;  is valid.   

   b.    plort = 4 * 4 + 4;  is valid. But if the user really wanted  4 * (4 + 4) , he or 
she should have used  #define POD (FEET + FEET) .   

   c.    nex = = 6;;  is invalid. (If there were no space between the two equal signs, it 
would be valid but useless.) Apparently, the user forgot that he or she was writing 
for the preprocessor, not writing in C.   

   d.    y = y + 5;  is valid.  berg = berg + 5 * lob;  is valid, but this is probably not 
the desired result.  est = berg + 5/ y + 5;  is valid, but this is probably not 
the desired result.  nilp = lob *-berg + 5;  is valid, but this is probably not the 
desired result.     

   2.    #define NEW(X) ((X) + 5)    
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   3.    #define MIN(X,Y) ( (X) < (Y) ? (X) : (Y) )    

   4.    #define EVEN_GT(X,Y) ( (X) > (Y) && (X) % 2 == 0 ? 1 : 0 )    

   5.    #define PR(X,Y) printf(#X " is %d and " #Y " is %d\n", X,Y)   

   Because  X  and  Y  are never exposed to any other operations (such as multiplication) in 
this macro, you don’t have to cocoon everything in parentheses.   

   6.      a.    #define QUARTERCENTURY 25    

   b.    #define SPACE ' '    

   c.    #define PS() putchar(' ')   

 or  

  #define PS() putchar(SPACE)    

   d.    #define BIG(X) ((X) + 3)    

   e.    #define SUMSQ(X,Y) ((X)*(X) + (Y)*(Y))      

   7.   Try this:  

  #define P(X) printf("name: "#X"; value: %d; address: %p\n", X, &X)   

   Or, if your implementation doesn’t recognize the  %p  specification for the address, try  %u  
or  %lu .   

   8.   Use the conditional compilation directives. One way is to use  #ifndef :  

  #define _SKIP_  /* remove when you don't want to skip code */

  #ifndef _SKIP_

      /* code to be skipped */

  #endif    

   9.  

  #ifdef PR_DATE

      printf("Date = %s\n", _ _DATE_ _);

  #endif    

   10.   One version returns the value  x*x . This just returns the type  double  value of the square. 
For example,  square(1.3)  would return  1.69 . The second version returns  (int)(x*x) . 
This truncates the result to an  int . Then, because the return type is  double , the  int  
value is promoted to a  double  value. So  1.69  would be converted first to  1  then to  1.00 . 
The final version returns  (int)(x*x+0.5) . Adding  0.5  makes the function round to the 
nearest whole number instead of truncating. So  1.69  becomes  2.19 , which is truncated 
to  2  and then converted to  2.00 . But  1.44  becomes  1.94 , which is truncated to  1  and 
then converted to  1.00 .   
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   11.   Here’s one possibility:  

  #define BOOL(X)  _Generic((X), _Bool : "boolean", default : "not boolean")    

   12.   The  argv  argument should be declared as type  char *argv[] . Command-line arguments 
are stored as strings, so the program should first convert the string in  argv[1]  to a type 
 double  value—for example, by using  atof()  from the  stdlib.h  library. The  math.h  
header file should be included for the  sqrt()  function. The program should check for 
negative values before taking a square root.   

   13.      a.   The function call should look like this:  

  qsort( (void *)scores, (size_t) 1000, sizeof (double), comp);    

   b.   Here’s a suitable comparison function:  

  int comp(const void * p1, const void * p2)

  {

      /* need to use pointers to int to access values      */

      /* the type casts are optional in C, required in C++ */

      const int * a1 = (const int *) p1;    const int * a2 = (const int *) 
p2;

  

      if (*a1 > *a2)

          return -1;

      else if (*a1 == *a2)

          return 0;

      else

          return 1;

  }      

   14.      a.   The function call should look like this:  

  memcpy(data1, data2, 100 * sizeof(double));    

   b.   The function call should look like this:  

  memcpy(data1, data2 + 200 , 100 * sizeof(double));        

  Answers to Review Questions for  Chapter   17        

 1.   Defining a data type consists of deciding how to store the data and designing a set of 
functions to manage the data.   

   2.   The list can be traversed in only one direction because each structure contains the 
address of the next structure, but not of the preceding structure. You could modify the 
structure definition so that each structure contains two pointers—one to the preceding 
structure and one to the next structure. The program, of course, would have to assign 
proper addresses to these pointers each time a new structure is added.   
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   3.   An ADT is an  abstract data type , a formal definition of the properties of a type and of the 
operations that can be performed with the type. An ADT should be expressed in general 
terms, not in terms of some specific computer language or implementation details.   

   4.    Advantages of passing a variable directly:  This function inspects a queue, but should 
not alter it. Passing a queue variable directly means the function works with a copy 
of the original, guaranteeing that the function does not alter the original data. When 
passing a variable directly, you don’t have to remember to use the address operator or a 
pointer.  

    Disadvantages of passing a variable directly:  The program has to allocate enough space 
to hold the variable and then copy information from the original to the copy. If the 
variable is a large structure, using it has a time and space penalty.  

    Advantages of passing the address of a variable:  Passing an address and accessing the 
original data is faster and requires less memory than passing a variable if the variable is a 
large structure.  

    Disadvantages of passing the address of a variable:  You have to remember to use the 
address operator or a pointer. Under K&R C, the function could inadvertently alter the 
original data, but you can overcome this objection with the ANSI C  const  qualifier.   

   5.      a.  

  Type Name:    Stack.  

  Type Properties:    Can hold an ordered sequence of items.  

  Type Operations:    Initialize stack to empty.  

 Determine whether stack is empty.  

 Determine whether stack is full.  

 Add item to top of stack (pushing an item).  

 Remove and recover item from top of stack (popping an item).  

   b.   The following implements the stack as an array, but that information affects only 
the structure definition and the details of the function definitions; it doesn’t affect 
the interface described by the function prototypes.  

  /* stack.h –– interface for a stack */

  #include <stdbool.h>

  /* INSERT ITEM TYPE HERE */

  /* FOR EXAMPLE, typedef int Item; */

  

  #define MAXSTACK 100

  

  typedef struct stack

  {

      Item items[MAXSTACK];   /* holds info                */
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      int top;                /* index of first empty slot */

  } Stack;

  

  /* operation:       initialize the stack                       */

  /* precondition:    ps points to a stack                       */

  /* postcondition

  :   stack is initialized to being empty        */

  void InitializeStack(Stack * ps);

  /* operation:       check if stack is full                     */

  /* precondition:    ps points to previously initialized stack  */

  /* postcondition:   returns true if stack is full, else false  */

  bool FullStack(const Stack * ps);

  

  /* operation:       check if stack is empty                    */

  /* precondition:     ps points to previously initialized stack  */

  /* postcondition:   returns true if stack is empty, else false */

  bool EmptyStack(const Stack *ps);

  

  /* operation:       push item onto top of stack                */

  /* precondition:    ps points to previously initialized stack  */

  /*                  item is to be placed on top of stack       */

  /* postcondition:   if stack is not full, item is placed at    */

  /*                  top of stack and function returns          */

  /*                  true; otherwise, stack is unchanged and    */

  /*                  function returns false                     */

  bool Push(Item item, Stack * ps);

  

  /* operation:       remove item from top of stack              */

  /* precondition:    ps points to previously initialized stack  */

  /* postcondition:   if stack is  not empty, item at top of      */

  /*                  stack is copied to *pitem and deleted from */

  /*                  stack, and function returns true; if the   */

  /*                  operation empties the stack, the stack is  */

  /*                  reset to empty. If the stack is empty to   */

  /*                  begin with, stack is unchanged and the     */

  /*                  function returns false                     */

  bool Pop(Item *pitem, Stack * ps);      

   6.   Maximum number of comparisons required:  

  Items     Sequential Search     Binary Search   

 3   3   2  

 1,023   1,023   10  

 65,535   65,535   16  
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   7.   See  Figure   A.1   .  
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 Figure A.1   Binary search tree of words.          

   8.   See  Figure   A.2   .  
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Reference Section  

    This portion of the book provides summaries of basic C features along with a more detailed 
look at particular topics. Here are the sections:  

    ■   Section I: Additional Reading   

   ■   Section II: C Operators   

   ■   Section III: Basic Types and Storage Classes   

   ■   Section IV: Expressions, Statements, and Program Flow   

   ■   Section V: The Standard ANSI C Library with C99 and C11 Additions   

   ■   Section VI: Extended Integer Types   

   ■   Section VII: Expanded Character Support   

   ■   Section VIII: C99/C11 Numeric Computational Enhancements   

   ■   Section IX: Differences Between C and C++     

     Section I: Additional Reading  

 If you want to learn more about C and programming, you will find the following references 
useful.  

  Online Resources  

 C programmers helped create the Internet, and the Internet can help you with C. The Internet 
is always growing and changing; the resources listed here are a sample of what is available at 
the time of this writing. Of course, the Internet changes continuously, and you may find other 
resources.  

 Probably the place to start, if you have a specific question about C or just want to expand your 
knowledge, is to visit the C FAQ (Frequently Asked Questions) site:    

c-faq.com  
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 However, its coverage mainly is just through C89.  

 If you have questions about the C library, you can get information from the following site:     
www.acm.uiuc.edu/webmonkeys/book/c_guide/index.html   

 The next site provides a comprehensive discussion of pointers:     pweb.netcom.com/~tjensen/ptr/
pointers.htm   

 You also can use search engines such as Google and Yahoo! Search to find articles and sites 
about specific topics:  

    www.google.com    

   search.yahoo.com    

   www.bing.com     

 You can use the advanced search features of these sites to tune your searches more finely. For 
example, you can try searching for C tutorials.  

 Newsgroups give you the opportunity to ask questions on the Net. Newsgroups typically are 
accessed through newsreader programs accessing an account provided by your Internet provider 
service. Another means of access is via web browser at the following address:    http://groups.
google.com   

 You should take the time to read the newsgroups first to get an idea of what topics are covered. 
For example, if you have a question about how to do something in C, try these news groups:  

 comp.lang.c  

 comp.lang.c.moderated  

 Here you’ll find people willing and able to help. The questions should be about the standard 
C language. Don’t ask here about how to get unbuffered input on a Unix system; there are 
specialized newsgroups for platform-specific questions. And above all, don’t ask them how to 
do homework problems!  

 If you have a question about interpreting the C standard, try this group:  

 comp.std.c  

 But don’t ask here how to declare a pointer to a three-dimensional array; that’s the sort of ques-
tion to address to the comp.lang.c group.  

 Finally, if you’re interested in the history of C, Dennis Ritchie, the creator of C, describes the 
genesis and development of C in a 1993 article at the following site.  

    cm.bell-labs.com/cm/cs/who/dmr/chist.html      

http://groups.google.com
http://groups.google.com
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/index.html
http://www.google.com
http://www.bing.com
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  C Language Books  

 Feuer, Alan R.  The C Puzzle Book, Revised Printing.  Upper Saddle River, NJ: Addison-Wesley 
Professional, 1998.  

 This book contains many programs whose output you are supposed to predict. Predicting the 
output gives you a good opportunity to test and expand your understanding of C. The book 
includes answers and explanations.  

 Kernighan, Brian W. and Dennis M. Ritchie.  The C Programming Language, Second   Edition . 
Englewood Cliffs, NJ: Prentice Hall, 1988.  

 This is the second edition of the first book on C. (Note that the creator of C, Dennis Ritchie, 
is one of the authors.) The first edition constituted the definition of “K&R” C, the unofficial 
standard for many years. This edition incorporates ANSI changes based on the ANSI draft that 
was standard at the time the book was written. The book includes many interesting examples. 
It does, however, assume that the reader is familiar with systems programming.  

 Koenig, Andrew.  C Traps and Pitfalls . Reading, MA: Addison-Wesley, 1989.  

 The title says it all.  

 Summit, Steve.  C Programming FAQs . Reading, MA: Addison-Wesley, 1995.  

 This is an expanded book version of the Internet FAQ.   

  Programming Books  

 Kernighan, Brian W. and P.J. Plauger.  The Elements of Programming Style,   Second Edition . New 
York: McGraw-Hill, 1978.  

 This slim, out-of-print classic draws on examples from other texts to illustrate the do’s and 
don’ts of clear, effective programming.  

 Knuth, Donald E.  The Art of Computer Programming, Volume   1 (Fundamental Algorithms), Third 
Edition . Reading, MA: Addison-Wesley, 1997.  

 This non-slim classic standard reference examines data representation and algorithm analysis in 
great detail. It is advanced and mathematical in nature. Volume 2 (Seminumerical Algorithms, 
1997) includes an extensive discussion of pseudorandom numbers. Volume 3 (Sorting and 
Searching, 1998), as the name suggests, examines sorting and searching. Examples are given in 
pseudocode and assembly language.  

 Sedgewick, Robert.  Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching, 
Third Edition.  Reading, MA: Addison-Wesley Professional, 1997/  

 Not surprisingly, this book covers data structures, sorting, and searching.   
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  Reference Books  

 Harbison, Samuel P. and Steele, Guy L.  C: A Reference Manual, Fifth Edition . Englewood Cliffs, 
NJ: Prentice Hall, 2002.  

 This reference manual presents the rules of the C language and describes most of the standard 
library functions. It incorporates discussion of C99 and provides many examples.  

 Plauger, P.J.  The Standard C Library . Englewood Cliffs, NJ: Prentice Hall, 1992.  

 This large reference manual describes the standard library functions, with more explanation 
than you would find in a typical compiler manual.  

  The International C Standard .  ISO/IEC 9899:2011   

 At the time of this writing, the standard is available as a $285 electronic download from  www.
ansi.org  and as a €238 download from the IEC. Do not expect to learn C from this document 
because it is not intended as a tutorial. Here is a representative sentence: “If more than one 
declaration of a particular identifier is visible at any point in a translation unit, the syntactic 
context disambiguates uses that refer to different entities.”   

  C++ Books  

 Prata, Stephen.  C++ Primer Plus, Sixth   Edition . Upper Saddle River, NJ: Addison-Wesley, 2012.  

 This book introduces you to the C++ language (the C++11 standard) and to the philosophy of 
object-oriented programming.  

 Stroustrup, Bjarne.  The C++ Programming Language, Fourth   Edition . Reading, MA: Addison-
Wesley, 2013.  

 This book, by the creator of C++, presents the C++11 standard.    

  Section II: C Operators  

 C is rich in operators.  Table   RS.II.1    lists the C operators in order of decreasing precedence and 
indicates how they associate. All operators are binary (two operands) unless otherwise indi-
cated. Note that some binary and unary operators, such as  *  (multiplication) and  *  (indirec-
tion), share the same symbol but have different precedence. Following the table are summaries 
of each operator.  

  Table RS.II.1   The C Operators  

  Operators (from High to Low Precedence)     Associativity   

  ++  ( postfix)  --  (postfix)  ( )  (function call)  [ ]{}  
( compound literal)  .->   

 L–R  

  ++  ( prefix)  --  (prefix)  -+~! *  (dereference)  &  (address)   

http://www.ansi.org
http://www.ansi.org
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  Operators (from High to Low Precedence)     Associativity   

  sizeof_Alignof (type)  (all unary)    R-L  

  (   type name   )    R-L  

  */%    L–R  

  +-  ( both binary)    L–R  

  <<>>    L–R  

  <><=>=    L–R  

  ==!=    L–R  

  &    L–R  

  ̂     L–R  

  |    L–R  

  &&    L–R  

  ||    L–R  

  ? :  (conditional expression)    R-L  

  =*=/=%=+=-=<<=>>=&=|=^=    R–L  

  ,  (comma operator)   L–R  

  Arithmetic Operators  

  +  adds the value at its right to the value at its left.  

  + , as a unary operator, produces a value equal in magnitude (and of the same sign) to the 
operand to the right.  

  –  subtracts the value at its right from the value at its left.  

  – , as a unary operator, produces a value equal in magnitude (but opposite in sign) to the 
operand to the right.  

  *  multiplies the value at its right by the value at its left.  

  /  divides the value at its left by the value at its right. The answer is truncated if both operands 
are integers.  

  %  yields the remainder when the value at its left is divided by the value to its right (integers 
only).  

  ++  adds 1 to the value of the variable to its right (prefix mode) or adds 1 to the value of the 
variable to its left (postfix mode).  

  --  is like  ++ , but subtracts 1.   
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  Relational Operators  

 Each of the following operators compares the value at its left to the value at its right:  

  <    Less than  

  <=    Less than or equal to  

  ==    Equal to  

  >=    Greater than or equal to  

  >    Greater than  

  !=    Unequal to  

  Relational Expressions  

 A simple relational expression consists of a relational operator with an operand on each side. 
If the relation is true, the relational expression has the value  1 . If the relation is false, the rela-
tional expression has the value  0 . Here are two examples:  

    5 > 2  is true and has the value  1 .   

   (2 + a) == a  is false and has the value  0 .      

  Assignment Operators  

 C has one basic assignment operator and several combination assignment operators. The  =  
operator is the basic form:  

    =  assigns the value at its right to the lvalue on its left.    

 Each of the following assignment operators updates the lvalue at its left by the value at its 
right, using the indicated operation (we use R–H for right-hand and L–H for left-hand):  

    +=  adds the R–H quantity to the L–H variable and places the result in the L-H variable.   

   -=  subtracts the R–H quantity from the L–H variable and places the result in the L-H 
variable.   

   *=  multiplies the L–H variable by the R–H quantity and places the result in the L-H 
variable.   

   /=  divides the L–H variable by the R–H quantity and places the result in the L-H variable.   

   %=  gives the remainder from dividing the L–H quantity by the R–H quantity and places 
the result in the L-H variable.   

   &=  assigns L–H  &  R–H to the L–H quantity and places the result in the L-H variable.   

   |=  assigns L–H  |  R–H to the L–H quantity and places the result in the L-H variable.   

   ̂ =  assigns L–H  ̂   R–H to the L–H quantity and places the result in the L-H variable.   
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   >>=  assigns L–H  >>  R–H to the L–H quantity and places the result in the L-H variable.   

   <<=  assigns L–H  <<  R–H to the L–H quantity and places the result in the L-H variable.    

  Example  

    rabbits *= 1.6;  has the same effect as  rabbits = rabbits * 1.6;.       

  Logical Operators  

 Logical operators normally take relational expressions as operands. The  !  operator takes one 
operand. The rest take two: one to the left, and one to the right.  

  &&     AND   

  ||    OR  

  !    NOT  

  Logical Expressions  

  expression1 && expression2  is true if, and only if, both expressions are true.  

  expression1 || expression2  is true if either one or both expressions are true.  

  !expression  is true if the expression is false, and vice versa.   

  Order of Evaluation for Logical Expressions  

 Logical expressions are evaluated from left to right. Evaluation stops as soon as something is 
discovered that renders the expression false.   

  Examples  

  6 > 2 && 3 == 3  is true.  

  ! ( 6 > 2 && 3 == 3 )  is false.  

  x != 0 && 20/x < 5 . The second expression is evaluated only if  x  is nonzero.  

  The Conditional Operator  

  ? :  takes three operands, each of which is an expression. They are arranged this way:  

   expression1  ?  expression2  :  expression3    

 The value of the whole expression equals the value of   expression2   if   expression1   is true, 
and equals the value of   expression3   otherwise.  
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  Examples  

  ( 5 > 3 ) ? 1 : 2  has the value  1 .  

  ( 3 > 5 ) ? 1 : 2  has the value  2 .  

  ( a > b ) ? a : b  has the value of the larger of  a  or  b .  

  Pointer-Related Operators  

  &  is the address operator. When followed by a variable name,  &  gives the address of that 
variable.  

  *  is the indirection or dereferencing operator. When followed by a pointer,  *  gives the value 
stored at the pointed-to address.  

  Example  

 Here,  &nurse  is the address of the variable  nurse :  

  nurse = 22;

  ptr = &nurse; /* pointer to nurse */

  val = *ptr;   

 The net effect is to assign the value  22  to  val .    

  Sign Operators  

  –  is the minus sign and reverses the sign of the operand.  

  +  is the plus sign and leaves the sign unchanged.   

  Structure and Union Operators  

 Structures and unions use operators to identify individual members. The membership operator 
is used with structures and unions, and the indirect membership operator is used with pointers 
to structures or unions.  

  The Membership Operator  

 The membership operator ( . ) is used with a structure or union name to specify a member of 
that structure or union. If  name  is the name of a structure and  member  is a member specified by 
the structure template,  name.member  identifies that member of the structure. The type of  name.
member  is the type specified for  member . The membership operator can also be used in the same 
fashion with unions.   
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  Example  

  struct {

          int code;

          float cost;

  } item;

  

  item.code = 1265;   

 This statement assigns a value to the  code  member of the structure  item .   

  The Indirect Membership Operator (or Structure Pointer Operator)  

 The indirect membership operator ( –> ) is used with a pointer to a structure or union to identify 
a member of that structure or union. Suppose that  ptrstr  is a pointer to a structure and that 
 member  is a member specified by the structure template. Then  ptrstr->member  identifies that 
member of the pointed-to structure. The indirect membership operator can be used in the same 
fashion with unions.   

  Example  

  struct {

          int code;

          float cost;

  } item, * ptrst;

  ptrst = &item;

  ptrst->code = 3451;   

 This program fragment assigns a value to the  code  member of  item . The following three 
expressions are equivalent:  

  ptrst->code  item.code  (*ptrst).code     

  Bitwise Operators  

 All the following bitwise operators, except  ~ , are binary operators:  

  ~  is the unary operator and produces a value with each bit of the operand inverted.  

  &  is AND and produces a value in which each bit is set to 1 only if both corresponding bits in the 
two operands are 1.  

  |  is OR and produces a value in which each bit is set to 1 if either, or both, corresponding bits 
of the two operands are 1.  

  ̂   is EXCLUSIVE OR and produces a value in which each bit is set to 1 only if one or the other 
(but not both) of the corresponding bits of the two operands is 1.  

  <<  is left-shift and produces a value obtained by shifting the bits of the left-hand operand to the 
left by the number of places given by the right-hand operand. Vacated slots are filled with zeros.  
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  >>  is right-shift and produces a value obtained by shifting the bits of the left-hand operand to 
the right by the number of places given by the right-hand operand. For unsigned integers, the 
vacated slots are filled with zeros. The behavior for signed values is implementation dependent.  

  Examples  

 Suppose you have the following:  

  int x = 2;

  int y = 3;   

 Then  x & y  has the value  2  because only bit 1 is “on” for both  x  and  y . Also,  y<<x  has the 
value  12  because that is the value obtained when the bit pattern for  3  is shifted two bits to the 
left.    

  Miscellaneous Operators  

  sizeof  yields the size, in units the size of a  char  value, of the operand to its right. Typically, 
a  char  value is 1 byte in size. The operand can be a type-specifier in parentheses, as in  sizeof 
(float) , or it can be the name of a particular variable, array, or so on, as in  sizeof foo . A 
 sizeof  expression is of type  size_t .  

  _Alignof  (C11) yields the alignment requirement for the type specified by its operand. Some 
systems require that a particular type be stored at an address that is a multiple of some particu-
lar value, such as four. This integer is the alignment requirement.  

  (type)  is the cast operator and converts the value that follows it to the type specified by the 
enclosed keyword(s). For example,  (float) 9  converts the integer  9  to the floating-point 
number  9.0 .  

  ,  is the comma operator; it links two expressions into one and guarantees that the leftmost 
expression is evaluated first. The value of the whole expression is the value of the right-hand 
expression. This operator is typically used to include more information in a  for  loop control 
expression.  

  Example  

  for (step = 2, fargo = 0; fargo < 1000; step *= 2)

   fargo += step;      



ptg11524036

915Section III: Basic Types and Storage Classes

  Section III: Basic Types and Storage Classes  

  Summary: The Basic Data Types  

 C’s basic types fall into two categories: integers and floating-point numbers. The different vari-
eties give you choices for range and precision.  

  Keywords  

 The basic data types are set up using the following eight keywords:  int ,  long ,  short , 
 unsigned ,  char ,  float ,  double , and  signed  (ANSI C).   

  Signed Integers  

 Signed integers can have positive or negative values:  

  int  is the basic integer type for a given system.  

  long  or  long int can hold an integer at least as large as the largest  int  and possibly larger; 
 long  is at least 32 bits.  

 The largest  short  or  short int  integer is no larger than the largest  int , and may be smaller. 
A  short  is at least 16 bits. Typically,  long  is bigger than  short , and  int  is the same as one 
of the two. For example, C DOS compilers for the PC provided 16-bit  short  and  int  and 32-bit 
 long . It all depends on the system.  

 The  long long  type, provided by the C99 standard, is at least as big as  long  and is at least 
64 bits.  

  Unsigned Integers  

 Unsigned integers have zero or positive values only, which extends the range of the largest 
possible positive number. Use the keyword  unsigned  before the desired type:  unsigned int , 
 unsigned long ,  unsigned short , or  unsigned long long . A lone  unsigned  is the same as 
 unsigned int .   

  Characters  

 Characters are typographic symbols such as  A ,  & , and  + . By definition, one byte of memory is 
used for a  char  variable. In the past, 8 bits has been the most typical size for  char . However, 
the ability of C to cope with larger character sets can lead to 16-bit or even 32-bit bytes.  

  char  is the keyword for this type. Some implementations use a signed  char , but others use an 
unsigned  char . ANSI C allows you to use the keywords  signed  and  unsigned  to specify which 
form you want. Technically,  char ,  unsigned char , and  signed char  are three distinct types, 
with the  char  type having the same representation as one of the other two.   
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  Boolean Type (C99)  

 The C99 Boolean type is  _Bool . It’s an unsigned integer type that can hold one of two values:  0  
for false and  1  for true. Including the  stdbool.h  header file allows you to use  bool  for  _Bool , 
 true  for  1 , and  false  for  0 , making code compatible with C++.   

  Real and Complex Floating Types  

 C99 recognizes two domains of floating types: real floating and complex floating types. 
Collectively, the two domains constitute the floating types.  

 Real floating-point numbers can have positive or negative values. C recognizes three real float-
ing types:  

  float  is the basic floating-point type for the system. It can represent at least six significant dig-
its accurately. Typically,  float  uses 32 bits.  

  double  is a (possibly) larger unit for holding floating-point numbers. It may allow more signifi-
cant figures and perhaps larger exponents than  float . It can represent at least 10 significant 
digits accurately. Typically,  double  uses 64 bits.  

  long double  is a (possibly) even larger unit for holding floating-point numbers. It may allow 
more significant figures and perhaps larger exponents than  double .  

 Complex numbers have two components: a real part and an imaginary part. C99 represents a 
complex number internally with a two-element array, with the first component being the real 
part and the second component being the imaginary part. There are three complex types:  

    float _Complex  represents the real and imaginary parts with type  float  values.   

   double _Complex  represents the real and imaginary parts with type  double  values.   

   long double _Complex  represents the real and imaginary parts with type  long double  
values.    

 In each case, the prefix type is termed the  corresponding real type . For example,  double  is the 
corresponding real type for  double _Complex .  

 Under C99, the complex types were optional in a freestanding environment, in which C 
programs can run without an operating system. Under C11, they are optional for both free-
standing and hosted environments.  

 There also are three imaginary types; these are optional in both freestanding environments and 
hosted environments (environments in which C programs run under an operating system). An 
imaginary number has just an imaginary part. The three types are listed here:  

  float _Imaginary  represents the imaginary part with a type  float  value.  

  double _Imaginary  represents the imaginary part with a type  double  value.  

  long double _Imaginary  represents the imaginary part with a type  long double  value.  
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 Complex numbers can be initialized using real numbers and the value  I , defined in  complex.h  
and representing  i , the square root of −1:  

  #include <complex.h>  // for I

  double _Complex z = 3.0;          // real part = 3.0, imaginary part = 0

  double _Complex w = 4.0 * I;      // real part = 0.0, imaginary part = 4.0

  double Complex u = 6.0 – 8.0 * I; // real part = 6.0, imaginary part = -8.0   

 The  complex.h  library, discussed later in this appendix, includes functions that return the real 
and the imaginary components of a complex number.    

  Summary: How to Declare a Simple Variable  

    1.   Choose the type you need.   

   2.   Choose a name for the variable.   

   3.   Use this format for a declaration statement:  

   type-specifiervariable-name ;   

 The   type-specifier   is formed from one or more of the type keywords. Here are some 
examples:  

  int erest;

  unsigned short cash;    

   4.   To declare more than one variable of the same type, separate the variable names with 
commas:  

  char ch, init, ans;    

   5.   You can initialize a variable in a declaration statement:    

  float mass = 6.0E24;     

  Summary: Storage Classes  

  Keywords:   
  auto, extern, static,

  register, _Thread_local (C11)   

  General Comments:   

 The storage class of a variable determines its scope, its linkage, and its storage duration. A 
storage class is determined both by where the variable is defined and by its associated key-
word. Variables defined outside all functions are external, have file scope, external linkage, and 
static storage duration. Variables declared inside a function are automatic unless one of the 
other keywords is used. They have block scope, no linkage, and automatic storage duration. 
Variables defined with the keyword  static inside a function have block scope, no linkage, and 
static storage duration. Variables defined with the keyword  static  outside a function have file  
scope, internal linkage, and static storage duration.  
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 C11 has added a new storage class qualifier:  _Thread_local . An object declared with this 
qualifier has thread storage duration, meaning it persists for the lifetime of the thread in which 
it is declared and that it’s initialized when the thread begins. Thus such an object is local to 
the thread.  

  Properties:   

 The following summarizes properties of the storage classes:  

  Storage Class     Duration     Scope     Linkage     How Declared   

 Automatic   Automatic   Block   None   In a block  

 Register   Automatic   Block   None   In a block with 
the keyword 
 register   

 Static with exter-
nal linkage  

 Static   File   External   Outside of all 
functions  

 Static with inter-
nal linkage  

 Static   File   Internal   Outside of all 
functions and 
with  static   

 Static with no 
linkage  

 Static   Block   None   In a block with 
the keyword 
 static   

 Thread with 
external linkage  

 Thread   File   External   Outside all 
blocks with key-
word  _Thread_
local   

 Thread with 
internal linkage  

 Thread   File   Internal   Outside all 
blocks with key-
words  static  
and  _Thread_
local   

 Thread with no 
linkage  

 Thread   Block   None   Inside a block 
with keywords 
 static  and 
 _Thread_local   

 Note that the keyword  extern is used only to redeclare variables that have been defined exter-
nally elsewhere. The act of defining the variable outside a function makes it external.   

 In addition to these storage classes, C provides allocated memory. This memory is allocated by 
calling one of the  malloc()  family of functions, which returns a pointer that can be used to 
access the memory. The memory remains allocated until a call to  free()  or until the program 
terminates. Access to the memory can be from any function that has access to a pointer to the 
memory. For example, a function can return the pointer value to another function, which then 
can access the memory.   
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  Summary: Qualifiers  

  Keywords  

 Use the following keywords to qualify variables:  

  const ,  volatile ,  restrict    

  General Comments  

 A qualifier constrains a variable’s use in some way. A  const  variable, after it’s initialized, can’t 
be altered. The compiler can’t assume that a  volatile  variable hasn’t been changed by some 
outside agency, such as a hardware update. A pointer qualified with  restrict  is understood to 
provide the only access (in a particular scope) to a block of memory.   

  Properties  

 The declaration  

  const int joy = 101;   

 establishes that the value of  joy  is fixed at  101 .  

 The declaration  

  volatile unsigned int incoming;   

 establishes that the value of  incoming  might change between one occurrence of  incoming  in a 
program and its next occurrence.  

 The declaration  

  const int * ptr = &joy;   

 establishes that the pointer  ptr  can’t be used to alter the value of the variable  joy . The pointer 
can, however, be made to point to another location.  

 The declaration  

  int * const ptr = &joy;   

 establishes that the pointer  ptr  can’t have its value changed; that is, it can point only to  joy . 
However, it can be used to alter  joy .  

 The prototype  

  void simple (const char * s);   

 establishes that after the formal argument  s  is initialized to whatever value is passed to 
 simple()  in a function call,  simple()  may not alter the value to which  s  points.  

 The prototype  

  void supple(int * const pi);   
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 and the equivalent prototype  

  void supple(int pi[const]);   

 establish that the function  supple()  will not alter the value of the parameter  pi .  

 The prototype  

  void interleave(int * restrict p1, int * restrict p2, int n);   

 indicates that  p1  and  p2  are each the sole access to the respective blocks of memory to which 
they point; this implies that there is no overlap between the two blocks.     

  Section IV: Expressions, Statements, and Program Flow  

  Summary: Expressions and Statements  

 In C, expressions represent values, and statements represent instructions to the computer.  

  Expressions  

 An  expression  is a combination of operators and operands. The simplest expression is just a 
constant or a variable with no operator, such as  22  or  beebop . More complex examples are  55 
+ 22  and  vap = 2 * (vip + (vup = 4)) .   

  Statements  

 A  statement  is a command to the computer. Any expression followed by a semicolon forms a 
statement, although not necessarily a meaningful one. Statements can be simple or compound. 
 Simple statements  terminate in a semicolon, as shown in these examples:  

 Declaration statement:    int   toes;   

 Assignment statement:    toes   = 12;   

 Function call statement:    printf   ("%d\n", toes);   

 Control statement:    while   (toes < 20) toes = toes + 2;   

 Null statement:    ; /*   does nothing */   

 (Technically, the Standard assigns declarations their own category rather than grouping them 
with statements.)  

  Compound statements , or  blocks , consist of one or more statements (which themselves can be 
compound) enclosed in braces. The following  while  statement is an example:  

  while (years < 100)

  {

      wisdom = wisdom + 1;

      printf("%d %d\n", years, wisdom);

      years = years + 1;

  }     
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  Summary: The  while  Statement  

  Keyword  

 The keyword for the  while  statement is  while .   

  General Comments  

 The  while  statement creates a loop that repeats until the test   expression   becomes false, or 
zero. The  while  statement is an  entry-condition  loop; the decision to go through one more pass 
of the loop is made  before  the loop has been traversed. Therefore, it is possible that the loop 
is never traversed. The   statement   part of the form can be a simple statement or a compound 
statement.   

  Form  

  while ( expression )

   statement    

 The   statement   portion is repeated until the   expression   becomes false or zero.   

  Examples  

  while (n++ < 100)

        printf(" %d %d\n",n, 2*n+1);

  

  while (fargo < 1000)

  {

        fargo = fargo + step;

        step = 2 * step;

  }     

  Summary: The  for  Statement  

  Keyword  

 The  for  statement keyword is  for .   

  General Comments  

 The  for  statement uses three control expressions, separated by semicolons, to control a 
looping process. The   initialize   expression is executed once, before any of the loop state-
ments are executed. If the   test   expression is true (or nonzero), the loop is cycled through 
once. Then the   update   expression is evaluated, and it is time to check the   test   expression 
again. The  for  statement is an  entry-condition  loop; the decision to go through one more pass 
of the loop is made  before  the loop has been traversed. Therefore, it is possible that the loop 
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is never traversed. The   statement   part of the form can be a simple statement or a compound  
statement.   

  Form  

  for ( initialize  ;  test  ;  update )

   statement    

 The loop is repeated until   test   becomes false or zero.  

 C99 allows the initialization part to include a declaration. The scope and duration of the vari-
able is restricted to the  for  loop.   

  Examples  

  for (n = 0;  n < 10 ; ++n)

        printf("%d %d\n", n, 2 * n+1);

  for (int k = 0;  k < 10 ; ++k)           // C99

   printf("%d %d\n", k, 2 * k+1);     

  Summary: The  do while  Statement  

  Keywords  

 The keywords for the  do while statement are  do  and  while .   

  General Comments  

 The  do while  statement creates a loop that repeats until the test   expression   becomes false 
or zero. The  do while  statement is an  exit-condition  loop; the decision to go through one more 
pass of the loop is made  after  the loop has been traversed. Therefore, the loop must be executed 
at least once. The   statement   part of the form can be a simple statement or a compound 
statement.   

  Form  

  do

   statement 

  while ( expression );   

 The   statement   portion is repeated until   expression   becomes false or zero.   

  Example  

  do

      scanf("%d", &number)

  while(number != 20);     
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  Summary: Using  if  Statements for Making Choices  

  Keywords  

 The keywords for  if  statements are  if  and  else .   

  General Comments  

 In each of the following forms, the   statement   can be either a simple statement or a compound 
statement. A “true” expression, more generally, means one with a nonzero value.   

  Form 1  

  if ( expression )

   statement    

 The   statement   is executed if   expression   is true.   

  Form 2  

  if ( expression )

   statement1 

  else

   statement2    

 If the   expression   is true,   statement1   is executed. Otherwise,   statement2   is executed.   

  Form 3  

  if ( expression1 )

   statement1 

  else if ( expression2 )

   statement2 

  else

   statement3    

 If   expression1   is true,   statement1   is executed. If   expression1   is false but   expression2   is 
true,   statement2   is executed. Otherwise, if both expressions are false,   statement3   is executed.   

  Example  

  if (legs == 4)

      printf("It might be a horse.\n");

   else if (legs > 4)

       printf("It is not a horse.\n");

   else    /* case of legs < 4 */

   {

       legs++;

    printf("Now it has one more leg.\n");

   }     
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  Summary: Multiple Choice with  switch   

  Keyword  

 The keyword for the  switch  statement is  switch .   

  General Comments  

 Program control jumps to the statement bearing the value of   expression   as a label. Program 
flow then proceeds through the remaining statements unless redirected again. Both   expres-
sion   and labels must have integer values (type  char  is included), and the labels must be 
constants or expressions formed solely from constants. If no label matches the expression 
value, control goes to the statement labeled  default , if present. Otherwise, control passes to 
the next statement following the  switch  statement. After control goes to a particular label, all 
the subsequent statements in the  switch  are executed until the end of the  switch , or a  break  
statement, is encountered, whichever comes  first.   

  Form  

  switch ( expression )

  {

      case  label1  :  statement1 

      case  label2  :  statement2 

      default     :  statement3 

  }   

 There can be more than two labeled statements, and the  default  case is optional.   

  Examples  

  switch (value)

      case 1  : find_sum(ar, n);

                break;

      case 2  : show_array(ar, n);

                break;

      case 3  : puts("Goodbye!");

                break;

      default : puts("Invalid choice, try again.");

                break;

  }

  

  switch (letter)

  {

      case 'a' :

      case 'e' : printf("%d is a vowel\n", letter);

      case 'c' :

      case 'n' : printf("%d is in \"cane\"\n", letter);
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      default  : printf("Have a nice day.\n");

  }   

 If  letter  has the value  'a'  or  'e' , all three messages are printed;  'c'  and  'n'  cause the last 
two to be printed. Other values print only the last message.    

  Summary: Program Jumps  

  Keywords  

 The keywords for program jumps are  break ,  continue , and  goto .   

  General Comments  

 The three instructions  break ,  continue , and  goto  cause program flow to jump from one loca-
tion of a program to another location.   

  The  break  Command  

 The  break  command can be used with any of the three loop forms and with the  switch  state-
ment. It causes program control to skip the rest of the loop or  switch  containing it, and to 
resume with the next command following the loop or  switch .   

  Example  

  while ((ch = getchar())  != EOF)

  {

      putchar(ch);

      if (ch == ' ')

            break;      // terminate loop

      chcount++;

  }    

  The  continue  Command  

 The  continue  command can be used with any of the three loop forms, but not with  switch . 
It causes program control to skip the remaining statements in a loop. For a  while  or  for  loop, 
the next loop cycle is started. For a  do while  loop, the exit condition is tested and then, if 
necessary, the next loop cycle is started.   

  Example  

  while ((ch = getchar())  != EOF)

  {

       if (ch == ' ')

            continue;     // go to test condition

       putchar(ch);
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       chcount++;

  }   

 This fragment echoes and counts nonspace characters.   

  The  goto  Command  

 A  goto  statement causes program control to jump to a statement bearing the indicated label. 
A colon is used to separate a labeled statement from its label. Label names follow the rules for 
variable names. The labeled statement can come either before or after the  goto .   

  Form  

  goto  label ;

   label  :  statement     

  Example  

  top : ch = getchar();

        if (ch != 'y')

    goto top;      

  Section V: The Standard ANSI C Library with C99 and 

C11 Additions  

 The ANSI C library classifies functions into several groups, with each group having an associ-
ated header file. This appendix gives you an overview of the library, listing the header files 
and briefly describing their associated functions. Some of these functions (for example, several 
I/O functions) are discussed in much greater detail in the text. More generally, for complete 
descriptions, consult the documentation for your implementation, or a reference manual, 
or try an online reference such as the following:    http://www.acm.uiuc.edu/webmonkeys/
book/c_guide/   

  Diagnostics:  assert.h   

 This header file defines  assert()  as a macro. Defining the macro identifier  NDEBUG  before 
including the  assert.h  header file deactivates the  assert()  macro. The expression used as an 
argument is typically a relational or logical expression that should be true at that point in the 
program if the program is functioning properly.  Table   RS.V.1    describes the  assert()  macro.  

http://www.acm.uiuc.edu/webmonkeys/book/c_guide/
http://www.acm.uiuc.edu/webmonkeys/book/c_guide/
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  Table RS.V.1   Diagnostic Macro  

  Prototype     Description   

  void assert(int exprs);    If  exprs  evaluates to nonzero (or true), the macro does nothing. 
If it evaluates to zero (false),  assert()  displays expression, the 
line number for the  assert()  statement, and the name of the file 
containing the statement. Then it calls  abort() .  

 C11 adds the  static_assert  macro, which expands to  _Static_assert . _Static_assert , 
in turn, is a keyword that is considered a form of declaration. It provides a compile-time check 
that used this way:  

  _Static_assert ( constant-expression ,  string-literal );   

 If the constant expression evaluates to zero, the compiler issues an error message that includes 
the string-literal. Otherwise, there is no effect.   

  Complex Numbers:  complex.h  (C99)  

 The C99 standards add extensive support for complex number calculations, and C11 expands 
the support. Implementations may choose to provide an  _Imaginary  type in addition to the  _
Complex  type. Under C11, both are optional. C99 made  _Complex  obligatory and  _Imaginary  
optional. Section VIII of this appendix discusses complex number support a bit further. The 
header file defines the following macros listed in  Table   RS.V.2   .  

  Table RS.V.2   The   complex.h   Macros  

  Macro     Description   

  complex    Expands to the type keyword  _Complex   

  _Complex_I    Expands to an expression of type  const float _Complex , whose value, when 
squared, is −1  

  imaginary    If imaginary types are supported, expands to the type keyword  _Imaginary   

  _Imaginary_I    If imaginary types are supported, expands to an expression of type  const 
float _Imaginary , whose value, when squared, is −1  

  I    Expands to either  _Complex_I  or  _Imaginary_I   

 The C implementation of complex numbers, supported by the  complex.h  header file, is quite 
different from the C++ implementation, supported by the  complex  header file. C++ uses classes 
to define a complex type.  
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 The  STDC CX_LIMITED_RANGE  pragma can be used to indicate whether the usual mathematical 
formulas can be used (the on setting) or if special attention has to be paid for extreme values 
(the off setting):  

  #include <complex.h>

  #pragma STDC CX_LIMITED_RANGE on   

 The library functions come in three flavors:  double ,  float , and  long double .  Table   RS.V.3    
lists the  double  version. The  float  and  long double  versions append an  f  and an  l , respec-
tively, to the function names. Thus,  csinf()  is the  float  version of  csin() , and  csinl()  is 
the  long double  version.  

 Angles are measured in radians.  

  Table RS.V.3   Complex Number Functions  

  Prototype     Description   

  double complex cacos(double complex z);    Returns the complex arc cosine of  z   

  double complex casin(double complex z);    Returns the complex arcsine of z   

  double complex catan(double complex z);    Returns the complex arctangent of  z   

  double complex ccos(double complex z);    Returns the complex cosine of  z   

  double complex csin(double complex z);    Returns the complex sine of  z   

  double complex ctan(double complex z);    Returns the complex tangent of  z   

  double complex cacosh(double complex z);    Returns the complex arc hyperbolic cosine 
of  z   

  double complex casinh(double complex z);    Returns the complex arc hyperbolic sine of  z   

  double complex catanh(double complex z);    Returns the complex arc hyperbolic tangent 
of  z   

  double complex ccosh(double complex z);    Returns the complex hyperbolic cosine of  z   

  double complex csinh(double complex z);    Returns the complex hyperbolic sine of  z   

  double complex ctanh(double complex z);    Returns the complex hyperbolic tangent of z   

  double complex cexp(double complex z);    Returns the complex value of  e  to the  z  
power  

  double complex clog(double complex z);    Returns the complex natural (base  e ) loga-
rithm of  z .  

  double cabs(double complex z);    Returns absolute value (or magnitude) of  z   

  double complex cpows(double complex z, 
double complex y);   

 Returns the value of  z  raised to the  y  power  

  double complex csqrt(double complex z);    Returns the complex square root of  z   
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  Prototype     Description   

  double carg(double complex z);    Returns the phase angle (or argument), in 
radians, of  z   

  double cimag(double complex z);    Returns the imaginary part of  z  as a real 
number  

  double complex conj(double complex z);    Returns the complex conjugate of  z   

  double complex cproj(double complex z);    Returns the projection of  z  onto the Riemann 
sphere  

  double complex CMPLX(double x,double y);    Returns a  complex  number whose real com-
ponent is  x  and whose imaginary component 
is  y  (C11)  

  double creal(double complex z);    Returns the real part of  z  as a real number  

  Character Handling:  ctype.h   

 These functions take  int  arguments, which should be able to be represented as either 
 unsigned char  values or as  EOF ; the effect of supplying other values is undefined. In  Table 
  RS.V.4   , “true” is used as shorthand for “a nonzero value.” Interpretation of some definitions 
depends on the current locale setting, which is controlled by the functions of  locale.h ; the 
table shows the interpretations for the “C” locale.  

  Table RS.V.4   Character-Handling Functions  

  Prototype     Description   

  int isalnum(int c);    Returns true if  c  is alphanumeric (alphabetic or numeric).  

  int isalpha(int c);    Returns true if  c  is alphabetic.  

  int isblank(int c);    Returns true if  c  is a space or a horizontal tab. (C99)  

  int iscntrl(int c);    Returns true if  c  is a control character, such as Ctrl+B.  

  int isdigit(int c);    Returns true if  c  is a digit.  

  int isgraph(int c);    Returns true if  c  is any printing character other than a space.  

  int islower(int c);    Returns true if  c  is a lowercase character.  

  int isprint(int c);    Returns true if  c  is a printing character.  

  int ispunct(int c);    Returns true if  c  is a punctuation character (any printing character 
other than a space or an alphanumeric character).  
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  Prototype     Description   

  int isspace(int c);    Returns true if  c  is a whitespace character: space, newline, form 
feed, carriage return, vertical tab, horizontal tab, or, possibly, anoth-
er implementation-defined character.  

  int isupper(int c);    Returns true if  c  is an uppercase character.  

  int isxdigit(int c);    Returns true if  c  is a hexadecimal-digit character.  

  int tolower(int c);    If the argument is an uppercase character, returns the lowercase 
version; otherwise, just returns the original argument.  

  int toupper(int c);    If the argument is a lowercase character, returns the uppercase ver-
sion; otherwise, just returns the original argument.  

  Error Reporting:  errno.h   

 The  errno.h  header file supports an older error-reporting mechanism. The mechanism 
provides an external static memory location that can be accessed by the identifier (or, possibly, 
the macro)  ERRNO . Some library functions place a value in this location to report an error. A 
program including this header file then can check the value of  ERRNO  to see whether a particu-
lar error has been reported. The  ERRNO  mechanism is regarded as less than state of the art, and 
math functions no longer are required to set  ERRNO  values. The standard provides for three 
macro values representing particular errors, but an implementation can provide more.  Table    
RS.V.5    lists the standard macros.  

  Table RS.V.5   The  errno.h  Macros  

  Macro     Meaning   

  EDOM    A domain error in a function call (the argument is out of range)  

  ERANGE    A range error in a function return (the return value is out of range)  

  EILSEQ    A wide-character translation error  

  Floating-Point Environment:  fenv.h  (C99)  

 The C99 standard provides access to and control of the floating-point environment through the 
 fenv.h  header file.  

 The  floating-point environment  consists of a set of status flags and control modes. An exceptional 
circumstance that occurs during floating-point calculation, such as dividing by zero, can “raise 
an exception.” This means the event sets one of the floating-environment flags. The control 
mode value can control, for example, the direction of rounding. The  fenv.h  header defines a 
set of macros representing several exceptions and control modes, and it provides prototypes for 
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functions that interact with the environment. The header also provides a pragma for enabling 
or disabling access to the floating-point environment.  

 The directive  

  #pragma STDC FENV_ACCESS on   

 turns on access to the environment, and the directive  

  #pragma STDC FENV_ACCESS off   

 turns it off. If external, the pragma should be given before any outside declarations, or at the 
beginning of a compound block. It remains in effect until superseded by another occurrence of 
the pragma, or until the end of the file (external directive) or the end of the compound state-
ment (block directive).  

 The header file defines two types, shown in  Table   RS.V.6   .  

  Table RS.V.6   The  fenv.h  Types  

  Type     Represents   

  fenv_t    The entire floating-point environment  

  fexcept_t    The collection of floating-point status flags  

 The header file defines macros representing several possible floating-point exceptions and 
control states. The implementation may define additional macros, provided they begin with 
 FE_  followed by an uppercase character.  Table   RS.V.7    shows the standard exception macros.  

  Table RS.V.7   The  fenv.h  Types  

  Macro     Represents   

  FE_DIVBYZERO    Division-by-zero exception raised  

  FE_INEXACT    Inexact value exception raised  

  FE_INVALID    Invalid value exception raised  

  FE_OVERFLOW    Overflow exception raised  

  FE_UNDERFLOW    Underflow exception raised  

  FE_ALL_EXCEPT    The bitwise OR of all the floating-point exceptions supported by the implemen-
tation  

  FE_DOWNWARD    Rounds downward  

  FE_TONEAREST    Rounds to the nearest value  

  FE_TOWARDZERO    Rounds toward zero  
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  Macro     Represents   

  FE_UPWARD    Rounds  upward  

  FE_DFL_ENV    Represents the default environment and has the type  const fenv_t * .  

  Table   RS.V.8    shows the standard function prototypes in the  fenv.h  header file. Note that often 
argument values and return values correspond to the macros in  Table   RS.V.7   . For example, 
 FE_UPWARD  is an appropriate argument for  fesetround() .  

  Table RS.V.8   The  fenv.h  Types 

  Prototype     Description   

  void feclearexcept(int excepts);    Clears the exceptions represented by  excepts .  

  void fegetexceptflag
(fexcept_t *flagp, int excepts);   

 Stores the states of the floating-point status flags 
indicated by  excepts  in the object pointed to by 
 flagp .  

  void feraiseexcept(int excepts);    Raises the exceptions specified by  excepts .  

  void fesetexceptflag
(const fexcept_t *flagp, int 

excepts);   

 Sets those floating-point status flags indicated by 
 excepts  to the values provided by  flagp ;  flagp  
should have been set by a previous call to  feget-
exceptflag() .  

  int fetestexcept(int excepts);     excepts  specifies the status flags to be queried; 
the function returns the bitwise OR of those speci-
fied status flags.  

  int fegetround(void);    Returns the current rounding direction.  

  int fesetround(int round);    Sets the rounding direction to the value provided by 
 round ; returns 0 if and only if successful.  

  void fegetenv(fenv_t *envp);    Stores the current environment in the location point-
ed to by  envp .  

  int feholdexcept(fenv_t *envp);    Saves the current floating-point environment in the 
location pointed to by  envp , clears the floating-point 
status flags, and then, if possible, installs a non-
stop mode, in which execution continues despite 
exceptions; returns 0 if and only if successful.  

  void fesetenv(const fenv_t *envp);    Installs the floating-point environment represented 
by  envp ;  envp  should point to a data object set by 
a prior call to  fegetenv()  or  feholdexcept() , or 
to a floating-point environment macro.  
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  Prototype     Description   

  void feupdateenv
(const fenv_t *envp);   

 Function saves the currently raised floating-point 
exceptions in automatic storage, installs the 
floating-point environment represented by the object 
pointed to by  envp , and then raises the saved float-
ing-point exceptions;  envp  should point to a data 
object set by a prior call to  fegetenv()  or  fehold-
except() , or to a floating-point environment macro.  

  Floating-point Characteristics:  float.h   

 The  float.h  header file defines several macros representing various limits and parameters. 
 Table   RS.V.9    lists the macros, with C11 additions shown in italics. Many of the macros refer to 
this model of floating-point representation:          

x = sbe fkb
�k

k = 1

p 

 If the very first digit  f 1   is nonzero (and  x  is nonzero), the number is termed a  normalized float-
ing-point number . Section VIII of this appendix explains this and the meanings of some of these 
macros more fully.  

  Table RS.V.9   The  float.h  Macros  

  Macro     Represents   

  FLT_ROUNDS    Default rounding scheme  

  FLT_EVAL_METHOD    Default scheme for evaluating floating-point expressions  

   FLT_HAS_SUBNORM     Presence or absences of  float  subnormal numbers  

   DBL_HAS_SUBNORM     Presence or absences of  double  subnormal numbers  

   LDBL_HAS_SUBNORM     Presence or absences of  long double  subnormal numbers  

  FLT_RADIX    The radix ( b ) used in exponential representation (minimum value of 2)  

  FLT_MANT_DIG    Number of digits in base- FLT_RADIX  representation ( p ) in the signifi-
cand for  float   

  DBL_MANT_DIG    Number of digits in base- FLT_RADIX  representation ( p ) in the signifi-
cand for  double   

  LDBL_MANT_DIG    Number of digits in base- FLT_RADIX  representation ( p ) in the signifi-
cand for  longdouble   

   FLT_DECIMAL_DIG     Number of decimal digits for a  float  that can be converted from base 
 b  to base 10 and back to base  b  with no change in value (minimum 
value of 6)  
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  Macro     Represents   

   DBL_DECIMAL_DIG     Number of decimal digits for a  double  that can be converted from base 
 b  to base 10 and back to base  b  with no change in value (minimum 
value of 10)  

   LDBL_DECIMAL_DIG     Number of decimal digits for a  long double  that can be converted 
from base  b  to base 10 and back to base  b  with no change in value 
(minimum value of 10)  

  DECIMAL_DIG    Number of decimal digits for the widest supported floating type that 
can be converted from base  b  to base 10 and back to base  b  with no 
change in value (minimum value of 10)  

  FLT_DIG    Number of decimal digits for a  float  that can be converted from base 
10 to base  b  and back to base 10 with no change in value (minimum 
value of 6)  

  DBL_DIG    Number of decimal digits for a  double  that can be converted from base 
10 to base  b  and back to base 10 with no change in value (minimum 
value of 10)  

  LDBL_DIG    Number of decimal digits for a  long double  that can be converted 
from base 10 to base  b  and back to base 10 with no change in value 
(minimum value of 10)  

  FLT_MIN_EXP    Minimum negative integer value for  e  for  float   

  DBL_MIN_EXP    Minimum negative integer value for  e  for  double   

  LDBL_MIN_EXP    Minimum negative integer value for  e  for  long double   

  FLT_MIN_10_EXP    Minimum negative integer such that 10 to that power is still a normal-
ized  float  number (no larger than -37)  

  DBL_MIN_10_EXP    Minimum negative integer such that 10 to that power is still a normal-
ized  double  number (no larger than -37)  

  LDBL_MIN_10_EXP    Minimum negative integer such that 10 to that power is still a normal-
ized  long double  number (no larger than -37)  

  FLT_MAX_EXP    Maximum positive integer value for  e  for  float   

  DBL_MAX_EXP    Maximum positive integer value for  e  for  long   

  LDBL_MAX_EXP    Maximum positive integer value for  e  for  long double )  

  FLT_MAX_10_EXP    Maximum positive integer such that 10 to that power is in the range of 
representable finite  float  values (at least +37)  

  DBL_MAX_10_EXP    Maximum positive integer such that 10 to that power is in the range of 
representable finite  double  values (at least +37)  

  LDBL_MAX_10_EXP    Maximum positive integer such that 10 to that power is in the range of 
representable finite  long double  values (at least +37)  
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  Macro     Represents   

  FLT_MAX    Maximum representable finite  float  value (at least 1E+37)  

  DBL_MAX    Maximum representable finite  double  value (at least 1E+37)  

  LDBL_MAX    Maximum representable finite  long double  value (at least 1E+37)  

  FLT_EPSILON    Difference between 1 and the least value greater than 1 for  float  (no 
more than 1E-5)  

  DBL_EPSILON    Difference between 1 and the least value greater than 1 for  double  (no 
more than 1E-9)  

  LDBL_EPSILON    Difference between 1 and the least value greater than 1 for  long dou-
ble  (no more than 1E-9)  

  FLT_MIN    Smallest positive normalized  float  value (no more than 1E-37)  

  DBL_MIN    Smallest positive normalized  double  value (no more than 1E-37)  

  LDBL_MIN    Smallest positive normalized  long double  value (no more than 1E-37)  

   FLT_TRUE_MIN     Smallest positive  float  value (no more than 1E-37)  

   DBL_TRUE_MIN     Smallest positive  double  value (no more than 1E-37)  

   LDBL_TRUE_MIN     Smallest positive  long double  value (no more than 1E-37)  

  Format Conversion of Integer Types:  inttypes.h  (C99)  

 This header file defines several macros that can be used as format specifiers for the expanded 
integer types. Reference Section VI, “Extended Integer Types,” discusses these further. This 
header file also declares the following type:  

  imaxdiv_t   

 This is a structure type representing the return value of the  idivmax()  function.  

 This header file also includes  stdint.h  and declares several functions that use the greatest-
width integer type, which is declared as  intmax  in  stdint.h .  Table   RS.V.10    lists these 
functions.  

  Table RS.V.10   Greatest-Width Integer Functions  

  Prototype     Description   

  intmax_t imaxabs(intmax_t j);    Returns the absolute value of  j   

  imaxdiv_t imaxdiv(intmax_t numer, 
intmax_t denom);   

 Computes the quotient and remainder of 
 numer / denom  in a single operation and stores 
the two values in the returned structure  
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  Prototype     Description   

  intmax_t strtoimax(const char * 
restrict nptr, char ** restrict endp-

tr, int base);   

 Equivalent to the  strtol() function, except 
that it converts the string to type  intmax_t  and 
returns that value  

  uintmax_t strtoumax(const char * 
restrict nptr, char ** restrict endp-

tr, int base);   

 Equivalent to the  strtoul() function, except 
that it converts the string to type  uintmax_t  and 
returns that value  

  intmax_t wcstoimax(const wchar_t * 
restrict nptr, wchar_t ** restrict 

endptr, int base);   

 The  wchar_t version of  strtoimax()   

  uintmax_t wcstoumax(const wchar_t * 
restrict nptr, wchar_t ** restrict 

endptr, int base);   

 The  wchar_t  version  of  strtoumax()   

  Alternative Spellings:  iso646.h   

 This header provides 11 macros that expand to the indicated operators, as shown in  Table 
  RS.V.11   .  

  Table RS.V.11   Alternative Spellings  

  Macro     Operator     Macro     Operator     Macro     Operator   

  and     &&     and_eq     &=     bitand     &   

  bitor     |     compl     ~     not     !   

  not_eq     !=     or     ||     or_eq     |=   

  xor     ̂      xor_eq     ̂ =   

  Localization:  locale.h   

 A  locale  is a group of settings that controls items such as the symbol used as a decimal point. 
Locale values are stored in a structure of type  struct lconv , defined in the  locale.h  header 
file. A locale can be specified by a string, which acts to specify a particular set of values for the 
structure members. The default locale is designated by the string  "C" .  Table   RS.V.12    lists the 
localization functions, and a brief discussion follows.  
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  Table RS.V.12   Localization Functions  

  Prototype     Description   

  char * setlocale
(int category, const 

char * locale);   

 The function sets certain locale values to the values specified by the 
locale and indicated by  locale . The  category  value controls which 
locale values get set (see  Table   RS.V.11   ). The function returns the null 
pointer if it cannot honor the request. Otherwise, it returns a pointer 
associated with the specified category in the new locale.  

  struct lconv * 
localeconv(void);   

 Returns a pointer to a  struct lconv  structure filled in with the values 
of the current locale.  

 The required possible values for the  locale  parameter to  setlocale()  are  "C" , which is the 
default, and  "" , which represents the implementation-defined native environment. An imple-
mentation can define additional locales. The possible values for the  category  parameter to 
 setlocale()  are represented by the macros listed in  Table   RS.V.13   .  

  Table RS.V.13   Category Macros  

  Macro     Description   

  NULL    Leave the locale unchanged and return a pointer to the current locale.  

  LC_ALL    Change all locale values.  

  LC_COLLATE    Change locale values for the collating sequence used by  strcoll()  and  strx-
frm() .  

  LC_CTYPE    Change locale values for the character-handling functions and the multibyte func-
tions.  

  LC_MONETARY    Change locale values for monetary-formatting information.  

  LC_NUMERIC    Change locale values for the decimal point symbol and non-monetary formatting 
used by formatted I/O and by string-conversion functions.  

  LC_TIME    Change locale values for the time formatting used by  strftime() .  
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  Table   RS.V.14    lists the required members of a  struct lconv  structure.  

  Table RS.V.14   Required  struct lconv  Members  

  Macro     Description   

  char *decimal_point    Decimal-point character for non-monetary values.  

  char *thousands_sep    Character used to separate groups of digits before the decimal 
point for non-monetary quantities.  

  char *grouping    A string whose elements indicate the size of each group of dig-
its for non-monetary quantities.  

  char *int_curr_symbol    The international currency symbol.  

  char *currency_symbol    The local currency symbol.  

  char *mon_decimal_point    Decimal-point character for monetary values.  

  char *mon_thousands_sep    Character used to separate groups of digits before the decimal 
point for monetary quantities.  

  char *mon_grouping    A string whose elements indicate the size of each group of dig-
its for monetary quantities.  

  char *positive_sign    String used to indicate a non-negative formatted monetary 
value.  

  char *negative_sign    String used to indicate a negative formatted monetary value.  

  char int_frac_digits    Number of digits displayed after the decimal point for an inter-
nationally formatted monetary quantity.  

  char frac_digits    Number of digits displayed after the decimal point for a locally 
formatted monetary quantity.  

  char p_cs_precedes    Set to  1  or  0  depending on whether  currency_symbol  pre-
cedes or follows the value of a non-negative formatted mon-
etary quantity.  

  char p_sep_by_space    Set to  1  or  0  depending on whether  currency_symbol  is 
separated by a space from the value of a non-negative format-
ted monetary quantity.  

  char n_cs_precedes    Set to  1  or  0  depending on whether  currency_symbol  pre-
cedes or follows the value of a negative formatted monetary 
quantity.  

  char n_sep_by_space    Set to  1  or  0  depending on whether  currency_symbol  is 
separated by a space from the value of a negative formatted 
monetary quantity.  
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  Macro     Description   

  char p_sign_posn    Set to a value indicating the positioning of a  positive_sign  
string;  0  means parentheses surround the quantity and cur-
rency symbol,  1  means the string precedes the quantity and 
currency symbol,  2  means the string follows the quantity and 
currency symbol,  3  means the string immediately precedes the 
currency symbol, and  4  means the string immediately follows 
the currency symbol.  

  char n_sign_posn    Set to a value indicating the positioning of a  negative_sign  
string; the meaning is the same as for  char p_sign_posn .  

  char int_p_cs_precedes    Set to  1  or  0  depending on whether  int_currency_symbol  
precedes or follows the value of a non-negative formatted mon-
etary quantity.  

  char int_p_sep_by_space    Set to  1  or  0  depending on whether  int_currency_symbol  is 
separated by a space from the value of a non-negative format-
ted monetary quantity.  

  char int_n_cs_precedes    Set to  1  or  0  depending on whether  int_currency_symbol  
precedes or follows the value of a negative formatted monetary 
quantity.  

  char int_n_sep_by_space    Set to  1  or  0  depending on whether  int_currency_symbol  is 
separated by a space from the value of a negative formatted 
monetary quantity.  

  char int_p_sign_posn    Set to a value indicating the positioning of the  positive_sign  
for a non-negative internationally formatted monetary quantity.  

  char int_n_sign_posn    Set to a value indicating the positioning of  negative_sign  for 
a negative internationally formatted monetary quantity.  

  Math Library:  math.h   

 With C99, the  math.h  header file defines two types:  

  float_t

  double_t   

 These types are at least as wide as  float  and  double , respectively, and  double_t  is at least as 
wide as  float_t . These are intended to be the most efficient types for doing  float  and  double  
calculations, respectively.  

 This header file also defines several macros, as described in  Table   RS.V.15   ; all but  HUGE_VAL  
are C99 additions. Some of these are discussed in more detail in Section VIII, “C99 Numeric 
Computational Enhancements.”  
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  Table RS.V.15   The  math.h  Macros 

  Macro     Description   

  HUGE_VAL    A positive double constant not necessarily expressible as a float; in the 
past, it was used as the return value for functions when the magnitude 
of the result exceeded the largest representable value.  

  HUGE_VALF    The type  float  counterpart of  HUGE_VAL .  

  HUGE_VALL    The type  long double  counterpart of  HUGE_VAL .  

  INFINITY    Expands to a constant  float  expression representing positive or 
unsigned infinity, if available; otherwise, expands to a positive float con-
stant that overflows during compile time.  

  NAN    Defined, if and only if, the implementation supports quiet NaNs (a value 
signifying Not-a-Number) for  float .  

  FP_INFINITE    Classification number indicating an infinite floating-point value.  

  FP_NAN    Classification number indicating a floating-point value that is not a num-
ber.  

  FP_NORMAL    Classification number indicating a normal floating-point value.  

  FP_SUBNORMAL    Classification number indicating a subnormal (lowered precision) 
floating-point value.  

  FP_ZERO    Classification number indicating a floating-point value representing 0.  

  FP_FAST_FMA    (Optional) If defined, this macro indicates that the  fma()  function works 
about as fast, or faster than, a multiply and add of  double  operands.  

  FP_FAST_FMAF    (Optional) If defined, this macro indicates that the  fmaf()  function 
works about as fast, or faster than, a multiply and add of  float  oper-
ands.  

  FP_FAST_FMAL    (Optional) If defined, this macro indicates that the  fmal()  function 
works about as fast, or faster than, a multiply and add of  long double  
operands.  

  FP_ILOGB0    An integer constant expression representing the value returned by 
 ilogb(0) .  

  FP_ILOGBNAN    An integer constant expression representing the value returned by 
 ilogb(NaN) .  

  MATH_ERRNO    Expands to the integer constant 1.  

  MATH_ERREXCEPT    Expands to the integer constant 2.  

  math_errhandling    Has the value  MATH_ERRNO  or  MATH_ERREXCEPT  or the bitwise OR of 
those two values.  
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 The math functions typically work with type  double  values. C99 has added  float  and  long 
double  versions of these functions, which are indicated by adding an  f  suffix and an  l  suffix, 
respectively, to the function name. For example, the language now provides these prototypes:  

  double sin(double);

  float sinf(float);

  long double sinl(long double);   

 For brevity,  Table   RS.V.16    lists just the  double  versions of the functions of the math library. 
The table refers to  FLT_RADIX . This constant, defined in  float.h , is the base used for exponen-
tiation in the internal floating-point representation. The most common value is  2 .  

  Table RS.V.16   ANSI C Standard Math Functions  

  Prototype     Description   

  int classify(   real-floating    x);    A C99 macro that returns the floating-point classifica-
tion value appropriate for  x .  

  int isfinite(   real-floating    x);    A C99 macro that returns a nonzero value if, and only 
if,  x  is finite.  

  int isfin(   real-floating    x);    A C99 macro that returns a nonzero value if, and only 
if,  x  is infinite.  

  int isnan(   real-floating    x);    A C99 macro that returns a nonzero value if, and only 
if,  x  is a NaN.  

  int isnormal(   real-floating    x);    A C99 macro that returns a nonzero value if, and only 
if,  x  is normal.  

  int signbit(   real-floating    x);    A C99 macro that returns a nonzero value if, and only 
if, the sign of  x  is negative.  

  double acos(double x);    Returns the angle (0 to π radians) whose cosine is  x .  

  double asin(double x);    Returns the angle (−π/2 to π/2 radians) whose sine 
is  x .  

  double atan(double x);    Returns the angle (−π/2 to π/2 radians) whose tan-
gent is  x .  

  double atan2(double y, double x);    Returns the angle (−π to π radians) whose tangent is 
 y / x .  

  double cos(double x);    Returns the cosine of  x  ( x  in radians).  

  double sin(double x);    Returns the sine of  x  ( x  in radians).  

  double tan(double x);    Returns the tangent of  x  ( x  in radians).  

  double cosh(double x);    Returns the hyperbolic cosine of  x .  

  double sinh(double x);    Returns the hyperbolic sine of  x .  
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  Prototype     Description   

  double tanh(double x);    Returns the hyperbolic tangent of  x .  

  double exp(double x);    Returns the exponential function of  x  (e x ).  

  double exp2(double x);    Returns 2 to the  x  power (C99).  

  double expm1(double x);    Returns  e x  - 1  (C99).  

  double frexp(double v, int *pt_e);    Breaks a value,  v , into a normalized fraction, which 
is returned, and a power of 2, which is placed in the 
location pointed to by  pt_e .  

  int ilogb(double x);    Returns the exponent of  x  as a signed  int  (C99).  

  double ldexp(double x, int p);    Returns 2 to the  p  power times  x .  

  double log(double x);    Returns the natural logarithm of  x .  

  double log10(double x);    Returns the base 10 logarithm of  x .  

  double log1p(double x);    Returns  log(1 + x)  (C99).  

  double log2(double x);    Returns the base 2 logarithm of  x  (C99).  

  double logb(double x);    Returns the signed exponent of its argument for the 
underlying base used to represent floating-point val-
ues on the system ( FLT_RADIX ) (C99).  

  double modf(double x, double *p);    Breaks  x  into an integral part and a fraction part, 
both of the same sign, returns the fractional part, and 
stores the integral part in the location pointed to by  p .  

  double scalbn(double x, int n);    Returns  x  ×  FLT_RADIX n   (C99).  

  double scalbln(double x, long n);    Returns  x  ×  FLT_RADIX n   (C99).  

  double cbrt(double x);    Returns the cube root of  x  (C99).  

  double hypot(double x, double y);    Returns the square root of the sums of the squares 
of  x  and  y  (C99).  

  double pow(double x, double y);    Returns  x  to the  y  power.  

  double sqrt(double x);    Returns the square root of  x .  

  double erf(double x);    Returns the error function of  x  (C99).  

  double erfc(double x);    Returns the complementary error function of  x  (C99).  

  double lgamma(double x);    Returns the natural logarithm of the absolute value of 
the gamma function of  x  (C99).  

  double tgamma(double x);    Returns the gamma function of  x  (C99).  

  double ceil(double x);    Returns the smallest integral value not less than  x .  

  double fabs(double x);    Returns the absolute value of  x .  
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  Prototype     Description   

  double floor(double x);    Returns the largest integral value not greater than  x .  

  double nearbyint(double x);    Rounds  x  to the nearest integer in floating-point for-
mat; it uses the rounding direction specified by the 
floating-point environment, if available. The “inexact” 
exception is not raised. (C99).  

  double rint(double x);    Like  nearbyint() , except it may raise the “inexact” 
exception (C99).  

  long int lrint(double x);    Rounds  x  to the nearest integer in  long int  format; 
it uses the rounding direction specified by the floating-
point environment, if available (C99).  

  long long int llrint(double x);    Rounds  x  to the nearest integer in  long long int  
format; it uses the rounding direction specified by the 
floating-point environment, if available (C99).  

  double round(double x);    Rounds  x  to the nearest integer in floating-point for-
mat; it always rounds halfway values away from zero 
(C99).  

  long int lround(double x);    Like  round() , but the answer is returned as type 
 long int  (C99).  

  long long int llround(double x);    Like  round() , but the answer is returned as type 
 long long int  (C99).  

  double trunc(double x);    Rounds  x  to the nearest integer in floating-point for-
mat that is no greater in magnitude than  x  (C99).  

  int fmod(double x, double y);    Returns the fractional part of  x/y ; if  y  is nonzero, the 
result has the same sign as  x  and is smaller in mag-
nitude than  y .  

  double remainder(double x, double 
y);   

 Returns  x REM y , which IEC 60559 defines as  
x - n*y , where  n  is the integer nearest the value of 
 x/y ;  n  is even if the absolute value of ( n - x/y ) is 
1/2. (C99).  

  double remquo(double x, double y, 
int *quo);   

 Returns the same value as  remainder()  and places 
in the location pointed to by  quo  a value having the 
same sign as  x/y  and having the value the integer 
magnitude of  x/y  modulus  2 k  , where  k  is an imple-
mentation-dependent integer whose value is at least 
3 (C99).  

  double copysign(double x, double 
y);   

 Returns a value with the magnitude of  x  and the sign 
of  y  (C99).  
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  Prototype     Description   

  double nan(const char *tagp);    Returns the type  double  representation of a 
quiet NaN;  nan("   n-char-seq   ")  is equivalent to 
 strtod("NAN(   n-char-seq   )", (char **)NULL) ; 
 nan("")  is equivalent to  strtod("NAN()", (char 
**)NULL) ; for other argument strings, the call is 
equivalent to  strtod("NAN", (char **)NULL) . 
Returns 0 if quiet NaNs are not supported (C99).  

  double nextafter(double x, double 
y);   

 Returns the next representable type  double  value 
after  x  in the direction of  y ; returns  x  if  x  equals  y  
(C99).  

  double nexttoward(double x, long 
double y);   

 The same as  nextafter() , except the second argu-
ment is  long double  and, if  x  equals  y , the function 
returns  y  converted to  double  (C99).  

  double fdim(double x, double y);    Returns the positive difference of the arguments 
(C99).  

  double fmax(double x, double y);    Returns the maximum numeric value of the argu-
ments; if one argument is a NaN and the other 
numeric, the numeric value is returned (C99).  

  double fmin(double x, double y);    Returns the minimum numeric value of the argu-
ments. If one argument is a NaN and the other 
numeric, the numeric value is returned (C99).  

  double fma(double x, double y, 
double z);   

 Returns the quantity  (x*y)+z  as a ternary operation, 
rounding once at the end (C99).  

  int isgreater(real-floating x, 
real-floating y);   

 A C99 macro that returns the value of  (x) > (y)  
without raising the “invalid” floating-point exception if 
one or both arguments are NaNs.  

  int isgreaterequal(real-floating 
x,real-floating y);   

 A C99 macro that returns the value of  (x) >= (y)  
without raising the “invalid” floating-point exception if 
one or both arguments are NaNs.  

  int isless(real-floating x, real-
floating y);   

 A C99 macro that returns the value of  (x) < (y)  
without raising the “invalid” floating-point exception if 
one or both arguments are NaNs.  

  int islessequal(real-floating x, 
real-floating y);   

 A C99 macro that returns the value of  (x) <= (y)  
without raising the “invalid” floating-point exception if 
one or both arguments are NaNs.  

  int islessgreater(real-floating x, 
real-floating y);   

 A C99 macro that returns the value of  (x) < (y) || 
(x) >(y)  without raising the “invalid” floating-point 
exception if one or both arguments are NaNs.  

  int isunordered(real-floating x, 
real-floating y);   

 Returns one if the arguments are unordered (at least 
one being a Nan) and zero otherwise.  
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  Non-Local Jumps:  setjmp.h   

 The  setjmp.h  header file enables you to bypass the usual function-call, function-return 
sequence. The  setjmp()  function stores information about the current execution environment 
(for example, a pointer to the current instruction) in a type  jmp_buf  variable (an array type 
defined in this header file), and the l ongjmp()  function transfers execution to such an envi-
ronment. The functions are intended to help handle error conditions, not to be used as part of 
normal program flow control.  Table   RS.V.17    lists the functions.  

  Table RS.V.17   The  setjmp.h  Functions  

  Prototype     Description   

  int setjmp(jmp_buf env);    Saves the calling environment in the array  env  and returns 
 0  if called directly and nonzero if the return is from a call to 
 longjmp() .  

  void longjmp(jmp_buf env, 
int val);   

 Restores the environment saved by the most recent evocation of 
 setjmp()  that set the  env  array; after completing this change, 
the program continues as though that evocation of  setjmp()  
had returned  val , except that a return value of  0  is not allowed 
and is converted to  1 .  

  Signal Handling:  signal.h   
 A  signal  is a condition that can be reported during program execution. It is represented by a 
positive integer. The  raise()  function sends, or  raises , a signal, and the  signal()  function 
sets the response to a particular signal.  

 The standard defines an integer type,  sig_atomic_t , used to specify objects that are atomic 
with respect to signal handlers. That is, updating an atomic type is an indivisible process.  

 The standard provides the macros listed in  Table   RS.V.18    to represent possible signals; an imple-
mentation can add further values. They can be used as arguments to  raise()  and  signal() .  

  Table RS.V.18   Signal Macros  

  Macro     Description   

  SIGABRT    Abnormal termination, such as initiated by a call to  abort() .  

  SIGFPE    Erroneous arithmetic operation.  

  SIGILL    Invalid function image (such as illegal instruction) detected.  

  SIGINT    Interactive attention signal received (such as a DOS interrupt).  

  SIGSEGV    Invalid access to storage.  

  SIGTERM    Termination request sent to program.  
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 The  signal()  function takes as its second argument a pointer to a  void  function that takes an 
 int  argument. It also returns a pointer of the same type. A function invoked in response to a 
signal is termed a  signal handler . The standard defines three macros fitting this prototype:  

  void  (*funct)(int);   

  Table   RS.V.19    lists these macros.  

  Table RS.V.19   Type  void (*f)(int)  Macros  

  Macro     Description   

  SIG_DFL    When used as an argument to  signal() , along with a signal value, this macro 
indicates that the default handling for that signal will occur.  

  SIG_ERR    Used as a return value for  signal()  if it cannot return its second argument.  

  SIG_IGN    When used as an argument to  signal() , along with a signal value, this macro 
indicates that the signal will be ignored.  

 If the signal  sig  is raised and  func  points to a function (see the  signal()  prototype in 
 Table   RS.V.20   ), first, under most circumstances,  signal(sig, SIG_DFL)  is called to reset 
signal handling to the default, and then  (*func)(sig)  is called. The signal-handling func-
tion pointed to by  func  can terminate by executing a return statement or by calling  abort() , 
 exit() , or  longjmp() .  Table   RS.V.20    lists the signal functions.  

  Table RS.V.20   Signal Functions  

  Prototype     Description   

  void (*signal(int 
sig, void (*func)

(int)))(int);   

 Causes the function pointed to by  func  to be executed if signal  sig  is 
raised. If possible, returns  func ; otherwise, returns  SIG_ERR .  

  int raise(int sig);    Sends the signal  sig  to the executing program; returns zero if suc-
cessful and nonzero otherwise.  

  Alignment:  stdalign.h  (C11)  

 The  stdalign.h  header file defines four macros relating to determining and specifying align-
ment properties of data objects.  Table   RS.V.21    lists these macros. The first two create aliases 
that are compatible with C++ usage.  
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  Table RS.V.21    stdalign.h  Macros  

  Macro     Description   

  alignas    Expands to the keyword  _Alignas .  

  alignof    Expands to the keyword  _Alignof .  

  _ _alignas_is_defined    Expands to the integer constant 1, suitable to be used with  #if .  

  _ _alignof_is_defined    Expands to the integer constant 1, suitable to be used with  #if .  

  Variable Arguments:  stdarg.h   
 The  stdarg.h  header file provides a means for defining a function having a variable number 
of arguments. The prototype for such a function should have a parameter list with at least one 
parameter followed by ellipses:  

  void f1(int n, ...);                 /* valid   */

  int f2(int n, float x, int k, ...);  /* valid   */

  double  f3(...);                       /* invalid */   

 In the following table, the term   parmN   is the identifier used for the last parameter preceding 
the ellipses. In the preceding examples,   parmN   would be  n  for the first case and  k  for the second 
case.  

 The header file declares a  va_list  type to represent a data object used to hold the parameters 
corresponding to the ellipses part of the parameter list.  Table   RS.V.22    lists three macros to be 
used in the function with the variable parameter list. An object of type  va_list  should be 
declared before using these macros.  

  Table RS.V.22   Variable Argument List Macros  

  Prototype     Description   

  void va_start(va_list 
ap,    parmN   );   

 This macro initializes  ap  before use by  va_arg ()  and  va_end() ; 
  parmN   is the identifier for the last named parameter in the argument 
list.  

  void va_copy(va_list 
dest, va_list src);   

 This macro initializes  dest  as a copy of the current state of  src  
(C99).  

   type    va_arg(va_list 
ap,    type   );   

 This macro expands to an expression having the same value and type 
as the next item in the argument list represented by  ap ;   type   is the 
type for that item. Each call advances to the next item in  ap .  

  void va_end(va_list 
ap);   

 This macro closes out the process and may render  ap  unusable with-
out another call to  va_start() .  

  void va_copy(va_list 
dest, va_list src);   

 This macro initializes  dest  as a copy of the current state of  src  
(C99).  
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  Atomics Support:  stdatomic.h  (C11)  

 This header file, along with  threads.h , provides support for concurrent programming. This 
topic is well beyond the scope of this book, but, in general terms, the  stdatomic.h  header 
file provides macros for creating atomic operations. The programming community uses the 
term  atomic  as Democritus did in his theory of matter, meaning indivisible. An operation, 
such as assigning one structure to another, may appear to be atomic at the programming level 
but may consist of multiple steps at the machine language level. If a program is split into 
multiple threads, one thread might read or modify data that a second thread is in the  process 
of using. You could, for instance, wind up with a chimera of a structure having some members 
assigned values by one thread and other members assigned values by a different thread. The 
 stdatomic.h  header file enables you to create operations that act as if they were atomic so 
that one thread cannot interrupt the work of another thread.   

  Boolean Support:  stdbool.h  (C99)  

 This header file defines the four macros shown in  Table   RS.V.23   .  

  Table RS.V.23   The  stdbool.h  Macros  

  Macro     Description   

  bool    Expands to  _Bool   

  false    Expands to the integer constant 0  

  true    Expands to the integer constant 1  

  _ _bool_true_false_
are_defined   

 Expands to the integer constant 1  

  Common Definitions:  stddef.h   

 This header file defines some types and macros, as shown in  Tables   RS.V.24    and    RS.V.25     

  Table RS.V.24   The  stddef.h  Types  

  Type     Description   

  ptrdiff_t    A signed integer type for representing the result of subtracting one pointer from 
another  

  size_t    An unsigned integer type representing the result of the  sizeof  operator  

  wchar_t    An integer type that can represent the largest extended character set specified 
by supported locales  
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  Table RS.V.25   The  stddef.h  Macros  

  Macro     Description   

  NULL    An implementation-defined constant representing the null pointer.  

  offsetof(type,    
member-designator   )   

 Expands to a  size_t  value representing the offset, in bytes, of the 
indicated member from the beginning of a structure having type   type  ; 
the behavior undefined if the member is a bit field.  

  Example  

  #include <stddef.h>

  

  struct car

  {

      char brand[30];

      char model[30];

      double hp;

      double price;

  };

  int main(void)

  {

      size_t into = offsetof(struct car, hp);  /* offset of hp member */

      ...     

  Integer Types:  stdint.h   

 This header file uses the  typedef  facility to create integer type names that specify the proper-
ties of the integers. This header file is included by the  inttypes.h  header file, which provides 
macros for use in input/output function calls. Reference Section VI (“Extended Integer Types”) 
outlines how these types may be used.  

  Exact-Width Types  

 One set of  typedef s identify types with precise sizes.  Table   RS.V.26    lists the names and sizes. 
Note, however, that not all systems may be able to support all the types.  

  Table RS.V.26   Exact-Width Types  

   typedef  Name     Properties   

  int8_t    8 bits signed  

  int16_t    16 bits signed  

  int32_t    32 bits signed  
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   typedef  Name     Properties   

  int64_t    64 bits signed  

  uint8_t    8 bits unsigned  

  uint16_t    16 bits unsigned  

  uint32_t    32 bits unsigned  

  uint64_t    64 bits unsigned  

  Minimum-Width Types  

 The minimum-width types guarantee a type that is at least a certain number of bits in size. 
 Table   RS.V.27    lists the minimum-width types. These types always exist.  

  Table RS.V.27   Minimum Width Types  

   typedef  Name     Properties   

  int_least8_t    At least 8 bits signed  

  int_least16_t    At least 16 bits signed  

  int_least32_t    At least 32 bits signed  

  int_least64_t    At least 64 bits signed  

  uint_least8_t    At least 8 bits unsigned  

  uint_least16_t    At least 16 bits unsigned  

  uint_least32_t    At least 32 bits unsigned  

  uint_least64_t    At least 64 bits unsigned  

  Fastest Minimum-Width Types  

 For a particular system, some integer representations can be faster than others. So  stdint.h  
also defines the fastest type for representing at least a certain number of bits.  Table   RS.V.28    lists 
the fastest minimum-width types. These types always exist. In some cases, there might be no 
clear-cut choice for fastest; in that case, the system simply specifies one of the choices.  

  Table RS.V.28   Fastest Minimum-Width Types  

   typedef  Name     Properties   

  int_fast8_t    At least 8 bits signed  

  int_fast16_t    At least 16 bits signed  
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   typedef  Name     Properties   

  int_fast32_t    At least 32 bits signed  

  int_fast64_t    At least 64 bits signed  

  uint_fast8_t    At least 8 bits unsigned  

  uint_fast16_t    At least 16 bits unsigned  

  uint_fast32_t    At least 32 bits unsigned  

  uint_fast64_t    At least 64 bits unsigned  

  Maximum-Width Types  

 The  stdint.h header file also defines maximum-width types. A variable of this type can hold 
any integer value possible for the system, taking the sign into account.  Table   RS.V.29    lists the 
types.  

  Table RS.V.29   Maximum-Width Types  

   typedef  Name     Properties   

  intmax_t    The widest signed type  

  uintmax_t    The widest unsigned type  

  Integers That Can Hold Pointer Values  

 The header file also has two integer types, listed in  Table   RS.V.30   , that can hold pointer values 
accurately. That is, if you assign a type  void *  value to one of these types, and then assign the 
integer type back to the pointer, no information is lost. Either or both types might not exist.  

  Table RS.V.30   Integer Types for Holding Pointer Values  

   typedef  Name     Properties   

  intptr_t    Signed type can hold a pointer value.  

  uintptr_t    Unsigned type can hold a pointer value.  

  Defined Constants  

 The  stdint.h  header file defines constants representing limiting values for the types defined 
in that header file. The constants are named after the type. Take the type name, replace the 
 _t  with  _MIN  or  _MAX , and make all the characters uppercase to get the name of the constant 
representing the minimum or maximum value for the type. For example, the smallest value 
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for the  int32_t  type is  INT32_MIN , and the largest value for the  uint_fast16_t  type is 
 UINT_FAST16_MAX .  Table   RS.V.31    summarizes these constants, with   N   standing for the number 
of bits, along with defined constants relating to the  intptr_t ,  uintptr_t ,  intmax_t , and 
 uintmax_t  types. The magnitude of these  constants will equal or exceed (unless “exactly” is 
specified) the listed amount.  

  Table RS.V.31   Integer Constants  

  Constant Identifier     Minimum (in Magnitude) Value   

  INT   N   _MIN    Exactly –(2  N   -1 −1)  

  INT   N   _MAX    Exactly 2  N   -1 −1  

  UINT   N   _MAX    Exactly 2  N  −1  

  INT_LEAST   N   _MIN    −(2  N   -1 −1)  

  INT_LEAST   N   _MAX    2  N   -1 −1  

  UINT_LEAST   N   _MAX    2  N  −1  

  INT_FAST   N   _MIN    −(2  N   -1 −1)  

  INT_FAST   N   _MAX    2  N   -1 −1  

  UINT_FAST   N   _MAX    2  N  −1  

  INTPTR_MIN    –(2 15 −1)  

  INTPTR_MAX    2 15 −1  

  UINTPTR_MAX    2 16 −1  

  INTMAX_MIN    −(2 15 −1)  

  INTMAX_MAX    2 63 −1  

  UINTMAX_MAX    2 64 −1  

 The header file also defines some constants for types defined elsewhere.  Table   RS.V.32    lists 
them.  

  Table RS.V.32   Further Integer Constants  

   Constant Identifier      Meaning   

  PTRDIFF_MIN    Minimum value of the  ptrdiff_t  type  

  PTRDIFF_MAX    Maximum value of the  ptrdiff_t  type  

  SIG_ATOMIC_MIN    Minimum value of the  sig_atomic_t  type  

  SIG_ATOMIC_MAX    Maximum value of the  sig_atomic_t  type  



ptg11524036

953Section V: The Standard ANSI C Library with C99 and C11 Additions

   Constant Identifier      Meaning   

  WCHAR_MIN    Minimum value of the  wchar_t  type  

  WCHAR_MAX    Maximum value of the  wchar_t  type  

  WINT_MIN    Minimum value of the  wint_t  type  

  WINT_MAX    Maximum value of the  wint_t  type  

  SIZE_MAX    Maximum value of the  size_t  type  

  Extended Integer Constants  

 The  stdint.h  header file defines macros for specifying constants of the various extended 
integer types. Essentially, the macro is a type cast to the underlying type—that is, to the funda-
mental type that represents the extended type in a particular implementation.  

 The macro names are formed by taking the type name, replacing the  _t  with  _C , and making 
all the letters uppercase. For example, to make  1000  a type  uint_least64_t  constant, use the 
expression UINT_LEAST64_C(1000) .    

  Standard I/O Library:  stdio.h   

 The ANSI C standard library includes several standard I/O functions associated with streams 
and the  stdio.h  file.  Table   RS.V.33    presents the ANSI prototypes for these functions, along 
with a brief explanation of what they do. (Many are described more fully in  Chapter   13   , “File 
Input/Output.”) The header file also defines the  FILE  type, the values  EOF  and  NULL , and the 
standard I/O streams  stdin ,  stdout , and  stderr , along with several constants used by the 
functions in this library.  

  Table RS.V.33   C Standard I/O Functions  

  Prototype     Description   

  void clearerr(FILE *);    Clears end-of-file and error indicators  

  int fclose(FILE *);    Closes the indicated file  

  int feof(FILE *);    Tests for end-of-file  

  int ferror(FILE *);    Tests error indicator  

  int fflush(FILE *);    Flushes the indicated file  

  int fgetc(FILE *);    Gets the next character from the indicated input stream  

  int fgetpos(FILE * 
restrict, restrict);   

 Stores the current value  fpos_t *  of the file position indicator  
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  Prototype     Description   

  char * fgets(char * 
restrict, restrict);   

 Gets the next line (or  int ,  FILE *  indicated number of characters) 
from the indicated stream  

  FILE * fopen(const char 
* restrict, const char 

*restrict);   

 Opens the indicated file  

  int fprintf(FILE * 
restrict, const char * 

restrict, ...);   

 Writes the formatted output to the indicated stream  

  int fputc(int, FILE *);    Writes the indicated character to the indicated stream  

  int fputs(const char 
* restrict, FILE * 

restrict);   

 Writes the character string pointed to by the first argument to the 
indicated stream  

  size_t fread(void * 
restrict, size_t, size_t, 

FILE * restrict);   

 Reads binary data from the indicated stream  

  FILE * freopen(const 
char * restrict, const 

char * restrict, FILE * 

restrict);   

 Opens the indicated file and associates it with the indicated stream  

  int fscanf(FILE * 
restrict, const char * 

restrict, ...);   

 Reads formatted input from the indicated stream  

  int fsetpos(FILE *,const 
fpos_t *);   

 Sets the file-position pointer to the indicated value  

  int fseek(FILE *, long, 
int);   

 Sets the file-position pointer to the indicated value  

  long ftell(FILE *);    Gets the current file position  

  size_t fwrite(const void 
* restrict, size_t, 

size_t, FILE * restrict);   

 Writes binary data to the indicated stream  

  int getc(FILE *);    Reads the next character from the indicated input  

  int getchar();    Reads the next character from the standard input  

   char * gets(char *);     Gets the next line from the standard input (deleted from the library 
by C11)  

  void perror(const char 
*);   

 Writes system error messages to the standard error  
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  Prototype     Description   

  int printf(const char * 
restrict, ...);   

 Writes formatted output to the standard output  

  int putc(int, FILE *);    Writes the indicated character to the indicated output  

  int putchar(int);    Writes the indicated character to the standard output  

  int puts(const char *);    Writes the string to the standard output  

  int remove(const char *);    Removes the named file  

  int rename(const char *, 
constchar *);   

 Renames the named file  

  void rewind(FILE *);    Sets the file-position pointer to the start of the file  

  int scanf(const char * 
restrict, ...);   

 Reads formatted input from the standard input  

  void setbuf(FILE * 
restrict, char * 

restrict);   

 Sets the buffer size and location  

  int setvbuf(FILE * 
restrict, char *restrict, 

int, size_t);   

 Sets the buffer size, location, and mode  

  int snprintf(char * 
restrict, size_t n, const 

char * restrict, ...);   

 Writes formatted output up to  n  characters to the indicated string  

  int sprintf(char * 
restrict, const char * 

restrict, ...);   

 Writes formatted output to the indicated string  

  int sscanf(const char 
*restrict, const char * 

restrict, ...);   

 Reads formatted input from the indicated string  

  FILE * tmpfile(void);    Creates a temporary file  

  char * tmpnam(char *);    Generates a unique name for a temporary file  

  int ungetc(int, FILE *);    Pushes the indicated character back onto the input stream  

  int vfprintf(FILE * 
restrict, const char * 

restrict, va_list);   

 Like  fprintf() , except uses a single list-argument of type  va_
list , initialized by  va_start , instead of a variable argument list  

  int vprintf(const char * 
restrict, va_list);   

 Like  printf() , except uses a single list-argument of type  va_
list , initialized by  va_start , instead of a variable argument list  
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  Prototype     Description   

  int vsnprintf(char * 
restrict, size_t n); 

const char * restrict, 

va_list);   

 Like  snprintf() , except uses a single list- argument of type  va_
list  initialized by  va_start  instead of a variable argument list  

  int vsprintf(char * 
restrict, const char * 

restrict, va_list);   

 Like  sprintf() , except uses a single list-argument of type  va_
list  initialized by  va_start  instead of a variable argument list  

  int vscanf(const char * 
restrict, va list);   

 Like  scanf() , except uses a single list-argument of type  va_list  
initialized by  va_start  instead of a variable argument list  

  int vsscanf(const char 
* restrict,* restrict, 

va_list);   

 Like  sscanf() , except  const char  uses a single list-argument of 
type  va_list  initialized by  va_start  instead of a variable argu-
ment list  

  General Utilities:  stdlib.h   

 The ANSI C standard library includes a variety of utility functions defined in  stdlib.h . The 
header file defines the types shown in  Table   RS.V.34   .  

  Table RS.V.34   Types Declared in  stdlib.h   

  Type     Description   

  size_t    The integer type returned by the  sizeof  operator.  

  wchar_t    The integer type used to represent wide characters.  

  div_t    The structure type returned by  div() ; it has a  quot  and a  rem  member, both of type 
 int .  

  ldiv_t    The structure type returned by  ldiv() ; it has a  quot  and a  rem  member, both of type 
 long .  

  lldiv_t    The structure type returned by  lldiv() ; it has a  quot  and a  rem  member, both of 
type  long long . (C99)  

 The header file defines the constants listed in  Table   RS.V.35   .  
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  Table RS.V.35   Constants Defined in  stdlib.h   

  Type     Description   

  NULL    The null pointer (equivalent to 0)  

  EXIT_FAILURE    Can be used as an argument to  exit()  to indicate unsuccessful execution 
of a program  

  EXIT_SUCCESS    Can be used as an argument to  exit()  to indicate successful execution of 
a program  

  RAND_MAX    The maximum value (an integer) returned by  rand()   

  MB_CUR_MAX    The maximum number of bytes for a multibyte character for the extended 
character set corresponding to the current locale  

  Table   RS.V.36    lists the functions whose prototypes are found in stdlib.h .  

  Table RS.V.36   General Utilities  

  Prototype     Description   

  double atof(const 
char * nptr);   

 Returns the initial portion of the string  nptr  converted to a type  double  
value; conversion ends upon reaching the first character that is not part 
of the number; initial whitespace is skipped; zero is returned if no num-
ber is found.  

  int atoi(const char 
* nptr);   

 Returns the initial portion of the string  nptr  converted to a type  int  
value; conversion ends upon reaching the first character that is not part 
of the number; initial whitespace is skipped; zero is returned if no num-
ber is found.  

  int atol(const char 
* nptr);   

 Returns the initial portion of the string  nptr  converted to a type  long  
value; conversion ends upon reaching the first character that is not part 
of the number; initial whitespace is skipped; zero is returned if no num-
ber is found.  

  double 
strtod(restrict npt, 

char ** restrict 

ept);   

 Returns the initial  const char *  portion of the string  nptr  converted 
to a type  double  value; conversion ends upon reaching the first charac-
ter that is not part of the number; initial whitespace is skipped; zero is 
returned if no number is found. If conversion is successful, the address 
of the first character after the number is assigned to the location point-
ed to by  ept ; if conversion fails,  npt  is assigned to the location pointed 
to by  ept .  

  float strtof(const 
char * restrictnpt, 

char ** restrict 

ept);   

 Same as  strtod() , but converts the string pointed to by  nptr  to a type 
 float  value (C99).  
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  Prototype     Description   

  long double 
strtols(const char * 

restrictnpt, char ** 

restrict ept);   

 Same as  strtod() , but converts the string pointed to by  nptr  to a type 
 long double  value (C99).  

  long strtol(const 
char * restrict npt 

char ** restrict 

ept, int base);   

 Returns the initial portion of the string  nptr  converted to a type  long  
value; conversion ends upon reaching the first character that is not 
part of the number; initial whitespace is skipped; zero is returned if no 
number is found. If conversion is successful, the address of the first 
character after the number is assigned to the location pointed to by  ept ; 
if conversion fails,  npt  is assigned to the location pointed to by  ept . 
The number in the string is assumed to be written in a base specified by 
 base .  

  long long 
strtoll(const char * 

restrict npt, char 

** restrict ept, 

int base);   

 Same as  strtol() , but converts the string pointed to by  nptr  to a type 
 long long  value (C99).  

  unsigned long 
strtoul(const char * 

restrict npt, char 

** restrict ept, 

int base);   

 Returns the initial portion of the string  nptr  converted to a type 
 unsigned long  value; conversion ends upon reaching the first charac-
ter that is not part of the number; initial whitespace is skipped; zero is 
returned if no number is found. If conversion is successful, the address 
of the first character after the number is assigned to the location point-
ed to by  ept ; if conversion fails,  npt  is assigned to the location pointed 
to by  ept . The number in the string is assumed to be written in a base 
specified by  base .  

  unsigned long long 
strtoull(const char 

* restrict npt, 

char ** restrict 

ept, int base);   

 Same as  strtoul() , but converts the string pointed to by  nptr  to a 
type  unsigned long long  value (C99).  

  int rand(void);    Returns a pseudorandom integer in the range  0  to  RAND_MAX .  

  void srand(unsigned 
int seed);   

 Sets the random-number generator seed to  seed ; if  rand()  is called 
before a call to  srand() , the seed is  1 .  

  void *aligned_
alloc(size_t algn, 

size_t size);   

 Allocates space for an object of alignment  algn  and of  size  bytes; 
 algn  should be a supported alignment value, and  size  should be a mul-
tiple of  algn . (C11)  

  void *calloc(size_t 
nmem, size_t size);   

 Allocates  space for an array of  nmem  members, each element of which 
is  size  bytes in size; all bits in the space are initialized to  0 . The func-
tion returns the address of the array if successful, and  NULL  otherwise.  
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  Prototype     Description   

  void free(void 
*ptr);   

 Deallocates the space pointed to by  ptr ;  ptr  should be a value previ-
ously returned by a call to  calloc() ,  malloc() , or  realloc() , or  ptr  
can be the null pointer, in which case no action is taken. The behavior is 
undefined for other pointer values.  

  void *malloc(size_t 
size);   

 Allocates an uninitialized block of memory of  size  bytes; the function 
returns the address of the array if successful, and  NULL otherwise.  

  void *realloc(void 
*ptr, size_t size);   

 Changes the size of the block of memory pointed to by  ptr  to  size  
bytes; the contents of the block up to the lesser of the old and new 
sizes are unaltered; the function returns the location of the block, which 
may have been moved; if space cannot be reallocated, the function 
returns  NULL  and leaves the original block unchanged. If  ptr  is  NULL , 
the behavior is the same as calling  malloc()  with an argument of  size ; 
if  size  is zero and  ptr  is not  NULL , the behavior is the same as calling 
 free()  with  ptr  as an argument.  

  void abort(void);    Causes abnormal program termination unless the signal  SIGABRT  is 
caught and the corresponding signal handler does not return; closing of 
I/O streams and temporary files is implementation dependent; the func-
tion executes  raise(SIGABRT) .  

  int atexit(void 
(*func)(void));   

 Registers the function pointed to by  func  to be called upon normal pro-
gram termination; the implementation should support registration of at 
least 32 functions, which will be called opposite the order in which they 
are registered; the function returns zero if registration succeeds, and 
nonzero otherwise.  

  int at_quick_
exit(void (*func)

(void));   

 Registers the function pointed to by  func  to be called if  quick_exit()  
is called; the implementation should support registration of at least 32 
functions, which will be called opposite the order in which they are reg-
istered; the function returns zero if registration succeeds, and nonzero 
otherwise. (C11)  

  void exit(int 
status);   

 Causes normal program termination to occur, first invoking the functions 
registered by  atexit() , then flushing all open output streams, and then 
closing all I/O streams, then closing all files created by  tmpfile() , and 
then returning control to the host environment. If  status  is  0  or  EXIT_
SUCCESS , an implementation-defined value indicating successful termina-
tion is returned to the host environment; if  status  is  EXIT_FAILURE , 
an implementation-defined value indicating unsuccessful termination is 
returned to the host environment. The effects of other values of  statu-
s are implementation defined.  

  void _Exit(int 
status);   

 Similar to  exit()  except that the functions registered by  atexit()  are 
not called, signal handlers registered by  signal()  are not called, and 
the handling of open streams is implementation defined (C99).  
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  Prototype     Description   

  char *getenv(const 
char * name);   

 Returns a pointer to a string representing the value of the environmental 
variable pointed to by  name ; returns  NULL  if it cannot match the speci-
fied  name .  

  _Noreturn void 
quick_exit(int 

status);   

 Causes normal program termination to occur. Functions registered 
by  atexit()  signal handlers registered by  signal()  are not called. 
Functions registered by  at_quick_exit()  are called in the reverse 
order of registration. Behavior is undefined if a program calls  quick_
exit()  more than once or if it calls both  quick_exit()  and  exit() . 
Control is returned to the host environment via the call  _Exit(status) . 
(C11)  

  int system(const 
char *str);   

 Passes the string pointed to by  str  to the host environment to be 
executed by a command processor, such as  DOS  or  UNIX . If  str  is the 
 NULL  pointer, the function returns nonzero if a command processor is 
available, and zero otherwise; if  str  is not  NULL , the return value is 
implementation dependent.  

  void *bsearch(const 
void *key, const 

void *base, size_t 

nmem, size_t size, 

int (*comp)(const 

void *, const void 

*));   

 Searches an array pointed to by  base  having  nmem  members of size 
 size  for an element matching the object pointed to by  key ; items are 
compared by the function pointed to by  comp ; the comparison func-
tion will return a value less than zero if the key object is less than an 
array element, zero if they are equivalent, or a value greater than zero 
if the key object is greater. The function returns a pointer to a match-
ing element, or  NULL  if no element matches; if two or more elements 
match the key, it is unspecified which of the matching elements will be 
selected.  

  void qsort(void 
*base, size_t nmem, 

size_t size, int 

(*comp) (const void 

*, const void *));   

 Sorts the array pointed to by  base  in the order provided by the function 
pointed to by  comp ; the array has  nmem  elements, each of  size  bytes; 
the comparison function will return a value less than zero if the object 
pointed to by the first argument is less than the object pointed to by the 
second argument, zero if the objects are equivalent, or a value greater 
than zero if the first object is greater.  

  int abs(int n);    Returns the absolute value of  n ; the return value may be undefined if  n  
is a negative value with no positive counterpart, which can happen if  n  is 
 INT_MIN  in two’s complement representation.  

  div_t div(int 
numer, int denom);   

 Computes the quotient and remainder from dividing  numer  by  denom , 
placing the quotient in the  quot  member of a  div_t  structure and the 
remainder in the  rem  member; for inexact division, the quotient is the 
integer of lesser magnitude that is nearest the algebraic quotient (that 
is, truncate toward zero).  
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  Prototype     Description   

  long labs(int n);    Returns the absolute value of  n ; the return value may be undefined if  n  
is a negative value with no positive counterpart, which can happen if  n  is 
 LONG_MIN  in two’s complement representation.  

  ldiv_t ldiv(long 
numer, long denom);   

 Computes the quotient and remainder from dividing  numer  by  denom , 
placing the quotient in the  quot  member of an  ldiv_t  structure and the 
remainder in the  rem  member; for inexact division, the quotient is the 
integer of lesser magnitude that is nearest the algebraic quotient (that 
is, truncate toward zero).  

  long long llabs
(int n);   

 Returns the absolute value of  n ; the return value may be undefined if  n  
is a negative value with no positive counterpart, which can happen if  n  is 
 LONG_LONG_MIN  in two’s complement representation (C99).  

  lldiv_t lldiv(long 
numer, long denom);   

 Computes the quotient and remainder from dividing  numer  by  denom , 
placing the quotient in the  quot  member of an  lldiv_t  structure and 
the remainder in the  rem  member; for inexact division, the quotient is 
the integer of lesser magnitude that is nearest the algebraic quotient—
that is, truncate toward zero (C99).  

  int mblen(const 
char *s, size_t n);   

 Returns the number of bytes (up to  n ) constituting the multibyte charac-
ter pointed to by  s , returns  0  if  s  points to the null character, returns  -1  
if  s  does not point to a multibyte character; if  s  is  NULL , returns nonzero 
if multibyte characters have state-dependent encoding, and zero other-
wise.  

  int mbtowc(wchar_t 
*pw, const char *s, 

size_t n);   

 If  s is not  NULL , determines the number of bytes (up to  n ) constitut-
ing the multibyte character pointed to by  s  and determines the type 
 wchar_t  code for that character; if  pw  is not  NULL , assigns the code to 
the location pointed to by  pw;  returns the same value as  mblen(s, n) .  

  int wctomb(char *s, 
wchar_t wc);   

 Converts the character code in  wc  to the corresponding multibyte charac-
ter representation and stores it in the array pointed to by  s , unless  s  is 
 NULL ; if  s  is not  NULL , it returns  -1  if  wc  does not correspond to a valid 
multibyte character. If  wc  is valid, it returns the number of bytes consti-
tuting the multibyte character. If  s  is  NULL , it returns nonzero if multibyte 
characters have state-dependent encoding, and it returns zero otherwise.  

  size_t 
mbstowcs(wchar_t * 

restrict pwcs, 

const char *s 

restrict , 

size_t n);   

 Converts the array of multibyte characters pointed to by  s  to an array of 
wide character codes stored at the location beginning at  pwcs ; conver-
sion proceeds up to  n  elements in the  pwcs  array or a null byte in the  s  
array, whichever occurs first. If an invalid multibyte character is encoun-
tered, it returns  (size_t) (-1) ; otherwise, it returns the number of 
array elements filled (excluding a null character, if any).  
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  Prototype     Description   

  size_t wcstombs
(char * restrict 

s, const wchart_t 

* restrict pwcs, 

size_t n);   

 Converts the sequence of wide-character codes stored in the array point-
ed to by  pwcs  into a multibyte character sequence copied to the location 
pointed to by  s , stopping after storing  n  bytes or a null character, which-
ever comes first. If an invalid wide-character code is encountered, it 
returns  (size_t) (-1) ; otherwise, it returns the number of array bytes 
filled (excluding a null character, if any).  

   _Noreturn :  stdnoreturn.h   

 This defines the macro  noreturn , which expands to  _Noreturn .   

  String Handling:  string.h   

 The  string.h  library defines the  size_t  type and the  NULL  macro for the null pointer. It 
provides several functions for analyzing and manipulating character strings and a few that deal 
with memory more generally.  Table   RS.V.37    lists the functions.  

  Table RS.V.37   String Functions  

  Prototype     Description   

  void *memchr(const 
void *s, int c, 

size_t n);   

 Searches for the first occurrence of  c  (converted to  unsigned char ) 
in the initial  n  characters of the object pointed to by  s ; returns a point-
er to the first occurrence,  NULL  if none is found.  

  int memcmp(const void 
*s1, const void *s2, 

size_t n);   

 Compares the first  n  characters of the object pointed to by  s1  to the 
first  n  characters of the object pointed to by  s2 , interpreting each 
value as  unsigned char . The two objects are identical if all  n  pairs 
match; otherwise, the objects compare as the first unmatching pair. 
Returns zero if the objects are the same, less than zero if the first 
object is numerically less than the second, and greater than zero if the 
first object is greater.  

  void *memcpy(void * 
restrict s1, const 

void * restrict s2, 

size_t n);   

 Copies  n  bytes from the location pointed to by  s2  to the location point-
ed to by  s1 ; behavior is undefined if the two locations overlap; returns 
the value of s1 .  

  void *memmove(void 
*s1, const void *s2, 

size_t n);   

 Copies  n  bytes from the location pointed to by  s2  to the location point-
ed to by  s1 ; behaves as if copying. First uses a temporary location so 
that copying to an overlapping location works; returns the value of s1 .  

  void *memset(void *s, 
int v, size_t n);   

 Copies the value  v  (converted to type  unsigned char ) to the first  n  
bytes pointed to by  s ; returns  s .  
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  Prototype     Description   

  char *strcat(char * 
restrict s1, const 

char * restrict s2);   

 Appends a copy of the string pointed to by  s2 (including the null charac-
ter) to the location pointed to by  s1 ; the first character of the  s2  string 
overwrites the null character of the  s1  string; returns  s1 .  

  char *strncat(char * 
restrict s1, const 

char * restrict s2, 

size_t n);   

 Appends a copy up to  n  characters or up to the null character from the 
string pointed to by  s2  to the location pointed to by  s1 , with the first 
character of  s2  overwriting the null character of  s1 ; a null character is 
always appended; the function returns  s1 .  

  char *strcpy(char * 
restrict s1, const 

char * restrict s2);   

 Copies the string pointed to by  s2  (including the null character) to the 
location pointed to by  s1 ; returns  s1 .  

  char *strncpy(char * 
restrict s1, const 

char * restrict s2, 

size_t n);   

 Copies up to  n  characters or up to the null character from the string 
pointed to by  s2  to the location pointed to by  s1 ; if the null charac-
ter in  s2  occurs before  n  characters are copied, null characters are 
appended to bring the total to  n ; if  n  characters are copied before 
reaching a null character, no null character is appended; the function 
returns  s1 .  

  int strcmp(const char 
*s1, const char *s2);   

 Compares the strings pointed to by  s1  and  s2 ; two strings are iden-
tical if all pairs match; otherwise, the strings compare as the first 
unmatching pair. Characters are compared using the character code 
values; the function returns zero if the strings are the same, less than 
zero if the first string is less than the second, and greater than zero if 
the string array is greater.  

  int strcoll(const 
char *s1, const char 

*s2);   

 Works like  strcmp()  except that it uses the collating sequence speci-
fied by the  LC_COLLATE  category of the current locale as set by the 
 setlocale()  function.  

  int strncmp(const 
char *s1, const char 

*s2, size_t n);   

 Compares up to the first  n  characters or up to the first null charac-
ter of the arrays pointed to by  s1  and  s2 ; two arrays are identical 
if all tested pairs match; otherwise, the arrays compare as the first 
unmatching pair. Characters are compared using the character code 
values; the function returns zero if the arrays are the same, less than 
zero if the first array is less than the second, and greater than zero if 
the first array is greater.  

  size_t strxfrm(char 
* restrict s1, const 

char * restrict s2, 

size_t n);   

 Transforms the string in  s2  and copies up to  n  characters, including a 
terminating null character, to the array pointed to by  s1 ; the criterion 
for the transformation is that two transformed strings will be placed in 
the same order by  strcmp()  as  strcoll()  would place the untrans-
formed strings; the function returns the length of the transformed 
string (not including the terminal null character).  
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  Prototype     Description   

  char *strchr(const 
char *s, int c);   

 Searches for the first occurrence of  c  (converted to  char ) in the string 
pointed to by  s ; the null character is part of the string; returns a point-
er to the first occurrence, or  NULL  if none is found.  

  size_t strcspn(const 
char *s1, const char 

*s2);   

 Returns the length of the maximum initial segment of  s1  that does not 
contain any of the characters found in  s2 .  

  char *strpbrk(const 
char *s1, const char 

*s2);   

 Returns a pointer to the location of the first character in  s1  to match 
any of the characters in  s2 ; returns  NULL  if no match is found.  

  char *strrchr(const 
char *s, int c);   

 Searches for the last occurrence of  c  (converted to  char ) in the string 
pointed to by  s ; the null character is part of the string; returns a point-
er to the first occurrence, or  NULL  if none is found.  

  size_t strspn(const 
char *s1, const char 

*s2);   

 Returns the length of the maximum initial segment of  s1  that consists 
entirely of characters from  s2 .  

  char *strstr(const 
char *s1, const char 

*s2);   

 Returns a pointer to the location of the first occurrence in  s1  of the 
sequence of characters in  s2  (excluding the terminating null character); 
returns  NULL  if no match is found.  

  char *strtok(char * 
restrict s1, const 

char * restrict s2);   

 This function decomposes the string  s1  into separate tokens; the 
string  s2  contains the characters that are recognized as token separa-
tors. The function is called sequentially. For the initial call,  s1  should 
point to the string to be separated into tokens. The function locates 
the first token separator that follows a non-separator character and 
replaces it with a null character. It returns a pointer to a string holding 
the first token. If no tokens are found, it returns NULL. To find further 
tokens in the string, call  strtok()  again, but with  NULL  as the first 
argument. Each subsequent call returns a pointer to the next token  or 
to  NULL  if no further tokens are found. (See the example following this 
table.)  

  char * strerror(int 
errnum);   

 Returns a pointer to an implementation-dependent error message 
string corresponding to the error number stored in  errnum .  

  int strlen(const char 
* s);   

 Returns the number of characters (excluding the terminating null char-
acter) in the string  s .  

 The  strtok()  function is a bit unusual in how it is used, so here is a short example:  

  #include <stdio.h>

  #include <string.h>
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  int main(void)

  {

      char data[] = "  C is\t  too#much\nfun!";

      const char tokseps[] = " \t\n#"; /* separators  */

      char * pt;

  

      puts(data);

      pt = strtok(data,tokseps);       /* intial call  */

      while (pt)                       /* quit on NULL */

      {

          puts (pt);                   /* show token   */

          pt = strtok(NULL, tokseps);  /* next token   */

      }

      return 0;

  }   

 Here is the output:  

    C is    too#much

  fun!

  C

  is

  too

  much

  fun!    

  Type-Generic Math:  tgmath.h  (C99)  

 The  math.h and  complex.h  libraries provide many instances of functions that differ in type 
only. For example, the following six functions all compute sines:  

  double sin(double);

  float sinf(float);

  long double sinl(long double);

  double complex csin(double complex);

  float csinf(float complex);

  long double csinl(long double complex);   

 The  tgmath.h  header file defines macros that expand a generic call to the appropriate function 
as indicated by the argument type. The following code illustrates using the  sin()  macro, which 
expands into various forms of the sine function:  

  #include <tgmath.h>

  ...

  double dx, dy;

  float fx, fy;

  long double complex clx, cly;

  dy = sin(dx);   // expands to dy = sin(dx)  (the function)
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  fy = sin(fx);   // expands to fy = sinf(fx)

  cly = sin(clx); // expands to cly = csinl(clyx)   

 The header defines generic macros for three classes of functions. The first class consists of 
 math.h  and  complex.h  functions defined with six variations, using  l  and  f  suffixes and the  c  
prefix, as with the previous  sin()  example. In this case, the generic macro has the same name 
as the type  double  version of the function.  

 The second class consists of  math.h  functions defined with three variations, using the  l  and  f  
suffixes and having no complex counterparts, such as  erf() . In this case, the macro name is 
the same as the suffix-free function,  erf() , in this example. The effect of using such a macro 
with a complex argument is undefined.  

 The third class consists of  complex.h  functions defined with three variations, using the  l  and 
 f  suffixes and having no real counterparts, such as  cimag() . In this case, the macro name is 
the same as the suffix-free function,  cimag() , in this example. The effect of using such a macro 
with a real argument is undefined.  

  Table   RS.V.38    lists the generic macro functions.  

  Table RS.V.38   Generic Math Functions  

  acos     asin     atanb     acosh     asinh     atanh   

  cos     sin     tan     cosh     sinh     tanh   

  exp     log     pow     sqrt     fabs     atan2   

  cbrt     ceil     copysign     erf     erfc     exp2   

  expm1     fdim     floor     fma     fmax     fmin   

  fmod     frexp     hypot     ilogb     ldexp     lgamma   

  llrint     llround     log10     log1p     log2     logb   

  lrint     lround     nearbyint     nextafter     nexttoward     remainder   

  remquo     rint     round     scalbn     scalbln     tgamma   

  trunc     carg     cimag     conj     cproj     creal   

 Prior to C11, implementers had to resort to extensions to the standard to implement generic 
macros. But the addition of the  _Generic  expression allows a straightforward implementation 
using standard C11.   
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  Threads:  threads.h (C11)   

 This header file, along with  stdatomic.h , provides support for concurrent programming. This 
topic is well beyond the scope of this book, but, in general terms, this header supports multiple 
threads of execution, which, in principle, could be assigned to different processors.   

  Date and Time:  time.h   
 The  time.h  header file defines three macros. The first, also defined in many other header files, 
is  NULL , representing the null pointer. The second macro is  CLOCKS_PER_SEC ; dividing the 
value returned by  clock()  by this macro yields time in seconds. The third (C11) is  TIME_UTC , 
a positive integer constant designating the UTC (Coordinated Universal Time) time base, a 
potential argument to the  timespec_get()  function.  

 The UTC is the present primary world time standard. It is used, for example, in aviation, 
weather forecasts, synchronizing computer clocks, and as a common standard for the Internet 
and the World Wide Web.  

 The header file defines the types listed in  Table   RS.V.39   .  

  Table RS.V.39   Types Defined in  time.h   

  Type     Description   

  size_t    The integer type returned by the  sizeof  operator  

  clock_t    An arithmetic type suitable to represent time  

  time_t    An arithmetic type suitable to represent time  

  struct timespec    A structure type for holding a time interval specified in seconds and nano-
seconds (C11)  

  struct tm    A  structure type for holding components of calendar time  

 The  timespec  structure contains at least the two members shown in  Table   RS.V.40   .  

  Table RS.V.40   Members of a  timespec  Structure  

  Member     Description   

  time_t tv_sec    Whole seconds (>=0)  

  long tv_nsec    nanoseconds(range [0,999999999])  

 The components of the calendar type are referred to as  broken-down time .  Table   RS.V.41    lists the 
required members of a  struct tm  structure.  
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  Table RS.V.41   Members of a  struct tm  Structure  

  Member     Description   

  int tm_sec    Seconds after the minute (0–61)  

  int tm_min    Minutes after the hour (0–59)  

  int tm_hour    Hours after midnight (0–23)  

  int tm_mday    Day of the month (0–31)  

  int tm_mon    Months since January (0–11)  

  int tm_year    Years since 1900  

  int tm_wday    Days since Sunday (0–6)  

  int tm_yday    Days since January 1 (0–365)  

  int tm_isdst    Daylight Savings Time flag (greater than zero value means DST is in effect; 
zero means not in effect; negative means information not available)  

 The term  calendar time  represents the current date and time; for example, it could be the 
number of seconds elapsed since the first second of 1900. The term  local time  is the calendar 
time expressed for a local time zone.  Table   RS.V.42    lists the time functions.  

  Table RS.V.42   Time Functions  

  Prototype     Description   

  clock_t clock(void);    Returns the implementation’s best approximation of the pro-
cessor time elapsed since the program was invoked; divide 
by  CLOCKS_PER_SEC  to get the time in seconds. Returns 
 (clock_t)(-1)  if the time is not available or representable.  

  double difftime(time_t 
t1, time_t t0);   

 Calculates the difference ( t1- t0 ) between two calendar times; 
expresses the result in seconds and returns the result.  

  time_t mktime(struct tm 
*tmptr);   

 Converts the broken-down time in the structure pointed to by 
 tmptr  into a calendar time; having the same encoding used 
by the  time()  function, the structure is altered in that out-of-
range values are adjusted (for example, 2 minutes, 100 seconds 
becomes 3 minutes, 40 seconds) and  tm_wday  and  tm_yday  
are set to the values implied by the other members. Returns 
 (time_t)(-1)  if the calendar time cannot be represented; other-
wise, returns the calendar time in  time_t  format.  

  time_t time(time_t *ptm)    Returns the current calendar time and also places it in the 
location pointed to by  ptm , provided  ptm  is not  NULL . Returns 
 (time_t)(-1)  if the calendar time is not available.  
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  Prototype     Description   

  int timespec_get(struct 
timespec * ts, int base)   

 Sets the structure pointed to by  ts  to the current calendar time 
based on the specified time base. Returns  base  (a nonzero 
value) if successful, zero otherwise. (C11)  

  char *asctime(const 
struct tm *tmpt);   

 Converts the broken-down time in the structure pointed to 
by  tmpt  into a string of the form  Thu Feb 26 13:14:33 
1998\n\0  and returns a pointer to that string.  

  char *ctime(const time_t 
*ptm);   

 Converts the calendar time pointed to by  ptm  into a string in the 
form  Wed Aug 11 10:48:24 1999\n\0  and returns a pointer to 
that string.  

  struct tm *gmtime(const 
time_t *ptm);   

 Converts the calendar time pointed to by  ptm  into a broken-down 
time, expressed as Coordinated Universal Time (UTC), a succes-
sor to Greenwich Mean Time (GMT), and returns a pointer to a 
structure holding that information. Returns  NULL  if UTC is not 
available.  

  struct tm 
*localtime(const time_t 

*ptm);   

 Converts the calendar time pointed to by  ptm  into a broken-down 
time, expressed as local time. Stores a  tm  structure and returns 
a pointer to that structure.  

  size_t strftime(char * 
restrict s, size_t max 

const char * restrict 

fmt, const struct tm * 

restrict tmpt);   

 Copies string  fmt  to string ,s , replacing format specifiers (see 
Table RS.V.38) in  fmt  with appropriate data derived from the con-
tents of the broken-down time structure pointed to by  tmpt ; no 
more than  max  characters are placed into  s . The function returns 
the number of characters placed (excluding the null character); 
if the resulting string (including null character) is larger than  max  
characters, the function returns  0  and the contents of  s  are inde-
terminate.  

  Table   RS.V.43    shows the format specifiers used by the  strftime()  function. Many replacement 
values, such as month names, depend on the current locale.  

  Table RS.V.43   Format Specifiers Used by the  strftime()  Function  

  Format Specifier     Replaced By   

  %a    Locale’s abbreviated weekday name  

  %A    Locale’s full weekday name  

  %b    Locale’s abbreviated month name  

  %B    Locale’s full month name  

  %c    Locale’s appropriate date and time designation  
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  Format Specifier     Replaced By   

  %d    Day of the month as a decimal number (01–31)  

  %D    Equivalent to “ %m/%d%y"   

  %e    Day of the month as a decimal number, with single digits preceded by a 
space  

  %F    Equivalent to “ %Y-%m-%d"   

  %g    The last two digits of the week-based year (00–99)  

  %G    The week-based year as a decimal number  

  %h    Equivalent to  "%b"   

  %H    The hour (24-hour clock) as a decimal number (00–23)  

  %I    The hour (12-hour clock) as a decimal number (01–12)  

  %j    The day of the year as a decimal number (001–366)  

  %m    The month as a decimal number (01–12)  

  %n    The newline character  

  %M    The minute as a decimal number (00–59)  

  %p    Locale’s equivalent of a.m./p.m. for 12-hour clock  

  %r    Locale’s 12-hour clock time  

  %R    Equivalent to  "%H:%M"   

  %S    The second as a decimal number (00–61)  

  %t    The horizontal tab character  

  %T    Equivalent to  "%H:%M:%S"   

  %u    ISO 8601 weekday number (1–7), with Monday being 1  

  %U    Week number of the year, counting Sunday as the first day of week 1 
(00–53)  

  %V    ISO 8601 week number of the year, counting Sunday as the first day of 
week 1 (00–53)  

  %w    Weekday as a decimal, beginning with Sunday (0–6)  

  %W    Week number of the year, counting Monday as the first day of week 1 
(00–53)  

  %x    The locale’s date representation  

  %X    The locale’s time representation  

  %y    The year without century as a decimal number (00–99)  

  %Y    The year with century as a decimal number  
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  Format Specifier     Replaced By   

  %z    Offset from UTC in ISO 8601 format (“–800” meaning eight hours behind 
Greenwich, thus eight hours west); no characters are substituted if the 
information is not available  

  %Z    The time zone name; no characters are substituted if the information is not 
available %%   %  (that is, the percent sign)  

  Unicode Utilities:  uchar.h  (C11)  

 The C99  wchar.h  header file provides two means of supporting larger character sets. C11 
adds support specifically targeting Unicode by providing types suitable for UTF-16 and UTF-32 
encoding (see  Table   RS.V.44   ).  

  Table RS.V.44   Types Declared in  uchar.h   

  Type     Description   

  char16_t    An unsigned integer type used for 16-bit characters (the same type as  uint_
least16_t  of  stdint.h )  

  char32_t    An unsigned integer type used for 32-bit characters (the same type as  uint_
least32_t  of  stdint.h )  

  size_t    The integer type returned by the  sizeof  operator ( stddef.h )  

  mbstate_t    A nonarray type that can hold the conversion state information needed to convert 
between sequences of multibyte characters and of wide characters ( wchar.h )  

 The header file declares functions (see  Table   RS.V.45   ) for converting multibyte character strings 
to  chart16_t  and  char32_t  formats, and vice versa.  

  Table RS.V.45   Wide-Character, Multibyte Conversion Functions  

  Prototype     Description   

  size_t mbrto16(char16_t * restrict 
pwc, const char * restrict s, size_t 

n, mbstate_t * restrict ps);   

 Same as  mbrtowc()  ( wchar.h ), except the con-
version is to type  char_16 , not  wchar_t   

  size_t mbrto32( char32_t * restrict 
pwc, const char * restrict s, size_t 

n, mbstate_t * restrict ps);   

 Same as  mbrto16() , except the conversion is to 
type  char32_t   
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  Prototype     Description   

  size_t c16rtomb(char * restrict s, 
wchar_t wc, mbstate_t * restrict ps);   

 Same as  wcrtobm()  ( wchar.h ), except the con-
version is from  char16_t , not  wchar_t   

  size_t c32rtomb(char * restrict s, 
wchar_t wc, mbstate_t * restrict ps);   

 Same as  wcrtobm()  ( wchar.h ), except the con-
version is from  char32_t , not  wchar_t   

  Extended Multibyte and Wide-Character Utilities:  wchar.h  (C99)  

 Each implementation has a basic character set, and the C  char  type is required to be wide 
enough to handle that set. An implementation may also support an extended character set, 
and these characters may have a representation that requires more than one byte per charac-
ter. Multibyte characters can be stored along with single-byte characters in an ordinary array 
of  char , with particular byte values indicating the presence and size of a multibyte character. 
The interpretation of multibyte characters can depend on a  shift state . In the initial shift state, 
single-byte characters retain their usual interpretation. Specific multibyte characters can then 
change  the shift state. A particular shift state stays in effect until explicitly changed.  

 The  wchar_t  type provides a second way of representing extended characters, with the type 
being wide enough to represent the encoding of any member of the extended character set. 
This wide-character representation allows single characters to be stored in a  wchar_t  variable 
and strings of wide characters to be stored in an array of  wchar_t . The wide character represen-
tation of a character need not be the same as the multibyte representation, because the latter 
may use shift states whereas the former does not.  

 The  wchar.h  header file provides facilities for handling both representations of extended char-
acters. It defines the types shown in  Table   RS.V.46   . (Some of these types are also defined in 
other header files.)  

  Table RS.V.46   Types Defined in  wchar.h   

  Type     Description   

  wchar_t    An integer type that can represent the largest extended character set specified by 
supported locales  

  wint_t    An integer type that can hold any value of the extended character set plus at least 
one value not a member of the extended character set  

  size_t    The integer type returned by the  sizeof  operator  

  mbstate_t    A non-array type that can hold the conversion state information needed to convert 
between sequences of multibyte character and of wide characters  

  struct tm    A structure type for holding components of calendar time  
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 The header file also defines some macros, as shown in  Table   RS.V.47   .  

  Table RS.V.47   Macros Defined in  wchar.h   

  Macro     Description   

  NULL    The null pointer.  

  WCHAR_MAX    The maximum value for  wchar_t .  

  WCHAR_MIN    The minimum value for  wchar_t .  

  WEOF    A constant expression of type  wint_t  that does not correspond to any mem-
ber of the extended character set; the wide character equivalent of  EOF , it’s 
used to indicate end-of-file for wide-character input.  

 The library provides input/output functions that are analogs to the standard I/O functions 
described in  stdio.h . In those cases that a standard I/O function returns  EOF , the correspond-
ing wide-character function returns  WEOF .  Table   RS.V.48    lists these functions.  

  Table RS.V.48   Wide-Character I/O Functions  

  Function Prototype   

  int fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);   

  int fwscanf(FILE * restrict stream, const wchar_t * restrict format, ...);   

  int swprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict 
format, ...);   

  int swscanf(const wchar_t * restrict s, const wchar_t * restrict format, 
...);   

  int vfwprintf(FILE * restrict stream, const wchar_t * restrict format, 
va_list arg);   

  int vfwscanf(FILE * restrict stream, const wchar_t * restrict format, 
va_list arg);   

  int vswprintf(wchar_t * restrict s, size_t n, const wchar_t * restrict 
format, va_list arg);   

  int vswscanf(const wchar_t * restrict s, const wchar_t * restrict format, 
va_list arg);   

  int vwprintf(const wchar_t * restrict format, va_list arg);   

  int vwscanf(const wchar_t *   restrict format, va_list arg);   

  int wprintf(const wchar_t * restrict format, ...);   
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  Function Prototype   

  int wscanf(const wchar_t * restrict format, ...);   

  wint_t fgetwc(FILE *stream);   

  wchar_t *fgetws(wchar_t * restrict s, int n, FILE * restrict stream);   

  wint_t fputwc(wchar_t c, FILE *stream);   

  int fputws(const wchar_t * restrict s, FILE * restrict stream);   

  int fwide(FILE *stream, int mode);   

  wint_t getwc(FILE *stream);   

  wint_t getwchar(void);   

  wint_t putwc(wchar_t c, FILE *stream);   

  wint_t putwchar(wchar_t c);   

  wint  _t ungetwc(wint_t c, FILE *stream);   

 There is one wide-character I/O function without a standard I/O counterpart:  

  int fwide(FILE *stream, int mode);   

 If  mode  is positive, it first attempts to make the stream represented by the parameter  stream-
  wide-character oriented ; if  mode  is negative, it first attempts to make the stream  byte oriented ; if 
 mode  is 0, it doesn’t attempt to change the stream orientation. It attempts to change the orien-
tation only if the stream initially has none. In all cases, it returns a positive value if the stream 
is wide-character oriented, a negative value if the stream is byte oriented, and zero if the stream 
has no orientation.  

 The header provides several string conversion and manipulation functions modeled on those in 
 string.h . In general,  str  in the  string.h  identifier is replaced with  wcs , so  wcstod()  is the 
wide character version of the  strtod()  function.  Table   RS.V.49    lists these functions.  

  Table RS.V.49   Wide-Character String Utilities  

  Function Prototype   

  double wcstod(const wchar_t * restrict nptr, wchar_t ** restrict endptr);   

  float wcstof(const wchar_t * restrict nptr, wchar_t ** restrict endptr);   

  long double wcstold(const wchar_t * restrict nptr, wchar_t ** restrict 
endptr);   

  long int wcstol(const wchar_t * restrict nptr, wchar_t ** restrict endptr, 
int base);   
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  Function Prototype   

  long long int wcstoll(const wchar_t * restrict nptr, wchar_t ** restrict 
endptr, int base);   

  unsigned long int wcstoul(const wchar_t * restrict nptr, wchar_t ** restrict 
endptr, int base);   

  unsigned long long int wcstoull( const wchar_t * restrict nptr, wchar_t ** 
restrict endptr, int base);   

  wchar_t *wcscpy(wchar_t * restrict s1, const wchar_t *   restrict s2);   

  wchar_t *wcsncpy(wchar_t * restrict s1, const wchar_t * restrict s2, size_t 
n);   

  wchar_t *wcscat(wchar_t * restrict s1, const wchar_t * restrict s2);   

  wchar_t *wcsncat(wchar_t * restrict s1, const wchar_t * restrict s2, size_t 
n);   

  int wcscmp(const wchar_t *s1, const wchar_t *s2);   

  int wcscoll(const wchar_t *s1, const wchar_t *s2);   

  int wcsncmp(const wchar_t *s1, const wchar_t *s2, size_t n);   

  size_t wcsxfrm(wchar_t * restrict s1, const wchar_t * restrict s2, size_t 
n);   

  wchar_t *wcschr(const wchar_t *s, wchar_t c);   

  size_t wcscspn(const wchar_t *s1, const wchar_t *s2);   

  size_t wcslen(const wchar_t *s);   

  wchar_t *wcspbrk(const wchar_t *s1, const wchar_t *s2);   

  wchar_t *wcsrchr(const wchar_t *s, wchar_t c);   

  size_t wcsspn(const wchar_t *s1, const wchar_t *s2);   

  wchar_t *wcsstr(const wchar_t *s1, const wchar_t *s2);   

  wchar_t *wcstok(wchar_t * restrict s1, const wchar_t * restrict s2, wchar_t 
** restrict ptr);   

  wchar_t *wmemchr(const wchar_t *s, wchar_t c, size_t n);   

  int wmemcmp(wchar_t * restrict s1, const wchar_t *   restrict s2, size_t n);   

  wchar_t *wmemcpy(wchar_t * restrict s1,   

  const wchar_t * restrict s2, size_t n);   

  wchar_t *wmemmove(wchar_t *s1, const wchar_t *s2, size_t n);   

  wchar_t *wmemset(wchar_t *s, wchar_t c, size_t n);   
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 The header file also declares a one-time function modeled on the  strftime()  function from 
the  time.h  header file:  

  size_t wcsftime(wchar_t * restrict s, size_t maxsize,

  const wchar_t * restrict format,

  const struct tm * restrict timeptr);   

 Finally, the header file declares several functions for converting wide-character strings to multi-
byte strings, and vice versa, as shown in  Table   RS.V.50   .  

  Table RS.V.50   Wide-Character, Multibyte Conversion Functions  

  Prototype     Description   

  wint_t btowc(int c);    If  (unsigned char) c  is a valid single-byte character in the 
initial shift state, the function returns the wide-character rep-
resentation; otherwise, the function returns  WEOF .  

  int wctob(wint_t c);    If  c  is a member of the extended character set whose multi-
byte character’s representation in the initial shift state is a 
single byte, the function returns the single-byte representation 
as an  unsigned char  converted to an  int ; otherwise, the 
function returns  EOF .  

  int mbsinit(const mbstate_
t *ps);   

 The function returns nonzero if  ps  is the null pointer, or 
points to a data object that specifies an initial conversion 
state; otherwise, the function returns zero.  

  size_t mbrlen(const char 
* restrict s, size_t n, 

mbstate_t * restrict ps);   

 The  mbrlen()  function is equivalent to the call 
 mbrtowc(NULL, s, n, ps != NULL ? ps : 
&internal) , where  internal  is the  mbstate_t  object for 
the  mbrlen()  function, except that the expression desig-
nated by  ps  is evaluated only once.  

  size_t mbrtowc(wchar_t * 
restrict pwc, const char 

* restrict s, size_t n, 

mbstate_t * restrict ps);   

 If  s  is the null pointer, the call is equivalent to setting  pwc  
to the null pointer and  n  to 1. If  s  is not null, the function 
inspects at most  n  bytes to determine the number of bytes 
needed to complete the next multibyte character (including 
any shift sequences). If the function determines that the next 
multibyte character is complete and valid, it determines the 
value of the corresponding wide character and then, if  pwc is 
not a null pointer, stores that value in the object pointed to 
by  pwc . If the corresponding wide character is the null wide 
character, the resulting state described is the  initial conver-
sion state. The function returns 0 if the null wide character is 
detected. If it detects another valid wide character, it returns 
the number of bytes needed to complete the character. If 
 n  bytes aren’t enough to specify a valid wide character but 
appear to potentially represent part of one, the function 
returns –2. If there is a coding error, the function returns –1, 
stores  EILSEQ  in  errno , and stores no value.  
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  Prototype     Description   

  size_t wcrtomb(char * 
restrict s, wchar_t wc, 

mbstate_t * restrict ps);   

 If  s  is the null pointer, the call is equivalent to setting  wc  to 
the null wide character and using an internal buffer for the 
first argument. If  s  is not a null pointer, the  wcrtomb()  func-
tion determines the number of bytes needed to represent the 
multibyte character that corresponds to the wide character 
given by  wc  (including any shift sequences), and stores the 
multibyte character representation in the array whose first 
element is pointed to by  s . At most,  MB_CUR_MAX  bytes are 
stored. If  wc  is a null wide character, a null byte is stored, 
preceded by any shift sequence needed to restore the initial 
shift state;  the resulting state described is the initial conver-
sion state. If  wc  is a valid wide character, the function returns 
the number of bytes to store the multibyte version, include 
bytes, if any, specifying a shift state. If  wc  is not valid, the 
function stores  EILSEQ  in  errno , and returns –1.  

  size_t mbsrtowcs(wchar_t * 
restrict dst, const char ** 

restrict src, size_t len, 

mbstate_t * restrict ps);   

 The  mbstrtowcs()  function converts a sequence of multib-
yte characters that begins in the conversion state described 
by the object pointed to by  ps , from the array indirectly point-
ed to by  src , into a sequence of corresponding wide charac-
ters. If  dst is not a null pointer, the converted characters are 
stored in the array pointed to by  dst . Conversion continues 
up to and including a terminating null character, which is 
also stored. Conversion stops earlier in two cases: when a 
sequence of bytes is encountered that does not form a valid 
multibyte character, and (if  dst is not a null pointer) when 
 len wide characters  have been stored into the array pointed 
to by  dst . Each conversion takes place as if by a call to the 
 mbrtowc()  function. If  dst is not a null pointer, the pointer 
object pointed to by  src is assigned either a null pointer (if 
conversion stopped due to reaching a terminating null char-
acter) or the address just past the last multibyte character 
converted (if any). If conversion stopped due to reaching a 
terminating null character and if  dst  is not a null pointer, 
the resulting state described is the initial conversion state. If 
successful, the function returns the number of multibyte char-
acters successfully converted  (excluding the null character, if 
any); otherwise it returns –1.  
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  Prototype     Description   

  size_t wcsrtombs(char * 
restrict dst,const wchar_t 

** restrict src,size_t 

len,mbstate_t * restrict 

ps);   

 The  wcsrtombs()  function converts a sequence of wide 
characters from the array indirectly pointed to by  src  into a 
sequence of corresponding multibyte characters that begins 
in the conversion state described by the object pointed to by 
 ps . If  dst  is not a null pointer, the converted characters are 
then stored into the array pointed to by  dst . Conversion con-
tinues up to and including a terminating null wide character, 
which is also stored. Conversion stops earlier in two cases: 
when a wide character is reached that does not correspond 
to a valid multibyte character, and (if  dst is not a null pointer) 
when the  next multibyte character would exceed the limit of 
 len  total bytes to be stored into the array pointed to by  dst . 
Each conversion takes place as if by a call to the  wcrtomb  
function. If  dst  is not a null pointer, the pointer object point-
ed to by  src  is assigned either a null pointer (if conversion 
stopped due to reaching a terminating null wide character) 
or the address just past the last wide character converted (if 
any). If conversion stopped due to reaching a terminating null 
wide character, the resulting state described is the initial con-
version state. If successful, the function returns the number  
of multibyte characters in the resulting multibyte sequence 
(excluding the null character, if any); otherwise it returns –1.  

  Wide Character Classification and Mapping Utilities:  wctype.h  (C99)  

 The  wctype.h  library provides wide character analogs to the character functions of  ctype.h  
along with a few additional functions. It also defines the three types and the macro shown in 
 Table   RS.V.51   .  

  Table RS.V.51    wctype.h  Types and Macros  

  Macro     Description   

  wint_t    An integer type that can hold any value of the extended character set plus at 
least one value not a member of the extended character set.  

  wctrans_t    A scalar type that can represent locale-specific character mappings.  

  wctype_t    A scalar type that can represent locale-specific character classifications.  

  WEOF    A constant expression of type  wint_t  that does not correspond to any member 
of the extended character set; the wide character equivalent of  EOF , it’s used to 
indicate end-of-file for wide-character input.  
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 The character classifications in this library return true (nonzero) if the wide-character argu-
ment satisfies the conditions described by the function. In general, the wide-character function 
returns true if the corresponding  ctype.h  function returns true for the single-byte character 
corresponding to the wide character.  Table   RS.V.52    lists these  functions.  

  Table RS.V.52   Wide-Character Classification Functions  

  Prototype     Description   

  int iswalnum(wint_t wc);    Returns true if  wc  represents an alphanumeric (alphabetic or 
numeric) character  

  int iswalpha(wint_t wc);    Returns true if  wc  represents an alphabetic character  

  int iswblank(wint_t wc);    Returns true if  wc  represents a blank  

  int iswcntrl(wint_t wc);    Returns true if  wc  represents a control character  

  int iswdigit(wint_t wc);    Returns true if  wc  represents a digit  

  int iswgraph(wint_t wc);    Returns true if  iswprint(wc)  is true and  iswspace(wc)  is 
false  

  int iswlower(wint_t wc);    Returns true if  wc  represents a lowercase  character  

  int iswprint(wint_t wc);    Returns true if  wc  represents a printable character  

  int iswpunct(wint_t wc);    Returns true if  wc  represents a punctuation character  

  int iswspace(wint_t wc);    Returns true if  wc  represents a tab, space, or newline  

  int iswupper(wint_t wc);    Returns true if  wc  corresponds to a uppercase character  

  int iswxdigit(wint_t wc);    Returns true if  wc  represents a hexadecimal digit  

 The library also includes two classification functions that are termed  extensible  because they use 
the  LC_CTYPE  value of the current locale to classify characters.  Table   RS.V.53    lists these  functions.  

  Table RS.V.53   Extensible Wide-Character Classification Functions 

  Prototype     Description   

  int iswctype(wint_t wc, 
wctype_t desc);   

 Returns true if  wc  has the property described by  desc . (See discus-
sion in the accompanying text.)  

  wctype_t wctype(const 
char *property);   

 The  wctype  function constructs a value with type  wctype_t  that 
describes a class of wide characters identified by the string argu-
ment property. If the property identifies a valid class of wide char-
acters according to the  LC_CTYPE  category of the current locale, 
the  wctype()  function returns a nonzero value that is valid as the 
second argument to the  iswctype()  function; otherwise, it returns  
zero.  
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 The valid arguments for  wctype()  consist of the names of the wide-character classification 
functions stripped of the  isw  prefix and expressed as strings. For example,  wctype("alpha")  
characterizes the class of characters tested by the  iswalpha()  function. Therefore, the call  

  iswctype(wc, wctype("alpha"))   

 is equivalent to the call  

  iswalpha(wc)   

 except that characters are classified using the  LC_CTYPE  categories.  

 The library provides four conversion-related functions. Two are wide-character equivalents to 
 toupper()  and  tolower()  from the  ctype.h  library. The third is an extensible version that 
uses the  LC_CTYPE  setting from the locale to determine which characters are considered upper-
case or lowercase. The fourth provides suitable classification arguments for the third.  Table 
  RS.V.54    lists these  functions.  

  Table RS.V.54   Wide-Character Transformation Functions  

  Prototype     Description   

  wint_t 
towlower(wint_t 

wc);   

 Returns the uppercase version of  wc  if  wc  is lowercase; otherwise, 
returns  wc .  

  wint_t 
towupper(wint_t 

wc);   

 Returns the lowercase version of  wc  if  wc  is uppercase; otherwise, 
returns  wc .  

  wint_t 
towctrans(wint_t 

wc, wctrans_t 

desc);   

 Returns the lowercase version of  wc  (as determined by the  LC_CTYPE  set-
ting) if  desc  is equal to the return value of  wctrans("lower") ; returns 
the uppercase version of  wc  (as determined by the  LC_CTYPE  setting) if 
 desc  is equal to the return value of  wctrans("upper") .  

  wctrans_t 
wctrans(const char 

*property);   

 If the argument is  "upper"  or  "lower" , the function returns a 
 wctrans_t  value usable as an argument to  towctrans()  and reflecting 
the  LC_CTYPE  setting; otherwise,  returns 0.  

  Section VI: Extended Integer Types  

 As described in  Chapter   3   , “Data and C,” the C99 header file  inttypes.h  provides a systematic 
set of alternative names for the various integer types. These names describe the properties of 
the type more clearly than do the standard names. For example, type  int  might be 16 bits, 32 
bits, or 64 bits, but the  int32_t  type always is 32 bits.  

 More precisely, the  inttypes.h  header file defines macros that can be used with  scanf()  and 
 printf()  to read and write integers of these types. This header file includes the  stdlib.h  
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header file, which provides the actual type definitions. The formatting macros are strings that 
can be concatenated with other strings to produce the proper formatting directions.  

 The types are defined using  typedef . For example, a system with a 32-bit  int  might use this 
definition:  

  typedef int int32_t;   

 The format specifiers are defined using the  #define  directive. For example, a system using the 
previous definition for  int32_t  might have this definition:  

  #define PRId32 "d"   // output specifier

  #define SCNd32 "d"   // input specifier   

 Using these definitions, you could declare an extended integer variable, input a value, and 
display it as follows:  

  int32_t cd_sales;  // 32-bit integer

  scanf("%" SCNd32, &cd_sales);

  printf("CD sales = %10" PRId32 " units\n", cd_sales);   

 String concatenation then combines strings, if needed, to get the final control string. Thus, the 
previous code gets converted to the following:  

  int cd_sales;  // 32-bit integer

  scanf("%d", &cd_sales);

  printf("CD sales = %10d units\n", cd_sales);   

 If you moved the original code to a system with a 16-bit  int , that system might define 
 int32_t  as  long ,  PRId32  as  "ld" , and  SCNd32  as  "ld" . But you could use the same code, 
knowing that it uses a 32-bit integer.  

 The rest of this reference section lists the extended types along with the format specifiers and 
macros representing the type limits.  

  Exact-Width Types  

 One set of  typedef s identify types with precise sizes. The general form is  int   N   _t  for signed 
types and  uint   N   _t  for unsigned types, with   N   indicating the number of bits. Note, however, 
that not all systems can support all the types. For example, there could be a system for which 
the smallest usable memory size is 16 bits; such a system would not support the  int8_t  and 
 uint8_t  types. The format macros can use either  d  or  i  for the signed types, so  PRIi8  and 
 SCNi8  also work. For the unsigned types, you can substitute  o ,  x , or  X  for  u  to obtain the  %o  , 
 %x , or % X  specifier instead of  %u . For example,  you can use  PRIX32  to print a  uint32_t  type 
value in hexadecimal format.  Table   RS.VI.1    lists the exact-width types, format specifiers, and 
value limits.  
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  Table RS.VI.1   Exact-Width Types  

  Type Name      printf()  

Specifier   

   scanf()  

Specifier   

  Minimum Value     Maximum Value   

  int8_t     PRId8     SCNd8     INT8_MIN     INT8_MAX   

  int16_t     PRId16     SCNd16     INT16_MIN     INT16_MAX   

  int32_t     PRId32     SCNd32     INT32_MIN     INT32_MAX   

  int64_t     PRId64     SCNd64     INT64_MIN     INT64_MAX   

  uint8_t     PRIu8     SCNu8     0     UINT8_MAX   

  uint16_t     PRIu16     SCNu16     0     UINT16_MAX   

  uint32_t     PRIu32     SCNu32     0     UINT32_MAX   

  uint64_t     PRIu64     SCNu64     0     UINT64_MAX   

  Minimum-Width Types  

 The minimum-width types guarantee a type that is at least a certain number of bits in size. 
These types always exist. For example, a system that does not support 8-bit units could define 
 int_least_8  as a 16-bit type.  Table   RS.VI.2    lists minimum-width types, format specifiers, and 
value limits.  

  Table RS.VI.2   Minimum-Width Types  

  Type Name      printf()  

Specifier   

   scanf()  

Specifier   

  Minimum Value     Maximum Value   

  int_least8_t     PRILEASTd8     SCNLEASTd8     INT_LEAST8_MIN     INT_LEAST8_MAX   

  int_least16_t     PRILEASTd16     SCNLEASTd16     INT_LEAST16_MIN     INT_LEAST16_MAX   

  int_least32_t     PRILEASTd32     SCNLEASTd32     INT_LEAST32_MIN     INT_LEAST32_MAX   

  int_least 64_t     PRILEASTd64     SCNLEASTd64     INT_LEAST64_MIN     INT_LEAST64_MAX   

  uint_least 8_t     PRILEASTu8     SCNLEASTu8     0     UINT_LEAST8_MAX   

  uint_least 16_t     PRILEASTu16     SCNLEASTu16     0     UINT_LEAST16_
MAX   

  uint_least 32_t     PRILEASTu32     SCNLEASTu32     0     UINT_LEAST32_
MAX   

  uint_least 64_t     PRILEASTu64     SCNLEASTu64     0     UINT_LEAST64_
MAX   
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  Fastest Minimum-Width Types  

 For a particular system, some integer representations can be faster than others. For example, 
 int_least16_t  might be implemented as  short , but the system might do arithmetic faster 
using type  int . So  inttypes.h  also defines the fastest type for representing at least a certain 
number of bits. These types always exist. In some cases, there might be no clear-cut choice for 
fastest; in that case, the system simply specifies one of the choices.  Table   RS.VI.3    lists fastest 
minimum-width types, format specifiers, and value limits.  

  Table RS.VI.3   Fastest Minimum-Width Types  

  Type Name      printf()  

Specifier   

   scanf()  

Specifier   

  Minimum Value     Maximum Value   

  int_fast8_t     PRIFASTd8     SCNFASTd8     INT_FAST8_MIN     INT_FAST8_MAX   

  int_fast16_t     PRIFASTd16     SCNFASTd16     INT_FAST16_MIN     INT_FAST16_MAX   

  int_fast32_t     PRIFASTd32     SCNFASTd32     INT_FAST32_MIN     INT_FAST32_MAX   

  int_fast 64_t     PRIFASTd64     SCNFASTd64     INT_FAST64_MIN     INT_FAST64_MAX   

  uint_fast 8_t     PRIFASTu8     SCNFASTu8     0     UINT_FAST8_MAX   

  uint_fast 16_t     PRIFASTu16     SCNFASTu16     0     UINT_FAST16_MAX   

  uint_fast 32_t     PRIFASTu32     SCNFASTu32     0     UINT_FAST32_MAX   

  uint_fast 64_t     PRIFASTu64     SCNFASTu64     0     UINT_FAST64_MAX   

  Maximum-Width Types  

 Sometimes you may want the largest integer type available.  Table   RS.VI.4    lists these types. 
They may, in fact, be wider than  long long  or  unsigned long long , because a system may 
provide additional types wider than the required types.  

  Table RS.VI.4   Maximum-Width Types  

  Type Name      printf()  

Specifier   

   scanf()  

Specifier   

  Minimum Value     Maximum Value   

  intmax_t     PRIdMAX     SCNdMAX     INTMAX_MIN     INTMAX_MAX   

  uintmax_t     PRIuMAX     SCBuMAX     0     UINTMAX_MAX   



ptg11524036

984 Appendix B Reference Section

  Integers That Can Hold Pointer Values  

 The  inttypes.h  header file (via the included  stdint.h  header file) defines two integer types, 
listed in  Table   RS.VI.5   , that can hold pointer values accurately. That is, if you assign a type 
 void *  value to one of these types, and then assign the integer type back to the pointer, no 
information is lost. Either or both types might not exist.  

  Table RS.VI.5   Integer Types for Holding Pointer Values  

  Type Name      printf()  

Specifier   

   scanf()  

Specifier   

  Minimum Value     Maximum Value   

  intptr_t     PRIdPTR     SCNdPTR     INTPTR_MIN     INTPTR_MAX   

  uintptr_t     PRIuPTR     SCBuPTR     0     UINTPTR_MAX   

  Extended Integer Constants  

 You can indicate a long constant with the  L  suffix, as in  445566L . How do you indicate that 
a constant is type  int32_t ? Use macros defined in  inttypes.h . For example, the expression 
 INT32_C(445566)  expands to a type  int32_t  constant. Essentially, the macro is a type cast to 
the underlying type—that is, to the fundamental type that represents  int32_t  in a particular 
implementation.  

 The macro names are formed by taking the type name, replacing the  _t  with  _C , and making 
all the letters uppercase. For example, to make  1000  a type  uint_least64_t  constant, use the 
expression  UINT_LEAST64_C(1000) .    

  Section VII: Expanded Character Support  

 C wasn’t designed originally as an international programming language. Its choice of char-
acters was based on the more or less standard U.S. keyboard. The international popularity of 
C, however, has led to several extensions supporting different and larger character sets. This 
section of the reference provides an overview of these additions.  

  Trigraph Sequences  

 Some keyboards don’t provide all the symbols used in C. Therefore, C provides alternative 
representations of several symbols with a set of three-character sequences, called  trigraph 
sequences .  Table   RS.VII.1    lists these trigraphs.  
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  Table RS.VII.1   Trigraph Sequences  

  Trigraph     Symbol     Trigraph     Symbol     Trigraph     Symbol   

  ??=     #     ??(     [     ??/     \   

  ??)     ]     ??'     ̂      ??<     {   

  ??!     |     ??>     }     ??-     ~   

 C replaces all occurrences of these trigraphs in a source code file, even in a quoted string, with 
the corresponding symbol. Thus,  

  ??=include <stdio.h>

  ??=define LIM 100

  int main()

  ??<

      int q??(LIM??);

      printf("More to come.??/n");

      ...

  ??>   

 becomes the following:  

  #include <stdio.h>

  #define LIM 100

  int main()

  {

      int q[LIM];

      printf("More to come.\n");

      ...

  }   

 You may have to turn on a compiler flag to activate this feature.   

  Digraphs  

 Recognizing the clumsiness of the trigraph system, C99 provides two-character tokens, called 
 digraphs , that can be used instead of certain standard C punctuators.  Table   RS.VII.2    lists these 
digraphs.  

  Table RS.VII.2   Digraphs  

  Digraph     Symbol     Digraph     Symbol     Digraph     Symbol   

  <:     [     :>     ]     <%     {   

  %>     }     %:     #     %:%:     ##   
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 Unlike trigraphs, digraphs within a quoted string have no special meaning. Thus,  

  %:include <stdio.h>

  %:define LIM 100

  int main()

  <%

      int q<:LIM:>;

      printf("More to come.:>");

      ...

  %>   

 behaves the same as the following:  

  #include <stdio.h>

  #define LIM 100

  int main()

  {

      int q[LIM];

   printf("More to come.:>");  // :> just part of string

      ...

  }                            // :> same as }    

  Alternative Spellings:  iso646.h   

 Using trigraph sequences, you can write the  ||  operator as  ??!??! , which is a bit unappealing. 
C99, via the  iso646.h  header (Section V,  Table   RS.V.11   ), provides macros that expand into 
operators. The standard refers to these macros as  alternative spellings .  

 If you include the  iso646.h  header file, a statement such as  

  if(x == M1 or x == M2)

      x and_eq 0XFF;   

 expands to the following:  

  if(x == M1 || x == M2)

   x &= 0XFF;    

  Multibyte Characters  

 The standard describes a multibyte character as a sequence of one or more bytes represent-
ing a member of the extended character set of either the source or execution environment. 
The source environment is the one in which you prepare the source code; the execution 
environment is the one in which you run the compiled program. The two can be different. 
For example, you could develop a program in one environment with the intent of running in 
another environment. The extended character set is a superset of the basic character set that C 
requires.  
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 An implementation may provide an extended character set that allows you, for example, to 
enter keyboard characters not corresponding to the basic character set. These can be used in 
string literals and character constants and can appear in files. An implementation may also 
provide multibyte equivalents of characters in the basic character set that can be used instead 
of trigraphs or digraphs.  

 A German implementation, for example, might allow you to use an umlauted character in a 
string:  

  puts("eins zwei drei vier fünf");   

 In general, the extended character sets available to a program depend upon the locale setting.   

  Universal Character Names (UCNs)  

 Multibyte characters can be used in strings but not in identifiers. Universal character names 
(UCNs) are a C99 addition that allows you to use characters from an extended character set 
as part of identifier names. The system extends the escape sequence concept to allow encod-
ing of characters from the ISO/IEC 10646 standard. This standard is the joint work of the 
International Organization for Standardization (ISO) and the International Electrotechnical 
Commission (IEC) and provides numeric codes for a vast list of characters. The 10646 standard 
coordinates closely with Unicode (see the sidebar).    

  Unicode and ISO 10646  

 Unicode provides a solution to the representation of various character sets by providing a stan-
dard numbering system for a great number of characters and symbols, grouping them by type. 
For example, the ASCII code is incorporated as a subset of Unicode, so U.S. Latin characters 
such as A and Z have the same representation under both systems. But Unicode also incorpo-
rates other Latin characters, such as those used in European languages; characters from other 
alphabets, including Greek, Cyrillic, Hebrew, Cherokee, Arabic, Thai, and Bengali; and ideo-
graphs, such as those used for Chinese and Japanese. So far Unicode represents more than  
110,000 symbols and 100 scripts, and it is still under development. If you want to know more, 
you can check the Unicode Consortium’s website, at  www.unicode.org .  

 Unicode assigns a number, called a  code point , for each of its characters. The typical notation 
for Unicode code points looks like this: U-222B. The U identifies this as a Unicode character, 
and the 222B is the hexadecimal number for the character, an integral sign, in this case.  

 The International Organization for Standardization (ISO) established a working group to develop 
ISO 10646, also a standard for coding multilingual text. The ISO 10646 group and the Unicode 
group have worked together since 1991 to keep their standards synchronized with one another.   

 There are two forms of UCN sequences. The first is  \u    hexquad  , where   hexquad   is a sequence 
of four hexadecimal digits;  \u00F6  is an example. The second is  \U    hexquadhexquad  ;  \
U0000AC01  is an example. Because each hexadecimal digit corresponds to four bits, the  \u  form 
can be used for codes representable by a 16-bit integer, and the  \U  form can be used for codes 
representable by a 32-bit integer.  

http://www.unicode.org
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 If your system implements UCNs and includes the desired characters in the extended character 
set, UCNs can be used in strings, character constants, and identifiers:  

  wchar_t value\u00F6\u00F8 = L'\u00f6';    

  Wide Characters  

 C99, through the  wchar.h  and  wctype.h  libraries, provides yet more support for larger char-
acter sets through the use of wide characters. These header files define  wchar_t  as an integer 
type; the exact type is implementation dependent. Its intended use is to hold characters from 
an extended character set that is a superset of the basic character set. By definition, the  char  
type is sufficient to handle the basic character set. The  wchar_t  type may need more bits to 
handle a greater range of code values. For example,  char  might be an 8-bit byte and  wchar_t  
might be a 16-bit  unsigned short .  

 Wide-character constants and string literals are indicated with an  L  prefix, and you can use the 
 %lc  and  %ls  modifiers to display wide-character data:  

  wchar_t wch = L'I';

  wchar_t w_arr[20] = L"am wide!";

  printf("%lc %ls\n", wch, w_arr);   

 If, for example,  wchar_t  is implemented as a 2-byte unit, the 1-byte code for  'I'  would be 
stored in the low-order byte of  wch . Characters not from the standard set might require both 
bytes to hold the character code. You could use universal character codes, for example, to indi-
cate characters whose code values exceed the  char  range:  

  wchar_t w = L'\u00E2'; /* 16-bit code value */   

 An array of  wchar_t  values can hold a wide-character string, with each element holding a 
single wide-character code. A  wchar_t  value with a code value of  0  is the  wchar_t  equivalent 
of the null character, and it is termed a  null wide character . It is used to terminate wide-character 
strings.  

 You can use the  %lc  and  %ls  specifiers to read wide characters:  

  wchar_t wch1;

  wchar_t w_arr[20];

  puts("Enter your grade:");

  scanf("%lc", &wch1);

  puts("Enter your first name:");

  scanf("%ls",w_arr);   

 The  wchar.h  header file offers further wide-character support. In particular, it provides wide-
character I/O functions, wide-character conversion functions, and wide-character string-
manipulation functions. For the most part, they are wide-character equivalents of existing 
functions. For example, you can use  fwprintf()  and  wprintf()  for output and  fwscanf()  
and  wscanf()  for input. The main differences are that these functions require a wide-character 
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control string and they deal with input and output streams of wide characters. For example, the 
following displays information as a sequence of wide characters:  

  wchar_t * pw = L"Points to a wide-character string";

  int dozen = 12;

  wprintf(L"Item %d: %ls\n", dozen, pw);   

 Similarly, there are  getwchar() ,  putwchar() ,  fgetws() , and  fputws()  functions. The header 
defines a  WEOF  macro that plays the same role that  EOF  does for byte-oriented I/O. It’s required 
to be a value that does not correspond to a valid character. Because it is possible that all values 
of  wchar_t  type are valid characters, the library defines a  wint_t  type that can encompass all 
 wchar_t values plus  WEOF .  

 There are equivalents to the  string.h  library functions. For example,  wcscpy(ws2, ws1)  
copies the wide-character string pointed to by  ws1  to the wide-character array pointed to by 
 ws2 . Similarly, there is a  wcscmp()  function for comparing wide strings, and so on.  

 The  wctype.h  header file adds character-classification functions to the mix. For example, 
 iswdigit()  returns true if its wide-character argument is a digit, and the  iswblank()  function 
returns true if its argument is a blank. The standard values for a blank are a space, written as  L' 
' , and a horizontal tab, written as  L'\t' .  

 The C11 standard, through the  uchar.h  header file, provides additional wide character support 
by defining two types designed to match two common Unicode encoding formats. The first 
type,  char16_t , is the smallest available unsigned integer type that can hold a 16-bit code. It 
can be used with the hexquad UCN form and the Unicode UTF-16 encoding scheme.  

  char16_t = '\u00F6';   

 The second type,  char32_t , is the smallest available unsigned integer type that can hold a 
32-bit code. It can be used with the hexquad UCN form and the Unicode UTF-32 encoding 
scheme.  

  char32_t = '\U0000AC01';   

 The prefixes  u  and  U  can be used to denote  char16_t  and  char32_t  strings, respectively.  

  char16_t ws16[11] = u"Tannh\u00E4user";

  char32_t ws32[13] = U"caf\U000000E9 au lait";   

 Note these two types are more specific than  wchar_t . For example,  wchar_t  might be wide 
enough for 32-bit codes on one system but only wide enough for 16-bit codes on another. Also, 
the two new types are compatible with C++ usage.   

  Wide Characters and Multibyte Characters  

 Wide characters and multibyte characters are two different approaches to dealing with 
extended character sets. A multibyte character, for example, might be a single byte, two bytes, 
three bytes, or more. All wide characters will have just one width. Multibyte characters might 
use a shift state (that is, a byte that determines how subsequent bytes are interpreted); wide 



ptg11524036

990 Appendix B Reference Section

characters don’t have a shift state. A file of multibyte characters would be read into an ordinary 
array of  char  using the standard input functions; a file of wide characters would be read into a 
wide-character array using one of the wide-character input functions.  

 C99, through the  wchar.h  library, provides functions for converting between the multibyte 
and  wchar_t  representations. The  mbrtowc()  function converts a multibyte character to a 
wide character, and the  wcrtomb()  function converts a wide character to a multibyte character. 
Similarly, the  mbstrtowcs()  function converts a multibyte string to a wide character string, 
and the  wcstrtombs()  function converts a wide character string to a multibyte string.  

 C11, through the  uchar.h  library, provides functions for converting between multibyte and 
 char16_t  representations and between multibyte and  char32_t  representations.    

  Section VIII: C99/C11 Numeric Computational 

Enhancements  

 Historically, FORTRAN has been the premier language for numerical scientific and engineering 
computation. C90 brought C computational methods into closer agreement with FORTRAN. 
For example, the specification of floating-point characteristics used in  float.h  is based on the 
model developed by the FORTRAN standardization committee. The C99 and C11 standards 
continue the work of enhancing C’s appropriateness for computational work. For example vari-
able-length arrays, added in C99 but made optional in C11, correspond better than traditional 
C arrays to FORTRAN usage. (C11 specifies a  _ _STDC_NO_VLA_ _  macro that evaluates to 1 if 
the implementation doesn’t support variable length arrays.)  

  The IEC Floating-Point Standard  

 The International Electotechnical Committee (IEC) has published a standard for floating-point 
calculations (IEC 60559). The standard includes discussion of floating-point formats, preci-
sion, NaNs, infinities, rounding practices, conversions, exceptions, recommended functions 
and algorithms, and so on. C99 accepts this standard as a guide to the C implementation of 
floating-point calculations. Most of the C99 additions to floating-point facilities are part of this 
effort, such as the  fenv.h  header file and several of the new math functions. Also, the  float.h  
header defines several macros relating to the IEC floating-point model.  

  The Floating-Point Model  

 Let’s take a quick look at the floating-point model. The standard visualizes a floating-point 
value  x  as being a power of a number base times a fraction in that number base, rather like C’s 
E-notation, in which we can write 876.54 as 0.87654E3. As you might expect, the formal repre-
sentation looks more formidable:          

x = sbe fkb
�k

k = 1

p 

 Briefly, this represents a number as a product of a power, or exponent,  e , of the number base,  b , 
multiplied by a  significand , a multidigit fraction.  
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 Here are the meanings of the various components:  

    s  is the sign (±1).   

   b  is the  radix , or number base used. The most common value is 2 because floating-point 
processors commonly use binary math.   

   e  represents an integer exponent. (It shouldn’t be confused with numeric constant e used 
as a base for natural logarithms). It will be limited to a range having a minimum and 
maximum value. Those values will depend on the number of bits set aside to store the 
exponent.   

   f k   represent the possible digits for base  b ; for example, in base 2 the possible digits are 0 
and 1, and in hexadecimal, the possible digits are 0 through F.   

   p  is the precision, the number of base  b  digits used to represent the significand. Its value 
will be limited by the number of bits set aside to store the significand.    

 Understanding this representation is key to understanding the contents of  float.h  and 
 fenv.h , so let’s look at two examples illustrating how the floating-point representation works.  

 First, suppose the number base  b , or radix, is 10. And suppose the precision  p  is 5. Then the 
value 24.51 could be written this way:  

 (+1)10 3 (2/10 + 4/100 + 5/1000 + 1/10000 + 0/100000)  

 The computer, assuming it can store decimal digits, could store the sign, the exponent 3, and 
the five  f k   values 2, 4, 5, 1, and 0. (Here  f 1   is 2,  f 2   is 4, etc.) Thus, the significand is 0.24510. 
Multiplying that by 10 3  yields 24.51.  

 Next, suppose, as is more common, that the radix  b  is 2. Suppose  p  is 7, the exponent is 5, and 
the significand is stored as 1011001, using 7 binary digits, as specified by  p . And suppose the 
sign is positive. Then we can construct the number per the formula above:  

   x = (+1)2 5 (1/2 +0/4 + 1/8 + 1/16 + 0/32 + 0/64 + 1/128)   

  = 32(1/2 +0/4 + 1/8 + 1/16 + 0/32 + 0/64 + 1/128)   

  = 16 + 0 + 4 + 2 +0 + 0 + ¼ = 22.25    

 Many of the  float.h  macros refer to this representation. For instance,  FLT_RADIX  is  b , the 
number base used, and  FLT_MANT_DIG  is  p , the number of digits (base  b ) in the signficand, for 
a  float  value.   

  Normal and Subnormal Values  

 The concept of a  normalized floating-point value  plays an important role, so let’s investigate it. 
For simplicity, let’s suppose the system uses base 10 ( b  =  FLT_RADIX  = 10) and that the signifi-
cand uses 5 decimal digits for a float value ( p  =  FLT_MANT_DIG  = 5). (The standard requires 
greater precision than this, but our simplicity disclaimer allows us to ignore this requirement.) 
Consider the following ways of representing the value 31.841:  
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   exponent = 3, significand = .31841 (.31841E3)   

  exponent = 4, significand = .03184 (.03184E4)   

  exponent = 5, significand = .00318 (.00318E5)    

 Clearly, the first method is the most precise because it uses all five available digits in the signifi-
cand. A normalized floating-point nonzero value is one for which the first digit in the signifi-
cand is nonzero, and that’s how floating-point values normally are stored.  

 Now suppose the minimum exponent ( FLT_MIN_EXP ) is -10. Then the smallest normalized 
value is this:  

 exponent = -10, significand = .10000 (.10000E-10)  

 Normally, multiplying or dividing by 10 means raising or lowering the exponent, but, in this 
case, if you divide by 10, you can’t lower the exponent further. However, you can change the 
significand to get this representation:  

 exponent = -10, significand = 0.0100 (.01000E-10)  

 This number would be termed  subnormal  because it’s not using the full precision of the signifi-
cand. For instance, dividing 0.12343E-10 by 10 yields .01234E-10, and a digit of information 
has been lost.  

 For this particular example, 0.1000E-10 is the smallest nonzero normal representation ( FLT_
MIN ), and the smallest nonzero subnormal value is 0.00001E-10 ( FLT_TRUE_MIN ).  

 The  float.h  macros  FLT_HAS_SUBNORM ,  DBL_HAS_SUBNORM , and  LDBL_HAS_SUBNORM  charac-
terize how an implementation handles subnormal values. Here are the possible values for these 
macros and their meanings:  

 -1   indeterminable (no consistent treatment)  

 0   absent (implementation could, for instance, replace subnormal values with 0)  

 1   present  

 The  math.h  library provides means, including the  fpclassify()  and  isnormal()  macros, 
enabling one to identify when a program produces subnormal values, thus losing precision.   

  Evaluation Schemes  

 The  float.h  macro  FLT_EVAL_METHOD  indicates the scheme the implementation uses to evalu-
ate floating-point expressions. The designated choices are these:  

 -1   indeterminable  

 0   evaluated operations and constants to the range and precision of the type  
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 1   evaluate operations and constants of type  float  and  double  to the range and preci-
sion of the  double  type, and evaluate  long double  operations and constants to the 
range of  long double   

 2   evaluate operations and constants of all floating-point types to the range and preci-
sion of l ong double   

 An implementation is allowed to provide additional negative values to indicate other choices.  

 Suppose, for example, your program multiplies two  float  values, assigning the result to a third 
 float . Under option 1, which was what K&R C did, the two  float  values are expanded to 
 double , the calculation is done using  double , and the result is rounded to  float  when it is 
assigned.  

 Under choice 0, which ANSI C made an option, the two  float  values would be multiplied as 
 float  and the result then assigned. This might be a faster operation than mode 1, but there 
might be a slight loss of precision.   

  Rounding  

 The  float.h  macro  FLT_ROUNDS  describes how the system handles rounding. The specified 
possibilities for rounding are these:  

 -1   indeterminable  

 0   toward zero  

 1   to nearest  

 2   toward positive infinity  

 3   toward negative infinity  

 A system with different options can define further values.  

 Some systems provide control over the rounding scheme, and the  fenv.h  function  
fesetround()  provides programming control in that case.  

 The effects of different rounding methods probably aren’t important if you are calculating 
how much flour you need to make 37 cakes, but they can affect, say, critical financial or scien-
tific calculations. Clearly, the rounding method comes into play when you convert a higher 
precision floating-point value to a lower precision value, for example, assigning the result of 
a  double  calculation to a  float . It also can come into play when you change number bases. 
A fraction with an exact representation in one number base might not have one in a different 
number base. Consider, for example, this code:  

  float x = 0.8;   
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 The fraction 8/10, or 4/5, can be represented exactly base 10. But most computer systems will 
store the result in base 2, and, in that base, 4/5 is an infinitely repeating fraction:  

 0.1100110011001100...  

 Thus,  0.8  is rounded to an approximate value when stored in  x , and the value can depend 
upon the rounding method.  

 However, it could be that an implementation doesn’t meet all the requirements of IEC 60559; 
for example, the underlying hardware may not be up to the task. Therefore, C99 defines two 
macros that can be used in preprocessor directives to check for compliance. First, the macro  

  _ _STDC_IEC_559_ _   

 is conditionally defined as the constant 1 if the implementation conforms to IEC 60559 
floating-point specifications. Second, the macro  

  _ _STDC_IEC_559_COMPLEX_ _   

 is conditionally defined as the constant 1 if the implementation adheres to IEC 
60559–compatible complex arithmetic.  

 If an implementation doesn’t define these macros, there is no guarantee of IEC
60559 compliance.    

  The  fenv.h  Header File  

 The  fenv.h  header file provides a means of interacting with the floating-point environment. 
That is, it allows you to set floating-point  control mode values  that govern how floating-point 
calculations take place, and it allows you to determine the value of floating-point status flags, 
or  exceptions , that report information about the effects of an arithmetic calculation. An example 
of a control mode setting is specifying the method used to round numbers. An example of a 
status flag is a flag that is set if an operation produces floating-point overflow. An operation 
that sets a status flag is described as  raising an exception .  

 The status flags and control modes are meaningful only if the hardware supports them. For 
example, you can’t change the rounding method if the hardware doesn’t have that option.  

 You use a preprocessor directive to turn support on:  

  #pragma STDC FENV_ACCESS ON   

 Support stays on until the program reaches the end of the block containing the pragma, or, if 
the pragma is external, to the end of the file or translation unit. Alternatively, you can use the 
following directive to turn off support:  

  #pragma STDC FENV_ACCESS OFF   

 You also can issue the following pragma:  

  #pragma STDC FENV_ACCESS DEFAULT   
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 This restores the default state for the compiler, which is implementation dependent.  

 This facility is important for those involved in critical floating-point calculations, but of limited 
interest to the general user, so this appendix doesn’t go into the details.   

  The  STDC FP_CONTRACT  Pragma  

 Some floating-point processors can contract a multiple-operator floating-expression into a 
single operation. For example, a processor might be able to evaluate the following expression in 
one step:  

  x*y - z   

 This increases the speed of the calculation, but it can decrease the predictability of the calcula-
tion. The  STDC FP_CONTRACT  pragma allows you to turn this feature on or off. The default 
state is implementation dependent.  

 To turn the contraction feature off for a particular calculation, and then turn it back on again, 
you can do this:  

  #pragma STDC FP_CONTRACT OFF

  val = x * y - z;

  #pragma STDC FP_CONTRACT ON    

  Additions to the  math.h  Library  

 The C90 math library, for the most part, declares functions with type  double  arguments and 
type  double  return values, such as the following  

  double sin(double);

  double sqrt(double);   

 The C99 and C11 libraries provide type  float  and type  long double  versions of all these 
functions. These functions use an  f  or an  l  suffix in the name, as follows:  

  float sinf(float);              /* float version of sin()      */

  long double sinl(long double);  /* long double version of sin() */   

 Having function families with different levels of precision allows you to choose the most effi-
cient combination of types and functions needed for a particular purpose.  

 C99 also added several functions commonly used in scientific, engineering, and mathematical 
computations.  Table   RS.V.14   , which lists the type  double  versions of all the math functions, 
identifies the C99 additions. In many cases, the functions return values that could be calculated 
using existing functions, but the new functions do so faster or more accurately. For instance, 
 log1p(x)  represents the same value as  log(1 + x) , but  log1p(x)  uses a different algorithm, 
one that is more accurate for small values of  x . So you would use the  log()  function for 
calculations in general, but you would use  log1p()  for small values of  x  if high accuracy were  
critical.  
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 In addition to these functions, the math library defines several constants and functions related 
to classifying numbers and rounding them. For example, a value can be classified as being infi-
nite, not a number ( NaN ), normal, subnormal, and true zero. ( NaN  is a special value indicating 
that a value is not a number; for example,  asin(2.0)  returns  NaN  because  asin()  is defined 
only for arguments in the range  -1  to  1 . A subnormal number is one whose magnitude is 
smaller than the smallest value that can be represented to full precision.) There are also special-
ized comparison functions that behave differently from the standard relational operators when  
one or more arguments are abnormal values.  

 You can use C99’s classification schemes to detect computational irregularities. For example, 
the  isnormal()  macro from  math.h  returns true if its argument is a normal number. Here is 
code using that function to terminate a loop when a number becomes subnormal:  

  #include <math.h>  // for isnormal()

  ...

  float num = 1.7e-19;

  float numprev = num;

  

  while (isnormal(num))  // while num has full float precision

  {

      numprev = num;

      num /= 13.7f;

  }   

 In short, there is expanded support for detailed control of how floating-point calculations are 
handled.   

  Support for Complex Numbers  

 A  complex number  is a number with a real part and an imaginary part. The real part is an ordi-
nary real number, such as what’s represented by the floating-point types. The imaginary part 
represents an imaginary number. An imaginary number, in turn, is a multiple of the square 
root of –1. In mathematics, complex numbers are often written in the form  4.2 + 2.0   i  ;   i   
symbolically represents the square root of –1.  

 C99 supports three complex types (under C11 this support is optional):  

    ■    float _Complex    

   ■    double _Complex    

   ■    long double _Complex     

 A  float _Complex  value, for example, would be stored using the same memory layout as a 
two-element array of  float , with the real value stored in the first element and the imaginary 
value in the second element.  

 C99 and C11 implementations may also support three imaginary types:  



ptg11524036

997Section VIII: C99/C11 Numeric Computational Enhancements

    ■    float _Imaginary    

   ■    double _Imaginary    

   ■    long double _Imaginary     

 Including the  complex.h  header file lets you use  complex  for  _Complex  and  imaginary  for 
 _Imaginary .  

 Arithmetic operations are defined for complex types following the usual rules of mathematics. 
For example, the value of  (a+b*I)*(c+d*I)  is  (a*c-b*d)+(b*c+a*d)*I .  

 The  complex.h  header file defines some macros and several functions that accept complex 
numbers and return complex numbers. In particular, the macro  I  represents the square root of 
–1. It enables you do the following:  

  double complex c1 = 4.2 + 2.0 * I;

  float imaginary c2= -3.0 * I;   

 C11 provides a second means, the  CMPLX()  macro, to assign values to a complex number. For 
example, if  re  and  im  are type  double  values, you can do this:  

  double complex c3 = CMPLX(re, im);   

 The intent is that the macro can handle unusual cases, such as  im  being infinite or not-a-
number, better than straight assignment.  

 The  complex.h  header file prototypes several complex functions. Many are complex equiva-
lents of  math.h  functions, using a  c  prefix. For example,  csin()  returns the complex sine of its 
complex argument. Others relate specifically to the features of complex numbers. For example, 
 creal()  returns the real part of a complex number, and  cimag()  returns the imaginary part as 
a real number. That is, given that  z  is type  double complex , the following is true:  

  z = creal(z) + cimag(z) * I;   

 If you are familiar with complex numbers and need to use them, you’ll want to peruse the 
contents of  complex.h .  

 Here’s a short program illustrating some portions of complex number support.  

  //  complex.c --  complex numbers

  #include <stdio.h>

  #include <complex.h>

  void show_cmlx(complex double cv);

  int main(void)

  {

      complex double v1 = 4.0 + 3.0*I;

      double re, im;

      complex double v2;

      complex double sum, prod, conjug;

  

      printf("Enter the real part of a complex number: ");
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      scanf("%lf", &re);

      printf("Enter the imaginary part of a complex number: ");

      scanf("%lf", &im);

  //  CMPLX() a C11 feature

  //  v2 = CMPLX(re, im);

      v2 = re + im * I;

      printf("v1: ");

      show_cmlx(v1);

      putchar('\n');

      printf("v2: ");

      show_cmlx(v2);

      putchar('\n');

      sum = v1 + v2;

      prod = v1 * v2;

      conjug =conj(v1);

      printf("sum: ");

      show_cmlx(sum);

      putchar('\n');

      printf("product: ");

      show_cmlx(prod);

      putchar('\n');

      printf("complex congjugate of v1: ");

      show_cmlx(conjug);

       putchar('\n');

  

      return 0;

  }

  

  void show_cmlx(complex double cv)

  {

      printf("(%.2f, %.2fi)", creal(cv), cimag(cv));

      return;

  }   

 If you use C++, you should be aware that the C++  complex  header file provides a different way, 
based on classes, of handling complex numbers than does the C  complex.h  header file.    

  Section IX: Differences Between C and C++  

 For the most part, C++ is a superset of C, meaning that a valid C program is also a valid C++ 
program. The main differences between C++ and C are the many additional features that C++ 
supports. However, there are a few areas in which the C++ rules are slightly different from the 
C equivalents. These are the differences that might cause a C program to work a little differ-
ently, or perhaps, not at all, if you compile it as a C++ program. And these are the differences 
this appendix discusses. If you compile your C programs using a compiler  that does just C++ 
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and not C, you need to know about these differences. Although they affect very few of the 
examples in this book, the differences can cause some instances of valid C code to lead to error 
messages if the code is compiled as a C++ program.  

 The release of the C99 standard complicated issues because in some places it brought C closer 
to C++. For example, it allows interspersing declarations throughout the body of the code and 
recognizes the  //  comment indicator. In other ways, C99 increases the separation from C++—
for example, by adding variable arrays and the  restrict  keyword. C11 closes the gap some-
what, for example, introducing the  char16_t  type, adding the keyword  _Alignas  and creating 
a macro  alignas  to match the C++ keyword. With C11 still in its infancy and C99 not fully 
accepted by some vendors, we’re faced with differences between C90, C99, and C11, and with 
differences  between C++11 and each of those C standards. This section will face the future and 
discuss some of differences between C99, C11, and C++. Meanwhile, C++ is also evolving, so 
the exact correspondences and differences between C and C++ will continue to change.  

  Function Prototypes  

 In C++, function prototyping is mandatory, but it is optional in C. This difference shows up 
if you leave the parentheses empty when declaring a function. In C, empty parentheses mean 
you are foregoing prototyping, but in C++ they mean the function has no parameters. That is, 
in C++, the prototype  

  int slice();   

 means the same as the following:  

  int slice(void);   

 For example, the following sequence is acceptable, if old-fashioned, in C but an error in C++:  

  int slice();

  int main()

  {

  ...

     slice(20, 50);

  ...

  }

  int slice(int a, int b)

  {

  ...

  }   

 In C, the compiler assumes you used the older form for declaring functions. In C++, the 
compiler assumes that  slice()  is the same as  slice(void)  and that you failed to declare the 
 slice(int, int)  function.  

 Also, C++ allows you to declare more than one function of the same name, provided they have 
different argument lists.   
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   char  Constants  

 C treats  char  constants as type  int , and C++ treats them as type  char . For instance, consider 
this statement:  

  char ch = 'A';   

 In C, the constant  'A'  is stored in an  int -sized chunk of memory; more precisely, the charac-
ter code is stored in the  int . The same numeric value is also stored in the variable  ch , but here 
it occupies just one byte of memory.  

 C++, on the other hand, uses one byte for  'A' , as well as for  ch . This distinction doesn’t affect 
any of the examples in this text. However, some C programs do make use of  char  constants 
being type  int  by using character notation to represent integer values. For instance, if a system 
has a 4-byte  int , you can do this in C:  

  int x = 'ABCD';  /* ok in C for 4-byte int but not for C++ */   

 The meaning of  'ABCD'  is a 4-byte  int  in which the first byte stores the character code for the 
letter  A , the second byte stores the character code of  B , and so on. Note that  'ABCD'  is some-
thing quite different from  "ABCD" . The former is just a funny way of writing an  int  value, but 
the latter is a string and corresponds to the address of a 5-byte chunk of memory.  

 Consider the following code:  

  int x = 'ABCD';

  char c = 'ABCD';

  printf("%d %d %c %c\n", x, 'ABCD', c, 'ABCD');   

 On our system, it produces this output:  

  1094861636 1094861636 D D   

 This example illustrates that if you treat  'ABCD'  as an  int , it is a 4-byte integer value, but if 
you treat it as type  char , the program looks only at the final byte. Attempting to print  'ABCD'  
by using the  %s  specifier caused the program to crash on our system, because the numeric value 
of  'ABCD'  ( 1094861636 ) was an out-of-bounds address.  

 The rationale for using values such as  'ABCD'  is that it provides a means to set each byte in the 
 int  independently, because each character corresponds exactly to one byte. However, a better 
approach, because it doesn’t depend on particular character codes, is to use hexadecimal values 
for integer constants, using the fact that each two-digit hexadecimal group corresponds to one 
byte.  Chapter   15   , “Bit Fiddling,” discusses this technique. (Early versions of C didn’t provide 
hexadecimal notation, which probably is why the multicharacter constant technique was devel-
oped in the first place.)   

  The  const  Modifier  

 In C, a global  const  has external linkage, but in C++, it has internal linkage. That is, the C++ 
declaration  
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  const double PI = 3.14159;   

 is equivalent to the C declaration  

  static const double PI = 3.14159;   

 provided both declarations are outside of any function. The C++ rule has the goal of making it 
simpler to use  const  in header files. If the constant has internal linkage, each file that includes 
the header file gets its own copy of the constant. If a constant has external linkage, one file has 
to have a defining declaration and the other files have to have a reference declaration, one that 
uses the keyword  extern .  

 Incidentally, C++ can use the keyword  extern  to make a  const  value have external linkage, so 
both languages can create constants with internal linkage and external linkage. The difference 
is just in which kind of linkage is used by default.  

 One additional property of the C++  const  is that it can be used to declare the size of an ordi-
nary array:  

  const int ARSIZE = 100;

  double loons[ARSIZE];  /* in C++, same as double loons[100];  */   

 You can make the same declarations in C99, but in C99, the declaration creates a variable array.  

 In C++, but not in C, you can use  constvalues  to initialize other  const  values:  

  const double RATE = 0.06;          // valid C++, C

  const double STEP = 24.5;          // valid C++, C

  const double LEVEL = RATE * STEP;  // valid C++, invalid C    

  Structures and Unions  

 After you declare a structure or union having a tag, you can use the tag as a type name in C++:  

  struct duo

  {

      int a;

      int b;

  };

  struct duo m;  /* valid C, C++ */

  duo n;        /* invalid C, valid C++ */   

 As a result, a structure name can conflict with a variable name. For example, the following 
program compiles as a C program, but it fails as a C++ program because C++ interprets  duo  in 
the  printf()  statement as a structure type rather than as the external variable:  

  #include <stdio.h>

  float duo = 100.3;

  int main(void)

  {

      struct duo { int a; int b;};
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      struct duo y = { 2, 4};

      printf ("%f\n", duo);   /* ok in C, not in C++ */

      return 0;

  }   

 In C and in C++, you can declare one structure inside another:  

  struct box

  {

      struct point {int x; int y; } upperleft;

      struct point lowerright;

  };   

 In C, you can use either structure later, but C++ requires a special notation for the nested 
structure:  

  struct box ad;     /* valid C, C++         */

  struct point dot;  /* valid C, invalid C++ */

  box::point dot;  /* invalid C, valid C++ */    

  Enumerations  

 C++ is stricter about using enumerations than C is. In particular, about the only useful things 
you can do with an  enum  variable are assign an  enum  constant to it and compare it to other 
values. You can’t assign  int s to an  enum  without an explicit type cast, and you can’t increment 
an  enum  variable. The following code illustrates these points:  

  enum sample {sage, thyme, salt, pepper};

  enum sample season;

  season = sage;            /* ok in C, C++               */

  season = 2;               /* warning in C, error in C++ */

  season = (enum sample) 3; /* ok in C, C++               */

  season++;                 /* ok in C, error in C++      */   

 Also, C++ lets you drop the keyword  enum  when declaring a variable:  

  enum sample {sage, thyme, salt, pepper};

  sample season;    /* invalid C, valid C++ */   

 As was the case with structures and unions, this can lead to conflicts if a variable and an  enum  
type have the same name.   

  Pointer-to- void   

 In C++, as in C, you can assign a pointer of any type to a pointer-to- void , but, unlike in C, 
you cannot assign a pointer-to- void  to another type unless you use an explicit type cast. The 
following code illustrates these points:  

  int ar[5] = {4, 5, 6,7, 8};
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  int * pi;

  void * pv;

  pv = ar;           /* ok in C, C++            */

  pi = pv;           /* ok in C, invalid in C++ */

  pi = (int * ) pv;  /* ok in C, C++            */   

 Another difference in C++ is that you can assign the address of a derived-class object to a base-
class pointer, but that relates to features that don’t even exist in C.   

  Boolean Types  

 In C++, the Boolean type is  bool , and  true  and  false  are keywords. In C, the Boolean type is 
 _Bool , but including the header file  stdbool.h  makes  bool ,  true , and  false  available.   

  Alternative Spellings  

 In C++, the alternative spellings of  or  for  || , and so on, are keywords. In C99 and C11, they 
are defined as macros, and you need to include  iso646.h  to make them available.   

  Wide-Character Support  

 In C++,  wchar_t  is a built-in type, and  wchar_t  is a keyword. In C99 and C11, the  wchar_t  
type is defined in several header files ( stddef.h ,  stdlib.h ,  wchar.h ,  wctype.h ). Similarly, 
 char16_t  and  char32_t  are C++11 keywords but are macros defined in  uchar.h  in C11.  

 C++ provides wide-character I/O support ( wchar_t ,  char16_t , and  char32_t ) through the 
 iostream  header file, whereas C99 provides a completely different package of I/O support 
through the  wchar.h  header file.   

  Complex Types  

 C++ supports complex types through a complex class provided by the  complex  header file. C 
has built-in complex types and supports them through the  complex.h  header file. The two 
approaches are quite different and are not compatible with one another. The C version reflects 
a greater concern with the needs and practices of the numerical computation community.   

  Inline Functions  

 C99 has added inline function support, a feature C++ already had. However, the C99 imple-
mentation is more flexible. In C++, an inline function has internal linkage by default. If a 
C++ inline function appears in more than one file, it has to have the same definition, using 
the same tokens. For example, one file can’t have a definition using a type  int  parameter and 
another file have a definition using a type  int32_t  parameter, even if  int32_t  is a  typedef  
for  int . C, however, allows that arrangement. Also, C, as described in  Chapter   15   , allows a 
mixture of inline and external definitions that C++  doesn’t allow.   
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  C99/11 Features Not Found in C++11  

 Although C traditionally is more or less a subset of C++, the C99 standard adds several features 
missing in C++. Here are some of the more prominent C99/C11-only features:  

    ■   Designated initializers   

   ■   Compound initializers   

   ■   Restricted pointers   

   ■   Variable-length arrays   

   ■   Flexible array members   

   ■   Macros with a variable number of arguments    

  Note 

 This list is just a snapshot at one particular time, and the lists of shared and unshared fea-
tures will continue to evolve. For example, C++14 adds a feature similar to the C99 variable-
length array.       
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Symbols     
-/+ (sign operators), 149 

   [ ] (brackets),   102  

  arrays,   384  

  empty,   388 ,  424   

   %= assignment operator,   214   

   *= assignment operator,   214 ,  230   

   += assignment operator,   214   

   -= assignment operator,   214   

   /= assignment operator,   214   

   ~ bitwise operator,   688   

   << (left shift) bitwise operator,   684   

   >> (right shift) bitwise operator,   684 - 685   

   . (period) character,   262   

   * modifier, printf( ) function,   133 - 135   

   ! operator,   264   

   # operator, strings from macro arguments, 

  721 - 722   

   ## operator,   722 - 723   

   & operator,   367 - 368  

  bitwise,   679   

   && operator,   264  

  ranges,   267 - 268   

   | operator, bitwise,   679 - 680   

   || operator,   264   

   + (addition) operator,   149   

   = (assignment) operator,   146 - 149 ,  202   

   ?: (conditional) operator,   272 - 273   

   -- (decrement) operator,   164 - 166   
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1006 == (equality) operator

   == (equality) operator,   191   

   ++ (increment) operator,   160 -     166   

   * (indirection) operator,   371 - 372   

   * (multiplication) operator,   151 - 153   

   . (membership) operator,   912 - 913   

   == (relational) operator,   202   

   + (sign) operator,   150   

   - (subtraction) operator,   149 - 150   

   */ symbol,   30 ,  33 - 34   

   /* symbol,   30 ,  33 - 34   

   * unary operator,   406   

   ++ unary operator,   406   

   / (division) operator,   153 - 154   

   < (redirection) operator,   308   

   > (redirection) operator,   308   

   { } (braces),   34  

  while loop,   146    

  A 
   a+b mode,   643   

   actual arguments,   343 - 344   

   add_one.c program,   160 - 161   

   addaword.c program,   577 - 578   

   addemup.c program,   169 - 170   

   AddItem( ) function,   793 ,  800 - 801 ,  833 -     837   

   addition (+) operator,   149   

   AddNode( ) function,   833 - 835   

   addresses  

  & operator,   367 - 368  

  double quotation marks,   465  

  function pointers,   657  

  inline functions,   743  

  pointers,   409  

  structures,   619 - 620  

  variables,   375   

   addresses.c program,   446 - 447   

   ADT (abstract data type),   774 ,  786 - 787  

  binary search trees,   829  

  EmptyTree( ) function,   833  

  FullTree( ) function,   833  

  InitializeTree( ) function,   833  

  interface,   830 - 832  

  TreeItems( ) function,   833  

  defining,   787  

  interfaces  

  building,   789 - 793  

  defining,   805 - 806  

  functions,   810 - 815  

  implementing,   796 - 802  

  using,   793 - 796  

  lists, operations,   788  

  queue,   804   

   align.c program,   704 - 705   

   alignment, C11, 703   

   allocated memory,   543  

  calloc( ) function,   548  

  dynamic, VLAs and,   548 - 549  

  free( ) function,   545 -   548  

  malloc( ) function,   543 - 544  

  storage classes and,   549 - 551  

  structures,   605   

   altnames.c program,   78 - 79   

   AND operator,   679   

   animals.c program,   280 - 281   

   anonymous structures,   636 - 637   

   anonymous unions,   647   

   ANSI (American Nation Standards 

Institute),   8   

   ANSI C,   8 - 9 ,  17  

  functions, prototyping,   349 - 353  

  math functions,   748  

  type qualifiers,   551  

  _Atomic,   556 - 557  
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  const,   552 - 554  

  formal parameters,   557  

  restrict,   555 - 556  

  volatile,   554 - 555   

   ANSI/ISO C standard,   8 - 9   

   a.out file,   17   

   append.c program,   590 - 592   

   Apple, Xcode,   21   

   arguments,   89 - 91  

  actual,   343 - 344  

  command-line,   497  

  integrated environment,   500 ,  569 -
 570  

  #define,   718 - 722  

  ## operator,   722 - 723  

  variadic macros,   723 - 724  

  float, conversion,   116  

  fseek( ) function,   580 - 581  

  functions,   340    

  functions with,   177 - 180  

  none,   352 - 353  

  passing,   124 ,  621 - 622  

  printf( ) function,   114  

  unspecified,   352 - 353   

   arithmetic operators,   908   

   array2d.c program,   424 - 426   

   arrays,   226 - 227 ,  407  .   See also  VLAs 

(variable-length arrays) 

  [ ] (brackets),   102 ,  384  

  empty,   388  

  of arrays,   419  

  bounds,   390 - 392  

  char,   101 - 102 ,  227  

  in memory,   228  

  character string arrays,   444 - 445 ,  
449 - 451  

  compound literals,   432  

  const keyword,   385  

  array size,   431  

  contents, protecting,   412 - 417  

  creating,   544  

  days[ ], 385  

  declaring,   102  

  constant expressions,   544  

  pointers and,   544  

  variable expressions and,   544  

  description,   101  

  designated initializers,   388 - 390  

  elements, inserting,   824  

  function pointers,   664  

  index,   384  

  initialization,   384 - 388 ,  444 - 445  

  multidimensional,   396  

  int, in memory,   228  

  linked lists and,   824 - 828  

  for loops in,   228 - 230  

  members, flexible,   633 - 636  

  multidimensional,   393 - 398  

  functions and,   423 - 427  

  pointers and,   417 - 427  

  two-dimensional,   394 -   398  

  names, pointer notation,   402  

  notation, pointers and,   402  

  parameters, declaring,   403  

  pointers and,   398  

  comparison,   445 - 447  

  differences,   447 - 449  

  parentheses,   420  

  as queue,   806  

  ragged,   450  

  rectangular,   450  

  size, specifying,   392 - 393  

  storage classes,   386  
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  structures,   607 - 608  

  character arrays,   627 - 628  

  declaring,   611  

  functions,   637 - 638  

  members,   612  

  of unions,   645  

  values, assigning,   390  

  VLAs, dynamic memory allocation and, 
  548 - 549   

   arrchar.c program,   449 - 450   

   ASCII code, numbers    versus    number char-

acters,   75   

   assembly languages,   3   

   assert library,   760  

  assert( ) function,   760 - 763   

   assert( ) function,   760 - 763   

   assert.c program,   761 - 762   

   assigned values, enumerated types,   650   

   assignment  

  pointers,   409  

  void function,   658   

   assignment operators,   910 - 911  

  =, 146-149, 202  

  %=, 214  

  *=, 214, 230  

  +=, 214  

  -=, 214  

  /=, 214   

   assignment statements,   37 - 38   

   atan( ) function,   747   

   atexit( ) function,   753 - 755   

   atoi( ) function,   500 - 502   

   _Atomic type qualifier,   556 - 557   

   auto keyword,   518   

   automatic access to C library,   745   

   automatic variables, storage classes,   

518 - 522    

  B 
   B language,   1   

   base 2 system,   674   

   bases.c program,   66   

   BASIC,   3   

   Bell Labs,   1   

   binary files,   566 ,  582   

   binary floating points  

  floating-point representation,   676  

  fractions,   676   

   binary integers,   674 - 675   

   binary I/O, random access,   593 - 594   

   binary numbers  

  decimal equivalents,   678  

  hexadecimal equivalents,   678  

  octal digits,   677   

   binary operators,   150   

   binary output,   586   

   binary searches,   826 - 827  

  trees,   828 - 829  

  adding items,   833 - 836  

  AddItem( ) function,   833 - 835 ,  
836 - 837  

  AddNode( ) function,   833 - 835  

  ADTs,   829 - 843  

  DeleteAll( ) function,     843  

  DeleteItem( ) function,   836 - 837 , 
 841 - 842  

  DeleteNode( ) function,   841 - 842  

  deleting items,   837 - 839 ,  841 - 842  

  deleting nodes,   840 - 841  

  emptying,     843  

  EmptyTree( ) function,   833  

  finding items,   836 - 837  

  FullTree( ) function,   833  

  InitializeTree( ) function,   833  
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   book inventory sample,   601 - 602  

  arrays of structures, functions,   637 - 638  

  book.c program,   602 - 603  

  flexible array members,   633 - 636  

  manybook.c program,   608   - 613  

  structure declaration,   604  

  initialization,   606  

  initializers,   607 - 608  

  member access,   607  

  struct keyword,   604  

  variables,   605 - 608  

  structures  

  address,   619 - 620  

  anonymous,   636 - 637  

  arrays,   608 - 613  

  compound literals and,   631 - 633  

  passing as argument,   621 - 622  

  passing members,   618 - 619  

  pointers to,   626 - 627  

  saving contents to file,   639 - 644   

   book.c program,   602 - 603   

   books  

  C++, 908  

  C language,   907  

  programming,   907  

  reference,   908   

   booksave.c program,   640 - 643   

   _Bool type,   77 ,  203 - 204   

   Borland C, floating-point values and,   608   

   Borland C++ Compiler 5.5, 19   

   bottles.c program,   164 - 165   

   bounds, arrays,   390 - 392   

   bounds.c program,   391 - 392   

   braces ({ }),   30 ,  34  

  while loop,   146   

  interface,   830 - 832  

  InTree( ) function,   836 - 837  

  MakeNode( ) function,   833 - 835  

  SeekItem( ) function,   833 - 835 ,  836 -
 837 ,  841 - 842  

  tips,   854 - 856  

  ToLeft( ) function,   835  

  ToRight( ) function,   835  

  traversing trees,   842  

  TreeItems( ) function,   833   

   binary system,   674   

   binary tree,   644   

   binary view (files),   567   

   binary.c program,   359 - 360   

   binbit.c program,   686 - 687   

   bit fields,   690 - 692  

  bitwise operators and,   696 - 703  

  example,   692 - 695   

   bit numbers, values,   674   

   bitmapped images,   774   

   bits,   60 ,  674   

   bitwise operators,   683 ,  913 - 914  

  ~, 688  

  binbit.c program,   686 - 687  

  bit fields and,   696 - 703  

  clearing bits,   682 - 683  

  logical,   678 - 680  

  masks,   680 - 681  

  setting bits,   681 - 682  

  shift operators,   684 - 685  

  values, checking,   683 - 684   

   black-box viewpoint,   345   

   blank lines,   41   

   block scope,   514   

   blocks (compound statements),   171 - 173   

   body, functions,   40   
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   brackets ([ ]),   102  

  arrays,   384  

  emtpy,   424   

   break statement,   282 - 283  

  loops,   277 - 279   

   break.c program,   277 - 279   

   buffers,   300 - 302  

  file position indicator and,   584  

  input, user interface,   312 - 314   

   butler( ) function,   44 - 45 ,  177   

   bytes,   60    

  C 
   C language  

  operators,   908 - 909  

  reference books,   907   

   C library  

  access  

  automatic,   745  

  file inclusion,   745  

  library inclusion,   745 - 746  

  descriptions,   746 - 747   

   C Reference Manual,   8   

   C++,   4  

  books,   908  

  C comparison, const keyword,   423  

  enumeration,   649   

   C11 standard,   9  

  alignment,   703 - 705  

  generic selection,   740 - 741  

  _Noreturn functions,   744   

   C99 standard,   8 - 9  

  compound literals, structures and,   
631 - 633  

  designated initializers,   388 - 390  

  flexible array members,   633 - 636  

  functions, inline,   741 - 744  

  tgmath.h library,   752   

   calling functions  

  arguments,   343 - 344  

  nested calls,   468 - 469  

  variables, altering,   369 - 371   

   calloc( ) function,   548   

   case labels  

  enum variables and,   650  

  multiple,   284 - 285   

   cast operator, type conversions,   176   

   cc compiler,   17   

   CDC 6600 computer,   7   

   char arrays,   101 - 102 ,  227  

  in memory,   228   

   char keyword,   60   

   char type,   71 - 72 ,  93 ,  136  

  nonprinting characters,   73 - 76  

  printing characters,   76  

  signed,   77  

  unsigned,   77  

  variables, declaring,   72   

   character arrays, structures,   627 - 628   

   character constants,   94  

  initialization,   72 - 73   

   character functions, ctype.h,   252 - 253   

   character input, mixing with number,   314 -

 317 ,  327 - 330   

   character pointers, structures,   627 - 628   

   character string arrays,   444 - 445 ,  449 - 451   

   character string literals,   442 - 443   

   character strings,   101 ,  227 ,  441   

   characters  

  null,   459  

  reading single,   283  

  single-character I/O,   300 - 301  

     versus    strings,   103   
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  compilers,   19  

  redirection,   310   

   comments,   13  

  first.c program,   33 - 34   

   compare.c program,   476 - 477   

   comparisons, pointers,   411   

   compatibility, pointers,   421 - 423   

   compback.c program,   477 - 479   

   compflt.c program,   198 - 199   

   compilers,   3 ,  11 - 12  

  Borland C++ Compiler 5.5, 19  

  cc,   17  

  command-line,   19  

  GCC,   18  

  languages,   7  

  linkers,   15  

  system requirements,   24  

  translation and,   712   

   compiling  

  Apple IDE, multiple source code files 
and,   362 - 363  

  conditional,   731  

  #elif directive,   736 - 737  

  #else directive,   732 - 733  

  #endif directive,   732 - 733  

  #error directive,   738 - 740  

  #if directive,   736 - 737  

  #ifdef directive,   732 - 733  

  #line directive,   738 - 740  

  predefined macros,   737 - 740  

  DOS command-line, multiple source 
code files and,   362  

  header files, multiple source code files 
and,   363 - 367  

  Linux systems, multiple source code 
files and,   362 - 32  

  modules,   14  

   charcode.c program,   76   

   chcount.c program,   262 - 264   

   checking.c program,   320 - 323   

   circular queue,   808   

   clang command,   18   

   classes, storage,   511 - 513  

  automatic,   517  

  automatic variables,   518 - 522  

  dynamic memory allocation and,   
549 - 551  

  functions and,   533 - 534  

  register,   517  

  register variables,   522  

  scope,   513 - 515  

  static variables,   522 - 524  

  static with external linkage,   517  

  static with internal linkage,   517  

  static with no linkage,   517   

   Classic C,   8   

   clearing bits (bitwise operators),   682 - 683   

   code  

  executable files,   14 - 18  

  libraries,   14 - 18  

  object code files,   14 - 18  

  source code,   14  

  startup,   15  

  writing,   11   

   colddays.c program,   246 - 248   

   combination redirection,   309 - 310   

   comma format,   136   

   comma operator,   214 - 218  

  for loop and,   216   

   command-line  

  arguments,   497  

  integrated environment,   500  

  Macintosh,   500  

  standard I/O,   569 - 570  
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  Unix and,   16 - 18  

  Unix systems, multiple source code 
files and,   362  

  Windows, multiple source code files 
and,   362 - 363   

   complex types,   85   

   complit.c program,   632 - 633   

   compound literals,   431  

  arrays,   432 - 434  

  structures and,   631 - 633   

   compound statements (blocks),   171 - 173   

   conditional compilation,   731  

  #elif directive,   736 - 737  

  #else directive,   732 - 733  

  #endif directive,   732 - 733  

  #error directive,   738 - 740  

  #if directive,   736 - 737  

  #ifdef directive,   732 - 733  

  #line directive,   738 - 740  

  macros, predefined,   737 - 740   

   conditional operators,   911 - 912   

   conditional (?:) operator,   272 - 273   

   const keyword,   109 ,  148  

  arrays,   385  

  protecting,   415 - 417  

  sizes and,   431  

  C++ compared to C,   423  

  constants created,   716  

  formal parameters,   413 - 415   

   const type qualifier,   552  

  global data,   553 - 554  

  parameter declarations,   552 - 553  

  pointers and,   552 - 553   

   constants,   57 - 59  

  character constants, initialization,   
72 - 73  

  enum keyword,   649 - 650  

  expressions, array declaration,   544  

  floating-point,   81 - 82  

  int,   64  

  long,   68  

  long long,   68  

  manifest,   109 - 110  

  #define directive,   713  

  preprocessor and,   106 - 112  

  redefining,   717 - 718  

  string constants,   442 - 443  

  double quotation marks,   465  

  symbolic,   106 -   111  

  when to use,   716   

   contents of arrays, protecting,   412 - 417   

   continue statement, loops,   274 - 277   

   control strings,   115 - 114  

  scanf( ),   128   

   conversion specifiers,   112 - 113  

  mismatched conversions,   122 - 124  

  modifiers,   116 - 121 ,  129   

   conversions  .   See also  type conversions 

  string-to-number,   500 - 503   

   copy1.c program,   482 - 484   

   copy2.c program,   484 - 485   

   copy3.c program,   486 - 487   

   CopyToNode( ) function,   799   

   count.c program,   569   

   counting loops,   207 - 208   

   CPU (central processing unit),   5   

   ctype.h  

  character functions,   252 - 253 ,  495  

  strings,   495   

   Cygwin,   19   

   cypher1.c program,   250 - 252    
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  parameters,   403  

  pointers,   544  

  variable expressions,   544  

  pointers,   372 - 373   

   declaring variables,   37 ,  57 ,  102  

  char type,   72  

  int,   63   

   decrement (--) operator,   164 - 166   

   decrementing pointers,   410 - 411   

   #define statement,   109 ,  136  

  arguments,   718  

  ## operator,   722 - 723  

  function-like macros,   718  

  mac_arg.c program,   719 - 721  

  strings from macro arguments, 
  721 - 722  

  variadic macros,   723 - 724  

  enumerations instead,   701  

  manifest constants,   713  

  typedef,   654   

   defines.c program,   111 - 112   

   DeleteAll( ) function,     843   

   DeleteItem( ) function,   836 - 837 ,  841 - 842   

   DeleteNode( ) function,   841 - 842   

   dereferencing uninitialized pointers,   411   

   design features,   2   

   designated initializers,   388 - 390   

   designing the program,   11   

   dice rolling example,   538 - 543   

   diceroll.c file,   539 - 540   

   diceroll.h file,   540   

   differencing between pointers,   411   

   directives  

  #elif,   736 - 737  

  #else,   732 - 733  

  #endif,   732 - 733  

  first.c program,   31 - 32  

  D 
   data keywords,   59 - 60   

   data objects,   147   

   data representation,   773 - 774  

  films1.c program,   775 - 777  

  interfaces  

  building,   789 - 793  

  defining,   805 - 806  

  implementing,   796 - 802 ,  806 - 810  

  using,   793 - 796   

   data types,   35  .   See also  ADT (abstract 

data type) 

  basic,   87  

  _Bool,   203 - 204  

  int,   62 - 65  

  mismatches,   89  

  size_t,   158   

   day_mon1.c program,   385 - 386   

   day_mon2.c program,   387 - 388   

   day_mon3.c program,   401   

   days[ ] array,   385   

   debugging,   12  

  nogood.c,   46 - 49  

  program state,   49  

  programs for,   49  

  semantic errors,   47 - 48  

  syntax errors,   46 - 47  

  tracing,   48   

   decimal system,   674  

  binary equivalents,   678   

   declarations,   34 - 35  

  fathm_ft.c program,   43  

  function declarations,   45  

  modifiers,   655 - 656   

   declaring  

  arrays,   102  

  constant expressions,   544  
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  #if,   736 - 737  

  #ifdef,   732 - 733  

  #ifndef,   733 - 735  

  #undef,   731   

   disks,   5   

   displaying linked lists,   783 - 784   

   division ( / ) operator,   153 - 154   

   divisors.c program,   261 - 262   

   DLLs (dynamic link libraries),   20   

   do while loop,   220 - 223   

   documentation  

  commenting,   13  

  fathm_ft.c program,   43   

   doubincl.c program,   735   

   double keyword,   60   

   double quotation marks,   465  

  macros and,   716   

   double type,   80 - 81   

   do_while.c program,   221   

   dualview.c program,   697 - 703   

   Dummy( ) function,   663   

   dynamic memory allocation  

  storage classes and,   549 - 551  

  VLAs and,   431 ,  548 - 549   

   dyn_arr.c program,   545 - 547    

  E 
   eatline( ) function,   664   

   echo.c program,   300   

   echo_eof.c program,   305 - 306   

   editors, Unix systems,   16   

   efficiency,   3   

   electric.c program,   255 - 257   

   elements  

  arrays,   824  

  linked lists,   824   

   #elif directive,   736 - 737   

   #else directive,   732 - 733   

   else if statement,   253 - 257   

   emacs editor,   16   

   EmptyTheList( ) function,   793   

   EmptyTree( ) function,   833   

   #endif directive,   732 - 733   

   end-of-file.     See  EOF (end-of-file)  

   entity identifier,   512   

   entry condition loop,   195   

   enum keyword,   649  

  constants,   649 - 650  

  usage,   650 - 652   

   enum.c program,   650 - 652   

   enumerated types,   649  

  C++, 649  

  shared namespaces,   652 - 653  

  values  

  assigned,   650  

  default,   650   

   enumeration, #define statement,   701   

   EOF (end-of-file),   304 - 306  

  standard I/O,   572 - 573   

   equality (==) operator,   191   

   #error directive,   738 - 740   

   errors  

  semantic,   47 - 48  

  syntax,   46 - 47   

   escape sequences,   73 ,  91 ,  94  

  escape.c program,   91  

  printf( ) function,   91 - 92   

   escape.c program,   91   

   EXCLUSIVE OR operator,   680   

   executable files,   14 - 18   

   execution, smooth,   325   

   exit( ) function,   570 ,  753 - 755   



ptg11524036

1015first.c program

   file inclusion  

  C library,   745  

  #include directive,   726 - 730   

   file I/O  

  fgets( ) function,   578 - 579  

  fprintf( ) function,   576 - 578  

  fputs( ) function,   578 - 579  

  fscanf( ) function,   576 - 578   

   file-condensing program,   574 - 576   

   filenames,   14   

   files,   303  

  binary,   566 ,  582  

  binary view,   567  

  description,   566  

  EOF (end-of-file),   304 - 306  

  executable,   14 - 18  

  object code,   14 - 18  

  portability,   582 - 583  

  redirection,   307  

  size,   566  

  source code,   14  

  structure contents, saving,   639 - 644  

  text,   566  

     versus    binary,   582  

  binary mode,   567  

  text mode,   567  

  text view,   567   

   films1.c program,   775 - 777   

   films3.c program,   794 - 796   

   first.c program,   28  

  { } (braces),   34  

  comments,   33 - 34  

  data types,   35  

  declarations,   34 - 35  

  directives,   31 - 32  

  header files,   31 - 32  

  main( ) function,   32 - 33  

   exit-condition loop,   220 - 223   

   EXIT_FAILURE macro,   570   

   EXIT_SUCCESS macro,   570   

   expressions,   167 - 168  

  generic selection,   740 - 741  

  logical,   911  

  relational,   910  

  false,   199 - 203  

  true,   199 - 203  

  values,   168   

   extern keyword,   536   

   external linkage,   515    

  F 
   %f specifier in printf( ) function,   57   

   factor.c program,   356 - 358   

   fathm_ft.c program,   42 - 43  

  declarations,   43  

  documentation,   43  

  multiplication,   43   

   fclose( ) function,   574   

   feof( ) function,   589   

   ferror( ) function,   589   

   fflush( ) function,   585   

   fgetpos( ) function,   583   

   fgets( ) function,   495 - 497 ,  578 - 579  

  string input,   456 -   461   

   fgets1.c program,   456 - 457   

   fgets2.c program,   457 - 458   

   fgets3.c program,   459 - 460   

   Fibonnaci numbers,   360   

   fields, bit fields,   690 - 692  

  bitwise operators and,   696 - 703  

  storage,   692 - 695   

   fields.c program,   693 - 695   
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  name choices,   36  

  return statement,   40  

  stdio.h file,   31   

   fit( ) function,   470 - 471   

   flags.c program,   120   

   flc.c program,   433 - 434   

   flexibility of C,   3   

   flexible arrays,   633 - 636   

   flexmemb.c program,   634 - 636   

   float argument, conversion,   116   

   float keyword,   60   

   float type,   80 - 81   

   floating points, binary  

  binary fractions,   676  

  floating-point representation,   676   

   floating-point constants,   81 - 82   

   floating-point numbers,   61 - 57 ,  93  

  overflow,   83 - 84  

  round-off errors,   84  

  underflow,   83 - 84   

   floating-point representation,   84   

   floating-point types,   94  

  integer comparison,   60   

   floating-point values  

  Borland C and,   608  

  printing,   82 - 83   

   floating-point variables, declaring,   81   

   flushing output,   92 - 93   

   fopen( ) function,   570 - 572 ,  579 ,  584   

   for keyword,   209   

   for loop,   208 - 209  

  arrays and,   228 - 230  

  comma operator and,   216  

  flexibility,   210 - 214  

  selecting,   223 - 224  

  structure,   209   

   for_cube.c program,   209 - 210   

   FORTRAN,   7   

   fprintf( ) function,   576 - 578   

   fputs( ) function,   578 - 579  

  string input,   456 - 460  

  string output,   465 - 466   

   fractional parts,   61   

   fractions, binary,   676   

   fread( ) function,   586 -   639  

  example,   589 - 590   

   free( ) function,   545 - 547 ,  802  

  importance of,   547 - 548   

   friend.c program,   615 - 618   

   fscanf( ) function,   576 - 578   

   fseek( ) function,   579 - 582   

   fsetpos( ) function,   583   

   ftell( ) function,   579   - 582   

   ftoa( ) function,   503   

   FullTree( ) function,   833   

   func_ptr.c program,   660 - 664   

   function declarations,   45   

   function pointers,   657  

  addresses,   657  

  ToUpper( ) function,   657 - 658   

   function scope,   514   

   function-like macros,   718 ,  731   

   functions,   4  

  { } (braces),   34  

  AddItem( ),   793 ,  800 - 801 ,  833 - 835  

  AddNode( ),   833 - 835  

  ANSI C, prototyping,   349 - 353  

  arguments,   177 - 180 ,  340 - 342  

  formal parameters,   342 - 343  

  none,   352 - 353  

  prototyping function with,   343  

  unspecified,   352 - 353  
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  fsetpos( ),   583  

  ftell( ),   579   - 582  

  ftoa( ),   503  

  FullTree( ),   833  

  fwrite( ),   586 -   590 ,  639  

  getc( ),   572  

  getchar( ),   20 ,  250 - 252  

  get_choice( ),   325 - 327  

  getinfo( ),   624  

  get_long( ),   322  

  getnights( ),   366  

  gets( ),   453 - 455 ,  460 - 461  

  gets_s( ),   460 - 461  

  headers,   40  

  imax( ),   350 - 351  

  imin( ),   345 - 348  

  InitializeList( ),   793 ,  800  

  InitializeTree( ),   833  

  inline,   725 ,  741 - 744  

  InOrder( ),   842  

  input,   584  

  isalnum( ),   254  

  isalpha( ) function,   254  

  isblank( ),   254  

  iscntrl( ),   254  

  isdigit( ),   254  

  isgraph( ),   254  

  islower( ),   254 ,  268  

  isprint( ),   254  

  ispunct( ),   254  

  isspace( ),   254 ,  269  

  isupper( ),   254  

  isxdigit( ),   254  

  itoa( ),   503  

  itobs( ),   687  

  ListIsEmpty( ),   800  

  ListIsFull( ),   800 - 801  

  arrays  

  multidimensional,   423 - 427  

  of structures,   637 - 638  

  assert( ),   760 - 763  

  atan( ),   747  

  atoi( ),   500  

  black-box viewpoint,   345  

  body,   34 ,  40  

  butler( ),   44 - 45 ,  177  

  calling  

  altering variables,   369 - 371  

  with argument,   343 - 344  

  nested calls,   468 - 469  

  calloc( ),   548  

  character, ctype.h,   252 - 253  

  creating,   337 - 340  

  DeleteAll( ),     843  

  DeleteItem( ),   841 - 842  

  DeleteNode( ),   841 - 842  

  description,   335  

  Dummy( ),   663  

  eatline( ),   664  

  EmptyTheList( ),   793  

  EmptyTree( ),   833  

  exit( ),   570 ,  753 - 755  

  fclose( ),   574  

  feof( ),   589  

  ferror( ),   589  

  fflush( ),   585  

  fgetpos( ),   583  

  fgets( ),   456   - 461 ,  578 - 579  

  fit( ),   470 - 471  

  fopen( ),   570 - 572 ,  579 ,  584  

  fputs( ),   456 - 460 ,  465 - 466 ,  578 - 579  

  fread( ),   586 -     590 ,  639  

  free( ),   545 -   548 ,  802  

  fseek( ),   579   - 582  
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  ListItemCount( ),   800 - 801  

     versus    macros,   725 - 726  

  main( ),   30   - 33 ,  232 ,  337 - 340  

  makeinfo( ),   624 - 626  

  MakeNode( ),   833 - 835  

  malloc( ),   543 - 544 ,  628 - 631 ,  777  

  math library,   748  

  memcpy( ),   763 - 765  

  memmove( ),   763 - 765  

  menu( ),   366  

  mult_array( ),   415 - 416  

  multiple,   44 - 45  

  mycomp( ),   758 - 760  

  names,   336  

  uses,   664  

  _Noreturn (C11),   744  

  pointers  

  arrays of,   664  

  communication and,   373 - 375  

  declaring,   658  

  pound( ),   179  

  pow( ),   230  

  power( ),   233  

  printf( ),   30 - 31 ,  38 - 39  

  multiple values,   43 - 44  

  print_name( ),   352 - 353  

  prototyping  

  ANSI C,   349 - 353  

  arguments and,   343  

  scope,   514 - 515  

  put1( ),   467  

  put2( ),   468  

  putc( ),   572  

  putchar( ),   250 - 252  

  puts( ),   442 ,  453 - 455 ,  464 - 465 ,  471  

  qsort( ),   657 ,  755 - 758  

  rand( ),   534 ,  819 - 820  

  rand0( ),   535  

  recursive,   353 - 355  

  returns,   356  

  statements,   356  

  variables,   355  

  return values,   233 - 234  

  rewind( ),   577 ,  643  

  rfact( ),   358  

  scanf( ),   58 ,  128 - 129  

  SeekItem( ),   833 - 835 ,  841 - 842  

  setvbuf( ),   584   - 586  

  s_gets( ),   461 - 462 ,  592  

  show( ),   659  

  show_array( ),   416  

  show_bstr( ),   687  

  showmenu( ),   663 - 664  

  show_n_char( ),   340 - 344  

  sprintf( ),   487 - 489  

  sqrt( ),   660 ,  747  

  srand( ),   536 - 538 ,  542 ,  820  

  starbar( ),   337 - 340  

  storage classes,   533 - 534  

  strcat( ),   471 - 473 ,  489  

  strchr( ),   490 ,  664  

  strcmp( ),   475   - 480 ,  489  

  strcpy( ),   482 -   485 ,  489  

  strlen( ),   101   - 105 ,  469 - 471 ,  490  

  strncat( ),   473 - 474 ,  489  

  strncmp( ),   489  

  strncpy( ),   482 -   489  

  strpbrk( ),   490  

  strstr( ),   490  

  strtod( ),   503  

  strtol( ),   503  

  strtoul( ),   503  

  structure,   339  

  sum( ),   402  
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   generic selection,   740 - 741   

   getc( ) function,   572   

   getchar( ),   28  

  end-of-file,   304  

  single-character I/O and,   300 - 301   

   getchar( ) function,   20 ,  250 - 252   

   get_choice( ) function,   325 - 327   

   getinfo( ) function,   624   

   get_long( ) function,   322   

   getnights( ) function,   366   

   gets( ) function,   453 - 455  

  string input,   460 - 461   

   getsputs.c program,   453 - 455   

   gets_s( ) function, string input,   460 - 461   

   global data, const type qualifier,   553 - 554   

   GNU (GNU's Not Unix),   18   

   goto statement,   287 ,  290   

   guess.c program,   312 - 314    

  H 
   header files  

  compiling, multiple source code files 
and,   363 - 367  

  example,   727  

  first.c program,   31 - 32  

  IDEs,   726  

  #include directive,   726 - 727  

  multiple inclusions,   727 - 728  

  uses,   729 - 730   

   headers, functions,   40   

   hello.c program,   500 - 502   

   hexadecimal numbers,   65 - 66 ,  94 ,  677 - 678  

  binary equivalents,   678   

   hotel.h,   365 - 366    

  sump( ),   405  

  time( ),   538 ,  654 ,  820  

  to_binary( ),   360  

  ToLeft( ),   835  

  ToLower( ),   663  

  tolower( ),   253  

  ToRight( ),   835  

  ToUpper( ),   657   - 659 ,  663  

  toupper( ),   253  

  Transpose( ),   663  

  Traverse( ),   793 ,  801 ,  842  

  TreeItems( ),   833  

  types,   348 - 349  

  ungetc( ),   585  

  up_and_down( ),   354 - 355  

  uses,   336  

  values, return keyword,   345 - 348  

  VLAs, two-dimensional argument,   428  

  void,   658   

   funds1.c program,   618 - 619   

   funds2.c program,   620   

   funds3.c program,   621 - 622   

   funds4.c program,   637 - 638   

   fwrite( ) function,   586 -   588 ,  639  

  example,   589 - 590    

  G 
   gcc command,   18   

   GCC compiler,   18   

   general utilities library  

  atexit( ) function,   753 - 755  

  exit( ) function,   753 - 755  

  qsort( ) function,   755 - 758   

   _Generic keyword,   740 - 741   
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  I 
   IDE (integrated development environ-

ments), header files,   726   

   identifiers  

  entity,   512  

  reserved,   49 - 50   

   IDEs (integrated development environ-

ments),   19 - 21   

   #if directive,   736 - 737   

   if else pairings,   257 - 259   

   if else statement,   248 - 249 ,  291  

  ?: (conditional) operator,   272 - 273  

  switch statement comparison,   286 - 287   

   if statement,   246 - 248 ,  291  

  if else comparison,   249   

   #ifdef directive,   732 - 733   

   ifdef.c program,   732 - 733   

   #ifndef directive,   733 - 735   

   images, bitmapped,   774   

   imaginary types,   85   

   imax( ) function,   350 - 351   

   imin( ) function,   345 - 348   

   #include directive  

  C library file inclusion,   745 - 746  

  file inclusion,   726 - 730   

   #include statement,   30 - 31   

   increment (++) operator,   160 - 164   

   incrementing pointers,   410   

   indefinite loops,   207 - 208   

   indexes, arrays,   384   

   indirect membership operator,   913   

   initialization  

  arrays,   384 - 388  

  multidimensional,   396  

  character string arrays,   444 - 445  

  structures,   606  

  unions,   645  

  variables,   63   

   InitializeList( ) function,   793 ,  800   

   InitializeTree( ) function,   833   

   inline definition,   744   

   inline functions,   725 ,  741 - 744   

   inline keyword,   744   

   InOrder( ) function,   842   

   input  

  buffered,   301  

  character, mixing with numeric,   
314 - 317  

  functions,   584  

  keyboard,   304  

  terminating,   302 - 306  

  numbers,   323 - 324  

  numeric mixed with character input, 
  314 - 317 ,  327 - 330  

  redirection,   307 - 308  

  string  

  buffer overflow,   455  

  fgets( ) function,   456 - 460  

  fputs( ) function,   456 - 460  

  gets( ) function,   453 - 455  

  gets_s( ) function,   460 - 461  

  long,   455  

  scanf( ) function,   462 - 463  

  s_gets( ) function,   461 - 462  

  space creation,   453  

  user interface,   312 - 314  

  numeric mixed with character, 
  314 - 317  

  validation,   299 - 300 ,  317 - 324   

   int arrays, in memory,   228   

   int constants,   64   

   int keyword,   60   
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   inword flag,   269 - 270   

   I/O (input/output)  

  file I/O  

  fprintf( ) function,   576 - 578  

  fscanf( ) function,   576 - 578  

  file-condensing program,   574 - 576  

  functions,   299 - 300  

  levels,   568  

  single character,   300 - 301  

  standard,   568 - 569  

  command-line arguments,   569 - 570  

  end-of-file,   572 - 573  

  fclose( ) function,   574  

  fopen( ) function,   570 - 572  

  getc( ) function,   572  

  pointers to files,   574  

  putc( ) function,   572   

   I/O package,   32   

   isalnum( ) function,   254   

   isalpha( ) function,   254   

   isblank( ) function,   254   

   iscntrl( ) function,   254   

   isdigit( ) function,   254   

   isgraph( ) function,   254   

   islower( ) function,   254 ,  268   

   ISO (International Organization for 

Standardization),   8  

  C keywords,   49   

   ISO C,   9   

   isprint( ) function,   254   

   ispunct( ) function,   254 ,  495 - 497   

   isspace( ) function,   254 ,  269   

   isupper( ) function,   254   

   isxdigit( ) function,   254   

   itoa( ) function,   503   

   itobs( ) function,   687    

   int type,   30 ,  34 ,  62  

  constants,   75  

  hexadecimal numbers,   65 - 66  

  long,   66 - 67  

  multiple,   67 - 68  

  octal numbers,   65 - 66  

  printing int values,   64  

  short,   66 - 67  

  unsigned,   66 - 67  

  variable declaration,   63   

   intconv.c program,   122 - 123   

   integers,   61  

  binary,   674 - 675  

  floating-point type comparison,   60  

  mixing with floating types,   124  

  overflow,   69  

  pointers,   410  

  subtracting,   410  

  properties,   787  

  signed,   675 - 676  

  union as,   697   

   integrated environment, command-line 

arguments,   500   

   interactive programs,   58   

   interchange( ) function,   369 - 371   

   interfaces  

  binary search tree,   830 - 832  

  building, ADTs and,   789 - 793  

  defining,   805 - 806  

  functions, implementing,   810 - 815  

  implementing,   796 - 802  

  using,   793 - 796   

   intermediate files,   14   

   internal linkage,   515   

   InTree( ) function,   836 - 837   

   inttypes.h,   78   
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  J 
   jove editor,   16    

  K 
   keyboard input,   304   

   keystrokes,   23   

   keywords,   49 - 50  

  for,   209  

  auto,   518  

  char,   60  

  const,   109 ,  385  

  C/C++ comparison,   423  

  formal parameters,   413 - 415  

  protecting arrays,   415 - 417  

  data types,   59 - 60  

  double,   60  

  enum,   649  

  constants,   649 - 650  

  usage,   650 - 652  

  values,   650  

  extern,   536  

  float,   60  

  _Generic,   740 - 741  

  inline,   744  

  int,   34 ,  60  

  long,   60  

  return,   230 ,  345 - 348  

  short,   60  

  struct,   604  

  typedef,   158 ,  653 ,  654 - 656  

  #define statement and,   654  

  location,   653  

  variable names,   653 - 654  

  unsigned,   60  

  void,   178   

   K&R C,   8    

  L 
   labels, case,   284 - 285   

   languages  

  Classic C,   8  

  compilers,   7  

  high-level,   6  

  K&R C,   8  

  standards,   7 - 9   

   length of strings,   101   

   lesser.c program,   345 - 348   

   lethead1.c program,   337 - 340   

   libraries,   14 - 18  

  assert,   760  

  assert( ) function,   760 - 763  

  C library  

  automatic access,   745  

  descriptions,   746 - 747  

  file inclusion,   745  

  library inclusion,   745 - 746  

  general utilities  

  atexit( ) function,   753 - 755  

  exit( ) function,   753 - 755  

  qsort( ) function,   755 - 758  

  math,   747  

  ANSI C standard functions,   748  

  tgmath.h library,   752  

  trigonometry,   747 - 750  

  types,   750 - 752   

   library inclusion (C library),   745 - 746   

   limitations of C,   4   

   #line directive,   738 - 740   

   linkage,   515 - 516  

  external, static variables,   524 - 529  

  internal, static variables,   529 - 530  

  variable scope and,   515   
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   logical operators,   264 ,  911  

  alternative spellings,   265  

  bitwise,   678 - 680  

  order of evaluation,   266  

  precedence,   265 - 266  

  relational expressions,   291   

   long constants,   68   

   long double type,   80 - 81   

   long int type,   66 - 67  

  printing,   70   

   long keyword,   60   

   long long constants,   68   

   long long int type, printing,   70   

   long strings, printing,   126 - 128   

   loops  

  break statement,   277 - 279  

  continue statement,   274 - 277  

  counting,   207 - 208  

  do while,   220 - 223  

  entry condition,   195  

  for,   210 - 214  

  indefinite,   207 - 208  

  introduction,   144 - 146  

  nested,   224 - 226  

  selecting,   223 - 224  

  tail recursion and,   356 - 358  

  while,   144 ,  190 - 191 ,  195  

  terminating,   194 - 195    

  M 
   mac_arg.c program,   719 - 721   

   machine language,   6   

   Macintosh  

  command-line arguments,   500  

  Xcode,   21   

   linked lists,   779 - 780  

  arrays comparison,   824 - 828  

  creating,   784 - 785  

  displaying lists,   783 - 784  

  elements, inserting,   824  

  films2.c program,   781 - 785  

  list memory, freeing,   785 - 786  

  searches,   826  

  several items,   781  

  two items,   780   

   Linux systems,   18 - 19  

  compiling, multiple source code files 
and,   362 - 32  

  redirection,   307 - 311  

  Windows/Linux option,   21   

   list.c program,   796 - 802   

   list.h header file,   791 - 793   

   ListIsEmpty( ) function,   800   

   ListIsFull( ) function,   800 - 801   

   ListItemCount( ) function,   800 - 801   

   lists  

  ADTS, operations,   788  

  linked  

  arrays and,   824 - 828  

  creating,   784 - 785  

  displaying,   783 - 784  

  freeing list memory,   785 - 786  

  ordered,   826   

   literals,   81 - 82  

  character string literals,   442 - 443  

  compound,   431  

  arrays,   432 - 434  

  structures and,   631 - 633  

  string literals, storage,   512   

   LLVM Project,   18   

   loccheck.c program,   367 - 368   
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   macros  

  arguments, strings from,   721 - 722  

  containing macros,   715  

  double quotation marks and,   716  

  empty macros,   731  

  EXIT_FAILURE,   570  

  EXIT_SUCCESS,   570  

  function-like macros,   718 ,  731  

     versus    functions,   725 - 726  

  object-like macros,   714 ,  731  

  predefined,   737 - 740  

  SQUARE,   719 - 720  

  strings,   715  

  tokens,   717  

  va_arg( ),   766  

  va_copy( ),   767  

  va_end( ),   766  

  variadic,   723 - 724  

  va_start( ),   766   

   mail.c program,   820 - 824   

   main( ) function,   30 ,  32 - 33 ,  232 ,  337 - 340   

   makeinfo( ) function,   624 ,  626   

   MakeNode( ) function,   833 - 835   

   malloc( ) function,   543 - 544    

  data representation,   777  

  new structures,   779  

  pointers,   628 - 631  

  structures,   628 - 631  

  VLAs and,   548 - 549   

   manifest constants,   109 - 110  

  #define preprocessor directive,   713   

   manybook.c program,   608 -   613   

   manydice.c file,   541 - 542   

   masks, bitwise operators,   680 - 681   

   math library,   747  

  ANSI C standard functions,   748  

  tgmath.h library,   752  

  trigonometry,   747 - 750  

  types,   750 - 752   

   membership operator (.), 912   

   memcpy( ) function,   763 - 765   

   memmove( ) function,   763 - 765   

   memory,   5 - 6  

  allocated,   543  

  calloc( ) function,   548  

  dynamic, VLAs and,   548 - 549  

  free( ) function,   545 -   548  

  malloc( ) function,   543 - 544  

  storage classes and,   549 - 551  

  for a structure,   605  

  dynamic allocation, VLAs,   431  

  list, freeing,   785 - 786  

  storage classes,   511 - 513  

  structures and,   608   

   menu( ) function,   366   

   menuette.c program,   328 - 330   

   menus,   324  

  tasks,   324   

   MinGW,   19   

   min.sec.c program,   159   

   miscellaneous operators,   914   

   misuse.c program,   350 - 351   

   mode strings, fopen( ) function,   571   

   modifiers, declarations,   655 - 656   

   mod_str.c program,   495 - 497   

   modules, compiling,   14   

   modulus operator,   159 - 160   

   mult_array( ) function,   415 - 416   

   multidimensional arrays,   393 - 398  

  functions and,   423 - 427  

  pointers and,   417 - 427  

  two-dimensional,   394 - 396  

  initializing,   397 - 398   
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   number input, mixing with character,   314 -

 317 ,  327 - 330   

   numbers,   6  

  binary, octal digits,   677  

  bits, values,   674  

  decimal points,   57  

  decimal system,   674  

  floating-point,   57 - 61  

  hexadecimal,   65 - 66 ,  94 ,  677 - 678  

  input,   323 - 324  

  octal,   65 - 66 ,  94  

  order number bases,   676 - 678    

  O 
   object code files,   14 - 18   

   object-like macros,   714 ,  731   

   octal numbers,   65 - 66 ,  94 ,  677   

   one's complement,   679   

   online resources,   905 - 906   

   operators  

  #, 713  

  ##, 722  

  AND,   679  

  + (addition),   149  

  = (assignment),   146 - 149 ,  202  

  ?: (conditional),   272 - 273  

  -- (decrement),   164 - 166  

  == (equality),   191  

  ++ (increment),     166  

  * (indirection),   371 - 372  

  . (membership), 912  

  * (multiplication),   151 - 153  

  == (relational),   202  

  -/+ (sign operators),   150  

  - (subtraction),   149 - 150  

  / (division),   153 - 154  

  < (redirection),   308  

   multiplication (*) operator,   151 - 153   

   mycomp( ) function,   758 - 760    

  N 
   names1.c program,   622 - 624   

   names2.c program,   624 - 626   

   names3.c program,   629 - 631   

   names.h header file,   735   

   namespaces, shared,   652 - 653   

   names_st.h header file,   727   

   naming,   36  

  arrays, pointer notation,   402  

  functions,   336  

  uses of names,   664  

  pointer variables,   371  

  pointers, arrays and,   402  

  variables,   375  

  typedef,   653 - 654   

   nested function calls,   468 - 469   

   nested if statement,   259 - 262   

   nested loops,   224 - 226   

   nested structures,   613 - 615   

   newline character  

  preprocessor directives,   713  

  stripping,   603  

    no_data.c program,   386   

   nogood.c program,   46 - 49   

   nono.c program,   465   

   nonprinting characters,   73 - 76   

   _Noreturn functions (C11),   744   

   Notepad,   19   

   null character,   101 ,  459  

  scanf( ) function,   103   

   null pointer,   459   

   num variable,   30 ,  34   
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  > (redirection),   308  

  arithmetic,   908  

  assignment,   910 - 911  

  %=, 215  

  *=, 215  

  +=, 215  

  -=, 215  

  /=, 215  

  binary,   150  

  bitwise,   913 - 914  

  binbit.c program,   686 - 687  

  bit fields and,   696 - 703  

  clearing bits,   682 - 683  

  logical,   678 - 680  

  masks,   680 - 681  

  setting bits,   681 - 682  

  shift operators,   684 - 685  

  toggling bits,   683  

  value checking,   683 - 684  

  C, 908  

  comma operator,   214 - 218  

  conditional,   911 - 912  

  EXCLUSIVE OR,   680  

  indirect membership,   913  

  logical,   264 ,  911  

  alternative spellings,   265  

  order of evaluation,   266  

  precedence,   265 - 266  

  miscellaneous,   914  

  modulus,   159 - 160  

  OR,   679 - 680  

  pointer-related,   912  

  precedence,   154 - 155  

  increment/decrement,   165 - 166  

  logical operators,   265 - 266  

  order of evaluation,   155 - 157 ,  266  

  relational,   197 ,  910  

  expressions,   910  

  precedence,   205  

  sign,   912  

  sizeof,   158 ,  388  

  structure,   617 - 618 ,  647 ,  912 - 913  

  structure pointer,   913  

  unary,   150  

  *, 406  

  ++, 406  

  union,   912 - 913   

   OR operator,   679 - 680   

   order number bases,   676 - 678   

   order of operator evaluation,   155 - 157  

  logical operators,   266   

   order.c program,   406 - 407   

   ordered lists,   826   

   output,   23  

  binary,   586  

  disappearing,   28 ,  57  

  printf( ) function,   92 - 93  

  redirection,   308 - 309  

  string  

  fputs( ) function,   465 - 466  

  printf( ) function,   466  

  puts( ) function,   464 - 465  

  text,   586    

  P 
   paint.c program,   272 - 273   

   parameters  

  arrays, declaring,   403  

  const type qualifier,   552 - 553  

  formal parameters  

  const keyword,   413 - 415  

  function arguments,   342 - 343  

  pointers,   404 - 407   

   parentheses, pointers to arrays,   420   
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  function communication,   373 - 375  

  function pointers,   657  

  addresses,   657  

  ToUpper( ) function,   657 - 658  

  incrementing,   410  

  integers,   410  

  subtracting,   410  

  malloc( ) function,   628 - 631  

  null,   459  

  operations,   408 - 412  

  parameters,   404 - 407  

  passing,   412  

  standard files (I/O),   574  

  strcpy( ) function,   485  

  strings, sorting,   493  

  strings and,   451 - 452  

  structures,   626 - 627  

  character pointers,   627 - 628  

  declaring,   617  

  initializing,   617  

  member acces,   617 - 618  

  uninitialized, dereferencing,   411  

  value finding,   409  

  variables, names,   371   

   portability,   3 ,  582 - 583   

   postage.c program,   216   

   postfix,   163 - 164   

   pound( ) function,   179   

   pow( ) function,   230   

   power( ) function,   233   

   power.c program,   231 - 233   

   praise1.c program,   102   

   praise2.c program,   104 - 105   

   precedence of operators,   154 - 155  

  increment/decrement,   165 - 166  

  logical operators,   265 - 266  

  order of evaluation,   155 - 157  

  relational operators,   205   

   parta.c file,   532   

   partb.c file,   532 - 533   

   passing  

  arguments,   124  

  pointers,   412  

  structure members,   618 - 619  

  structures, as arguments,   621 - 622   

   period (.) character,   262   

   peripherals,   5   

   petclub.c program,   849 - 854   

   pizza.c program,   108   

   platinum.c program,   56 - 58   

   pnt_add.c program,   399 - 400   

   pointer-related operators,   912   

   pointers,   371 ,  407  

  * (indirection) operator,   371 - 372  

  addresses,   409  

  arrays,   398  

  comparison,   445 - 447  

  declaration,   544  

  differences,   447 - 449  

  names,   402  

  notation and,   402  

  multidimensional,   417 - 427  

  parentheses,   420  

  assignment and,   409  

  comparisons,   411  

  compatibility,   421 - 423  

  const type qualifier,   552 - 553  

  constants  

  as function parameter,   416  

  value changes and,   415  

  declaring,   372 - 373  

  to functions,   658  

  decrementing,   410 - 411  

  differencing,   411  

  function, arrays of,   664  
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   predefined macros,   737 - 740   

   prefix,   163 - 164   

   preproc.c program,   713 - 718   

   preprocessor  

  constants and,   106 - 112  

  directives, newline character,   713  

  identifiers and,   731   

   print_name( ) function,   352 - 353   

   print1.c program,   64 - 65   

   print2.c program,   70 - 71   

   printf( ) function,   30 - 31 ,  38 - 39  

  * modifier,   133 - 135  

  %f specifier,   57  

  arguments,   89 - 91 ,  114  

  conversion specifications,   112 - 113  

  mismatched conversions,   122 - 124  

  modifiers,   116 - 121  

  escape sequences,   91 - 92  

  flags,   118  

  multiple values,   43 - 44  

  output,   92 - 93  

  return value,   126  

  usage tips,   135 - 136   

   printing  

  char type and,   76  

  floating-point values,   82 - 83  

  int values,   64  

  long long types,   70  

  long types,   70  

  short types,   70  

  strings,   102 - 103  

  long strings,   126 - 128  

  unsigned types,   70   

   printout.c program,   112 - 114   

   prntval.c program,   126   

   program jumps,   290   

   program state,   49   

   programmers,   3   

   programming  

  books,   907  

  code, writing,   11  

  commenting,   13  

  compiling,   11 - 12  

  debugging,   12  

  design,   11  

  maintenance,   13  

  objectives,   10  

  running the program,   12  

  seven steps,     

  testing,   12   

   programs  

  readability,   41 - 42  

  structure,   40   

   protecting array contents,   412 - 417   

   proto.c program,   351 - 352   

   prototyping functions  

  ANSI C,   349 - 353  

  arguments and,   343  

  scope,   514 - 515   

   ptr_ops.c program,   408 - 409   

   put1( ) function,   467   

   put2( ) function,   468   

   putc( ) function,   572   

   putchar( ) function,   250 - 252  

  single-character I/O and,   300 - 301   

   put_out.c program,   464 - 465   

   put_put.c program,   468 - 469   

   puts( ) function,   442  

  null character and,   471  

  string input,   453 - 455  

  string output,   464 - 465    
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  reversal and,   358 - 360  

  statements,   356  

  tail recursion,   356 - 358  

  up_and_down( ) function,   354 - 355  

  variables,   355   

   redefining constants,   717 - 718   

   redirection,   307  

  < operator,   308  

  > operator,   308  

  combination,   309 - 310  

  command-line,   310  

  input,   307 - 308  

  output,   308 - 309   

   reducto.c program,   574 - 576   

   reference books,   908   

   register variables, storage classes,   522   

   relational expressions  

  false,   199 - 203  

  logical operator and,   291  

  true,   199 - 203   

   relational operators,   197 ,  910  

  ==, 191  

  expressions,   910  

  precedence,   205   

   repeat.c program,   498 - 499   

   reserved identifiers,   49 - 50   

   resources  

  books  

  C++, 907  

  C language,   907  

  programming,   907  

  reference,   908  

  online,   905 - 906   

   restrict type qualifier,   555 - 556   

   return keyword,   230 ,  345 - 348   

   return statement,   40   

  Q 
   qsort( ) function,   657 ,  755 - 758   

   queue abstract data type,   804  

  array as queue,   806  

  circular queue,   808  

  interface, defining,   805 - 806  

  simulations,   818 - 824  

  testing queue,   815 - 817   

   queue.c implementation file,   813 - 815   

   queue.h interface header file,   809 - 810   

   quotation marks, double,   465    

  R 
   ragged arrays,   450   

   rain.c program,   395 - 396   

   RAM (random access memory),   5   

   rand( ) function,   534 ,  819 ,  820   

   rand0( ) function,   535   

   randbin.c program,   593 - 594   

   random access  

  binary I/O,   593 - 594  

  fgetpos( ) function,   583  

  fopen( ) function,   579  

  fseek( ) function,   579   - 582  

  fsetpos( ) function,   583  

  ftell( ) function,   579   - 582   

   ranges, && operator,   267 - 268   

   readability,   41 - 42   

   rectangular arrays,   450   

   rect_pol.c program,   749 - 750   

   recur.c program,   354 - 355   

   recursion,   353 - 355  

  Fibonacci numbers and,   360  

  pros/cons,   360 - 361  

  returns,   356  
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   return values  

  functions,   233 - 234  

  printf( ) function,   126  

  scanf( ) function,   133   

   reversal, recursion and,   358 - 360   

   reverse.c program,   579 - 580   

   rewind( ) function,   577 ,  643   

   rfact( ) function,   358   

   Ritchie, Dennis,   1   

   routines, library routines,   15   

   rows1.c program,   224 - 225   

   running.c program,   180 - 181    

  S 
   samples, book inventory,   601 - 602   

   scanf( ) function,   58 ,  128 - 129  

  arguments,   89 - 91  

  conversion specifiers,   129  

  format string, regular characters,   
132 - 133  

  input,   129 - 132  

  null character,   103  

  return value,   133  

  while loop and,   191 - 193   

   scope  

  block,   514  

  function,   514  

  function prototypes,   514 - 515  

  linkage,   515 - 516  

  storage classes,   513 - 515   

   scores_in.c program,   228 - 230   

   searches  

  binary,   826 - 827  

  binary search trees,   828 - 829  

  adding items,   833 - 836  

  AddItem( ) function,   833 -   837  

  AddNode( ) function,   833 - 835  

  ADT,   829 - 843  

  DeleteAll( ) function,     843  

  DeleteItem( ) function,   836 - 837 , 
 841 - 842  

  DeleteNode( ) function,   841 - 842  

  deleting items,   837 -   842  

  deleting nodes,   840 - 841  

  emptying,     843  

  EmptyTree( ) function,   833  

  finding items,   836 - 837  

  FullTree( ) function,   833  

  InitializeTree( ) function,   833  

  interface,   830 - 832  

  InTree( ) function,   836 - 837  

  MakeNode( ) function,   833 - 835  

  SeekItem( ) function,   833 - 837 ,  
841 - 842  

  tips,   854 - 856  

  ToLeft( ) function,   835  

  ToRight( ) function,   835  

  traversing trees,   842  

  TreeItems( ) function,   833  

  linked lists,   826   

   SeekItem( ) function,   833 -   837 ,  841 - 842   

   selection sort algorithm,   494 - 495   

   semantic errors,   47 - 48   

   sequence points, statements,   170 - 171   

   setting bits (bitwise operators),   681 - 682   

   setvbuf( ) function,   584   - 586   

   s_gets( ) function,   592  

  string input,   461 - 462   

   shared namespaces,   652 - 653   

   shift operators (bitwise),   684 - 685   

   short int type,   66 - 67  

  printing,   70   

   short keyword,   60   
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   standard files (I/O),   568  

  pointers to,   574   

   standard I/O,   568 - 569  

  binary, random access and,   593 - 594  

  command-line arguments,   569 - 570  

  end-of-file,   572 - 573  

  fclose( ) function,   574  

  feof( ) function,   589  

  ferror( ) function,   589  

  fflush( ) function,   585  

  fopen( ) function,   570 - 572 ,  584  

  fread( ) function,   586   - 589  

  example,   589 - 590  

  fwrite( ) function,   586 -   588  

  example,   589 - 590  

  getc( ) function,   572  

  putc( ) function,   572  

  setvbuf( ) function,   584   - 586  

  ungetc( ) function,   585   

   starbar( ) function,   337 - 340   

   starsrch.c program,   481   

   startup code,   15   

   statements,   168 - 170  

  assignment,   37 - 38  

  break,   277 - 279 ,  282 - 283  

  compound (blocks),   171 - 173  

  continue,   274 - 277  

  declarations,   34 - 35  

  #define,   109  

  else if,   253 - 257  

  goto,   287 -   290  

  if,   246 - 248 ,  291  

  if else,   248 - 249 ,  272 - 273 ,  291  

  #include,   30 - 31  

  recursive functions,   356  

  return,   40  

  sequence points,   170 - 171  

   show( ) function,   659   

   show_array( ) function,   416   

   show_bstr( ) function,   687   

   showchar2.c program,   316 - 317   

   showf_pt.c program,   82 - 83   

   showmenu( ) function,   663 ,  664   

   show_n_char( ) function,   340 - 344   

   side effects, statements,   170 - 171   

   sign operators,   912   

   sign operators (-/+),   150   

   signed integers,   675 - 676   

   signed types,   93  

  char,   77   

   simulations, queue package,   818 - 824   

   single-character I/O,   300 - 301   

   single-character reading,   283   

   sizeof operator,   158 ,  388   

   sizeof.c program,   158   

   size_t type,   158   

   skip2.c program,   134 - 135   

   skippart.c program,   274 - 276   

   somedata.c program,   387   

   sort_str.c program,   491 - 493   

   sorting, strings,   491  

  pointers,   493  

  selection sort algorithm,   494 - 495   

   source code  

  files,   14  

  text files,   19  

  two or more files when compiling,   
361 - 367   

   sprintf( ) function,   487 - 489   

   sqrt( ) function,   660 ,  747   

   SQUARE macro,   719 - 720   

   srand( ) function,   536 - 538 ,  542 ,  820   
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  side effects,   170 - 171  

  switch,   280 - 283 ,  291  

  terminating semicolon,   40  

  while,   145 ,  170 ,  193   

   static class qualifier,   557   

   static variables,   534  

  storage classes,   522 - 524  

  external linkage,   524 - 529  

  internal linkage,   529 - 530   

   stdarg.h file, variadic macros,   765 - 768   

   stdin stream,   307   

   stdint.h,   77 - 78   

   stdio.h file,   31  

  pointers to standard files,   574   

   storage,   5  

  bit fields,   692 - 695  

  numbers,   6  

  string literals,   512   

   storage classes,   511 - 513  

  arrays and,   386  

  automatic,   517  

  dynamic memory allocation,   549 - 551  

  functions and,   533 - 534  

  linkage,   515 - 516  

  multiple files,   530  

  register,   517  

  scope,   513 - 515  

  selecting,   534  

  specifiers,   530 - 531  

  static w/ external linkage,   517  

  static w/ internal linkage,   517  

  static w/ no linkage,   517  

  storage duration,   516 - 517  

  variables  

  automatic,   518 - 522  

  register,   522  

  static with block scope,   522 - 524  

  static with external linkage,   
524 - 529  

  static with internal linkage,   
529 - 530   

   storage duration,   516 - 517   

   strcat( ) function,   471 - 473 ,  489   

   strchr( ) function,   490 ,  495 - 497 ,  664   

   strcmp( ) function,   475 -   480 ,  489   

   strcnvt.c program,   502 - 503   

   strcpy( ) function,   482 - 484 ,  489  

  pointers,   485  

  properties,   484 - 485   

   streams,   303   

   string functions  

  sprintf( ),   487 - 489  

  strcat( ),   471 - 473 ,  489  

  strchr( ),   490  

  strcmp( ),   475 -   480 ,  489  

  strcpy( ),   482 - 484 ,  489  

  properties,   484 - 485  

  strlen( ),   469 - 471 ,  490  

  strncat( ),   473 - 474 ,  489  

  strncmp( ),   489  

  strncpy( ),   482 -   489  

  strpbrk( ),   490  

  strstr( ),   490   

   string input  

  buffer overflow,   455  

  fgets( ) function,   456 - 460  

  fputs( ) function,   456 - 460  

  gets( ) function,   453 - 455  

  gets_s( ) function,   460 - 461  

  long,   455  

  scanf( ) function,   462 - 463  

  s_gets( ) function,   461 - 462  

  space creation,   453   
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   strncat( ) function,   473 - 474 ,  489   

   strncmp( ) function,   489   

   strncpy( ) function,   482 -   489   

   strpbrk( ) function,   490   

   strptr.c program,   443   

   strstr( ) function,   490   

   strtod( ) function,   503   

   strtol( ) function,   503   

   strtoul( ) function,   503   

   struct keyword,   604   

   structure declaration    

  initialization,   606  

  initializers,   607 - 608  

  member access,   607  

  memory allocation,   605  

  struct keyword,   604  

  variables, defining,   605 - 608   

   structure operators,   912 - 913   

   structure pointer operator,   913   

   structures  

  address,   619 - 620  

  allocating in a block,   778  

  anonymous,   636 - 637  

  arrays,   607  

  declaring,   611  

  functions,   637 - 638  

  members,   612  

  arrays of,   608  

  binary tree,   644  

  character arrays,   627 - 628  

  character pointers,   627 - 628  

  compound literals and,   631 - 633  

  malloc( ) function,   628 - 631  

  members, passing,   618 - 619  

  memory and,   608  

  nested,   613 - 615  

   string literals, storage,   512   

   string output  

  fputs( ) function,   465 - 466  

  printf( ) function,   466  

  puts( ) function,   464 - 465   

   stringf.c program,   121   

   string.h library  

  memcpy( ) function,   763 - 765  

  memmove( ) function,   763 - 765   

   strings,   102 - 103  

  character string arrays,   444 - 445 ,  
449 - 451  

  character string literals,   442 - 443  

  character strings,   101 ,  227 ,  441  

     versus    characters,   103  

  constants,   442 - 443  

  double quotation marks,   465  

  control strings,   115 - 114  

  defining, within program,   442 - 452  

  displaying,   442  

  length,   101  

  long strings, printing,   126 - 128  

  from macro arguments,   721 - 722  

  macros,   715  

  mode strings, fopen( ) function,   571  

  pointers and,   451 - 452  

  printing,   102 - 103  

  long strings,   126 - 128  

  puts( ) function,   442  

  regular characters,   132 - 133  

  sorting,   491  

  pointers,   493  

  selection sort algorithm,   494 - 495   

   strings1.c program,   442   

   string-to-number conversions,   500 - 503   

   strlen( ) function,   101 ,  103 - 105 ,  469 - 471 , 

 490   
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  operator,   617 - 618  

  operators,   647  

  passing as argument,   621 - 622  

  pointers to,   615 - 616 ,  626 - 627  

  declaring,   617  

  initializing,   617  

  member access,   617 - 618  

  saving contents to file,   639 - 644  

  union as,   697   

   subst.c program,   722   

   subtraction (-) operator,   149 - 150   

   sum( ) function,   402  

  structure addresses,   619 - 620   

   sum_arr1.c program,   403 - 404   

   sum_arr2.c program,   405 - 407   

   summing.c program,   190 - 191   

   sump( ) function,   405   

   swap3.c program,   373 - 375   

   sweetie1.c program,   207 - 208   

   sweetie2.c program,   208     

   switch statement,   280 - 283 ,  291  

  if else statement comparison,   286 - 287   

   symbolic constants,   106 -   111  

  when to use,   716   

   symbols  

  */,   30 ,  33 - 34  

  /*, 30   

   syntax errors,   46 - 47   

   syntax points, while loop,   195 - 197   

   system requirements,   24    

  T 
   tail recursion,   356 - 358   

   talkback.c program,   100   

   tasks,   324   

   terminating while loop,   194 - 195   

   test_fit.c program,   470 - 471   

   testing programs,   12   

   text files,   566  

     versus    binary,   582  

  binary mode,   567  

  text mode,   567  

     versus    word process files,   19   

   text output,   586   

   text view (files),   567   

   tgmath.h library,   752   

   Thompson, Ken,   1   

   time( ) function,   538 ,  654 ,  820   

   to_binary( ) function,   360   

   toggling bits (bitwise operators),   683   

   tokens  

  macros,   717  

  translation and,   712 - 713   

   ToLeft( ) function,   835   

   ToLower( ) function,   663   

   tolower( ) function,   253   

   ToRight( ) function,   835   

   ToUpper( ) function,   657   - 659 ,  663   

   toupper( ) function,   253 ,  495 - 497   

   tracing,   48   

   translation  

  compiler and,   712  

  newline character and,   712  

  tokens,   712 - 713  

  whitespace characters,   713   

   Transpose( ) function,   663   

   Traverse( ) function,   793 ,  801 ,  842   

   tree.c implementation file,   843 - 849   

   tree.h header file,   830 - 832   

   TreeItems( ) function,   833   

   trigonometry, math library and,   747 - 750   

   trouble.c program,   201 - 203   



ptg11524036

1035va_list type variable

  templates, tags and,   645  

  uses,   646 - 647   

   Unix systems  

  compiling, multiple source code files 
and,   362  

  editors,   16  

  file size,   566  

  filenaming,   16  

  redirection,   307 - 311   

   unsigned int type,   66 - 67  

  printing,   70   

   unsigned keyword,   60   

   unsigned types, char,   77   

   unspecified arguments,   352 - 353   

   up_and_down( ) function,   354 - 355   

   usehotel.c  

  control module,   363 - 364  

  function support module,   364 - 365   

   use_q.c program,   816 - 817   

   user interface  

  input  

  buffered,   312 - 314  

  numeric mixed with character, 
  314 - 317  

  menus,   324  

  tasks,   324    

  V 
   -v option,   18   

   va_arg( ) macro,   766   

   va_copy( ) macro,   767   

   va_end( ) macro,   766   

   va_start( ) macro,   766   

   validation, input,   299 - 300 ,  317 - 324   

   va_list type variable,   765 - 766   

   two-dimensional array,   394 - 396  

  initializing,   397 - 398   

   two_func.c program,   44 - 45   

   type conversions,   174 - 176  

  cast operator,   176   

   type portability,   116   

   type qualifiers, ANSI C  

  _Atomic,   556 - 557  

  const,   552 - 554  

  formal parameters,   557  

  restrict,   555 - 556  

  volatile,   554 - 555   

   type sizes,   86 - 88   

   typedef keyword,   158 ,  655   - 656  

  #define statement and,   654  

  location,   653  

  variables, names,   653 - 654   

   typeface in book,   22   

   types  

  enumerated,   649  

  math library,   750 - 752    

  U 
   unary operators,   150  

  &, 354  

  *, 406  

  ++, 406   

   #undef directive,   731   

   ungetc( ) function,   585   

   union operators,   912 - 913   

   unions  

  anonymous,   647  

  arrays of,   645  

  initializing,   645  

  as integer,   697  

  as structure,   697  
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   values  

  arrays, assigning,   390  

  bit numbers,   674  

  bitwise operators,   683 - 684  

  changing, pointers to constants,   415  

  expressions,   168  

  pointers and,   409  

  return keyword,   345 - 348  

  variables,   375   

   varargs.c program,   767 - 768   

   vararr2d.c program,   429 - 431   

   variables,   59  

  addresses,   375  

  automatic, storage classes,   518 - 522  

  calling functions, altering,   369 - 371  

  declaring,   37 ,  57 ,  102  

  char type,   72  

  floating-point,   81  

  int,   63  

  expressions, array declaration,   544  

  floating-point, declaring,   81  

  initialization,   63  

  names,   375  

  typedef,   653 - 654  

  num,   30 ,  34  

  pointers  

  declaring,   372 - 373  

  names,   371  

  recursion,   355  

  register, storage classes,   522  

  static,   534  

  with block scope,   522 - 524  

  with external linkage,   524 - 529  

  with internal linkage,   529 - 530  

  structure, defining,   605 - 608  

  values,   375   

   variadic macros,   723 - 724  

  stdarg.h file,   765 - 768   

   varwid.c program,   133 - 134   

   vi editor,   16   

   Visual Studio,   20 - 21   

   VLAs (variable-length arrays),   427  

  dynamic memory allocation,   431 ,  
548 - 549  

  functions, two-dimensional VLA argu-
ment,   428  

  malloc( ) function,   548  

  restrictions,   428  

  size,   428  

  support for,   428   

   void,   17   

   void function, assignment statements,   658   

   void keyword,   178   

   volatile type qualifier,   554 - 555   

   vowels.c program,   284 - 285    

  W 
   when.c program,   194 - 195   

   where.c program,   550 - 551   

   while loop,   144 ,  190 - 191  

  compound statement and,   172  

  conditions,   146  

  entry condition loop,   195  

  scanf( ) function,   191 - 193  

  selecting,   223 - 224  

  structure,   193  

  syntax points,   195 - 197  

  terminating,   194 - 195   

   while statement,   145 ,  170 ,  193   

   whitespace,   137  

  scanf( ) function,   129  

  translation and,   713   
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   width.c program,   116 - 119   

   Win32 Console Application,   20   

   Windows Notepad,   19   

   Windows/Linux option,   21   

   word processor files    versus    text files,   19   

   wordcnt.c program,   270 - 271   

   word-counting program,   268 - 271   

   words,   60   

   X-Y-Z   
   X Window System, text editor,   16   

   Xcode,   21   

   zippo1.c program,   418 - 419   

   zippo2.c program,   420 - 421      
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